prompt
stringlengths
1.74k
34.3k
ref
stringlengths
4
432
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: 3DTopia/OpenLRM # Path: lrm/models/generator.py class LRMGenerator(nn.Module): """ Full model of the large reconstruction model. """ def __init__(self, camera_embed_dim: int, rendering_samples_per_ray: int, transformer_dim: int, transformer_layers: int, transformer_heads: int, triplane_low_res: int, triplane_high_res: int, triplane_dim: int, encoder_freeze: bool = True, encoder_model_name: str = 'facebook/dino-vitb16', encoder_feat_dim: int = 768): super().__init__() # attributes self.encoder_feat_dim = encoder_feat_dim self.camera_embed_dim = camera_embed_dim # modules self.encoder = DinoWrapper( model_name=encoder_model_name, freeze=encoder_freeze, ) self.camera_embedder = CameraEmbedder( raw_dim=12+4, embed_dim=camera_embed_dim, ) self.transformer = TriplaneTransformer( inner_dim=transformer_dim, num_layers=transformer_layers, num_heads=transformer_heads, image_feat_dim=encoder_feat_dim, camera_embed_dim=camera_embed_dim, triplane_low_res=triplane_low_res, triplane_high_res=triplane_high_res, triplane_dim=triplane_dim, ) self.synthesizer = TriplaneSynthesizer( triplane_dim=triplane_dim, samples_per_ray=rendering_samples_per_ray, ) def forward_planes(self, image, camera): # image: [N, C_img, H_img, W_img] # camera: [N, D_cam_raw] assert image.shape[0] == camera.shape[0], "Batch size mismatch for image and camera" N = image.shape[0] # encode image image_feats = self.encoder(image) assert image_feats.shape[-1] == self.encoder_feat_dim, \ f"Feature dimension mismatch: {image_feats.shape[-1]} vs {self.encoder_feat_dim}" # embed camera camera_embeddings = self.camera_embedder(camera) assert camera_embeddings.shape[-1] == self.camera_embed_dim, \ f"Feature dimension mismatch: {camera_embeddings.shape[-1]} vs {self.camera_embed_dim}" # transformer generating planes planes = self.transformer(image_feats, camera_embeddings) assert planes.shape[0] == N, "Batch size mismatch for planes" assert planes.shape[1] == 3, "Planes should have 3 channels" return planes def forward(self, image, source_camera, render_cameras, render_size: int): # image: [N, C_img, H_img, W_img] # source_camera: [N, D_cam_raw] # render_cameras: [N, M, D_cam_render] # render_size: int assert image.shape[0] == source_camera.shape[0], "Batch size mismatch for image and source_camera" assert image.shape[0] == render_cameras.shape[0], "Batch size mismatch for image and render_cameras" N, M = render_cameras.shape[:2] planes = self.forward_planes(image, source_camera) # render target views render_results = self.synthesizer(planes, render_cameras, render_size) assert render_results['images_rgb'].shape[0] == N, "Batch size mismatch for render_results" assert render_results['images_rgb'].shape[1] == M, "Number of rendered views should be consistent with render_cameras" return { 'planes': planes, **render_results, } # Path: lrm/cam_utils.py def build_camera_principle(RT: torch.Tensor, intrinsics: torch.Tensor): """ RT: (N, 3, 4) intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]] """ fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics) return torch.cat([ RT.reshape(-1, 12), fx.unsqueeze(-1), fy.unsqueeze(-1), cx.unsqueeze(-1), cy.unsqueeze(-1), ], dim=-1) # Path: lrm/cam_utils.py def build_camera_standard(RT: torch.Tensor, intrinsics: torch.Tensor): """ RT: (N, 3, 4) intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]] """ E = compose_extrinsic_RT(RT) fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics) I = torch.stack([ torch.stack([fx, torch.zeros_like(fx), cx], dim=-1), torch.stack([torch.zeros_like(fy), fy, cy], dim=-1), torch.tensor([[0, 0, 1]], dtype=torch.float32, device=RT.device).repeat(RT.shape[0], 1), ], dim=1) return torch.cat([ E.reshape(-1, 16), I.reshape(-1, 9), ], dim=-1) # Path: lrm/cam_utils.py def center_looking_at_camera_pose(camera_position: torch.Tensor, look_at: torch.Tensor = None, up_world: torch.Tensor = None): """ camera_position: (M, 3) look_at: (3) up_world: (3) return: (M, 3, 4) """ # by default, looking at the origin and world up is pos-z if look_at is None: look_at = torch.tensor([0, 0, 0], dtype=torch.float32) if up_world is None: up_world = torch.tensor([0, 0, 1], dtype=torch.float32) look_at = look_at.unsqueeze(0).repeat(camera_position.shape[0], 1) up_world = up_world.unsqueeze(0).repeat(camera_position.shape[0], 1) z_axis = camera_position - look_at z_axis = z_axis / z_axis.norm(dim=-1, keepdim=True) x_axis = torch.cross(up_world, z_axis) x_axis = x_axis / x_axis.norm(dim=-1, keepdim=True) y_axis = torch.cross(z_axis, x_axis) y_axis = y_axis / y_axis.norm(dim=-1, keepdim=True) extrinsics = torch.stack([x_axis, y_axis, z_axis, camera_position], dim=-1) return extrinsics # Path: lrm/inferrer.py import torch import math import os import imageio import mcubes import trimesh import numpy as np import argparse from PIL import Image from .models.generator import LRMGenerator from .cam_utils import build_camera_principle, build_camera_standard, center_looking_at_camera_pose from huggingface_hub import hf_hub_download [cx, cy], [w, h], ], dtype=torch.float32) return intrinsics def _default_source_camera(self, batch_size: int = 1): # return: (N, D_cam_raw) dist_to_center = 2 canonical_camera_extrinsics = torch.tensor([[ [1, 0, 0, 0], [0, 0, -1, -dist_to_center], [0, 1, 0, 0], ]], dtype=torch.float32) canonical_camera_intrinsics = self._default_intrinsics().unsqueeze(0) source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics) return source_camera.repeat(batch_size, 1) def _default_render_cameras(self, batch_size: int = 1): # return: (N, M, D_cam_render) render_camera_extrinsics = self._get_surrounding_views() render_camera_intrinsics = self._default_intrinsics().unsqueeze(0).repeat(render_camera_extrinsics.shape[0], 1, 1) render_cameras = build_camera_standard(render_camera_extrinsics, render_camera_intrinsics) return render_cameras.unsqueeze(0).repeat(batch_size, 1, 1) @staticmethod def images_to_video(images, output_path, fps, verbose=False): # images: (T, C, H, W) os.makedirs(os.path.dirname(output_path), exist_ok=True) frames = [] for i in range(images.shape[0]): frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8) assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ f"Frame shape mismatch: {frame.shape} vs {images.shape}" assert frame.min() >= 0 and frame.max() <= 255, \ f"Frame value out of range: {frame.min()} ~ {frame.max()}" frames.append(frame) imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='mpeg4', quality=10) if verbose: print(f"Saved video to {output_path}") def infer_single(self, image: torch.Tensor, render_size: int, mesh_size: int, export_video: bool, export_mesh: bool): # image: [1, C_img, H_img, W_img] mesh_thres = 3.0 chunk_size = 2 batch_size = 1 source_camera = self._default_source_camera(batch_size).to(self.device) render_cameras = self._default_render_cameras(batch_size).to(self.device) with torch.no_grad(): planes = self.model.forward_planes(image, source_camera) results = {} if export_video: # forward synthesizer per mini-batch frames = [] for i in range(0, render_cameras.shape[1], chunk_size): frames.append( self.model.synthesizer( planes, render_cameras[:, i:i+chunk_size], render_size, ) ) # merge frames frames = { k: torch.cat([r[k] for r in frames], dim=1) for k in frames[0].keys() } # update results results.update({ 'frames': frames, }) if export_mesh: grid_out = self.model.synthesizer.forward_grid( planes=planes, grid_size=mesh_size, ) vtx, faces = mcubes.marching_cubes(grid_out['sigma'].squeeze(0).squeeze(-1).cpu().numpy(), mesh_thres) vtx = vtx / (mesh_size - 1) * 2 - 1 vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=self.device).unsqueeze(0) vtx_colors = self.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].squeeze(0).cpu().numpy() # (0, 1) vtx_colors = (vtx_colors * 255).astype(np.uint8) mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors) results.update({ 'mesh': mesh, }) return results def infer(self, source_image: str, dump_path: str, source_size: int, render_size: int, mesh_size: int, export_video: bool, export_mesh: bool): source_image_size = source_size if source_size > 0 else self.infer_kwargs['source_size'] image = torch.tensor(np.array(Image.open(source_image))).permute(2, 0, 1).unsqueeze(0) / 255.0 # if RGBA, blend to RGB if image.shape[1] == 4: image = image[:, :3, ...] * image[:, 3:, ...] + (1 - image[:, 3:, ...]) image = torch.nn.functional.interpolate(image, size=(source_image_size, source_image_size), mode='bicubic', align_corners=True) image = torch.clamp(image, 0, 1) results = self.infer_single( image.to(self.device), render_size=render_size if render_size > 0 else self.infer_kwargs['render_size'], mesh_size=mesh_size, export_video=export_video, export_mesh=export_mesh, ) image_name = os.path.basename(source_image) uid = image_name.split('.')[0] os.makedirs(dump_path, exist_ok=True) # dump video if 'frames' in results:
renderings = results['frames']
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: xinghaochen/TinySAM # Path: tinysam/modeling/tiny_vit_sam.py class TinyViT(nn.Module): def __init__(self, img_size=224, in_chans=3, num_classes=1000, embed_dims=[96, 192, 384, 768], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_sizes=[7, 7, 14, 7], mlp_ratio=4., drop_rate=0., drop_path_rate=0.1, use_checkpoint=False, mbconv_expand_ratio=4.0, local_conv_size=3, layer_lr_decay=1.0, ): super().__init__() self.img_size=img_size self.num_classes = num_classes self.depths = depths self.num_layers = len(depths) self.mlp_ratio = mlp_ratio activation = nn.GELU self.patch_embed = PatchEmbed(in_chans=in_chans, embed_dim=embed_dims[0], resolution=img_size, activation=activation) patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): kwargs = dict(dim=embed_dims[i_layer], input_resolution=(patches_resolution[0] // (2 ** (i_layer-1 if i_layer == 3 else i_layer)), patches_resolution[1] // (2 ** (i_layer-1 if i_layer == 3 else i_layer))), # input_resolution=(patches_resolution[0] // (2 ** i_layer), # patches_resolution[1] // (2 ** i_layer)), depth=depths[i_layer], drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], downsample=PatchMerging if ( i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint, out_dim=embed_dims[min( i_layer + 1, len(embed_dims) - 1)], activation=activation, ) if i_layer == 0: layer = ConvLayer( conv_expand_ratio=mbconv_expand_ratio, **kwargs, ) else: layer = BasicLayer( num_heads=num_heads[i_layer], window_size=window_sizes[i_layer], mlp_ratio=self.mlp_ratio, drop=drop_rate, local_conv_size=local_conv_size, **kwargs) self.layers.append(layer) # Classifier head self.norm_head = nn.LayerNorm(embed_dims[-1]) self.head = nn.Linear( embed_dims[-1], num_classes) if num_classes > 0 else torch.nn.Identity() # init weights self.apply(self._init_weights) self.set_layer_lr_decay(layer_lr_decay) self.neck = nn.Sequential( nn.Conv2d( embed_dims[-1], 256, kernel_size=1, bias=False, ), LayerNorm2d(256), nn.Conv2d( 256, 256, kernel_size=3, padding=1, bias=False, ), LayerNorm2d(256), ) def set_layer_lr_decay(self, layer_lr_decay): decay_rate = layer_lr_decay # layers -> blocks (depth) depth = sum(self.depths) lr_scales = [decay_rate ** (depth - i - 1) for i in range(depth)] #print("LR SCALES:", lr_scales) def _set_lr_scale(m, scale): for p in m.parameters(): p.lr_scale = scale self.patch_embed.apply(lambda x: _set_lr_scale(x, lr_scales[0])) i = 0 for layer in self.layers: for block in layer.blocks: block.apply(lambda x: _set_lr_scale(x, lr_scales[i])) i += 1 if layer.downsample is not None: layer.downsample.apply( lambda x: _set_lr_scale(x, lr_scales[i - 1])) assert i == depth for m in [self.norm_head, self.head]: m.apply(lambda x: _set_lr_scale(x, lr_scales[-1])) for k, p in self.named_parameters(): p.param_name = k def _check_lr_scale(m): for p in m.parameters(): assert hasattr(p, 'lr_scale'), p.param_name self.apply(_check_lr_scale) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay_keywords(self): return {'attention_biases'} def forward_features(self, x): # x: (N, C, H, W) x = self.patch_embed(x) x = self.layers[0](x) start_i = 1 for i in range(start_i, len(self.layers)): layer = self.layers[i] x = layer(x) B,_,C=x.size() x = x.view(B, 64, 64, C) x=x.permute(0, 3, 1, 2) x=self.neck(x) return x def forward(self, x): x = self.forward_features(x) #x = self.norm_head(x) #x = self.head(x) return x # Path: tinysam/modeling/image_encoder.py class ImageEncoderViT(nn.Module): def __init__( self, img_size: int = 1024, patch_size: int = 16, in_chans: int = 3, embed_dim: int = 768, depth: int = 12, num_heads: int = 12, mlp_ratio: float = 4.0, out_chans: int = 256, qkv_bias: bool = True, norm_layer: Type[nn.Module] = nn.LayerNorm, act_layer: Type[nn.Module] = nn.GELU, use_abs_pos: bool = True, use_rel_pos: bool = False, rel_pos_zero_init: bool = True, window_size: int = 0, global_attn_indexes: Tuple[int, ...] = (), ) -> None: """ Args: img_size (int): Input image size. patch_size (int): Patch size. in_chans (int): Number of input image channels. embed_dim (int): Patch embedding dimension. depth (int): Depth of ViT. num_heads (int): Number of attention heads in each ViT block. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool): If True, add a learnable bias to query, key, value. norm_layer (nn.Module): Normalization layer. act_layer (nn.Module): Activation layer. use_abs_pos (bool): If True, use absolute positional embeddings. use_rel_pos (bool): If True, add relative positional embeddings to the attention map. rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. window_size (int): Window size for window attention blocks. global_attn_indexes (list): Indexes for blocks using global attention. """ super().__init__() self.img_size = img_size self.patch_embed = PatchEmbed( kernel_size=(patch_size, patch_size), stride=(patch_size, patch_size), in_chans=in_chans, embed_dim=embed_dim, ) self.pos_embed: Optional[nn.Parameter] = None if use_abs_pos: # Initialize absolute positional embedding with pretrain image size. self.pos_embed = nn.Parameter( torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim) ) self.blocks = nn.ModuleList() for i in range(depth): block = Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, norm_layer=norm_layer, act_layer=act_layer, use_rel_pos=use_rel_pos, rel_pos_zero_init=rel_pos_zero_init, window_size=window_size if i not in global_attn_indexes else 0, input_size=(img_size // patch_size, img_size // patch_size), ) self.blocks.append(block) self.neck = nn.Sequential( nn.Conv2d( embed_dim, out_chans, kernel_size=1, bias=False, ), LayerNorm2d(out_chans), nn.Conv2d( out_chans, out_chans, kernel_size=3, padding=1, bias=False, ), LayerNorm2d(out_chans), ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.patch_embed(x) if self.pos_embed is not None: x = x + self.pos_embed for blk in self.blocks: x = blk(x) x = self.neck(x.permute(0, 3, 1, 2)) return x # Path: tinysam/modeling/mask_decoder.py class MaskDecoder(nn.Module): def __init__( self, *, transformer_dim: int, transformer: nn.Module, num_multimask_outputs: int = 3, activation: Type[nn.Module] = nn.GELU, iou_head_depth: int = 3, iou_head_hidden_dim: int = 256, ) -> None: """ Predicts masks given an image and prompt embeddings, using a transformer architecture. Arguments: transformer_dim (int): the channel dimension of the transformer transformer (nn.Module): the transformer used to predict masks num_multimask_outputs (int): the number of masks to predict when disambiguating masks activation (nn.Module): the type of activation to use when upscaling masks iou_head_depth (int): the depth of the MLP used to predict mask quality iou_head_hidden_dim (int): the hidden dimension of the MLP used to predict mask quality """ super().__init__() self.transformer_dim = transformer_dim self.transformer = transformer self.num_multimask_outputs = num_multimask_outputs self.iou_token = nn.Embedding(1, transformer_dim) self.num_mask_tokens = num_multimask_outputs + 1 self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) self.output_upscaling = nn.Sequential( nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), LayerNorm2d(transformer_dim // 4), activation(), nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), activation(), ) self.output_hypernetworks_mlps = nn.ModuleList( [ MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for i in range(self.num_mask_tokens) ] ) self.iou_prediction_head = MLP( transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth ) def forward( self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Predict masks given image and prompt embeddings. Arguments: image_embeddings (torch.Tensor): the embeddings from the image encoder image_pe (torch.Tensor): positional encoding with the shape of image_embeddings sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs multimask_output (bool): Whether to return multiple masks or a single mask. Returns: torch.Tensor: batched predicted masks torch.Tensor: batched predictions of mask quality """ masks, iou_pred = self.predict_masks( image_embeddings=image_embeddings, image_pe=image_pe, sparse_prompt_embeddings=sparse_prompt_embeddings, dense_prompt_embeddings=dense_prompt_embeddings, ) # Select the correct mask or masks for output mask_slice = slice(1, None) masks = masks[:, mask_slice, :, :] iou_pred = iou_pred[:, mask_slice] # Prepare output return masks, iou_pred def predict_masks( self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """Predicts masks. See 'forward' for more details.""" # Concatenate output tokens output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0) output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) # Expand per-image data in batch direction to be per-mask src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) src = src + dense_prompt_embeddings pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) b, c, h, w = src.shape # Run the transformer hs, src = self.transformer(src, pos_src, tokens) iou_token_out = hs[:, 0, :] mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] # Upscale mask embeddings and predict masks using the mask tokens src = src.transpose(1, 2).view(b, c, h, w) upscaled_embedding = self.output_upscaling(src) hyper_in_list: List[torch.Tensor] = [] for i in range(self.num_mask_tokens): hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])) hyper_in = torch.stack(hyper_in_list, dim=1) b, c, h, w = upscaled_embedding.shape masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) # Generate mask quality predictions iou_pred = self.iou_prediction_head(iou_token_out) return masks, iou_pred # Path: tinysam/modeling/prompt_encoder.py class PromptEncoder(nn.Module): def __init__( self, embed_dim: int, image_embedding_size: Tuple[int, int], input_image_size: Tuple[int, int], mask_in_chans: int, activation: Type[nn.Module] = nn.GELU, ) -> None: """ Encodes prompts for input to SAM's mask decoder. Arguments: embed_dim (int): The prompts' embedding dimension image_embedding_size (tuple(int, int)): The spatial size of the image embedding, as (H, W). input_image_size (int): The padded size of the image as input to the image encoder, as (H, W). mask_in_chans (int): The number of hidden channels used for encoding input masks. activation (nn.Module): The activation to use when encoding input masks. """ super().__init__() self.embed_dim = embed_dim self.input_image_size = input_image_size self.image_embedding_size = image_embedding_size self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)] self.point_embeddings = nn.ModuleList(point_embeddings) self.not_a_point_embed = nn.Embedding(1, embed_dim) self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1]) self.mask_downscaling = nn.Sequential( nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), LayerNorm2d(mask_in_chans // 4), activation(), nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), LayerNorm2d(mask_in_chans), activation(), nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1), ) self.no_mask_embed = nn.Embedding(1, embed_dim) def get_dense_pe(self) -> torch.Tensor: """ Returns the positional encoding used to encode point prompts, applied to a dense set of points the shape of the image encoding. Returns: torch.Tensor: Positional encoding with shape 1x(embed_dim)x(embedding_h)x(embedding_w) """ return self.pe_layer(self.image_embedding_size).unsqueeze(0) def _embed_points( self, points: torch.Tensor, labels: torch.Tensor, pad: bool, ) -> torch.Tensor: """Embeds point prompts.""" points = points + 0.5 # Shift to center of pixel if pad: padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) points = torch.cat([points, padding_point], dim=1) labels = torch.cat([labels, padding_label], dim=1) point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size) point_embedding[labels == -1] = 0.0 point_embedding[labels == -1] += self.not_a_point_embed.weight point_embedding[labels == 0] += self.point_embeddings[0].weight point_embedding[labels == 1] += self.point_embeddings[1].weight return point_embedding def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: """Embeds box prompts.""" boxes = boxes + 0.5 # Shift to center of pixel coords = boxes.reshape(-1, 2, 2) corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size) corner_embedding[:, 0, :] += self.point_embeddings[2].weight corner_embedding[:, 1, :] += self.point_embeddings[3].weight return corner_embedding def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: """Embeds mask inputs.""" mask_embedding = self.mask_downscaling(masks) return mask_embedding def _get_batch_size( self, points: Optional[Tuple[torch.Tensor, torch.Tensor]], boxes: Optional[torch.Tensor], masks: Optional[torch.Tensor], ) -> int: """ Gets the batch size of the output given the batch size of the input prompts. """ if points is not None: return points[0].shape[0] elif boxes is not None: return boxes.shape[0] elif masks is not None: return masks.shape[0] else: return 1 def _get_device(self) -> torch.device: return self.point_embeddings[0].weight.device def forward( self, points: Optional[Tuple[torch.Tensor, torch.Tensor]], boxes: Optional[torch.Tensor], masks: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: """ Embeds different types of prompts, returning both sparse and dense embeddings. Arguments: points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates and labels to embed. boxes (torch.Tensor or none): boxes to embed masks (torch.Tensor or none): masks to embed Returns: torch.Tensor: sparse embeddings for the points and boxes, with shape BxNx(embed_dim), where N is determined by the number of input points and boxes. torch.Tensor: dense embeddings for the masks, in the shape Bx(embed_dim)x(embed_H)x(embed_W) """ bs = self._get_batch_size(points, boxes, masks) sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device()) if points is not None: coords, labels = points point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) if boxes is not None: box_embeddings = self._embed_boxes(boxes) sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) if masks is not None: dense_embeddings = self._embed_masks(masks) else: dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( bs, -1, self.image_embedding_size[0], self.image_embedding_size[1] ) return sparse_embeddings, dense_embeddings # Path: tinysam/modeling/sam.py import torch from torch import nn from torch.nn import functional as F from typing import Any, Dict, List, Tuple, Union from .tiny_vit_sam import TinyViT from .image_encoder import ImageEncoderViT from .mask_decoder import MaskDecoder from .prompt_encoder import PromptEncoder # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. class Sam(nn.Module): mask_threshold: float = 0.0 image_format: str = "RGB" def __init__(
self,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: dcharatan/pixelsplat # Path: src/dataset/data_module.py def get_data_shim(encoder: nn.Module) -> DataShim: """Get functions that modify the batch. It's sometimes necessary to modify batches outside the data loader because GPU computations are required to modify the batch or because the modification depends on something outside the data loader. """ shims: list[DataShim] = [] if hasattr(encoder, "get_data_shim"): shims.append(encoder.get_data_shim()) def combined_shim(batch): for shim in shims: batch = shim(batch) return batch return combined_shim # Path: src/dataset/types.py class BatchedExample(TypedDict, total=False): target: BatchedViews context: BatchedViews scene: list[str] # Path: src/evaluation/metrics.py @torch.no_grad() def compute_lpips( ground_truth: Float[Tensor, "batch channel height width"], predicted: Float[Tensor, "batch channel height width"], ) -> Float[Tensor, " batch"]: value = get_lpips(predicted.device).forward(ground_truth, predicted, normalize=True) return value[:, 0, 0, 0] # Path: src/evaluation/metrics.py @torch.no_grad() def compute_psnr( ground_truth: Float[Tensor, "batch channel height width"], predicted: Float[Tensor, "batch channel height width"], ) -> Float[Tensor, " batch"]: ground_truth = ground_truth.clip(min=0, max=1) predicted = predicted.clip(min=0, max=1) mse = reduce((ground_truth - predicted) ** 2, "b c h w -> b", "mean") return -10 * mse.log10() # Path: src/evaluation/metrics.py @torch.no_grad() def compute_ssim( ground_truth: Float[Tensor, "batch channel height width"], predicted: Float[Tensor, "batch channel height width"], ) -> Float[Tensor, " batch"]: ssim = [ structural_similarity( gt.detach().cpu().numpy(), hat.detach().cpu().numpy(), win_size=11, gaussian_weights=True, channel_axis=0, data_range=1.0, ) for gt, hat in zip(ground_truth, predicted) ] return torch.tensor(ssim, dtype=predicted.dtype, device=predicted.device) # Path: src/global_cfg.py def get_cfg() -> DictConfig: global cfg return cfg # Path: src/loss/loss.py class Loss(nn.Module, ABC, Generic[T_cfg, T_wrapper]): cfg: T_cfg name: str def __init__(self, cfg: T_wrapper) -> None: super().__init__() # Extract the configuration from the wrapper. (field,) = fields(type(cfg)) self.cfg = getattr(cfg, field.name) self.name = field.name @abstractmethod def forward( self, prediction: DecoderOutput, batch: BatchedExample, gaussians: Gaussians, global_step: int, ) -> Float[Tensor, ""]: pass # Path: src/misc/benchmarker.py class Benchmarker: def __init__(self): self.execution_times = defaultdict(list) @contextmanager def time(self, tag: str, num_calls: int = 1): try: start_time = time() yield finally: end_time = time() for _ in range(num_calls): self.execution_times[tag].append((end_time - start_time) / num_calls) def dump(self, path: Path) -> None: path.parent.mkdir(exist_ok=True, parents=True) with path.open("w") as f: json.dump(dict(self.execution_times), f) def dump_memory(self, path: Path) -> None: path.parent.mkdir(exist_ok=True, parents=True) with path.open("w") as f: json.dump(torch.cuda.memory_stats()["allocated_bytes.all.peak"], f) def summarize(self) -> None: for tag, times in self.execution_times.items(): print(f"{tag}: {len(times)} calls, avg. {np.mean(times)} seconds per call") # Path: src/misc/image_io.py def prep_image(image: FloatImage) -> UInt8[np.ndarray, "height width channel"]: # Handle batched images. if image.ndim == 4: image = rearrange(image, "b c h w -> c h (b w)") # Handle single-channel images. if image.ndim == 2: image = rearrange(image, "h w -> () h w") # Ensure that there are 3 or 4 channels. channel, _, _ = image.shape if channel == 1: image = repeat(image, "() h w -> c h w", c=3) assert image.shape[0] in (3, 4) image = (image.detach().clip(min=0, max=1) * 255).type(torch.uint8) return rearrange(image, "c h w -> h w c").cpu().numpy() # Path: src/misc/image_io.py def save_image( image: FloatImage, path: Union[Path, str], ) -> None: """Save an image. Assumed to be in range 0-1.""" # Create the parent directory if it doesn't already exist. path = Path(path) path.parent.mkdir(exist_ok=True, parents=True) # Save the image. Image.fromarray(prep_image(image)).save(path) # Path: src/misc/LocalLogger.py LOG_PATH = Path("outputs/local") # Path: src/misc/LocalLogger.py class LocalLogger(Logger): def __init__(self) -> None: super().__init__() self.experiment = None os.system(f"rm -r {LOG_PATH}") @property def name(self): return "LocalLogger" @property def version(self): return 0 @rank_zero_only def log_hyperparams(self, params): pass @rank_zero_only def log_metrics(self, metrics, step): pass @rank_zero_only def log_image( self, key: str, images: list[Any], step: Optional[int] = None, **kwargs, ): # The function signature is the same as the wandb logger's, but the step is # actually required. assert step is not None for index, image in enumerate(images): path = LOG_PATH / f"{key}/{index:0>2}_{step:0>6}.png" path.parent.mkdir(exist_ok=True, parents=True) Image.fromarray(image).save(path) # Path: src/misc/step_tracker.py class StepTracker: lock: RLock step: Int64[Tensor, ""] def __init__(self): self.lock = Manager().RLock() self.step = torch.tensor(0, dtype=torch.int64).share_memory_() def set_step(self, step: int) -> None: with self.lock: self.step.fill_(step) def get_step(self) -> int: with self.lock: return self.step.item() # Path: src/visualization/annotation.py def add_label( image: Float[Tensor, "3 width height"], label: str, font: Path = Path("assets/Inter-Regular.otf"), font_size: int = 24, ) -> Float[Tensor, "3 width_with_label height_with_label"]: return vcat( draw_label(label, font, font_size, image.device), image, align="left", gap=4, ) # Path: src/visualization/camera_trajectory/interpolation.py @torch.no_grad() def interpolate_extrinsics( initial: Float[Tensor, "*#batch 4 4"], final: Float[Tensor, "*#batch 4 4"], t: Float[Tensor, " time_step"], eps: float = 1e-4, ) -> Float[Tensor, "*batch time_step 4 4"]: """Interpolate extrinsics by rotating around their "focus point," which is the least-squares intersection between the look vectors of the initial and final extrinsics. """ initial = initial.type(torch.float64) final = final.type(torch.float64) t = t.type(torch.float64) # Based on the dot product between the look vectors, pick from one of two cases: # 1. Look vectors are parallel: interpolate about their origins' midpoint. # 3. Look vectors aren't parallel: interpolate about their focus point. initial_look = initial[..., :3, 2] final_look = final[..., :3, 2] dot_products = einsum(initial_look, final_look, "... i, ... i -> ...") parallel_mask = (dot_products.abs() - 1).abs() < eps # Pick focus points. initial_origin = initial[..., :3, 3] final_origin = final[..., :3, 3] pivot_point = 0.5 * (initial_origin + final_origin) pivot_point[~parallel_mask] = intersect_rays( initial_origin[~parallel_mask], initial_look[~parallel_mask], final_origin[~parallel_mask], final_look[~parallel_mask], ) # Convert to pivot parameters. pivot_frame = generate_rotation_coordinate_frame(initial_look, final_look, eps=eps) initial_params = extrinsics_to_pivot_parameters(initial, pivot_frame, pivot_point) final_params = extrinsics_to_pivot_parameters(final, pivot_frame, pivot_point) # Interpolate the pivot parameters. interpolated_params = interpolate_pivot_parameters(initial_params, final_params, t) # Convert back. return pivot_parameters_to_extrinsics( interpolated_params.type(torch.float32), rearrange(pivot_frame, "... i j -> ... () i j").type(torch.float32), rearrange(pivot_point, "... xyz -> ... () xyz").type(torch.float32), ) # Path: src/visualization/camera_trajectory/interpolation.py def interpolate_intrinsics( initial: Float[Tensor, "*#batch 3 3"], final: Float[Tensor, "*#batch 3 3"], t: Float[Tensor, " time_step"], ) -> Float[Tensor, "*batch time_step 3 3"]: initial = rearrange(initial, "... i j -> ... () i j") final = rearrange(final, "... i j -> ... () i j") t = rearrange(t, "t -> t () ()") return initial + (final - initial) * t # Path: src/visualization/camera_trajectory/wobble.py @torch.no_grad() def generate_wobble( extrinsics: Float[Tensor, "*#batch 4 4"], radius: Float[Tensor, "*#batch"], t: Float[Tensor, " time_step"], ) -> Float[Tensor, "*batch time_step 4 4"]: tf = generate_wobble_transformation(radius, t) return rearrange(extrinsics, "... i j -> ... () i j") @ tf # Path: src/visualization/camera_trajectory/wobble.py @torch.no_grad() def generate_wobble_transformation( radius: Float[Tensor, "*#batch"], t: Float[Tensor, " time_step"], num_rotations: int = 1, scale_radius_with_t: bool = True, ) -> Float[Tensor, "*batch time_step 4 4"]: # Generate a translation in the image plane. tf = torch.eye(4, dtype=torch.float32, device=t.device) tf = tf.broadcast_to((*radius.shape, t.shape[0], 4, 4)).clone() radius = radius[..., None] if scale_radius_with_t: radius = radius * t tf[..., 0, 3] = torch.sin(2 * torch.pi * num_rotations * t) * radius tf[..., 1, 3] = -torch.cos(2 * torch.pi * num_rotations * t) * radius return tf # Path: src/visualization/color_map.py def apply_color_map_to_image( image: Float[Tensor, "*batch height width"], color_map: str = "inferno", ) -> Float[Tensor, "*batch 3 height with"]: image = apply_color_map(image, color_map) return rearrange(image, "... h w c -> ... c h w") # Path: src/visualization/layout.py def add_border( image: Float[Tensor, "channel height width"], border: int = 8, color: Color = 1, ) -> Float[Tensor, "channel new_height new_width"]: color = _sanitize_color(color).to(image) c, h, w = image.shape result = torch.empty( (c, h + 2 * border, w + 2 * border), dtype=torch.float32, device=image.device ) result[:] = color[:, None, None] result[:, border : h + border, border : w + border] = image return result # Path: src/visualization/layout.py def hcat( *images: Iterable[Float[Tensor, "channel _ _"]], align: Literal["start", "center", "end", "top", "bottom"] = "start", gap: int = 8, gap_color: Color = 1, ): """Shorthand for a horizontal linear concatenation.""" return cat( "horizontal", *images, align={ "start": "start", "center": "center", "end": "end", "top": "start", "bottom": "end", }[align], gap=gap, gap_color=gap_color, ) # Path: src/visualization/layout.py def vcat( *images: Iterable[Float[Tensor, "channel _ _"]], align: Literal["start", "center", "end", "left", "right"] = "start", gap: int = 8, gap_color: Color = 1, ): """Shorthand for a horizontal linear concatenation.""" return cat( "vertical", *images, align={ "start": "start", "center": "center", "end": "end", "left": "start", "right": "end", }[align], gap=gap, gap_color=gap_color, ) # Path: src/visualization/validation_in_3d.py def render_cameras(batch: dict, resolution: int) -> Float[Tensor, "3 3 height width"]: # Define colors for context and target views. num_context_views = batch["context"]["extrinsics"].shape[1] num_target_views = batch["target"]["extrinsics"].shape[1] color = torch.ones( (num_target_views + num_context_views, 3), dtype=torch.float32, device=batch["target"]["extrinsics"].device, ) color[num_context_views:, 1:] = 0 return draw_cameras( resolution, torch.cat( (batch["context"]["extrinsics"][0], batch["target"]["extrinsics"][0]) ), torch.cat( (batch["context"]["intrinsics"][0], batch["target"]["intrinsics"][0]) ), color, torch.cat((batch["context"]["near"][0], batch["target"]["near"][0])), torch.cat((batch["context"]["far"][0], batch["target"]["far"][0])), ) # Path: src/visualization/validation_in_3d.py def render_projections( gaussians: Gaussians, resolution: int, margin: float = 0.1, draw_label: bool = True, extra_label: str = "", ) -> Float[Tensor, "batch 3 3 height width"]: device = gaussians.means.device b, _, _ = gaussians.means.shape # Compute the minima and maxima of the scene. minima = gaussians.means.min(dim=1).values maxima = gaussians.means.max(dim=1).values scene_minima, scene_maxima = compute_equal_aabb_with_margin( minima, maxima, margin=margin ) projections = [] for look_axis in range(3): right_axis = (look_axis + 1) % 3 down_axis = (look_axis + 2) % 3 # Define the extrinsics for rendering. extrinsics = torch.zeros((b, 4, 4), dtype=torch.float32, device=device) extrinsics[:, right_axis, 0] = 1 extrinsics[:, down_axis, 1] = 1 extrinsics[:, look_axis, 2] = 1 extrinsics[:, right_axis, 3] = 0.5 * ( scene_minima[:, right_axis] + scene_maxima[:, right_axis] ) extrinsics[:, down_axis, 3] = 0.5 * ( scene_minima[:, down_axis] + scene_maxima[:, down_axis] ) extrinsics[:, look_axis, 3] = scene_minima[:, look_axis] extrinsics[:, 3, 3] = 1 # Define the intrinsics for rendering. extents = scene_maxima - scene_minima far = extents[:, look_axis] near = torch.zeros_like(far) width = extents[:, right_axis] height = extents[:, down_axis] projection = render_cuda_orthographic( extrinsics, width, height, near, far, (resolution, resolution), torch.zeros((b, 3), dtype=torch.float32, device=device), gaussians.means, gaussians.covariances, gaussians.harmonics, gaussians.opacities, fov_degrees=10.0, ) if draw_label: right_axis_name = "XYZ"[right_axis] down_axis_name = "XYZ"[down_axis] label = f"{right_axis_name}{down_axis_name} Projection {extra_label}" projection = torch.stack([add_label(x, label) for x in projection]) projections.append(projection) return torch.stack(pad(projections), dim=1) # Path: src/model/decoder/decoder.py class DecoderOutput: class Decoder(nn.Module, ABC, Generic[T]): T = TypeVar("T") def __init__(self, cfg: T, dataset_cfg: DatasetCfg) -> None: def forward( self, gaussians: Gaussians, extrinsics: Float[Tensor, "batch view 4 4"], intrinsics: Float[Tensor, "batch view 3 3"], near: Float[Tensor, "batch view"], far: Float[Tensor, "batch view"], image_shape: tuple[int, int], depth_mode: DepthRenderingMode | None = None, ) -> DecoderOutput: # Path: src/model/encoder/encoder.py class Encoder(nn.Module, ABC, Generic[T]): cfg: T def __init__(self, cfg: T) -> None: super().__init__() self.cfg = cfg @abstractmethod def forward( self, context: BatchedViews, deterministic: bool, ) -> Gaussians: pass def get_data_shim(self) -> DataShim: """The default shim doesn't modify the batch.""" return lambda x: x # Path: src/model/encoder/visualization/encoder_visualizer.py class EncoderVisualizer(ABC, Generic[T_cfg, T_encoder]): cfg: T_cfg encoder: T_encoder def __init__(self, cfg: T_cfg, encoder: T_encoder) -> None: self.cfg = cfg self.encoder = encoder @abstractmethod def visualize( self, context: dict, global_step: int, ) -> dict[str, Float[Tensor, "3 _ _"]]: pass # Path: src/model/model_wrapper.py from dataclasses import dataclass from pathlib import Path from typing import Optional, Protocol, runtime_checkable from einops import pack, rearrange, repeat from jaxtyping import Float from pytorch_lightning import LightningModule from pytorch_lightning.loggers.wandb import WandbLogger from pytorch_lightning.utilities import rank_zero_only from torch import Tensor, nn, optim from ..dataset.data_module import get_data_shim from ..dataset.types import BatchedExample from ..evaluation.metrics import compute_lpips, compute_psnr, compute_ssim from ..global_cfg import get_cfg from ..loss import Loss from ..misc.benchmarker import Benchmarker from ..misc.image_io import prep_image, save_image from ..misc.LocalLogger import LOG_PATH, LocalLogger from ..misc.step_tracker import StepTracker from ..visualization.annotation import add_label from ..visualization.camera_trajectory.interpolation import ( interpolate_extrinsics, interpolate_intrinsics, ) from ..visualization.camera_trajectory.wobble import ( generate_wobble, generate_wobble_transformation, ) from ..visualization.color_map import apply_color_map_to_image from ..visualization.layout import add_border, hcat, vcat from ..visualization.validation_in_3d import render_cameras, render_projections from .decoder.decoder import Decoder, DepthRenderingMode from .encoder import Encoder from .encoder.visualization.encoder_visualizer import EncoderVisualizer import moviepy.editor as mpy import torch import wandb @dataclass class OptimizerCfg: lr: float warm_up_steps: int @dataclass class TestCfg: output_path: Path @dataclass class TrainCfg: depth_mode: DepthRenderingMode | None extended_visualization: bool @runtime_checkable class TrajectoryFn(Protocol): def __call__( self, t: Float[Tensor, " t"], ) -> tuple[ Float[Tensor, "batch view 4 4"], # extrinsics Float[Tensor, "batch view 3 3"], # intrinsics ]: pass class ModelWrapper(LightningModule):
logger: Optional[WandbLogger]
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: hutaiHang/Faster-Diffusion # Path: utils_sd.py def register_controlnet_pipeline(pipe): def new_call(self): @torch.no_grad() def call( prompt: Union[str, List[str]] = None, image: Union[ torch.FloatTensor, PIL.Image.Image, np.ndarray, List[torch.FloatTensor], List[PIL.Image.Image], List[np.ndarray], ] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, controlnet_conditioning_scale: Union[float, List[float]] = 1.0, guess_mode: bool = False, ): # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, image, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, controlnet_conditioning_scale, ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) global_pool_conditions = ( controlnet.config.global_pool_conditions if isinstance(controlnet, ControlNetModel) else controlnet.nets[0].config.global_pool_conditions ) guess_mode = guess_mode or global_pool_conditions # 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) prompt_embeds = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, ) # 4. Prepare image if isinstance(controlnet, ControlNetModel): image = self.prepare_image( image=image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=do_classifier_free_guidance, guess_mode=guess_mode, ) height, width = image.shape[-2:] elif isinstance(controlnet, MultiControlNetModel): images = [] for image_ in image: image_ = self.prepare_image( image=image_, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=do_classifier_free_guidance, guess_mode=guess_mode, ) images.append(image_) image = images height, width = image[0].shape[-2:] else: assert False # 5. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 6. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) self.init_latent = latents.detach().clone() # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 8. Denoising loop #------------------------------------------------------------- all_steps = len(self.scheduler.timesteps) curr_span = 1 curr_step = 0 idx = 1 keytime = [0,1,2,3,5,10,15,25,35] keytime.append(all_steps) while curr_step<all_steps: register_time(self.unet, curr_step) if curr_span>0: time_ls = [] for i in range(curr_step, curr_step+curr_span): if i<all_steps: time_ls.append(self.scheduler.timesteps[i]) else: break ##-------------------------------- latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, time_ls[0]) if curr_step in [0,1,2,3,5,10,15,25,35]: # controlnet(s) inference control_model_input = latent_model_input controlnet_prompt_embeds = prompt_embeds down_block_res_samples, mid_block_res_sample = self.controlnet( control_model_input, time_ls[0], encoder_hidden_states=controlnet_prompt_embeds, controlnet_cond=image, conditioning_scale=controlnet_conditioning_scale, guess_mode=guess_mode, return_dict=False, ) #----------------------save controlnet feature------------------------- #useless, should delete # setattr(self, 'downres_samples', deepcopy(down_block_res_samples)) # setattr(self, 'midres_sample', mid_block_res_sample.detach().clone()) #-----------------------save controlnet feature------------------------ else: down_block_res_samples = None #self.downres_samples mid_block_res_sample = None #self.midres_sample # predict the noise residual noise_pred = self.unet( latent_model_input, time_ls, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, down_block_additional_residuals=down_block_res_samples, mid_block_additional_residual=mid_block_res_sample, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 if isinstance(time_ls, list): step_span = len(time_ls) bs = noise_pred.shape[0] bs_perstep = bs//step_span denoised_latent = latents for i, timestep in enumerate(time_ls): if timestep/1000 < 0.5: denoised_latent = denoised_latent + 0.003*self.init_latent curr_noise = noise_pred[i*bs_perstep:(i+1)*bs_perstep] denoised_latent = self.scheduler.step(curr_noise, timestep, denoised_latent, **extra_step_kwargs, return_dict=False)[0] latents = denoised_latent ##---------------------------------------- curr_step += curr_span idx += 1 if curr_step<all_steps: curr_span = keytime[idx] - keytime[idx-1] #------------------------------------------------------------- # If we do sequential model offloading, let's offload unet and controlnet # manually for max memory savings if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.unet.to("cpu") self.controlnet.to("cpu") torch.cuda.empty_cache() if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) # Offload last model to CPU if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) return call pipe.call = new_call(pipe) # Path: utils_sd.py def register_faster_forward(model, mod = '50ls'): def faster_forward(self): def forward( sample: torch.FloatTensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, class_labels: Optional[torch.Tensor] = None, timestep_cond: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, mid_block_additional_residual: Optional[torch.Tensor] = None, return_dict: bool = True, ) -> Union[UNet2DConditionOutput, Tuple]: r""" Args: sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). Returns: [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ # By default samples have to be AT least a multiple of the overall upsampling factor. # The overall upsampling factor is equal to 2 ** (# num of upsampling layers). # However, the upsampling interpolation output size can be forced to fit any upsampling size # on the fly if necessary. default_overall_up_factor = 2**self.num_upsamplers # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` forward_upsample_size = False upsample_size = None if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): logger.info("Forward upsample size to force interpolation output size.") forward_upsample_size = True # prepare attention_mask if attention_mask is not None: attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # 0. center input if necessary if self.config.center_input_sample: sample = 2 * sample - 1.0 # 1. time if isinstance(timestep, list): timesteps = timestep[0] step = len(timestep) else: timesteps = timestep step = 1 if not torch.is_tensor(timesteps) and (not isinstance(timesteps,list)): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = sample.device.type == "mps" if isinstance(timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) elif (not isinstance(timesteps,list)) and len(timesteps.shape) == 0: timesteps = timesteps[None].to(sample.device) if (not isinstance(timesteps,list)) and len(timesteps.shape) == 1: # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps.expand(sample.shape[0]) elif isinstance(timesteps, list): #timesteps list, such as [981,961,941] timesteps = warpped_timestep(timesteps, sample.shape[0]).to(sample.device) t_emb = self.time_proj(timesteps) # `Timesteps` does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=self.dtype) emb = self.time_embedding(t_emb, timestep_cond) if self.class_embedding is not None: if class_labels is None: raise ValueError("class_labels should be provided when num_class_embeds > 0") if self.config.class_embed_type == "timestep": class_labels = self.time_proj(class_labels) # `Timesteps` does not contain any weights and will always return f32 tensors # there might be better ways to encapsulate this. class_labels = class_labels.to(dtype=sample.dtype) class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) if self.config.class_embeddings_concat: emb = torch.cat([emb, class_emb], dim=-1) else: emb = emb + class_emb if self.config.addition_embed_type == "text": aug_emb = self.add_embedding(encoder_hidden_states) emb = emb + aug_emb if self.time_embed_act is not None: emb = self.time_embed_act(emb) if self.encoder_hid_proj is not None: encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) #=============== order = self.order #timestep, start by 0 #=============== ipow = int(np.sqrt(9 + 8*order)) cond = order in [0, 1, 2, 3, 5, 10, 15, 25, 35] if isinstance(mod, int): cond = order % mod == 0 elif mod == "pro": cond = ipow * ipow == (9 + 8 * order) elif mod == "50ls": cond = order in [0, 1, 2, 3, 5, 10, 15, 25, 35] #40 #[0,1,2,3, 5, 10, 15] #[0, 1, 2, 3, 5, 10, 15, 25, 35, 40] elif mod == "50ls2": cond = order in [0, 10, 11, 12, 15, 20, 25, 30,35,45] #40 #[0,1,2,3, 5, 10, 15] #[0, 1, 2, 3, 5, 10, 15, 25, 35, 40] elif mod == "50ls3": cond = order in [0, 20, 25, 30,35,45,46,47,48,49] #40 #[0,1,2,3, 5, 10, 15] #[0, 1, 2, 3, 5, 10, 15, 25, 35, 40] elif mod == "50ls4": cond = order in [0, 9, 13, 14, 15, 28, 29, 32, 36,45] #40 #[0,1,2,3, 5, 10, 15] #[0, 1, 2, 3, 5, 10, 15, 25, 35, 40] elif mod == "100ls": cond = order > 85 or order < 10 or order % 5 == 0 elif mod == "75ls": cond = order > 65 or order < 10 or order % 5 == 0 elif mod == "s2": cond = order < 20 or order > 40 or order % 2 == 0 if cond: # print('current timestep:', order) # 2. pre-process sample = self.conv_in(sample) # 3. down down_block_res_samples = (sample,) for downsample_block in self.down_blocks: if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: sample, res_samples = downsample_block( hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs, ) else: sample, res_samples = downsample_block(hidden_states=sample, temb=emb) down_block_res_samples += res_samples if down_block_additional_residuals is not None: new_down_block_res_samples = () for down_block_res_sample, down_block_additional_residual in zip( down_block_res_samples, down_block_additional_residuals ): down_block_res_sample = down_block_res_sample + down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) down_block_res_samples = new_down_block_res_samples # 4. mid if self.mid_block is not None: sample = self.mid_block( sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs, ) if mid_block_additional_residual is not None: sample = sample + mid_block_additional_residual #----------------------save feature------------------------- # setattr(self, 'skip_feature', (tmp_sample.clone() for tmp_sample in down_block_res_samples)) setattr(self, 'skip_feature', deepcopy(down_block_res_samples)) setattr(self, 'toup_feature', sample.detach().clone()) #-----------------------save feature------------------------ #-------------------expand feature for parallel--------------- if isinstance(timestep, list): #timesteps list, such as [981,961,941] timesteps = warpped_timestep(timestep, sample.shape[0]).to(sample.device) t_emb = self.time_proj(timesteps) # `Timesteps` does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=self.dtype) emb = self.time_embedding(t_emb, timestep_cond) down_block_res_samples = warpped_skip_feature(down_block_res_samples, step) sample = warpped_feature(sample, step) encoder_hidden_states = warpped_text_emb(encoder_hidden_states, step) #-------------------expand feature for parallel--------------- else: down_block_res_samples = self.skip_feature sample = self.toup_feature #-------------------expand feature for parallel--------------- down_block_res_samples = warpped_skip_feature(down_block_res_samples, step) sample = warpped_feature(sample, step) encoder_hidden_states = warpped_text_emb(encoder_hidden_states, step) #-------------------expand feature for parallel--------------- # 5. up for i, upsample_block in enumerate(self.up_blocks): is_final_block = i == len(self.up_blocks) - 1 res_samples = down_block_res_samples[-len(upsample_block.resnets) :] down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] # if we have not reached the final block and need to forward the # upsample size, we do it here if not is_final_block and forward_upsample_size: upsample_size = down_block_res_samples[-1].shape[2:] if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, upsample_size=upsample_size, attention_mask=attention_mask, ) else: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size ) # 6. post-process if self.conv_norm_out: sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) if not return_dict: return (sample,) return UNet2DConditionOutput(sample=sample) return forward if model.__class__.__name__ == 'UNet2DConditionModel': model.forward = faster_forward(model) # Path: utils_sd.py def seed_everything(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) random.seed(seed) np.random.seed(seed) # Path: controlnet_demo.py import numpy as np import cv2 import time import torch from PIL import Image from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler, DDIMScheduler from controlnet_aux import HEDdetector, OpenposeDetector from diffusers.utils import load_image from utils_sd import register_controlnet_pipeline, register_faster_forward, seed_everything image = load_image("images/condition.jpeg") image = np.array(image) low_threshold = 100 high_threshold = 200 image = cv2.Canny(image, low_threshold, high_threshold) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) image_condition = Image.fromarray(image) controlnet = ControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16 ).to('cuda') pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 ).to('cuda') print('Warm up of the gpu') for i in range(2): image = pipe("Mona Lisa", image_condition).images[0] #------------------- print("Start Generating") seed_everything(8888) start_time = time.time() image = pipe("Mona Lisa", image_condition).images[0] end_time = time.time() print("Origin Pipeline: {:.3f} seconds".format(end_time-start_time)) image.save('images/canny_out_origin.png') register_controlnet_pipeline(pipe) register_faster_forward(pipe.unet) seed_everything(8888)
start_time = time.time()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: SHI-Labs/VCoder # Path: vcoder_llava/model/vcoder_llava_arch.py class VCoderLlavaMetaModel: def __init__(self, config): super(VCoderLlavaMetaModel, self).__init__(config) self.config = config if hasattr(config, "mm_vision_tower"): self.vision_tower = build_vision_tower(config, delay_load=True) self.mm_projector = build_vision_projector(config) if hasattr(config, "seg_mm_projector_type"): self.seg_mm_projector = build_seg_projector(config) if hasattr(config, "use_mm2_proj"): if config.use_mm2_proj: self.mm2_projector = build_vision_projector(config) if hasattr(config, "mm_vcoder_lm_emb"): self.vcoder_lm_emb = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) def get_vision_tower(self): vision_tower = getattr(self, 'vision_tower', None) if type(vision_tower) is list: vision_tower = vision_tower[0] return vision_tower def initialize_vision_modules(self, model_args, fsdp=None): vision_tower = model_args.vision_tower mm_vision_select_layer = model_args.mm_vision_select_layer mm_vision_select_feature = model_args.mm_vision_select_feature pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter self.config.mm_vision_tower = vision_tower if self.get_vision_tower() is None: vision_tower = build_vision_tower(model_args) if fsdp is not None and len(fsdp) > 0: self.vision_tower = [vision_tower] else: self.vision_tower = vision_tower else: if fsdp is not None and len(fsdp) > 0: vision_tower = self.vision_tower[0] else: vision_tower = self.vision_tower vision_tower.load_model() self.config.use_mm_proj = True self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') self.config.mm_hidden_size = vision_tower.hidden_size self.config.mm_vision_select_layer = mm_vision_select_layer self.config.mm_vision_select_feature = mm_vision_select_feature if getattr(self, 'mm_projector', None) is None: self.mm_projector = build_vision_projector(self.config) else: # In case it is frozen by LoRA for p in self.mm_projector.parameters(): p.requires_grad = True if pretrain_mm_mlp_adapter is not None: mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') def get_w(weights, keyword): return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) def initialize_seg_modules(self, model_args, fsdp=None): mm_seg_select_layer = model_args.mm_seg_select_layer mm_seg_select_feature = model_args.mm_seg_select_feature self.config.seg_mm_hidden_size = self.vision_tower.hidden_size pretrain_mm2_mlp_adapter = model_args.pretrain_mm2_mlp_adapter self.config.seg_use_mm_proj = True self.config.seg_mm_projector_type = getattr(model_args, 'seg_mm_projector_type', 'linear') self.config.mm_seg_select_layer = mm_seg_select_layer self.config.mm_seg_select_feature = mm_seg_select_feature self.seg_mm_projector = build_seg_projector(self.config) self.vcoder_lm_emb = nn.Embedding(self.config.vocab_size, self.config.hidden_size, self.config.pad_token_id) if getattr(model_args, "use_mm2_proj"): self.config.use_mm2_proj = model_args.use_mm2_proj self.mm2_projector = build_vision_projector(self.config) if pretrain_mm2_mlp_adapter is not None: mm2_projector_weights = torch.load(pretrain_mm2_mlp_adapter, map_location='cpu') def get_w(weights, keyword): return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} self.mm2_projector.load_state_dict(get_w(mm2_projector_weights, 'mm_projector')) # Path: vcoder_llava/model/vcoder_llava_arch.py class VCoderLlavaMetaForCausalLM(ABC): @abstractmethod def get_model(self): pass def get_vision_tower(self): return self.get_model().get_vision_tower() def encode_seg_images(self, seg_images): seg_features = self.get_model().get_vision_tower()(seg_images) seg_features = self.get_model().seg_mm_projector(seg_features) return seg_features def encode_images(self, images): image_features = self.get_model().get_vision_tower()(images) image_features = self.get_model().mm_projector(image_features) return image_features def encode_images_w_seg(self, images): image_features = self.get_model().get_vision_tower()(images) image_features = self.get_model().mm2_projector(image_features) return image_features def prepare_inputs_labels_for_multimodal( self, input_ids, attention_mask, past_key_values, labels, images, seg_images, ): vision_tower = self.get_vision_tower() if vision_tower is None or images is None or input_ids.shape[1] == 1: if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1: attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device) return input_ids, attention_mask, past_key_values, None, labels if type(images) is list or images.ndim == 5: concat_images = torch.cat([image for image in images], dim=0) if seg_images is not None and hasattr(self, 'mm2_projector'): image_features = self.encode_images_w_seg(concat_images) else: image_features = self.encode_images(concat_images) split_sizes = [image.shape[0] for image in images] image_features = torch.split(image_features, split_sizes, dim=0) image_features = [x.flatten(0, 1) for x in image_features] else: if seg_images is not None and hasattr(self, 'mm2_projector'): image_features = self.encode_images_w_seg(images) else: image_features = self.encode_images(images) if seg_images is not None: if type(seg_images) is list or seg_images.ndim == 5: concat_seg_images = torch.cat([image for image in seg_images], dim=0) seg_features = self.encode_seg_images(concat_seg_images) split_sizes = [image.shape[0] for image in seg_images] seg_features = torch.split(seg_features, split_sizes, dim=0) seg_features = [x.flatten(0, 1) for x in seg_features] else: seg_features = self.encode_seg_images(seg_images) self.get_model().vcoder_lm_emb.weight.data = self.get_model().get_input_embeddings().weight.data.clone() new_input_embeds = [] new_labels = [] if labels is not None else None cur_image_idx = 0 cur_seg_idx = 0 for batch_idx, cur_input_ids in enumerate(input_ids): if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0 or (cur_input_ids == SEG_TOKEN_INDEX).sum() == 0: # FIXME: this is a hacky fix, for deepspeed zero3 to work cur_image_features = image_features[cur_image_idx] if seg_images is not None: cur_seg_features = seg_features[cur_seg_idx] half_len = cur_input_ids.shape[0] // 2 if seg_images is not None: cur_input_embeds_1 = self.get_model().vcoder_lm_emb(cur_input_ids[:half_len]) cur_input_embeds_2 = self.get_model().vcoder_lm_emb(cur_input_ids[half_len:]) cur_input_embeds = torch.cat([cur_input_embeds_1, cur_seg_features[0:0], cur_image_features[0:0], cur_input_embeds_2], dim=0) else: cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len]) cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:]) cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0) new_input_embeds.append(cur_input_embeds) if labels is not None: new_labels.append(labels[batch_idx]) cur_image_idx += 1 cur_seg_idx += 1 continue image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] cur_new_input_embeds = [] if labels is not None: cur_labels = labels[batch_idx] cur_new_labels = [] assert cur_labels.shape == cur_input_ids.shape while image_token_indices.numel() > 0: cur_image_features = image_features[cur_image_idx] image_token_start = image_token_indices[0] if seg_images is None: cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start])) else: cur_new_input_embeds.append(self.get_model().vcoder_lm_emb(cur_input_ids[:image_token_start])) cur_new_input_embeds.append(cur_image_features) if labels is not None: cur_new_labels.append(cur_labels[:image_token_start]) cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) cur_labels = cur_labels[image_token_start+1:] cur_image_idx += 1 cur_input_ids = cur_input_ids[image_token_start+1:] image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] if seg_images is not None: seg_token_indices = torch.where(cur_input_ids == SEG_TOKEN_INDEX)[0] while seg_token_indices.numel() > 0: cur_seg_features = seg_features[cur_seg_idx] seg_token_start = seg_token_indices[0] cur_new_input_embeds.append(self.get_model().vcoder_lm_emb(cur_input_ids[:seg_token_start])) cur_new_input_embeds.append(cur_seg_features) if labels is not None: cur_new_labels.append(cur_labels[:seg_token_start]) cur_new_labels.append(torch.full((cur_seg_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) cur_labels = cur_labels[seg_token_start+1:] cur_seg_idx += 1 cur_input_ids = cur_input_ids[seg_token_start+1:] seg_token_indices = torch.where(cur_input_ids == SEG_TOKEN_INDEX)[0] if cur_input_ids.numel() > 0: if seg_images is None: cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) else: cur_new_input_embeds.append(self.get_model().vcoder_lm_emb(cur_input_ids)) if labels is not None: cur_new_labels.append(cur_labels) cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) new_input_embeds.append(cur_new_input_embeds) if labels is not None: cur_new_labels = torch.cat(cur_new_labels, dim=0) new_labels.append(cur_new_labels) if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): max_len = max(x.shape[0] for x in new_input_embeds) new_input_embeds_align = [] for cur_new_embed in new_input_embeds: cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) new_input_embeds_align.append(cur_new_embed) new_input_embeds = torch.stack(new_input_embeds_align, dim=0) if labels is not None: new_labels_align = [] _new_labels = new_labels for cur_new_label in new_labels: cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0) new_labels_align.append(cur_new_label) new_labels = torch.stack(new_labels_align, dim=0) if attention_mask is not None: new_attention_mask = [] for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels): new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device) new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device) cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) new_attention_mask.append(cur_new_attention_mask) attention_mask = torch.stack(new_attention_mask, dim=0) assert attention_mask.shape == new_labels.shape else: new_input_embeds = torch.stack(new_input_embeds, dim=0) if labels is not None: new_labels = torch.stack(new_labels, dim=0) if attention_mask is not None: new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device) attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) assert attention_mask.shape == new_input_embeds.shape[:2] return None, attention_mask, past_key_values, new_input_embeds, new_labels # Path: vcoder_llava/model/language_model/vcoder_llava_llama.py from typing import List, Optional, Tuple, Union from torch.nn import CrossEntropyLoss from transformers import AutoConfig, AutoModelForCausalLM, \ LlamaConfig, LlamaModel, LlamaForCausalLM from transformers.modeling_outputs import CausalLMOutputWithPast from ..vcoder_llava_arch import VCoderLlavaMetaModel, VCoderLlavaMetaForCausalLM import torch import torch.nn as nn # Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class VCoderLlavaConfig(LlamaConfig): model_type = "vcoder_llava" class VCoderLlavaLlamaModel(VCoderLlavaMetaModel, LlamaModel): config_class = VCoderLlavaConfig def __init__(self, config: LlamaConfig): super(VCoderLlavaLlamaModel, self).__init__(config) class VCoderLlavaLlamaForCausalLM(LlamaForCausalLM, VCoderLlavaMetaForCausalLM): config_class = VCoderLlavaConfig def __init__(self, config): super(LlamaForCausalLM, self).__init__(config) self.model = VCoderLlavaLlamaModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_model(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, segs: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states )
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: OSU-NLP-Group/SeeAct # Path: src/data_utils/format_prompt_utils.py def data_format_input_multichoice( sample, candidate_ids, gt=-1, previous_k=5, keep_html_brackets=False ): # Parse html into a dom tree dom_tree = lxml.etree.fromstring(sample["cleaned_html"]) dom_tree, node_to_keep = data_prune_tree(dom_tree, candidate_ids) tree_repr, id_mapping = get_tree_repr( dom_tree, id_mapping={}, keep_html_brackets=keep_html_brackets ) candidate_nodes = dom_tree.xpath("//*[@backend_node_id]") choices = [] for idx, node in enumerate(candidate_nodes): temp = get_tree_repr( node, id_mapping=id_mapping, keep_html_brackets=keep_html_brackets, ) choices.append( [ node.attrib["backend_node_id"], " ".join( get_tree_repr( node, id_mapping=id_mapping, keep_html_brackets=keep_html_brackets, )[0].split()[:10] ), ] ) gt = id_mapping.get(gt, -1) seq_input = ( "Based on the HTML webpage above, try to complete the following task:\n" f"Task: {sample['confirmed_task']}\n" f"Previous actions:\n" ) if len(sample["previous_actions"]) > 0: for action in sample["previous_actions"][-previous_k:]: seq_input += f"{action}\n" else: seq_input += "None\n" seq_input += ( "What should be the next action? Please select from the following choices " "(If the correct action is not in the page above, please select A. 'None of the above'):\n\n" "A. None of the above\n" ) for idx, choice in enumerate(choices): # convert to ascii A, B, C, D, ... seq_input += f"{chr(66 + idx)}. {choice[1]}\n" if gt == -1: seq_target = "A." else: gt += 1 current_action_op = sample["operation"]["op"] current_action_value = sample["operation"]["value"] seq_target = f"{chr(65 + gt)}.\n" f"Action: {current_action_op}\n" if current_action_op != "CLICK": seq_target += f"Value: {current_action_value}" return tree_repr, seq_input, seq_target, choices, node_to_keep # Path: src/data_utils/format_prompt_utils.py def format_options(choices): option_text = "" abcd = '' non_abcd = '' multi_choice = '' for multichoice_idx, choice in enumerate(choices): multi_choice += f"{generate_option_name(multichoice_idx)}. {choice[1]}\n" abcd += f"{generate_option_name(multichoice_idx)}, " non_abcd = generate_option_name(multichoice_idx + 1) multi_choice += f"{non_abcd}. None of the other options match the correct element" # option_text += abcd option_text += f"If none of these elements match your target element, please select {non_abcd}. None of the other options match the correct element.\n" option_text += (multi_choice + '\n\n') return option_text # Path: src/data_utils/format_prompt_utils.py def generate_option_name(index): if index < 26: return string.ascii_uppercase[index] else: first_letter_index = (index - 26) // 26 second_letter_index = (index - 26) % 26 first_letter = string.ascii_uppercase[first_letter_index] second_letter = string.ascii_uppercase[second_letter_index] return f"{first_letter}{second_letter}" # Path: src/data_utils/format_prompt_utils.py def generate_new_referring_prompt(referring_description="", element_format="", action_format="", value_format="", choices=None,split="4"): referring_prompt = "" # Add description about how to format output if referring_description != "": referring_prompt += referring_description referring_prompt += "\n\n" # Add element prediction format and choices # Prepare Option texts # For exp {1, 2, 4}, generate option # For element_atttribute, set options field at None if choices: choice_text = format_options(choices) referring_prompt += choice_text if element_format != "": referring_prompt += element_format referring_prompt += "\n\n" # Format Action Prediction if action_format != "": referring_prompt += action_format referring_prompt += "\n\n" # Format Value Prediction if value_format != "": referring_prompt += value_format referring_prompt += "" return referring_prompt # Path: src/data_utils/format_prompt_utils.py def generate_new_query_prompt(system_prompt="", task="", previous_actions=None, question_description=""): """ Generate the first phase prompt to ask model to generate general descriptions about {environment, high-level plans, next step action} Each experiment will have a similar prompt in this phase This prompt is used to generate models' thoughts without disrupt of formatting/referring prompts """ sys_role=""+system_prompt query_text = "" # System Prompt query_text += "You are asked to complete the following task: " # Task Description query_text += task query_text += "\n\n" # Previous Actions previous_action_text = "Previous Actions:\n" if previous_actions is None: previous_actions = [] for action_text in previous_actions: previous_action_text += action_text previous_action_text += "\n" query_text += previous_action_text query_text += "\n" # Question Description query_text += question_description return [sys_role,query_text] # Path: src/data_utils/prompts.py from .format_prompt_utils import data_format_input_multichoice, \ format_options, generate_option_name, generate_new_referring_prompt, generate_new_query_prompt Format: ELEMENT: The uppercase letter of your choice.""", "action_format": f"{action_format}", "value_format": f"{value_format}" } exp3_prompt_dict = { "system_prompt": sys_prompt, "question_description": question_description_new_exp3, "referring_description": f"""""", "element_format": """(Final Answer) Finally, conclude your answer using the format below. Ensure your answer is strictly adhering to the format provided below. Please do not leave any explanation in your answers of the final standardized format part, and this final part should be clear and certain. The element, element type, element text, action and value should be in five separate lines. Format: ELEMENT: Please describe which element you need to operate with. Describe it as detailed as possible, including what it is and where it is. ELEMENT TYPE: Please specify its type from these options: BUTTON, TEXTBOX, SELECTBOX, or LINK. ELEMENT TEXT: Please provide the exact text displayed on the element. Do not invent or modify the text; reproduce it as-is from the screenshot.""", "action_format": f"{action_format}", "value_format": f"{value_format}" } ##### SeeAct Online Prompts seeact_online_sys_prompt = '''Imagine that you are imitating humans doing web navigation for a task step by step. At each stage, you can see the webpage like humans by a screenshot and know the previous actions before the current step decided by yourself through recorded history. You need to decide on the first following action to take. You can click on an element with the mouse, select an option, type text or press Enter with the keyboard. (For your understanding, they are like the click(), select_option() type() and keyboard.press('Enter') functions in playwright respectively) One next step means one operation within the four. Unlike humans, for typing (e.g., in text areas, text boxes) and selecting (e.g., from dropdown menus or <select> elements), you should try directly typing the input or selecting the choice, bypassing the need for an initial click. You should not attempt to create accounts, log in or do the final submission. Terminate when you deem the task complete or if it requires potentially harmful actions.''' seeact_online_question_description_new_exp4 = '''The screenshot below shows the webpage you see. Follow the following guidance to think step by step before outlining the next action step at the current stage: (Current Webpage Identification) Firstly, think about what the current webpage is. (Previous Action Analysis) Secondly, combined with the screenshot, analyze each step of the previous action history and their intention one by one. Particularly, pay more attention to the last step, which may be more related to what you should do now as the next step. Specifically, if the last action involved a TYPE, always evaluate whether it necessitates a confirmation step, because typically a single TYPE action does not make effect. (often, simply pressing 'Enter', assuming the default element involved in the last action, unless other clear elements are present for operation). (Screenshot Details Analysis) Closely examine the screenshot to check the status of every part of the webpage to understand what you can operate with and what has been set or completed. You should closely examine the screenshot details to see what steps have been completed by previous actions even though you are given the textual previous actions. Because the textual history may not clearly and sufficiently record some effects of previous actions, you should closely evaluate the status of every part of the webpage to understand what you have done. (Next Action Based on Webpage and Analysis) Then, based on your analysis, in conjunction with human web browsing habits and the logic of web design, decide on the following action. And clearly outline which element in the webpage users will operate with as the first next target element, its detailed location, and the corresponding operation. To be successful, it is important to follow the following rules: 1. You should only issue a valid action given the current observation. 2. You should only issue one action at a time 3. For handling the select dropdown elements on the webpage, it's not necessary for you to provide completely accurate options right now. The full list of options for these elements will be supplied later.''' seeact_online_action_format = "ACTION: Choose an action from {CLICK, SELECT, TYPE, PRESS ENTER, TERMINATE, NONE}." seeact_online_value_format = "VALUE: Provide additional input based on ACTION.\n\nThe VALUE means:\nIf ACTION == TYPE, specify the " \ "text to be typed.\nIf ACTION == SELECT, indicate the option to be chosen. Revise the selection value to align with the available options within the element.\nIf ACTION == CLICK, PRESS ENTER, TERMINATE or NONE, " \ "write \"None\"." seeact_choice_prompt_dict = { "system_prompt": seeact_online_sys_prompt, "question_description": seeact_online_question_description_new_exp4, "referring_description": f"""(Reiteration) First, reiterate your next target element, its detailed location, and the corresponding operation. (Multichoice Question) Below is a multi-choice question, where the choices are elements in the webpage. All elements are arranged in the order based on their height on the webpage, from top to bottom (and from left to right). This arrangement can be used to locate them. From the screenshot, find out where and what each one is on the webpage, taking into account both their text content and HTML details. Then, determine whether one matches your target element. Please examine the choices one by one. Choose the matching one. If multiple options match your answer, choose the most likely one by re-examining the screenshot, the choices, and your further reasoning.""", "element_format": """(Final Answer) Finally, conclude your answer using the format below. Ensure your answer is strictly adhering to the format provided below. Please do not leave any explanation in your answers of the final standardized format part, and this final part should be clear and certain. The element choice, action, and value should be in three separate lines. Format: ELEMENT: The uppercase letter of your choice. (No need for PRESS ENTER)""", "action_format": f"{seeact_online_action_format}", "value_format": f"{seeact_online_value_format}" } def generate_prompt(experiment_split, task=None, previous=None, choices=None): assert experiment_split != None, "Please specify the experiment split." assert task != None, "Please input the task." assert previous != None, "Please input the previous actions." prompt_list = [] system_prompt_input = None question_description_input = None referring_input = None element_format_input = None action_format_input = None value_format_input = None if experiment_split in ["text","text_choice","4api"]: system_prompt_input = exp4_prompt_dict["system_prompt"] question_description_input = exp4_prompt_dict["question_description"]
referring_input = exp4_prompt_dict["referring_description"]
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: DeepWok/mase # Path: machop/chop/models/manual/llama_llora/configuration_llama_llora.py class LlamaLoraConfig(PretrainedConfig): r""" Available checkpoints on huggingface: - "lmsys/vicuna-7b-v1.3", # official release of Vicuna - "lmsys/vicuna-13b-v1.3", # official release of Vicuna - "lmsys/vicuna-33b-v1.3", # official release of Vicuna - "huggyllama/llama-7b", # the uploader states this is the same as the official release of Llama - "huggyllama/llama-13b", # the uploader states this is the same as the official release of Llama - "huggyllama/llama-30b", # the uploader states this is the same as the official release of Llama - "huggyllama/llama-65b", # the uploader states this is the same as the official release of Llama This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the LLaMA-7B. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`LlamaModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 11008): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. tie_word_embeddings(`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings Example: ```python >>> from transformers import LlamaModel, LlamaConfig >>> # Initializing a LLaMA llama-7b style configuration >>> configuration = LlamaConfig() >>> # Initializing a model from the llama-7b style configuration >>> model = LlamaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "llama" keys_to_ignore_at_inference = ["past_key_values"] # CZ: here are some pretrained models I found on the HuggingFace model hub avail_hf_ckpts = ( "lmsys/vicuna-7b-v1.3", # official release of Vicuna "lmsys/vicuna-13b-v1.3", # official release of Vicuna "lmsys/vicuna-33b-v1.3", # official release of Vicuna "huggyllama/llama-7b", # the uploader states this is the same as the official release of Llama "huggyllama/llama-13b", # the uploader states this is the same as the official release of Llama "huggyllama/llama-30b", # the uploader states this is the same as the official release of Llama "huggyllama/llama-65b", # the uploader states this is the same as the official release of Llama ) def __init__( self, vocab_size=32000, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, hidden_act="silu", max_position_embeddings=2048, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=0, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, lora_config: dict = None, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache if lora_config is not None: lora_config = parse_llama_lora_config(lora_config, num_hidden_layers) self.lora_config = lora_config super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) def __setattr__(self, key, value): if key == "lora_config" and value is not None: value = parse_llama_lora_config( config=value, num_hidden_layers=self.num_hidden_layers ) return super().__setattr__(key, value) # Path: machop/chop/models/manual/lora_modules.py class LoraLayer: def __init__(self, in_features: int, out_features: int, **kwargs): self.r = {} self.lora_alpha = {} self.scaling = {} self.lora_dropout = nn.ModuleDict({}) self.lora_A = nn.ModuleDict({}) self.lora_B = nn.ModuleDict({}) # For Embedding layer self.lora_embedding_A = nn.ParameterDict({}) self.lora_embedding_B = nn.ParameterDict({}) # Mark the weight as unmerged self.merged = False self.disable_adapter = False self.in_features = in_features self.out_features = out_features self.kwargs = kwargs init_lora_weights = bool(field(default=True)) def update_layer( self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights ): self.r[adapter_name] = r self.lora_alpha[adapter_name] = lora_alpha if lora_dropout > 0.0: lora_dropout_layer = nn.Dropout(p=lora_dropout) else: lora_dropout_layer = nn.Identity() self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer})) # Actual trainable parameters if self.disable_adapter == False: if r > 0: self.lora_A.update( nn.ModuleDict( {adapter_name: nn.Linear(self.in_features, r, bias=False)} ) ) self.lora_B.update( nn.ModuleDict( {adapter_name: nn.Linear(r, self.out_features, bias=False)} ) ) self.scaling[adapter_name] = lora_alpha / r else: pass if init_lora_weights: self.reset_lora_parameters(adapter_name) self.to(self.weight.device) def reset_lora_parameters(self, adapter_name): if adapter_name in self.lora_A.keys(): # initialize A the same way as the default for nn.Linear and B to zero nn.init.kaiming_uniform_(self.lora_A[adapter_name].weight, a=math.sqrt(5)) nn.init.zeros_(self.lora_B[adapter_name].weight) if adapter_name in self.lora_embedding_A.keys(): # initialize a the same way as the default for nn.linear and b to zero nn.init.zeros_(self.lora_embedding_A[adapter_name]) nn.init.normal_(self.lora_embedding_B[adapter_name]) # Path: machop/chop/models/manual/lora_modules.py class LinearLora(nn.Linear, LoraLayer): # Lora implemented in a dense layer def __init__( self, in_features: int, out_features: int, config: dict = None, **kwargs, ): self.config = config init_lora_weights = self.config.get("init_lora_weights", True) r, lora_alpha, lora_dropout, adapter_name, disable_adapter = ( config["r"], config["lora_alpha"], config["lora_dropout"], config["adapter_name"], config["disable_adapter"], ) lora_dropout = float(lora_dropout) nn.Linear.__init__(self, in_features, out_features, **kwargs) LoraLayer.__init__(self, in_features=in_features, out_features=out_features) # Freezing the pre-trained weight matrix self.weight.requires_grad = False self.disable_adapter = disable_adapter self.fan_in_fan_out = config.get("fan_in_fan_out", False) self.is_target_conv_1d_layer = config.get("is_target_conv_1d_layer", False) if self.fan_in_fan_out: self.weight.data = self.weight.data.T nn.Linear.reset_parameters(self) self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights) self.active_adapter = adapter_name self.is_target_conv_1d_layer = self.is_target_conv_1d_layer def merge(self): if self.active_adapter not in self.lora_A.keys(): return if self.merged: warnings.warn("Already merged. Nothing to do.") return if self.r[self.active_adapter] > 0: self.weight.data += self.get_delta_weight(self.active_adapter) self.merged = True def unmerge(self): if self.active_adapter not in self.lora_A.keys(): return if not self.merged: warnings.warn("Already unmerged. Nothing to do.") return if self.r[self.active_adapter] > 0: self.weight.data -= self.get_delta_weight(self.active_adapter) self.merged = False def get_delta_weight(self, adapter): return ( transpose( self.lora_B[adapter].weight @ self.lora_A[adapter].weight, self.fan_in_fan_out, ) * self.scaling[adapter] ) def _linear(self, input: torch.Tensor) -> torch.Tensor: return F.linear( input, transpose(self.weight, self.fan_in_fan_out), bias=self.bias ) def forward(self, x: torch.Tensor): previous_dtype = x.dtype if self.active_adapter not in self.lora_A.keys(): return self._linear(x) if self.disable_adapter: if self.r[self.active_adapter] > 0 and self.merged: self.unmerge() result = self._linear(x) elif self.r[self.active_adapter] == 0 or self.merged: result = self._linear(x) else: lora_A = self.lora_A[self.active_adapter] lora_B = self.lora_B[self.active_adapter] dropout = self.lora_dropout[self.active_adapter] scaling = self.scaling[self.active_adapter] result = self._linear(x) x = x.to(lora_A.weight.dtype) result += lora_B(lora_A(dropout(x))) * scaling result = result.to(previous_dtype) return result def extract_lora_params(self): lora_params = { "lora_A": self.lora_A[self.active_adapter].state_dict(), "lora_B": self.lora_B[self.active_adapter].state_dict(), } return lora_params # Helper function to bias the training towards either the target module or the entire model # Path: machop/chop/models/manual/llama_llora/modeling_llama_llora.py import math import torch import torch.utils.checkpoint from typing import List, Optional, Tuple, Union from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.models.llama import LlamaTokenizer from transformers.activations import ACT2FN from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast, ) from transformers.modeling_utils import PreTrainedModel from transformers.utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_llama_llora import LlamaLoraConfig from ..lora_modules import LoraLayer, LinearLora ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs LLAMA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LlamaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", LLAMA_START_DOCSTRING, ) class LlamaPreTrainedModel(PreTrainedModel): config_class = LlamaLoraConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["LlamaDecoderLayer"] _skip_keys_device_placement = "past_key_values" def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, LlamaModel): module.gradient_checkpointing = value LLAMA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: byeongjun-park/HarmonyView # Path: ldm/base_utils.py def read_pickle(pkl_path): with open(pkl_path, 'rb') as f: return pickle.load(f) # Path: ldm/base_utils.py def output_points(fn,pts,colors=None): with open(fn, 'w') as f: for pi, pt in enumerate(pts): f.write(f'{pt[0]:.6f} {pt[1]:.6f} {pt[2]:.6f} ') if colors is not None: f.write(f'{int(colors[pi,0])} {int(colors[pi,1])} {int(colors[pi,2])}') f.write('\n') # Path: renderer/renderer.py class NeuSRenderer(BaseRenderer): def __init__(self, train_batch_num, test_batch_num, lambda_eikonal_loss=0.1, use_mask=True, lambda_rgb_loss=1.0, lambda_mask_loss=0.0, rgb_loss='soft_l1', coarse_sn=64, fine_sn=64): super().__init__(train_batch_num, test_batch_num) self.n_samples = coarse_sn self.n_importance = fine_sn self.up_sample_steps = 4 self.anneal_end = 200 self.use_mask = use_mask self.lambda_eikonal_loss = lambda_eikonal_loss self.lambda_rgb_loss = lambda_rgb_loss self.lambda_mask_loss = lambda_mask_loss self.rgb_loss = rgb_loss self.sdf_network = SDFNetwork(d_out=257, d_in=3, d_hidden=256, n_layers=8, skip_in=[4], multires=6, bias=0.5, scale=1.0, geometric_init=True, weight_norm=True) self.color_network = RenderingNetwork(d_feature=256, d_in=9, d_out=3, d_hidden=256, n_layers=4, weight_norm=True, multires_view=4, squeeze_out=True) self.default_dtype = torch.float32 self.deviation_network = SingleVarianceNetwork(0.3) @torch.no_grad() def get_vertex_colors(self, vertices): """ @param vertices: n,3 @return: """ V = vertices.shape[0] bn = 20480 verts_colors = [] with torch.no_grad(): for vi in range(0, V, bn): verts = torch.from_numpy(vertices[vi:vi+bn].astype(np.float32)).cuda() feats = self.sdf_network(verts)[..., 1:] gradients = self.sdf_network.gradient(verts) # ...,3 gradients = F.normalize(gradients, dim=-1) colors = self.color_network(verts, gradients, gradients, feats) colors = torch.clamp(colors,min=0,max=1).cpu().numpy() verts_colors.append(colors) verts_colors = (np.concatenate(verts_colors, 0)*255).astype(np.uint8) return verts_colors def upsample(self, rays_o, rays_d, z_vals, sdf, n_importance, inv_s): """ Up sampling give a fixed inv_s """ device = rays_o.device batch_size, n_samples = z_vals.shape pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None] # n_rays, n_samples, 3 inner_mask = self.get_inner_mask(pts) # radius = torch.linalg.norm(pts, ord=2, dim=-1, keepdim=False) inside_sphere = inner_mask[:, :-1] | inner_mask[:, 1:] sdf = sdf.reshape(batch_size, n_samples) prev_sdf, next_sdf = sdf[:, :-1], sdf[:, 1:] prev_z_vals, next_z_vals = z_vals[:, :-1], z_vals[:, 1:] mid_sdf = (prev_sdf + next_sdf) * 0.5 cos_val = (next_sdf - prev_sdf) / (next_z_vals - prev_z_vals + 1e-5) prev_cos_val = torch.cat([torch.zeros([batch_size, 1], dtype=self.default_dtype, device=device), cos_val[:, :-1]], dim=-1) cos_val = torch.stack([prev_cos_val, cos_val], dim=-1) cos_val, _ = torch.min(cos_val, dim=-1, keepdim=False) cos_val = cos_val.clip(-1e3, 0.0) * inside_sphere dist = (next_z_vals - prev_z_vals) prev_esti_sdf = mid_sdf - cos_val * dist * 0.5 next_esti_sdf = mid_sdf + cos_val * dist * 0.5 prev_cdf = torch.sigmoid(prev_esti_sdf * inv_s) next_cdf = torch.sigmoid(next_esti_sdf * inv_s) alpha = (prev_cdf - next_cdf + 1e-5) / (prev_cdf + 1e-5) weights = alpha * torch.cumprod( torch.cat([torch.ones([batch_size, 1], dtype=self.default_dtype, device=device), 1. - alpha + 1e-7], -1), -1)[:, :-1] z_samples = sample_pdf(z_vals, weights, n_importance, det=True).detach() return z_samples def cat_z_vals(self, rays_o, rays_d, z_vals, new_z_vals, sdf, last=False): batch_size, n_samples = z_vals.shape _, n_importance = new_z_vals.shape pts = rays_o[:, None, :] + rays_d[:, None, :] * new_z_vals[..., :, None] z_vals = torch.cat([z_vals, new_z_vals], dim=-1) z_vals, index = torch.sort(z_vals, dim=-1) if not last: device = pts.device new_sdf = self.sdf_network.sdf(pts.reshape(-1, 3)).reshape(batch_size, n_importance) sdf = torch.cat([sdf, new_sdf], dim=-1) xx = torch.arange(batch_size)[:, None].expand(batch_size, n_samples + n_importance).reshape(-1).to(device) index = index.reshape(-1) sdf = sdf[(xx, index)].reshape(batch_size, n_samples + n_importance) return z_vals, sdf def sample_depth(self, rays_o, rays_d, near, far, perturb): n_samples = self.n_samples n_importance = self.n_importance up_sample_steps = self.up_sample_steps device = rays_o.device # sample points batch_size = len(rays_o) z_vals = torch.linspace(0.0, 1.0, n_samples, dtype=self.default_dtype, device=device) # sn z_vals = near + (far - near) * z_vals[None, :] # rn,sn if perturb > 0: t_rand = (torch.rand([batch_size, 1]).to(device) - 0.5) z_vals = z_vals + t_rand * 2.0 / n_samples # Up sample with torch.no_grad(): pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None] sdf = self.sdf_network.sdf(pts).reshape(batch_size, n_samples) for i in range(up_sample_steps): rn, sn = z_vals.shape inv_s = torch.ones(rn, sn - 1, dtype=self.default_dtype, device=device) * 64 * 2 ** i new_z_vals = self.upsample(rays_o, rays_d, z_vals, sdf, n_importance // up_sample_steps, inv_s) z_vals, sdf = self.cat_z_vals(rays_o, rays_d, z_vals, new_z_vals, sdf, last=(i + 1 == up_sample_steps)) return z_vals def compute_sdf_alpha(self, points, dists, dirs, cos_anneal_ratio, step): # points [...,3] dists [...] dirs[...,3] sdf_nn_output = self.sdf_network(points) sdf = sdf_nn_output[..., 0] feature_vector = sdf_nn_output[..., 1:] gradients = self.sdf_network.gradient(points) # ...,3 inv_s = self.deviation_network(points).clip(1e-6, 1e6) # ...,1 inv_s = inv_s[..., 0] true_cos = (dirs * gradients).sum(-1) # [...] iter_cos = -(F.relu(-true_cos * 0.5 + 0.5) * (1.0 - cos_anneal_ratio) + F.relu(-true_cos) * cos_anneal_ratio) # always non-positive # Estimate signed distances at section points estimated_next_sdf = sdf + iter_cos * dists * 0.5 estimated_prev_sdf = sdf - iter_cos * dists * 0.5 prev_cdf = torch.sigmoid(estimated_prev_sdf * inv_s) next_cdf = torch.sigmoid(estimated_next_sdf * inv_s) p = prev_cdf - next_cdf c = prev_cdf alpha = ((p + 1e-5) / (c + 1e-5)).clip(0.0, 1.0) # [...] return alpha, gradients, feature_vector, inv_s, sdf def get_anneal_val(self, step): if self.anneal_end < 0: return 1.0 else: return np.min([1.0, step / self.anneal_end]) def get_inner_mask(self, points): return torch.sum(torch.abs(points)<=DEFAULT_SIDE_LENGTH,-1)==3 def render_impl(self, ray_batch, is_train, step): near, far = near_far_from_sphere(ray_batch['rays_o'], ray_batch['rays_d']) rays_o, rays_d = ray_batch['rays_o'], ray_batch['rays_d'] z_vals = self.sample_depth(rays_o, rays_d, near, far, is_train) batch_size, n_samples = z_vals.shape # section length in original space dists = z_vals[..., 1:] - z_vals[..., :-1] # rn,sn-1 dists = torch.cat([dists, dists[..., -1:]], -1) # rn,sn mid_z_vals = z_vals + dists * 0.5 points = rays_o.unsqueeze(-2) + rays_d.unsqueeze(-2) * mid_z_vals.unsqueeze(-1) # rn, sn, 3 inner_mask = self.get_inner_mask(points) dirs = rays_d.unsqueeze(-2).expand(batch_size, n_samples, 3) dirs = F.normalize(dirs, dim=-1) device = rays_o.device alpha, sampled_color, gradient_error, normal = torch.zeros(batch_size, n_samples, dtype=self.default_dtype, device=device), \ torch.zeros(batch_size, n_samples, 3, dtype=self.default_dtype, device=device), \ torch.zeros([batch_size, n_samples], dtype=self.default_dtype, device=device), \ torch.zeros([batch_size, n_samples, 3], dtype=self.default_dtype, device=device) if torch.sum(inner_mask) > 0: cos_anneal_ratio = self.get_anneal_val(step) if is_train else 1.0 alpha[inner_mask], gradients, feature_vector, inv_s, sdf = self.compute_sdf_alpha(points[inner_mask], dists[inner_mask], dirs[inner_mask], cos_anneal_ratio, step) sampled_color[inner_mask] = self.color_network(points[inner_mask], gradients, -dirs[inner_mask], feature_vector) # Eikonal loss gradient_error[inner_mask] = (torch.linalg.norm(gradients, ord=2, dim=-1) - 1.0) ** 2 # rn,sn normal[inner_mask] = F.normalize(gradients, dim=-1) weights = alpha * torch.cumprod(torch.cat([torch.ones([batch_size, 1], dtype=self.default_dtype, device=device), 1. - alpha + 1e-7], -1), -1)[..., :-1] # rn,sn mask = torch.sum(weights,dim=1).unsqueeze(-1) # rn,1 color = (sampled_color * weights[..., None]).sum(dim=1) + (1 - mask) # add white background normal = (normal * weights[..., None]).sum(dim=1) outputs = { 'rgb': color, # rn,3 'gradient_error': gradient_error, # rn,sn 'inner_mask': inner_mask, # rn,sn 'normal': normal, # rn,3 'mask': mask, # rn,1 } return outputs def render_with_loss(self, ray_batch, is_train, step): render_outputs = self.render(ray_batch, is_train, step) rgb_gt = ray_batch['rgb'] rgb_pr = render_outputs['rgb'] if self.rgb_loss == 'soft_l1': epsilon = 0.001 rgb_loss = torch.sqrt(torch.sum((rgb_gt - rgb_pr) ** 2, dim=-1) + epsilon) elif self.rgb_loss =='mse': rgb_loss = F.mse_loss(rgb_pr, rgb_gt, reduction='none') else: raise NotImplementedError rgb_loss = torch.mean(rgb_loss) eikonal_loss = torch.sum(render_outputs['gradient_error'] * render_outputs['inner_mask']) / torch.sum(render_outputs['inner_mask'] + 1e-5) loss = rgb_loss * self.lambda_rgb_loss + eikonal_loss * self.lambda_eikonal_loss loss_batch = { 'eikonal': eikonal_loss, 'rendering': rgb_loss, # 'mask': mask_loss, } if self.lambda_mask_loss>0 and self.use_mask: mask_loss = F.mse_loss(render_outputs['mask'], ray_batch['mask'], reduction='none').mean() loss += mask_loss * self.lambda_mask_loss loss_batch['mask'] = mask_loss return loss, loss_batch # Path: renderer/renderer.py DEFAULT_SIDE_LENGTH = 0.6 # Path: ldm/util.py def instantiate_from_config(config): if not "target" in config: if config == '__is_first_stage__': return None elif config == "__is_unconditional__": return None raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", dict())) # Path: train_renderer.py import argparse import imageio import numpy as np import torch import torch.nn.functional as F import trimesh import mcubes from pathlib import Path from omegaconf import OmegaConf from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor, Callback from pytorch_lightning.loggers import TensorBoardLogger from pytorch_lightning import Trainer from skimage.io import imsave from tqdm import tqdm from ldm.base_utils import read_pickle, output_points from renderer.renderer import NeuSRenderer, DEFAULT_SIDE_LENGTH from ldm.util import instantiate_from_config class ResumeCallBacks(Callback): def __init__(self): pass def on_train_start(self, trainer, pl_module): pl_module.optimizers().param_groups = pl_module.optimizers()._optimizer.param_groups def render_images(model, output,): # render from model n = 180 azimuths = (np.arange(n) / n * np.pi * 2).astype(np.float32) elevations = np.deg2rad(np.asarray([30] * n).astype(np.float32)) K, _, _, _, poses = read_pickle(f'meta_info/camera-16.pkl') h, w = 256, 256 default_size = 256 K = np.diag([w/default_size,h/default_size,1.0]) @ K imgs = [] for ni in tqdm(range(n)): # R = euler2mat(azimuths[ni], elevations[ni], 0, 'szyx') # R = np.asarray([[0,-1,0],[0,0,-1],[1,0,0]]) @ R e, a = elevations[ni], azimuths[ni] row1 = np.asarray([np.sin(e)*np.cos(a),np.sin(e)*np.sin(a),-np.cos(e)]) row0 = np.asarray([-np.sin(a),np.cos(a), 0]) row2 = np.cross(row0, row1) R = np.stack([row0,row1,row2],0) t = np.asarray([0,0,1.5]) pose = np.concatenate([R,t[:,None]],1) pose_ = torch.from_numpy(pose.astype(np.float32)).unsqueeze(0) K_ = torch.from_numpy(K.astype(np.float32)).unsqueeze(0) # [1,3,3] coords = torch.stack(torch.meshgrid(torch.arange(h), torch.arange(w)), -1)[:, :, (1, 0)] # h,w,2 coords = coords.float()[None, :, :, :].repeat(1, 1, 1, 1) # imn,h,w,2 coords = coords.reshape(1, h * w, 2) coords = torch.cat([coords, torch.ones(1, h * w, 1, dtype=torch.float32)], 2) # imn,h*w,3 # imn,h*w,3 @ imn,3,3 => imn,h*w,3 rays_d = coords @ torch.inverse(K_).permute(0, 2, 1) R, t = pose_[:, :, :3], pose_[:, :, 3:] rays_d = rays_d @ R rays_d = F.normalize(rays_d, dim=-1) rays_o = -R.permute(0, 2, 1) @ t # imn,3,3 @ imn,3,1 rays_o = rays_o.permute(0, 2, 1).repeat(1, h * w, 1) # imn,h*w,3 ray_batch = { 'rays_o': rays_o.reshape(-1,3).cuda(), 'rays_d': rays_d.reshape(-1,3).cuda(), } with torch.no_grad():
image = model.renderer.render(ray_batch,False,5000)['rgb'].reshape(h,w,3)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: OPPOMKLab/u-LLaVA # Path: models/GroundingDINO/groundingdino/util/misc.py def inverse_sigmoid(x, eps=1e-3): x = x.clamp(min=0, max=1) x1 = x.clamp(min=eps) x2 = (1 - x).clamp(min=eps) return torch.log(x1 / x2) # Path: models/GroundingDINO/groundingdino/models/GroundingDINO/fuse_modules.py class BiAttentionBlock(nn.Module): def __init__( self, v_dim, l_dim, embed_dim, num_heads, dropout=0.1, drop_path=0.0, init_values=1e-4, cfg=None, ): """ Inputs: embed_dim - Dimensionality of input and attention feature vectors hidden_dim - Dimensionality of hidden layer in feed-forward network (usually 2-4x larger than embed_dim) num_heads - Number of heads to use in the Multi-Head Attention block dropout - Amount of dropout to apply in the feed-forward network """ super(BiAttentionBlock, self).__init__() # pre layer norm self.layer_norm_v = nn.LayerNorm(v_dim) self.layer_norm_l = nn.LayerNorm(l_dim) self.attn = BiMultiHeadAttention( v_dim=v_dim, l_dim=l_dim, embed_dim=embed_dim, num_heads=num_heads, dropout=dropout ) # add layer scale for training stability self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.gamma_v = nn.Parameter(init_values * torch.ones((v_dim)), requires_grad=True) self.gamma_l = nn.Parameter(init_values * torch.ones((l_dim)), requires_grad=True) def forward(self, v, l, attention_mask_v=None, attention_mask_l=None): v = self.layer_norm_v(v) l = self.layer_norm_l(l) delta_v, delta_l = self.attn( v, l, attention_mask_v=attention_mask_v, attention_mask_l=attention_mask_l ) # v, l = v + delta_v, l + delta_l v = v + self.drop_path(self.gamma_v * delta_v) l = l + self.drop_path(self.gamma_l * delta_l) return v, l # def forward(self, v:List[torch.Tensor], l, attention_mask_v=None, attention_mask_l=None) # Path: models/GroundingDINO/groundingdino/models/GroundingDINO/ms_deform_attn.py class MultiScaleDeformableAttention(nn.Module): """Multi-Scale Deformable Attention Module used in Deformable-DETR `Deformable DETR: Deformable Transformers for End-to-End Object Detection. <https://arxiv.org/pdf/2010.04159.pdf>`_. Args: embed_dim (int): The embedding dimension of Attention. Default: 256. num_heads (int): The number of attention heads. Default: 8. num_levels (int): The number of feature map used in Attention. Default: 4. num_points (int): The number of sampling points for each query in each head. Default: 4. img2col_steps (int): The step used in image_to_column. Defualt: 64. dropout (float): Dropout layer used in output. Default: 0.1. batch_first (bool): if ``True``, then the input and output tensor will be provided as `(bs, n, embed_dim)`. Default: False. `(n, bs, embed_dim)` """ def __init__( self, embed_dim: int = 256, num_heads: int = 8, num_levels: int = 4, num_points: int = 4, img2col_step: int = 64, batch_first: bool = False, ): super().__init__() if embed_dim % num_heads != 0: raise ValueError( "embed_dim must be divisible by num_heads, but got {} and {}".format( embed_dim, num_heads ) ) head_dim = embed_dim // num_heads self.batch_first = batch_first if not _is_power_of_2(head_dim): warnings.warn( """ You'd better set d_model in MSDeformAttn to make sure that each dim of the attention head a power of 2, which is more efficient. """ ) self.im2col_step = img2col_step self.embed_dim = embed_dim self.num_heads = num_heads self.num_levels = num_levels self.num_points = num_points self.sampling_offsets = nn.Linear(embed_dim, num_heads * num_levels * num_points * 2) self.attention_weights = nn.Linear(embed_dim, num_heads * num_levels * num_points) self.value_proj = nn.Linear(embed_dim, embed_dim) self.output_proj = nn.Linear(embed_dim, embed_dim) self.init_weights() def _reset_parameters(self): return self.init_weights() def init_weights(self): """ Default initialization for Parameters of Module. """ constant_(self.sampling_offsets.weight.data, 0.0) thetas = torch.arange(self.num_heads, dtype=torch.float32) * ( 2.0 * math.pi / self.num_heads ) grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) grid_init = ( (grid_init / grid_init.abs().max(-1, keepdim=True)[0]) .view(self.num_heads, 1, 1, 2) .repeat(1, self.num_levels, self.num_points, 1) ) for i in range(self.num_points): grid_init[:, :, i, :] *= i + 1 with torch.no_grad(): self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) constant_(self.attention_weights.weight.data, 0.0) constant_(self.attention_weights.bias.data, 0.0) xavier_uniform_(self.value_proj.weight.data) constant_(self.value_proj.bias.data, 0.0) xavier_uniform_(self.output_proj.weight.data) constant_(self.output_proj.bias.data, 0.0) def freeze_sampling_offsets(self): print("Freeze sampling offsets") self.sampling_offsets.weight.requires_grad = False self.sampling_offsets.bias.requires_grad = False def freeze_attention_weights(self): print("Freeze attention weights") self.attention_weights.weight.requires_grad = False self.attention_weights.bias.requires_grad = False def forward( self, query: torch.Tensor, key: Optional[torch.Tensor] = None, value: Optional[torch.Tensor] = None, query_pos: Optional[torch.Tensor] = None, key_padding_mask: Optional[torch.Tensor] = None, reference_points: Optional[torch.Tensor] = None, spatial_shapes: Optional[torch.Tensor] = None, level_start_index: Optional[torch.Tensor] = None, **kwargs ) -> torch.Tensor: """Forward Function of MultiScaleDeformableAttention Args: query (torch.Tensor): Query embeddings with shape `(num_query, bs, embed_dim)` key (torch.Tensor): Key embeddings with shape `(num_key, bs, embed_dim)` value (torch.Tensor): Value embeddings with shape `(num_key, bs, embed_dim)` query_pos (torch.Tensor): The position embedding for `query`. Default: None. key_padding_mask (torch.Tensor): ByteTensor for `query`, with shape `(bs, num_key)`, indicating which elements within `key` to be ignored in attention. reference_points (torch.Tensor): The normalized reference points with shape `(bs, num_query, num_levels, 2)`, all elements is range in [0, 1], top-left (0, 0), bottom-right (1, 1), including padding are. or `(N, Length_{query}, num_levels, 4)`, add additional two dimensions `(h, w)` to form reference boxes. spatial_shapes (torch.Tensor): Spatial shape of features in different levels. With shape `(num_levels, 2)`, last dimension represents `(h, w)`. level_start_index (torch.Tensor): The start index of each level. A tensor with shape `(num_levels, )` which can be represented as `[0, h_0 * w_0, h_0 * w_0 + h_1 * w_1, ...]`. Returns: torch.Tensor: forward results with shape `(num_query, bs, embed_dim)` """ if value is None: value = query if query_pos is not None: query = query + query_pos if not self.batch_first: # change to (bs, num_query ,embed_dims) query = query.permute(1, 0, 2) value = value.permute(1, 0, 2) bs, num_query, _ = query.shape bs, num_value, _ = value.shape assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value value = self.value_proj(value) if key_padding_mask is not None: value = value.masked_fill(key_padding_mask[..., None], float(0)) value = value.view(bs, num_value, self.num_heads, -1) sampling_offsets = self.sampling_offsets(query).view( bs, num_query, self.num_heads, self.num_levels, self.num_points, 2 ) attention_weights = self.attention_weights(query).view( bs, num_query, self.num_heads, self.num_levels * self.num_points ) attention_weights = attention_weights.softmax(-1) attention_weights = attention_weights.view( bs, num_query, self.num_heads, self.num_levels, self.num_points, ) # bs, num_query, num_heads, num_levels, num_points, 2 if reference_points.shape[-1] == 2: offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1) sampling_locations = ( reference_points[:, :, None, :, None, :] + sampling_offsets / offset_normalizer[None, None, None, :, None, :] ) elif reference_points.shape[-1] == 4: sampling_locations = ( reference_points[:, :, None, :, None, :2] + sampling_offsets / self.num_points * reference_points[:, :, None, :, None, 2:] * 0.5 ) else: raise ValueError( "Last dim of reference_points must be 2 or 4, but get {} instead.".format( reference_points.shape[-1] ) ) if torch.cuda.is_available() and value.is_cuda: halffloat = False if value.dtype == torch.float16: halffloat = True value = value.float() sampling_locations = sampling_locations.float() attention_weights = attention_weights.float() output = MultiScaleDeformableAttnFunction.apply( value, spatial_shapes, level_start_index, sampling_locations, attention_weights, self.im2col_step, ) if halffloat: output = output.half() else: output = multi_scale_deformable_attn_pytorch( value, spatial_shapes, sampling_locations, attention_weights ) output = self.output_proj(output) if not self.batch_first: output = output.permute(1, 0, 2) return output # Path: models/GroundingDINO/groundingdino/models/GroundingDINO/transformer_vanilla.py class TransformerEncoderLayer(nn.Module): def __init__( self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False, ): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before self.nhead = nhead def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward( self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, ): # repeat attn mask if src_mask.dim() == 3 and src_mask.shape[0] == src.shape[1]: # bs, num_q, num_k src_mask = src_mask.repeat(self.nhead, 1, 1) q = k = self.with_pos_embed(src, pos) src2 = self.self_attn(q, k, value=src, attn_mask=src_mask)[0] # src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] src = src + self.dropout1(src2) src = self.norm1(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) src = src + self.dropout2(src2) src = self.norm2(src) return src # Path: models/GroundingDINO/groundingdino/models/GroundingDINO/utils.py class MLP(nn.Module): """Very simple multi-layer perceptron (also called FFN)""" def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList( nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) ) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x # Path: models/GroundingDINO/groundingdino/models/GroundingDINO/utils.py def _get_activation_fn(activation, d_model=256, batch_dim=0): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu if activation == "prelu": return nn.PReLU() if activation == "selu": return F.selu raise RuntimeError(f"activation should be relu/gelu, not {activation}.") # Path: models/GroundingDINO/groundingdino/models/GroundingDINO/utils.py def _get_clones(module, N, layer_share=False): # import ipdb; ipdb.set_trace() if layer_share: return nn.ModuleList([module for i in range(N)]) else: return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) # Path: models/GroundingDINO/groundingdino/models/GroundingDINO/utils.py def gen_encoder_output_proposals( memory: Tensor, memory_padding_mask: Tensor, spatial_shapes: Tensor, learnedwh=None ): """ Input: - memory: bs, \sum{hw}, d_model - memory_padding_mask: bs, \sum{hw} - spatial_shapes: nlevel, 2 - learnedwh: 2 Output: - output_memory: bs, \sum{hw}, d_model - output_proposals: bs, \sum{hw}, 4 """ N_, S_, C_ = memory.shape proposals = [] _cur = 0 for lvl, (H_, W_) in enumerate(spatial_shapes): mask_flatten_ = memory_padding_mask[:, _cur : (_cur + H_ * W_)].view(N_, H_, W_, 1) valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1) valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1) # import ipdb; ipdb.set_trace() grid_y, grid_x = torch.meshgrid( torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device), torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device), ) grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) # H_, W_, 2 scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2) grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale if learnedwh is not None: # import ipdb; ipdb.set_trace() wh = torch.ones_like(grid) * learnedwh.sigmoid() * (2.0**lvl) else: wh = torch.ones_like(grid) * 0.05 * (2.0**lvl) # scale = torch.cat([W_[None].unsqueeze(-1), H_[None].unsqueeze(-1)], 1).view(1, 1, 1, 2).repeat(N_, 1, 1, 1) # grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale # wh = torch.ones_like(grid) / scale proposal = torch.cat((grid, wh), -1).view(N_, -1, 4) proposals.append(proposal) _cur += H_ * W_ # import ipdb; ipdb.set_trace() output_proposals = torch.cat(proposals, 1) output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all( -1, keepdim=True ) output_proposals = torch.log(output_proposals / (1 - output_proposals)) # unsigmoid output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float("inf")) output_proposals = output_proposals.masked_fill(~output_proposals_valid, float("inf")) output_memory = memory output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0)) output_memory = output_memory.masked_fill(~output_proposals_valid, float(0)) # output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf')) # output_memory = output_memory.masked_fill(~output_proposals_valid, float('inf')) return output_memory, output_proposals # Path: models/GroundingDINO/groundingdino/models/GroundingDINO/utils.py def gen_sineembed_for_position(pos_tensor): # n_query, bs, _ = pos_tensor.size() # sineembed_tensor = torch.zeros(n_query, bs, 256) scale = 2 * math.pi dim_t = torch.arange(128, dtype=torch.float32, device=pos_tensor.device) dim_t = 10000 ** (2 * (torch.div(dim_t, 2, rounding_mode='floor')) / 128) x_embed = pos_tensor[:, :, 0] * scale y_embed = pos_tensor[:, :, 1] * scale pos_x = x_embed[:, :, None] / dim_t pos_y = y_embed[:, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2) pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2) if pos_tensor.size(-1) == 2: pos = torch.cat((pos_y, pos_x), dim=2) elif pos_tensor.size(-1) == 4: w_embed = pos_tensor[:, :, 2] * scale pos_w = w_embed[:, :, None] / dim_t pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3).flatten(2) h_embed = pos_tensor[:, :, 3] * scale pos_h = h_embed[:, :, None] / dim_t pos_h = torch.stack((pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3).flatten(2) pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2) else: raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1))) return pos # Path: models/GroundingDINO/groundingdino/models/GroundingDINO/utils.py def get_sine_pos_embed( pos_tensor: torch.Tensor, num_pos_feats: int = 128, temperature: int = 10000, exchange_xy: bool = True, ): """generate sine position embedding from a position tensor Args: pos_tensor (torch.Tensor): shape: [..., n]. num_pos_feats (int): projected shape for each float in the tensor. temperature (int): temperature in the sine/cosine function. exchange_xy (bool, optional): exchange pos x and pos y. \ For example, input tensor is [x,y], the results will be [pos(y), pos(x)]. Defaults to True. Returns: pos_embed (torch.Tensor): shape: [..., n*num_pos_feats]. """ scale = 2 * math.pi dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos_tensor.device) dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats) def sine_func(x: torch.Tensor): sin_x = x * scale / dim_t sin_x = torch.stack((sin_x[..., 0::2].sin(), sin_x[..., 1::2].cos()), dim=3).flatten(2) return sin_x pos_res = [sine_func(x) for x in pos_tensor.split([1] * pos_tensor.shape[-1], dim=-1)] if exchange_xy: pos_res[0], pos_res[1] = pos_res[1], pos_res[0] pos_res = torch.cat(pos_res, dim=-1) return pos_res # Path: models/GroundingDINO/groundingdino/models/GroundingDINO/transformer.py from typing import Optional from torch import Tensor, nn from models.GroundingDINO.groundingdino.util.misc import inverse_sigmoid from .fuse_modules import BiAttentionBlock from .ms_deform_attn import MultiScaleDeformableAttention as MSDeformAttn from .transformer_vanilla import TransformerEncoderLayer from .utils import ( MLP, _get_activation_fn, _get_clones, gen_encoder_output_proposals, gen_sineembed_for_position, get_sine_pos_embed, ) import torch import torch.utils.checkpoint as checkpoint normalize_before=False, return_intermediate_dec=False, query_dim=4, num_patterns=0, # for deformable encoder num_feature_levels=1, enc_n_points=4, dec_n_points=4, # init query learnable_tgt_init=False, # two stage two_stage_type="no", # ['no', 'standard', 'early', 'combine', 'enceachlayer', 'enclayer1'] embed_init_tgt=False, # for text use_text_enhancer=False, use_fusion_layer=False, use_checkpoint=False, use_transformer_ckpt=False, use_text_cross_attention=False, text_dropout=0.1, fusion_dropout=0.1, fusion_droppath=0.0, ): super().__init__() self.num_feature_levels = num_feature_levels self.num_encoder_layers = num_encoder_layers self.num_unicoder_layers = num_unicoder_layers self.num_decoder_layers = num_decoder_layers self.num_queries = num_queries assert query_dim == 4 # choose encoder layer type encoder_layer = DeformableTransformerEncoderLayer( d_model, dim_feedforward, dropout, activation, num_feature_levels, nhead, enc_n_points ) if use_text_enhancer: text_enhance_layer = TransformerEncoderLayer( d_model=d_model, nhead=nhead // 2, dim_feedforward=dim_feedforward // 2, dropout=text_dropout, ) else: text_enhance_layer = None if use_fusion_layer: feature_fusion_layer = BiAttentionBlock( v_dim=d_model, l_dim=d_model, embed_dim=dim_feedforward // 2, num_heads=nhead // 2, dropout=fusion_dropout, drop_path=fusion_droppath, ) else: feature_fusion_layer = None encoder_norm = nn.LayerNorm(d_model) if normalize_before else None assert encoder_norm is None self.encoder = TransformerEncoder( encoder_layer, num_encoder_layers, d_model=d_model, num_queries=num_queries, text_enhance_layer=text_enhance_layer, feature_fusion_layer=feature_fusion_layer, use_checkpoint=use_checkpoint, use_transformer_ckpt=use_transformer_ckpt, ) # choose decoder layer type decoder_layer = DeformableTransformerDecoderLayer( d_model, dim_feedforward, dropout, activation, num_feature_levels, nhead, dec_n_points, use_text_cross_attention=use_text_cross_attention, ) decoder_norm = nn.LayerNorm(d_model) self.decoder = TransformerDecoder( decoder_layer, num_decoder_layers, decoder_norm, return_intermediate=return_intermediate_dec, d_model=d_model, query_dim=query_dim, num_feature_levels=num_feature_levels, ) self.d_model = d_model self.nhead = nhead self.dec_layers = num_decoder_layers self.num_queries = num_queries # useful for single stage model only self.num_patterns = num_patterns if not isinstance(num_patterns, int): Warning("num_patterns should be int but {}".format(type(num_patterns))) self.num_patterns = 0 if num_feature_levels > 1: if self.num_encoder_layers > 0: self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model)) else: self.level_embed = None self.learnable_tgt_init = learnable_tgt_init assert learnable_tgt_init, "why not learnable_tgt_init" self.embed_init_tgt = embed_init_tgt if (two_stage_type != "no" and embed_init_tgt) or (two_stage_type == "no"): self.tgt_embed = nn.Embedding(self.num_queries, d_model) nn.init.normal_(self.tgt_embed.weight.data) else: self.tgt_embed = None # for two stage self.two_stage_type = two_stage_type
assert two_stage_type in ["no", "standard"], "unknown param {} of two_stage_type".format(
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: chinhsuanwu/ifusion # Path: dataset/finetune.py class FinetuneIterableDataset(IterableDataset, FinetuneDataset): def __init__(self, transform_fp): super().__init__(transform_fp) def __iter__(self): while True: index = torch.randint(0, len(self.perm), size=(1,)).item() index_target, index_cond = ( self.perm[index, 0].item(), self.perm[index, 1].item(), ) yield { "image_target": self.all_images[index_target], "image_cond": self.all_images[index_cond], "T": self.get_trans(self.all_camtoworlds[index_target], self.all_camtoworlds[index_cond], in_T=True), } # Path: dataset/inference.py class MultiImageInferenceDataset(Dataset, BaseDataset): def __init__( self, transform_fp, n_views: int, theta: int, radius: float, ): self.setup(transform_fp) self.infer_camtoworlds = make_circular_poses(n_views, theta, radius) def __len__(self): return len(self.infer_camtoworlds) def __getitem__(self, index): target_camtoworld = self.infer_camtoworlds[index] latlon = torch.stack( [ self.get_trans(target_camtoworld, self.all_camtoworlds[i], in_T=False) for i in range(len(self.all_camtoworlds)) ] ) return { "image_cond": self.all_images, "theta": latlon[:, 0], "azimuth": latlon[:, 1], "distance": latlon[:, 2], } def loader(self, batch_size=1, num_workers=8, **kwargs): return DataLoader( self, batch_size=batch_size, num_workers=num_workers, pin_memory=True, sampler=None, **kwargs, ) # Path: dataset/inference.py class SingleImageInferenceDataset(Dataset, BaseDataset): def __init__( self, image_fp: str = None, transform_fp: str = None, n_views: int = 8, theta: int = -20, radius: float = 1.0, default_latlon: List[float] = [0, 0, 1], ): if image_fp: self.image = load_image(image_fp, device="cpu").squeeze(0) self.camtoworld = latlon2mat(torch.tensor([default_latlon])) elif transform_fp: self.setup(transform_fp) self.image, self.camtoworld = self.all_images[0], self.all_camtoworlds[0] else: raise ValueError("Either image_fp or transform_fp must be provided.") self.infer_camtoworlds = make_circular_poses(n_views, theta, radius) def __len__(self): return len(self.infer_camtoworlds) def __getitem__(self, index): target_camtoworld = self.infer_camtoworlds[index] latlon = self.get_trans(target_camtoworld, self.camtoworld, in_T=False) return { "image_cond": self.image, "theta": latlon[0], "azimuth": latlon[1], "distance": latlon[2], } def loader(self, batch_size=1, num_workers=8, **kwargs): return DataLoader( self, batch_size=batch_size, num_workers=num_workers, pin_memory=True, sampler=None, **kwargs, ) # Path: util/pose.py def latlon2mat(latlon, in_deg=True, default_radius=1.0): if latlon.shape[-1] == 2: radius = torch.ones_like(latlon[:, 0]) * default_radius latlon = torch.cat((latlon, radius.unsqueeze(1)), dim=1) if in_deg: latlon[:, :2] = latlon[:, :2].deg2rad() mv = [ translate(0, 0, -radius) @ rotate_x(theta) @ rotate_y(-azimuth) for theta, azimuth, radius in latlon ] c2w = torch.linalg.inv(torch.stack(mv)) return c2w # Path: util/pose.py def make_T(theta, azimuth, distance, in_deg=False): if in_deg: theta, azimuth = theta.deg2rad(), azimuth.deg2rad() return torch.stack( ( theta, torch.sin(azimuth), torch.cos(azimuth), distance, ) ) # Path: util/pose.py def mat2latlon(T, in_deg=False, return_radius=False): if len(T.shape) == 2: T = T.unsqueeze(0) xyz = T[:, :3, 3] radius = torch.norm(xyz, dim=1, keepdim=True) xyz = xyz / radius theta = -torch.asin(xyz[:, 1]) azimuth = torch.atan2(xyz[:, 0], xyz[:, 2]) if in_deg: theta, azimuth = theta.rad2deg(), azimuth.rad2deg() if return_radius: return torch.stack((theta, azimuth, radius.squeeze(0))).T return torch.stack((theta, azimuth)).T # Path: util/util.py def load_image(fp, to_clip=True, verbose=True, device="cuda"): if verbose: print(f"[INFO] Loading image {fp}") image = np.array(Image.open(fp)) if image.shape[-1] == 4: image[image[..., -1] < 128] = [255] * 4 image = image[..., :3] image = cv2.resize(image, (256, 256), interpolation=cv2.INTER_AREA) image = image.astype(np.float32) / 255.0 image = torch.from_numpy(image).contiguous().to(device) image = image.permute(2, 0, 1).unsqueeze(0) if to_clip: image = image * 2 - 1 return image # Path: util/util.py def parse_optimizer(config, params): optim = getattr(torch.optim, config.name)(params, **config.args) return optim # Path: util/util.py def parse_scheduler(config, optim): scheduler = getattr(torch.optim.lr_scheduler, config.name)(optim, **config.args) return scheduler # Path: util/viz.py def plot_image(*xs, normalize=False, fp="out.png"): # x: [B, 3, H, W], [3, H, W], [1, H, W] or [H, W] torch.Tensor # [B, H, W, 3], [H, W, 3], [H, W, 1] or [H, W] numpy.ndarray def _plot_image(image): if isinstance(image, torch.Tensor): if len(image.shape) == 3: if image.shape[0] == 1 or image.shape[0] == 3 or image.shape[0] == 4: image = image.permute(1, 2, 0).squeeze() image = image.detach().cpu().numpy() image = image.astype(np.float32) # normalize if normalize: image = (image - image.min(axis=0, keepdims=True)) / ( image.max(axis=0, keepdims=True) - image.min(axis=0, keepdims=True) + 1e-8 ) if image.max() <= 1: image *= 255 Image.fromarray(image.astype(np.uint8)).save(fp) for x in xs: if len(x.shape) == 4: for i in range(x.shape[0]): _plot_image(x[i]) else: _plot_image(x) # Path: ifusion.py import json import numpy as np import torch from glob import glob from einops import rearrange from liegroups.torch import SE3 from tqdm import trange from dataset.finetune import FinetuneIterableDataset from dataset.inference import MultiImageInferenceDataset, SingleImageInferenceDataset from util.pose import latlon2mat, make_T, mat2latlon from util.typing import * from util.util import load_image, parse_optimizer, parse_scheduler from util.viz import plot_image results = torch.tensor(results) best_idx = torch.argmin(results[:, 0]) pred_pose = results[best_idx][1:] print( f"[INFO] Best pose: theta: {pred_pose[0]:.2f}, azimuth: {pred_pose[1]:.2f}, distance: {pred_pose[2]:.2f}" ) return pred_pose def optimize_pose( model, image_dir: str, transform_fp: str, demo_fp: str, default_latlon: List[float] = [0, 0, 1], **kwargs, ): image_fps = sorted(glob(image_dir + "/*.png") + glob(image_dir + "/*.jpg")) image_fps = [fp for fp in image_fps if fp != demo_fp] # FIXME: always pick the first image as reference ref_image = load_image(image_fps[0]) qry_images = [load_image(image_fps[i]) for i in range(1, len(image_fps))] out_dict = {"camera_angle_x": np.deg2rad(49.1), "frames": []} out_dict["frames"].append( { "file_path": image_fps[0].replace(image_dir + "/", ""), "transform_matrix": latlon2mat(torch.tensor([default_latlon])).tolist(), "latlon": list(default_latlon), } ) for qry_fp, qry_image in zip(image_fps[1:], qry_images): assert ref_image.shape == qry_image.shape pose = optimize_pose_pair( model=model, ref_image=ref_image, qry_image=qry_image, **kwargs ) pose = np.add(default_latlon, pose.unsqueeze(0)) out_dict["frames"].append( { "file_path": qry_fp.replace(image_dir + "/", ""), "transform_matrix": latlon2mat(pose.clone()).tolist(), "latlon": pose.squeeze().tolist(), } ) # save poses to json with open(transform_fp, "w") as f: json.dump(out_dict, f, indent=4) def finetune( model, transform_fp: str, lora_ckpt_fp: str, lora_rank: int, lora_target_replace_module: List[str], args, ): model.inject_lora( rank=lora_rank, target_replace_module=lora_target_replace_module, ) train_dataset = FinetuneIterableDataset(transform_fp) train_loader = train_dataset.loader(args.batch_size) optimizer = parse_optimizer(args.optimizer, model.require_grad_params) scheduler = parse_scheduler(args.scheduler, optimizer) train_loader = iter(train_loader) with trange(args.max_step) as pbar: for step in pbar: optimizer.zero_grad() batch = next(train_loader) batch = {k: v.to(model.device) for k, v in batch.items()} loss = model(batch) pbar.set_description(f"step: {step}, loss: {loss.item():.4f}") loss.backward() optimizer.step() scheduler.step() model.save_lora(lora_ckpt_fp) model.remove_lora() def inference( model, transform_fp: str, lora_ckpt_fp: str, demo_fp: str, lora_rank: int, lora_target_replace_module: List[str], use_multi_view_condition: bool, n_views: int, theta: float, radius: float, args, ): if lora_ckpt_fp: model.inject_lora( ckpt_fp=lora_ckpt_fp, rank=lora_rank, target_replace_module=lora_target_replace_module, ) if use_multi_view_condition: test_dataset = MultiImageInferenceDataset generate_fn = model.generate_from_tensor_multi_cond else: test_dataset = SingleImageInferenceDataset generate_fn = model.generate_from_tensor test_dataset = test_dataset( transform_fp=transform_fp, n_views=n_views, theta=theta, radius=radius )
test_loader = test_dataset.loader(args.batch_size)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: wangzhecheng/SkyScript # Path: src/open_clip/model.py def get_cast_dtype(precision: str): cast_dtype = None if precision == 'bf16': cast_dtype = torch.bfloat16 elif precision == 'fp16': cast_dtype = torch.float16 return cast_dtype # Path: src/open_clip/model.py def trace_model(model, batch_size=256, device=torch.device('cpu')): model.eval() image_size = model.visual.image_size example_images = torch.ones((batch_size, 3, image_size, image_size), device=device) example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device) model = torch.jit.trace_module( model, inputs=dict( forward=(example_images, example_text), encode_text=(example_text,), encode_image=(example_images,) )) model.visual.image_size = image_size return model # Path: src/open_clip/factory.py def create_model_and_transforms( model_name: str, pretrained: Optional[str] = None, precision: str = 'fp32', device: Union[str, torch.device] = 'cpu', jit: bool = False, force_quick_gelu: bool = False, force_custom_text: bool = False, force_patch_dropout: Optional[float] = None, force_image_size: Optional[Union[int, Tuple[int, int]]] = None, pretrained_image: bool = False, pretrained_hf: bool = True, image_mean: Optional[Tuple[float, ...]] = None, image_std: Optional[Tuple[float, ...]] = None, aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None, cache_dir: Optional[str] = None, output_dict: Optional[bool] = None, ): model = create_model( model_name, pretrained, precision=precision, device=device, jit=jit, force_quick_gelu=force_quick_gelu, force_custom_text=force_custom_text, force_patch_dropout=force_patch_dropout, force_image_size=force_image_size, pretrained_image=pretrained_image, pretrained_hf=pretrained_hf, cache_dir=cache_dir, output_dict=output_dict, ) image_mean = image_mean or getattr(model.visual, 'image_mean', None) image_std = image_std or getattr(model.visual, 'image_std', None) preprocess_train = image_transform( model.visual.image_size, is_train=True, mean=image_mean, std=image_std, aug_cfg=aug_cfg, ) preprocess_val = image_transform( model.visual.image_size, is_train=False, mean=image_mean, std=image_std, ) return model, preprocess_train, preprocess_val # Path: src/training/zero_shot.py def zero_shot_classifier(model, classnames, templates, args): tokenizer = get_tokenizer(args.model) with torch.no_grad(): zeroshot_weights = [] for classname in tqdm(classnames): texts = [template(classname) for template in templates] # format with class texts = tokenizer(texts).to(args.device) # tokenize if args.distributed and not args.horovod: class_embeddings = model.module.encode_text(texts) else: class_embeddings = model.encode_text(texts) class_embedding = F.normalize(class_embeddings, dim=-1).mean(dim=0) class_embedding /= class_embedding.norm() zeroshot_weights.append(class_embedding) zeroshot_weights = torch.stack(zeroshot_weights, dim=1).to(args.device) return zeroshot_weights # Path: src/training/logger.py def setup_logging(log_file, level, include_host=False): if include_host: import socket hostname = socket.gethostname() formatter = logging.Formatter( f'%(asctime)s | {hostname} | %(levelname)s | %(message)s', datefmt='%Y-%m-%d,%H:%M:%S') else: formatter = logging.Formatter('%(asctime)s | %(levelname)s | %(message)s', datefmt='%Y-%m-%d,%H:%M:%S') logging.root.setLevel(level) loggers = [logging.getLogger(name) for name in logging.root.manager.loggerDict] for logger in loggers: logger.setLevel(level) stream_handler = logging.StreamHandler() stream_handler.setFormatter(formatter) logging.root.addHandler(stream_handler) if log_file: file_handler = logging.FileHandler(filename=log_file) file_handler.setFormatter(formatter) logging.root.addHandler(file_handler) # Path: src/training/distributed.py def is_master(args, local=False): return is_local_master(args) if local else is_global_master(args) # Path: src/training/distributed.py def init_distributed_device(args): # Distributed training = training on more than one GPU. # Works in both single and multi-node scenarios. args.distributed = False args.world_size = 1 args.rank = 0 # global rank args.local_rank = 0 if args.horovod: assert hvd is not None, "Horovod is not installed" hvd.init() args.local_rank = int(hvd.local_rank()) args.rank = hvd.rank() args.world_size = hvd.size() args.distributed = True os.environ['LOCAL_RANK'] = str(args.local_rank) os.environ['RANK'] = str(args.rank) os.environ['WORLD_SIZE'] = str(args.world_size) elif is_using_distributed(): if 'SLURM_PROCID' in os.environ: # DDP via SLURM args.local_rank, args.rank, args.world_size = world_info_from_env() # SLURM var -> torch.distributed vars in case needed os.environ['LOCAL_RANK'] = str(args.local_rank) os.environ['RANK'] = str(args.rank) os.environ['WORLD_SIZE'] = str(args.world_size) torch.distributed.init_process_group( backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank, ) else: # DDP via torchrun, torch.distributed.launch args.local_rank, _, _ = world_info_from_env() torch.distributed.init_process_group( backend=args.dist_backend, init_method=args.dist_url) args.world_size = torch.distributed.get_world_size() args.rank = torch.distributed.get_rank() args.distributed = True if torch.cuda.is_available(): if args.distributed and not args.no_set_device_rank: device = 'cuda:%d' % args.local_rank else: device = 'cuda:0' torch.cuda.set_device(device) else: device = 'cpu' args.device = device device = torch.device(device) return device # Path: src/training/distributed.py def broadcast_object(args, obj, src=0): # broadcast a pickle-able python object from rank-0 to all ranks if args.horovod: return hvd.broadcast_object(obj, root_rank=src) else: if args.rank == src: objects = [obj] else: objects = [None] dist.broadcast_object_list(objects, src=src) return objects[0] # Path: src/training/precision.py def get_autocast(precision): if precision == 'amp': return torch.cuda.amp.autocast elif precision == 'amp_bfloat16' or precision == 'amp_bf16': # amp_bfloat16 is more stable than amp float16 for clip training return lambda: torch.cuda.amp.autocast(dtype=torch.bfloat16) else: return suppress # Path: params.py def parse_args(args): parser = argparse.ArgumentParser() parser.add_argument( "--root-data-dir", type=str, default=None, help="Root directory to datasets", ) parser.add_argument( "--train-data", type=str, default=None, help="Path to file(s) with training data. When using webdataset, multiple datasources can be combined using the `::` separator.", ) parser.add_argument( "--train-data-upsampling-factors", type=str, default=None, help=( "When using multiple data sources with webdataset and sampling with replacement, this can be used to upsample specific data sources. " "Similar to --train-data, this should be a string with as many numbers as there are data sources, separated by `::` (e.g. 1::2::0.5) " "By default, datapoints are sampled uniformly regardless of the dataset sizes." ) ) parser.add_argument( "--val-data", type=str, default=None, help="Path to file(s) with validation data", ) parser.add_argument( "--train-num-samples", type=int, default=None, help="Number of samples in dataset. Required for webdataset if not available in info file.", ) parser.add_argument( "--val-num-samples", type=int, default=None, help="Number of samples in dataset. Useful for webdataset if not available in info file.", ) parser.add_argument( "--dataset-type", choices=["webdataset", "csv", "synthetic", "auto"], default="auto", help="Which type of dataset to process." ) parser.add_argument( "--dataset-resampled", default=False, action="store_true", help="Whether to use sampling with replacement for webdataset shard selection." ) parser.add_argument( "--csv-separator", type=str, default="\t", help="For csv-like datasets, which separator to use." ) parser.add_argument( "--csv-img-key", type=str, default="filepath", help="For csv-like datasets, the name of the key for the image paths." ) parser.add_argument( "--csv-caption-key", type=str, default="title", help="For csv-like datasets, the name of the key for the captions." ) parser.add_argument( "--imagenet-val", type=str, default=None, help="Path to imagenet val set for conducting zero shot evaluation.", ) parser.add_argument( "--imagenet-v2", type=str, default=None, help="Path to imagenet v2 for conducting zero shot evaluation.", ) parser.add_argument( "--logs", type=str, default="./logs/", help="Where to store tensorboard logs. Use None to avoid storing logs.", ) parser.add_argument( "--log-local", action="store_true", default=False, help="log files on local master, otherwise global master only.", ) parser.add_argument( "--name", type=str, default=None, help="Optional identifier for the experiment when storing logs. Otherwise use current time.", ) parser.add_argument( "--workers", type=int, default=1, help="Number of dataloader workers per GPU." ) parser.add_argument( "--batch-size", type=int, default=64, help="Batch size per GPU." ) parser.add_argument( "--epochs", type=int, default=32, help="Number of epochs to train for." ) parser.add_argument( "--epochs-cooldown", type=int, default=None, help="When scheduler w/ cooldown used, perform cooldown from total_epochs - cooldown_epochs onwards." ) parser.add_argument("--lr", type=float, default=None, help="Learning rate.") parser.add_argument("--beta1", type=float, default=None, help="Adam beta 1.") parser.add_argument("--beta2", type=float, default=None, help="Adam beta 2.") parser.add_argument("--eps", type=float, default=None, help="Adam epsilon.") parser.add_argument("--wd", type=float, default=0.2, help="Weight decay.") parser.add_argument( "--warmup", type=int, default=10000, help="Number of steps to warmup for." ) parser.add_argument( "--use-bn-sync", default=False, action="store_true", help="Whether to use batch norm sync.") parser.add_argument( "--skip-scheduler", action="store_true", default=False, help="Use this flag to skip the learning rate decay.", ) parser.add_argument( "--lr-scheduler", type=str, default='cosine', help="LR scheduler. One of: 'cosine', 'const' (constant), 'const-cooldown' (constant w/ cooldown). Default: cosine", ) parser.add_argument( "--lr-cooldown-end", type=float, default=0.0, help="End learning rate for cooldown schedule. Default: 0" ) parser.add_argument( "--lr-cooldown-power", type=float, default=1.0, help="Power for polynomial cooldown schedule. Default: 1.0 (linear decay)" ) parser.add_argument( "--save-frequency", type=int, default=1, help="How often to save checkpoints." ) parser.add_argument( "--save-most-recent", action="store_true", default=False, help="Always save the most recent model trained to epoch_latest.pt.", ) parser.add_argument( "--zeroshot-frequency", type=int, default=2, help="How often to run zero shot." ) parser.add_argument( "--val-frequency", type=int, default=1, help="How often to run evaluation with val data." ) parser.add_argument( "--resume", default=None, type=str, help="path to latest checkpoint (default: none)", ) parser.add_argument( "--precision", choices=["amp", "amp_bf16", "amp_bfloat16", "bf16", "fp16", "fp32"], default="amp", help="Floating point precision." ) parser.add_argument( "--model", type=str, default="RN50", help="Name of the vision backbone to use.", ) parser.add_argument( "--pretrained", default='', type=str, help="Use a pretrained CLIP model weights with the specified tag or file path.", ) parser.add_argument( "--pretrained-image", default=False, action='store_true', help="Load imagenet pretrained weights for image tower backbone if available.", ) parser.add_argument( "--lock-image", default=False, action='store_true', help="Lock full image tower by disabling gradients.", ) parser.add_argument( "--lock-image-unlocked-groups", type=int, default=0, help="Leave last n image tower layer groups unlocked.", ) parser.add_argument( "--lock-image-freeze-bn-stats", default=False, action='store_true', help="Freeze BatchNorm running stats in image tower for any locked layers.", ) parser.add_argument( '--image-mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override default image mean value of dataset') parser.add_argument( '--image-std', type=float, nargs='+', default=None, metavar='STD', help='Override default image std deviation of of dataset') parser.add_argument('--aug-cfg', nargs='*', default={}, action=ParseKwargs) parser.add_argument( "--grad-checkpointing", default=False, action='store_true', help="Enable gradient checkpointing.", ) parser.add_argument( "--local-loss", default=False, action="store_true", help="calculate loss w/ local features @ global (instead of realizing full global @ global matrix)" ) parser.add_argument( "--gather-with-grad", default=False, action="store_true", help="enable full distributed gradient for feature gather" ) parser.add_argument( '--force-image-size', type=int, nargs='+', default=None, help='Override default image size' ) parser.add_argument( "--force-quick-gelu", default=False, action='store_true', help="Force use of QuickGELU activation for non-OpenAI transformer models.", ) parser.add_argument( "--force-patch-dropout", default=None, type=float, help="Override the patch dropout during training, for fine tuning with no dropout near the end as in the paper", ) parser.add_argument( "--force-custom-text", default=False, action='store_true', help="Force use of CustomTextCLIP model (separate text-tower).", ) parser.add_argument( "--torchscript", default=False, action='store_true', help="torch.jit.script the model, also uses jit version of OpenAI models if pretrained=='openai'", ) parser.add_argument( "--trace", default=False, action='store_true', help="torch.jit.trace the model for inference / eval only", ) parser.add_argument( "--accum-freq", type=int, default=1, help="Update the model every --acum-freq steps." ) # arguments for distributed training parser.add_argument( "--dist-url", default="env://", type=str, help="url used to set up distributed training", ) parser.add_argument( "--dist-backend", default="nccl", type=str, help="distributed backend" ) parser.add_argument( "--report-to", default='', type=str, help="Options are ['wandb', 'tensorboard', 'wandb,tensorboard']" ) parser.add_argument( "--wandb-notes", default='', type=str, help="Notes if logging with wandb" ) parser.add_argument( "--wandb-project-name", type=str, default='open-clip', help="Name of the project if logging with wandb.", ) parser.add_argument( "--debug", default=False, action="store_true", help="If true, more information is logged." ) parser.add_argument( "--copy-codebase", default=False, action="store_true", help="If true, we copy the entire base on the log directory, and execute from there." ) parser.add_argument( "--horovod", default=False, action="store_true", help="Use horovod for distributed training." ) parser.add_argument( "--ddp-static-graph", default=False, action='store_true', help="Enable static graph optimization for DDP in PyTorch >= 1.11.", ) parser.add_argument( "--no-set-device-rank", default=False, action="store_true", help="Don't set device index from local rank (when CUDA_VISIBLE_DEVICES restricted to one per proc)." ) parser.add_argument( "--seed", type=int, default=0, help="Default random seed." ) parser.add_argument( "--grad-clip-norm", type=float, default=None, help="Gradient clip." ) parser.add_argument( "--lock-text", default=False, action='store_true', help="Lock full text tower by disabling gradients.", ) parser.add_argument( "--lock-text-unlocked-layers", type=int, default=0, help="Leave last n image tower layer groups unlocked.", ) parser.add_argument( "--lock-text-freeze-layer-norm", default=False, action='store_true', help="Freeze BatchNorm running stats in image tower for any locked layers.", ) parser.add_argument( "--log-every-n-steps", type=int, default=100, help="Log every n steps to tensorboard/console/wandb.", ) parser.add_argument( "--coca-caption-loss-weight", type=float, default=2.0, help="Weight assigned to caption loss in CoCa." ) parser.add_argument( "--coca-contrastive-loss-weight", type=float, default=1.0, help="Weight assigned to contrastive loss when training CoCa." ) parser.add_argument( "--remote-sync", type=str, default=None, help="Optinoally sync with a remote path specified by this arg", ) parser.add_argument( "--remote-sync-frequency", type=int, default=300, help="How frequently to sync to a remote directly if --remote-sync is not None.", ) parser.add_argument( "--remote-sync-protocol", choices=["s3", "fsspec"], default="s3", help="How to do the remote sync backup if --remote-sync is not None.", ) parser.add_argument( "--delete-previous-checkpoint", default=False, action="store_true", help="If true, delete previous checkpoint after storing a new one." ) parser.add_argument( "--distill-model", default=None, help='Which model arch to distill from, if any.' ) parser.add_argument( "--distill-pretrained", default=None, help='Which pre-trained weights to distill from, if any.' ) # newly added flag for adding random rotation into data augmentation parser.add_argument( "--random-rotation", action="store_true", default=False, help="If True, add random rotation into image transform for data augmentation (only for training)." ) # newly added for testing zero-shot and linear probe classification (custom dataset) parser.add_argument( "--datasets-for-testing", nargs='*', type=str, default=None, help="A list of names of datasets for testing zero-shot classification testing", ) parser.add_argument( "--classification-mode", type=str, default="multiclass", help="Choose either binary or multiclass", ) parser.add_argument( "--test-data", type=str, default=None, help="Path to file(s) with test data (e.g., for testing zero-shot classification)", ) parser.add_argument( "--classnames", type=str, default=None, help="Path to txt file containing class names", ) parser.add_argument( "--test-data-name", type=str, default=None, help="The name of the test data (e.g., RSICD, EuroSat)", ) parser.add_argument( "--csv-class-key", type=str, default="label", help="For csv-like datasets, the name of the key for image labels (for classification)." ) parser.add_argument( "--csv-actual-label-key", type=str, default="binary", help="If classification_model=binary, then specify the name of the key for actual binary labels (i.e., 0/1)." ) parser.add_argument( "--alpha", type=float, default=None, help="The regularization multiplier of logistic regression to try for linear probing. If None, do a search." ) parser.add_argument( "--samples-per-class", type=str, default=None, help="Numbers of samples per class to train logistic regression for linear probing. If None, use full dataset." ) parser.add_argument( "--test-result-save-path", type=str, default=None, help="The path to save test results as a pickle file." ) parser.add_argument( "--debugging", action="store_true", default=False, help="Whether to use debugging mode, which will return more information." ) args = parser.parse_args(args) # If some params are not passed, we use the default values based on model name. default_params = get_default_params(args.model) for name, val in default_params.items(): if getattr(args, name) is None: setattr(args, name, val) return args # Path: prompt_templates.py # Path: benchmark_dataset_info.py BENCHMARK_DATASET_INFOMATION = { 'aid': { 'classification_mode': 'multiclass', 'test_data': BENCHMARK_DATASET_ROOT_DIR + '/aid/aid_img_txt_pairs_test.csv', 'classnames': BENCHMARK_DATASET_ROOT_DIR + '/aid/classnames.txt', 'csv_separator': ',', 'csv_img_key': 'filepath', 'csv_class_key': 'label', }, 'eurosat': { 'classification_mode': 'multiclass', 'test_data': BENCHMARK_DATASET_ROOT_DIR + '/eurosat/eurosat_img_txt_pairs_test.csv', 'classnames': BENCHMARK_DATASET_ROOT_DIR + '/eurosat/classnames.txt', 'csv_separator': ',', 'csv_img_key': 'filepath', 'csv_class_key': 'label', }, 'fmow': { 'classification_mode': 'multiclass', 'test_data': BENCHMARK_DATASET_ROOT_DIR + '/fmow/fmow_img_txt_pairs_val.csv', 'classnames': BENCHMARK_DATASET_ROOT_DIR + '/fmow/classnames.txt', 'csv_separator': ',', 'csv_img_key': 'filepath', 'csv_class_key': 'label', }, 'nwpu': { 'classification_mode': 'multiclass', 'test_data': BENCHMARK_DATASET_ROOT_DIR + '/nwpu/img_txt_pairs_train.csv', 'classnames': BENCHMARK_DATASET_ROOT_DIR + '/nwpu/classnames.txt', 'csv_separator': ',', 'csv_img_key': 'filepath', 'csv_class_key': 'label', }, 'patternnet': { 'classification_mode': 'multiclass', 'test_data': BENCHMARK_DATASET_ROOT_DIR + '/patternnet/img_txt_pairs_train.csv', 'classnames': BENCHMARK_DATASET_ROOT_DIR + '/patternnet/classnames.txt', 'csv_separator': ',', 'csv_img_key': 'filepath', 'csv_class_key': 'label', }, 'SkyScript_cls': { 'classification_mode': 'multiclass', 'test_data': BENCHMARK_DATASET_ROOT_DIR + '/SkyScript_cls/img_txt_pairs_val.csv', 'classnames': BENCHMARK_DATASET_ROOT_DIR + '/SkyScript_cls/classnames.txt', 'csv_separator': ',', 'csv_img_key': 'filepath', 'csv_class_key': 'label', }, 'millionaid': { 'classification_mode': 'multiclass', 'test_data': BENCHMARK_DATASET_ROOT_DIR + '/millionaid/img_txt_pairs_train.csv', 'classnames': BENCHMARK_DATASET_ROOT_DIR + '/millionaid/classnames.txt', 'csv_separator': ',', 'csv_img_key': 'filepath', 'csv_class_key': 'label', }, 'rsicb': { 'classification_mode': 'multiclass', 'test_data': BENCHMARK_DATASET_ROOT_DIR + '/rsicb256/img_txt_pairs_train.csv', 'classnames': BENCHMARK_DATASET_ROOT_DIR + '/rsicb256/classnames.txt', 'csv_separator': ',', 'csv_img_key': 'filepath', 'csv_class_key': 'label', }, } # Path: test_zero_shot_classification.py import torch import numpy as np import os import sys import pandas as pd import pickle import matplotlib.pyplot as plt import torch.nn.functional as F import random from PIL import Image from os.path import join, exists from tqdm import tqdm from torch.utils.data import Dataset, DataLoader from src.open_clip.model import get_cast_dtype, trace_model from src.open_clip.factory import create_model_and_transforms from src.training.zero_shot import zero_shot_classifier from src.training.logger import setup_logging from src.training.distributed import is_master, init_distributed_device, broadcast_object from src.training.precision import get_autocast from params import parse_args from prompt_templates import template_dict from benchmark_dataset_info import BENCHMARK_DATASET_INFOMATION Image.MAX_IMAGE_PIXELS = 1000000000 def random_seed(seed=42, rank=0): torch.manual_seed(seed + rank) np.random.seed(seed + rank)
random.seed(seed + rank)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: JarodMica/ai-voice-cloning # Path: modules/rvc/infer/modules/uvr5/modules.py def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0): infos = [] try: inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ") save_root_vocal = ( save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ") ) save_root_ins = ( save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ") ) if model_name == "onnx_dereverb_By_FoxJoy": pre_fun = MDXNetDereverb(15, config.device) else: func = AudioPre if "DeEcho" not in model_name else AudioPreDeEcho pre_fun = func( agg=int(agg), model_path=os.path.join( os.getenv("weight_uvr5_root"), model_name + ".pth" ), device=config.device, is_half=config.is_half, ) if inp_root != "": paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)] else: paths = [path.name for path in paths] for path in paths: inp_path = os.path.join(inp_root, path) need_reformat = 1 done = 0 try: info = ffmpeg.probe(inp_path, cmd="ffprobe") if ( info["streams"][0]["channels"] == 2 and info["streams"][0]["sample_rate"] == "44100" ): need_reformat = 0 pre_fun._path_audio_( inp_path, save_root_ins, save_root_vocal, format0 ) done = 1 except: need_reformat = 1 traceback.print_exc() if need_reformat == 1: tmp_path = "%s/%s.reformatted.wav" % ( os.path.join(os.environ["TEMP"]), os.path.basename(inp_path), ) os.system( "ffmpeg -i %s -vn -acodec pcm_s16le -ac 2 -ar 44100 %s -y" % (inp_path, tmp_path) ) inp_path = tmp_path try: if done == 0: pre_fun.path_audio( inp_path, save_root_ins, save_root_vocal, format0 ) infos.append("%s->Success" % (os.path.basename(inp_path))) yield "\n".join(infos) except: try: if done == 0: pre_fun._path_audio_( inp_path, save_root_ins, save_root_vocal, format0 ) infos.append("%s->Success" % (os.path.basename(inp_path))) yield "\n".join(infos) except: infos.append( "%s->%s" % (os.path.basename(inp_path), traceback.format_exc()) ) yield "\n".join(infos) except: infos.append(traceback.format_exc()) yield "\n".join(infos) finally: try: if model_name == "onnx_dereverb_By_FoxJoy": del pre_fun.pred.model del pre_fun.pred.model_ else: del pre_fun.model del pre_fun except: traceback.print_exc() if torch.cuda.is_available(): torch.cuda.empty_cache() logger.info("Executed torch.cuda.empty_cache()") yield "\n".join(infos) # Path: modules/rvc/infer/modules/vc/modules.py class VC: def __init__(self, config): self.n_spk = None self.tgt_sr = None self.net_g = None self.pipeline = None self.cpt = None self.version = None self.if_f0 = None self.version = None self.hubert_model = None self.config = config def get_vc(self, sid, *to_return_protect): logger.info("Get sid: " + sid) to_return_protect0 = { "visible": self.if_f0 != 0, "value": to_return_protect[0] if self.if_f0 != 0 and to_return_protect else 0.5, "__type__": "update", } to_return_protect1 = { "visible": self.if_f0 != 0, "value": to_return_protect[1] if self.if_f0 != 0 and to_return_protect else 0.33, "__type__": "update", } if sid == "" or sid == []: if self.hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的 logger.info("Clean model cache") del ( self.net_g, self.n_spk, self.vc, self.hubert_model, self.tgt_sr, ) # ,cpt self.hubert_model = ( self.net_g ) = self.n_spk = self.vc = self.hubert_model = self.tgt_sr = None if torch.cuda.is_available(): torch.cuda.empty_cache() ###楼下不这么折腾清理不干净 self.if_f0 = self.cpt.get("f0", 1) self.version = self.cpt.get("version", "v1") if self.version == "v1": if self.if_f0 == 1: self.net_g = SynthesizerTrnMs256NSFsid( *self.cpt["config"], is_half=self.config.is_half ) else: self.net_g = SynthesizerTrnMs256NSFsid_nono(*self.cpt["config"]) elif self.version == "v2": if self.if_f0 == 1: self.net_g = SynthesizerTrnMs768NSFsid( *self.cpt["config"], is_half=self.config.is_half ) else: self.net_g = SynthesizerTrnMs768NSFsid_nono(*self.cpt["config"]) del self.net_g, self.cpt if torch.cuda.is_available(): torch.cuda.empty_cache() return ( {"visible": False, "__type__": "update"}, { "visible": True, "value": to_return_protect0, "__type__": "update", }, { "visible": True, "value": to_return_protect1, "__type__": "update", }, "", "", ) # person = f'{os.getenv("weight_root")}/{sid}' person = os.path.join(os.getcwd(), sid) logger.info(f"Loading: {person}") self.cpt = torch.load(person, map_location="cpu", weights_only=True) self.tgt_sr = self.cpt["config"][-1] self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0] # n_spk self.if_f0 = self.cpt.get("f0", 1) self.version = self.cpt.get("version", "v1") synthesizer_class = { ("v1", 1): SynthesizerTrnMs256NSFsid, ("v1", 0): SynthesizerTrnMs256NSFsid_nono, ("v2", 1): SynthesizerTrnMs768NSFsid, ("v2", 0): SynthesizerTrnMs768NSFsid_nono, } self.net_g = synthesizer_class.get( (self.version, self.if_f0), SynthesizerTrnMs256NSFsid )(*self.cpt["config"], is_half=self.config.is_half) del self.net_g.enc_q self.net_g.load_state_dict(self.cpt["weight"], strict=False) self.net_g.eval().to(self.config.device) if self.config.is_half: self.net_g = self.net_g.half() else: self.net_g = self.net_g.float() self.pipeline = Pipeline(self.tgt_sr, self.config) n_spk = self.cpt["config"][-3] index = {"value": get_index_path_from_model(sid), "__type__": "update"} logger.info("Select index: " + index["value"]) return ( ( {"visible": True, "maximum": n_spk, "__type__": "update"}, to_return_protect0, to_return_protect1, index, index, ) if to_return_protect else {"visible": True, "maximum": n_spk, "__type__": "update", "tgt_sr" : self.tgt_sr} ) def vc_single( self, sid, input_audio_path, f0_up_key, f0_file, f0_method, file_index, file_index2, index_rate, filter_radius, resample_sr, rms_mix_rate, protect, ): if input_audio_path is None: return "You need to upload an audio", None f0_up_key = int(f0_up_key) try: audio = load_audio(input_audio_path, 16000) audio_max = np.abs(audio).max() / 0.95 if audio_max > 1: audio /= audio_max times = [0, 0, 0] if self.hubert_model is None: self.hubert_model = load_hubert(self.config) file_index = ( ( file_index.strip(" ") .strip('"') .strip("\n") .strip('"') .strip(" ") .replace("trained", "added") ) if file_index != "" else file_index2 ) # 防止小白写错,自动帮他替换掉 audio_opt = self.pipeline.pipeline( self.hubert_model, self.net_g, sid, audio, input_audio_path, times, f0_up_key, f0_method, file_index, index_rate, self.if_f0, filter_radius, self.tgt_sr, resample_sr, rms_mix_rate, self.version, protect, f0_file, ) if self.tgt_sr != resample_sr >= 16000: tgt_sr = resample_sr else: tgt_sr = self.tgt_sr index_info = ( "Index:\n%s." % file_index if os.path.exists(file_index) else "Index not used." ) return ( "Success.\n%s\nTime:\nnpy: %.2fs, f0: %.2fs, infer: %.2fs." % (index_info, *times), (tgt_sr, audio_opt), ) except: info = traceback.format_exc() logger.warning(info) return info, (None, None) def vc_multi( self, sid, dir_path, opt_root, paths, f0_up_key, f0_method, file_index, file_index2, index_rate, filter_radius, resample_sr, rms_mix_rate, protect, format1, ): try: dir_path = ( dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ") ) # 防止小白拷路径头尾带了空格和"和回车 opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ") os.makedirs(opt_root, exist_ok=True) try: if dir_path != "": paths = [ os.path.join(dir_path, name) for name in os.listdir(dir_path) ] else: paths = [path.name for path in paths] except: traceback.print_exc() paths = [path.name for path in paths] infos = [] for path in paths: info, opt = self.vc_single( sid, path, f0_up_key, None, f0_method, file_index, file_index2, # file_big_npy, index_rate, filter_radius, resample_sr, rms_mix_rate, protect, ) if "Success" in info: try: tgt_sr, audio_opt = opt if format1 in ["wav", "flac"]: sf.write( "%s/%s.%s" % (opt_root, os.path.basename(path), format1), audio_opt, tgt_sr, ) else: path = "%s/%s.%s" % ( opt_root, os.path.basename(path), format1, ) with BytesIO() as wavf: sf.write(wavf, audio_opt, tgt_sr, format="wav") wavf.seek(0, 0) with open(path, "wb") as outf: wav2(wavf, outf, format1) except: info += traceback.format_exc() infos.append("%s->%s" % (os.path.basename(path), info)) yield "\n".join(infos) yield "\n".join(infos) except: yield traceback.format_exc() # Path: modules/rvc/infer-web.py import os, sys import logging import shutil import threading import traceback import warnings import json import pathlib import fairseq import faiss import gradio as gr import numpy as np import torch from random import shuffle from subprocess import Popen from time import sleep from dotenv import load_dotenv from sklearn.cluster import MiniBatchKMeans from configs.config import Config from i18n.i18n import I18nAuto from modules.rvc.infer.lib.train.process_ckpt import ( change_info, extract_small_model, merge, show_info, ) from modules.rvc.infer.modules.uvr5.modules import uvr from modules.rvc.infer.modules.vc.modules import VC from modules.rvc.infer.modules.onnx.export import export_onnx as eo now_dir = os.getcwd() sys.path.append(now_dir) logging.getLogger("numba").setLevel(logging.WARNING) logger = logging.getLogger(__name__) tmp = os.path.join(now_dir, "TEMP") shutil.rmtree(tmp, ignore_errors=True) shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True) shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True) os.makedirs(tmp, exist_ok=True) os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True) os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True) os.environ["TEMP"] = tmp warnings.filterwarnings("ignore") torch.manual_seed(114514) load_dotenv() config = Config() vc = VC(config) if config.dml == True:
def forward_dml(ctx, x, scale):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Lavreniuk/EVP # Path: depth/models_depth/model.py class EVPDepth(nn.Module): def __init__(self, args=None, caption_aggregation=False): super().__init__() self.max_depth = args.max_depth self.min_depth = args.min_depth_eval embed_dim = 192 channels_in = embed_dim*8 channels_out = embed_dim if args.dataset == 'nyudepthv2': self.encoder = EVPDepthEncoder(out_dim=channels_in, dataset='nyu', caption_aggregation=caption_aggregation) else: self.encoder = EVPDepthEncoder(out_dim=channels_in, dataset='kitti', caption_aggregation=caption_aggregation) self.decoder = Decoder(channels_in, channels_out, args) self.decoder.init_weights() self.mViT = False self.custom = False if not self.mViT and not self.custom: n_bins = 64 bin_embedding_dim = 128 num_out_features = [32, 32, 32, 192] min_temp = 0.0212 max_temp = 50 btlnck_features = 256 n_attractors = [16, 8, 4, 1] attractor_alpha = 1000 attractor_gamma = 2 attractor_kind = "mean" attractor_type = "inv" self.bin_centers_type = "softplus" self.bottle_neck = nn.Sequential( nn.Conv2d(channels_in, btlnck_features, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=False), nn.Conv2d(btlnck_features, btlnck_features, kernel_size=3, stride=1, padding=1)) for m in self.bottle_neck.modules(): if isinstance(m, nn.Conv2d): normal_init(m, std=0.001, bias=0) SeedBinRegressorLayer = SeedBinRegressorUnnormed Attractor = AttractorLayerUnnormed self.seed_bin_regressor = SeedBinRegressorLayer( btlnck_features, n_bins=n_bins, min_depth=self.min_depth, max_depth=self.max_depth) self.seed_projector = Projector(btlnck_features, bin_embedding_dim) self.projectors = nn.ModuleList([ Projector(num_out, bin_embedding_dim) for num_out in num_out_features ]) self.attractors = nn.ModuleList([ Attractor(bin_embedding_dim, n_bins, n_attractors=n_attractors[i], min_depth=self.min_depth, max_depth=self.max_depth, alpha=attractor_alpha, gamma=attractor_gamma, kind=attractor_kind, attractor_type=attractor_type) for i in range(len(num_out_features)) ]) last_in = 192 + 1 self.conditional_log_binomial = ConditionalLogBinomial( last_in, bin_embedding_dim, n_classes=n_bins, min_temp=min_temp, max_temp=max_temp) elif self.mViT and not self.custom: n_bins = 256 self.adaptive_bins_layer = mViT(192, n_query_channels=192, patch_size=16, dim_out=n_bins, embedding_dim=192, norm='linear') self.conv_out = nn.Sequential(nn.Conv2d(192, n_bins, kernel_size=1, stride=1, padding=0), nn.Softmax(dim=1)) def forward(self, x, class_ids=None, img_paths=None): b, c, h, w = x.shape x = x*2.0 - 1.0 # normalize to [-1, 1] if h == 480 and w == 480: new_x = torch.zeros(b, c, 512, 512, device=x.device) new_x[:, :, 0:480, 0:480] = x x = new_x elif h==352 and w==352: new_x = torch.zeros(b, c, 384, 384, device=x.device) new_x[:, :, 0:352, 0:352] = x x = new_x elif h == 512 and w == 512: pass else: print(h,w) raise NotImplementedError conv_feats = self.encoder(x, class_ids, img_paths) if h == 480 or h == 352: conv_feats = conv_feats[:, :, :-1, :-1] self.decoder.remove_hooks() out_depth, out, x_blocks = self.decoder([conv_feats]) if not self.mViT and not self.custom: x = self.bottle_neck(conv_feats) _, seed_b_centers = self.seed_bin_regressor(x) if self.bin_centers_type == 'normed' or self.bin_centers_type == 'hybrid2': b_prev = (seed_b_centers - self.min_depth) / \ (self.max_depth - self.min_depth) else: b_prev = seed_b_centers prev_b_embedding = self.seed_projector(x) for projector, attractor, x in zip(self.projectors, self.attractors, x_blocks): b_embedding = projector(x) b, b_centers = attractor( b_embedding, b_prev, prev_b_embedding, interpolate=True) b_prev = b.clone() prev_b_embedding = b_embedding.clone() rel_cond = torch.sigmoid(out_depth) * self.max_depth # concat rel depth with last. First interpolate rel depth to last size rel_cond = nn.functional.interpolate( rel_cond, size=out.shape[2:], mode='bilinear', align_corners=True) last = torch.cat([out, rel_cond], dim=1) b_embedding = nn.functional.interpolate( b_embedding, last.shape[-2:], mode='bilinear', align_corners=True) x = self.conditional_log_binomial(last, b_embedding) # Now depth value is Sum px * cx , where cx are bin_centers from the last bin tensor b_centers = nn.functional.interpolate( b_centers, x.shape[-2:], mode='bilinear', align_corners=True) out_depth = torch.sum(x * b_centers, dim=1, keepdim=True) elif self.mViT and not self.custom: bin_widths_normed, range_attention_maps = self.adaptive_bins_layer(out) out = self.conv_out(range_attention_maps) bin_widths = (self.max_depth - self.min_depth) * bin_widths_normed # .shape = N, dim_out bin_widths = nn.functional.pad(bin_widths, (1, 0), mode='constant', value=self.min_depth) bin_edges = torch.cumsum(bin_widths, dim=1) centers = 0.5 * (bin_edges[:, :-1] + bin_edges[:, 1:]) n, dout = centers.size() centers = centers.view(n, dout, 1, 1) out_depth = torch.sum(out * centers, dim=1, keepdim=True) else: out_depth = torch.sigmoid(out_depth) * self.max_depth return {'pred_d': out_depth} # Path: depth/configs/train_options.py class TrainOptions(BaseOptions): def initialize(self): parser = BaseOptions.initialize(self) # experiment configs parser.add_argument('--epochs', type=int, default=25) parser.add_argument('--max_lr', type=float, default=5e-4) parser.add_argument('--min_lr', type=float, default=3e-5) parser.add_argument('--weight_decay', type=float, default=5e-2) parser.add_argument('--layer_decay', type=float, default=0.9) parser.add_argument('--crop_h', type=int, default=448) parser.add_argument('--crop_w', type=int, default=576) parser.add_argument('--log_dir', type=str, default='./logs') # logging options parser.add_argument('--val_freq', type=int, default=1) parser.add_argument('--pro_bar', type=str2bool, default='False') parser.add_argument('--save_freq', type=int, default=1) parser.add_argument('--print_freq', type=int, default=100) parser.add_argument('--save_model', action='store_true') parser.add_argument( '--resume-from', help='the checkpoint file to resume from') parser.add_argument('--auto_resume', action='store_true') parser.add_argument('--save_result', action='store_true') return parser # Path: depth/configs/test_options.py class TestOptions(BaseOptions): def initialize(self): parser = BaseOptions.initialize(self) # experiment configs parser.add_argument('--ckpt_dir', type=str, default='./ckpt/best_model_nyu.ckpt', help='load ckpt path') parser.add_argument('--result_dir', type=str, default='./results', help='save result images into result_dir/exp_name') parser.add_argument('--crop_h', type=int, default=448) parser.add_argument('--crop_w', type=int, default=576) parser.add_argument('--save_eval_pngs', action='store_true', help='save result image into evaluation form') parser.add_argument('--save_visualize', action='store_true', help='save result image into visulized form') return parser # Path: app.py import os import sys import cv2 import numpy as np import torch import glob import utils import torchvision.transforms as transforms import torch.nn.functional as F import gradio as gr import tempfile from depth.models_depth.model import EVPDepth from models_refer.model import EVPRefer from depth.configs.train_options import TrainOptions from depth.configs.test_options import TestOptions from utils_depth.misc import colorize from PIL import Image from transformers import CLIPTokenizer sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'stable-diffusion'))) sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'taming-transformers'))) os.chdir(os.path.abspath(os.path.join(os.path.dirname(__file__), 'depth'))) css = """ #img-display-container { max-height: 50vh; } #img-display-input { max-height: 40vh; } #img-display-output { max-height: 40vh; } """ def create_depth_demo(model, device): gr.Markdown("### Depth Prediction demo") with gr.Row(): input_image = gr.Image(label="Input Image", type='pil', elem_id='img-display-input') depth_image = gr.Image(label="Depth Map", elem_id='img-display-output') raw_file = gr.File(label="16-bit raw depth, multiplier:256") submit = gr.Button("Submit") def on_submit(image): transform = transforms.ToTensor() image = transform(image).unsqueeze(0).to(device) shape = image.shape image = torch.nn.functional.interpolate(image, (440,480), mode='bilinear', align_corners=True) image = F.pad(image, (0, 0, 40, 0)) with torch.no_grad(): pred = model(image)['pred_d'] pred = pred[:,:,40:,:] pred = torch.nn.functional.interpolate(pred, shape[2:], mode='bilinear', align_corners=True) pred_d_numpy = pred.squeeze().cpu().numpy() colored_depth, _, _ = colorize(pred_d_numpy, cmap='gray_r') tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False) raw_depth = Image.fromarray((pred_d_numpy*256).astype('uint16')) raw_depth.save(tmp.name) return [colored_depth, tmp.name] submit.click(on_submit, inputs=[input_image], outputs=[depth_image, raw_file]) examples = gr.Examples(examples=["imgs/test_img1.jpg", "imgs/test_img2.jpg", "imgs/test_img3.jpg", "imgs/test_img4.jpg", "imgs/test_img5.jpg"], inputs=[input_image]) def create_refseg_demo(model, tokenizer, device): gr.Markdown("### Referring Segmentation demo") with gr.Row(): input_image = gr.Image(label="Input Image", type='pil', elem_id='img-display-input') refseg_image = gr.Image(label="Output Mask", elem_id='img-display-output') input_text = gr.Textbox(label='Prompt', placeholder='Please upload your image first', lines=2) submit = gr.Button("Submit") def on_submit(image, text): image = np.array(image) image_t = transforms.ToTensor()(image).unsqueeze(0).to(device) image_t = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])(image_t) shape = image_t.shape image_t = torch.nn.functional.interpolate(image_t, (512,512), mode='bilinear', align_corners=True) input_ids = tokenizer(text=text, truncation=True, max_length=40, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt")['input_ids'].to(device) with torch.no_grad(): pred = model(image_t, input_ids) pred = torch.nn.functional.interpolate(pred, shape[2:], mode='bilinear', align_corners=True) output_mask = pred.cpu().argmax(1).data.numpy().squeeze() alpha = 0.65 image[output_mask == 0] = (image[output_mask == 0]*alpha).astype(np.uint8) contours, _ = cv2.findContours(output_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(image, contours, -1, (0, 255, 0), 2) return Image.fromarray(image) submit.click(on_submit, inputs=[input_image, input_text], outputs=refseg_image) examples = gr.Examples(examples=[["imgs/test_img2.jpg", "green plant"], ["imgs/test_img3.jpg", "chair"], ["imgs/test_img4.jpg", "left green plant"], ["imgs/test_img5.jpg", "man walking on foot"], ["imgs/test_img5.jpg", "the rightest camel"]], inputs=[input_image, input_text]) def main(): upload_2_models = True opt = TestOptions().initialize() args = opt.parse_args() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if upload_2_models: model = EVPDepth(args=args, caption_aggregation=True) model.to(device) model_weight = torch.load('best_model_nyu.ckpt', map_location=device)['model'] model.load_state_dict(model_weight, strict=False) model.eval() tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") model_refseg = EVPRefer() model_refseg.to(device) model_weight = torch.load('best_model_refcoco.pth', map_location=device)['model'] model_refseg.load_state_dict(model_weight, strict=False) model_refseg.eval() del model_weight print('Models uploaded successfully') title = "# EVP" description = """Official demo for **EVP: Enhanced Visual Perception using Inverse Multi-Attentive Feature Refinement and Regularized Image-Text Alignment**. EVP is a deep learning model for metric depth estimation from a single image as well as referring segmentation. Please refer to our [project page](https://lavreniuk.github.io/EVP) or [paper](https://arxiv.org/abs/2312.08548) or [github](https://github.com/Lavreniuk/EVP) for more details.""" with gr.Blocks() as demo: gr.Markdown(title) gr.Markdown(description) if upload_2_models: with gr.Tab("Depth Prediction"):
create_depth_demo(model, device)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: penghao-wu/vstar # Path: VisualSearch/model/VSM.py class VSMForCausalLM(LlavaLlamaForCausalLM): def __init__( self, config, **kwargs, ): if not hasattr(config, "train_mask_decoder"): config.mm_use_im_start_end = kwargs.pop("use_mm_start_end", True) config.mm_vision_tower = kwargs.get( "vision_tower", "openai/clip-vit-large-patch14" ) self.ce_loss_weight = kwargs.pop("ce_loss_weight", None) self.dice_loss_weight = kwargs.pop("dice_loss_weight", None) self.bce_loss_weight = kwargs.pop("bce_loss_weight", None) self.det_loss_weight = kwargs.pop("det_loss_weight", None) else: config.mm_vision_tower = config.vision_tower self.loc_token_idx = kwargs.pop("loc_token_idx") super().__init__(config) self.model = VSMModel(config, **kwargs) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_visual_embs(self, pixel_values: torch.FloatTensor): with torch.no_grad(): image_embeddings = self.model.owlvit.get_visual_embs(pixel_values) return image_embeddings def forward(self, **kwargs): if "past_key_values" in kwargs: return super().forward(**kwargs) return self.model_forward(**kwargs) def model_forward( self, images: torch.FloatTensor, images_clip: torch.FloatTensor, input_ids: torch.LongTensor, labels: torch.LongTensor, attention_masks: torch.LongTensor, offset: torch.LongTensor, masks_list: List[torch.FloatTensor], label_list: List[torch.Tensor], bboxes_labels_list: List[torch.FloatTensor], bboxes_valid_list: torch.Tensor, masks_valid_list: List[torch.Tensor], resize_list: List[tuple], inference: bool = False, **kwargs, ): image_embeddings = self.get_visual_embs(images) batch_size = image_embeddings.shape[0] assert batch_size == len(offset) - 1 loc_token_mask = input_ids[:, 1:] == self.loc_token_idx loc_token_mask = torch.cat( [ loc_token_mask, torch.zeros((loc_token_mask.shape[0], 1)).bool().cuda(), ], dim=1, ) # hack for IMAGE_TOKEN_INDEX (we suppose that there is only one image, and it is in the front) loc_token_mask = torch.cat( [torch.zeros((loc_token_mask.shape[0], 255)).bool().cuda(), loc_token_mask], dim=1, ) if inference: n_batch = 1 length = input_ids.shape[0] assert images_clip.shape[0] == 1 images_clip_extend = images_clip.expand(length, -1, -1, -1).contiguous() output_hidden_states = [] for i in range(n_batch): start_i, end_i = i * length, min((i + 1) * length, input_ids.shape[0]) output_i = super().forward( images=images_clip_extend[: end_i - start_i], attention_mask=attention_masks[start_i:end_i], input_ids=input_ids[start_i:end_i], output_hidden_states=True, ) output_hidden_states.append(output_i.hidden_states) torch.cuda.empty_cache() output_hidden_states_list = [] output_hidden_states_level = torch.cat(output_hidden_states, dim=0) output_hidden_states_list.append(output_hidden_states_level) output_hidden_states = output_hidden_states_list output = None else: images_clip_list = [] for i in range(len(offset) - 1): start_i, end_i = offset[i], offset[i + 1] images_clip_i = ( images_clip[i] .unsqueeze(0) .expand(end_i - start_i, -1, -1, -1) .contiguous() ) images_clip_list.append(images_clip_i) images_clip = torch.cat(images_clip_list, dim=0) output = super().forward( images=images_clip, attention_mask=attention_masks, input_ids=input_ids, labels=labels, output_hidden_states=True, ) output_hidden_states = output.hidden_states # seg hidden_states_seg = [] assert len(self.model.text_hidden_fcs_seg) == 1 hidden_states_seg.append(self.model.text_hidden_fcs_seg[0](output_hidden_states[-1])) last_hidden_state_seg = torch.stack(hidden_states_seg, dim=-1).sum(dim=-1) # det hidden_states_det = [] assert len(self.model.text_hidden_fcs_det) == 1 hidden_states_det.append(self.model.text_hidden_fcs_det[0](output_hidden_states[-1])) last_hidden_state_det = torch.stack(hidden_states_det, dim=-1).sum(dim=-1) pred_embeddings_seg = last_hidden_state_seg[loc_token_mask] pred_embeddings_det = last_hidden_state_det[loc_token_mask] loc_token_counts = loc_token_mask.int().sum(-1) # [bs, ] loc_token_offset = loc_token_counts.cumsum(-1) loc_token_offset = torch.cat( [torch.zeros(1).long().cuda(), loc_token_offset], dim=0 ) loc_token_offset = loc_token_offset[offset] pred_embeddings_seg_ = [] for i in range(len(loc_token_offset) - 1): start_i, end_i = loc_token_offset[i], loc_token_offset[i + 1] pred_embeddings_seg_.append(pred_embeddings_seg[start_i:end_i]) pred_embeddings_seg = pred_embeddings_seg_ pred_embeddings_det_ = [] for i in range(len(loc_token_offset) - 1): start_i, end_i = loc_token_offset[i], loc_token_offset[i + 1] pred_embeddings_det_.append(pred_embeddings_det[start_i:end_i]) pred_embeddings_det = pred_embeddings_det_ # seg branch multimask_output = False pred_masks = [] for i in range(len(pred_embeddings_seg)): ( sparse_embeddings, dense_embeddings, ) = self.model.prompt_encoder( points=None, boxes=None, masks=None, text_embeds=pred_embeddings_seg[i].unsqueeze(1), ) sparse_embeddings = sparse_embeddings.to(pred_embeddings_seg[i].dtype) low_res_masks, iou_predictions = self.model.mask_decoder( image_embeddings=self.model.visual_projection(image_embeddings[i].unsqueeze(0)).permute(0, 3, 1, 2), image_pe=self.model.prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, ) pred_mask = F.interpolate( low_res_masks, label_list[i].shape, mode="bilinear", align_corners=False ) pred_masks.append(pred_mask[:, 0]) gt_masks = masks_list # det branch detection_result_batch = [] for i in range(len(pred_embeddings_det)): bs = pred_embeddings_det[i].shape[0] detection_result = self.model.owlvit(image_embeddings[i].unsqueeze(0).repeat(bs, 1, 1, 1), pred_embeddings_det[i].unsqueeze(1)) detection_result_batch.append(detection_result) pred_logits = torch.cat([detection_result['pred_logits'] for detection_result in detection_result_batch], 0) pred_boxes = torch.cat([detection_result['pred_boxes'] for detection_result in detection_result_batch], 0) if inference: return { "pred_masks": pred_masks, "gt_masks": gt_masks, "pred_logits": pred_logits, "pred_boxes": pred_boxes, "gt_bboxes": bboxes_labels_list } num_boxes = 0 for bboxes_labels, bboxes_valid in zip(bboxes_labels_list, bboxes_valid_list): if bboxes_valid: num_boxes += len(bboxes_labels) num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=image_embeddings.device) num_boxes = torch.clamp(num_boxes, min=1).item() detection_result_batch = {'pred_logits':pred_logits, 'pred_boxes':pred_boxes} target_det = [] all_bboxes_valid = [] for bboxes_label, bboxes_valid in zip(bboxes_labels_list, bboxes_valid_list): target_det.append({"labels":torch.zeros(len(bboxes_label)).to(bboxes_label.device, torch.long), "boxes":bboxes_label}) if bboxes_valid: all_bboxes_valid.append(torch.ones((min(24*24, len(bboxes_label)), 1)).to(bboxes_label.device, torch.long)) else: all_bboxes_valid.append(torch.zeros((min(24*24, len(bboxes_label)), 1)).to(bboxes_label.device, torch.long)) all_bboxes_valid = torch.cat(all_bboxes_valid, 0) loss_dict = self.model.owlvit.criterion(detection_result_batch, target_det, num_boxes) for loss_k, loss_v in loss_dict.items(): if "loss_ce" in loss_k: loss_dict[loss_k] = (loss_v*bboxes_valid_list.unsqueeze(-1)).mean() else: loss_dict[loss_k] = (loss_v*all_bboxes_valid).sum() weight_dict = self.model.owlvit.criterion.weight_dict detection_loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict) detection_loss = detection_loss*self.det_loss_weight model_output = output output = model_output.logits ce_loss = model_output.loss ce_loss = ce_loss * self.ce_loss_weight mask_bce_loss = 0 mask_dice_loss = 0 num_masks = 0 for batch_idx in range(len(pred_masks)): gt_mask = gt_masks[batch_idx] pred_mask = pred_masks[batch_idx] masks_valid = masks_valid_list[batch_idx] mask_bce_loss += ( sigmoid_ce_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0]) * gt_mask.shape[0] * masks_valid ).sum() mask_dice_loss += ( dice_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0]) * gt_mask.shape[0] * masks_valid ).sum() num_masks += masks_valid.sum() mask_bce_loss = self.bce_loss_weight * mask_bce_loss / (num_masks + 1e-8) mask_dice_loss = self.dice_loss_weight * mask_dice_loss / (num_masks + 1e-8) mask_loss = mask_bce_loss + mask_dice_loss loss = ce_loss + mask_loss + detection_loss return { "loss": loss, "ce_loss": ce_loss, "mask_bce_loss": mask_bce_loss, "mask_dice_loss": mask_dice_loss, "mask_loss": mask_loss, "detection_loss": detection_loss, "detection_loss_ce": loss_dict['loss_ce'], "detection_loss_bbox": loss_dict['loss_bbox'], "detection_loss_giou": loss_dict['loss_giou'], } def inference( self, images_clip, images, input_ids, resize_list, original_size_list, max_new_tokens=32, tokenizer=None, mode = 'vqa' ): assert mode in ['vqa', 'segmentation', 'detection'] with torch.no_grad(): outputs = self.generate( images=images_clip, input_ids=input_ids, max_new_tokens=max_new_tokens, num_beams=1, output_hidden_states=True, return_dict_in_generate=True, ) output_hidden_states = outputs.hidden_states[-1] output_ids = outputs.sequences if mode == 'vqa': return output_ids, None, None loc_token_mask = output_ids[:, 1:] == self.loc_token_idx # hack for IMAGE_TOKEN_INDEX (we suppose that there is only one image, and it is in the front) loc_token_mask = torch.cat( [ torch.zeros((loc_token_mask.shape[0], 255)).bool().cuda(), loc_token_mask, ], dim=1, ) # seg hidden_states_seg = [] assert len(self.model.text_hidden_fcs_seg) == 1 hidden_states_seg.append(self.model.text_hidden_fcs_seg[0](output_hidden_states)) last_hidden_state_seg = torch.stack(hidden_states_seg, dim=-1).sum(dim=-1) # det hidden_states_det = [] assert len(self.model.text_hidden_fcs_det) == 1 hidden_states_det.append(self.model.text_hidden_fcs_det[0](output_hidden_states)) last_hidden_state_det = torch.stack(hidden_states_det, dim=-1).sum(dim=-1) pred_embeddings_seg = last_hidden_state_seg[loc_token_mask] pred_embeddings_det = last_hidden_state_det[loc_token_mask] loc_token_counts = loc_token_mask.int().sum(-1) # [bs, ] loc_token_offset = loc_token_counts.cumsum(-1) loc_token_offset = torch.cat( [torch.zeros(1).long().cuda(), loc_token_offset], dim=0 ) pred_embeddings_seg_ = [] for i in range(len(loc_token_offset) - 1): start_i, end_i = loc_token_offset[i], loc_token_offset[i + 1] pred_embeddings_seg_.append(pred_embeddings_seg[start_i:end_i]) pred_embeddings_seg = pred_embeddings_seg_ pred_embeddings_det_ = [] for i in range(len(loc_token_offset) - 1): start_i, end_i = loc_token_offset[i], loc_token_offset[i + 1] pred_embeddings_det_.append(pred_embeddings_det[start_i:end_i]) pred_embeddings_det = pred_embeddings_det_ image_embeddings = self.get_visual_embs(images) multimask_output = False pred_masks = [] for i in range(len(pred_embeddings_seg)): ( sparse_embeddings, dense_embeddings, ) = self.model.prompt_encoder( points=None, boxes=None, masks=None, text_embeds=pred_embeddings_seg[i].unsqueeze(1), ) sparse_embeddings = sparse_embeddings.to(pred_embeddings_seg[i].dtype) low_res_masks, iou_predictions = self.model.mask_decoder( image_embeddings=self.model.visual_projection(image_embeddings[i].unsqueeze(0)).permute(0, 3, 1, 2), image_pe=self.model.prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, ) pred_mask = F.interpolate( low_res_masks.float(), original_size_list[i], mode="bilinear", align_corners=False ) pred_masks.append(pred_mask[:, 0]) if mode == 'segmentation': return None, pred_masks, None # detection model detection_result_batch = [] for i in range(len(pred_embeddings_det)): bs = pred_embeddings_det[i].shape[0] detection_result = self.model.owlvit(image_embeddings[i].unsqueeze(0).repeat(bs, 1, 1, 1), pred_embeddings_det[i].unsqueeze(1)) detection_result_batch.append(detection_result) pred_logits = torch.cat([detection_result['pred_logits'] for detection_result in detection_result_batch], 0) pred_boxes = torch.cat([detection_result['pred_boxes'] for detection_result in detection_result_batch], 0) detection_result_batch = {'pred_logits':pred_logits, 'pred_boxes':pred_boxes} return None, pred_masks, detection_result_batch # Path: VisualSearch/model/llava/conversation.py class SeparatorStyle(Enum): class Conversation: SINGLE = auto() TWO = auto() MPT = auto() PLAIN = auto() LLAMA_2 = auto() W, H = image.size H, W = longest_edge, shortest_edge H, W = shortest_edge, longest_edge W, H = image.size H, W = longest_edge, shortest_edge H, W = shortest_edge, longest_edge def get_prompt(self): def append_message(self, role, message): def get_images(self, return_pil=False): def expand2square(pil_img, background_color=(122, 116, 104)): def to_gradio_chatbot(self): def copy(self): def dict(self): # Path: VisualSearch/model/llava/mm_utils.py def tokenizer_image_token( prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None ): prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")] def insert_separator(X, sep): return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1] input_ids = [] offset = 0 if ( len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id ): offset = 1 input_ids.append(prompt_chunks[0][0]) for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): input_ids.extend(x[offset:]) if return_tensors is not None: if return_tensors == "pt": return torch.tensor(input_ids, dtype=torch.long) raise ValueError(f"Unsupported tensor type: {return_tensors}") return input_ids # Path: VisualSearch/utils/utils.py def expand2square(pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, 0)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, (0, 0)) return result # Path: VisualSearch/utils/utils.py DEFAULT_IM_END_TOKEN = "<im_end>" # Path: VisualSearch/utils/utils.py DEFAULT_IM_START_TOKEN = "<im_start>" # Path: VisualSearch/utils/utils.py DEFAULT_IMAGE_TOKEN = "<image>" # Path: VisualSearch/utils/utils.py IMAGE_TOKEN_INDEX = -200 # Path: visual_search.py import argparse import os import sys import json import tqdm import copy import functools import spacy import cv2 import numpy as np import torch import torch.nn.functional as F import cv2 from queue import PriorityQueue from PIL import Image from transformers import AutoTokenizer, CLIPImageProcessor from transformers import OwlViTProcessor from VisualSearch.model.VSM import VSMForCausalLM from VisualSearch.model.llava import conversation as conversation_lib from VisualSearch.model.llava.mm_utils import tokenizer_image_token from VisualSearch.utils.utils import expand2square from VisualSearch.utils.utils import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX) from matplotlib import pyplot as plt nlp = spacy.load("en_core_web_sm") def parse_args(args): parser = argparse.ArgumentParser(description="Visual Search Evaluation") parser.add_argument("--version", default="craigwu/seal_vsm_7b") parser.add_argument("--benchmark-folder", default="vstar_bench", type=str) parser.add_argument("--visualization", action="store_true", default=False) parser.add_argument("--output_path", default="", type=str) parser.add_argument("--confidence_low", default=0.3, type=float) parser.add_argument("--confidence_high", default=0.5, type=float) parser.add_argument("--target_cue_threshold", default=6.0, type=float) parser.add_argument("--target_cue_threshold_decay", default=0.7, type=float) parser.add_argument("--target_cue_threshold_minimum", default=3.0, type=float) parser.add_argument("--minimum_size_scale", default=4.0, type=float) parser.add_argument("--minimum_size", default=224, type=int) parser.add_argument("--model_max_length", default=512, type=int) parser.add_argument( "--vision-tower", default="openai/clip-vit-large-patch14", type=str ) parser.add_argument("--use_mm_start_end", action="store_true", default=True) parser.add_argument( "--conv_type", default="llava_v1", type=str, choices=["llava_v1", "llava_llama_2"], ) return parser.parse_args(args) def tranverse(token): children = [_ for _ in token.children] if len(children) == 0: return token.i, token.i left_i = token.i right_i = token.i for child in children: child_left_i, child_right_i = tranverse(child) left_i = min(left_i, child_left_i) right_i = max(right_i, child_right_i) return left_i, right_i def get_noun_chunks(token): left_children = [] right_children = [] for child in token.children: if child.i < token.i: left_children.append(child) else: right_children.append(child) start_token_i = token.i for left_child in left_children[::-1]: if left_child.dep_ in ['amod', 'compound', 'poss']: start_token_i, _ = tranverse(left_child) else: break end_token_i = token.i for right_child in right_children: if right_child.dep_ in ['relcl', 'prep']: _, end_token_i = tranverse(right_child) else: break return start_token_i, end_token_i def filter_chunk_list(chunks): def overlap(min1, max1, min2, max2): return min(max1, max2) - max(min1, min2) chunks = sorted(chunks, key=lambda chunk: chunk[1]-chunk[0], reverse=True) filtered_chunks = [] for chunk in chunks: flag=True for exist_chunk in filtered_chunks: if overlap(exist_chunk[0], exist_chunk[1], chunk[0], chunk[1]) >= 0: flag = False break if flag:
filtered_chunks.append(chunk)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: worm128/AI-YinMei # Path: text-generation-webui/extensions/superboogav2/utils.py def create_metadata_source(source: str): return {'source': source} # Path: text-generation-webui/extensions/superboogav2/chromadb.py def make_collector(): return ChromaCollector(SentenceTransformerEmbedder()) # Path: text-generation-webui/extensions/superboogav2/download_urls.py def feed_url_into_collector(urls, collector): all_text = '' cumulative = '' urls = urls.strip().split('\n') cumulative += f'Loading {len(urls)} URLs with {parameters.get_num_threads()} threads...\n\n' yield cumulative for update, contents in _download_urls(urls, threads=parameters.get_num_threads()): yield cumulative + update cumulative += 'Processing the HTML sources...' yield cumulative for content in contents: soup = BeautifulSoup(content, features="lxml") for script in soup(["script", "style"]): script.extract() strings = soup.stripped_strings if parameters.get_is_strong_cleanup(): strings = [s for s in strings if re.search("[A-Za-z] ", s)] text = '\n'.join([s.strip() for s in strings]) all_text += text process_and_add_to_collector(all_text, collector, False, create_metadata_source('url-download')) # Path: text-generation-webui/extensions/superboogav2/data_processor.py def process_and_add_to_collector(corpus: str, collector: ChromaCollector, clear_collector_before_adding: bool, metadata: dict): # Defining variables chunk_lens = [int(len.strip()) for len in parameters.get_chunk_len().split(',')] context_len = [int(len.strip()) for len in parameters.get_context_len().split(',')] if len(context_len) >= 3: raise f"Context len has too many values: {len(context_len)}" if len(context_len) == 2: context_left = context_len[0] context_right = context_len[1] else: context_left = context_right = context_len[0] data_chunks = [] data_chunks_with_context = [] data_chunk_starting_indices = [] # Handling chunk_regex if parameters.get_chunk_regex(): if parameters.get_chunk_separator(): cumulative_length = 0 # This variable will store the length of the processed corpus sections = corpus.split(parameters.get_chunk_separator()) for section in sections: special_chunks = list(re.finditer(parameters.get_chunk_regex(), section)) for match in special_chunks: chunk = match.group(0) start_index = match.start() end_index = start_index + len(chunk) context = section[max(0, start_index - context_left):min(len(section), end_index + context_right)] data_chunks.append(chunk) data_chunks_with_context.append(context) data_chunk_starting_indices.append(cumulative_length + max(0, start_index - context_left)) cumulative_length += len(section) + len(parameters.get_chunk_separator()) # Update the length of the processed corpus else: special_chunks = list(re.finditer(parameters.get_chunk_regex(), corpus)) for match in special_chunks: chunk = match.group(0) start_index = match.start() end_index = start_index + len(chunk) context = corpus[max(0, start_index - context_left):min(len(corpus), end_index + context_right)] data_chunks.append(chunk) data_chunks_with_context.append(context) data_chunk_starting_indices.append(max(0, start_index - context_left)) for chunk_len in chunk_lens: # Breaking the data into chunks and adding those to the db if parameters.get_chunk_separator(): cumulative_length = 0 # This variable will store the length of the processed corpus sections = corpus.split(parameters.get_chunk_separator()) for section in sections: chunks, chunks_with_context, context_start_indices = _create_chunks_with_context(section, chunk_len, context_left, context_right) context_start_indices = [cumulative_length + i for i in context_start_indices] # Add the length of the processed corpus to each start index data_chunks.extend(chunks) data_chunks_with_context.extend(chunks_with_context) data_chunk_starting_indices.extend(context_start_indices) cumulative_length += len(section) + len(parameters.get_chunk_separator()) # Update the length of the processed corpus else: chunks, chunks_with_context, context_start_indices = _create_chunks_with_context(corpus, chunk_len, context_left, context_right) data_chunks.extend(chunks) data_chunks_with_context.extend(chunks_with_context) data_chunk_starting_indices.extend(context_start_indices) data_chunks = [preprocess_text_no_summary(chunk) for chunk in data_chunks] data_chunks, data_chunks_with_context, data_chunk_starting_indices = _clear_chunks( data_chunks, data_chunks_with_context, data_chunk_starting_indices ) if clear_collector_before_adding: collector.clear() collector.add(data_chunks, data_chunks_with_context, data_chunk_starting_indices, [metadata]*len(data_chunks) if metadata is not None else None) # Path: text-generation-webui/extensions/superboogav2/benchmark.py def benchmark(config_path, collector): # Get the current system date sysdate = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"benchmark_{sysdate}.txt" # Open the log file in append mode with open(filename, 'a') as log: with open(config_path, 'r') as f: data = json.load(f) total_points = 0 max_points = 0 for item in data: filepath = item["text"] corpus = "" # Check if the file exists if os.path.isfile(Path(filepath)): # Open the file and read its content with open(Path(filepath), 'r') as file: corpus = file.read() process_and_add_to_collector(corpus, collector, True, create_metadata_source('benchmark')) else: raise f'Cannot find specified file {filepath}.' for question_group in item["questions"]: question_variants = question_group["question_variants"] criteria = question_group["criteria"] for q in question_variants: max_points += len(criteria) processed_text = preprocess_text(q) # Get the most similar chunks results = collector.get_sorted_by_dist(processed_text, n_results=get_chunk_count(), max_token_count=get_max_token_count()) points = 0 for c in criteria: for p in results: if c in p: points += 1 total_points += 1 break info = f"The question '{q}' scored {points}/{len(criteria)} points." print(info, file=log) print('\n---\n', file=log) print(f'##Total points:\n\n{total_points}/{max_points}', file=log) return total_points, max_points # Path: text-generation-webui/extensions/superboogav2/optimize.py def optimize(collector, progress=gr.Progress()): # Inform the user that something is happening. progress(0, desc=f'Setting Up...') # Track the current step current_step = 0 # Track the best score best_score = 0 # Dictionary for caching scores scores_cache = {} def objective_function(trial): nonlocal current_step nonlocal best_score nonlocal scores_cache params = {} for key, val in Parameters.getInstance().hyperparameters.items(): if _is_optimization_param(val): params[key] = trial.suggest_categorical(key, val['categories']) _set_hyperparameters(params) params_hash = _get_params_hash(params) # If the score for these parameters is in the cache, return it if params_hash in scores_cache: return scores_cache[params_hash] # Benchmark the current set of parameters. score, max_score = benchmark(Path("extensions/superboogav2/benchmark_texts/questions.json"), collector) # Cache the score scores_cache[params_hash] = score result = json.dumps(_convert_np_types(params), indent=4) result += f'\nScore: {score}/{max_score}' logger.debug(result) # Increment the current step current_step += 1 # Update the best score best_score = max(best_score, score) # Update the progress progress(current_step / parameters.get_optimization_steps(), desc=f'Optimizing... {current_step}/{parameters.get_optimization_steps()}') return -score # Run the optimization. study = optuna.create_study() study.optimize(objective_function, n_trials=int(parameters.get_optimization_steps())) best_params = study.best_params _set_hyperparameters(best_params) # Convert results to a markdown string. str_result = f"## Best parameters:\n\n{_markdown_hyperparams()}\n\n## Score:\n\n{best_score}" # Save to JSON file with open('best_params.json', 'w') as fp: json.dump(_convert_np_types(best_params), fp, indent=4) return str_result # Path: text-generation-webui/extensions/superboogav2/notebook_handler.py def input_modifier_internal(string, collector): # Sanity check. if shared.is_chat(): return string # Find the user input pattern = re.compile(r"<\|begin-user-input\|>(.*?)<\|end-user-input\|>", re.DOTALL) match = re.search(pattern, string) if match: # Preprocess the user prompt. user_input = match.group(1).strip() user_input = preprocess_text(user_input) logger.debug(f"Preprocessed User Input: {user_input}") # Get the most similar chunks results = collector.get_sorted_by_dist(user_input, n_results=parameters.get_chunk_count(), max_token_count=int(parameters.get_max_token_count())) # Make the injection string = string.replace('<|injection-point|>', create_context_text(results)) return _remove_special_tokens(string) # Path: text-generation-webui/extensions/superboogav2/chat_handler.py def custom_generate_chat_prompt_internal(user_input: str, state: dict, collector: ChromaCollector, **kwargs): if parameters.get_add_chat_to_data(): # Get the whole history as one string history_as_text = _concatinate_history(kwargs['history'], state) if history_as_text: # Delete all documents that were auto-inserted collector.delete(ids_to_delete=None, where=CHAT_METADATA) # Insert the processed history process_and_add_to_collector(history_as_text, collector, False, CHAT_METADATA) if _should_query(user_input): user_input = _remove_tag_if_necessary(user_input) results = collector.get_sorted_by_dist(user_input, n_results=parameters.get_chunk_count(), max_token_count=int(parameters.get_max_token_count())) # Check if the strategy is to modify the last message. If so, prepend or append to the user query. if parameters.get_injection_strategy() == parameters.APPEND_TO_LAST: user_input = user_input + create_context_text(results) elif parameters.get_injection_strategy() == parameters.PREPEND_TO_LAST: user_input = create_context_text(results) + user_input elif parameters.get_injection_strategy() == parameters.HIJACK_LAST_IN_CONTEXT: _hijack_last(create_context_text(results), kwargs['history'], state['truncation_length'], state) return chat.generate_chat_prompt(user_input, state, **kwargs) # Path: text-generation-webui/extensions/superboogav2/api.py class APIManager: def __init__(self, collector: ChromaCollector): self.server = None self.collector = collector self.is_running = False def start_server(self, port: int): if self.server is not None: print("Server already running.") return address = '0.0.0.0' if shared.args.listen else '127.0.0.1' self.server = CustomThreadingHTTPServer((address, port), Handler, self.collector) logger.info(f'Starting chromaDB API at http://{address}:{port}/api') Thread(target=self.server.serve_forever, daemon=True).start() self.is_running = True def stop_server(self): if self.server is not None: logger.info(f'Stopping chromaDB API.') self.server.shutdown() self.server.server_close() self.server = None self.is_running = False def is_server_running(self): return self.is_running # Path: text-generation-webui/extensions/superboogav2/script.py import os import textwrap import codecs import gradio as gr import extensions.superboogav2.parameters as parameters from pathlib import Path from modules.logging_colors import logger from modules import shared from .utils import create_metadata_source from .chromadb import make_collector from .download_urls import feed_url_into_collector from .data_processor import process_and_add_to_collector from .benchmark import benchmark from .optimize import optimize from .notebook_handler import input_modifier_internal from .chat_handler import custom_generate_chat_prompt_internal from .api import APIManager parameters.get_delta_start(), parameters.get_min_num_length(), parameters.get_num_conversion_strategy(), preprocess_pipeline, parameters.get_chunk_count(), parameters.get_context_len(), parameters.get_chunk_len() ] def _apply_settings(optimization_steps, time_power, time_steepness, significant_level, min_sentences, new_dist_strat, delta_start, min_number_length, num_conversion, preprocess_pipeline, api_port, api_on, injection_strategy, add_chat_to_data, manual, postfix, data_separator, prefix, max_token_count, chunk_count, chunk_sep, context_len, chunk_regex, chunk_len, threads, strong_cleanup): logger.debug('Applying settings.') try: parameters.set_optimization_steps(optimization_steps) parameters.set_significant_level(significant_level) parameters.set_min_num_sentences(min_sentences) parameters.set_new_dist_strategy(new_dist_strat) parameters.set_delta_start(delta_start) parameters.set_min_num_length(min_number_length) parameters.set_num_conversion_strategy(num_conversion) parameters.set_api_port(api_port) parameters.set_api_on(api_on) parameters.set_injection_strategy(injection_strategy) parameters.set_add_chat_to_data(add_chat_to_data) parameters.set_manual(manual) parameters.set_postfix(codecs.decode(postfix, 'unicode_escape')) parameters.set_data_separator(codecs.decode(data_separator, 'unicode_escape')) parameters.set_prefix(codecs.decode(prefix, 'unicode_escape')) parameters.set_max_token_count(max_token_count) parameters.set_time_power(time_power) parameters.set_time_steepness(time_steepness) parameters.set_chunk_count(chunk_count) parameters.set_chunk_separator(codecs.decode(chunk_sep, 'unicode_escape')) parameters.set_context_len(context_len) parameters.set_chunk_regex(chunk_regex) parameters.set_chunk_len(chunk_len) parameters.set_num_threads(threads) parameters.set_strong_cleanup(strong_cleanup) preprocess_choices = ['Lower Cases', 'Remove Punctuation', 'Remove Adverbs', 'Remove Stop Words', 'Lemmatize', 'Merge Spaces', 'Strip Edges'] for preprocess_method in preprocess_choices: if preprocess_method == 'Lower Cases': parameters.set_to_lower(preprocess_method in preprocess_pipeline) elif preprocess_method == 'Remove Punctuation': parameters.set_remove_punctuation(preprocess_method in preprocess_pipeline) elif preprocess_method == 'Remove Adverbs': parameters.set_remove_specific_pos(preprocess_method in preprocess_pipeline) elif preprocess_method == 'Remove Stop Words': parameters.set_remove_stopwords(preprocess_method in preprocess_pipeline) elif preprocess_method == 'Lemmatize': parameters.set_lemmatize(preprocess_method in preprocess_pipeline) elif preprocess_method == 'Merge Spaces': parameters.set_merge_spaces(preprocess_method in preprocess_pipeline) elif preprocess_method == 'Strip Edges': parameters.set_strip(preprocess_method in preprocess_pipeline) # Based on API on/off, start or stop the server if api_manager is not None: if parameters.get_api_on() and (not api_manager.is_server_running()): api_manager.start_server(parameters.get_api_port()) elif (not parameters.get_api_on()) and api_manager.is_server_running(): api_manager.stop_server() except Exception as e: logger.warn(f'Could not properly apply settings: {str(e)}') def custom_generate_chat_prompt(user_input, state, **kwargs): return custom_generate_chat_prompt_internal(user_input, state, collector, **kwargs) def input_modifier(string): return input_modifier_internal(string, collector) def ui(): with gr.Accordion("Click for more information...", open=False): gr.Markdown(textwrap.dedent(""" ## About This extension takes a dataset as input, breaks it into chunks, and adds the result to a local/offline Chroma database. The database is then queried during inference time to get the excerpts that are closest to your input. The idea is to create an arbitrarily large pseudo context. The core methodology was developed and contributed by kaiokendev, who is working on improvements to the method in this repository: https://github.com/kaiokendev/superbig ## Data input Start by entering some data in the interface below and then clicking on "Load data". Each time you load some new data, the old chunks are discarded. ## Chat mode #### Instruct On each turn, the chunks will be compared to your current input and the most relevant matches will be appended to the input in the following format: ``` Consider the excerpts below as additional context: ... ``` The injection doesn't make it into the chat history. It is only used in the current generation. #### Regular chat The chunks from the external data sources are ignored, and the chroma database is built based on the chat history instead. The most relevant past exchanges relative to the present input are added to the context string. This way, the extension acts as a long term memory. ## Notebook/default modes Your question must be manually specified between `<|begin-user-input|>` and `<|end-user-input|>` tags, and the injection point must be specified with `<|injection-point|>`. The special tokens mentioned above (`<|begin-user-input|>`, `<|end-user-input|>`, and `<|injection-point|>`) are removed in the background before the text generation begins. Here is an example in Vicuna 1.1 format:
```
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: sinoyou/nelf-pro # Path: nerfstudio/field_components/mlp.py class MLP(FieldComponent): """Multilayer perceptron Args: in_dim: Input layer dimension num_layers: Number of network layers layer_width: Width of each MLP layer out_dim: Ouput layer dimension. Uses layer_width if None. activation: intermediate layer activation function. out_activation: output activation function. """ def __init__( self, in_dim: int, num_layers: int, layer_width: int, out_dim: Optional[int] = None, skip_connections: Optional[Tuple[int]] = None, activation: Optional[nn.Module] = nn.ReLU(), out_activation: Optional[nn.Module] = None, ) -> None: super().__init__() self.in_dim = in_dim assert self.in_dim > 0 self.out_dim = out_dim if out_dim is not None else layer_width self.num_layers = num_layers self.layer_width = layer_width self.skip_connections = skip_connections self._skip_connections: Set[int] = set(skip_connections) if skip_connections else set() self.activation = activation self.out_activation = out_activation self.net = None self.build_nn_modules() def build_nn_modules(self) -> None: """Initialize multi-layer perceptron.""" layers = [] if self.num_layers == 1: layers.append(nn.Linear(self.in_dim, self.out_dim)) else: for i in range(self.num_layers - 1): if i == 0: assert i not in self._skip_connections, "Skip connection at layer 0 doesn't make sense." layers.append(nn.Linear(self.in_dim, self.layer_width)) elif i in self._skip_connections: layers.append(nn.Linear(self.layer_width + self.in_dim, self.layer_width)) else: layers.append(nn.Linear(self.layer_width, self.layer_width)) layers.append(nn.Linear(self.layer_width, self.out_dim)) self.layers = nn.ModuleList(layers) def forward(self, in_tensor: TensorType["bs":..., "in_dim"]) -> TensorType["bs":..., "out_dim"]: """Process input with a multilayer perceptron. Args: in_tensor: Network input Returns: MLP network output """ x = in_tensor for i, layer in enumerate(self.layers): # as checked in `build_nn_modules`, 0 should not be in `_skip_connections` if i in self._skip_connections: x = torch.cat([in_tensor, x], -1) x = layer(x) if self.activation is not None and i < len(self.layers) - 1: x = self.activation(x) if self.out_activation is not None: x = self.out_activation(x) return x # Path: nerfstudio/field_components/embedding.py class Embedding(FieldComponent): """Index into embeddings. # TODO: add different types of initializations Args: in_dim: Number of embeddings out_dim: Dimension of the embedding vectors """ def __init__(self, in_dim: int, out_dim: int) -> None: super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.build_nn_modules() def build_nn_modules(self) -> None: self.embedding = torch.nn.Embedding(self.in_dim, self.out_dim) def mean(self, dim=0): """Return the mean of the embedding weights along a dim.""" return self.embedding.weight.mean(dim) def forward(self, in_tensor: TensorType[..., "input_dim"]) -> TensorType[..., "output_dim"]: """Call forward Args: in_tensor: input tensor to process """ return self.embedding(in_tensor) # Path: nerfstudio/field_components/activations.py class _TruncExp(Function): # pylint: disable=abstract-method def forward(ctx, x): # pylint: disable=arguments-differ def backward(ctx, g): # pylint: disable=arguments-differ # Path: nerfstudio/fields/base_field.py class Field(nn.Module): """Base class for fields.""" def __init__(self) -> None: super().__init__() self._sample_locations = None self._density_before_activation = None def density_fn(self, positions: TensorType["bs":..., 3]) -> TensorType["bs":..., 1]: """Returns only the density. Used primarily with the density grid. Args: positions: the origin of the samples/frustums """ # Need to figure out a better way to descibe positions with a ray. if isinstance(positions, RaySamples): ray_samples = positions else: ray_samples = RaySamples( frustums=Frustums( origins=positions, directions=torch.ones_like(positions), starts=torch.zeros_like(positions[..., :1]), ends=torch.zeros_like(positions[..., :1]), pixel_area=torch.ones_like(positions[..., :1]), ) ) density, _ = self.get_density(ray_samples) return density @abstractmethod def get_density(self, ray_samples: RaySamples) -> Tuple[TensorType[..., 1], Union[TensorType[..., "num_features"], Dict]]: """Computes and returns the densities. Returns a tensor of densities and a tensor of features. Args: ray_samples: Samples locations to compute density. """ @abstractmethod def get_outputs( self, ray_samples: RaySamples, density_embedding: Optional[Union[TensorType, Dict]] = None ) -> Dict[str, TensorType]: """Computes and returns the colors. Returns output field values. Args: ray_samples: Samples locations to compute outputs. density_embedding: Density embeddings to condition on. """ def forward(self, ray_samples: RaySamples): """Evaluates the field at points along the ray. Args: ray_samples: Samples to evaluate field on. """ density, density_embedding = self.get_density(ray_samples) field_outputs = self.get_outputs(ray_samples, density_embedding=density_embedding) field_outputs['density'] = density # type: ignore return field_outputs # Path: nerfstudio/field_components/factor_field.py class FactorField(nn.Module): ''' This field is on CUDA device and directly used in the computation graph. ''' @staticmethod def factory(total_num: int, feat_dim: int, size: tuple): CONSOLE.log(f'using CUDA fields for factors. ') return CUDAField(total_num, feat_dim, size) def register_optimizer_params(self, optimizer: torch.optim.Optimizer): pass @abstractmethod def upsample(self, target_size: tuple): pass def forward(self): raise NotImplementedError('this is not called, only for inheritance. ') @abstractmethod def load(self, path: str): raise NotImplementedError('load method not implemented. ') @abstractmethod def save(self, path: str): raise NotImplementedError('save method not implemented. ') @abstractmethod def grid_sample(self, x, y, camera_indices, **kwargs): pass @abstractmethod def get_cuda_fields(self): pass def save_cpu_fields(self, step: int, checkpoint_dir: Path, name: str): pass def load_cpu_fields(self, step: int, checkpoint_dir: Path, name: str): pass @abstractmethod def check_field_number_consistency(self, probe_num: int): pass # Path: nerfstudio/field_components/factor_field.py def sample_basis_factor_features( num_near_basis: int, field: FactorField, probes: Probes, positions: torch.Tensor, camera_indices: torch.Tensor, freq_theta: float, freq_phi: float ): ''' Get factor features from the basis factor fields via bilinear interpolation sampling. ''' index_near_basis, pos_near_basis = probes.get_nearby_basis_index_and_pos(camera_indices[:, 0], num_near_basis) # (N_rays, num_near), (N_rays, num_near_basis, 3) index_near_basis = index_near_basis.unsqueeze(dim=1).repeat(1, positions.shape[1], 1) # compute theta and phi displacement = positions[:, :, None, :] - pos_near_basis[:, None, :, :] # (N_rays, N_samples, num_near_basis, 3) direction = F.normalize(displacement, dim=-1, eps=1e-6) theta = torch.acos(direction[..., 2]) # [0, pi] phi = torch.atan2(direction[..., 1], direction[..., 0]) # frequency warping and rescaling theta = apply_theta_wraping(theta, freq_theta) phi = apply_phi_wraping(phi, freq_phi) theta = rescale(theta, 0, np.pi, -1, 1) phi = rescale(phi, -np.pi, np.pi, -1, 1) # sample features features = field.grid_sample(phi, theta, index_near_basis, align_corners=True, mode='bilinear', padding_mode='zeros') # N_rays, N_samples, num_near_basis, feat_dim ret = {} ret['features'] = features return ret # Path: nerfstudio/field_components/factor_field.py def sample_core_factor_features( num_near_core: int, field_angular: FactorField, field_radial: FactorField, probes: Probes, positions: torch.Tensor, camera_indices: torch.Tensor, return_combined: bool = True, ): ''' Get factor features from the core factor fields via bilinear interpolation sampling. ''' index_near_core, pos_near_core = probes.get_nearby_core_index_and_pos(camera_indices[:, 0], num_near_core) # (N_rays, num_near_core), (N_rays, num_near_core, 3) index_near_core = index_near_core.unsqueeze(dim=1).repeat(1, positions.shape[1], 1) # compute theta, phi and t displacement = positions[:, :, None, :] - pos_near_core[:, None, :, :] # (N_rays, N_samples, num_near_core, 3) direction = F.normalize(displacement, dim=-1) theta = torch.acos(direction[..., 2]) phi = torch.atan2(direction[..., 1], direction[..., 0]) t = torch.norm(displacement, dim=-1) # rescaling theta = rescale(theta, 0, np.pi, -1, 1) phi = rescale(phi, -np.pi, np.pi, -1, 1) t = disparity_warping(t) * 2 - 1.0 # z-axis, range (-1, 1) t = t.clamp(-1.0, 1.0) angular_features = field_angular.grid_sample(x=phi, y=theta, camera_indices=index_near_core, mode='bilinear', padding_mode='zeros', align_corners=True) # N_rays, N_samples, num_near_core, feat_dim center = torch.zeros_like(phi, device=phi.device) radial_features = field_radial.grid_sample(x=t, y=center, camera_indices=index_near_core, mode='bilinear', padding_mode='zeros', align_corners=True) # N_rays, N_samples, num_near_core, feat_dim core_features = angular_features * radial_features ret = {} if return_combined: ret['features'] = core_features else: ret['angular_features'] = angular_features ret['radial_features'] = radial_features return ret # Path: nerfstudio/field_components/rsh.py def rsh_cart_3(xyz: torch.Tensor): """Computes all real spherical harmonics up to degree 3. This is an autogenerated method. See https://github.com/cheind/torch-spherical-harmonics for more information. Params: xyz: (N,...,3) tensor of points on the unit sphere Returns: rsh: (N,...,16) real spherical harmonics projections of input. Ynm is found at index `n*(n+1) + m`, with `0 <= n <= degree` and `-n <= m <= n`. """ x = xyz[..., 0] y = xyz[..., 1] z = xyz[..., 2] x2 = x**2 y2 = y**2 z2 = z**2 xy = x * y xz = x * z yz = y * z return torch.stack( [ xyz.new_tensor(0.282094791773878).expand(xyz.shape[:-1]), -0.48860251190292 * y, 0.48860251190292 * z, -0.48860251190292 * x, 1.09254843059208 * xy, -1.09254843059208 * yz, 0.94617469575756 * z2 - 0.31539156525252, -1.09254843059208 * xz, 0.54627421529604 * x2 - 0.54627421529604 * y2, -0.590043589926644 * y * (3.0 * x2 - y2), 2.89061144264055 * xy * z, 0.304697199642977 * y * (1.5 - 7.5 * z2), 1.24392110863372 * z * (1.5 * z2 - 0.5) - 0.497568443453487 * z, 0.304697199642977 * x * (1.5 - 7.5 * z2), 1.44530572132028 * z * (x2 - y2), -0.590043589926644 * x * (x2 - 3.0 * y2), ], -1, ) # Path: nerfstudio/cameras/rays.py class RaySamples(TensorDataclass): """Samples along a ray""" frustums: Frustums """Frustums along ray.""" camera_indices: Optional[TensorType["bs":..., 1]] = None """Camera index.""" deltas: Optional[TensorType["bs":..., 1]] = None """"width" of each sample.""" spacing_starts: Optional[TensorType["bs":..., "num_samples", 1]] = None """Start of normalized bin edges along ray [0,1], before warping is applied, ie. linear in disparity sampling.""" spacing_ends: Optional[TensorType["bs":..., "num_samples", 1]] = None """Start of normalized bin edges along ray [0,1], before warping is applied, ie. linear in disparity sampling.""" spacing_to_euclidean_fn: Optional[Callable] = None """Function to convert bins to euclidean distance.""" metadata: Optional[Dict[str, TensorType["bs":..., "latent_dims"]]] = None """addtional information relevant to generating ray samples""" times: Optional[TensorType[..., 1]] = None """Times at which rays are sampled""" probes: Optional[Probes] = None """Probe Object. This object doesn't follow the same shape pattern as the other fields. Lazy broadcasting is used for preventing CUDA memory overflow. """ def get_weights(self, densities: TensorType[..., "num_samples", 1]) -> TensorType[..., "num_samples", 1]: """Return weights based on predicted densities Args: densities: Predicted densities for samples along ray Returns: Weights for each sample """ delta_density = self.deltas * densities alphas = 1 - torch.exp(-delta_density) transmittance = torch.cumsum(delta_density[..., :-1, :], dim=-2) transmittance = torch.cat( [torch.zeros((*transmittance.shape[:1], 1, 1), device=densities.device), transmittance], dim=-2 ) transmittance = torch.exp(-transmittance) # [..., "num_samples"] weights = alphas * transmittance # [..., "num_samples"] return weights def get_weights_and_transmittance( self, densities: TensorType[..., "num_samples", 1] ) -> Tuple[TensorType[..., "num_samples", 1], TensorType[..., "num_samples", 1]]: """Return weights and transmittance based on predicted densities Args: densities: Predicted densities for samples along ray Returns: Weights and transmittance for each sample """ delta_density = self.deltas * densities alphas = 1 - torch.exp(-delta_density) transmittance = torch.cumsum(delta_density[..., :-1, :], dim=-2) transmittance = torch.cat( [torch.zeros((*transmittance.shape[:1], 1, 1), device=densities.device), transmittance], dim=-2 ) transmittance = torch.exp(-transmittance) # [..., "num_samples"] weights = alphas * transmittance # [..., "num_samples"] return weights, transmittance def get_weights_from_alphas(self, alphas: TensorType[..., "num_samples", 1]) -> TensorType[..., "num_samples", 1]: """Return weights based on predicted alphas Args: alphas: Predicted alphas (maybe from sdf) for samples along ray Returns: Weights for each sample """ transmittance = torch.cumprod( torch.cat([torch.ones((*alphas.shape[:1], 1, 1), device=alphas.device), 1.0 - alphas + 1e-7], 1), 1 ) # [..., "num_samples"] weights = alphas * transmittance[:, :-1, :] # [..., "num_samples"] return weights def get_weights_and_transmittance_from_alphas( self, alphas: TensorType[..., "num_samples", 1] ) -> TensorType[..., "num_samples", 1]: """Return weights based on predicted alphas Args: alphas: Predicted alphas (maybe from sdf) for samples along ray Returns: Weights for each sample """ transmittance = torch.cumprod( torch.cat([torch.ones((*alphas.shape[:1], 1, 1), device=alphas.device), 1.0 - alphas + 1e-7], 1), 1 ) # [..., "num_samples"] weights = alphas * transmittance[:, :-1, :] # [..., "num_samples"] return weights, transmittance # Path: nerfstudio/fields/nelfpro_field.py from rich.progress import Console from typing import Dict, Optional, Union from torch import nn from torchtyping import TensorType from nerfstudio.field_components.mlp import MLP from nerfstudio.field_components.embedding import Embedding from nerfstudio.field_components.activations import trunc_exp from nerfstudio.fields.base_field import Field from nerfstudio.field_components.factor_field import ( FactorField, sample_basis_factor_features, sample_core_factor_features, ) from nerfstudio.field_components.rsh import rsh_cart_3 from nerfstudio.cameras.rays import RaySamples import torch CONSOLE = Console(width=120) class NeLFProField(Field): def __init__( self, num_images, num_basis: int, near_basis: int, dim_basis: int, resolution_basis: int, num_core: int, near_core: int, dim_core: int, resolution_core_angular: int, resolution_core_radial: int, freq_theta: int, freq_phi: int, use_appearance_embedding: bool, apperance_embedding_dim: int = 16, num_layers_geometry: int = 2, hidden_dim_geometry: int = 128, geo_feat_dim: int = 31, num_layers_color: int = 3, hidden_dim_color: int = 64, ): super().__init__() # config for basis factor self.num_basis = num_basis self.near_basis = near_basis self.dim_basis = dim_basis self.resolution_basis = resolution_basis # config for core factor self.num_core = num_core self.near_core = near_core self.dim_core = dim_core self.resolution_core_angular = resolution_core_angular self.resolution_core_radial = resolution_core_radial # config for geometry and color mlps self.num_layers_geometry = num_layers_geometry self.hidden_dim_geometry = hidden_dim_geometry self.geo_feat_dim = geo_feat_dim self.num_layers_color = num_layers_color self.hidden_dim_color = hidden_dim_color # config for frequency warping on basis factor fields self.freq_theta = freq_theta self.freq_phi = freq_phi # config for apperance warping self.use_appearance_embedding = use_appearance_embedding self.num_images = num_images self.field_basis = FactorField.factory( total_num = self.num_basis, feat_dim = self.dim_basis, size = (self.resolution_basis, self.resolution_basis * 2), ) self.field_core_angular = FactorField.factory( total_num = self.num_core, feat_dim = self.dim_core, size = (self.resolution_core_angular, self.resolution_core_angular * 2), ) self.field_core_radial = FactorField.factory(
total_num = self.num_core,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: CosmicLaca/ComfyUI_Primere_Nodes # Path: Nodes/modules/latent_noise.py class PowerLawNoise(nn.Module): def __init__(self, device='cpu'): super(PowerLawNoise, self).__init__() self.device = device @staticmethod def get_noise_types(): return ["white", "blue", "brownian_fractal", "violet"] def get_generator(self, noise_type): if noise_type in self.get_noise_types(): if noise_type == "white": return self.white_noise elif noise_type == "blue": return self.blue_noise elif noise_type == "violet": return self.violet_noise elif noise_type == "brownian_fractal": return self.brownian_fractal_noise else: raise ValueError(f"`noise_type` is invalid. Valid types are {', '.join(self.get_noise_types())}") def set_seed(self, seed): if seed is not None: torch.manual_seed(seed) def white_noise(self, batch_size, width, height, scale, seed, alpha=0.0, **kwargs): self.set_seed(seed) scale = scale noise_real = torch.randn((batch_size, 1, height, width), device=self.device) noise_power_law = torch.sign(noise_real) * torch.abs(noise_real) ** alpha noise_power_law *= scale return noise_power_law.to(self.device) def blue_noise(self, batch_size, width, height, scale, seed, alpha=2.0, **kwargs): self.set_seed(seed) noise = torch.randn(batch_size, 1, height, width, device=self.device) freq_x = fft.fftfreq(width, 1.0) freq_y = fft.fftfreq(height, 1.0) Fx, Fy = torch.meshgrid(freq_x, freq_y, indexing="ij") power = (Fx**2 + Fy**2)**(alpha / 2.0) power[0, 0] = 1.0 power = power.unsqueeze(0).expand(batch_size, 1, width, height).permute(0, 1, 3, 2).to(device=self.device) noise_fft = fft.fftn(noise) power = power.to(noise_fft) noise_fft = noise_fft / torch.sqrt(power) noise_real = fft.ifftn(noise_fft).real noise_real = noise_real - noise_real.min() noise_real = noise_real / noise_real.max() noise_real = noise_real * scale return noise_real.to(self.device) def violet_noise(self, batch_size, width, height, alpha=1.0, device='cpu', **kwargs): white_noise = torch.randn((batch_size, 1, height, width), device=device) violet_noise = torch.sign(white_noise) * torch.abs(white_noise) ** (alpha / 2.0) violet_noise /= torch.max(torch.abs(violet_noise)) return violet_noise def brownian_fractal_noise(self, batch_size, width, height, scale, seed, alpha=1.0, modulator=1.0, **kwargs): def add_particles_to_grid(grid, particle_x, particle_y): for x, y in zip(particle_x, particle_y): grid[y, x] = 1 def move_particles(particle_x, particle_y): dx = torch.randint(-1, 2, (batch_size, n_particles), device=self.device) dy = torch.randint(-1, 2, (batch_size, n_particles), device=self.device) particle_x = torch.clamp(particle_x + dx, 0, width - 1) particle_y = torch.clamp(particle_y + dy, 0, height - 1) return particle_x, particle_y self.set_seed(seed) n_iterations = int(5000 * modulator) fy = fft.fftfreq(height).unsqueeze(1) ** 2 fx = fft.fftfreq(width) ** 2 f = fy + fx power = torch.sqrt(f) ** alpha power[0, 0] = 1.0 grid = torch.zeros(height, width, dtype=torch.uint8, device=self.device) n_particles = n_iterations // 10 particle_x = torch.randint(0, int(width), (batch_size, n_particles), device=self.device) particle_y = torch.randint(0, int(height), (batch_size, n_particles), device=self.device) neighborhood = torch.tensor([[1, 1, 1], [1, 0, 1], [1, 1, 1]], dtype=torch.uint8, device=self.device) for _ in range(n_iterations): add_particles_to_grid(grid, particle_x, particle_y) particle_x, particle_y = move_particles(particle_x, particle_y) brownian_tree = grid.clone().detach().float().to(self.device) brownian_tree = brownian_tree / brownian_tree.max() brownian_tree = F.interpolate(brownian_tree.unsqueeze(0).unsqueeze(0), size=(height, width), mode='bilinear', align_corners=False) brownian_tree = brownian_tree.squeeze(0).squeeze(0) fy = fft.fftfreq(height).unsqueeze(1) ** 2 fx = fft.fftfreq(width) ** 2 f = fy + fx power = torch.sqrt(f) ** alpha power[0, 0] = 1.0 noise_real = brownian_tree * scale amplitude = 1.0 / (scale ** (alpha / 2.0)) noise_real *= amplitude noise_fft = fft.fftn(noise_real.to(self.device)) noise_fft = noise_fft / power.to(self.device) noise_real = fft.ifftn(noise_fft).real noise_real *= scale return noise_real.unsqueeze(0).unsqueeze(0) def forward(self, batch_size, width, height, alpha=2.0, scale=1.0, modulator=1.0, noise_type="white", seed=None): if noise_type not in self.get_noise_types(): raise ValueError(f"`noise_type` is invalid. Valid types are {', '.join(self.get_noise_types())}") if seed is None: seed = torch.randint(0, 2**32 - 1, (1,)).item() channels = [] for i in range(3): gen_seed = seed + i random.seed(gen_seed) noise = normalize(self.get_generator(noise_type)(batch_size, width, height, scale=scale, seed=gen_seed, alpha=alpha, modulator=modulator)) channels.append(noise) noise_image = torch.cat((channels[0], channels[1], channels[2]), dim=1) noise_image = (noise_image - noise_image.min()) / (noise_image.max() - noise_image.min()) noise_image = noise_image.permute(0, 2, 3, 1).float() return noise_image.to(device="cpu") # Path: Nodes/modules/adv_encode.py def advanced_encode(clip, text, token_normalization, weight_interpretation, w_max=1.0, clip_balance=.5, apply_to_pooled=True): tokenized = clip.tokenize(text, return_word_ids=True) if isinstance(clip.cond_stage_model, (SDXLClipModel, SDXLRefinerClipModel, SDXLClipG)): embs_l = None embs_g = None pooled = None if 'l' in tokenized and isinstance(clip.cond_stage_model, SDXLClipModel): embs_l, _ = advanced_encode_from_tokens(tokenized['l'], token_normalization, weight_interpretation, lambda x: encode_token_weights(clip, x, encode_token_weights_l), w_max=w_max, return_pooled=False) if 'g' in tokenized: embs_g, pooled = advanced_encode_from_tokens(tokenized['g'], token_normalization, weight_interpretation, lambda x: encode_token_weights(clip, x, encode_token_weights_g), w_max=w_max, return_pooled=True, apply_to_pooled=apply_to_pooled) return prepareXL(embs_l, embs_g, pooled, clip_balance) else: return advanced_encode_from_tokens(tokenized['l'], token_normalization, weight_interpretation, lambda x: (clip.encode_from_tokens({'l': x}), None), w_max=w_max) # Path: Nodes/modules/adv_encode.py def advanced_encode_XL(clip, text1, text2, token_normalization, weight_interpretation, w_max=1.0, clip_balance=.5, apply_to_pooled=True): tokenized1 = clip.tokenize(text1, return_word_ids=True) tokenized2 = clip.tokenize(text2, return_word_ids=True) embs_l, _ = advanced_encode_from_tokens(tokenized1['l'], token_normalization, weight_interpretation, lambda x: encode_token_weights(clip, x, encode_token_weights_l), w_max=w_max, return_pooled=False) embs_g, pooled = advanced_encode_from_tokens(tokenized2['g'], token_normalization, weight_interpretation, lambda x: encode_token_weights(clip, x, encode_token_weights_g), w_max=w_max, return_pooled=True, apply_to_pooled=apply_to_pooled) gcd_num = gcd(embs_l.shape[1], embs_g.shape[1]) repeat_l = int((embs_g.shape[1] / gcd_num) * embs_l.shape[1]) repeat_g = int((embs_l.shape[1] / gcd_num) * embs_g.shape[1]) return prepareXL(embs_l.expand((-1,repeat_l,-1)), embs_g.expand((-1,repeat_g,-1)), pooled, clip_balance) # Path: Nodes/Dashboard.py from ..components.tree import TREE_DASHBOARD from ..components.tree import PRIMERE_ROOT from .modules.latent_noise import PowerLawNoise from .modules.adv_encode import advanced_encode, advanced_encode_XL from nodes import MAX_RESOLUTION from ..components import utility from pathlib import Path from ..components import hypernetwork from ..utils import comfy_dir import comfy.samplers import folder_paths import nodes import torch import torch.nn.functional as F import random import os import tomli import re import requests import comfy.sd import comfy.utils import comfy_extras.nodes_model_advanced as nodes_model_advanced "lycoris_keyword_selection": (["Select in order", "Random select"], {"default": "Select in order"}), "lycoris_keywords_num": ("INT", {"default": 1, "min": 1, "max": 50, "step": 1}), "lycoris_keyword_weight": ("FLOAT", {"default": 1.0, "min": 0, "max": 10.0, "step": 0.1}), } } def load_networks(self, model, clip, positive_prompt, process_lora, process_lycoris, process_hypernetwork, copy_weight_to_clip, lora_clip_custom_weight, lycoris_clip_custom_weight, use_lora_keyword, use_lycoris_keyword, lora_keyword_placement, lycoris_keyword_placement, lora_keyword_selection, lycoris_keyword_selection, lora_keywords_num, lycoris_keywords_num, lora_keyword_weight, lycoris_keyword_weight, hypernetwork_safe_load = True): NETWORK_START = [] cloned_model = model cloned_clip = clip list_of_keyword_items = [] lora_keywords_num_set = lora_keywords_num lycoris_keywords_num_set = lycoris_keywords_num model_lora_keyword = [None, None] model_lyco_keyword = [None, None] lora_stack = [] lycoris_stack = [] hnet_stack = [] HypernetworkList = folder_paths.get_filename_list("hypernetworks") LoraList = folder_paths.get_filename_list("loras") LYCO_DIR = os.path.join(comfy_dir, 'models', 'lycoris') folder_paths.add_model_folder_path("lycoris", LYCO_DIR) LyCORIS = folder_paths.get_filename_list("lycoris") LycorisList = folder_paths.filter_files_extensions(LyCORIS, ['.ckpt', '.safetensors']) if process_lora == True: NETWORK_START.append('<lora:') if process_lycoris == True: NETWORK_START.append('<lyco:') if process_hypernetwork == True: NETWORK_START.append('<hypernet:') if len(NETWORK_START) == 0: return (model, clip, lora_stack, lycoris_stack, hnet_stack, model_lora_keyword, model_lyco_keyword) else: NETWORK_END = ['>'] + NETWORK_START NETWORK_TUPLE = utility.get_networks_prompt(NETWORK_START, NETWORK_END, positive_prompt) if (len(NETWORK_TUPLE) == 0): return (model, clip, lora_stack, lycoris_stack, hnet_stack, model_lora_keyword, model_lyco_keyword) else: for NETWORK_DATA in NETWORK_TUPLE: NetworkName = NETWORK_DATA[0] try: NetworkStrenght = float(NETWORK_DATA[1]) except ValueError: NetworkStrenght = 1 NetworkType = NETWORK_DATA[2] if (process_lora == True and NetworkType == 'LORA'): lora_name = utility.get_closest_element(NetworkName, LoraList) if lora_name is not None: lora_path = folder_paths.get_full_path("loras", lora_name) lora = comfy.utils.load_torch_file(lora_path, safe_load=True) if (copy_weight_to_clip == True): lora_clip_custom_weight = NetworkStrenght lora_stack.append([lora_name, NetworkStrenght, lora_clip_custom_weight]) cloned_model, cloned_clip = comfy.sd.load_lora_for_models(cloned_model, cloned_clip, lora, NetworkStrenght, lora_clip_custom_weight) if use_lora_keyword == True: ModelKvHash = utility.get_model_hash(lora_path) if ModelKvHash is not None: KEYWORD_PATH = os.path.join(PRIMERE_ROOT, 'front_end', 'keywords', 'lora-keyword.txt') keywords = utility.get_model_keywords(KEYWORD_PATH, ModelKvHash, lora_name) if keywords is not None and keywords != "": if keywords.find('|') > 1: keyword_list = [word.strip() for word in keywords.split('|')] keyword_list = list(filter(None, keyword_list)) if (len(keyword_list) > 0): lora_keywords_num = lora_keywords_num_set keyword_qty = len(keyword_list) if (lora_keywords_num > keyword_qty): lora_keywords_num = keyword_qty if lora_keyword_selection == 'Select in order': list_of_keyword_items.extend(keyword_list[:lora_keywords_num]) else: list_of_keyword_items.extend(random.sample(keyword_list, lora_keywords_num)) else: list_of_keyword_items.append(keywords) if len(list_of_keyword_items) > 0: if lora_keyword_selection != 'Select in order': random.shuffle(list_of_keyword_items) list_of_keyword_items = list(set(list_of_keyword_items)) keywords = ", ".join(list_of_keyword_items) if (lora_keyword_weight != 1): keywords = '(' + keywords + ':' + str(lora_keyword_weight) + ')' model_lora_keyword = [keywords, lora_keyword_placement] if (process_lycoris == True and NetworkType == 'LYCORIS'): lycoris_name = utility.get_closest_element(NetworkName, LycorisList) if lycoris_name is not None: lycoris_path = folder_paths.get_full_path("lycoris", lycoris_name) lycoris = comfy.utils.load_torch_file(lycoris_path, safe_load=True) if (copy_weight_to_clip == True): lycoris_clip_custom_weight = NetworkStrenght lycoris_stack.append([lycoris_name, NetworkStrenght, lycoris_clip_custom_weight]) cloned_model, cloned_clip = comfy.sd.load_lora_for_models(cloned_model, cloned_clip, lycoris, NetworkStrenght, lycoris_clip_custom_weight) if use_lycoris_keyword == True: ModelKvHash = utility.get_model_hash(lycoris_path) if ModelKvHash is not None: KEYWORD_PATH = os.path.join(PRIMERE_ROOT, 'front_end', 'keywords', 'lora-keyword.txt') keywords = utility.get_model_keywords(KEYWORD_PATH, ModelKvHash, lycoris_name) if keywords is not None and keywords != "": if keywords.find('|') > 1: keyword_list = [word.strip() for word in keywords.split('|')] keyword_list = list(filter(None, keyword_list)) if (len(keyword_list) > 0): lycoris_keywords_num = lycoris_keywords_num_set keyword_qty = len(keyword_list) if (lycoris_keywords_num > keyword_qty): lycoris_keywords_num = keyword_qty
if lycoris_keyword_selection == 'Select in order':
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: amazon-science/c2f-seg # Path: data/dataloader_vqgan.py def load_dataset(args, config): if args.dataset=="KINS": train_dataset = KINS_VQ_dataset(config, mode='train') val_dataset = KINS_VQ_dataset(config, mode='test') elif args.dataset=="MOViD_A": train_dataset = Movid_A_VQ_Dataset(config, mode="train") val_dataset = Movid_A_VQ_Dataset(config, mode="test") elif args.dataset=="COCOA": train_dataset = COCOA_VQ_dataset(config, mode="train") val_dataset = COCOA_VQ_dataset(config, mode="test") elif args.dataset=="Fishbowl": train_dataset = FishBowl_VQ_Dataset(config, mode="train") val_dataset = FishBowl_VQ_Dataset(config, mode="test") return train_dataset, val_dataset # Path: utils/evaluation.py def get_IoU(pt_mask, gt_mask): # pred_mask [N, Image_W, Image_H] # gt_mask [N, Image_W, Image_H] SMOOTH = 1e-10 intersection = (pt_mask & gt_mask).sum((-1, -2)).to(torch.float32) # [N, 1] union = (pt_mask | gt_mask).sum((-1, -2)).to(torch.float32) # [N, 1] iou = (intersection + SMOOTH) / (union + SMOOTH) # [N, 1] return iou # Path: utils/logger.py def setup_logger(work_dir=None, logfile_name='log.txt', logger_name='log'): """Sets up logger from target work directory. The function will sets up a logger with `DEBUG` log level. Two handlers will be added to the logger automatically. One is the `sys.stdout` stream, with `INFO` log level, which will print improtant messages on the screen. The other is used to save all messages to file `$WORK_DIR/$LOGFILE_NAME`. Messages will be added time stamp and log level before logged. NOTE: If `work_dir` or `logfile_name` is empty, the file stream will be skipped. Args: work_dir: The work directory. All intermediate files will be saved here. (default: None) logfile_name: Name of the file to save log message. (default: `log.txt`) logger_name: Unique name for the logger. (default: `logger`) Returns: A `logging.Logger` object. Raises: SystemExit: If the work directory has already existed, of the logger with specified name `logger_name` has already existed. """ logger = logging.getLogger(logger_name) formatter = logging.Formatter("[%(asctime)s][%(levelname)s] %(message)s") if not logger.handlers: logger.setLevel(logging.DEBUG) # Print log message with `INFO` level or above onto the screen. sh = logging.StreamHandler(stream=sys.stdout) # sh.setLevel(logging.INFO) sh.setLevel(logging.INFO) sh.setFormatter(formatter) logger.addHandler(sh) logger.propagate = False if not work_dir or not logfile_name: return logger if os.path.exists(work_dir): print(f'Work directory `{work_dir}` has already existed!') os.makedirs(work_dir, exist_ok=True) # Save log message with all levels in log file. fh = logging.FileHandler(os.path.join(work_dir, logfile_name)) fh.setLevel(logging.DEBUG) fh.setFormatter(formatter) logger.addHandler(fh) return logger # Path: utils/utils.py class Config(object): def __init__(self, config_path): with open(config_path, 'r') as f: self._yaml = f.read() self._dict = yaml.load(self._yaml, Loader=yaml.SafeLoader) self._dict['path'] = os.path.dirname(config_path) def __getattr__(self, name): if self._dict.get(name) is not None: return self._dict[name] return None def print(self): print('Model configurations:') print('---------------------------------') print(self._yaml) print('') print('---------------------------------') print('') # Path: utils/utils.py class Progbar(object): """Displays a progress bar. Arguments: target: Total number of steps expected, None if unknown. width: Progress bar width on screen. verbose: Verbosity mode, 0 (silent), 1 (verbose), 2 (semi-verbose) stateful_metrics: Iterable of string names of metrics that should *not* be averaged over time. Metrics in this list will be displayed as-is. All others will be averaged by the progbar before display. interval: Minimum visual progress update interval (in seconds). """ def __init__(self, target, max_iters=None, width=25, verbose=1, interval=0.05, stateful_metrics=None): self.target = target self.width = width self.verbose = verbose self.interval = interval self.max_iters = max_iters self.iters = 0 if stateful_metrics: self.stateful_metrics = set(stateful_metrics) else: self.stateful_metrics = set() self._dynamic_display = ((hasattr(sys.stdout, 'isatty') and sys.stdout.isatty()) or 'ipykernel' in sys.modules or 'posix' in sys.modules) self._total_width = 0 self._seen_so_far = 0 # We use a dict + list to avoid garbage collection # issues found in OrderedDict self._values = {} self._values_order = [] self._start = time.time() self._last_update = 0 def update(self, current, values=None): """Updates the progress bar. Arguments: current: Index of current step. values: List of tuples: `(name, value_for_last_step)`. If `name` is in `stateful_metrics`, `value_for_last_step` will be displayed as-is. Else, an average of the metric over time will be displayed. """ values = values or [] for k, v in values: if k not in self._values_order: self._values_order.append(k) if k not in self.stateful_metrics: if k not in self._values: self._values[k] = [v * (current - self._seen_so_far), current - self._seen_so_far] else: self._values[k][0] += v * (current - self._seen_so_far) self._values[k][1] += (current - self._seen_so_far) else: self._values[k] = v self._seen_so_far = current now = time.time() info = ' - %.0fs' % (now - self._start) if self.verbose == 1: if (now - self._last_update < self.interval and self.target is not None and current < self.target): return prev_total_width = self._total_width if self._dynamic_display: sys.stdout.write('\b' * prev_total_width) sys.stdout.write('\r') else: sys.stdout.write('\n') if self.target is not None: numdigits = int(np.floor(np.log10(self.target))) + 1 barstr = '%%%dd/%d [' % (numdigits, self.target) bar = barstr % current prog = float(current) / self.target prog_width = int(self.width * prog) if prog_width > 0: bar += ('=' * (prog_width - 1)) if current < self.target: bar += '>' else: bar += '=' bar += ('.' * (self.width - prog_width)) bar += ']' else: bar = '%7d/Unknown' % current self._total_width = len(bar) sys.stdout.write(bar) if current: time_per_unit = (now - self._start) / current else: time_per_unit = 0 # if self.target is not None and current < self.target: if self.max_iters is None or self.iters < self.max_iters: eta = time_per_unit * (self.target - current) if eta > 3600: eta_format = '%d:%02d:%02d' % (eta // 3600, (eta % 3600) // 60, eta % 60) elif eta > 60: eta_format = '%d:%02d' % (eta // 60, eta % 60) else: eta_format = '%ds' % eta info = ' - ETA: %s' % eta_format else: if time_per_unit >= 1: info += ' %.0fs/step' % time_per_unit elif time_per_unit >= 1e-3: info += ' %.0fms/step' % (time_per_unit * 1e3) else: info += ' %.0fus/step' % (time_per_unit * 1e6) for k in self._values_order: info += ' - %s:' % k if isinstance(self._values[k], list): avg = np.mean(self._values[k][0] / max(1, self._values[k][1])) if abs(avg) > 1e-3: info += ' %.4f' % avg else: info += ' %.4e' % avg else: if 'lr' in k: info += ' %.3e' % self._values[k] else: info += ' %s' % self._values[k] self._total_width += len(info) if prev_total_width > self._total_width: info += (' ' * (prev_total_width - self._total_width)) if self.target is not None and current >= self.target: info += '\n' sys.stdout.write(info) sys.stdout.flush() elif self.verbose == 2: if self.target is None or current >= self.target: for k in self._values_order: info += ' - %s:' % k avg = np.mean(self._values[k][0] / max(1, self._values[k][1])) if avg > 1e-3: info += ' %.4f' % avg else: info += ' %.4e' % avg info += '\n' sys.stdout.write(info) sys.stdout.flush() self._last_update = now def add(self, n, values=None): self.iters += 1 self.update(self._seen_so_far + n, values) # Path: utils/utils.py def to_cuda(meta, device): for k in meta: if meta[k] is not None: meta[k] = meta[k].to(device) return meta # Path: utils/utils.py def stitch_images(inputs, outputs, img_per_row=2, mode="L"): gap = 5 columns = len(outputs) + 1 height, width = inputs[0][:, :, 0].shape img = Image.new(mode, (width * img_per_row * columns + gap * (img_per_row - 1), height * int(len(inputs) / img_per_row))) images = [inputs] + outputs for ix in range(len(inputs)): xoffset = int(ix % img_per_row) * width * columns + int(ix % img_per_row) * gap yoffset = int(ix / img_per_row) * height for cat in range(len(images)): im = (np.array((images[cat][ix]).cpu())*255).astype(np.uint8).squeeze() im = Image.fromarray(im, mode) img.paste(im, (xoffset + cat * width, yoffset)) return img # Path: utils/utils.py def get_lr_schedule_with_steps(decay_type, optimizer, drop_steps=None, gamma=None, total_steps=None): def lr_lambda(current_step): if decay_type == 'fix': return 1.0 elif decay_type == 'linear': return 1.0 * (current_step / total_steps) elif decay_type == 'cos': return 1.0 * (math.cos((current_step / total_steps) * math.pi) + 1) / 2 elif decay_type == 'milestone': return 1.0 * math.pow(gamma, int(current_step / drop_steps)) else: raise NotImplementedError return LambdaLR(optimizer, lr_lambda) # Path: utils/utils.py def torch_init_model(model, init_checkpoint, key): state_dict = torch.load(init_checkpoint, map_location='cpu')[key] missing_keys = [] unexpected_keys = [] error_msgs = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=''): local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') load(model, prefix='') print("missing keys:{}".format(missing_keys)) print('unexpected keys:{}'.format(unexpected_keys)) print('error msgs:{}'.format(error_msgs)) # Path: taming_src/vqperceptual.py class VQLPIPSWithDiscriminator(nn.Module): def __init__(self, config): super().__init__() disc_start = config['disc_start'] codebook_weight = config['codebook_weight'] pixelloss_weight = 1.0 disc_num_layers = config['disc_num_layers'] disc_in_channels = config['disc_in_channels'] disc_factor = 1.0 disc_weight = config['disc_weight'] perceptual_weight = 1.0 use_actnorm = False disc_conditional = config['disc_conditional'] disc_ndf = 64 disc_loss="hinge" assert disc_loss in ["hinge", "vanilla"] self.codebook_weight = codebook_weight self.pixel_weight = pixelloss_weight self.perceptual_loss = LPIPS().eval() self.perceptual_weight = perceptual_weight self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm, ndf=disc_ndf).apply(weights_init) self.discriminator_iter_start = disc_start if disc_loss == "hinge": self.disc_loss = hinge_d_loss elif disc_loss == "vanilla": self.disc_loss = vanilla_d_loss else: raise ValueError(f"Unknown GAN loss '{disc_loss}'.") print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.") self.disc_factor = disc_factor self.discriminator_weight = disc_weight self.disc_conditional = disc_conditional def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): if last_layer is not None: nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] else: nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() d_weight = d_weight * self.discriminator_weight return d_weight def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx, global_step, cond=None, split="train"): rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()) if self.perceptual_weight > 0: p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous()) rec_loss = rec_loss + self.perceptual_weight * p_loss else: p_loss = torch.tensor([0.0]) nll_loss = rec_loss # nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] nll_loss = torch.mean(nll_loss) # now the GAN part if optimizer_idx == 0: # generator update if cond is None: assert not self.disc_conditional logits_fake = self.discriminator(reconstructions.contiguous()) else: assert self.disc_conditional logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1)) g_loss = -torch.mean(logits_fake) # try: # d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) # except RuntimeError: # assert not self.training # d_weight = torch.tensor(0.0) # d_weight = torch.tensor(1.0) # with torch.no_grad(): # d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) # disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) # loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean() return nll_loss, g_loss, self.codebook_weight * codebook_loss.mean() # log = [("{}/total_loss".format(split), loss.clone().detach().mean().item()), # ("{}/quant_loss".format(split), codebook_loss.detach().mean().item()), # ("{}/nll_loss".format(split), nll_loss.detach().mean().item()), # ("{}/rec_loss".format(split), rec_loss.detach().mean().item()), # ("{}/p_loss".format(split), p_loss.detach().mean().item()), # ("{}/d_weight".format(split), d_weight.detach().item()), # ("{}/disc_factor".format(split), disc_factor), # ("{}/g_loss".format(split), g_loss.detach().mean().item())] # return loss#, log if optimizer_idx == 1: # second pass for discriminator update if cond is None: logits_real = self.discriminator(inputs.contiguous().detach()) logits_fake = self.discriminator(reconstructions.contiguous().detach()) else: logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1)) logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1)) disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) log = [("{}/disc_loss".format(split), d_loss.clone().detach().mean().item()), ("{}/logits_real".format(split), logits_real.detach().mean().item()), ("{}/logits_fake".format(split), logits_fake.detach().mean().item())] return d_loss#, log # Path: taming_src/vqperceptual.py def adopt_weight(weight, global_step, threshold=0, value=0.): if global_step < threshold: weight = value return weight # Path: taming_src/taming_models.py class VQModel(nn.Module): def __init__(self, config): super(VQModel, self).__init__() self.config = config self.iteration = 0 self.name = config.model_type self.m_path = os.path.join(config.path, self.name) self.eps = 1e-6 self.ddconfig = config.model['params']['ddconfig'] n_embed = config.model['params']['n_embed'] embed_dim = config.model['params']['embed_dim'] self.encoder = Encoder(self.ddconfig).to(config.device) self.decoder = Decoder(self.ddconfig).to(config.device) self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25).to(config.device).to(config.device) self.quant_conv = torch.nn.Conv2d(self.ddconfig["z_channels"], embed_dim, 1).to(config.device) # self.quant_proj = torch.nn.Linear(self.ddconfig["z_channels"], embed_dim).to(config.device) self.post_quant_conv = torch.nn.Conv2d(embed_dim, self.ddconfig["z_channels"], 1).to(config.device) # self.pose_quant_proj = torch.nn.Linear(embed_dim, self.ddconfig["z_channels"]).to(config.device) def encode(self, x, mask=None): h = self.encoder(x) # dim=256 h = self.quant_conv(h) # dim=256 if mask is not None: mask = F.max_pool2d(mask, kernel_size=int(mask.shape[2] / h.shape[2]), stride=int(mask.shape[2] / h.shape[2])) quant = quant * mask + h * (1 - mask) quant, emb_loss, info = self.quantize(h, mask) return quant, emb_loss, info def decode(self, quant): quant = self.post_quant_conv(quant) # dim: 256 dec = self.decoder(quant) return dec def decode_code(self, code_b): quant_b = self.quantize.embed_code(code_b) dec = self.decode(quant_b) return dec def forward(self, x, mask=None): quant, diff, _ = self.encode(x, mask) # quant dim: 256 dec = self.decode(quant) return dec, diff def get_last_layer(self): return self.decoder.conv_out.weight def restore(self, ckpt_file, g_opt=None, d_opt=None): torch_init_model(self, ckpt_file, "state_dict") saving = torch.load(ckpt_file, map_location='cpu') if 'optimizer_states' in saving and g_opt is not None and d_opt is not None: opt_state = saving['optimizer_states'] g_opt.load_state_dict(opt_state[0]) d_opt.load_state_dict(opt_state[1]) print(f"Restored from {ckpt_file}") return g_opt, d_opt def save(self, prefix=None, g_opt=None, d_opt=None): if prefix is not None: save_path = self.m_path + "_{}.pth".format(prefix) else: save_path = self.m_path + ".pth" print('\nsaving {} {}...\n'.format(self.name, prefix)) all_saving = {'state_dict': self.state_dict(), 'optimizer_states': [g_opt.state_dict(), d_opt.state_dict()]} torch.save(all_saving, save_path) # Path: train_vq.py import os import cv2 import random import numpy as np import torch import argparse import time from shutil import copyfile from torch.utils.data import DataLoader from data.dataloader_vqgan import load_dataset from utils.evaluation import get_IoU from utils.logger import setup_logger from utils.utils import Config, Progbar, to_cuda, stitch_images from utils.utils import get_lr_schedule_with_steps, torch_init_model from taming_src.vqperceptual import VQLPIPSWithDiscriminator, adopt_weight from taming_src.taming_models import VQModel def restore(ckpt_file, g_model, d_model, g_opt, d_opt): torch_init_model(g_model, ckpt_file, "g_model") torch_init_model(d_model, ckpt_file, "d_model") saving = torch.load(ckpt_file, map_location='cpu') # if 'optimizer_states' in saving: # opt_state = saving['optimizer_states'] # # print(opt_state[0]) # g_opt.load_state_dict(opt_state[0]) # d_opt.load_state_dict(opt_state[1]) print(f"Restored from {ckpt_file}") return g_opt, d_opt def save(g_model, d_model, m_path, prefix=None, g_opt=None, d_opt=None): if prefix is not None: save_path = m_path + "_{}.pth".format(prefix) else: save_path = m_path + ".pth" print('\nsaving {}...\n'.format(save_path)) all_saving = {'g_model': g_model.state_dict(), 'd_model': d_model.state_dict(), 'optimizer_states': [g_opt.state_dict(), d_opt.state_dict()]} torch.save(all_saving, save_path) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, required=True, help='model checkpoints path') parser.add_argument('--finetune_path', type=str, required=False, default=None) parser.add_argument('--local_rank', default=-1, type=int) parser.add_argument('--learn_type', default="mask", type=str) parser.add_argument('--check_point_path', default="../check_points", type=str) parser.add_argument('--dataset', default="Kins", type=str) args = parser.parse_args() args.path = os.path.join(args.check_point_path, args.path) config_path = os.path.join(args.path, 'vqgan_{}.yml'.format(args.dataset)) # create checkpoints path if does't exist if not os.path.exists(args.path): os.makedirs(args.path) # copy config template if does't exist if not os.path.exists(config_path): copyfile('configs/vqgan_{}.yml'.format(args.dataset), config_path) # load config file config = Config(config_path) config.path = args.path # cuda visble devices local_rank = 0 log_file = 'log-{}.txt'.format(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())) if local_rank == 0: logger = setup_logger(os.path.join(args.path, 'logs'), logfile_name=log_file) for k in config._dict: logger.info("{}:{}".format(k, config._dict[k])) else: logger = None # save samples and eval pictures os.makedirs(os.path.join(args.path, 'samples'), exist_ok=True) # os.makedirs(os.path.join(args.path, 'eval'), exist_ok=True) # init device if torch.cuda.is_available(): config.device = torch.device("cuda") torch.backends.cudnn.benchmark = True # cudnn auto-tuner else: config.device = torch.device("cpu") cv2.setNumThreads(0) # initialize random seed torch.manual_seed(config.seed) np.random.seed(config.seed) random.seed(config.seed) torch.cuda.manual_seed_all(config.seed) train_dataset, val_dataset = load_dataset(args, config) train_loader = DataLoader(
dataset=train_dataset,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: alipay/PainlessInferenceAcceleration # Path: pia/lookahead/common/lookahead_cache.py class LookaheadCache(): def __init__(self, debug=False, eos=2, stop_words=None, max_node=512, max_output_node=256): self.debug = debug self.eos = eos self.max_node = max_node self.max_output_node = max_output_node self.mem = {} self._output_ids = defaultdict(list) self._update_trees = set() self._update_input_trees = set() self.stop_words = stop_words if stop_words is not None else {} self.default_mask = np.ones((1, 1), dtype=np.int64) def put(self, token_ids, branch_length=8, final=False, mode='output', idx=-1): if self.eos in token_ids: token_ids = token_ids[:token_ids.index(self.eos)] if len(token_ids) >= 2: ts = len(token_ids) # ts: token_ids size for i in range(ts - 1): token_id = token_ids[i] tup = token_ids[i + 1:i + branch_length + 1] if self.debug: print(f'input token:{token_id} tokens:{tup}') tree = self.mem.get(token_id, None) if tree is not None: tree.put(tup, mode=mode, idx=idx) else: tree = Tree(token_id, max_node=self.max_node, max_output_node=self.max_output_node) tree.put(tup, mode=mode, idx=idx) self.mem[token_id] = tree self._update_trees.add(tree) if mode == 'input': self._update_input_trees.add(tree) if final: self.reset_input_freqs() self.squeeze_branch_counts() def stream_put(self, token_ids, branch_length=8, final=False, mode='output', idx=0): # idx is only used for caching output_ids assert mode == 'output' and idx >= 0 if self.eos in token_ids: token_ids = token_ids[:token_ids.index(self.eos)] self._output_ids[idx].extend(token_ids) output_ids = self._output_ids[idx] ts = len(output_ids) min_branch_length = 1 if final else branch_length if ts > min_branch_length: for i in range(ts - min_branch_length): token_id = output_ids[i] tup = output_ids[i + 1:i + branch_length + 1] if self.debug: print(f'input token:{token_id} tokens:{tup}') tree = self.mem.get(token_id, None) if tree: tree.put(tup, mode='output', idx=-1) else: tree = Tree(token_id, max_node=self.max_node, max_output_node=self.max_output_node) tree.put(tup, mode='output', idx=-1) self.mem[token_id] = tree self._update_trees.add(tree) if not final: self._output_ids[idx] = output_ids[ts - branch_length:] if final: self._output_ids[idx] = [] self.reset_input_freqs() self.squeeze_branch_counts() def hier_get(self, token_ids, decoding_length=64, branch_length=8, min_input_size=0, min_output_size=0, mode='mix', idx=0): assert mode in ('input', 'output', 'mix') decoding_masks = self.default_mask if decoding_length <= 1 or branch_length == 0: return token_ids[-1:], decoding_masks, [] decoding_ids = None sizes = [0, 0] match_count = len(token_ids) for i, t in enumerate(token_ids): tree = self.mem.get(t, None) if tree is not None: ids = token_ids[i + 1:] if t in self.stop_words and len(ids) == 0: continue decoding_ids, decoding_masks, sizes = tree.get(ids, max_size=decoding_length, max_length=branch_length, min_input_size=min_input_size, min_output_size=min_output_size, mode=mode, idx=idx) s = len(decoding_ids) match_count = len(token_ids) - i # token count is enough, not need retrieve again if s >= branch_length: break if decoding_ids is None: decoding_ids = token_ids[-1:] return decoding_ids, decoding_masks, sizes def par_get(self, token_ids, decoding_length=16, branch_length=8, min_input_size=0, min_output_size=0, mode='mix', idx=0): output_ids, decoding_masks, decoding_lengths = self.trie_get(token_ids, decoding_length=decoding_length, branch_length=branch_length, min_input_size=min_input_size, min_output_size=min_output_size, mode=mode, idx=idx) sets = [] true_decoding_length = len(output_ids) - 1 for i in range(true_decoding_length, 0, -1): indices, = np.nonzero(decoding_masks[i, 1:]) indices = set(indices) flag = True for ss in sets: if len(indices - ss) == 0: flag = False break if flag: sets.append(indices) sets.reverse() count = 0 max_decoding_length = true_decoding_length branches = [] for indices in sets: indices = sorted(list(indices)) rest_count = max_decoding_length - count indices = indices[:rest_count] count += len(indices) branch = [] for i in indices: branch.append(output_ids[i + 1]) branches.append(branch) if count >= max_decoding_length: break ids = [output_ids[0]] masks = np.tril(np.ones((count + 1, count + 1)), 0) count = 1 for branch in branches: ids.extend(branch) length = len(branch) masks[count:count + length, 1:count] = 0 count += length return ids, masks, [count - 1] def one_get(self, token_ids, decoding_length=64, branch_length=8, min_input_size=0, min_output_size=0, mode='mix', idx=0): assert mode in ('input', 'output', 'mix') decoding_masks = self.default_mask if decoding_length <= 1 or branch_length == 0: return token_ids[-1:], decoding_masks, [] decoding_ids = None sizes = [0, 0] for i, t in enumerate(token_ids): tree = self.mem.get(t, None) if tree is not None: ids = token_ids[i + 1:] if t in self.stop_words and len(ids) == 0: continue decoding_ids, decoding_masks, sizes = tree.get_one_branch(ids, max_length=branch_length, mode=mode, idx=idx) s = len(decoding_ids) # token count is enough, not need retrieve again if s >= branch_length // 2: break print(f'{decoding_ids=}') if decoding_ids is None: decoding_ids = token_ids[-1:] return decoding_ids, decoding_masks, sizes def bat_get(self, token_id_list, decoding_length=64, branch_length=8, decoding_cursors=None, mode='output', indices=None, decoding_mode='hier'): assert mode in ('input', 'output', 'mix') assert decoding_mode in ('hier', 'one') bs = len(token_id_list) assert bs == len(decoding_cursors) and bs == len(indices), f'{bs=} {len(decoding_cursors)=} {len(indices)=}' decoding_id_list = [] decoding_mask_list = [] size_list = [] min_cur = min(decoding_cursors) max_cur = max(decoding_cursors) bs = len(decoding_cursors) for sub_idx, token_ids in enumerate(token_id_list): update_decoding_length = decoding_length // bs min_input_size = 0 min_output_size = max(update_decoding_length // 2, 1) method_name = decoding_mode + '_get' decoding_ids, decoding_masks, sizes = getattr(self, method_name)(token_ids, decoding_length=update_decoding_length, branch_length=branch_length, min_input_size=min_input_size, min_output_size=min_output_size, mode=mode, idx=indices[sub_idx]) decoding_id_list.append(decoding_ids) decoding_mask_list.append(decoding_masks) size_list.append(sizes) bs = len(token_id_list) max_size = max([len(x) for x in decoding_id_list]) decoding_masks = np.zeros((bs, max_size, max_cur - min_cur + max_size), dtype=np.int64) for i, decoding_ids in enumerate(decoding_id_list): org_size = len(decoding_ids) gap = max_size - org_size if gap > 0: decoding_ids.extend([self.eos] * gap) cur = decoding_cursors[i] decoding_masks[i, :org_size, cur - min_cur:cur - min_cur + org_size] = decoding_mask_list[i] decoding_masks[i, :, :cur - min_cur + 1] = 1 return decoding_id_list, decoding_masks, size_list def fresh(self): self.mem = {} def reset_input_freqs(self): if len(self._update_input_trees) > 0: for c in self._update_input_trees: c.reset_input_freq() self._update_input_trees.clear() def squeeze_branch_counts(self): if len(self._update_trees) >= 1024: for c in self._update_trees: c.squeeze() self._update_trees.clear() def save_mem(self, save_mem_dir): cache_mem = self.mem serialized_object = pickle.dumps(cache_mem) json_string = json.dumps(serialized_object.decode('latin-1')) with open(save_mem_dir, 'w') as f: json.dump(json_string, f) def load_mem(self, load_mem_dir): with open(load_mem_dir, 'r') as f: json_string = json.load(f) deserialized_object = pickle.loads(json.loads(json_string).encode('latin-1')) cache_mem = deserialized_object self.mem = cache_mem # Path: pia/lookahead/common/lookahead_generation_utils.py class GenerationMode(ExplicitEnum): """ Possible generation modes, downstream of the [`~generation.GenerationMixin.generate`] method. """ # Non-beam methods CONTRASTIVE_SEARCH = "contrastive_search" GREEDY_SEARCH = "greedy_search" LOOKAHEAD_GENERATION = "lookahead_generation" SAMPLE = "sample" ASSISTED_GENERATION = "assisted_generation" # Beam methods BEAM_SEARCH = "beam_search" BEAM_SAMPLE = "beam_sample" CONSTRAINED_BEAM_SEARCH = "constrained_beam_search" GROUP_BEAM_SEARCH = "group_beam_search" # Path: pia/lookahead/common/lookahead_generation_utils.py class LookaheadDecoderOnlyOutput(ModelOutput): """ Base class for outputs of decoder-only generation models using greedy search. Args: sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`. """ sequences: torch.LongTensor = None scores: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None kwargs: Optional[Dict] = None # Path: pia/lookahead/common/pretrained_model_batch.py import copy import inspect import time import warnings import numpy as np import torch import torch.distributed as dist from typing import Any, Callable, Dict, List, Optional, Tuple, Union from torch import nn from transformers import PreTrainedModel from transformers.generation.beam_constraints import DisjunctiveConstraint, PhrasalConstraint from transformers.generation.beam_search import BeamSearchScorer, ConstrainedBeamSearchScorer from transformers.generation.logits_process import ( LogitsProcessorList, MinLengthLogitsProcessor, ) from transformers.generation.stopping_criteria import ( MaxLengthCriteria, StoppingCriteriaList, validate_stopping_criteria, ) from transformers.generation.utils import ( GreedySearchEncoderDecoderOutput, GreedySearchDecoderOnlyOutput) from transformers.generation.utils import ( GreedySearchOutput, GenerateOutput) from transformers.utils import ModelOutput, logging from transformers.generation.configuration_utils import GenerationConfig from pia.lookahead.common.lookahead_cache import LookaheadCache from pia.lookahead.common.lookahead_generation_utils import GenerationMode, LookaheadDecoderOnlyOutput lengths = np.sum(decoding_masks[ib, :, cur - min_cur:], axis=1) - 1 larr = np.concatenate([lengths[:-1][(lengths[1:] - lengths[:-1]) <= 0], lengths[-1:]], axis=0) ls = ','.join(larr.astype(np.int32).astype(np.str_)) decoding_qids = decoding_kwargs['decoding_qids'][ib] size_str = ','.join([str(x) for x in decoding_lengths[ib]]) print( f'batch_index:{ib}/{bs} decoding_length:{len(decoding_ids_)} accept_length:{max_match_count} ' f'query:{decoding_qids} source:{size_str} lengths:{ls} index:{max_match_index} ' f'branch_token:{max_decoding_ids_slice} next_token:{max_next_token_slice}') model_kwargs['next_tokens'] = torch.tensor(update_next_token_list, device=device) model_kwargs['next_token_list'] = update_next_token_list model_kwargs['next_tokens_scores'] = [] model_kwargs['input_ids'] = input_ids decoding_kwargs['decoding_cursors'] = decoding_cursors decoding_kwargs['dls'].extend(dls) decoding_kwargs['edls'].extend(edls) model_kwargs['decoding_kwargs'] = decoding_kwargs return model_kwargs def _early_stop(self, unfinished_sequences, output_ids, batch_indices, model_kwargs): decoding_kwargs = model_kwargs['decoding_kwargs'] input_ids = model_kwargs['input_ids'] unfinished_sequence_list = unfinished_sequences.tolist() unfinished_index_list = [] for i, (seq,) in enumerate(unfinished_sequence_list): if seq == 0: idx = batch_indices[i] output_ids[idx, :input_ids.size(-1)] = input_ids[i] else: unfinished_index_list.append(i) output_batch_indices = [batch_indices[i] for i in unfinished_index_list] bs = input_ids.size(0) finished_count = bs - len(unfinished_index_list) if finished_count > 0 and bs > 1 and finished_count != bs: unfinished_indices = torch.tensor(unfinished_index_list, device=unfinished_sequences.device) unfinished_sequences = unfinished_sequences[unfinished_indices] model_kwargs['input_ids'] = input_ids[unfinished_indices] position_ids = model_kwargs.get('position_ids', None) if position_ids is not None: position_ids = position_ids[unfinished_indices] model_kwargs['position_ids'] = position_ids model_kwargs['attention_mask'] = model_kwargs['attention_mask'][unfinished_indices] decoding_kwargs = model_kwargs['decoding_kwargs'] decoding_cursors = decoding_kwargs['decoding_cursors'] decoding_kwargs['decoding_cursors'] = [decoding_cursors[i] for i in unfinished_index_list] batch_indices = decoding_kwargs['batch_indices'] decoding_kwargs['batch_indices'] = [batch_indices[i] for i in unfinished_index_list] past_key_values = [] for kv in model_kwargs['past_key_values']: k, v = kv k = k[unfinished_indices] v = v[unfinished_indices] past_key_values.append((k, v)) model_kwargs['past_key_values'] = tuple(past_key_values) return unfinished_sequences, output_ids, output_batch_indices, model_kwargs def _update_cache(self, past_key_values, batch_idx, kv_idx, prefix_and_next_count=None, max_match_count=None, max_match_index=None): for k, v in past_key_values: k[batch_idx, :, prefix_and_next_count:prefix_and_next_count + max_match_count] = k[batch_idx, :, kv_idx] v[batch_idx, :, prefix_and_next_count:prefix_and_next_count + max_match_count] = v[batch_idx, :, kv_idx] def lookahead_generation( self, input_ids: torch.LongTensor, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[Union[int, List[int]]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_scores: Optional[bool] = None, return_dict_in_generate: Optional[bool] = None, synced_gpus: bool = False, streamer: Optional["BaseStreamer"] = None, **model_kwargs, ) -> Union[GreedySearchOutput, torch.LongTensor]: r""" Generates sequences of token ids for models with a language modeling head using **greedy decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. <Tip warning={true}> In most cases, you do not need to call [`~generation.GenerationMixin.greedy_search`] directly. Use generate() instead. For an overview of generation strategies and code examples, check the [following guide](../generation_strategies). </Tip> Parameters: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. logits_processor (`LogitsProcessorList`, *optional*): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. stopping_criteria (`StoppingCriteriaList`, *optional*): An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] used to tell if the generation loop should stop. max_length (`int`, *optional*, defaults to 20): **DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated tokens. The maximum length of the sequence to be generated. pad_token_id (`int`, *optional*): The id of the *padding* token. eos_token_id (`Union[int, List[int]]`, *optional*): The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
output_attentions (`bool`, *optional*, defaults to `False`):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Its-Haze/league-rpc-linux # Path: league_rpc_linux/colors.py class Colors: """ Dataclass, storing the different colors that is used in the program. """ dred = "\033[31m" dgreen = "\033[32m" yellow = "\033[33m" dblue = "\033[34m" dmagenta = "\033[35m" dcyan = "\033[36m" lgrey = "\033[37m" dgray = "\033[90m" red = "\033[91m" green = "\033[92m" orange = "\033[93m" blue = "\033[94m" magenta = "\033[95m" cyan = "\033[96m" white = "\033[97m" reset = "\033[0m" @property def logo(self) -> str: """Just prints the LEAGUE rpc logo, in your favorite Terminal Emulator.""" return rf""" {self.yellow} _ {self.dblue} _____ _____ _____ {self.reset} {self.yellow} | | {self.dblue}| __ \| __ \ / ____|{self.reset} {self.yellow} | | ___ __ _ __ _ _ _ ___ {self.dblue}| |__) | |__) | | {self.reset} {self.yellow} | | / _ \/ _` |/ _` | | | |/ _ \ {self.dblue}| _ /| ___/| | {self.reset} {self.yellow} | |___| __/ (_| | (_| | |_| | __/ {self.dblue}| | \ \| | | |____ {self.reset} {self.yellow} |______\___|\__,_|\__, |\__,_|\___| {self.dblue}|_| \_\_| \_____|{self.reset} {self.yellow} __/ | {self.reset} {self.yellow} |___/ {self.reset} """ # Path: league_rpc_linux/lcu_api/base_data.py async def gather_base_data(connection: Connection, module_data: ModuleData): data = module_data.client_data # Epoch time from which league client was started. await gather_telemetry_data(connection, data) await gather_summoner_data(connection, data) # get Online/Away status await gather_chat_status_data(connection, data) await gather_ranked_data(connection, data) await gather_gameflow_data(connection, data) if data.gameflow_phase == GameFlowPhase.IN_PROGRESS: # In Game return if data.gameflow_phase == GameFlowPhase.NONE: # In Client return await gather_lobby_data(connection, data) if data.queue_id == -1: # custom game / practice tool / tutorial lobby data.gamemode = "PRACTICETOOL" data.map_id = 11 if data.is_practice: data.queue = "Practice Tool" data.max_players = 1 else: data.queue = "Custom Game" return await gather_queue_data(connection, data) # Path: league_rpc_linux/models/client_data.py class ClientData: # Path: league_rpc_linux/models/lcu/current_chat_status.py class LolChatUser: AVAILABILITY = "availability" GAME_NAME = "gameName" GAME_TAG = "gameTag" ICON = "icon" ID = "id" LAST_SEEN_ONLINE_TIMESTAMP = "lastSeenOnlineTimestamp" LOL = "lol" # This is a dictionary with unspecified key-value pairs NAME = "name" PATCHLINE = "patchline" PID = "pid" PLATFORM_ID = "platformId" PRODUCT = "product" PRODUCT_NAME = "productName" PUUID = "puuid" STATUS_MESSAGE = "statusMessage" SUMMARY = "summary" SUMMONER_ID = "summonerId" TIME = "time" AVAILABLE_CHAT_STATUSES = {CHAT := "chat", AWAY := "away", ONLINE := "online"} # Path: league_rpc_linux/models/lcu/current_lobby.py class LolLobbyLobbyDto: CAN_START_ACTIVITY = "canStartActivity" CHAT_ROOM_ID = "chatRoomId" CHAT_ROOM_KEY = "chatRoomKey" GAME_CONFIG = "gameConfig" INVITATIONS = "invitations" LOCAL_MEMBER = "localMember" MEMBERS = "members" PARTY_ID = "partyId" PARTY_TYPE = "partyType" RESTRICTIONS = "restrictions" WARNINGS = "warnings" # Path: league_rpc_linux/models/lcu/current_lobby.py class LolLobbyLobbyGameConfigDto: ALLOWABLE_PREMADE_SIZES = "allowablePremadeSizes" CUSTOM_LOBBY_NAME = "customLobbyName" CUSTOM_MUTATOR_NAME = "customMutatorName" CUSTOM_REWARDS_DISABLED_REASONS = "customRewardsDisabledReasons" CUSTOM_SPECTATOR_POLICY = "customSpectatorPolicy" CUSTOM_SPECTATORS = "customSpectators" CUSTOM_TEAM100 = "customTeam100" CUSTOM_TEAM200 = "customTeam200" GAME_MODE = "gameMode" IS_CUSTOM = "isCustom" IS_LOBBY_FULL = "isLobbyFull" IS_TEAM_BUILDER_MANAGED = "isTeamBuilderManaged" MAP_ID = "mapId" MAX_HUMAN_PLAYERS = "maxHumanPlayers" MAX_LOBBY_SIZE = "maxLobbySize" MAX_TEAM_SIZE = "maxTeamSize" PICK_TYPE = "pickType" PREMADE_SIZE_ALLOWED = "premadeSizeAllowed" QUEUE_ID = "queueId" SHOW_POSITION_SELECTOR = "showPositionSelector" # Path: league_rpc_linux/models/lcu/current_queue.py class LolGameQueuesQueue: ALLOWABLE_PREMADE_SIZES = "allowablePremadeSizes" ARE_FREE_CHAMPIONS_ALLOWED = "areFreeChampionsAllowed" ASSET_MUTATOR = "assetMutator" CATEGORY = "category" CHAMPIONS_REQUIRED_TO_PLAY = "championsRequiredToPlay" DESCRIPTION = "description" DETAILED_DESCRIPTION = "detailedDescription" GAME_MODE = "gameMode" GAME_TYPE_CONFIG = "gameTypeConfig" ID = "id" IS_RANKED = "isRanked" IS_TEAM_BUILDER_MANAGED = "isTeamBuilderManaged" IS_TEAM_ONLY = "isTeamOnly" LAST_TOGGLED_OFF_TIME = "lastToggledOffTime" LAST_TOGGLED_ON_TIME = "lastToggledOnTime" MAP_ID = "mapId" MAX_DIVISION_FOR_PREMADE_SIZE2 = "maxDivisionForPremadeSize2" MAX_LEVEL = "maxLevel" MAX_SUMMONER_LEVEL_FOR_FIRST_WIN_OF_THE_DAY = "maxSummonerLevelForFirstWinOfTheDay" MAX_TIER_FOR_PREMADE_SIZE2 = "maxTierForPremadeSize2" MAXIMUM_PARTICIPANT_LIST_SIZE = "maximumParticipantListSize" MIN_LEVEL = "minLevel" MINIMUM_PARTICIPANT_LIST_SIZE = "minimumParticipantListSize" NAME = "name" NUM_PLAYERS_PER_TEAM = "numPlayersPerTeam" QUEUE_AVAILABILITY = "queueAvailability" QUEUE_REWARDS = "queueRewards" REMOVAL_FROM_GAME_ALLOWED = "removalFromGameAllowed" REMOVAL_FROM_GAME_DELAY_MINUTES = "removalFromGameDelayMinutes" SHORT_NAME = "shortName" SHOW_POSITION_SELECTOR = "showPositionSelector" SPECTATOR_ENABLED = "spectatorEnabled" TYPE = "type" # Path: league_rpc_linux/models/lcu/current_summoner.py class Summoner: ACCOUNT_ID = "accountId" DISPLAY_NAME = "displayName" INTERNAL_NAME = "internalName" NAME_CHANGE_FLAG = "nameChangeFlag" PERCENT_COMPLETE_FOR_NEXT_LEVEL = "percentCompleteForNextLevel" PRIVACY = "privacy" PROFILE_ICON_ID = "profileIconId" PUUID = "puuid" REROLL_POINTS = "rerollPoints" CURRENT_POINTS = "currentPoints" MAX_ROLL = "maxRolls" NUMBER_OF_ROLLS = "numberOfRolls" POINTS_COST_TO_ROLL = "pointsCostToRoll" SUMMONER_ID = "summonerId" SUMMONER_LEVEL = "summonerLevel" UNNAMED = "unnamed" XP_SINCE_LAST_LEVEL = "xpSinceLastLevel" XP_UNTIL_NEXT_LEVEL = "xpUntilNextLevel" # Path: league_rpc_linux/models/module_data.py class ModuleData: connector: Connector = field(default_factory=Connector) client_data: ClientData = field(default_factory=ClientData) rpc: Optional[Presence] = None cli_args: Optional[Namespace] = None # Path: league_rpc_linux/models/rpc_updater.py class RPCUpdater: scheduled_update: bool = False def delay_update(self, module_data: ModuleData): if not self.scheduled_update: self.scheduled_update = True Timer(1.0, self.update_rpc_and_reset_flag, args=(module_data,)).start() def update_rpc_and_reset_flag(self, module_data: ModuleData): self.update_rpc(module_data) # Assuming update_rpc is defined elsewhere self.scheduled_update = False @staticmethod def in_client_rpc( rpc: Presence, module_data: ModuleData, ) -> None: """ Updates the RPC when the use is in the client. """ details = f"{module_data.client_data.availability}" show_emojis: bool = module_data.cli_args.show_emojis # type:ignore if show_emojis: status_emojis = f"{'🟢' if module_data.client_data.availability == LolChatUser.ONLINE.capitalize() else ' 🔴'}" # details = status_emojis + details details = status_emojis + " " + details rpc.update( large_image=f"{PROFILE_ICON_BASE_URL}{module_data.client_data.summoner_icon}.png", large_text="In Client", small_image=LEAGUE_OF_LEGENDS_LOGO, small_text=SMALL_TEXT, details=details, state="In Client", start=module_data.client_data.application_start_time, ) @staticmethod def in_lobby_rpc( rpc: Presence, module_data: ModuleData, is_custom: bool, ) -> None: if is_custom: large_image = f"{PROFILE_ICON_BASE_URL}{str(module_data.client_data.summoner_icon)}.png" large_text = f"{GAME_MODE_CONVERT_MAP.get(module_data.client_data.gamemode, module_data.client_data.gamemode)}" small_image = BASE_MAP_ICON_URL.format( map_name=MAP_ICON_CONVERT_MAP.get(module_data.client_data.map_id) ) small_text = SMALL_TEXT details = f"In Lobby: {module_data.client_data.queue}" state = "Custom Lobby" rpc.update( large_image=large_image, large_text=large_text, small_image=small_image, small_text=small_text, details=details, state=state, start=module_data.client_data.application_start_time, ) else: large_image = f"{PROFILE_ICON_BASE_URL}{str(module_data.client_data.summoner_icon)}.png" large_text = f"{GAME_MODE_CONVERT_MAP.get(module_data.client_data.gamemode, module_data.client_data.gamemode)}" small_image = BASE_MAP_ICON_URL.format( map_name=MAP_ICON_CONVERT_MAP.get(module_data.client_data.map_id) ) small_text = SMALL_TEXT details = f"{module_data.client_data.queue}" state = f"In Lobby ({module_data.client_data.players}/{module_data.client_data.max_players})" if module_data.cli_args.show_rank: _large_text, _small_image, _small_text = RPCUpdater.show_ranked_data( module_data ) if all([_large_text, _small_image, _small_text]): large_text, small_image, small_text = ( _large_text, _small_image, _small_text, ) rpc.update( large_image=large_image, large_text=large_text, small_image=small_image, small_text=f"{small_text}", details=details, state=state, start=module_data.client_data.application_start_time, ) @staticmethod def show_ranked_data( module_data: ModuleData, ) -> tuple[str, ...]: large_text = small_text = small_image = "" match RANKED_TYPE_MAPPER.get(module_data.client_data.queue_type): case "Ranked Solo/Duo": summoner_rank = module_data.client_data.summoner_rank if summoner_rank.tier: ( small_text, small_image, ) = summoner_rank.rpc_info large_text = SMALL_TEXT case "Ranked Flex": summoner_rank = module_data.client_data.summoner_rank_flex if summoner_rank.tier: ( small_text, small_image, ) = summoner_rank.rpc_info large_text = SMALL_TEXT case "Teamfight Tactics (Ranked)": summoner_rank = module_data.client_data.tft_rank if summoner_rank.tier: ( small_text, small_image, ) = summoner_rank.rpc_info large_text = SMALL_TEXT case "Arena": summoner_rank = module_data.client_data.arena_rank if summoner_rank.tier: ( small_text, small_image, ) = summoner_rank.rpc_info large_text = SMALL_TEXT case _: ... return large_text, small_image, small_text @staticmethod def in_queue_rpc(rpc: Presence, module_data: ModuleData) -> None: large_image = ( f"{PROFILE_ICON_BASE_URL}{module_data.client_data.summoner_icon}.png" ) large_text = f"{GAME_MODE_CONVERT_MAP.get(module_data.client_data.gamemode, module_data.client_data.gamemode)}" small_image = BASE_MAP_ICON_URL.format( map_name=MAP_ICON_CONVERT_MAP.get(module_data.client_data.map_id) ) small_text = SMALL_TEXT if module_data.cli_args.show_rank: _large_text, _small_image, _small_text = RPCUpdater.show_ranked_data( module_data ) if all([_large_text, _small_image, _small_text]): large_text, small_image, small_text = ( _large_text, _small_image, _small_text, ) rpc.update( large_image=large_image, large_text=large_text, small_image=small_image, small_text=small_text, details=f"{module_data.client_data.queue}", state="In Queue", start=int(time.time()), ) @staticmethod def in_champ_select_rpc(rpc: Presence, module_data: ModuleData) -> None: large_image = ( f"{PROFILE_ICON_BASE_URL}{module_data.client_data.summoner_icon}.png" ) large_text = f"{GAME_MODE_CONVERT_MAP.get(module_data.client_data.gamemode, module_data.client_data.gamemode)}" small_image = BASE_MAP_ICON_URL.format( map_name=MAP_ICON_CONVERT_MAP.get(module_data.client_data.map_id) ) small_text = SMALL_TEXT if module_data.cli_args.show_rank: _large_text, _small_image, _small_text = RPCUpdater.show_ranked_data( module_data ) if all([_large_text, _small_image, _small_text]): large_text, small_image, small_text = ( _large_text, _small_image, _small_text, ) rpc.update( large_image=large_image, large_text=large_text, small_image=small_image, small_text=small_text, details=f"{module_data.client_data.queue}", state="In Champ Select", start=int(time.time()), ) # The function that updates discord rich presence, depending on the data def update_rpc(self, module_data: ModuleData): data = module_data.client_data rpc = module_data.rpc if not isinstance(rpc, Presence): # Only continue if rpc is of type Presence. return match data.gameflow_phase: # This value will be set by "/lol-gameflow/v1/gameflow-phase" case GameFlowPhase.IN_PROGRESS: # Handled by the "inGame" flow in __main__.py return case GameFlowPhase.READY_CHECK: # When the READY check comes. We want to just ignore (IN_QUEUE rpc will still show.) return case GameFlowPhase.NONE | GameFlowPhase.WAITING_FOR_STATS | GameFlowPhase.PRE_END_OF_GAME | GameFlowPhase.END_OF_GAME: self.in_client_rpc(rpc, module_data) return case GameFlowPhase.CHAMP_SELECT | GameFlowPhase.GAME_START: # In Champ Select self.in_champ_select_rpc(rpc, module_data) return case GameFlowPhase.MATCHMAKING | GameFlowPhase.READY_CHECK: # In Queue self.in_queue_rpc(rpc, module_data) return case GameFlowPhase.LOBBY: # In Lobby if data.is_custom or data.is_practice: self.in_lobby_rpc(rpc, module_data, is_custom=True) else: # matchmaking lobby self.in_lobby_rpc(rpc, module_data, is_custom=False) return case _: # other unhandled gameflow phases print(f"Unhandled Gameflow Phase: {data.gameflow_phase}") rpc.update( large_image=f"{PROFILE_ICON_BASE_URL}{str(data.summoner_icon)}.png", large_text=f"{data.gameflow_phase}", small_image=LEAGUE_OF_LEGENDS_LOGO, small_text=SMALL_TEXT, details=f"{data.gameflow_phase}", state="Unhandled Gameflow Phase", start=module_data.client_data.application_start_time, ) # Path: league_rpc_linux/lcu_api/lcu_connector.py from argparse import Namespace from typing import Any, Optional from lcu_driver.connection import Connection from lcu_driver.events.responses import WebsocketEventResponse from pypresence import Presence from league_rpc_linux.colors import Colors from league_rpc_linux.lcu_api.base_data import gather_base_data from league_rpc_linux.models.client_data import ArenaStats, RankedStats, TFTStats from league_rpc_linux.models.lcu.current_chat_status import LolChatUser from league_rpc_linux.models.lcu.current_lobby import ( LolLobbyLobbyDto, LolLobbyLobbyGameConfigDto, ) from league_rpc_linux.models.lcu.current_queue import LolGameQueuesQueue from league_rpc_linux.models.lcu.current_summoner import Summoner from league_rpc_linux.models.module_data import ModuleData from league_rpc_linux.models.rpc_updater import RPCUpdater module_data = ModuleData() rpc_updater = RPCUpdater() ## WS Events ## @module_data.connector.ready # type:ignore async def connect(connection: Connection): print( f"{Colors.green}Successfully connected to the League Client API.{Colors.reset}" ) print(f"\n{Colors.orange}Gathering base data.{Colors.reset}") await gather_base_data(connection, module_data) print(f"{Colors.green}Successfully gathered base data.{Colors.reset}") print(f"\n{Colors.orange}Updating Discord rpc with base data{Colors.reset}") rpc_updater.delay_update(module_data) print(f"{Colors.green}Discord RPC successfully updated{Colors.reset}") print(f"\n{Colors.cyan}LeagueRPC is ready{Colors.reset}") @module_data.connector.close # type:ignore async def disconnect(_: Connection): print(f"{Colors.red}Disconnected from the League Client API.{Colors.reset}") @module_data.connector.ws.register( # type:ignore "/lol-summoner/v1/current-summoner", event_types=("UPDATE",) ) async def summoner_updated(_: Connection, event: WebsocketEventResponse) -> None: data = module_data.client_data event_data: dict[str, Any] = event.data # type:ignore data.summoner_name = event_data[Summoner.DISPLAY_NAME] data.summoner_level = event_data[Summoner.SUMMONER_LEVEL] data.summoner_id = event_data[Summoner.SUMMONER_ID] data.summoner_icon = event_data[Summoner.PROFILE_ICON_ID] rpc_updater.delay_update(module_data) @module_data.connector.ws.register( # type:ignore
"/lol-chat/v1/me", event_types=("UPDATE",)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: lipku/metahuman-stream # Path: nerf_triplane/utils.py def custom_meshgrid(*args): # ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid if pver.parse(torch.__version__) < pver.parse('1.10'): return torch.meshgrid(*args) else: return torch.meshgrid(*args, indexing='ij') # Path: nerf_triplane/utils.py def get_audio_features(features, att_mode, index): if att_mode == 0: return features[[index]] elif att_mode == 1: left = index - 8 pad_left = 0 if left < 0: pad_left = -left left = 0 auds = features[left:index] if pad_left > 0: # pad may be longer than auds, so do not use zeros_like auds = torch.cat([torch.zeros(pad_left, *auds.shape[1:], device=auds.device, dtype=auds.dtype), auds], dim=0) return auds elif att_mode == 2: left = index - 4 right = index + 4 pad_left = 0 pad_right = 0 if left < 0: pad_left = -left left = 0 if right > features.shape[0]: pad_right = right - features.shape[0] right = features.shape[0] auds = features[left:right] if pad_left > 0: auds = torch.cat([torch.zeros_like(auds[:pad_left]), auds], dim=0) if pad_right > 0: auds = torch.cat([auds, torch.zeros_like(auds[:pad_right])], dim=0) # [8, 16] return auds else: raise NotImplementedError(f'wrong att_mode: {att_mode}') # Path: nerf_triplane/utils.py @torch.cuda.amp.autocast(enabled=False) def euler_angles_to_matrix(euler_angles: torch.Tensor, convention: str='XYZ') -> torch.Tensor: """ Convert rotations given as Euler angles in radians to rotation matrices. Args: euler_angles: Euler angles in radians as tensor of shape (..., 3). convention: Convention string of three uppercase letters from {"X", "Y", and "Z"}. Returns: Rotation matrices as tensor of shape (..., 3, 3). """ # print(euler_angles, euler_angles.dtype) if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3: raise ValueError("Invalid input euler angles.") if len(convention) != 3: raise ValueError("Convention must have 3 letters.") if convention[1] in (convention[0], convention[2]): raise ValueError(f"Invalid convention {convention}.") for letter in convention: if letter not in ("X", "Y", "Z"): raise ValueError(f"Invalid letter {letter} in convention string.") matrices = [ _axis_angle_rotation(c, e) for c, e in zip(convention, torch.unbind(euler_angles, -1)) ] return torch.matmul(torch.matmul(matrices[0], matrices[1]), matrices[2]) # Path: nerf_triplane/utils.py @torch.cuda.amp.autocast(enabled=False) def convert_poses(poses): # poses: [B, 4, 4] # return [B, 3], 4 rot, 3 trans out = torch.empty(poses.shape[0], 6, dtype=torch.float32, device=poses.device) out[:, :3] = matrix_to_euler_angles(poses[:, :3, :3]) out[:, 3:] = poses[:, :3, 3] return out # Path: nerf_triplane/renderer.py import math import trimesh import numpy as np import random import torch import torch.nn as nn import torch.nn.functional as F import raymarching from .utils import custom_meshgrid, get_audio_features, euler_angles_to_matrix, convert_poses # cascading for cas in range(self.cascade): bound = min(2 ** cas, self.bound) half_grid_size = bound / self.grid_size # scale to current cascade's resolution cas_xyzs = xyzs * (bound - half_grid_size) # add noise in [-hgs, hgs] cas_xyzs += (torch.rand_like(cas_xyzs) * 2 - 1) * half_grid_size # query density aud_norms = self.density(cas_xyzs.to(tmp_grid.dtype), enc_a, eye)['ambient_aud'].reshape(-1).detach().to(tmp_grid.dtype) # assign tmp_grid[cas, indices] = aud_norms # dilate the density_grid (less aggressive culling) tmp_grid = raymarching.morton3D_dilation(tmp_grid) return tmp_grid # # ema update # valid_mask = (self.density_grid >= 0) & (tmp_grid >= 0) # self.density_grid[valid_mask] = torch.maximum(self.density_grid[valid_mask] * decay, tmp_grid[valid_mask]) @torch.no_grad() def get_eye_grid(self, S=128): # call before each epoch to update extra states. if not self.cuda_ray: return # use random auds (different expressions should have similar density grid...) rand_idx = random.randint(0, self.aud_features.shape[0] - 1) auds = get_audio_features(self.aud_features, self.att, rand_idx).to(self.density_bitfield.device) # encode audio enc_a = self.encode_audio(auds) tmp_grid = torch.zeros_like(self.density_grid) # use a random eye area based on training dataset's statistics... if self.exp_eye: eye = self.eye_area[[rand_idx]].to(self.density_bitfield.device) # [1, 1] else: eye = None # full update X = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S) Y = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S) Z = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S) for xs in X: for ys in Y: for zs in Z: # construct points xx, yy, zz = custom_meshgrid(xs, ys, zs) coords = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) # [N, 3], in [0, 128) indices = raymarching.morton3D(coords).long() # [N] xyzs = 2 * coords.float() / (self.grid_size - 1) - 1 # [N, 3] in [-1, 1] # cascading for cas in range(self.cascade): bound = min(2 ** cas, self.bound) half_grid_size = bound / self.grid_size # scale to current cascade's resolution cas_xyzs = xyzs * (bound - half_grid_size) # add noise in [-hgs, hgs] cas_xyzs += (torch.rand_like(cas_xyzs) * 2 - 1) * half_grid_size # query density eye_norms = self.density(cas_xyzs.to(tmp_grid.dtype), enc_a, eye)['ambient_eye'].reshape(-1).detach().to(tmp_grid.dtype) # assign tmp_grid[cas, indices] = eye_norms # dilate the density_grid (less aggressive culling) tmp_grid = raymarching.morton3D_dilation(tmp_grid) return tmp_grid # # ema update # valid_mask = (self.density_grid >= 0) & (tmp_grid >= 0) # self.density_grid[valid_mask] = torch.maximum(self.density_grid[valid_mask] * decay, tmp_grid[valid_mask]) def render(self, rays_o, rays_d, auds, bg_coords, poses, staged=False, max_ray_batch=4096, **kwargs): # rays_o, rays_d: [B, N, 3], assumes B == 1 # auds: [B, 29, 16] # eye: [B, 1] # bg_coords: [1, N, 2] # return: pred_rgb: [B, N, 3] _run = self.run_cuda B, N = rays_o.shape[:2] device = rays_o.device # never stage when cuda_ray if staged and not self.cuda_ray: # not used raise NotImplementedError else: results = _run(rays_o, rays_d, auds, bg_coords, poses, **kwargs) return results def render_torso(self, rays_o, rays_d, auds, bg_coords, poses, staged=False, max_ray_batch=4096, **kwargs): # rays_o, rays_d: [B, N, 3], assumes B == 1 # auds: [B, 29, 16] # eye: [B, 1] # bg_coords: [1, N, 2] # return: pred_rgb: [B, N, 3] _run = self.run_torso B, N = rays_o.shape[:2] device = rays_o.device # never stage when cuda_ray if staged and not self.cuda_ray: # not used raise NotImplementedError else:
results = _run(rays_o, bg_coords, poses, **kwargs)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: mattcar15/bambu-connect # Path: bambu_connect/CameraClient.py class CameraClient: def __init__(self, hostname, access_code, port=6000): self.hostname = hostname self.port = port self.username = "bblp" self.auth_packet = self.__create_auth_packet__(self.username, access_code) self.streaming = False self.stream_thread = None def __create_auth_packet__(self, username, access_code): d = bytearray() d += struct.pack("IIL", 0x40, 0x3000, 0x0) d += username.encode("ascii").ljust(32, b"\x00") d += access_code.encode("ascii").ljust(32, b"\x00") return d def __find_jpeg__(self, buf, start_marker, end_marker): start = buf.find(start_marker) end = buf.find(end_marker, start + len(start_marker)) if start != -1 and end != -1: return buf[start : end + len(end_marker)], buf[end + len(end_marker) :] return None, buf def capture_frame(self): ctx = ssl.SSLContext(ssl.PROTOCOL_TLS_CLIENT) ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE jpeg_start = bytearray.fromhex("ff d8 ff e0") jpeg_end = bytearray.fromhex("ff d9") read_chunk_size = 1024 with socket.create_connection((self.hostname, self.port)) as sock: with ctx.wrap_socket(sock, server_hostname=self.hostname) as ssock: ssock.write(self.auth_packet) buf = bytearray() while True: dr = ssock.recv(read_chunk_size) if not dr: break buf += dr img, buf = self.__find_jpeg__(buf, jpeg_start, jpeg_end) if img: return bytes(img) def capture_stream(self, img_callback): ctx = ssl.SSLContext(ssl.PROTOCOL_TLS_CLIENT) ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE jpeg_start = bytearray.fromhex("ff d8 ff e0") jpeg_end = bytearray.fromhex("ff d9") read_chunk_size = 1024 with socket.create_connection((self.hostname, self.port)) as sock: with ctx.wrap_socket(sock, server_hostname=self.hostname) as ssock: ssock.write(self.auth_packet) buf = bytearray() while self.streaming: dr = ssock.recv(read_chunk_size) if not dr: break buf += dr img, buf = self.__find_jpeg__(buf, jpeg_start, jpeg_end) if img: img_callback(bytes(img)) def start_stream(self, img_callback): if self.streaming: print("Stream already running.") return self.streaming = True self.stream_thread = threading.Thread( target=self.capture_stream, args=(img_callback,) ) self.stream_thread.start() def stop_stream(self): if not self.streaming: print("Stream is not running.") return self.streaming = False self.stream_thread.join() # Path: bambu_connect/WatchClient.py class WatchClient: def __init__(self, hostname: str, access_code: str, serial: str): self.hostname = hostname self.access_code = access_code self.serial = serial self.client = self.__setup_mqtt_client() self.values = {} self.printerStatus = None self.message_callback = None def __setup_mqtt_client(self) -> mqtt.Client: client = mqtt.Client() client.username_pw_set("bblp", self.access_code) client.tls_set(tls_version=ssl.PROTOCOL_TLS, cert_reqs=ssl.CERT_NONE) client.tls_insecure_set(True) client.on_connect = self.on_connect client.on_message = self.on_message return client def on_connect(self, client: mqtt.Client, userdata: Any, flags: Any, rc: int): client.subscribe(f"device/{self.serial}/report") if self.on_connect_callback: self.on_connect_callback() def start( self, message_callback: Optional[Callable[[PrinterStatus], None]] = None, on_connect_callback: Optional[Callable[[], None]] = None, ): self.message_callback = message_callback self.on_connect_callback = on_connect_callback self.client.connect(self.hostname, 8883, 60) self.client.loop_start() def stop(self): self.client.loop_stop() self.client.disconnect() def on_message(self, client, userdata, msg): doc = json.loads(msg.payload) try: if not doc: return self.values = dict(self.values, **doc["print"]) self.printerStatus = PrinterStatus(**self.values) if self.message_callback: self.message_callback(self.printerStatus) except KeyError: pass # Path: bambu_connect/ExecuteClient.py class ExecuteClient: def __init__(self, hostname: str, access_code: str, serial: str): self.hostname = hostname self.access_code = access_code self.serial = serial self.client = self.__setup_mqtt_client() def __setup_mqtt_client(self): client = mqtt.Client() client.username_pw_set("bblp", self.access_code) client.tls_set(tls_version=ssl.PROTOCOL_TLS, cert_reqs=ssl.CERT_NONE) client.tls_insecure_set(True) client.connect(self.hostname, 8883, 60) return client def disconnect(self): self.client.disconnect() def send_command(self, payload): self.client.loop_start() self.client.publish(f"device/{self.serial}/request", payload) self.client.loop_stop() def send_gcode(self, gcode): payload = f'{{"print": {{"command": "gcode_line", "sequence_id": 2006, "param": "{gcode} \n"}}, "user_id":"1234567890"}}' self.send_command(payload) # this dumps all the printer stats, for minor print updates the printer will send them automatically. def dump_info(self): payload = f'{{"pushing": {{ "sequence_id": 1, "command": "pushall"}}, "user_id":"1234567890"}}' self.send_command(payload) # when using this, choose the send to printer option in bambu or cura slicer. Provide the file name (no path) def start_print(self, file): payload = json.dumps( { "print": { "sequence_id": 13, "command": "project_file", "param": "Metadata/plate_1.gcode", "subtask_name": f"{file}", "url": f"ftp://{file}", "bed_type": "auto", "timelapse": False, "bed_leveling": True, "flow_cali": False, "vibration_cali": True, "layer_inspect": False, "use_ams": False, "profile_id": "0", "project_id": "0", "subtask_id": "0", "task_id": "0", } } ) self.send_command(payload) # Path: bambu_connect/FileClient.py class FileClient: def __init__(self, hostname: str, access_code: str, serial: str): self.hostname = hostname self.access_code = access_code self.serial = serial def get_files(self, directory="/", extension=".3mf"): command = [ "curl", "--ftp-pasv", "--insecure", f"ftps://{self.hostname}{directory}", "--user", f"bblp:{self.access_code}", ] result = subprocess.run(command, capture_output=True, text=True) filtered_files = [] for line in result.stdout.split("\n"): if line.strip(): parts = re.split(r"\s+", line, maxsplit=8) filename = parts[-1] if filename.endswith(extension): filtered_files.append(filename) return filtered_files def download_file(self, remote_path: str, local_path: str, verbose=True): if not os.path.exists(local_path): os.makedirs(local_path) local_file_path = os.path.join(local_path, os.path.basename(remote_path)) command = [ "curl", "-o", local_file_path, "--ftp-pasv", "--insecure", f"ftps://{self.hostname}{remote_path}", "--user", f"bblp:{self.access_code}", ] if verbose: result = subprocess.run(command) else: result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if result.returncode != 0: if verbose: print(result.stderr.decode()) return False return True # Path: bambu_connect/utils/models.py class PrinterStatus: upload: Optional[Upload] = None nozzle_temper: Optional[float] = None nozzle_target_temper: Optional[float] = None bed_temper: Optional[float] = None bed_target_temper: Optional[float] = None chamber_temper: Optional[float] = None mc_print_stage: Optional[str] = None heatbreak_fan_speed: Optional[str] = None cooling_fan_speed: Optional[str] = None big_fan1_speed: Optional[str] = None big_fan2_speed: Optional[str] = None mc_percent: Optional[int] = None mc_remaining_time: Optional[int] = None ams_status: Optional[int] = None ams_rfid_status: Optional[int] = None hw_switch_state: Optional[int] = None spd_mag: Optional[int] = None spd_lvl: Optional[int] = None print_error: Optional[int] = None lifecycle: Optional[str] = None wifi_signal: Optional[str] = None gcode_state: Optional[str] = None gcode_file_prepare_percent: Optional[str] = None queue_number: Optional[int] = None queue_total: Optional[int] = None queue_est: Optional[int] = None queue_sts: Optional[int] = None project_id: Optional[str] = None profile_id: Optional[str] = None task_id: Optional[str] = None subtask_id: Optional[str] = None subtask_name: Optional[str] = None gcode_file: Optional[str] = None stg: Optional[List[Any]] = None stg_cur: Optional[int] = None print_type: Optional[str] = None home_flag: Optional[int] = None mc_print_line_number: Optional[str] = None mc_print_sub_stage: Optional[int] = None sdcard: Optional[bool] = None force_upgrade: Optional[bool] = None mess_production_state: Optional[str] = None layer_num: Optional[int] = None total_layer_num: Optional[int] = None s_obj: Optional[List[Any]] = None fan_gear: Optional[int] = None hms: Optional[List[Any]] = None online: Optional[Online] = None ams: Optional[AMS] = None ipcam: Optional[IPCam] = None vt_tray: Optional[VTTray] = None lights_report: Optional[List[LightsReport]] = None upgrade_state: Optional[UpgradeState] = None command: Optional[str] = None msg: Optional[int] = None sequence_id: Optional[str] = None def __init__(self, **data): self.upload = Upload(**data["upload"]) if "upload" in data else None self.nozzle_temper = data.get("nozzle_temper") self.nozzle_target_temper = data.get("nozzle_target_temper") self.bed_temper = data.get("bed_temper") self.bed_target_temper = data.get("bed_target_temper") self.chamber_temper = data.get("chamber_temper") self.mc_print_stage = data.get("mc_print_stage") self.heatbreak_fan_speed = data.get("heatbreak_fan_speed") self.cooling_fan_speed = data.get("cooling_fan_speed") self.big_fan1_speed = data.get("big_fan1_speed") self.big_fan2_speed = data.get("big_fan2_speed") self.mc_percent = data.get("mc_percent") self.mc_remaining_time = data.get("mc_remaining_time") self.ams_status = data.get("ams_status") self.ams_rfid_status = data.get("ams_rfid_status") self.hw_switch_state = data.get("hw_switch_state") self.spd_mag = data.get("spd_mag") self.spd_lvl = data.get("spd_lvl") self.print_error = data.get("print_error") self.lifecycle = data.get("lifecycle") self.wifi_signal = data.get("wifi_signal") self.gcode_state = data.get("gcode_state") self.gcode_file_prepare_percent = data.get("gcode_file_prepare_percent") self.queue_number = data.get("queue_number") self.queue_total = data.get("queue_total") self.queue_est = data.get("queue_est") self.queue_sts = data.get("queue_sts") self.project_id = data.get("project_id") self.profile_id = data.get("profile_id") self.task_id = data.get("task_id") self.subtask_id = data.get("subtask_id") self.subtask_name = data.get("subtask_name") self.gcode_file = data.get("gcode_file") self.stg = data.get("stg", []) self.stg_cur = data.get("stg_cur") self.print_type = data.get("print_type") self.home_flag = data.get("home_flag") self.mc_print_line_number = data.get("mc_print_line_number") self.mc_print_sub_stage = data.get("mc_print_sub_stage") self.sdcard = data.get("sdcard", False) self.force_upgrade = data.get("force_upgrade", False) self.mess_production_state = data.get("mess_production_state") self.layer_num = data.get("layer_num") self.total_layer_num = data.get("total_layer_num") self.s_obj = data.get("s_obj", []) self.fan_gear = data.get("fan_gear") self.hms = data.get("hms", []) self.online = Online(**data["online"]) if "online" in data else None self.ams = AMS(**data["ams"]) if "ams" in data else None self.ipcam = IPCam(**data["ipcam"]) if "ipcam" in data else None self.vt_tray = VTTray(**data["vt_tray"]) if "vt_tray" in data else None self.lights_report = [LightsReport(**lr) for lr in data.get("lights_report", [])] self.upgrade_state = UpgradeState(**data["upgrade_state"]) if "upgrade_state" in data else None self.command = data.get("command") self.msg = data.get("msg") self.sequence_id = data.get("sequence_id") # Path: bambu_connect/BambuClient.py from .CameraClient import CameraClient from .WatchClient import WatchClient from .ExecuteClient import ExecuteClient from .FileClient import FileClient from .utils.models import PrinterStatus from typing import Callable, Dict, Optional, Any class BambuClient: def __init__(self, hostname: str, access_code: str, serial: str): self.cameraClient = CameraClient(hostname, access_code) self.watchClient = WatchClient(hostname, access_code, serial) self.executeClient = ExecuteClient(hostname, access_code, serial) self.fileClient = FileClient(hostname, access_code, serial) def __del__(self): self.executeClient.disconnect() ############# Camera Wrappers ############# def start_camera_stream(self, img_callback): self.cameraClient.start_stream(img_callback) def stop_camera_stream(self): self.cameraClient.stop_stream() def capture_camera_frame(self): return self.cameraClient.capture_frame() ############# WatchClient Wrappers ############# def start_watch_client( self, message_callback: Optional[Callable[[PrinterStatus], None]] = None, on_connect_callback: Optional[Callable[[], None]] = None, ):
self.watchClient.start(message_callback, on_connect_callback)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: linyq2117/TagCLIP # Path: utils.py def scoremap2bbox(scoremap, threshold, multi_contour_eval=False): height, width = scoremap.shape scoremap_image = np.expand_dims((scoremap * 255).astype(np.uint8), 2) _, thr_gray_heatmap = cv2.threshold( src=scoremap_image, thresh=int(threshold * np.max(scoremap_image)), maxval=255, type=cv2.THRESH_BINARY) contours = cv2.findContours( image=thr_gray_heatmap, mode=cv2.RETR_EXTERNAL, method=cv2.CHAIN_APPROX_SIMPLE)[_CONTOUR_INDEX] if len(contours) == 0: return np.asarray([[0, 0, 0, 0]]), 1 if not multi_contour_eval: contours = [max(contours, key=cv2.contourArea)] estimated_boxes = [] for contour in contours: x, y, w, h = cv2.boundingRect(contour) x0, y0, x1, y1 = x, y, x + w, y + h x1 = min(x1, width - 1) y1 = min(y1, height - 1) estimated_boxes.append([x0, y0, x1, y1]) return np.asarray(estimated_boxes), len(contours) # Path: utils.py def parse_xml_to_dict(xml): """ Args: xml: xml tree obtained by parsing XML file contents using lxml.etree Returns: Python dictionary holding XML contents. """ if len(xml) == 0: return {xml.tag: xml.text} result = {} for child in xml: child_result = parse_xml_to_dict(child) if child.tag != 'object': result[child.tag] = child_result[child.tag] else: if child.tag not in result: result[child.tag] = [] result[child.tag].append(child_result[child.tag]) return {xml.tag: result} # Path: utils.py def _convert_image_to_rgb(image): return image.convert("RGB") # Path: utils.py def compute_AP(predictions, labels): num_class = predictions.size(1) ap = torch.zeros(num_class).to(predictions.device) empty_class = 0 for idx_cls in range(num_class): prediction = predictions[:, idx_cls] label = labels[:, idx_cls] #mask = label.abs() == 1 if (label > 0).sum() == 0: empty_class += 1 continue binary_label = torch.clamp(label, min=0, max=1) sorted_pred, sort_idx = prediction.sort(descending=True) sorted_label = binary_label[sort_idx] tmp = (sorted_label == 1).float() tp = tmp.cumsum(0) fp = (sorted_label != 1).float().cumsum(0) num_pos = binary_label.sum() rec = tp/num_pos prec = tp/(tp+fp) ap_cls = (tmp*prec).sum()/num_pos ap[idx_cls].copy_(ap_cls) return ap # Path: utils.py def compute_F1(predictions, labels, mode_F1, k_val, use_relative=False): if k_val >= 1: idx = predictions.topk(dim=1, k=k_val)[1] predictions.fill_(0) predictions.scatter_(dim=1, index=idx, src=torch.ones(predictions.size(0), k_val, dtype=predictions.dtype).to(predictions.device)) else: if use_relative: ma = predictions.max(dim=1)[0] mi = predictions.min(dim=1)[0] step = ma - mi thres = mi + k_val * step for i in range(predictions.shape[0]): predictions[i][predictions[i] > thres[i]] = 1 predictions[i][predictions[i] <= thres[i]] = 0 else: predictions[predictions > k_val] = 1 predictions[predictions <= k_val] = 0 if mode_F1 == 'overall': predictions = predictions.bool() labels = labels.bool() TPs = ( predictions & labels).sum() FPs = ( predictions & ~labels).sum() FNs = (~predictions & labels).sum() eps = 1.e-9 Ps = TPs / (TPs + FPs + eps) Rs = TPs / (TPs + FNs + eps) p = Ps.mean() r = Rs.mean() f1 = 2*p*r/(p+r) elif mode_F1 == 'category': # calculate P and R predictions = predictions.bool() labels = labels.bool() TPs = ( predictions & labels).sum(axis=0) FPs = ( predictions & ~labels).sum(axis=0) FNs = (~predictions & labels).sum(axis=0) eps = 1.e-9 Ps = TPs / (TPs + FPs + eps) Rs = TPs / (TPs + FNs + eps) p = Ps.mean() r = Rs.mean() f1 = 2*p*r/(p+r) elif mode_F1 == 'sample': # calculate P and R predictions = predictions.bool() labels = labels.bool() TPs = ( predictions & labels).sum(axis=1) FPs = ( predictions & ~labels).sum(axis=1) FNs = (~predictions & labels).sum(axis=1) eps = 1.e-9 Ps = TPs / (TPs + FPs + eps) Rs = TPs / (TPs + FNs + eps) p = Ps.mean() r = Rs.mean() f1 = 2*p*r/(p+r) return f1, p, r # Path: utils.py def _transform_resize(h, w): return Compose([ #Resize(n_px, interpolation=BICUBIC), Resize((h,w), interpolation=BICUBIC), #CenterCrop(n_px), #RandomHorizontalFlip(1.0), _convert_image_to_rgb, ToTensor(), Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) # Path: clip_text.py BACKGROUND_CATEGORY_VOC = ['ground','land','grass','tree','building','wall','sky','lake','water','river','sea','railway','railroad','keyboard','helmet', 'cloud','house','mountain','ocean','road','rock','street','valley','bridge','sign', ] BACKGROUND_CATEGORY_COCO = ['ground','land','grass','tree','building','wall','sky','lake','water','river','sea','railway','railroad','helmet', 'cloud','house','mountain','ocean','road','rock','street','valley','bridge', ] # Path: classify.py import clip import torch import cv2 import numpy as np import pickle import os import math import torch.nn.functional as F import os import argparse import warnings from PIL import Image from tqdm import tqdm from lxml import etree from utils import scoremap2bbox, parse_xml_to_dict, _convert_image_to_rgb, compute_AP, compute_F1, _transform_resize from clip_text import class_names_voc, BACKGROUND_CATEGORY_VOC, class_names_coco, BACKGROUND_CATEGORY_COCO, class_names_coco_stuff182_dict, coco_stuff_182_to_27 gt_label_id = [] with torch.no_grad(): text_features = clip.encode_text_with_prompt_ensemble(model, class_names, device) text_features = text_features / text_features.norm(dim=-1, keepdim=True) for im_idx, im in enumerate(tqdm(image_list)): image_path = os.path.join(args.img_root, im) label_id_list = all_label_list[im_idx] label_id_list = [int(lid) for lid in label_id_list] if args.dataset == 'cocostuff': label_id_list = [coco_stuff_182_to_171[int(lid)] for lid in label_id_list] gt_label_id.append(label_id_list) pil_img = Image.open(image_path) array_img = np.array(pil_img) ori_height, ori_width = array_img.shape[:2] if len(array_img.shape) == 2: array_img = np.stack([array_img, array_img, array_img], axis=2) pil_img = Image.fromarray(np.uint8(array_img)) if model_type == 'clip': patch_size = 16 preprocess = _transform_resize(int(np.ceil(int(ori_height) / patch_size) * patch_size), int(np.ceil(int(ori_width) / patch_size) * patch_size)) image = preprocess(pil_img).unsqueeze(0).to(device) with torch.no_grad(): # Extract image features h, w = image.shape[-2], image.shape[-1] image_features, attn_weight_list = model.encode_image_tagclip(image, h, w, attn_mask=1) image_features = image_features / image_features.norm(dim=-1, keepdim=True) attn_weight = [aw[:, 1:, 1:] for aw in attn_weight_list] attn_vote = torch.stack(attn_weight, dim=0).squeeze() thres0 = attn_vote.reshape(attn_vote.shape[0], -1) thres0 = torch.mean(thres0, dim=-1).reshape(attn_vote.shape[0], 1, 1) thres0 = thres0.repeat(1, attn_vote.shape[1], attn_vote.shape[2]) if args.dataset == 'cocostuff': attn_weight = torch.stack(attn_weight, dim=0)[:-1] else: attn_weight = torch.stack(attn_weight, dim=0)[8:-1] attn_cnt = attn_vote > thres0 attn_cnt = attn_cnt.float() attn_cnt = torch.sum(attn_cnt, dim=0) attn_cnt = attn_cnt >= 4 attn_weight = torch.mean(attn_weight, dim=0)[0] attn_weight = attn_weight * attn_cnt.float() logit_scale = model.logit_scale.exp() logits = logit_scale * image_features @ text_features.t()#torch.Size([1, 197, 81]) logits = logits[:, 1:, :] logits = logits.softmax(dim=-1) logits_coarse = logits.squeeze() logits = torch.matmul(attn_weight, logits) logits = logits.squeeze() logits = mask_attn(logits_coarse, logits, h, w, attn_weight) logits_max = torch.max(logits, dim=0)[0] logits_max = logits_max[:NUM_CLASSES] logits_max = cwr(logits, logits_max, h, w, image, text_features) logits_max = logits_max.cpu().numpy() pred_label_id.append(logits_max) else: raise NotImplementedError() gt_one_hot = np.zeros((len(gt_label_id), NUM_CLASSES)) for i in range(len(gt_label_id)): gt_ids = gt_label_id[i] for gt_id in gt_ids: gt_one_hot[i][gt_id] = 1 predictions = torch.tensor(pred_label_id) labels = torch.tensor(gt_one_hot) # compute AP ap = compute_AP(predictions, labels) print('================================================') print('mAP: %.6f' % torch.mean(ap)) # compute F1, P, R with specific relative threshold ma = predictions.max(dim=1)[0] mi = predictions.min(dim=1)[0] step = ma - mi if args.dataset == 'cocostuff': thres_abs = 0.1 else: thres_abs = 0.5 F1, P, R = compute_F1(predictions.clone(), labels.clone(), 'overall', thres_abs, use_relative=True) print('F1: %.6f, Precision: %.6f, Recall: %.6f' % (torch.mean(F1), torch.mean(P), torch.mean(R))) print('================================================\n') #save class labels if args.save_file: save_path = './output/{}_val_tagclip.txt'.format(args.dataset) print('>>>writing to {}'.format(save_path)) thres_rel = mi + thres_abs * step with open(save_path, 'w') as f: for im_idx, im in enumerate(image_list): line = im.replace('.jpg','') for index, value in enumerate(pred_label_id[im_idx]): if value > thres_rel[im_idx]: line += " {}".format(index) if line == im.replace('.jpg',''): line += " {}".format(np.argmax(pred_label_id[im_idx])) line += "\n" f.writelines(line) if __name__ == "__main__": parser = argparse.ArgumentParser(description='')
parser.add_argument('--dataset', type=str, default='voc2007', choices=['voc2007', 'voc2012', 'coco2014', 'coco2017', 'cocostuff'])
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: video-db/videodb-python # Path: videodb/_constants.py class ApiPath: collection = "collection" upload = "upload" video = "video" stream = "stream" thumbnail = "thumbnail" upload_url = "upload_url" transcription = "transcription" index = "index" search = "search" compile = "compile" workflow = "workflow" # Path: videodb/collection.py class Collection: def __init__(self, _connection, id: str, name: str = None, description: str = None): self._connection = _connection self.id = id self.name = name self.description = description def get_videos(self) -> list[Video]: videos_data = self._connection.get(path=f"{ApiPath.video}") return [Video(self._connection, **video) for video in videos_data.get("videos")] def get_video(self, video_id: str) -> Video: video_data = self._connection.get(path=f"{ApiPath.video}/{video_id}") return Video(self._connection, **video_data) def delete_video(self, video_id: str) -> None: """Delete the video :param str video_id: The id of the video to be deleted :raises InvalidRequestError: If the delete fails :return: None if the delete is successful :rtype: None """ return self._connection.delete(path=f"{ApiPath.video}/{video_id}") def search( self, query: str, type: Optional[str] = SearchType.semantic, result_threshold: Optional[int] = None, score_threshold: Optional[int] = None, dynamic_score_percentage: Optional[int] = None, ) -> SearchResult: search = SearchFactory(self._connection).get_search(type) return search.search_inside_collection( self.id, query, result_threshold, score_threshold, dynamic_score_percentage, ) def upload( self, file_path: str = None, url: Optional[str] = None, name: Optional[str] = None, description: Optional[str] = None, callback_url: Optional[str] = None, ) -> Video: upload_data = upload( self._connection, file_path, url, name, description, callback_url, ) return Video(self._connection, **upload_data) if upload_data else None # Path: videodb/_utils/_http_client.py class HttpClient: """Http client for making requests""" def __init__( self, api_key: str, base_url: str, max_retries: Optional[int] = HttpClientDefaultValues.max_retries, ) -> None: """Create a new http client instance :param str api_key: The api key to use for authentication :param str base_url: The base url to use for the api :param int max_retries: (optional) The maximum number of retries to make for a request """ self.session = requests.Session() retries = Retry( total=max_retries, backoff_factor=HttpClientDefaultValues.backoff_factor, status_forcelist=HttpClientDefaultValues.status_forcelist, ) adapter = HTTPAdapter(max_retries=retries) self.session.mount("http://", adapter) self.session.mount("https://", adapter) self.session.headers.update( {"x-access-token": api_key, "Content-Type": "application/json"} ) self.base_url = base_url logger.debug(f"Initialized http client with base url: {self.base_url}") def _make_request( self, method: Callable[..., requests.Response], path: str, base_url: Optional[str] = None, headers: Optional[dict] = None, **kwargs, ): """Make a request to the api :param Callable method: The method to use for the request :param str path: The path to make the request to :param str base_url: (optional) The base url to use for the request :param dict headers: (optional) The headers to use for the request :param kwargs: The keyword arguments to pass to the request method :return: json response from the request """ try: url = f"{base_url or self.base_url}/{path}" timeout = kwargs.pop("timeout", HttpClientDefaultValues.timeout) request_headers = {**self.session.headers, **(headers or {})} response = method(url, headers=request_headers, timeout=timeout, **kwargs) response.raise_for_status() return self._parse_response(response) except requests.exceptions.RequestException as e: self._handle_request_error(e) def _handle_request_error(self, e: requests.exceptions.RequestException) -> None: """Handle request errors""" if isinstance(e, requests.exceptions.HTTPError): try: error_message = e.response.json().get("message", "Unknown error") except ValueError: error_message = e.response.text if e.response.status_code == 401: raise AuthenticationError( f"Error: {error_message}", e.response ) from None else: raise InvalidRequestError( f"Invalid request: {error_message}", e.response ) from None elif isinstance(e, requests.exceptions.RetryError): raise InvalidRequestError( "Invalid request: Max retries exceeded", e.response ) from None elif isinstance(e, requests.exceptions.Timeout): raise InvalidRequestError( "Invalid request: Request timed out", e.response ) from None elif isinstance(e, requests.exceptions.ConnectionError): raise InvalidRequestError( "Invalid request: Connection error", e.response ) from None else: raise InvalidRequestError( f"Invalid request: {str(e)}", e.response ) from None @backoff.on_exception(backoff.expo, Exception, max_time=500, logger=None) def _get_output(self, url: str): """Get the output from an async request""" response_json = self.session.get(url).json() if ( response_json.get("status") == Status.in_progress or response_json.get("status") == Status.processing ): logger.debug("Waiting for processing to complete") raise Exception("Stuck on processing status") from None return response_json.get("response") or response_json def _parse_response(self, response: requests.Response): """Parse the response from the api""" try: response_json = response.json() if ( response_json.get("status") == Status.processing and response_json.get("request_type", "sync") == "async" ): return None elif ( response_json.get("status") == Status.processing and response_json.get("request_type", "sync") == "sync" ): response_json = self._get_output( response_json.get("data").get("output_url") ) if response_json.get("success"): return response_json.get("data") else: raise InvalidRequestError( f"Invalid request: {response_json.get('message')}", response ) from None elif response_json.get("success"): return response_json.get("data") else: raise InvalidRequestError( f"Invalid request: {response_json.get('message')}", response ) from None except ValueError: raise InvalidRequestError( f"Invalid request: {response.text}", response ) from None def get(self, path: str, **kwargs) -> requests.Response: """Make a get request""" return self._make_request(self.session.get, path, **kwargs) def post(self, path: str, data=None, **kwargs) -> requests.Response: """Make a post request""" return self._make_request(self.session.post, path, json=data, **kwargs) def put(self, path: str, data=None, **kwargs) -> requests.Response: """Make a put request""" return self._make_request(self.session.put, path, json=data, **kwargs) def delete(self, path: str, **kwargs) -> requests.Response: """Make a delete request""" return self._make_request(self.session.delete, path, **kwargs) def patch(self, path: str, data=None, **kwargs) -> requests.Response: """Make a patch request""" return self._make_request(self.session.patch, path, json=data, **kwargs) # Path: videodb/video.py class Video: def __init__(self, _connection, id: str, collection_id: str, **kwargs) -> None: self._connection = _connection self.id = id self.collection_id = collection_id self.stream_url = kwargs.get("stream_url", None) self.player_url = kwargs.get("player_url", None) self.name = kwargs.get("name", None) self.description = kwargs.get("description", None) self.thumbnail_url = kwargs.get("thumbnail_url", None) self.length = float(kwargs.get("length", 0.0)) self.transcript = kwargs.get("transcript", None) self.transcript_text = kwargs.get("transcript_text", None) def __repr__(self) -> str: return ( f"Video(" f"id={self.id}, " f"collection_id={self.collection_id}, " f"stream_url={self.stream_url}, " f"player_url={self.player_url}, " f"name={self.name}, " f"description={self.description}, " f"thumbnail_url={self.thumbnail_url}, " f"length={self.length})" ) def __getitem__(self, key): return self.__dict__[key] def search( self, query: str, search_type: Optional[str] = SearchType.semantic, result_threshold: Optional[int] = None, score_threshold: Optional[int] = None, dynamic_score_percentage: Optional[int] = None, ) -> SearchResult: search = SearchFactory(self._connection).get_search(search_type) return search.search_inside_video( self.id, query, result_threshold, score_threshold, dynamic_score_percentage, ) def delete(self) -> None: """Delete the video :raises InvalidRequestError: If the delete fails :return: None if the delete is successful :rtype: None """ self._connection.delete(path=f"{ApiPath.video}/{self.id}") def generate_stream(self, timeline: Optional[list[tuple[int, int]]] = None) -> str: """Generate the stream url of the video :param list timeline: The timeline of the video to be streamed. Defaults to None. :raises InvalidRequestError: If the get_stream fails :return: The stream url of the video :rtype: str """ if not timeline and self.stream_url: return self.stream_url stream_data = self._connection.post( path=f"{ApiPath.video}/{self.id}/{ApiPath.stream}", data={ "timeline": timeline, "length": self.length, }, ) return stream_data.get("stream_url", None) def generate_thumbnail(self): if self.thumbnail_url: return self.thumbnail_url thumbnail_data = self._connection.get( path=f"{ApiPath.video}/{self.id}/{ApiPath.thumbnail}" ) self.thumbnail_url = thumbnail_data.get("thumbnail_url") return self.thumbnail_url def _fetch_transcript(self, force: bool = False) -> None: if self.transcript and not force: return transcript_data = self._connection.get( path=f"{ApiPath.video}/{self.id}/{ApiPath.transcription}", params={"force": "true" if force else "false"}, ) self.transcript = transcript_data.get("word_timestamps", []) self.transcript_text = transcript_data.get("text", "") def get_transcript(self, force: bool = False) -> list[dict]: self._fetch_transcript(force) return self.transcript def get_transcript_text(self, force: bool = False) -> str: self._fetch_transcript(force) return self.transcript_text def index_spoken_words(self) -> None: """Semantic indexing of spoken words in the video :raises InvalidRequestError: If the video is already indexed :return: None if the indexing is successful :rtype: None """ self._fetch_transcript() self._connection.post( path=f"{ApiPath.video}/{self.id}/{ApiPath.index}", data={ "index_type": IndexType.semantic, }, ) def add_subtitle(self) -> str: subtitle_data = self._connection.post( path=f"{ApiPath.video}/{self.id}/{ApiPath.workflow}", data={ "type": Workflows.add_subtitles, }, ) return subtitle_data.get("stream_url", None) def insert_video(self, video, timestamp: float) -> str: """Insert a video into another video :param Video video: The video to be inserted :param float timestamp: The timestamp where the video should be inserted :raises InvalidRequestError: If the insert fails :return: The stream url of the inserted video :rtype: str """ if timestamp > float(self.length): timestamp = float(self.length) pre_shot = Shot(self._connection, self.id, timestamp, "", 0, timestamp) inserted_shot = Shot( self._connection, video.id, video.length, "", 0, video.length ) post_shot = Shot( self._connection, self.id, self.length - timestamp, "", timestamp, self.length, ) all_shots = [pre_shot, inserted_shot, post_shot] compile_data = self._connection.post( path=f"{ApiPath.compile}", data=[ { "video_id": shot.video_id, "collection_id": self.collection_id, "shots": [(float(shot.start), float(shot.end))], } for shot in all_shots ], ) return compile_data.get("stream_url", None) def play(self) -> str: """Open the player url in the browser/iframe and return the stream url :return: The stream url :rtype: str """ return play_stream(self.stream_url) # Path: videodb/_upload.py def upload( _connection, file_path: str = None, url: str = None, name: Optional[str] = None, description: Optional[str] = None, callback_url: Optional[str] = None, ) -> dict: if not file_path and not url: raise VideodbError("Either file_path or url is required") if file_path and url: raise VideodbError("Only one of file_path or url is allowed") if file_path: try: name = file_path.split("/")[-1].split(".")[0] if not name else name upload_url_data = _connection.get( path=f"{ApiPath.collection}/{_connection.collection_id}/{ApiPath.upload_url}", params={"name": name}, ) upload_url = upload_url_data.get("upload_url") with open(file_path, "rb") as file: files = {"file": (name, file)} response = requests.post(upload_url, files=files) response.raise_for_status() url = upload_url except FileNotFoundError as e: raise VideodbError("File not found", cause=e) except HTTPError as e: raise VideodbError("Error while uploading file", cause=e) upload_data = _connection.post( path=f"{ApiPath.collection}/{_connection.collection_id}/{ApiPath.upload}", data={ "url": url, "name": name, "description": description, "callback_url": callback_url, }, ) return upload_data # Path: videodb/client.py import logging from typing import ( Optional, ) from videodb._constants import ( ApiPath, ) from videodb.collection import Collection from videodb._utils._http_client import HttpClient from videodb.video import Video from videodb._upload import ( upload, ) logger = logging.getLogger(__name__) class Connection(HttpClient): def __init__(self, api_key: str, base_url: str) -> None: self.api_key = api_key self.base_url = base_url self.collection_id = "default" super().__init__(api_key, base_url) def get_collection(self, collection_id: Optional[str] = "default") -> Collection: collection_data = self.get(path=f"{ApiPath.collection}/{collection_id}") self.collection_id = collection_data.get("id", "default") return Collection( self, self.collection_id, collection_data.get("name"), collection_data.get("description"), ) def upload( self, file_path: str = None, url: str = None, name: Optional[str] = None,
description: Optional[str] = None,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: IDEA-CCNL/Real-Gemini # Path: real_gemini/tools/gpt4v_tool.py class GPT4VTool(object): _name_ = "GPT-4-Vision" _description_ = "这个工具是GPT for vision的调用接口。用于图像到文本的理解。本工具的输入是一段文本指令和一张或者多张图片,请注意,工具的输入由一个JSON字符串组成,json包括两个key,question和image_input。question表示文本指令,image_input表示图片路径或存放图片的目录。例如:{{\"question\": QUESTION, \"image_input\": IMAGE_PATH_OR_DIR}}。A wrapper around OpenAI GPT4V API. Useful for image-to-text understanding when you need to generate text from some images and a text description. The input of this tool is a text prompt and one or more images. Please note, the input of the tool consists of a JSON string, the json includes two keys, question and image_input. The question represents text instructions, and image_input represents the image path or the directory where the images are stored. For example: {{\"question\": QUESTION, \"image_input\": IMAGE_PATH_OR_DIR}}." _return_direct_ = False def __init__(self): self._gpt4v = ChatOpenAI( model="gpt-4-vision-preview", max_tokens=256) self.max_dialog_turn = 3 self.history = ChatMessageHistory() self.history.add_message( SystemMessage( content=[ {"type": "text", "text": _OPEN_AI_SYSTEM_PROMPT} ] ) ) def inference(self, input_str: str): input_dict = json.loads(input_str) image_path = input_dict["image_input"] if os.path.isdir(image_path): image_paths = [ os.path.join(image_path, path) for path in os.listdir(image_path)] else: image_paths = [image_path] base64_images = [] for image_path in image_paths: base64_image = image2base64(load_image(image_path)) base64_images.append(f"data:image/jpeg;base64,{base64_image}") human_contents = [] human_contents.append({"type": "text", "text": input_dict["question"]}) for base64_image in base64_images: human_contents.append({ "type": "image_url", "image_url": {"url": base64_image} }) # images self.history.add_message(HumanMessage(content=human_contents)) response_msg = self._gpt4v.invoke(self.history.messages) # 历史只保留一张图 self.history.messages.pop() human_contents = [] human_contents.append({"type": "text", "text": input_dict["question"]}) human_contents.append({"type": "image_url", "image_url": {"url": base64_images[-1]}}) self.history.add_message(HumanMessage(content=human_contents)) self.history.add_message(response_msg) # 只保留self.max_dialog_turn轮对话 if len(self.history.messages) > 1 + 2 * self.max_dialog_turn: self.history.messages = [self.history.messages[0]] + self.history.messages[-2 * self.max_dialog_turn: ] # print(self.history.messages) return response_msg.content # Path: real_gemini/tools/image_generation_tool.py class TaiyiGeneralTool(object): _name_ = "taiyi general image generation" _description_ = "Taiyi General的API,用于从文本生成图像。当你需要从文本描述生成图像时非常有用。输入应该是文本,即图像描述。A wrapper around Taiyi General API for text to image generation. Useful for when you need to generate images from a text description. Input should be text, i.e, an image description." _return_direct_ = True def __init__(self): self.prompter = ChatOpenAI( model="gpt-3.5-turbo", max_tokens=256) self.host = os.getenv("IMAGE_GENERATION_SERVER_HOST") self.port = os.getenv("IMAGE_GENERATION_SERVER_PORT") def _upgrade_prompt(self, prompt): messages = [] messages.append( SystemMessage( content=[ {"type": "text", "text": "我正在使用一个Stable Diffusion的AI图像生成工具,我想让你充当我的prompt优化生成器。在我想生成的主题后,请帮我添加各种关键词,使得我的主题的描述更加详细,添加的关键词包括:主体、背景效果、风格、拍摄方式。例如,如果我输入“跑车”,你将生成关键词,如:“跑车,高清,4k,真实细致的跑车摄影,速度动态模糊,赛车场,城市环境,风景道路,戏剧性的天空”"} ] ) ) messages.append(HumanMessage(content=prompt)) response_msg = self.prompter.invoke(messages) new_prompt = response_msg.content return new_prompt def inference(self, inputs): url = f"http://{self.host}:{self.port}/taiyi_xl_general_base64/" headers = {"Content-Type": "application/json"} new_prompt = self._upgrade_prompt(inputs) print("new prompt:", new_prompt) data = {"prompt": new_prompt} response = requests.post(url, headers=headers, data=json.dumps(data)) response = response.json() b64_image = response["image_base64"] # write to file save_dir = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) save_dir = os.path.join(save_dir, "test", "outputs") if not os.path.exists(save_dir): os.makedirs(save_dir) md5 = hashlib.md5() md5.update(inputs.encode('utf-8')) filename = os.path.join(save_dir, md5.hexdigest() + ".png") save_or_show_image(b64_image, filename) print("image filename:", filename) result = {"text": "好的,我用太乙为你生成了一张图片。", "image": filename} return json.dumps(result, ensure_ascii=False) # Path: real_gemini/tools/music_tool.py class Text2MusicTool(object): _name_ = "Text2Music" _description_ = "这个工具是从文本生成音乐的调用接口,它可以根据一段文字,生成符合这段文字内容的音乐风格。本工具的输入是一段文本指令。This tool is an API that generates music from text. It can create music that matches the style of the given text content. The input for this tool is a text command." _return_direct_ = True def __init__(self): self.translator = ChatOpenAI( model="gpt-3.5-turbo", max_tokens=256) self.host = os.getenv("MUSIC_SERVER_HOST") self.port = os.getenv("MUSIC_SERVER_PORT") def inference(self, input_str: str): messages = [] messages.append( SystemMessage( content=[ {"type": "text", "text": "你是一个翻译专家,请将我输入的中文翻译成英文。"} ] ) ) messages.append(HumanMessage(content=input_str)) response_msg = self.translator.invoke(messages) input_str_en = response_msg.content # print(input_str_en) url = f"http://{self.host}:{self.port}/text_to_music" data = {"text": input_str_en} music_response = requests.post(url, data=data) music_response = music_response.json() # write to file save_dir = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) save_dir = os.path.join(save_dir, "test", "outputs") if not os.path.exists(save_dir): os.makedirs(save_dir) md5 = hashlib.md5() md5.update(input_str_en.encode('utf-8')) filename = os.path.join(save_dir, md5.hexdigest() + ".wav") raw_data = music_response["audio"] sampling_rate = music_response["sampling_rate"] scipy.io.wavfile.write( filename, rate=sampling_rate, data=np.frombuffer(base64.b64decode(raw_data), np.float32), ) print("music filename:", filename) result = {"text": "好的,为你生成了一段音乐。", "audio": filename} return json.dumps(result, ensure_ascii=False) # Path: real_gemini/tools/controlnet_tool.py class Image2PoseTool(object): _name_="Pose-Detection-On-Image" _description_="""当你想要检测图片中的人体姿态时很有用。比如:生成这张图片中的人体姿态,或者从这张图片中生成人体姿态。输入到这个工具的应该是一个字符串,表示图片的路径或者图片所在的文件夹路径。useful when you want to detect the human pose of the image. like: generate human poses of this image, or generate a pose image from this image. The input to this tool should be a string, representing the image_dir or image_paths.""" _return_direct_ = False def __init__(self): self.host = "0.0.0.0" self.port = 6679 def inference(self, image_input: str): url = f"http://{self.host}:{self.port}/image_to_pose" data = {"image_input": image_input} pose_response = requests.post(url, data=data) return pose_response.text # Path: real_gemini/tools/sam_tool.py class SegmentingTool(object): _name_="Segment the Image" _description_="当你想要对图片中的所有物体进行分割,但是不想对某个物体进行分割时很有用。比如:分割这张图片中的所有物体,或者在这张图片上生成分割结果,或者对这张图片进行分割,或者分割这张图片中的所有物体。输入到这个工具的应该是一个字符串,表示图片的路径或者图片所在的文件夹路径。useful when you want to segment all the part of the image, but not segment a certain object.like: segment all the object in this image, or generate segmentations on this image, or segment the image, or perform segmentation on this image, or segment all the object in this image. The input to this tool should be a string, representing the image_dir or image_paths." _return_direct_ = False def __init__(self): # self.host = "localhost" self.host = "0.0.0.0" self.port = 6680 def inference(self,image_input: str): url = f"http://{self.host}:{self.port}/segmenting" data = {"image_input": image_input} seg_response = requests.post(url, data=data) return seg_response.text # Path: real_gemini/tools/dino_tool.py class Text2BoxTool(object): _name_="Detect the Give Object" _description_="""当你只想检测或者找出图片中的某个物体时很有用。输入到这个工具的应该是一个被逗号分隔成两部分的字符串,分别表示图片的路径或者图片所在的文件夹路径和要检测的物体。useful when you only want to detect or find out given objects in the picture. The input to this tool should be a comma separated string of two, representing the image_dir or image_paths and the object to be detected, respectively.""" _return_direct_ = False def __init__(self): self.host = "0.0.0.0" self.port = 6681 def inference(self, inputs): url = f"http://{self.host}:{self.port}/text_to_box" data = {"inputs": inputs} box_response = requests.post(url, data=data) return box_response.text # Path: real_gemini/tools/imageediting_tool.py class ImageRemoveTool(object): _name_ = "Remove Something From The Image" _description_ = "当你想要从图片中移除某个物体或者某个物体的某个部分时很有用。输入到这个工具的应该是一个被逗号分隔成两部分的字符串,分别表示图片的路径或者图片所在的文件夹路径和要移除的物体。useful when you want to remove the object or something from the photofrom its description or location. The input to this tool should be a comma separated string of two, representing the image_dir or image_paths and the object need to be removed." _return_direct_ = False def __init__(self): self.host = "0.0.0.0" # self.host = "localhost" self.port = 6682 def inference(self, inputs): url = f"http://{self.host}:{self.port}/image_remove" data = {"input": inputs} update_response = requests.post(url, data=data) return update_response.text # Path: real_gemini/tools/imageediting_tool.py class ImageReplaceTool(object): _name_="Replace Something From The Image" _description_="当你想要用另一个物体替换图片中的某个物体或者某个物体的某个部分时很有用。输入到这个工具的应该是一个被逗号分隔成三部份的字符串,分别表示图片的路径或者图片所在的文件夹路径,要替换的物体以及要替换成的物体。\nuseful when you want to replace an object from the object description or location with another object from its description.\nThe input to this tool should be a comma separated string of three, representing the image_dir or image_paths, the object to be replaced, the object to be replaced with." _return_direct_ = False def __init__(self): self.host = "0.0.0.0" # self.host = "localhost" self.port = 6682 def inference(self, inputs): url = f"http://{self.host}:{self.port}/image_replace" data = {"input": inputs} update_response = requests.post(url, data=data) return update_response.text # Path: real_gemini/tools/weather_tool.py class WeatherTool(object): _name_ = "WeatherAPI" _description_ = "这个工具是查询当前和未来天气的调用接口,它可以根据一段文字,这个文字包含一个城市,这个接口可以查询这个城市的天气,注意,本工具的输入是一个字符串。This tool is a weather query API that can retrieve the current and future weather based on a given text, which includes a city name. The API is capable of querying the weather for the specified city. Please note that the input for this tool is a string." _return_direct_ = False def __init__(self): self.gaode_api_key = os.getenv("GAODE_API_KEY") def inference(self, input_str: str): city_name = input_str district_name = input_str params = self._get_params(city_name, district_name) return self._process_response(self._results(params)) def _get_params(self, city_name: str, district_name: str) -> Dict[str, str]: """Get parameters for GaoDeAPI.""" adcode = self._get_adcode(city_name, district_name) params = { "api_key": self.gaode_api_key, "adcode": adcode } print(params) return params def _results(self, params: dict) -> dict: """Run query through GaoDeAPI and return the raw result.""" # # with HiddenPrints(): response = requests.get("https://restapi.amap.com/v3/weather/weatherInfo?", { "key": self.gaode_api_key, "city": params["adcode"], "extensions": "all", "output": "JSON" }) res = json.loads(response.content) return res def _process_response(self, res: dict) -> str: """Process response from GaoDeAPI.""" if res["status"] == '0': return "输入的城市信息可能有误或未提供城市信息" if res["forecasts"] is None or len(res["forecasts"]) == 0: return "输入的城市信息可能有误或未提供城市信息" res["currentTime"] = datetime.datetime.now() return json.dumps(res["forecasts"], ensure_ascii=False) def _get_adcode(self, city_name: str, district_name: str) -> str: """Obtain the regional code of a city based on its name and district/county name.""" # 读取Excel文件 work_dir = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) df = pd.read_excel( os.path.join(work_dir, "test/AMap_adcode_citycode.xlsx"), sheet_name="sheet1" ) # print(df) # 将所有NaN值转换成0 df = df.dropna() if district_name is not None and district_name != '': # 根据'city_name'列检索数据 result = df[df['中文名'].str.contains(district_name)] json_data = result.to_json(orient='records', force_ascii=False) # 解析 JSON 数据 json_array = json.loads(json_data) # 如果区域名称为空,用城市名称去查 if (district_name is None or district_name == '') and city_name != '': # 根据'city_name'列检索数据 result = df[df['中文名'].str.contains(city_name)] json_data = result.to_json(orient='records', force_ascii=False) # 解析 JSON 数据 json_array = json.loads(json_data) # 如果没数据直接返回空 if len(json_array) == 0: # 根据'citycode'列检索数据 result = df[df['中文名'].str.contains(city_name)] json_data = result.to_json(orient='records', force_ascii=False) # 解析 JSON 数据 json_array = json.loads(json_data) # 如果只有一条直接返回 if len(json_array) == 1: return json_array[0]['adcode'] # 如果有多条再根据district_name进行检索 if len(json_array) > 1: for obj in json_array: if district_name is not None and district_name != '' and district_name in obj['中文名']: return obj['adcode'] if city_name in obj['district_name']: return obj['adcode'] return "输入的城市信息可能有误或未提供城市信息" # Path: real_gemini/utils/output_parser.py class ConvoOutputParser(AgentOutputParser): """Output parser for the conversational agent.""" ai_prefix: str = "AI" """Prefix to use before AI output.""" def get_format_instructions(self) -> str: return FORMAT_INSTRUCTIONS def parse(self, text: str) -> Union[AgentAction, AgentFinish]: if f"{self.ai_prefix}:" in text: return AgentFinish( {"output": text.split(f"{self.ai_prefix}:")[-1].strip()}, text ) if "###" in text: return AgentFinish( {"output": "###"}, text ) regex = r"Action: (.*?)[\n]*Action Input: ([\s\S]*)" match = re.search(regex, text, re.DOTALL) if not match: raise OutputParserException(f"Could not parse LLM output: `{text}`") action = match.group(1) action_input = match.group(2) return AgentAction(action.strip(), action_input.strip(" ").strip('"'), text) @property def _type(self) -> str: return "conversational" # Path: real_gemini/utils/agent_prompt.py PREFIX = """Assistant is a large language model trained by IDEA-CCNL. Please note, the scenario that the assistant is facing is: a user is interacting with the assistant through a camera for Q&A. The system will first convert the user's voice into text and then input it into the assistant. At the same time, the system will save keyframe images to a directory for image understanding. The assistant needs to conduct multimodal Q&A and tool invocation based on the images and text. Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text or images, audio, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics. Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific multimodal question or just want to have a conversation about a particular topic, Assistant is here to assist. TOOLS: ------ Assistant has access to the following tools:""" # Path: real_gemini/utils/agent_prompt.py FORMAT_INSTRUCTIONS = """To use a tool, please use the following format: ``` Thought: Do I need to use a tool? Yes Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action Observation: the result of the action ``` When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format: ``` Thought: Do I need to use a tool? No, and {ai_prefix}: [your response here] ``` MAKE SURE your response MUST in Chinese. Since the text you input is obtained from the ASR service, there may be some recognition noise. If your input is some meaningless text or incoherent sentences, please do not call the tool and directly return "###". 由于你输入的文字是由ASR服务得到的,所以可能存在一些识别噪音。假如你的输入是一些没有意义的文字或者不通顺的句子时,请不要调用工具,并直接返回\"###\"。 Your input is an text instruction and key frame images captured by an AI multimodal assistant. Please answer my questions based on these images. Please note that the images and questions may not be related, and you need to make your own judgment. """ # Path: real_gemini/utils/agent_prompt.py SUFFIX = """Begin! Previous conversation history: {chat_history} New input: {input} {agent_scratchpad}""" # Path: real_gemini/agent.py import os import re import json from langchain.chat_models import ChatOpenAI from langchain.agents.tools import Tool from langchain.agents import initialize_agent, load_tools, AgentType from langchain.prompts import PromptTemplate from langchain.memory import ConversationBufferMemory from .tools.gpt4v_tool import GPT4VTool from .tools.image_generation_tool import TaiyiGeneralTool from .tools.music_tool import Text2MusicTool from .tools.controlnet_tool import Image2PoseTool from .tools.sam_tool import SegmentingTool from .tools.dino_tool import Text2BoxTool from .tools.imageediting_tool import ImageRemoveTool, ImageReplaceTool from .tools.weather_tool import WeatherTool from .utils.output_parser import ConvoOutputParser from .utils.agent_prompt import PREFIX, FORMAT_INSTRUCTIONS, SUFFIX #encoding=utf8 REGISTERED_TOOL_CLASSES = [ GPT4VTool, TaiyiGeneralTool, Text2MusicTool, SegmentingTool, Image2PoseTool, Text2BoxTool, ImageRemoveTool, ImageReplaceTool, WeatherTool, ] class ReActAgent(object): def __init__(self): # self.llm = ChatOpenAI(model_name="gpt-4", temperature=0.5) self.llm = ChatOpenAI(model_name="gpt-4-1106-preview", temperature=0.5) # self.llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.5) # self.llm = ChatOpenAI(model_name="deepseek", temperature=0.5, openai_api_base="http://192.168.81.13:6767/v1/") # self.tools = load_tools(["dalle-image-generator"]) self.tools = [] for tool_cls in REGISTERED_TOOL_CLASSES: custom_tool = tool_cls() self.tools.append( Tool( name=custom_tool._name_, description=custom_tool._description_, func=custom_tool.inference, return_direct=custom_tool._return_direct_ ) ) memory = ConversationBufferMemory( return_messages=True, memory_key="chat_history", output_key='output') ai_prefix = "REAL-GEMINI" output_parser = ConvoOutputParser() output_parser.ai_prefix = ai_prefix self.agent = initialize_agent( tools=self.tools, llm=self.llm,
memory=memory,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: aiim-research/GRETEL # Path: src/core/factory_base.py def get_instance_kvargs(kls, param): GLogger.getLogger().info("Instantiating: "+kls) return get_class(kls)(**param) # Path: src/core/oracle_base.py class Oracle(Trainable,metaclass=ABCMeta): def __init__(self, context:Context, local_config) -> None: super().__init__(context, local_config) self._call_counter = 0 @final def predict(self, data_instance): """predicts the label of a given data instance ------------- INPUT: data_instance : The instance whose class is going to be predicted ------------- OUTPUT: The predicted label for the data instance """ self._call_counter += 1 return self._real_predict(data_instance) @final def predict_proba(self, data_instance): """predicts the probability estimates for a given data instance ------------- INPUT: data_instance : The instance whose class is going to be predicted ------------- OUTPUT: The predicted probability estimates for the data instance """ self._call_counter += 1 return self._real_predict_proba(data_instance) @final def get_calls_count(self): return self._call_counter @final def reset_call_count(self): self._call_counter = 0 @final def predict_list(self, dataset: Dataset, fold_id=0): sptest = dataset.get_split_indices()[fold_id]['test'] result = [self.predict(dataset.get_instance(i)) for i in sptest] return result '''@abstractmethod'''#TODO: need to be reactivated and implemented. May can be removed accordingly to Mario and GRETEL philosphy def evaluate(self, dataset: Dataset, fold_id=0): pass @abstractmethod def _real_predict(self, data_instance): pass @abstractmethod def _real_predict_proba(self, data_instance): pass # Path: src/dataset/dataset_base.py class Dataset(Savable): def init(self): super().init() ################### PREAMBLE ################### self.instances: List[DataInstance] = [] self.node_features_map = {} self.edge_features_map = {} self.graph_features_map = {} self.splits = [] self._torch_repr = None self._class_indices = {} self._num_nodes = None self._num_nodes_values = None ################################################# def create(self): self.generator = get_instance_kvargs(self.local_config['parameters']['generator']['class'], { "context": self.context, "local_config": self.local_config['parameters']['generator'], "dataset": self }) self._inject_dataset() self.manipulators: List[BaseManipulator] = self._create_manipulators() self.generate_splits(n_splits=self.local_config['parameters']['n_splits'], shuffle=self.local_config['parameters']['shuffle']) def _inject_dataset(self): for instance in self.instances: instance._dataset = self def _create_manipulators(self): manipulator_instances = [] for manipulator in self.local_config['parameters']['manipulators']: self.context.logger.info("Apply: "+manipulator['class']) manipulator_instances.append(get_instance_kvargs(manipulator['class'], { "context": self.context, "local_config": manipulator, "dataset": self })) return manipulator_instances def __len__(self): return len(self.get_data()) def get_data(self): return self.instances def get_instance(self, i: int): return self.instances[i] def get_instances_by_class(self,cls): if not self._inst_by_cls: self._inst_by_cls= [] if not self._inst_by_cls[cls]: idx = self.class_indices[cls] self._inst_by_cls[cls]=[self.instances[i] for i in idx] return self._inst_by_cls[cls] def num_node_features(self): return len(self.node_features_map) def num_edge_features(self): return len(self.edge_features_map) def num_graph_features(self): return len(self.graph_features_map) def class_indices(self): if not self._class_indices: for i, inst in enumerate(self.instances): self._class_indices[inst.label] = self._class_indices.get(inst.label, []) + [i] return self._class_indices def manipulate(self, instance: DataInstance): for manipulator in self.manipulators: manipulator._process_instance(instance) @property def num_classes(self): return len(self.class_indices()) @property def num_nodes(self): if not self._num_nodes: self._num_nodes = np.min(self.num_nodes_values) return self._num_nodes @property def num_nodes_values(self): if not self._num_nodes_values: self._num_nodes_values = [] for inst in self.instances: self._num_nodes_values.append(len(inst.data)) return self._num_nodes_values def get_split_indices(self, fold_id=-1): if fold_id == -1: #NOTE: i am bit worried that it might be weak if you have sparse indices return {'train': list(range(0, len(self.instances))), 'test': list(range(0, len(self.instances))) } else: return self.splits[fold_id] def generate_splits(self, n_splits=10, shuffle=True): kf = StratifiedKFold(n_splits=n_splits, shuffle=shuffle) spl = kf.split([g for g in self.instances], [g.label for g in self.instances]) for train_index, test_index in spl: self.splits.append({'train': train_index.tolist(), 'test': test_index.tolist()}) def get_torch_loader(self, fold_id: int=-1, batch_size: int=4, usage: str='train', kls: int=-1, dataset_kls: str='src.dataset.utils.dataset_torch.TorchGeometricDataset', **kwargs): """ Retrieves a DataLoader for Torch instances, facilitating batch processing. Parameters: - fold_id (int, optional): The fold identifier. Defaults to -1, indicating all folds. - batch_size (int, optional): The number of instances in each batch. Defaults to 4. - usage (str, optional): The usage type, e.g., 'train' or 'test'. Defaults to 'train'. - kls (int, optional): The class identifier. Defaults to -1, indicating all classes. - dataset_kls (str, optional): The class name of the (torch) Dataset or (torch_geometric) Dataset to use. Defaults to 'src.dataset.utils.dataset_torch.TorchGeometricDataset'. - **kwargs: Additional keyword arguments to be passed when creating the Dataset instance. Returns: torch_geometric.loader.DataLoader: A DataLoader configured for the specified Torch instances. Usage Example: ``` dataloader = get_torch_loader(fold_id=0, batch_size=32, usage='train', kls=1, dataset_kls='{path-to-dataset-class}') ``` Notes: - The DataLoader is created using instances obtained from the `get_torch_instances` method. - Batching is performed with the specified `batch_size`. - Data shuffling and dropping the last incomplete batch are enabled by default for training. - The function leverages the `DataLoader` class from the `torch_geometric.loader` module. """ instances = self.get_torch_instances(fold_id=fold_id, usage=usage, kls=kls, dataset_kls=dataset_kls) return DataLoader(instances, batch_size=batch_size, shuffle=True, drop_last=True) def get_torch_instances(self, fold_id: int=-1, usage: str='train', kls: int=-1, dataset_kls: str='src.dataset.utils.dataset_torch.TorchGeometricDataset', **kwargs): """ Retrieves a subset of Torch instances for a specific fold, usage, and dataset class. Parameters: - fold_id (int, optional): The fold identifier. Defaults to -1, indicating all folds. - usage (str, optional): The usage type, e.g., 'train' or 'test'. Defaults to 'train'. - kls (int, optional): The class identifier. Defaults to -1, indicating all classes. - dataset_kls (str, optional): The class name of the (torch) Dataset or (torch_geometric) Dataset to use. Defaults to 'src.dataset.utils.dataset_torch.TorchGeometricDataset'. - **kwargs: Additional keyword arguments to be passed when creating the Dataset instance. Returns: torch.utils.data.Subset: A subset of Torch instances based on the specified parameters. Usage Example: ``` subset = get_torch_instances(fold_id=0, usage='train', kls=1, dataset_kls='{path-to-dataset-class}') ``` Notes: - If `kls` is specified, instances not belonging to the specified class will be excluded. - The function relies on the presence of `get_split_indices` and `class_indices` methods in the parent class. - The Dataset instance is created using the specified class name (`dataset_kls`) and additional arguments (`**kwargs`). """ # Retrieve the indices for the specified fold and usage indices = self.get_split_indices(fold_id)[usage] # If a specific class (kls) is provided, filter out instances not belonging to that class if kls != -1: indices = list(set(indices).difference(set(self.class_indices()[kls]))) # Create an instance of the specified dataset class with the given instances and additional arguments self._torch_repr = get_class(dataset_kls)(self.instances, **kwargs) # Return a Subset of the dataset instances based on the filtered indices return Subset(self._torch_repr.instances, indices) def read(self): if self.saved(): store_path = self.context.get_path(self) with open(store_path, 'rb') as f: dump = pickle.load(f) self.instances = dump['instances'] self.splits = dump['splits'] #self.local_config = dump['config'] self.node_features_map = dump['node_features_map'] self.edge_features_map = dump['edge_features_map'] self.graph_features_map = dump['graph_features_map'] self._num_nodes = dump['num_nodes'] self._class_indices = dump['class_indices'] self.manipulators = dump['manipulators'] #TODO: Attach the dataset back to all the instances self._inject_dataset() def write(self): store_path = self.context.get_path(self) dump = { "instances" : self.instances, "splits": self.splits, "config": clean_cfg(self.local_config), "node_features_map": self.node_features_map, "edge_features_map": self.edge_features_map, "graph_features_map": self.graph_features_map, "num_nodes": self._num_nodes, "class_indices": self._class_indices, "manipulators": self.manipulators } with open(store_path, 'wb') as f: pickle.dump(dump, f) def check_configuration(self): super().check_configuration() local_config = self.local_config if 'generator' not in local_config['parameters']: raise ValueError(f'''The "generator" parameter needs to be specified in {self}''') if 'manipulators' not in local_config['parameters']: # or not len(local_config['parameters']['manipulators']): local_config['parameters']['manipulators'] = [] #local_config['parameters']['manipulators'].append(build_default_config_obj("src.dataset.manipulators.centralities.NodeCentrality")) #local_config['parameters']['manipulators'].append(build_default_config_obj("src.dataset.manipulators.weights.EdgeWeights")) local_config['parameters']['n_splits'] = local_config['parameters'].get('n_splits', 10) local_config['parameters']['shuffle'] = local_config['parameters'].get('shuffle', True) @property def name(self): alias = get_class( self.local_config['parameters']['generator']['class'] ).__name__ return self.context.get_name(self,alias=alias) # Path: src/core/configurable.py class Configurable(Base,metaclass=ABCMeta): def __init__(self, context: Context, local_config): super().__init__(context) self.local_config = local_config#copy.deepcopy(local_config) self.check_configuration() self.init() def check_configuration(self): self.local_config['parameters'] = self.local_config.get('parameters',{}) @abstractmethod def init(self): pass # Path: src/dataset/instances/base.py class DataInstance: def __init__(self, id, label, data, dataset=None): self.id = id self.data = data self.label = label #TODO: Refactoring to have a one-hot encoding of labels! self._dataset = dataset # Path: src/dataset/instances/graph.py class GraphInstance(DataInstance): def __init__(self, id, label, data, node_features=None, edge_features=None, edge_weights=None, graph_features=None, dataset=None): super().__init__(id, label, data, dataset=dataset) self.node_features = self.__init_node_features(node_features).astype(np.float32) self.edge_features = self.__init_edge_features(edge_features).astype(np.float32) self.edge_weights = self.__init_edge_weights(edge_weights).astype(np.float32) self.graph_features = graph_features self._nx_repr = None def __deepcopy__(self, memo): # Fields that are being shallow copied _dataset = self._dataset # Fields that are deep copied _new_id = deepcopy(self.id, memo) _new_label = deepcopy(self.label, memo) _data = deepcopy(self.data, memo) _node_features = deepcopy(self.node_features, memo) _edge_features = deepcopy(self.edge_features, memo) _edge_weights = deepcopy(self.edge_weights, memo) _graph_features = deepcopy(self.graph_features, memo) return GraphInstance(_new_id, _new_label, _data, _node_features, _edge_features, _edge_weights, _graph_features) def get_nx(self): if not self._nx_repr: self._nx_repr = self._build_nx() return deepcopy(self._nx_repr) def __init_node_features(self, node_features): return np.zeros((self.data.shape[0], 1)) if isinstance(node_features, (str, type(None))) else node_features def __init_edge_features(self, edge_features): edges = np.nonzero(self.data) return np.ones((len(edges[0]), 1)) if isinstance(edge_features, (str, type(None))) else edge_features def __init_edge_weights(self, edge_weights): edges = np.nonzero(self.data) return np.ones(len(edges[0])) if edge_weights is None else edge_weights def _build_nx(self): nx_repr = nx.from_numpy_array(self.data) nx_repr.add_nodes_from([node, {'node_features': self.node_features[node]}] for node in nx_repr.nodes()) edges = list(nx_repr.edges) nx_repr.add_edges_from([(edge[0], edge[1], {'edge_features': self.edge_features[i], 'weight': self.edge_weights[i]}) for i, edge in enumerate(edges)]) return nx_repr @property def num_edges(self): nx_repr = self.get_nx() return nx_repr.number_of_edges() @property def num_nodes(self): return len(self.data) def nodes(self): return [ i for i in range(self.data.shape[0])] def neighbors(self, node): return [i for i in self.data[node,:] if i != 0] def degree(self,node): return len(self.neighbors(node)) def degrees(self): return [ len(self.neighbors(y)) for y in self.nodes()] # Path: src/explainer/ensemble/aggregators/nodes/base.py class NodeFeatureAggregator(Configurable): def init(self): self.dataset: Dataset = retake_dataset(self.local_config) self.oracle: Oracle = retake_oracle(self.local_config) super().init() def aggregate(self, nodes, instances: List[DataInstance]): pass # Path: src/utils/cfg_utils.py def init_dflts_to_of(snippet, key, kls, *args, **kwargs): __add_dflts_to_of(snippet, key, kls, generate_default_for,*args, **kwargs) # Path: src/utils/cfg_utils.py def inject_dataset(cfg, dataset): cfg['dataset']= dataset # Path: src/utils/cfg_utils.py def inject_oracle(cfg, oracle): cfg['oracle']= oracle # Path: src/utils/cfg_utils.py def retake_oracle(cfg): return cfg['oracle'] # Path: src/utils/cfg_utils.py def retake_dataset(cfg): return cfg['dataset'] # Path: src/explainer/ensemble/aggregators/base.py from copy import deepcopy from typing import List from src.core.factory_base import get_instance_kvargs from src.core.oracle_base import Oracle from src.dataset.dataset_base import Dataset from src.core.configurable import Configurable from src.dataset.instances.base import DataInstance from src.dataset.instances.graph import GraphInstance from src.explainer.ensemble.aggregators.nodes.base import NodeFeatureAggregator from src.utils.cfg_utils import init_dflts_to_of, inject_dataset, inject_oracle, retake_oracle, retake_dataset import numpy as np class ExplanationAggregator(Configurable): def init(self): self.dataset: Dataset = retake_dataset(self.local_config) self.oracle: Oracle = retake_oracle(self.local_config) inject_dataset(self.local_config['parameters']['node_feature_aggregator'], self.dataset) inject_oracle(self.local_config['parameters']['node_feature_aggregator'], self.oracle) self.node_feature_aggregator: NodeFeatureAggregator = get_instance_kvargs(self.local_config['parameters']['node_feature_aggregator']['class'], {'context':self.context,'local_config': self.local_config['parameters']['node_feature_aggregator']}) super().init() def aggregate(self, instance: DataInstance, explanations: List[DataInstance]): aggregated_instance = self.real_aggregate(instance, explanations) # we need to combine: # 1) node features # 2) edge features # 3) graph features adj = aggregated_instance.data edges = np.nonzero(adj) # if there's at least one edge that the aggreagtor produced # then get the features of the incident nodes if edges[0].size: node_features = self.node_feature_aggregator.aggregate( np.array(list(range(adj.shape[0]))), explanations ) cf_candidate = GraphInstance(id=instance.id, label=1-instance.label,
data=adj,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: modelscope/scepter # Path: scepter/modules/data/dataset/base_dataset.py class BaseDataset(Dataset, metaclass=ABCMeta): para_dict = { 'MODE': { 'value': 'train', 'description': 'solver phase, select from [train, test, eval]' }, 'FILE_SYSTEM': {}, 'TRANSFORMS': [{ 'ImageToTensor': { 'PADDING': { 'value': None, 'description': 'padding' }, 'PAD_IF_NEEDED': { 'value': False, 'description': 'pad if needed' }, 'FILL': { 'value': 0, 'description': 'fill' }, 'PADDING_MODE': { 'value': 'constant', 'description': 'padding mode' } } }] } def __init__(self, cfg, logger=None): mode = cfg.get('MODE', 'train') pipeline = cfg.get('TRANSFORMS', []) super(BaseDataset, self).__init__() self.mode = mode self.logger = logger self.worker_logger = get_logger(name='datasets') self.pipeline = build_pipeline(pipeline, TRANSFORMS, logger=self.worker_logger) self.file_systems = cfg.get('FILE_SYSTEM', None) if isinstance(self.file_systems, list): for file_sys in self.file_systems: self.fs_prefix = FS.init_fs_client(file_sys, logger=self.logger, overwrite=False) elif self.file_systems is not None: self.fs_prefix = FS.init_fs_client(self.file_systems, logger=self.logger, overwrite=False) self.local_we = we.get_env() if old_python_version: self.file_systems.logger = None def __getitem__(self, index: int): item = self._get(index) return self.pipeline(item) def worker_init_fn(self, worker_id, num_workers=1): if isinstance(self.file_systems, list): for file_sys in self.file_systems: self.fs_prefix = FS.init_fs_client(file_sys, logger=self.logger, overwrite=False) elif self.file_systems is not None: self.fs_prefix = FS.init_fs_client(self.file_systems, logger=self.logger, overwrite=False) self.worker_id = worker_id self.logger = self.worker_logger set_random_seed(int(os.environ.get('ES_SEED', 2023))) we.set_env(self.local_we) @abstractmethod def _get(self, index: int): pass def __repr__(self) -> str: return f'{self.__class__.__name__}: mode={self.mode}, len={len(self)}' @staticmethod def get_config_template(): ''' { "ENV" : { "description" : "", "A" : { "value": 1.0, "description": "" } } } :return: ''' return dict_to_yaml('DATASETS', __class__.__name__, BaseDataset.para_dict, set_name=True) # Path: scepter/modules/data/dataset/registry.py DATASETS = Registry('DATASETS', common_para=DataObject.para_dict, build_func=build_dataset_config) # Path: scepter/modules/utils/config.py def dict_to_yaml(module_name, name, json_config, set_name=False): ''' { "ENV" : { "description" : "", "A" : { "value": 1.0, "description": "" } } } convert std dict to yaml :param module_name: :param json_config: :return: ''' def convert_yaml_style(level=1, name='ENV', description='ENV PARA', default='', type_name='', is_sys=False): new_line = '' new_line += '{}# {} DESCRIPTION: {} TYPE: {} default: {}\n'.format( '\t' * (level - 1), name.upper(), description, type_name, f'\'{default}\'' if isinstance(default, str) else default) if is_sys: if name == '-': new_line += '{}{}\n'.format('\t' * (level - 1), name.upper()) else: new_line += '{}{}:\n'.format('\t' * (level - 1), name.upper()) else: # if isinstance(default, str): # default = f'\'{default}\'' if default is None: new_line += '{}# {}: {}\n'.format('\t' * (level - 1), name.upper(), default) else: new_line += '{}{}: {}\n'.format('\t' * (level - 1), name.upper(), default) return new_line def parse_dict(json_config, level_num, parent_key, set_name=False, name='', parent_type='dict'): yaml_str = '' # print(level_num, json_config) if isinstance(json_config, dict): if 'value' in json_config: value = json_config['value'] if isinstance(value, dict): assert len(value) < 1 value = None description = json_config.get('description', '') yaml_str += convert_yaml_style(level=level_num - 1, name=parent_key, description=description, default=value, type_name=type(value).__name__) return True, yaml_str else: if len(json_config) < 1: yaml_str += convert_yaml_style(level=level_num, name='NAME', description='', default='', type_name='') level_num += 1 for k, v in json_config.items(): if k == 'description': continue if isinstance(v, dict): is_final, new_yaml_str = parse_dict(v, level_num, k, parent_type='dict') if not is_final and parent_type == 'dict': description = v.get('description', '') yaml_str += convert_yaml_style( level=level_num - 1, name=k, description=description, default='', type_name='', is_sys=True) if not is_final and parent_type == 'list': yaml_str += convert_yaml_style(level=level_num, name='NAME', description='', default=k, type_name='') yaml_str += new_yaml_str elif isinstance(v, list): base_yaml_str = convert_yaml_style(level=level_num - 1, name=k, description='', default='', type_name='', is_sys=True) yaml_str += base_yaml_str for tup in v: is_final, new_yaml_str = parse_dict( tup, level_num, '-', parent_type='list') if not is_final: yaml_str += convert_yaml_style(level=level_num, name='-', description='', default='', type_name='', is_sys=True) yaml_str += new_yaml_str else: raise KeyError( f'json config {json_config} must be a dict of list' ) elif isinstance(json_config, list): level_num += 1 for tup in json_config: is_final, new_yaml_str = parse_dict(tup, level_num, '-') if not is_final: yaml_str += convert_yaml_style(level=level_num - 1, name='-', description='', default='', type_name='', is_sys=True) if set_name: yaml_str += convert_yaml_style(level=level_num, name='NAME', description='', default=name, type_name='') yaml_str += new_yaml_str else: raise KeyError(f'json config {json_config} must be a dict') return False, yaml_str if isinstance(json_config, dict): first_dict, sec_dict, third_dict = {}, {}, {} for key, value in json_config.items(): if isinstance(value, dict) and len(value) > 0: first_dict[key] = value elif isinstance(value, dict) and len(value) == 0: sec_dict[key] = value elif isinstance(value, list): third_dict[key] = value else: raise f'Config {json_config} is illegal' json_config = {} json_config.update(first_dict) json_config.update(sec_dict) json_config.update(third_dict) yaml_str = f'[{module_name}] module yaml examples:\n' level_num = 1 base_yaml_str = convert_yaml_style(level=level_num, name=module_name, description='', default='', type_name='', is_sys=True) level_num += 1 is_final, new_yaml_str = parse_dict(json_config, level_num, module_name, set_name=isinstance(json_config, list) and set_name, name=name) if not is_final: yaml_str += base_yaml_str if set_name and not isinstance(json_config, list): yaml_str += convert_yaml_style(level=level_num, name='NAME', description='', default=name, type_name='') yaml_str += new_yaml_str else: yaml_str += new_yaml_str[1:] return yaml_str # Path: scepter/modules/utils/distribute.py def set_random_seed(seed): def get_dist_info(): def gather_data(data): def gather_list(data): def gather_picklable(data): def _gather_picklable_custom(data): def gather_gpu_tensors(tensor, all_recv=False, is_cat=True): def broadcast(tensor, src, group=None, **kwargs): def barrier(): def get_global_gloo_group(): def reduce_scatter(output, input_list, op=dist.ReduceOp.SUM, group=None, **kwargs): def all_reduce(tensor, op=dist.ReduceOp.SUM, group=None, **kwargs): def reduce(tensor, dst, op=dist.ReduceOp.SUM, group=None, **kwargs): def _serialize_to_tensor(data): def _unserialize_from_tensor(recv_data): def send(tensor, dst, group=None, **kwargs): def recv(tensor, src=None, group=None, **kwargs): def isend(tensor, dst, group=None, **kwargs): def irecv(tensor, src=None, group=None, **kwargs): def scatter(data, scatter_list=None, src=0, group=None, **kwargs): def shared_random_seed(): def mp_worker(gpu, ngpus_per_node, cfg, fn, pmi_rank, world_size, work_env): def __init__(self): def init_env(self, config, fn, logger=None): def get_env(self): def set_env(self, we_env): def __str__(self): class Workenv(object): # Path: scepter/modules/utils/file_system.py FS = FileSystem() # Path: scepter/modules/data/dataset/ms_dataset.py import numbers import os import sys from scepter.modules.data.dataset.base_dataset import BaseDataset from scepter.modules.data.dataset.registry import DATASETS from scepter.modules.utils.config import dict_to_yaml from scepter.modules.utils.distribute import we from scepter.modules.utils.file_system import FS from modelscope import MsDataset from modelscope.utils.constant import DownloadMode @DATASETS.register_class() class ImageTextPairMSDataset(BaseDataset): para_dict = { 'MS_DATASET_NAME': { 'value': '', 'description': 'Modelscope dataset name.' }, 'MS_DATASET_NAMESPACE': { 'value': '', 'description': 'Modelscope dataset namespace.' }, 'MS_DATASET_SUBNAME': { 'value': '', 'description': 'Modelscope dataset subname.' }, 'MS_DATASET_SPLIT': { 'value': '', 'description': 'Modelscope dataset split set name, default is train.' }, 'MS_REMAP_KEYS': { 'value': None, 'description': 'Modelscope dataset header of list file, the default is Target:FILE; ' 'If your file is not this header, please set this field, which is a map dict.' "For example, { 'Image:FILE': 'Target:FILE' } will replace the filed Image:FILE to Target:FILE" }, 'MS_REMAP_PATH': { 'value': None, 'description': 'When modelscope dataset name is not None, that means you use the dataset from modelscope,' ' default is None. But if you want to use the datalist from modelscope and the file from ' 'local device, you can use this field to set the root path of your images. ' }, 'TRIGGER_WORDS': { 'value': '', 'description': 'The words used to describe the common features of your data, especially when you customize a ' 'tuner. Use these words you can get what you want.' }, 'REPLACE_STYLE': { 'value': False, 'description': 'Whether use the MS_DATASET_SUBNAME to replace the word in your description, default is False.' }, 'HIGHLIGHT_KEYWORDS': { 'value': '', 'description': 'The keywords you want to highlight in prompt, which will be replace by <HIGHLIGHT_KEYWORDS>.' }, 'KEYWORDS_SIGN': { 'value': '', 'description': 'The keywords sign you want to add, which is like <{HIGHLIGHT_KEYWORDS}{KEYWORDS_SIGN}>' }, 'OUTPUT_SIZE': { 'value': None, 'description': 'If you use the FlexibleResize transforms, this filed will output the image_size as [h, w],' 'which will be used to set the output size of images used to train the model.' }, } def __init__(self, cfg, logger=None): super().__init__(cfg=cfg, logger=logger) ms_dataset_name = cfg.get('MS_DATASET_NAME', None) ms_dataset_namespace = cfg.get('MS_DATASET_NAMESPACE', None) ms_dataset_subname = cfg.get('MS_DATASET_SUBNAME', None) ms_dataset_split = cfg.get('MS_DATASET_SPLIT', 'train') ms_remap_keys = cfg.get('MS_REMAP_KEYS', None) ms_remap_path = cfg.get('MS_REMAP_PATH', None) self.replace_style = cfg.get('REPLACE_STYLE', False) self.trigger_words = cfg.get('TRIGGER_WORDS', '') self.replace_keywords = cfg.get('HIGHLIGHT_KEYWORDS', '') self.keywords_sign = cfg.get('KEYWORDS_SIGN', '') self.output_size = cfg.get('OUTPUT_SIZE', None) if self.output_size is not None: if isinstance(self.output_size, numbers.Number): self.output_size = [self.output_size, self.output_size] # Use modelscope dataset if not ms_dataset_name: raise ( 'Your must set MS_DATASET_NAME as modelscope dataset or your local dataset orignized ' 'as modelscope dataset.') if FS.exists(ms_dataset_name): ms_dataset_name = FS.get_dir_to_local_dir(ms_dataset_name) ms_remap_path = ms_dataset_name try: self.data = MsDataset.load(str(ms_dataset_name), namespace=ms_dataset_namespace, subset_name=ms_dataset_subname, split=ms_dataset_split) except Exception: self.logger.info( "Load Modelscope dataset failed, retry with download_mode='force_redownload'." ) try: self.data = MsDataset.load( str(ms_dataset_name), namespace=ms_dataset_namespace, subset_name=ms_dataset_subname, split=ms_dataset_split, download_mode=DownloadMode.FORCE_REDOWNLOAD) except Exception as sec_e: raise f'Load Modelscope dataset failed {sec_e}.' if ms_remap_keys: self.data = self.data.remap_columns(ms_remap_keys.get_dict()) if ms_remap_path: def map_func(example): example['Target:FILE'] = os.path.join(ms_remap_path,
example['Target:FILE'])
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: YyzHarry/shortcut-ood-fairness # Path: dataset/datasets.py DATASETS = [ 'MIMIC', 'CheXpert', 'NIH', 'PadChest', 'VinDr', 'SIIM', 'ISIC', 'ODIR' ] CXR_DATASETS = [ 'MIMIC', 'CheXpert', 'NIH', 'PadChest', 'VinDr', 'SIIM' ] ATTRS = ['sex', 'ethnicity', 'age', 'sex_ethnicity'] TASKS = ['No Finding', 'Atelectasis', 'Cardiomegaly', 'Effusion', 'Pneumonia', 'Pneumothorax', 'Consolidation', 'Edema', 'Cataract', 'Retinopathy'] N_STEPS = 5001 # Default, subclasses may override CHECKPOINT_FREQ = 100 # Default, subclasses may override N_WORKERS = 8 # Default, subclasses may override INPUT_SHAPE = None # Subclasses should override AVAILABLE_ATTRS = None # Subclasses should override SPLITS = { # Default, subclasses may override 'tr': 0, 'va': 1, 'te': 2 } EVAL_SPLITS = ['te'] # Default, subclasses may override N_STEPS = 30001 CHECKPOINT_FREQ = 1000 N_WORKERS = 16 INPUT_SHAPE = (3, 224, 224,) N_STEPS = 30001 CHECKPOINT_FREQ = 1000 N_WORKERS = 16 INPUT_SHAPE = (3, 224, 224,) N_STEPS = 30001 CHECKPOINT_FREQ = 1000 N_WORKERS = 16 INPUT_SHAPE = (3, 224, 224,) AVAILABLE_ATTRS = ['sex', 'age', 'ethnicity', 'sex_ethnicity'] TASKS = [ 'No Finding', 'Atelectasis', 'Cardiomegaly', 'Effusion', 'Pneumonia', 'Pneumothorax', 'Consolidation', 'Edema' ] N_STEPS = 30001 CHECKPOINT_FREQ = 1000 N_WORKERS = 16 INPUT_SHAPE = (3, 224, 224,) AVAILABLE_ATTRS = ['sex', 'age', 'ethnicity', 'sex_ethnicity'] TASKS = [ 'No Finding', 'Atelectasis', 'Cardiomegaly', 'Effusion', 'Pneumonia', 'Pneumothorax', 'Consolidation', 'Edema' ] N_STEPS = 30001 CHECKPOINT_FREQ = 1000 N_WORKERS = 16 INPUT_SHAPE = (3, 224, 224,) AVAILABLE_ATTRS = ['sex', 'age'] TASKS = [ 'No Finding', 'Atelectasis', 'Cardiomegaly', 'Effusion', 'Pneumonia', 'Pneumothorax', 'Consolidation', 'Edema' ] N_STEPS = 30001 CHECKPOINT_FREQ = 1000 N_WORKERS = 16 INPUT_SHAPE = (3, 224, 224,) AVAILABLE_ATTRS = ['sex', 'age'] TASKS = [ 'No Finding', 'Atelectasis', 'Cardiomegaly', 'Effusion', 'Pneumonia', 'Pneumothorax', 'Consolidation', 'Edema' ] N_STEPS = 30001 CHECKPOINT_FREQ = 1000 N_WORKERS = 16 INPUT_SHAPE = (3, 224, 224,) AVAILABLE_ATTRS = ['sex', 'age'] TASKS = [ 'No Finding', 'Atelectasis', 'Cardiomegaly', 'Effusion', 'Pneumonia', 'Pneumothorax', 'Consolidation', 'Edema' ] SPLITS = { 'te': 2 } N_STEPS = 30001 CHECKPOINT_FREQ = 1000 N_WORKERS = 16 INPUT_SHAPE = (3, 224, 224,) AVAILABLE_ATTRS = ['sex', 'age'] TASKS = [ 'Pneumothorax' ] SPLITS = { 'te': 2 } N_STEPS = 30001 CHECKPOINT_FREQ = 1000 N_WORKERS = 16 INPUT_SHAPE = (3, 224, 224,) AVAILABLE_ATTRS = ['sex', 'age'] TASKS = [ 'No Finding' ] N_STEPS = 30001 CHECKPOINT_FREQ = 1000 N_WORKERS = 16 INPUT_SHAPE = (3, 224, 224,) AVAILABLE_ATTRS = ['sex', 'age'] TASKS = [ 'No Finding', 'Cataract', 'Retinopathy' ] def get_dataset_class(dataset_name): def num_environments(dataset_name): def __init__(self, root, split, metadata, transform, group_def='group', subsample_type=None, duplicates=None, subset_query=None): def _count_groups(self): def subsample(self, subsample_type): def duplicate(self, duplicates): def __getitem__(self, index): def __len__(self): def __init__(self, metadata, split, hparams, group_def='group', subsample_type=None, duplicates=None, override_attr=None, subset_query=None): def transform(self, x): def __init__(self, dss): def __getitem__(self, idx): def __len__(self): def __init__(self, ds, idxs): def __getitem__(self, idx): def __len__(self): def __init__(self, data_path, split, hparams, group_def='group', subsample_type=None, duplicates=None, override_attr=None, subset_query=None): def __init__(self, data_path, split, hparams, group_def='group', subsample_type=None, duplicates=None, override_attr=None, subset_query=None): def __init__(self, data_path, split, hparams, group_def='group', subsample_type=None, duplicates=None, override_attr=None, subset_query=None): def __init__(self, data_path, split, hparams, group_def='group', subsample_type=None, duplicates=None, override_attr=None, subset_query=None): def __init__(self, data_path, split, hparams, group_def='group', subsample_type=None, duplicates=None, override_attr=None, subset_query=None): def __init__(self, data_path, split, hparams, group_def='group', subsample_type=None, duplicates=None, override_attr=None, subset_query=None): def __init__(self, data_path, split, hparams, group_def='group', subsample_type=None, duplicates=None, override_attr=None, subset_query=None): def __init__(self, data_path, split, hparams, group_def='group', subsample_type=None, duplicates=None, override_attr=None, subset_query=None): class SubpopDataset: class BaseImageDataset(SubpopDataset): class ConcatImageDataset(SubpopDataset): class SubsetImageDataset(SubpopDataset): class MIMIC(BaseImageDataset): class CheXpert(BaseImageDataset): class NIH(BaseImageDataset): class PadChest(BaseImageDataset): class VinDr(BaseImageDataset): class SIIM(BaseImageDataset): class ISIC(BaseImageDataset): class ODIR(BaseImageDataset): # Path: learning/algorithms.py ALGORITHMS = [ 'ERM', 'StratifiedERM', # subgroup methods 'GroupDRO', 'IRM', 'CVaRDRO', 'JTT', 'LISA', 'DFR', # data augmentation 'Mixup', # domain generalization methods 'MMD', 'CORAL', 'DANN', 'CDANN', # imbalanced learning methods 'ReSample', 'ReWeight', 'SqrtReWeight', 'CBLoss', 'Focal', 'LDAM', 'BSoftmax', 'CRT', 'ReWeightCRT', 'VanillaCRT', # flat minima optimizer 'MA', 'SAM', # attribute balancing 'GroupDROAttr', 'ReSampleAttr', 'ReWeightAttr', ] D = self.my_cdist(x, y) K = torch.zeros_like(D) W = size[2] H = size[3] def get_algorithm_class(algorithm_name): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def _init_model(self): def _compute_loss(self, i, x, y, a, step): def update(self, minibatch, step): def return_feats(self, x): def predict(self, x): def return_groups(self, y, a): def return_attributes(all_a): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def _init_model(self): def _compute_loss(self, i, x, y, a, step): def update(self, minibatch, step): def return_feats(self, x): def predict(self, x): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def _compute_loss(self, i, x, y, a, step): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def _compute_loss(self, i, x, y, a, step): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None, group_def='group'): def _compute_loss(self, i, x, y, a, step): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def focal_loss(input_values, gamma): def _compute_loss(self, i, x, y, a, step): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def _compute_loss(self, i, x, y, a, step): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def _compute_loss(self, i, x, y, a, step): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def _compute_loss(self, i, x, y, a, step): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def _irm_penalty(logits, y): def _compute_loss(self, i, x, y, a, step): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def _compute_loss(self, i, x, y, a, step): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None, gaussian=False): def my_cdist(x1, x2): def gaussian_kernel(self, x, y, gamma=[0.001, 0.01, 0.1, 1, 10, 100, 1000]): def mmd(self, x, y): def _compute_loss(self, i, x, y, a, step): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None, conditional=False, class_balance=False): def update(self, minibatch, step): def return_feats(self, x): def predict(self, x): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def _compute_loss(self, i, x, y, a, step): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def update(self, minibatch, step): def return_feats(self, x): def predict(self, x): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def _compute_loss(self, i, x, y, a, step, stage1_model): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def _to_ohe(self, y): def _lisa_mixup_data(self, s, a, x, y, alpha): def _rand_bbox(size, lam): def _mix_up(alpha, x1, x2, y1, y2): def _cut_mix_up(self, alpha, x1, x2, y1, y2): def _compute_loss(self, i, x, y, a, step): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def _compute_loss(self, i, x, y, a, step): def update(self, minibatch, step): def predict(self, x): def update_ma(self): def __init__(self, data_type, input_shape, num_classes, num_attributes, num_examples, hparams, grp_sizes=None, attr_sizes=None): def update(self, minibatch, step): def norm(tensor_list, p=2): class Algorithm(torch.nn.Module): class ERM(Algorithm): class GroupDRO(ERM): class GroupDROAttr(ERM): class StratifiedERM(ERM): class ReSample(ERM): class ReSampleAttr(ERM): class ReWeightBase(ERM): class ReWeight(ReWeightBase): class ReWeightAttr(ReWeightBase): class SqrtReWeight(ReWeight): class CBLoss(ReWeight): class Focal(ERM): class LDAM(ERM): class BSoftmax(ERM): class CRT(ERM): class ReWeightCRT(ReWeight): class VanillaCRT(ERM): class DFR(ERM): class IRM(ERM): class Mixup(ERM): class AbstractMMD(ERM): class MMD(AbstractMMD): class CORAL(AbstractMMD): class AbstractDANN(Algorithm): class DANN(AbstractDANN): class CDANN(AbstractDANN): class CVaRDRO(ERM): class AbstractTwoStage(Algorithm): class JTT_Stage2(ERM): class JTT(AbstractTwoStage): class LISA(ERM): class MA(ERM): class SAM(ERM): # Path: learning/early_stopping.py class EarlyStopping: def __init__(self, patience=5, lower_is_better=True): def __call__(self, metric, step, state_dict, path): def save_model(state_dict, path): # Path: learning/swad_utils.py class AveragedModel(Module): class SWADBase: class LossValley(SWADBase): def __init__(self, model, device=None, avg_fn=None, rm_optimizer=False): def avg_fn(averaged_model_parameter, model_parameter, num_averaged): def forward(self, *args, **kwargs): def predict(self, *args, **kwargs): def network(self): def update_parameters(self, model, step=None, start_step=None, end_step=None): def clone(self): def update_and_evaluate(self, segment_swa, val_loss): def get_final_model(self): def __init__(self, n_converge, n_tolerance, tolerance_ratio, **kwargs): def get_smooth_loss(self, idx): def is_converged(self): def update_and_evaluate(self, segment_swa, val_loss): def get_final_model(self): Q = list(self.smooth_Q)[: converge_idx + 1] # Path: utils/misc.py def pickle_save(filename, obj): def pickle_load(filename): def mac_pickle_load(file_path): def mac_pickle_dump(filename, obj): def load_json(json_path): def save_json(json_path, data): def default(self, obj): def format(cls, text, color='white'): def log(text, color='white', style='normal', with_time=True, handle=None): def print_yellow(text, with_time=True): def print_cyan(text, with_time=True): def print_green(text, with_time=True): def prepare_folders(args): def l2_between_dicts(dict_1, dict_2): def __init__(self, ema, oneminusema_correction=True): def update(self, dict_data): def count_samples_per_class(targets, num_labels): def make_balanced_weights_per_sample(targets): def pdb(): def seed_hash(*args): def print_separator(): def print_row(row, colwidth=10, latex=False): def format_val(x): def safe_load(parsed): def __init__(self, underlying_dataset, keys): def __getitem__(self, key): def __len__(self): def split_dataset(dataset, n, seed=0): def random_pairs_of_minibatches(minibatches): def mixup_data(x, y, alpha=1., device="cpu"): def accuracy(network, loader, device): def adjust_learning_rate(optimizer, lr, step, total_steps, schedule, cos=False): def __init__(self, fname, mode="a"): def write(self, message): def flush(self): def __init__(self, *args, **kwargs): def _prototype(self, other, op): def __add__(self, other): def __rmul__(self, other): def __neg__(self): def __rsub__(self, other): def __truediv__(self, other): def make_grid(tensor, nrow=8, padding=2, normalize=False, ranges=None, scale_each=False, pad_value=0): def norm_ip(img, min, max): def norm_range(t, ranges): def save_image(tensor, filename, nrow=8, padding=2, normalize=False, ranges=None, scale_each=False, pad_value=0): class NumpyEncoder(json.JSONEncoder): class TextFormat: class MovingAverage: class _SplitDataset(torch.utils.data.Dataset): class Tee: class ParamDict(OrderedDict): # Path: utils/eval_helper.py def predict_on_set(algorithm, loader, device): def eval_metrics(algorithm, loader, device, thress=[0.5], thress_suffix=['_50'], add_arrays=False): def binary_metrics(targets, preds, label_set=[0, 1], suffix='', return_arrays=False): def prob_metrics(targets, preds, label_set, return_arrays=False): CM = confusion_matrix(targets, preds, labels=label_set) CM = confusion_matrix(targets, preds, labels=label_set) # Path: dataset/fast_dataloader.py class InfiniteDataLoader: def __init__(self, dataset, weights, batch_size, num_workers): super().__init__() if weights is not None: sampler = torch.utils.data.WeightedRandomSampler( weights, replacement=True, num_samples=batch_size) else: sampler = torch.utils.data.RandomSampler(dataset, replacement=True) batch_sampler = torch.utils.data.BatchSampler( sampler, batch_size=batch_size, drop_last=True) self._infinite_iterator = iter(torch.utils.data.DataLoader( dataset, num_workers=num_workers, batch_sampler=_InfiniteSampler(batch_sampler) )) def __iter__(self): while True: yield next(self._infinite_iterator) def __len__(self): raise ValueError # Path: train.py import argparse import collections import json import os import random import sys import time import numpy as np import pandas as pd import PIL import torch import torchvision import torch.utils.data import pickle import hparams_registry import wandb import hashlib from tensorboard_logger import Logger from pathlib import Path from torch.utils.data import DataLoader from dataset import datasets from learning import algorithms, early_stopping, swad_utils from utils import misc, eval_helper from dataset.fast_dataloader import InfiniteDataLoader from collections import OrderedDict if __name__ == "__main__": parser = argparse.ArgumentParser(description='Shortcut Learning in Chest X-rays') # training parser.add_argument('--store_name', type=str, default='debug') parser.add_argument('--dataset', type=str, default=["MIMIC"], nargs='+') parser.add_argument('--task', type=str, default="No Finding", choices=datasets.TASKS + datasets.ATTRS) parser.add_argument('--attr', type=str, default="sex", choices=datasets.ATTRS) parser.add_argument('--group_def', type=str, default="group", choices=['group', 'label']) parser.add_argument('--algorithm', type=str, default="ERM", choices=algorithms.ALGORITHMS) # others parser.add_argument('--output_dir', type=str, default='output') parser.add_argument('--data_dir', type=str, default='data') parser.add_argument('--hparams', type=str, help='JSON-serialized hparams dict') parser.add_argument('--hparams_seed', type=int, default=0, help='Seed for random hparams (0 for "default hparams")') parser.add_argument('--seed', type=int, default=0, help='Seed for everything else') parser.add_argument('--steps', type=int, default=None) parser.add_argument('--log_online', help='Log online using wandb', action='store_true') parser.add_argument('--skip_ood_eval', help='skip evals on OOD datasets', action='store_true') parser.add_argument('--log_all', help='Log all val metrics at each step to tb and wandb', action='store_true') parser.add_argument('--stratified_erm_subset', type=int, default=None) # two-stage related parser.add_argument('--stage1_folder', type=str) # early stopping parser.add_argument('--use_es', action='store_true') parser.add_argument('--es_strategy', choices=['metric'], default='metric') parser.add_argument('--es_metric', type=str, default='min_group:accuracy') parser.add_argument('--es_patience', type=int, default=5, help='Stop after this many checkpoints w/ no improvement') # checkpoints parser.add_argument('--resume', '-r', type=str, default='') parser.add_argument('--checkpoint_freq', type=int, default=None, help='Checkpoint every N steps') parser.add_argument('--skip_model_save', action='store_true') parser.add_argument('--debug', action='store_true') # architectures and pre-training sources parser.add_argument('--image_arch', default='densenet_sup_in1k', choices=['densenet_sup_in1k', 'resnet_sup_in1k', 'resnet_sup_in21k', 'resnet_simclr_in1k', 'resnet_barlow_in1k', 'vit_sup_in1k', 'vit_sup_in21k', 'vit_sup_swag', 'vit_clip_oai', 'vit_clip_laion', 'vit_dino_in1k', 'resnet_dino_in1k']) # data augmentations parser.add_argument('--aug', default='basic2', choices=['none', 'basic', 'basic2', 'auto_aug', 'rand_aug', 'trivial_aug', 'augmix']) args = parser.parse_args() start_step = 0 misc.prepare_folders(args) output_dir = os.path.join(args.output_dir, args.store_name) if not args.debug: sys.stdout = misc.Tee(os.path.join(output_dir, 'out.txt')) sys.stderr = misc.Tee(os.path.join(output_dir, 'err.txt')) tb_logger = Logger(logdir=output_dir, flush_secs=2) print("Environment:") print("\tPython: {}".format(sys.version.split(" ")[0])) print("\tPyTorch: {}".format(torch.__version__)) print("\tTorchvision: {}".format(torchvision.__version__))
print("\tCUDA: {}".format(torch.version.cuda))
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: RomGai/BrainVis # Path: dc_ldm/models/diffusion/plms.py class PLMSSampler(object): def __init__(self, model, schedule="linear", **kwargs): super().__init__() self.model = model self.ddpm_num_timesteps = model.num_timesteps self.schedule = schedule def register_buffer(self, name, attr): if type(attr) == torch.Tensor: if attr.device != torch.device("cuda"): attr = attr.to(torch.device("cuda")) setattr(self, name, attr) def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): if ddim_eta != 0: raise ValueError('ddim_eta must be 0 for PLMS') self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) alphas_cumprod = self.model.alphas_cumprod assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) self.register_buffer('betas', to_torch(self.model.betas)) self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) # calculations for diffusion q(x_t | x_{t-1}) and others self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) # ddim sampling parameters ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), ddim_timesteps=self.ddim_timesteps, eta=ddim_eta,verbose=verbose) self.register_buffer('ddim_sigmas', ddim_sigmas) self.register_buffer('ddim_alphas', ddim_alphas) self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( 1 - self.alphas_cumprod / self.alphas_cumprod_prev)) self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) @torch.no_grad() def sample(self, S, batch_size, shape, conditioning=None, callback=None, normals_sequence=None, img_callback=None, quantize_x0=False, eta=0., mask=None, x0=None, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, verbose=True, x_T=None, log_every_t=100, unconditional_guidance_scale=1., unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... **kwargs ): if conditioning is not None: if isinstance(conditioning, dict): cbs = conditioning[list(conditioning.keys())[0]].shape[0] if cbs != batch_size: print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") else: if conditioning.shape[0] != batch_size: print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) # sampling C, H, W = shape size = (batch_size, C, H, W) print(f'Data shape for PLMS sampling is {size}') samples, intermediates = self.plms_sampling(conditioning, size, callback=callback, img_callback=img_callback, quantize_denoised=quantize_x0, mask=mask, x0=x0, ddim_use_original_steps=False, noise_dropout=noise_dropout, temperature=temperature, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, x_T=x_T, log_every_t=log_every_t, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, **kwargs ) return samples, intermediates @torch.no_grad() def plms_sampling(self, cond, shape, x_T=None, ddim_use_original_steps=False, callback=None, timesteps=None, quantize_denoised=False, mask=None, x0=None, img_callback=None, log_every_t=100, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1., unconditional_conditioning=None, generator=None): device = self.model.betas.device b = shape[0] if x_T is None: img = torch.randn(shape, device=device, generator=generator) else: img = x_T if timesteps is None: timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps elif timesteps is not None and not ddim_use_original_steps: subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 timesteps = self.ddim_timesteps[:subset_end] intermediates = {'x_inter': [img], 'pred_x0': [img]} time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps) total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] print(f"Running PLMS Sampling with {total_steps} timesteps") iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps) old_eps = [] for i, step in enumerate(iterator): index = total_steps - i - 1 ts = torch.full((b,), step, device=device, dtype=torch.long) ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long) if mask is not None: assert x0 is not None img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? img = img_orig * mask + (1. - mask) * img outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, quantize_denoised=quantize_denoised, temperature=temperature, noise_dropout=noise_dropout, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, old_eps=old_eps, t_next=ts_next) img, pred_x0, e_t = outs old_eps.append(e_t) if len(old_eps) >= 4: old_eps.pop(0) if callback: callback(i) if img_callback: img_callback(pred_x0, i) if index % log_every_t == 0 or index == total_steps - 1: intermediates['x_inter'].append(img) intermediates['pred_x0'].append(pred_x0) return img, intermediates @torch.no_grad() def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None): b, *_, device = *x.shape, x.device def get_model_output(x, t): if unconditional_conditioning is None or unconditional_guidance_scale == 1.: e_t = self.model.apply_model(x, t, c) else: x_in = torch.cat([x] * 2) t_in = torch.cat([t] * 2) c_in = torch.cat([unconditional_conditioning, c]) e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) if score_corrector is not None: assert self.model.parameterization == "eps" e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) return e_t alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas def get_x_prev_and_pred_x0(e_t, index): # select parameters corresponding to the currently considered timestep a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) # current prediction for x_0 pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() if quantize_denoised: pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) # direction pointing to x_t dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature if noise_dropout > 0.: noise = torch.nn.functional.dropout(noise, p=noise_dropout) x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise return x_prev, pred_x0 e_t = get_model_output(x, t) if len(old_eps) == 0: # Pseudo Improved Euler (2nd order) x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index) e_t_next = get_model_output(x_prev, t_next) e_t_prime = (e_t + e_t_next) / 2 elif len(old_eps) == 1: # 2nd order Pseudo Linear Multistep (Adams-Bashforth) e_t_prime = (3 * e_t - old_eps[-1]) / 2 elif len(old_eps) == 2: # 3nd order Pseudo Linear Multistep (Adams-Bashforth) e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12 elif len(old_eps) >= 3: # 4nd order Pseudo Linear Multistep (Adams-Bashforth) e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24 x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index) return x_prev, pred_x0, e_t # Path: dc_ldm/util.py def instantiate_from_config(config): if not "target" in config: if config == '__is_first_stage__': return None elif config == "__is_unconditional__": return None raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", dict())) # Path: dataset.py class Dataset(Data.Dataset): def __init__(self, device, mode, data, wave_len): self.device = device self.datas, self.label ,self.clip,self.clip_moreinf = data self.mode = mode self.wave_len = wave_len self.__padding__() def __padding__(self): origin_len = self.datas[0].shape[0] if origin_len % self.wave_len: padding_len = self.wave_len - (origin_len % self.wave_len) padding = np.zeros((len(self.datas), padding_len, self.datas[0].shape[1]), dtype=np.float32) self.datas = np.concatenate([self.datas, padding], axis=-2) def __len__(self): return len(self.datas) def __getitem__(self, item): data = torch.tensor(self.datas[item]).to(self.device) label = self.label[item] clip=torch.tensor(self.clip[item]).to(self.device) clip_moreinf = torch.tensor(self.clip_moreinf[item]).to(self.device) return data, torch.tensor(label).to(self.device), clip,clip_moreinf def shape(self): return self.datas[0].shape # Path: model/BrainVisModels.py class TimeEncoder(nn.Module): def __init__(self, args): super(TimeEncoder, self).__init__() d_model = args.d_model self.d=d_model self.momentum = args.momentum self.linear_proba = True self.nocliptune=True self.device = args.device self.data_shape = args.data_shape self.max_len = int(self.data_shape[0] / args.wave_length) print(self.max_len) self.mask_len = int(args.mask_ratio * self.max_len) self.position = PositionalEmbedding(self.max_len, d_model) self.mask_token = nn.Parameter(torch.randn(d_model, )) self.input_projection = nn.Conv1d(args.data_shape[1], d_model, kernel_size=args.wave_length, stride=args.wave_length) self.encoder = TransformerEncoder(args) self.momentum_encoder = TransformerEncoder(args) self.tokenizer = Tokenizer(d_model, args.vocab_size) self.reg = Regressor(d_model, args.attn_heads, 4 * d_model, 1, args.reg_layers) self.predict_head = nn.Linear(d_model, args.num_class) self.channelmapping=ChannelMapping(self.max_len,77) self.dimmapping = nn.Linear(d_model, 768) self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Linear): xavier_normal_(module.weight.data) if module.bias is not None: constant_(module.bias.data, 0.1) def copy_weight(self): with torch.no_grad(): for (param_a, param_b) in zip(self.encoder.parameters(), self.momentum_encoder.parameters()): param_b.data = param_a.data def momentum_update(self): with torch.no_grad(): for (param_a, param_b) in zip(self.encoder.parameters(), self.momentum_encoder.parameters()): param_b.data = self.momentum * param_b.data + (1 - self.momentum) * param_a.data def pretrain_forward(self, x): x = self.input_projection(x.transpose(1, 2)).transpose(1, 2).contiguous() tokens = self.tokenizer(x) x += self.position(x) rep_mask_token = self.mask_token.repeat(x.shape[0], x.shape[1], 1) + self.position(x) index = np.arange(x.shape[1]) random.shuffle(index) v_index = index[:-self.mask_len] m_index = index[-self.mask_len:] visible = x[:, v_index, :] mask = x[:, m_index, :] tokens = tokens[:, m_index] rep_mask_token = rep_mask_token[:, m_index, :] rep_visible = self.encoder(visible) with torch.no_grad(): rep_mask = self.momentum_encoder(mask) rep_mask_prediction = self.reg(rep_visible, rep_mask_token) token_prediction_prob = self.tokenizer.center(rep_mask_prediction) return [rep_mask, rep_mask_prediction], [token_prediction_prob, tokens] def forward(self, x): if self.linear_proba==True and self.nocliptune==True: #with torch.no_grad(): x = self.input_projection(x.transpose(1, 2)).transpose(1, 2).contiguous() x += self.position(x) x = self.encoder(x) return torch.mean(x, dim=1) if self.linear_proba==False and self.nocliptune==True: x = self.input_projection(x.transpose(1, 2)).transpose(1, 2).contiguous() x += self.position(x) x = self.encoder(x) #lastrep=torch.mean(x, dim=1) lastrep=x xcls=self.predict_head(torch.mean(x, dim=1)) return lastrep, torch.mean(x, dim=1), xcls if self.nocliptune == False: #CLIP x = self.input_projection(x.transpose(1, 2)).transpose(1, 2).contiguous() x += self.position(x) x = self.encoder(x) lastrep=torch.mean(x, dim=1) x=self.channelmapping(x) x = self.dimmapping(x) return lastrep#,x def get_tokens(self, x): x = self.input_projection(x.transpose(1, 2)).transpose(1, 2).contiguous() tokens = self.tokenizer(x) return tokens # Path: model/BrainVisModels.py class AlignNet(nn.Module): def __init__(self, input_size, freq_size, output_size,pretrained_model): super(AlignNet, self).__init__() self.pretrained_model = pretrained_model#TimeFreqEncoder self.fc01=nn.Linear(input_size+freq_size+40, 4*input_size) self.tanh = nn.Tanh() self.fc02 = nn.Linear(4*input_size, input_size) self.tanh = nn.Tanh() self.fc03=nn.Linear(input_size, 4*input_size) self.tanh = nn.Tanh() self.fc04 = nn.Linear(4*input_size, input_size) self.tanh = nn.Tanh() self.fc05=nn.Linear(input_size, 4*input_size) self.tanh = nn.Tanh() self.fc6 = nn.Linear(4*input_size, output_size) def forward(self, x): lastrep,encoded,scores=self.pretrained_model(x) x = torch.cat((encoded, scores), dim=1) x = self.fc01(x) x = self.tanh(x) res_4is_1=x x = self.fc02(x) x = self.tanh(x) res_is_2 = x x = self.fc03(x)+res_4is_1 x = self.tanh(x) res_4is_2 = x x = self.fc04(x)+res_is_2 x = self.tanh(x) x = self.fc05(x)+res_4is_2 x = self.tanh(x) x = self.fc6(x) return x # Path: model/BrainVisModels.py class TimeFreqEncoder(nn.Module): def __init__(self, pretrained_model_time,pretrained_model_freq,args): super(TimeFreqEncoder, self).__init__() self.pretrained_model_time = pretrained_model_time self.pretrained_model_time.nocliptune=True self.pretrained_model_time.linear_proba=False self.pretrained_model_freq=pretrained_model_freq self.fc01 =nn.Linear( args.d_model+128, args.num_class) def forward(self,x): lastrep,time_feature,cls=self.pretrained_model_time(x) lstmcls,freq_feature=self.pretrained_model_freq(x) x = torch.cat((time_feature, freq_feature), dim=1) lastrep = x encoded=x x = self.fc01(encoded) scores=x return lastrep,encoded,scores # Path: model/BrainVisModels.py class FreqEncoder(nn.Module): def __init__(self, input_size=128, lstm_size=128, lstm_layers=1, output_size=128): # Call parent super().__init__() # Define parameters self.input_size = input_size self.lstm_size = lstm_size self.lstm_layers = lstm_layers self.output_size = output_size # Define internal modules self.lstm = nn.LSTM(input_size, lstm_size, num_layers=lstm_layers, batch_first=True) self.output = nn.Linear(lstm_size, output_size) self.classifier = nn.Linear(output_size, 40) def forward(self, x): batch_size = x.size(0) x = x.permute(0, 2, 1) x = x.cpu() fourier_transform = np.fft.fft(x, axis=2) half_spectrum = fourier_transform[:, :, 1:440 // 2 + 1] amplitude_spectrum = np.abs(half_spectrum) amplitude_spectrum = torch.tensor(amplitude_spectrum).float() x = amplitude_spectrum.permute(0, 2, 1) x = x.to("cuda") lstm_init = (torch.zeros(self.lstm_layers, batch_size, self.lstm_size), torch.zeros(self.lstm_layers, batch_size, self.lstm_size)) if x.is_cuda: lstm_init = (lstm_init[0].cuda(), lstm_init[0].cuda()) lstm_init = (Variable(lstm_init[0], volatile=x.volatile), Variable(lstm_init[1], volatile=x.volatile)) x = self.lstm(x, lstm_init)[0][:, -1, :] reps = x # Forward output xa = F.relu(self.output(x)) x = self.classifier(xa) return x, xa # Path: args.py # Path: cascade_diffusion.py import torch import os import numpy as np import torchvision.transforms as transforms import argparse from omegaconf import OmegaConf from dc_ldm.models.diffusion.plms import PLMSSampler from einops import rearrange, repeat from dc_ldm.util import instantiate_from_config from torch.utils.data import Dataset, DataLoader from dataset import Dataset as selfdataset from model.BrainVisModels import TimeEncoder, AlignNet,TimeFreqEncoder,FreqEncoder from args import args, Test_data, Train_data_all, Train_data, Train_data_all_with_image_name, Train_data_with_image_name, Test_data_with_image_name from diffusers import StableDiffusionImg2ImgPipeline from PIL import Image propmt_dict = {'n02106662': 'german shepherd dog', 'n02124075': 'cat ', 'n02281787': 'lycaenid butterfly', 'n02389026': 'sorrel horse', 'n02492035': 'Cebus capucinus', 'n02504458': 'African elephant', 'n02510455': 'panda', 'n02607072': 'anemone fish', 'n02690373': 'airliner', 'n02906734': 'broom', 'n02951358': 'canoe or kayak', 'n02992529': 'cellular telephone', 'n03063599': 'coffee mug', 'n03100240': 'old convertible', 'n03180011': 'desktop computer', 'n03197337': 'digital watch', 'n03272010': 'electric guitar', 'n03272562': 'electric locomotive', 'n03297495': 'espresso maker', 'n03376595': 'folding chair', 'n03445777': 'golf ball', 'n03452741': 'grand piano', 'n03584829': 'smoothing iron', 'n03590841': 'Orange jack-o’-lantern', 'n03709823': 'mailbag', 'n03773504': 'missile', 'n03775071': 'mitten,glove', 'n03792782': 'mountain bike, all-terrain bike', 'n03792972': 'mountain tent', 'n03877472': 'pajama', 'n03888257': 'parachute', 'n03982430': 'pool table, billiard table, snooker table ', 'n04044716': 'radio telescope', 'n04069434': 'eflex camera', 'n04086273': 'revolver, six-shooter', 'n04120489': 'running shoe', 'n07753592': 'banana', 'n07873807': 'pizza', 'n11939491': 'daisy', 'n13054560': 'bolete' } lable_number_dict={ '[12]': 'n02106662', '[39]': 'n02124075', '[11]': 'n02281787', '[0]': 'n02389026', '[21]': 'n02492035', '[35]': 'n02504458', '[8]': 'n02510455', '[3]': 'n02607072', '[36]': 'n02690373', '[18]': 'n02906734', '[10]': 'n02951358', '[15]': 'n02992529', '[5]': 'n03063599', '[24]': 'n03100240', '[17]': 'n03180011', '[34]': 'n03197337', '[28]': 'n03272010', '[37]': 'n03272562', '[4]': 'n03297495', '[25]': 'n03376595', '[16]': 'n03445777', '[30]': 'n03452741', '[2]': 'n03584829', '[14]': 'n03590841', '[23]': 'n03709823', '[20]': 'n03773504', '[27]': 'n03775071', '[6]': 'n03792782', '[31]': 'n03792972', '[26]': 'n03877472', '[1]': 'n03888257', '[22]': 'n03982430', '[38]': 'n04044716', '[29]': 'n04069434', '[7]': 'n04086273', '[13]': 'n04120489', '[32]': 'n07753592', '[19]': 'n07873807', '[9]': 'n11939491', '[33]': 'n13054560' } parser = argparse.ArgumentParser(description="Template") parser.add_argument('-mp','--model_params', default='', nargs='*', help='list of key=value pairs of model options') opt = parser.parse_args() # Path datapath='data/EEG_Feature_Label/' img_file_type='.JPEG' device = "cuda" test_img_names_file=datapath+'test_image_names.pth' test_seq_file=datapath+'test_seqs.pth' dff_model_path = "pretrained_model/v1-5-pruned-emaonly.ckpt" dff_yaml_path = "pretrained_model/config15.yaml" test_pred_file=datapath+'test_pred.pth' output_path="picture"
logger=None
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Rajeshwaran2001/DRM-Media-Tool # Path: key_getter.py class KeyGeter(QWidget): def __init__(self, debug_logger, info_logger): super().__init__() self.debug_logger = debug_logger self.info_logger = info_logger self.init_ui() def init_ui(self): # Create layout layout = QVBoxLayout() # Create labels and input fields label1 = QLabel('PSSH:') label2 = QLabel('Licence URL:') label3 = QLabel('Name:') self.input1 = QLineEdit() self.input2 = QLineEdit() self.input3 = QLineEdit() # To have input and lable on same line row_layout1 = QHBoxLayout() row_layout1.addWidget(label1) row_layout1.addWidget(self.input1) layout.addLayout(row_layout1) row_layout2 = QHBoxLayout() row_layout2.addWidget(label2) row_layout2.addWidget(self.input2) layout.addLayout(row_layout2) row_layout3 = QHBoxLayout() row_layout3.addWidget(label3) row_layout3.addWidget(self.input3) layout.addLayout(row_layout3) # Create a button button = QPushButton('Submit') # Add labels, input fields, and button to the layout layout.addWidget(button) # Set the layout for the main window self.setLayout(layout) # Connect the button to a function (e.g., handle_button_click) button.clicked.connect(self.handle_button_click) # Create a text browser to display the API response self.response_browser = QTextBrowser() # Add the text browser to the layout layout.addWidget(self.response_browser) self.show() def handle_button_click(self): self.info_logger.info("Submit Button Clicked") # Get user input from the input fields pssh = self.input1.text() license_url = self.input2.text() name = self.input3.text() # Check if any field is empty if not name: self.info_logger.info("Name Field is Empty") if not pssh: self.info_logger.info("pssh Field is Empty") if not license_url: self.info_logger.info("license_url Field is Empty") conn = sqlite3.connect('db.db') self.info_logger.info("DB Connected Succesfully") cursor = conn.cursor() # Create a table with columns if it doesn't exist cursor.execute('''CREATE TABLE IF NOT EXISTS pssh ( pssh TEXT, license_url TEXT, movie_name TEXT )''') cursor.execute(''' CREATE TABLE IF NOT EXISTS keys ( key_id INTEGER PRIMARY KEY, key TEXT, pssh_id INTEGER, FOREIGN KEY (pssh_id) REFERENCES pssh (pssh_id) ) ''') # Insert the values into the table cursor.execute("INSERT INTO pssh (pssh, license_url, movie_name) VALUES (?, ?, ?)", (pssh, license_url, name)) conn.commit() pssh_id = cursor.lastrowid # Construct the API request api_url = os.getenv("API_URL") headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (Ktesttemp, like Gecko) Chrome/90.0.4430.85 Safari/537.36", "Content-Type": "application/json", "X-API-Key": os.getenv("X_API_KEY"), } # Check if either pssh or license_url is empty if not pssh or not license_url: error_message = "Both 'pssh' and 'license_url' must be provided." show_error_message(self, error_message) self.debug_logger.debug(error_message) else: payload = { "license_url": license_url, "pssh": pssh, } # Make the API request response = requests.post(api_url, headers=headers, json=payload) self.info_logger.info(response) data = json.loads(response.text) key = None # print(data) self.info_logger.info("API response is: %s", response) if response.status_code in [200, 302]: if "keys" in data: keys = data["keys"] if isinstance(keys, list): if len(keys) == 1: for key_info in keys: if isinstance(key_info, str): key = key_info elif isinstance(key_info, dict) and "key" in key_info: key = key_info["key"] else: print('error') continue cursor.execute( "INSERT INTO keys (key, pssh_id) VALUES (?, ?)", (key, pssh_id)) # print("One key found") self.info_logger.info("Single key found") else: # key_strings = keys # key_string = ', '.join(key_strings) # part = key_string.replace( # '[', '').replace(']', '').replace("'", "") # key_parts = part.split(', ') # key = "\n".join(key_parts) # print(key) # print("Multiple keys found") self.info_logger.info("Multiple keys found") key_strings = keys for key_string in key_strings: key = key_string.replace( '[', '').replace(']', '').replace("'", "") cursor.execute( "INSERT INTO keys (key, pssh_id) VALUES (?, ?)", (key, pssh_id)) else: key = keys cursor.execute( "INSERT INTO keys (key, pssh_id) VALUES (?, ?)", (key, pssh_id)) self.info_logger.info("Keys Found") else: error_message = "No 'key' or 'keys' found in the JSON data." show_error_message(self, error_message) self.debug_logger.debug(error_message) elif response.status_code == 400: try: error_message = response.json()["message"] show_error_message(self, error_message) self.info_logger.info(error_message) except Exception as e: self.debug_logger.debug(e) else: error_message = "API ERROR." show_error_message(self, error_message) self.info_logger.info(error_message) current_datetime = datetime.now().strftime("%Y-%m-%d %I:%M:%S %p") event_data = { 'pssh': pssh, 'license_url': license_url, 'movie_name': name, 'keys': keys if "keys" in data else [], 'datetime': current_datetime, } # 'events' is the name of the collection events_ref = db.collection('events') events_ref.add(event_data) self.info_logger.info("Key Added to Globa Db") # Display the API response in the text browser conn.commit() # Close the database connection conn.close() if key is not None: key_str = json.dumps(keys) self.response_browser.setText(key_str) # Clear the input fields self.input1.clear() self.input2.clear() self.input3.clear() else: error_message = "No keys to display." # Customize this message as needed # show_error_message(self, error_message) self.debug_logger.debug(error_message) # Path: decrypter.py class Decrypter(QWidget): def __init__(self, debug_logger, info_logger): super().__init__() self.init_ui() self.conn = None # Database connection self.cursor = None # Database cursor self.debug_logger = debug_logger self.info_logger = info_logger self.create_database() def init_ui(self): layout = QVBoxLayout() # Create a horizontal layout for the "Select Folder" and folder path select_folder_layout = QHBoxLayout() select_folder_label = QLabel("Select Folder:") select_button = QPushButton("Select Folder") select_button.clicked.connect(self.browse_folder) self.folder_path_lineedit = QLineEdit() select_folder_layout.addWidget(select_folder_label) select_folder_layout.addWidget(select_button) select_folder_layout.addWidget(self.folder_path_lineedit) layout.addLayout(select_folder_layout) # Create horizontal layout for buttons (Check Folder, GetKeys, Decrypt) buttons_layout = QHBoxLayout() check_folder_button = QPushButton("Check Folder") check_folder_button.clicked.connect(self.check_folder_existence) buttons_layout.addWidget(check_folder_button) get_keys_button = QPushButton("Get Keys from DB") get_keys_button.clicked.connect(self.get_keys_from_db) buttons_layout.addWidget(get_keys_button) decrypt_button = QPushButton("Decrypt") decrypt_button.clicked.connect(self.decrypt_files) buttons_layout.addWidget(decrypt_button) merge_button = QPushButton("Media Merger") merge_button.clicked.connect(self.merger) buttons_layout.addWidget(merge_button) layout.addLayout(buttons_layout) # Create a QListWidget for displaying search results layout.addWidget(QLabel("Search Results:")) self.search_result_list = QListWidget() layout.addWidget(self.search_result_list) self.setLayout(layout) # Add these methods to handle button clicks def browse_folder(self): folder_path = QFileDialog.getExistingDirectory(self, "Select Folder") if folder_path: self.folder_path_lineedit.setText(folder_path) # self.search_database(folder_path) def check_folder_existence(self): folder_path = self.folder_path_lineedit.text() if os.path.exists(folder_path): show_success_message(self, "Folder exists.") self.info_logger.info("Folder exists.") else: show_error_message(self, "Folder does not exist.") self.debug_logger.debug("Folder does not exist.") def get_keys_from_db(self): folder_path = self.folder_path_lineedit.text() if os.path.exists(folder_path): keys_found = self.search_database(folder_path) # print(keys_found) if keys_found: success_message = "Keys retrieved successfully." show_success_message(self, success_message) self.info_logger.info(success_message) else: # Customize this message as needed error_message = "No keys found in the database." show_error_message(self, error_message) self.debug_logger.debug(error_message) else: show_error_message(self, "No Folder Found.") self.debug_logger.debug("No Folder Found.") def decrypt_files(self): folder_path = self.folder_path_lineedit.text() if os.path.exists(folder_path): decrypt = self.decrypt_file(folder_path) if decrypt: success_message = "Decryption successfully." show_success_message(self, success_message) self.info_logger.info(success_message) else: # Customize this message as needed error_message = "Decryption Failed." show_error_message(self, error_message) self.debug_logger.debug(error_message) else: show_error_message(self, "No Folder Selected.") self.debug_logger.debug("No Folder Selected.") def merger(self): folder_path = self.folder_path_lineedit.text() if os.path.exists(folder_path): merge = self.file_merger(folder_path) self.info_logger.info("Files Merged Succesfully") else: show_error_message(self, "No Folder Selected.") self.debug_logger.debug("No Folder Selected.") def create_database(self): self.conn = sqlite3.connect('db.db') self.cursor = self.conn.cursor() self.cursor.execute(''' CREATE TABLE IF NOT EXISTS pssh ( pssh_id INTEGER PRIMARY KEY, pssh TEXT, license_url TEXT, movie_name TEXT ) ''') self.cursor.execute(''' CREATE TABLE IF NOT EXISTS keys ( key_id INTEGER PRIMARY KEY, key TEXT, pssh_id INTEGER, FOREIGN KEY(pssh_id) REFERENCES pssh(pssh_id) ) ''') self.conn.commit() def search_database(self, folder_name): self.search_result_list.clear() # Search DB for entries with a movie_name that matches the folder_name query = "SELECT rowid, movie_name FROM pssh WHERE movie_name = ?" pattern = os.path.basename(folder_name) self.cursor.execute(query, (pattern,)) results = self.cursor.fetchall() keys = False for result in results: rowid, movie_name = result self.search_result_list.addItem( f"rowid: {rowid}, Movie Name: {movie_name}") # Search for keys based on the pssh_id keys_query = "SELECT key FROM keys WHERE pssh_id = ?" self.cursor.execute(keys_query, (rowid,)) keys = self.cursor.fetchall() if keys: keys_found = True # Set the flag if keys are found for key in keys: self.search_result_list.addItem(f" Key: {key[0]}") if not keys_found: # Customize this message as needed error_message = "No keys found in DB." show_error_message(self, error_message) self.debug_logger.debug(error_message) else: self.info_logger.info("Keys Found in Database") return keys_found def decrypt_file(self, folder_name): self.search_result_list.clear() # Search DB for entries with a movie_name that matches the folder_name query = "SELECT rowid, movie_name FROM pssh WHERE movie_name = ?" pattern = os.path.basename(folder_name) self.cursor.execute(query, (pattern,)) results = self.cursor.fetchall() keys = [] for result in results: rowid, movie_name = result self.search_result_list.addItem( f"rowid: {rowid}, Movie Name: {movie_name}") # Search for keys based on the pssh_id keys_query = "SELECT key FROM keys WHERE pssh_id = ?" self.cursor.execute(keys_query, (rowid,)) keys = self.cursor.fetchall() # Get video and audio files in the selected folder video_audio_formats = ['.mp4', '.avi', '.webm', '.mkv', '.m4a', '.wav', '.flac', '.mp3'] files = [f for f in os.listdir(folder_name) if os.path.isfile( os.path.join(folder_name, f))] video_audio_files = [f for f in files if os.path.splitext( f)[1].lower() in video_audio_formats] # self.search_result_list.addItem("\nVideo and Audio Files:") # print(files) for file in video_audio_files: # self.search_result_list.addItem(f" {file}") # Decrypt the file using mp4decrypt decrypted_file = os.path.splitext( file)[0] + "_decrypted" + os.path.splitext(file)[1] input_file_path = os.path.normpath(os.path.join(folder_name, file)) output_file_path = os.path.normpath( os.path.join(folder_name, decrypted_file)) decrypt_command = ['mp4decrypt'] if not keys: # Customize this message as needed error_message = "No key found in DB." show_error_message(self, error_message) else: for key in keys: decrypt_command.extend(["--key", key[0]]) decrypt_command.extend([input_file_path, output_file_path]) try: # print(decrypt_command) subprocess.run(decrypt_command, shell=True, check=True) self.search_result_list.addItem( f" Decrypted File: {decrypted_file}") # Remove the original input file os.remove(input_file_path) # Rename the decrypted file to the original file name os.rename(output_file_path, input_file_path) show_success_message(self, "Decryption successfully Completed") self.info_logger.info( "Decryption of {decrypted_file} is successfully Completed") # # Ask the user if they want to delete the encrypted file # reply = QMessageBox.question( # self, 'Delete Encrypted File', # 'Do you want to delete the encrypted file?', # QMessageBox.Yes | QMessageBox.No, QMessageBox.No # ) # if reply == QMessageBox.Yes: # # Code to delete the encrypted file # self.search_result_list.addItem( # f" Deleted Encrypted File: {QMessageBox.Yes}") # show_success_message(self, # "Encrypted file deleted successfully") except subprocess.CalledProcessError as e: self.search_result_list.addItem( f" Error decrypting file: {e}") show_error_message(self, "Error decrypting file") self.debug_logger.debug("Error: {e}") return bool(keys) def file_merger(self, folder_name): file_merger_dialog = FileMergerDialog( self.debug_logger, self.info_logger, folder_name) file_merger_dialog.exec_() # Path: logger.py def setup_logging(): # Get the directory of the script or the executable if getattr(sys, 'frozen', False): # if the application is frozen current_dir = os.path.dirname(sys.executable) else: current_dir = os.path.dirname(os.path.abspath(__file__)) log_dir = os.path.join(current_dir, 'logs') os.makedirs(log_dir, exist_ok=True) info_log_file = os.path.join(log_dir, 'info.log') debug_log_file = os.path.join(log_dir, 'debug.log') # Configuration for info_logger info_logger = logging.getLogger('info_logger') info_handler = logging.FileHandler(info_log_file) info_formatter = logging.Formatter( '%(asctime)s - %(levelname)s - %(message)s') info_handler.setFormatter(info_formatter) info_logger.addHandler(info_handler) info_logger.setLevel(logging.INFO) # Configuration for debug_logger debug_logger = logging.getLogger('debug_logger') debug_handler = logging.FileHandler(debug_log_file) debug_formatter = logging.Formatter( '%(asctime)s - %(levelname)s - %(message)s') debug_handler.setFormatter(debug_formatter) debug_logger.addHandler(debug_handler) debug_logger.setLevel(logging.DEBUG) return info_logger, debug_logger # Path: version.py CHANNEL = 'Beta' # Path: main.py import sys import platform import webbrowser import os from PyQt5.QtWidgets import QApplication, QMainWindow, QTabWidget, QMessageBox, QAction, QMenu from PyQt5.QtGui import QIcon from key_getter import KeyGeter from decrypter import Decrypter from logger import setup_logging from version import __version__, CHANNEL info_logger, debug_logger = setup_logging() current_dir = os.path.dirname(os.path.abspath(__file__)) icon = os.path.join(current_dir, 'assets', 'logo.ico') git = os.path.join(current_dir, 'assets', 'github.png') discord = os.path.join(current_dir, 'assets', 'discord.svg') bug = os.path.join(current_dir, 'assets', 'bug.svg') class MainWindow(QMainWindow): def __init__(self): super().__init__() self.setWindowIcon(QIcon(icon)) self.init_ui() def init_ui(self): self.setWindowTitle(f"DRM & Media Tool {__version__} ({CHANNEL})") self.setGeometry(100, 100, 650, 350) # Create the tab widget tab_widget = QTabWidget(self) # Create the menu bar menu_bar = self.menuBar() # Create the Help menu help_menu = menu_bar.addMenu('Help') # Create "Tools Used" action tools_used_action = QAction('Tools Used', self) tools_used_action.triggered.connect(self.show_tools_used) help_menu.addAction(tools_used_action) # Create "About" action about_action = QAction('About', self) about_action.triggered.connect(self.show_about) help_menu.addAction(about_action) feature_bug_menu = QMenu('Feature/Bug', self) request_feature_bug_action = QAction( 'Request a New Feature or Report Bug', self) request_feature_bug_action.triggered.connect( self.open_feature_bug_form) feature_bug_menu.addAction(request_feature_bug_action) menu_bar.addMenu(feature_bug_menu) help_menu = menu_bar.addMenu('Discord') open_discord_action = QAction('Open Discord', self) open_discord_action.triggered.connect(self.open_discord) help_menu.addAction(open_discord_action) # Create tabs hello_tab = KeyGeter(debug_logger, info_logger) file_lister_tab = Decrypter(debug_logger, info_logger) # Add tabs to the tab widget tab_widget.addTab(hello_tab, "Key Graber") tab_widget.addTab(file_lister_tab, "Decrypter & Merger") # Set the central widget to be the tab widget
self.setCentralWidget(tab_widget)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: gmum/ViewingDirectionGaussianSplatting # Path: scene/colmap_loader.py def read_extrinsics_text(path): """ Taken from https://github.com/colmap/colmap/blob/dev/scripts/python/read_write_model.py """ images = {} with open(path, "r") as fid: while True: line = fid.readline() if not line: break line = line.strip() if len(line) > 0 and line[0] != "#": elems = line.split() image_id = int(elems[0]) qvec = np.array(tuple(map(float, elems[1:5]))) tvec = np.array(tuple(map(float, elems[5:8]))) camera_id = int(elems[8]) image_name = elems[9] elems = fid.readline().split() xys = np.column_stack([tuple(map(float, elems[0::3])), tuple(map(float, elems[1::3]))]) point3D_ids = np.array(tuple(map(int, elems[2::3]))) images[image_id] = Image( id=image_id, qvec=qvec, tvec=tvec, camera_id=camera_id, name=image_name, xys=xys, point3D_ids=point3D_ids) return images # Path: scene/colmap_loader.py def read_intrinsics_text(path): """ Taken from https://github.com/colmap/colmap/blob/dev/scripts/python/read_write_model.py """ cameras = {} with open(path, "r") as fid: while True: line = fid.readline() if not line: break line = line.strip() if len(line) > 0 and line[0] != "#": elems = line.split() camera_id = int(elems[0]) model = elems[1] assert model == "PINHOLE", "While the loader support other types, the rest of the code assumes PINHOLE" width = int(elems[2]) height = int(elems[3]) params = np.array(tuple(map(float, elems[4:]))) cameras[camera_id] = Camera(id=camera_id, model=model, width=width, height=height, params=params) return cameras # Path: scene/colmap_loader.py def qvec2rotmat(qvec): return np.array([ [1 - 2 * qvec[2]**2 - 2 * qvec[3]**2, 2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3], 2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]], [2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3], 1 - 2 * qvec[1]**2 - 2 * qvec[3]**2, 2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]], [2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2], 2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1], 1 - 2 * qvec[1]**2 - 2 * qvec[2]**2]]) # Path: scene/colmap_loader.py def read_extrinsics_binary(path_to_model_file): """ see: src/base/reconstruction.cc void Reconstruction::ReadImagesBinary(const std::string& path) void Reconstruction::WriteImagesBinary(const std::string& path) """ images = {} with open(path_to_model_file, "rb") as fid: num_reg_images = read_next_bytes(fid, 8, "Q")[0] for _ in range(num_reg_images): binary_image_properties = read_next_bytes( fid, num_bytes=64, format_char_sequence="idddddddi") image_id = binary_image_properties[0] qvec = np.array(binary_image_properties[1:5]) tvec = np.array(binary_image_properties[5:8]) camera_id = binary_image_properties[8] image_name = "" current_char = read_next_bytes(fid, 1, "c")[0] while current_char != b"\x00": # look for the ASCII 0 entry image_name += current_char.decode("utf-8") current_char = read_next_bytes(fid, 1, "c")[0] num_points2D = read_next_bytes(fid, num_bytes=8, format_char_sequence="Q")[0] x_y_id_s = read_next_bytes(fid, num_bytes=24*num_points2D, format_char_sequence="ddq"*num_points2D) xys = np.column_stack([tuple(map(float, x_y_id_s[0::3])), tuple(map(float, x_y_id_s[1::3]))]) point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3]))) images[image_id] = Image( id=image_id, qvec=qvec, tvec=tvec, camera_id=camera_id, name=image_name, xys=xys, point3D_ids=point3D_ids) return images # Path: scene/colmap_loader.py def read_intrinsics_binary(path_to_model_file): """ see: src/base/reconstruction.cc void Reconstruction::WriteCamerasBinary(const std::string& path) void Reconstruction::ReadCamerasBinary(const std::string& path) """ cameras = {} with open(path_to_model_file, "rb") as fid: num_cameras = read_next_bytes(fid, 8, "Q")[0] for _ in range(num_cameras): camera_properties = read_next_bytes( fid, num_bytes=24, format_char_sequence="iiQQ") camera_id = camera_properties[0] model_id = camera_properties[1] model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name width = camera_properties[2] height = camera_properties[3] num_params = CAMERA_MODEL_IDS[model_id].num_params params = read_next_bytes(fid, num_bytes=8*num_params, format_char_sequence="d"*num_params) cameras[camera_id] = Camera(id=camera_id, model=model_name, width=width, height=height, params=np.array(params)) assert len(cameras) == num_cameras return cameras # Path: scene/colmap_loader.py def read_points3D_binary(path_to_model_file): """ see: src/base/reconstruction.cc void Reconstruction::ReadPoints3DBinary(const std::string& path) void Reconstruction::WritePoints3DBinary(const std::string& path) """ with open(path_to_model_file, "rb") as fid: num_points = read_next_bytes(fid, 8, "Q")[0] xyzs = np.empty((num_points, 3)) rgbs = np.empty((num_points, 3)) errors = np.empty((num_points, 1)) for p_id in range(num_points): binary_point_line_properties = read_next_bytes( fid, num_bytes=43, format_char_sequence="QdddBBBd") xyz = np.array(binary_point_line_properties[1:4]) rgb = np.array(binary_point_line_properties[4:7]) error = np.array(binary_point_line_properties[7]) track_length = read_next_bytes( fid, num_bytes=8, format_char_sequence="Q")[0] track_elems = read_next_bytes( fid, num_bytes=8*track_length, format_char_sequence="ii"*track_length) xyzs[p_id] = xyz rgbs[p_id] = rgb errors[p_id] = error return xyzs, rgbs, errors # Path: scene/colmap_loader.py def read_points3D_text(path): """ see: src/base/reconstruction.cc void Reconstruction::ReadPoints3DText(const std::string& path) void Reconstruction::WritePoints3DText(const std::string& path) """ xyzs = None rgbs = None errors = None num_points = 0 with open(path, "r") as fid: while True: line = fid.readline() if not line: break line = line.strip() if len(line) > 0 and line[0] != "#": num_points += 1 xyzs = np.empty((num_points, 3)) rgbs = np.empty((num_points, 3)) errors = np.empty((num_points, 1)) count = 0 with open(path, "r") as fid: while True: line = fid.readline() if not line: break line = line.strip() if len(line) > 0 and line[0] != "#": elems = line.split() xyz = np.array(tuple(map(float, elems[1:4]))) rgb = np.array(tuple(map(int, elems[4:7]))) error = np.array(float(elems[7])) xyzs[count] = xyz rgbs[count] = rgb errors[count] = error count += 1 return xyzs, rgbs, errors # Path: utils/graphics_utils.py def getWorld2View2(R, t, translate=np.array([.0, .0, .0]), scale=1.0): Rt = np.zeros((4, 4)) Rt[:3, :3] = R.transpose() Rt[:3, 3] = t Rt[3, 3] = 1.0 C2W = np.linalg.inv(Rt) cam_center = C2W[:3, 3] cam_center = (cam_center + translate) * scale C2W[:3, 3] = cam_center Rt = np.linalg.inv(C2W) return np.float32(Rt) # Path: utils/graphics_utils.py def focal2fov(focal, pixels): return 2*math.atan(pixels/(2*focal)) # Path: utils/graphics_utils.py def fov2focal(fov, pixels): return pixels / (2 * math.tan(fov / 2)) # Path: utils/sh_utils.py def SH2RGB(sh): return sh * C0 + 0.5 # Path: scene/gaussian_model.py class GaussianModel: def setup_functions(self): def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation): def __init__(self, sh_degree : int): def capture(self): def restore(self, model_args, training_args): def get_scaling(self): def get_rotation(self): def get_xyz(self): def get_features(self): def get_opacity(self): def get_covariance(self, scaling_modifier = 1): def oneupSHdegree(self): def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float): def training_setup(self, training_args): def update_learning_rate(self, iteration): def construct_list_of_attributes(self): def save_ply(self, path): def reset_opacity(self): def load_ply(self, path): def replace_tensor_to_optimizer(self, tensor, name): def _prune_optimizer(self, mask): def prune_points(self, mask): def cat_tensors_to_optimizer(self, tensors_dict): def densification_postfix(self, new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation): def densify_and_split(self, grads, grad_threshold, scene_extent, N=2): def densify_and_clone(self, grads, grad_threshold, scene_extent): def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size): def add_densification_stats(self, viewspace_point_tensor, update_filter): L = build_scaling_rotation(scaling_modifier * scaling, rotation) # Path: scene/dataset_readers.py import os import sys import numpy as np import json from PIL import Image from typing import NamedTuple from scene.colmap_loader import read_extrinsics_text, read_intrinsics_text, qvec2rotmat, \ read_extrinsics_binary, read_intrinsics_binary, read_points3D_binary, read_points3D_text from utils.graphics_utils import getWorld2View2, focal2fov, fov2focal from pathlib import Path from plyfile import PlyData, PlyElement from utils.sh_utils import SH2RGB from scene.gaussian_model import BasicPointCloud height = intr.height width = intr.width uid = intr.id R = np.transpose(qvec2rotmat(extr.qvec)) T = np.array(extr.tvec) if intr.model=="SIMPLE_PINHOLE": focal_length_x = intr.params[0] FovY = focal2fov(focal_length_x, height) FovX = focal2fov(focal_length_x, width) elif intr.model=="PINHOLE": focal_length_x = intr.params[0] focal_length_y = intr.params[1] FovY = focal2fov(focal_length_y, height) FovX = focal2fov(focal_length_x, width) else: assert False, "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!" image_path = os.path.join(images_folder, os.path.basename(extr.name)) image_name = os.path.basename(image_path).split(".")[0] image = Image.open(image_path) cam_info = CameraInfo(uid=uid, R=R, T=T, FovY=FovY, FovX=FovX, image=image, image_path=image_path, image_name=image_name, width=width, height=height) cam_infos.append(cam_info) sys.stdout.write('\n') return cam_infos def fetchPly(path): plydata = PlyData.read(path) vertices = plydata['vertex'] positions = np.vstack([vertices['x'], vertices['y'], vertices['z']]).T colors = np.vstack([vertices['red'], vertices['green'], vertices['blue']]).T / 255.0 normals = np.vstack([vertices['nx'], vertices['ny'], vertices['nz']]).T return BasicPointCloud(points=positions, colors=colors, normals=normals) def storePly(path, xyz, rgb): # Define the dtype for the structured array dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('nx', 'f4'), ('ny', 'f4'), ('nz', 'f4'), ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')] normals = np.zeros_like(xyz) elements = np.empty(xyz.shape[0], dtype=dtype) attributes = np.concatenate((xyz, normals, rgb), axis=1) elements[:] = list(map(tuple, attributes)) # Create the PlyData object and write to file vertex_element = PlyElement.describe(elements, 'vertex') ply_data = PlyData([vertex_element]) ply_data.write(path) def readColmapSceneInfo(path, images, eval, llffhold=8): try: cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin") cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin") cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file) cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file) except: cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt") cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt") cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file) cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file) reading_dir = "images" if images == None else images cam_infos_unsorted = readColmapCameras(cam_extrinsics=cam_extrinsics, cam_intrinsics=cam_intrinsics, images_folder=os.path.join(path, reading_dir)) cam_infos = sorted(cam_infos_unsorted.copy(), key = lambda x : x.image_name) if eval: train_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold != 0] test_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold == 0] else: train_cam_infos = cam_infos test_cam_infos = [] nerf_normalization = getNerfppNorm(train_cam_infos) ply_path = os.path.join(path, "sparse/0/points3D.ply") bin_path = os.path.join(path, "sparse/0/points3D.bin") txt_path = os.path.join(path, "sparse/0/points3D.txt") if not os.path.exists(ply_path): print("Converting point3d.bin to .ply, will happen only the first time you open the scene.") try: xyz, rgb, _ = read_points3D_binary(bin_path) except: xyz, rgb, _ = read_points3D_text(txt_path) storePly(ply_path, xyz, rgb) try: pcd = fetchPly(ply_path) except: pcd = None scene_info = SceneInfo(point_cloud=pcd, train_cameras=train_cam_infos, test_cameras=test_cam_infos, nerf_normalization=nerf_normalization, ply_path=ply_path) return scene_info def readCamerasFromTransforms(path, transformsfile, white_background, extension=".png"): cam_infos = [] with open(os.path.join(path, transformsfile)) as json_file: contents = json.load(json_file) fovx = contents["camera_angle_x"] frames = contents["frames"] for idx, frame in enumerate(frames): cam_name = os.path.join(path, frame["file_path"] + extension) # NeRF 'transform_matrix' is a camera-to-world transform c2w = np.array(frame["transform_matrix"]) # change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward) c2w[:3, 1:3] *= -1 # get the world-to-camera transform and set R, T w2c = np.linalg.inv(c2w) R = np.transpose(w2c[:3,:3]) # R is stored transposed due to 'glm' in CUDA code
T = w2c[:3, 3]
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Ruiyuan-Zhang/CCS # Path: multi_part_assembly/utils/wx_transformer_utilities/transformer_layer.py class TransformerEncoderLayer(nn.Module): """Encoder layer block. In the original paper each operation (multi-head attention or FFN) is postprocessed with: `dropout -> add residual -> layernorm`. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: `dropout -> add residual`. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting *args.encoder_normalize_before* to ``True``. Args: args (argparse.Namespace): parsed command-line arguments """ def __init__(self, args, nb, blockatt, blockatt_memory, use_nfm, out_proj_dim=None): super().__init__() self.blockatt = blockatt self.blockatt_memory = blockatt_memory self.embed_dim = args.encoder_embed_dim self.quant_noise = getattr(args, "quant_noise_pq", 0) self.quant_noise_block_size = getattr(args, "quant_noise_pq_block_size", 8) self.use_nfm = use_nfm print('using nfm?', self.use_nfm) self.nb = nb self.norm_blocks = self.nb self.self_attn = self.build_self_attention(self.embed_dim, args) #should divide embed_dim by nb. Then raise embed_dim in args self.self_attn_layer_norm = NormLayer(self.norm_blocks, self.embed_dim // self.norm_blocks) self.dropout_module = FairseqDropout(args.dropout, module_name=self.__class__.__name__) self.activation_fn = utils.get_activation_fn( activation=getattr(args, "activation_fn", "relu") ) print("SETUP TRANSFORMER LAYER", 'blocks', self.nb) activation_dropout_p = getattr(args, "activation_dropout", 0) if activation_dropout_p == 0: # for backwards compatibility with models that use args.relu_dropout activation_dropout_p = getattr(args, "relu_dropout", 0) self.activation_dropout_module = FairseqDropout( float(activation_dropout_p), module_name=self.__class__.__name__ ) self.normalize_before = args.encoder_normalize_before self.fc1 = self.build_fc1( self.embed_dim, args.encoder_ffn_embed_dim, self.quant_noise, self.quant_noise_block_size ) self.fc2 = self.build_fc2( args.encoder_ffn_embed_dim, self.embed_dim, self.quant_noise, self.quant_noise_block_size ) self.final_layer_norm = NormLayer(self.norm_blocks, self.embed_dim // self.norm_blocks) if self.blockatt: self.comm = Attention(args.encoder_attention_heads, self.nb, self.embed_dim, self.use_nfm) self.comm_norm = NormLayer(self.norm_blocks, self.embed_dim // self.norm_blocks) if self.blockatt_memory: memory_slots = 4 memory_head_size = 128 memory_num_heads = 1 gate_style = 'memory' print('not using special key size gate_style is', gate_style, memory_slots, memory_num_heads, memory_head_size) self.memory_layer = RelationalMemory(mem_slots=memory_slots, head_size=memory_head_size, input_size=self.embed_dim, output_size=self.embed_dim, num_heads=memory_num_heads, num_blocks=1, forget_bias=1., input_bias=0., attention_mlp_layers=5, gate_style=gate_style) #self.n_blocks_val * self.block_dim_val #self.block_dim_val = dim_val // self.n_blocks_val self.memory_attention = MemoryAttention(n_blocks_query=self.nb, n_blocks_val=8, dim_query=self.embed_dim, dim_val=memory_head_size*memory_num_heads*memory_slots) self.self_mem_norm = NormLayer(self.norm_blocks, self.embed_dim // self.norm_blocks) #self.competition = GroupLinearLayer(self.embed_dim//self.nb, 1, self.nb, a=0.05) #self.comp_sm = nn.Softmax(dim=2) self.competition = None if out_proj_dim is not None: self.out_proj = GroupLinearLayer(self.embed_dim//self.nb, out_proj_dim//self.nb, self.nb) else: self.out_proj = None def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size): return quant_noise(GroupLinearLayer(input_dim//self.nb, output_dim//self.nb, self.nb), p=q_noise, block_size=qn_block_size) #return quant_noise(nn.Linear(input_dim, output_dim), p=q_noise, block_size=qn_block_size) def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size): return quant_noise(GroupLinearLayer(input_dim//self.nb, output_dim//self.nb, self.nb), p=q_noise, block_size=qn_block_size) #return quant_noise(nn.Linear(input_dim, output_dim), p=q_noise, block_size=qn_block_size) def build_self_attention(self, embed_dim, args): return MultiheadAttention( embed_dim, args.encoder_attention_heads, dropout=args.attention_dropout, self_attention=True, q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, nblocks=self.nb, top_k_ratio = args.topk_ratio, use_value_competition = False, ) def upgrade_state_dict_named(self, state_dict, name): """ Rename layer norm states from `...layer_norms.0.weight` to `...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to `...final_layer_norm.weight` """ layer_norm_map = {"0": "self_attn_layer_norm", "1": "final_layer_norm"} for old, new in layer_norm_map.items(): for m in ("weight", "bias"): k = "{}.layer_norms.{}.{}".format(name, old, m) if k in state_dict: state_dict["{}.{}.{}".format(name, new, m)] = state_dict[k] del state_dict[k] def forward(self, x, encoder_padding_mask, attn_mask: Optional[Tensor] = None, state = None): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, seq_len)` where padding elements are indicated by ``1``. attn_mask (ByteTensor): binary tensor of shape `(tgt_len, src_len)`, where `tgt_len` is the length of output and `src_len` is the length of input, though here both are equal to `seq_len`. `attn_mask[tgt_i, src_j] = 1` means that when calculating the embedding for `tgt_i`, we exclude (mask out) `src_j`. This is useful for strided self-attention. Returns: encoded output of shape `(seq_len, batch, embed_dim)` """ # anything in original attn_mask = 1, becomes -1e8 # anything in original attn_mask = 0, becomes 0 # Note that we cannot use -inf here, because at some edge cases, # the attention weight (before softmax) for some padded element in query # will become -inf, which results in NaN in model parameters seq_len, bsz, _ = x.shape if self.competition is not None: comp = self.competition(x) comp = self.comp_sm(comp) #comp = F.gumbel_softmax(comp, tau=0.5, hard=False, dim=2) comp = comp.unsqueeze(-1).repeat(1,1,1,self.embed_dim//self.nb) comp = comp.view((x.shape[0], x.shape[1], self.embed_dim)) else: comp = None if attn_mask is not None: attn_mask = attn_mask.masked_fill(attn_mask.to(torch.bool), -1e8) residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) x, _ = self.self_attn( query=state if state is not None else x, key=x, value=x, key_padding_mask=encoder_padding_mask, attn_mask=attn_mask, ) x = self.dropout_module(x) x = residual + x if not self.normalize_before: x = self.self_attn_layer_norm(x) if self.blockatt: if self.normalize_before: x = self.comm_norm(x) residual = x x, _ = self.comm(x) x = self.dropout_module(x) x = residual + x if not self.normalize_before: x = self.comm_norm(x) if self.blockatt_memory: if self.normalize_before: x = self.self_mem_norm(x) residual = x T,bsz,nhid = x.shape if comp is not None: x_write = comp * x else: x_write = x*1.0 _, new_memory = self.memory_layer.forward_step(x_write.reshape((T*bsz, nhid)), self.memory_obj[0]) self.memory_obj[0] = new_memory Tbs,num_slots,nhid_slot = new_memory.shape mem_read = new_memory.reshape((T, bsz, num_slots*nhid_slot)) x,_ = self.memory_attention(x, mem_read) x = residual + x if not self.normalize_before: x = self.self_mem_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) #print('fc1 on shape', x.shape, 'in encoder') x = self.activation_fn(self.fc1(x)) x = self.activation_dropout_module(x) #print('fc2 on shape', x.shape, 'in encoder') x = self.fc2(x) x = self.dropout_module(x) x = residual + x if not self.normalize_before: x = self.final_layer_norm(x) if self.out_proj is not None: x = self.out_proj(x) return x # Path: multi_part_assembly/utils/wx_transformer_utilities/transformer_layer.py class TransformerEncoderLayerVanilla(nn.Module): """Encoder layer block. In the original paper each operation (multi-head attention or FFN) is postprocessed with: `dropout -> add residual -> layernorm`. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: `dropout -> add residual`. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting *args.encoder_normalize_before* to ``True``. Args: args (argparse.Namespace): parsed command-line arguments """ def __init__(self, args, out_proj = None): super().__init__() self.embed_dim = args.encoder_embed_dim self.self_attn = self.build_self_attention(self.embed_dim, args) self.self_attn_layer_norm = LayerNorm(self.embed_dim, eps=1e-5) self.dropout = args.dropout self.activation_fn = utils.get_activation_fn( activation=getattr(args, "activation_fn", "relu") ) self.activation_dropout = getattr(args, "activation_dropout", 0) if self.activation_dropout == 0: # for backwards compatibility with models that use args.relu_dropout self.activation_dropout = getattr(args, "relu_dropout", 0) self.normalize_before = args.encoder_normalize_before self.fc1 = self.build_fc1(self.embed_dim, args.encoder_ffn_embed_dim) self.fc2 = self.build_fc2(args.encoder_ffn_embed_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim, eps=1e-5) if out_proj is not None: self.final_linear = nn.Linear(args.encoder_embed_dim, out_proj) else: self.final_linear = None def build_fc1(self, input_dim, output_dim): return nn.Linear(input_dim, output_dim) def build_fc2(self, input_dim, output_dim): return nn.Linear(input_dim, output_dim) def build_self_attention(self, embed_dim, args): return MultiheadAttention( embed_dim, args.encoder_attention_heads, dropout=args.attention_dropout, self_attention=args.self_attention, shared_memory_attention = args.shared_memory_attention, use_topk = args.use_topk, topk = args.topk, num_steps = args.num_steps, mem_slots = args.mem_slots, null_attention = args.null_attention, regressive = args.regressive ) def upgrade_state_dict_named(self, state_dict, name): """ Rename layer norm states from `...layer_norms.0.weight` to `...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to `...final_layer_norm.weight` """ layer_norm_map = {"0": "self_attn_layer_norm", "1": "final_layer_norm"} for old, new in layer_norm_map.items(): for m in ("weight", "bias"): k = "{}.layer_norms.{}.{}".format(name, old, m) if k in state_dict: state_dict["{}.{}.{}".format(name, new, m)] = state_dict[k] del state_dict[k] def forward(self, x, encoder_padding_mask, attn_mask: Optional[Tensor] = None, state = None, memory = None): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. attn_mask (ByteTensor): binary tensor of shape (T_tgt, T_src), where T_tgt is the length of query, while T_src is the length of key, though here both query and key is x here, attn_mask[t_tgt, t_src] = 1 means when calculating embedding for t_tgt, t_src is excluded (or masked out), =0 means it is included in attention Returns: encoded output of shape `(seq_len, batch, embed_dim)` """ residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) if attn_mask is not None: attn_mask = attn_mask.masked_fill(attn_mask.to(torch.bool), -1e8) # anything in original attn_mask = 1, becomes -1e8 # anything in original attn_mask = 0, becomes 0 # Note that we cannot use -inf here, because at some edge cases, # the attention weight (before softmax) for some padded element in query # will become -inf, which results in NaN in model parameters # TODO: to formally solve this problem, we need to change fairseq's # MultiheadAttention. We will do this later on. #print(state is not None) x, memory, _ = self.self_attn( query=state if state is not None else x, key=x, value=x, key_padding_mask=encoder_padding_mask, attn_mask=attn_mask, memory = memory ) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x if not self.normalize_before: x = self.self_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=float(self.activation_dropout), training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x if not self.normalize_before: x = self.final_layer_norm(x) if self.final_linear is not None: x = self.final_linear(x) return x, memory # Path: multi_part_assembly/utils/wx_transformer_utilities/pos_enc.py class PositionEncoder(nn.Module): def __init__(self, d_model, max_seq_len = 300): super().__init__() self.d_model = d_model # create constant 'pe' matrix with values dependant on # pos and i pe = torch.zeros(max_seq_len, d_model) for pos in range(max_seq_len): for i in range(0, d_model, 2): pe[pos, i] = \ math.sin(pos / (10000 ** ((2 * i)/d_model))) pe[pos, i + 1] = \ math.cos(pos / (10000 ** ((2 * (i + 1))/d_model))) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) self.pos_emb_weight = nn.Parameter(torch.ones_like(pe)) def forward(self, x): # make embeddings relatively larger x = x.permute(1,0,2) #x = x * math.sqrt(self.d_model) #add constant to embedding seq_len = x.size(1) #width x channel #pe_use = F.interpolate(self.pe.permute(0,2,1), size=seq_len).permute(0,2,1) pe_use = Variable(self.pe[:,:seq_len] * F.sigmoid(self.pos_emb_weight[:,:seq_len]), requires_grad=False).cuda() #bs x pos x nhid --> bs x nhid x pos --> bs x pos x nhid x = x + pe_use #Variable(pe_use, requires_grad=False).cuda() x = x.permute(1,0,2) return x # Path: multi_part_assembly/utils/wx_transformer_utilities/GroupLinearLayer.py class GroupLinearLayer(nn.Module): def __init__(self, din, dout, num_blocks, bias=True, a = None): super(GroupLinearLayer, self).__init__() self.nb = num_blocks #din = din // num_blocks #dout = dout // num_blocks self.dout = dout if a is None: a = 1. / math.sqrt(dout) self.weight = nn.Parameter(torch.FloatTensor(num_blocks,din,dout).uniform_(-a,a)) self.bias = bias if bias is True: self.bias = nn.Parameter(torch.FloatTensor(num_blocks,dout).uniform_(-a,a)) #self.bias = nn.Parameter(torch.zeros(dout*num_blocks)) else: self.bias = None def forward(self,x): ts,bs,m = x.shape #x = x.reshape((ts*bs, self.nb, m//self.nb)) x = x.permute(1,0,2) x = torch.bmm(x,self.weight) x = x.permute(1,0,2) if not self.bias is None: x = x + self.bias #x = x.reshape((ts, bs, self.dout*self.nb)) return x # Path: multi_part_assembly/models/wx_transformer/wx_transformers.py import torch import torch.nn as nn import types import math import numpy as np import math import time import time from multi_part_assembly.utils.wx_transformer_utilities.transformer_layer import TransformerEncoderLayer, TransformerEncoderLayerVanilla from multi_part_assembly.utils.wx_transformer_utilities.pos_enc import PositionEncoder from multi_part_assembly.utils.wx_transformer_utilities.GroupLinearLayer import GroupLinearLayer #from transformer import TransformerEncoder args = types.SimpleNamespace() args.use_module_communication = 'true' args.encoder_embed_dim = 512
args.encoder_attention_heads = 8 #was 8
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: uc-vision/taichi-splatting # Path: taichi_splatting/misc/autograd.py @contextmanager def restore_grad(*tensors): try: grads = [tensor.grad if tensor.grad is not None else None for tensor in tensors] for tensor in tensors: if tensor.requires_grad is True: tensor.grad = torch.zeros_like(tensor) yield finally: for tensor, grad in zip(tensors, grads): tensor.grad = grad # Path: taichi_splatting/perspective/params.py class CameraParams: T_image_camera: torch.Tensor # (3, 3) camera projection matrix T_camera_world : torch.Tensor # (4, 4) camera view matrix @property def device(self): return self.T_image_camera.device @property def T_image_world(self): T_image_camera = torch.eye(4, device=self.T_image_camera.device, dtype=self.T_image_camera.dtype) T_image_camera[0:3, 0:3] = self.T_image_camera return T_image_camera @ self.T_camera_world near_plane: float far_plane: float image_size: Tuple[Integral, Integral] def __repr__(self): w, h = self.image_size fx, fy = self.T_image_camera[0, 0], self.T_image_camera[1, 1] cx, cy = self.T_image_camera[0, 2], self.T_image_camera[1, 2] pos_str = ", ".join([f"{x:.3f}" for x in self.camera_position]) return f"CameraParams({w}x{h}, fx={fx:.4f}, fy={fy:.4f}, cx={cx:.4f}, cy={cy:.4f}, clipping={self.near_plane:.4f}-{self.far_plane:.4f}, position=({pos_str})" @property def camera_position(self): T_world_camera = torch.inverse(self.T_camera_world) return T_world_camera[0:3, 3] def to(self, device=None, dtype=None): return CameraParams( T_image_camera=self.T_image_camera.to(device=device, dtype=dtype), T_camera_world=self.T_camera_world.to(device=device, dtype=dtype), near_plane=self.near_plane, far_plane=self.far_plane, image_size=self.image_size ) def __post_init__(self): assert self.T_image_camera.shape == (3, 3), f"Expected shape (3, 3), got {self.T_image_camera.shape}" assert self.T_camera_world.shape == (4, 4), f"Expected shape (4, 4), got {self.T_camera_world.shape}" assert len(self.image_size) == 2 assert self.near_plane > 0 assert self.far_plane > self.near_plane # Path: taichi_splatting/taichi_lib/generic.py def make_library(dtype=ti.f32): """ This function returns a namespace containing all the functions and data types that are used in the other modules. This is done to provide different precisions for the same code. Primarily for enabling gradient (gradcheck) testing using f64. """ vec2 = ti.types.vector(2, dtype) vec3 = ti.types.vector(3, dtype) vec4 = ti.types.vector(4, dtype) mat2 = ti.types.matrix(2, 2, dtype) mat3 = ti.types.matrix(3, 3, dtype) mat4 = ti.types.matrix(4, 4, dtype) mat4x2 = ti.types.matrix(4, 2, dtype=dtype) # # Gaussian datatypes # @ti.dataclass class Gaussian2D: uv : vec2 uv_conic : vec3 alpha : dtype @ti.dataclass class Gaussian3D: position : vec3 log_scaling : vec3 rotation : vec4 alpha_logit : dtype @ti.func def alpha(self): return sigmoid(self.alpha_logit) @ti.func def scale(self): return ti.math.exp(self.log_scaling) vec_g2d = ti.types.vector(struct_size(Gaussian2D), dtype=dtype) vec_g3d = ti.types.vector(struct_size(Gaussian3D), dtype=dtype) @ti.func def to_vec_g2d(uv:vec2, uv_conic:vec3, alpha:dtype) -> vec_g2d: return vec_g2d(*uv, *uv_conic, alpha) @ti.func def to_vec_g3d(position:vec3, log_scaling:vec3, rotation:vec4, alpha_logit:dtype) -> vec_g3d: return vec_g3d(*position, *log_scaling, *rotation, alpha_logit) @ti.func def unpack_vec_g3d(vec:vec_g3d) -> Gaussian3D: return vec[0:3], vec[3:6], vec[6:10], vec[10] @ti.func def unpack_vec_g2d(vec:vec_g2d) -> Gaussian2D: return vec[0:2], vec[2:5], vec[5] @ti.func def get_position_g3d(vec:vec_g3d) -> vec3: return vec[0:3] @ti.func def from_vec_g3d(vec:vec_g3d) -> Gaussian3D: return Gaussian3D(vec[0:3], vec[3:6], vec[6:10], vec[10]) @ti.func def from_vec_g2d(vec:vec_g2d) -> Gaussian2D: return Gaussian2D(vec[0:2], vec[2:5], vec[5]) @ti.func def unpack_activate_g3d(vec:vec_g3d): position, log_scaling, rotation, alpha_logit = unpack_vec_g3d(vec) return position, ti.exp(log_scaling), ti.math.normalize(rotation), sigmoid(alpha_logit) @ti.func def bounding_sphere(vec:vec_g3d, gaussian_scale: ti.template()): position, log_scaling = vec[0:3], vec[3:6] return position, ti.exp(log_scaling).max() * gaussian_scale # Taichi structs don't have static methods, but they can be added afterward Gaussian2D.vec = vec_g2d Gaussian2D.to_vec = to_vec_g2d Gaussian2D.from_vec = from_vec_g2d Gaussian2D.unpack = unpack_vec_g2d Gaussian3D.vec = vec_g3d Gaussian3D.to_vec = to_vec_g3d Gaussian3D.from_vec = from_vec_g3d Gaussian3D.unpack = unpack_vec_g3d Gaussian3D.unpack_activate = unpack_activate_g3d Gaussian3D.get_position = get_position_g3d Gaussian3D.bounding_sphere = bounding_sphere # # Projection related functions # mat2x3f = ti.types.matrix(n=2, m=3, dtype=dtype) @ti.func def project_perspective_camera_image( position: vec3, T_camera_world: mat4, projective_transform: mat3, ): point_in_camera = (T_camera_world @ vec4(*position, 1)).xyz uv = (projective_transform @ point_in_camera) / point_in_camera.z return uv.xy, point_in_camera @ti.func def project_perspective( position: vec3, T_image_world: mat4, ): point_in_camera = (T_image_world @ vec4(*position, 1)) return point_in_camera.xy / point_in_camera.z, point_in_camera.z def camera_origin(T_camera_world: mat4): r, t = split_rt(T_camera_world) t = -(r.transpose() @ t) return t @ti.func def gaussian_covariance_in_camera( T_camera_world: mat4, cov_rotation: vec4, cov_scale: vec3, ) -> mat3: """ Construct and rotate the covariance matrix in camera space """ W = T_camera_world[:3, :3] R = quat_to_mat(cov_rotation) S = mat3([ [cov_scale.x, 0, 0], [0, cov_scale.y, 0], [0, 0, cov_scale.z] ]) # covariance matrix, 3x3, equation (6) in the paper # Sigma = R @ S @ S.transpose() @ R.transpose() # cov_uv = J @ W @ Sigma @ W.transpose() @ J.transpose() # equation (5) in the paper m = W @ R @ S return m @ m.transpose() @ti.func def get_projective_transform_jacobian( projection: mat3, position: vec3, ): # cx = projective_transform[0, 2] # cy = projective_transform[1, 2] # [[fx/z, 0, cx/z - (cx*z + fx*x)/z**2], [0, fy/z, cy/z - (cy*z + fy*y)/z**2]] fx = projection[0, 0] fy = projection[1, 1] x, y, z = position return mat2x3f([ [fx / z, 0, -(fx * x) / (z * z)], [0, fy / z, -(fy * y) / (z * z)] ]) @ti.func def project_perspective_gaussian( projective_transform: mat3, point_in_camera: vec3, cov_in_camera: mat3) -> mat2: """ Approximate the 2D gaussian covariance in image space """ J = get_projective_transform_jacobian( projective_transform, point_in_camera) cov_uv = J @ cov_in_camera @ J.transpose() return cov_uv # # Miscellaneous math functions # @ti.func def sigmoid(x:dtype): return 1. / (1. + ti.exp(-x)) @ti.func def inverse_sigmoid(x:dtype): return -ti.log(1. / x - 1.) # # Miscellaneous conversion functions # @ti.func def mat3_from_ndarray(ndarray:ti.template()): return mat3([ndarray[i, j] for i in ti.static(range(3)) for j in ti.static(range(3))]) @ti.func def mat4_from_ndarray(ndarray:ti.template()): return mat4([ndarray[i, j] for i in ti.static(range(4)) for j in ti.static(range(4))]) @ti.func def isfin(x): return ~(ti.math.isinf(x) or ti.math.isnan(x)) # # Ellipsoid related functions, covariance, conic, etc. # @ti.func def radii_from_cov(uv_cov: vec3) -> dtype: d = (uv_cov.x - uv_cov.z) max_eig_sq = (uv_cov.x + uv_cov.z + ti.sqrt(d * d + 4.0 * uv_cov.y * uv_cov.y)) / 2.0 return ti.sqrt(max_eig_sq) @ti.func def cov_axes(cov:vec3): tr = cov.x + cov.z det = cov.x * cov.z - cov.y * cov.y gap = tr**2 - 4 * det sqrt_gap = ti.sqrt(ti.max(gap, 0)) lambda1 = (tr + sqrt_gap) * 0.5 lambda2 = (tr - sqrt_gap) * 0.5 v1 = vec2(cov.x - lambda2, cov.y).normalized() v2 = vec2(v1.y, -v1.x) return v1 * ti.sqrt(lambda1), v2 * ti.sqrt(lambda2) @ti.func def inverse_cov(cov: vec3): # inverse of upper triangular part of symmetric matrix inv_det = 1 / (cov.x * cov.z - cov.y * cov.y) return vec3(inv_det * cov.z, -inv_det * cov.y, inv_det * cov.x) @ti.func def upper(cov: mat2) -> vec3: return vec3(cov[0, 0], cov[0, 1], cov[1, 1]) @ti.func def radii_from_conic(conic: vec3): return radii_from_cov(inverse_cov(conic)) @ti.func def conic_pdf(xy: vec2, uv: vec2, uv_conic: vec3) -> dtype: dx, dy = xy - uv a, b, c = uv_conic p = ti.exp(-0.5 * (dx**2 * a + dy**2 * c) - dx * dy * b) return p @ti.func def conic_pdf_with_grad(xy: vec2, uv: vec2, uv_conic: vec3): d = xy - uv a, b, c = uv_conic dx2 = d.x**2 dy2 = d.y**2 dxdy = d.x * d.y p = ti.exp(-0.5 * (dx2 * a + dy2 * c) - dxdy * b) dp_duv = vec2( (b * d.y - 0.5 * a * (2 * uv.x - 2 * xy.x)) * p, (b * d.x - 0.5 * c * (2 * uv.y - 2 * xy.y)) * p ) dp_dconic = vec3(-0.5 * dx2 * p, -dxdy * p, -0.5 * dy2 * p) return p, dp_duv, dp_dconic @ti.func def conic_grad(p: ti.f32, xy: vec2, uv: vec2, uv_conic: vec3): d = xy - uv a, b, c = uv_conic dx2 = d.x**2 dy2 = d.y**2 dxdy = d.x * d.y dp_duv = vec2( (b * d.y - 0.5 * a * (2 * uv.x - 2 * xy.x)) * p, (b * d.x - 0.5 * c * (2 * uv.y - 2 * xy.y)) * p ) dp_dconic = vec3(-0.5 * dx2 * p, -dxdy * p, -0.5 * dy2 * p) return dp_duv, dp_dconic @ti.func def cov_inv_basis(uv_cov: vec3, scale: dtype) -> mat2: basis = ti.Matrix.cols(cov_axes(uv_cov)) return (basis * scale).inverse() @ti.func def quat_to_mat(q:vec4) -> mat3: x, y, z, w = q x2, y2, z2 = x*x, y*y, z*z return mat3( 1 - 2*y2 - 2*z2, 2*x*y - 2*w*z, 2*x*z + 2*w*y, 2*x*y + 2*w*z, 1 - 2*x2 - 2*z2, 2*y*z - 2*w*x, 2*x*z - 2*w*y, 2*y*z + 2*w*x, 1 - 2*x2 - 2*y2 ) @ti.func def join_rt(r:mat3, t:vec3) -> mat4: return mat4( r[0, 0], r[0, 1], r[0, 2], t[0], r[1, 0], r[1, 1], r[1, 2], t[1], r[2, 0], r[2, 1], r[2, 2], t[2], 0, 0, 0, 1 ) @ti.func def split_rt(rt:mat4) -> ti.template(): return rt[:3, :3], rt[:3, 3] @ti.func def qt_to_mat(q:vec4, t:vec3) -> mat4: r = quat_to_mat(q) return mat4( r[0, 0], r[0, 1], r[0, 2], t[0], r[1, 0], r[1, 1], r[1, 2], t[1], r[2, 0], r[2, 1], r[2, 2], t[2], 0, 0, 0, 1 ) @ti.func def scaling_matrix(scale:vec3) -> mat3: return mat3( scale.x, 0, 0, 0, scale.y, 0, 0, 0, scale.z ) @ti.func def quat_mul(q1: vec4, q2: vec4) -> vec4: return vec4( q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y, q1.w * q2.y - q1.x * q2.z + q1.y * q2.w + q1.z * q2.x, q1.w * q2.z + q1.x * q2.y - q1.y * q2.x + q1.z * q2.w, q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z, ) @ti.func def quat_conj(q: vec4) -> vec4: return vec4(-q.x, -q.y, -q.z, q.w) @ti.func def quat_rotate(q: vec4, v: vec3) -> vec3: qv = vec4(*v, 0.0) q_rot = quat_mul(q, quat_mul(qv, quat_mul(q))) return q_rot.xyz return SimpleNamespace(**locals()) # Path: taichi_splatting/taichi_lib/conversions.py def struct_size(ti_struct:ti.lang.struct.StructType): # Path: taichi_splatting/perspective/projection.py from functools import cache from typing import Tuple from beartype import beartype from taichi_splatting.misc.autograd import restore_grad from .params import CameraParams from taichi_splatting.taichi_lib.generic import make_library from taichi_splatting.taichi_lib.conversions import torch_taichi import taichi as ti import torch @cache def project_to_image_function(torch_dtype=torch.float32, blur_cov:float = 0.3): dtype = torch_taichi[torch_dtype] lib = make_library(dtype) Gaussian3D, Gaussian2D = lib.Gaussian3D, lib.Gaussian2D @ti.kernel def project_perspective_kernel(
gaussians: ti.types.ndarray(Gaussian3D.vec, ndim=1), # (N, 3 + feature_vec.n1) # input
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: camenduru/FreeInit-hf # Path: animatediff/models/attention.py class Transformer3DModel(ModelMixin, ConfigMixin): @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, norm_num_groups: int = 32, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, use_linear_projection: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, ): super().__init__() self.use_linear_projection = use_linear_projection self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim # Define input layers self.in_channels = in_channels self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) if use_linear_projection: self.proj_in = nn.Linear(in_channels, inner_dim) else: self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) # Define transformers blocks self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, ) for d in range(num_layers) ] ) # 4. Define output layers if use_linear_projection: self.proj_out = nn.Linear(in_channels, inner_dim) else: self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True): # Input assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." video_length = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length) batch, channel, height, weight = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) if not self.use_linear_projection: hidden_states = self.proj_in(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) else: inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) hidden_states = self.proj_in(hidden_states) # Blocks for block in self.transformer_blocks: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep, video_length=video_length ) # Output if not self.use_linear_projection: hidden_states = ( hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() ) hidden_states = self.proj_out(hidden_states) else: hidden_states = self.proj_out(hidden_states) hidden_states = ( hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() ) output = hidden_states + residual output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) if not return_dict: return (output,) return Transformer3DModelOutput(sample=output) # Path: animatediff/models/resnet.py class Downsample3D(nn.Module): def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.padding = padding stride = 2 self.name = name if use_conv: self.conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding) else: raise NotImplementedError def forward(self, hidden_states): assert hidden_states.shape[1] == self.channels if self.use_conv and self.padding == 0: raise NotImplementedError assert hidden_states.shape[1] == self.channels hidden_states = self.conv(hidden_states) return hidden_states # Path: animatediff/models/resnet.py class ResnetBlock3D(nn.Module): def __init__( self, *, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, temb_channels=512, groups=32, groups_out=None, pre_norm=True, eps=1e-6, non_linearity="swish", time_embedding_norm="default", output_scale_factor=1.0, use_in_shortcut=None, use_inflated_groupnorm=None, ): super().__init__() self.pre_norm = pre_norm self.pre_norm = True self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.time_embedding_norm = time_embedding_norm self.output_scale_factor = output_scale_factor if groups_out is None: groups_out = groups assert use_inflated_groupnorm != None if use_inflated_groupnorm: self.norm1 = InflatedGroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) else: self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels is not None: if self.time_embedding_norm == "default": time_emb_proj_out_channels = out_channels elif self.time_embedding_norm == "scale_shift": time_emb_proj_out_channels = out_channels * 2 else: raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels) else: self.time_emb_proj = None if use_inflated_groupnorm: self.norm2 = InflatedGroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) else: self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) self.dropout = torch.nn.Dropout(dropout) self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if non_linearity == "swish": self.nonlinearity = lambda x: F.silu(x) elif non_linearity == "mish": self.nonlinearity = Mish() elif non_linearity == "silu": self.nonlinearity = nn.SiLU() self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut self.conv_shortcut = None if self.use_in_shortcut: self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, input_tensor, temb): hidden_states = input_tensor hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.conv1(hidden_states) if temb is not None: temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None] if temb is not None and self.time_embedding_norm == "default": hidden_states = hidden_states + temb hidden_states = self.norm2(hidden_states) if temb is not None and self.time_embedding_norm == "scale_shift": scale, shift = torch.chunk(temb, 2, dim=1) hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: input_tensor = self.conv_shortcut(input_tensor) output_tensor = (input_tensor + hidden_states) / self.output_scale_factor return output_tensor # Path: animatediff/models/resnet.py class Upsample3D(nn.Module): def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.use_conv_transpose = use_conv_transpose self.name = name conv = None if use_conv_transpose: raise NotImplementedError elif use_conv: self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1) def forward(self, hidden_states, output_size=None): assert hidden_states.shape[1] == self.channels if self.use_conv_transpose: raise NotImplementedError # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 dtype = hidden_states.dtype if dtype == torch.bfloat16: hidden_states = hidden_states.to(torch.float32) # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 if hidden_states.shape[0] >= 64: hidden_states = hidden_states.contiguous() # if `output_size` is passed we force the interpolation output # size and do not make use of `scale_factor=2` if output_size is None: hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest") else: hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") # If the input is bfloat16, we cast back to bfloat16 if dtype == torch.bfloat16: hidden_states = hidden_states.to(dtype) # if self.use_conv: # if self.name == "conv": # hidden_states = self.conv(hidden_states) # else: # hidden_states = self.Conv2d_0(hidden_states) hidden_states = self.conv(hidden_states) return hidden_states # Path: animatediff/models/motion_module.py def get_motion_module( in_channels, motion_module_type: str, motion_module_kwargs: dict ): if motion_module_type == "Vanilla": return VanillaTemporalModule(in_channels=in_channels, **motion_module_kwargs,) else: raise ValueError # Path: animatediff/models/unet_blocks.py import torch import pdb from torch import nn from .attention import Transformer3DModel from .resnet import Downsample3D, ResnetBlock3D, Upsample3D from .motion_module import get_motion_module use_inflated_groupnorm=use_inflated_groupnorm, ) ) if dual_cross_attention: raise NotImplementedError attentions.append( Transformer3DModel( attn_num_head_channels, out_channels // attn_num_head_channels, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, ) ) motion_modules.append( get_motion_module( in_channels=out_channels, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) if use_motion_module else None ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) self.motion_modules = nn.ModuleList(motion_modules) if add_downsample: self.downsamplers = nn.ModuleList( [ Downsample3D( out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" ) ] ) else: self.downsamplers = None self.gradient_checkpointing = False def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None): output_states = () for resnet, attn, motion_module in zip(self.resnets, self.attentions, self.motion_modules): if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states, )[0] if motion_module is not None: hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states) else: hidden_states = resnet(hidden_states, temb) hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample # add motion module hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states output_states += (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states += (hidden_states,) return hidden_states, output_states class DownBlock3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor=1.0, add_downsample=True, downsample_padding=1, use_inflated_groupnorm=None, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): super().__init__() resnets = [] motion_modules = [] for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock3D( in_channels=in_channels,
out_channels=out_channels,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: exislow/tidal-dl-ng # Path: tidal_dl_ng/config.py class Settings(BaseConfig, metaclass=SingletonMeta): cls_model = ModelSettings data = None def __init__(self): self.file_path = path_file_settings() self.read(self.file_path) # Path: tidal_dl_ng/constants.py REQUESTS_TIMEOUT_SEC = 45 # Path: tidal_dl_ng/constants.py class CoverDimensions(Enum): Px320: str = "320x320" Px640: str = "640x640" Px1280: str = "1280x1280" # Path: tidal_dl_ng/constants.py class MediaType(Enum): TRACK: str = "track" VIDEO: str = "video" PLAYLIST: str = "playlist" ALBUM: str = "album" MIX: str = "mix" # Path: tidal_dl_ng/constants.py class SkipExisting(Enum): Disabled: bool = False Filename: str = "exact" ExtensionIgnore: str = "extension_ignore" # Path: tidal_dl_ng/constants.py class StreamManifestMimeType(Enum): MPD: str = "application/dash+xml" BTS: str = "application/vnd.tidal.bts" VIDEO: str = "video/mp2t" # Path: tidal_dl_ng/helper/decryption.py def decrypt_file(path_file_encrypted: str, path_file_destination: str, key: str, nonce: str) -> None: """ Decrypts an encrypted MQA file given the file, key and nonce """ # Initialize counter and file decryptor counter = Counter.new(64, prefix=nonce, initial_value=0) decryptor = AES.new(key, AES.MODE_CTR, counter=counter) # Open and decrypt with open(path_file_encrypted, "rb") as f_src: audio_decrypted = decryptor.decrypt(f_src.read()) # Replace with decrypted file with open(path_file_destination, "wb") as f_dst: f_dst.write(audio_decrypted) # Path: tidal_dl_ng/helper/decryption.py def decrypt_security_token(security_token: str) -> (str, str): """ Decrypts security token into key and nonce pair security_token should match the securityToken value from the web response """ # Do not change this master_key = "UIlTTEMmmLfGowo/UC60x2H45W6MdGgTRfo/umg4754=" # Decode the base64 strings to ascii strings master_key = base64.b64decode(master_key) security_token = base64.b64decode(security_token) # Get the IV from the first 16 bytes of the securityToken iv = security_token[:16] encrypted_st = security_token[16:] # Initialize decryptor decryptor = AES.new(master_key, AES.MODE_CBC, iv) # Decrypt the security token decrypted_st = decryptor.decrypt(encrypted_st) # Get the audio stream decryption key and nonce from the decrypted security token key = decrypted_st[:16] nonce = decrypted_st[16:24] return key, nonce # Path: tidal_dl_ng/helper/exceptions.py class MediaMissing(Exception): pass # Path: tidal_dl_ng/helper/exceptions.py class MediaUnknown(Exception): pass # Path: tidal_dl_ng/helper/exceptions.py class UnknownManifestFormat(Exception): pass # Path: tidal_dl_ng/helper/path.py def check_file_exists(path_file: str, extension_ignore: bool = False): if extension_ignore: path_file = Path(path_file).stem + ".*" # TODO: Check what happens is (no) files . result = bool(glob.glob(path_file)) return result # Path: tidal_dl_ng/helper/path.py def format_path_media(fmt_template: str, media: Track | Album | Playlist | UserPlaylist | Video | Mix) -> str: result = fmt_template # Search track format template for placeholder. regex = r"\{(.+?)\}" matches = re.finditer(regex, fmt_template, re.MULTILINE) fn_format = get_format_fn(media) for _matchNum, match in enumerate(matches, start=1): template_str = match.group() result_fmt = fn_format(match.group(1), media) if result_fmt: value = sanitize_filename(result_fmt) result = result.replace(template_str, value) return result # Path: tidal_dl_ng/helper/path.py def path_file_sanitize(path_file: str, adapt: bool = False) -> (bool, str): # Split into path and filename pathname, filename = os.path.split(path_file) # Sanitize path try: pathname_sanitized = sanitize_filepath( pathname, replacement_text=" ", validate_after_sanitize=True, platform="auto" ) except ValidationError: # If adaption of path is allowed in case of an error set path to HOME. if adapt: pathname_sanitized = Path.home() else: raise # Sanitize filename try: filename_sanitized = sanitize_filename( filename, replacement_text=" ", validate_after_sanitize=True, platform="auto" ) filename_sanitized_extension = Path(filename_sanitized).suffix # Check if the file extension was removed by shortening the filename length if filename_sanitized_extension == "": # Add the original file extension file_extension = "_" + Path(path_file).suffix filename_sanitized = filename_sanitized[: -len(file_extension)] + file_extension except ValidationError as e: # TODO: Implement proper exception handling and logging. print(e) raise # Join path and filename result = os.path.join(pathname_sanitized, filename_sanitized) return result # Path: tidal_dl_ng/helper/tidal.py def name_builder_item(media: Track) -> str: return f"{name_builder_artist(media)} - {name_builder_title(media)}" # Path: tidal_dl_ng/helper/wrapper.py class WrapperLogger: fn_print: Callable = None def __init__(self, fn_print: Callable): self.fn_print = fn_print def debug(self, value): self.fn_print(value) def warning(self, value): self.fn_print(value) def info(self, value): self.fn_print(value) def error(self, value): self.fn_print(value) def critical(self, value): self.fn_print(value) # Path: tidal_dl_ng/metadata.py class Metadata: path_file: str = None title: str = None album: str = None albumartist: str = None artists: [str] = None copy_right: str = None tracknumber: int = None discnumber: int = None totaldisc: int = None totaltrack: int = None date: str = None composer: [str] = None isrc: str = None lyrics: str = None path_cover: str = None url_cover: str = None m: mutagen.mp4.MP4 | mutagen.mp4.MP4 | mutagen.flac.FLAC = None # TODO: What about videos? def __init__( self, path_file: str, album: str = "", title: str = "", artists: list[str] | None = None, copy_right: str = "", tracknumber: int = 0, discnumber: int = 0, totaltrack: int = 0, totaldisc: int = 0, composer: list[str] | None = None, isrc: str = "", albumartist: str = "", date: str = "", lyrics: str = "", path_cover: str = "", url_cover: str = "", ): self.path_file = path_file self.title = title self.album = album self.albumartist = albumartist self.artists = artists self.copy_right = copy_right self.tracknumber = tracknumber self.discnumber = discnumber self.totaldisc = totaldisc self.totaltrack = totaltrack self.date = date self.composer = composer self.isrc = isrc self.lyrics = lyrics self.path_cover = path_cover self.url_cover = url_cover self.m: mutagen.mp4.MP4 | mutagen.flac.FLAC | mutagen.mp3.MP3 = mutagen.File(self.path_file) def _cover(self) -> bool: result: bool = False data_cover: str | bytes = self.cover_data(url=self.url_cover, path_file=self.path_cover) if data_cover: if isinstance(self.m, mutagen.flac.FLAC): flac_cover = flac.Picture() flac_cover.type = id3.PictureType.COVER_FRONT flac_cover.data = data_cover flac_cover.mime = "image/jpeg" self.m.clear_pictures() self.m.add_picture(flac_cover) elif isinstance(self.m, mutagen.mp3.MP3): self.m.tags.add(APIC(encoding=3, data=data_cover)) elif isinstance(self.m, mutagen.mp4.MP4): cover_mp4 = mp4.MP4Cover(data_cover) self.m.tags["covr"] = [cover_mp4] result = True return result def save(self): if not self.m.tags: self.m.add_tags() if isinstance(self.m, mutagen.flac.FLAC): self.set_flac() elif isinstance(self.m, mutagen.mp3.MP3): self.set_mp3() elif isinstance(self.m, mutagen.mp4.MP4): self.set_mp4() self._cover() self.m.save() return True def set_flac(self): self.m.tags["title"] = self.title self.m.tags["album"] = self.album self.m.tags["albumartist"] = self.albumartist self.m.tags["artist"] = ", ".join(self.artists) if self.artists else "" self.m.tags["copyright"] = self.copy_right self.m.tags["tracknumber"] = str(self.tracknumber) self.m.tags["tracktotal"] = str(self.totaltrack) self.m.tags["discnumber"] = str(self.discnumber) self.m.tags["disctotal"] = str(self.totaldisc) self.m.tags["date"] = self.date self.m.tags["composer"] = ", ".join(self.composer) if self.composer else "" self.m.tags["isrc"] = self.isrc self.m.tags["lyrics"] = self.lyrics def set_mp3(self): self.m.tags.add(TIT2(encoding=3, text=self.title)) self.m.tags.add(TALB(encoding=3, text=self.album)) self.m.tags.add(TOPE(encoding=3, text=self.albumartist)) self.m.tags.add(TPE1(encoding=3, text=", ".join(self.artists) if self.artists else "")) self.m.tags.add(TCOP(encoding=3, text=self.copy_right)) self.m.tags.add(TRCK(encoding=3, text=str(self.tracknumber))) self.m.tags.add(TRCK(encoding=3, text=self.discnumber)) self.m.tags.add(TDRC(encoding=3, text=self.date)) self.m.tags.add(TCOM(encoding=3, text=", ".join(self.composer) if self.composer else "")) self.m.tags.add(TSRC(encoding=3, text=self.isrc)) self.m.tags.add(USLT(encoding=3, lang="eng", desc="desc", text=self.lyrics)) def set_mp4(self): self.m.tags["\xa9nam"] = self.title self.m.tags["\xa9alb"] = self.album self.m.tags["aART"] = self.albumartist self.m.tags["\xa9ART"] = ", ".join(self.artists) if self.artists else "" self.m.tags["cprt"] = self.copy_right self.m.tags["trkn"] = [[self.tracknumber, self.totaltrack]] self.m.tags["disk"] = [[self.discnumber, self.totaldisc]] # self.m.tags['\xa9gen'] = self.genre self.m.tags["\xa9day"] = self.date self.m.tags["\xa9wrt"] = ", ".join(self.composer) if self.composer else "" self.m.tags["\xa9lyr"] = self.lyrics def cover_data(self, url: str = None, path_file: str = None) -> str | bytes: result: str | bytes = "" if url: try: result = requests.get(url, timeout=REQUESTS_TIMEOUT_SEC).content except Exception as e: # TODO: Implement propper logging. print(e) elif path_file: try: with open(path_file, "rb") as f: result = f.read() except OSError as e: # TODO: Implement propper logging. print(e) return result # Path: tidal_dl_ng/model/gui_data.py class ProgressBars: item: QtCore.Signal item_name: QtCore.Signal list_item: QtCore.Signal # Path: tidal_dl_ng/model/tidal.py class StreamManifest: codecs: str mime_type: str urls: [str] file_extension: str encryption_type: str | None = None encryption_key: str | None = None # Path: tidal_dl_ng/download.py import base64 import json import os import random import shutil import tempfile import time import ffmpeg import m3u8 import requests from collections.abc import Callable from logging import Logger from uuid import uuid4 from mpegdash.parser import MPEGDASHParser from requests.exceptions import HTTPError from rich.progress import Progress, TaskID from tidalapi import Album, Mix, Playlist, Session, Track, UserPlaylist, Video from tidal_dl_ng.config import Settings from tidal_dl_ng.constants import REQUESTS_TIMEOUT_SEC, CoverDimensions, MediaType, SkipExisting, StreamManifestMimeType from tidal_dl_ng.helper.decryption import decrypt_file, decrypt_security_token from tidal_dl_ng.helper.exceptions import MediaMissing, MediaUnknown, UnknownManifestFormat from tidal_dl_ng.helper.path import check_file_exists, format_path_media, path_file_sanitize from tidal_dl_ng.helper.tidal import name_builder_item from tidal_dl_ng.helper.wrapper import WrapperLogger from tidal_dl_ng.metadata import Metadata from tidal_dl_ng.model.gui_data import ProgressBars from tidal_dl_ng.model.tidal import StreamManifest # TODO: Set appropriate client string and use it for video download. # https://github.com/globocom/m3u8#using-different-http-clients class RequestsClient: def download( self, uri: str, timeout: int = REQUESTS_TIMEOUT_SEC, headers: dict | None = None, verify_ssl: bool = True ): if not headers: headers = {} o = requests.get(uri, timeout=timeout, headers=headers) return o.text, o.url class Download: settings: Settings = None session: Session = None skip_existing: SkipExisting = False def __init__(self, session: Session, skip_existing: SkipExisting = SkipExisting.Disabled): self.settings = Settings() self.session = session self.skip_existing = skip_existing def _download( self,
fn_logger: Callable,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: smoores-dev/storyteller # Path: storyteller/synchronize/files.py CACHE_DIR = f"{DATA_DIR}/cache" # Path: storyteller/synchronize/files.py TEXT_DIR = f"{DATA_DIR}/assets/text" # Path: storyteller/synchronize/audio.py def get_audio_chapter_filenames(book_name: str): book_dir = get_audio_directory(book_name) dirname = get_chapters_path(book_dir) return sorted([str(Path(dirname, filename)) for filename in os.listdir(dirname)]) # Path: storyteller/synchronize/audio.py def get_transcriptions(book_name: str): audio_chapter_filenames = get_audio_chapter_filenames(book_name) transcription_filenames = [ get_transcription_filename(chapter_filename) for chapter_filename in audio_chapter_filenames ] transcriptions: List[whisperx.types.AlignedTranscriptionResult] = [] for transcription_filename in transcription_filenames: with open(transcription_filename, mode="r") as transcription_file: transcription = json.load(transcription_file) transcriptions.append(transcription) return transcriptions # Path: storyteller/synchronize/epub.py class SentenceRange: id: int start: float end: float audiofile: str # Path: storyteller/synchronize/epub.py def create_media_overlay( base_filename: str, chapter_filename: str, sentence_ranges: List[SentenceRange], ): soup = BeautifulSoup( """ <smil xmlns="http://www.w3.org/ns/SMIL" xmlns:epub="http://www.idpf.org/2007/ops" version="3.0"> <body> </body> </smil> """, "xml", ) seq = soup.new_tag("seq", id=f"{base_filename}_overlay") seq["epub:textref"] = f"../{chapter_filename}" seq["epub:type"] = "chapter" soup.body.append(seq) # type: ignore for sentence_range in sentence_ranges: par = soup.new_tag("par", id=f"sentence{sentence_range.id}") text = soup.new_tag( "text", src=f"../{chapter_filename}#sentence{sentence_range.id}" ) audio = soup.new_tag( "audio", src=f"../{get_epub_audio_filename(sentence_range.audiofile)}", clipBegin=f"{sentence_range.start}s", clipEnd=f"{sentence_range.end}s", ) par.append(text) par.append("\n") par.append(audio) par.append("\n") seq.append(par) seq.append("\n") return soup.encode(formatter="minimal") # Path: storyteller/synchronize/epub.py @cache def get_chapter_sentences(chapter: epub.EpubHtml): soup = BeautifulSoup(chapter.get_body_content(), "html.parser") textblocks = soup.find_all( ["p", "li", "blockquote", "h1", "h2", "h3", "h4", "h5", "h6"] ) return [ re.sub(consecutivenewlines, " ", sentence) for textblock in textblocks if isinstance(textblock, Tag) for sentence in sent_tokenize(textblock.get_text()) ] # Path: storyteller/synchronize/epub.py @cache def get_chapter_text(chapter: epub.EpubHtml): soup = BeautifulSoup(chapter.get_body_content(), "html.parser") return re.sub(consecutivenewlines, " ", soup.get_text()) # Path: storyteller/synchronize/epub.py def get_epub_audio_filename(audio_filename: str) -> str: return f"Audio/{os.path.basename(audio_filename)}" # Path: storyteller/synchronize/epub.py def get_sentences_with_offsets(text: str): sentences = sent_tokenize(text) sentences_with_offsets: list[str] = [] last_sentence_end = 0 for sentence in sentences: sentence_start = text.find(sentence, last_sentence_end) if sentence_start > last_sentence_end: sentences_with_offsets.append(text[last_sentence_end:sentence_start]) sentences_with_offsets.append(sentence) last_sentence_end = sentence_start + len(sentence) if len(text) > last_sentence_end: sentences_with_offsets.append(text[last_sentence_end:]) return sentences_with_offsets # Path: storyteller/synchronize/epub.py def read_epub(book_name: str): book = epub.read_epub(get_epub_filepath(book_name)) for item in book.get_items_of_type(ITEM_DOCUMENT): if not item.is_chapter(): continue soup = BeautifulSoup(item.content) head: Union[Tag, None] = soup.find("head") # type: ignore if head is not None: links = head.find_all("link") for link in links: item.add_link( href=link["href"], rel=" ".join(link["rel"]), type=link["type"] ) return book # Path: storyteller/synchronize/epub.py def get_chapters(book: epub.EpubBook) -> List[epub.EpubHtml]: spine_ids = [item[0] for item in book.spine] chapters = [cast(epub.EpubHtml, book.get_item_with_id(id)) for id in spine_ids] return chapters # Path: storyteller/synchronize/epub.py def tag_sentences(chapter: epub.EpubHtml): content = cast(str, chapter.get_content()) soup = BeautifulSoup(content, "html.parser") body_soup = soup.find("body") if body_soup is None: return if isinstance(body_soup, NavigableString): return textblocks = body_soup.find_all( ["p", "li", "blockquote", "h1", "h2", "h3", "h4", "h5", "h6"] ) start_id = 0 for textblock in textblocks: if not isinstance(textblock, Tag): continue spans = get_textblock_spans(start_id, textblock) new_content = serialize_spans(soup, spans) textblock.clear() textblock.extend(new_content) try: start_id = get_last_span_id(spans) + 1 except StopIteration: pass chapter.set_content(soup.encode()) # Path: storyteller/synchronize/sync.py from dataclasses import dataclass from itertools import groupby from pathlib import Path from typing import Any, Callable, Dict, List, TypedDict, Union, cast from fuzzysearch import Match, find_near_matches from ebooklib import epub from mutagen.mp4 import MP4 from mutagen.mp3 import MP3 from .files import CACHE_DIR, TEXT_DIR from .audio import ( get_audio_chapter_filenames, get_transcriptions, ) from .epub import ( SentenceRange, create_media_overlay, get_chapter_sentences, get_chapter_text, get_epub_audio_filename, get_sentences_with_offsets, read_epub, get_chapters, tag_sentences, ) import json import math import os import sys import whisperx.types start, audiofile = find_timestamps( first_match.start + transcription_offset + chapter_offset, transcription ) if len(sentence_ranges) > 0: last_audiofile = sentence_ranges[-1].audiofile if audiofile == last_audiofile: sentence_ranges[-1].end = start else: last_mp4 = ( MP4(last_audiofile) if last_audiofile.endswith(".mp4") else MP3(last_audiofile) ) sentence_ranges[-1].end = last_mp4.info.length start = 0 elif last_sentence_range is not None: if audiofile == last_sentence_range.audiofile: last_sentence_range.end = start else: last_mp4 = ( MP4(last_sentence_range.audiofile) if last_sentence_range.audiofile.endswith(".mp4") else MP3(last_sentence_range.audiofile) ) last_sentence_range.end = last_mp4.info.length start = 0 else: start = 0 sentence_ranges.append(SentenceRange(sentence_index, start, start, audiofile)) not_found = 0 transcription_window_index = ( get_window_index_from_offset(transcription_window_list, first_match.start) + transcription_window_index ) last_good_transcription_window = transcription_window_index sentence_index += 1 return sentence_ranges def interpolate_sentence_ranges( sentence_ranges: List[SentenceRange], ) -> List[SentenceRange]: interpolated: List[SentenceRange] = [] for sentence_range in sentence_ranges: if len(interpolated) == 0: interpolated.append(sentence_range) continue last_sentence_range = interpolated[-1] count = sentence_range.id - last_sentence_range.id diff = last_sentence_range.end - last_sentence_range.start interpolated_length = diff / count for i in range(1, count): interpolated_sentence_range = SentenceRange( last_sentence_range.id + i, last_sentence_range.start + interpolated_length * i, last_sentence_range.start + interpolated_length * (i + 1), last_sentence_range.audiofile, ) interpolated.append(interpolated_sentence_range) interpolated.append(sentence_range) return interpolated def get_chapter_duration(sentence_ranges: List[SentenceRange]): duration = 0 for _, file_group in groupby(sentence_ranges, key=lambda r: r.audiofile): file_group_list = list(file_group) duration += file_group_list[-1].end - file_group_list[0].start return duration @dataclass class SyncedChapter: chapter: epub.EpubHtml sentence_ranges: List[SentenceRange] audio: List[epub.EpubItem] def sync_chapter( start_sentence: int, transcription: StorytellerTranscription, chapter: epub.EpubHtml, transcription_offset: int, last_sentence_range: Union[SentenceRange, None], ): chapter_sentences = get_chapter_sentences(chapter) sentence_ranges = get_sentence_ranges( start_sentence, transcription, chapter_sentences, transcription_offset, last_sentence_range, ) sentence_ranges = interpolate_sentence_ranges(sentence_ranges) tag_sentences(chapter) chapter_filepath_length = len(chapter.file_name.split(os.path.sep)) - 1 relative_ups = "../" * chapter_filepath_length chapter.add_link( rel="stylesheet", href=f"{relative_ups}Styles/storyteller-readaloud.css", type="text/css", ) audiofiles = set([sentence_range.audiofile for sentence_range in sentence_ranges]) audio_items = [] for audiofile in audiofiles: epub_audio_filename = get_epub_audio_filename(audiofile) audio_item = epub.EpubItem( uid=epub_audio_filename,
file_name=epub_audio_filename,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: zyrant/SPGroup3D # Path: mmdet3d/version.py def parse_version_info(version_str): # Path: mmdet3d/version.py def parse_version_info(version_str): # Path: mmdet3d/apis/train.py def init_random_seed(seed=None, device='cuda'): """Initialize random seed. If the seed is not set, the seed will be automatically randomized, and then broadcast to all processes to prevent some potential bugs. Args: seed (int, optional): The seed. Default to None. device (str, optional): The device where the seed will be put on. Default to 'cuda'. Returns: int: Seed to be used. """ if seed is not None: return seed # Make sure all ranks share the same random seed to prevent # some potential bugs. Please refer to # https://github.com/open-mmlab/mmdetection/issues/6339 rank, world_size = get_dist_info() seed = np.random.randint(2**31) if world_size == 1: return seed if rank == 0: random_num = torch.tensor(seed, dtype=torch.int32, device=device) else: random_num = torch.tensor(0, dtype=torch.int32, device=device) dist.broadcast(random_num, src=0) return random_num.item() # Path: mmdet3d/apis/train.py def train_model(model, dataset, cfg, distributed=False, validate=False, timestamp=None, meta=None): """A function wrapper for launching model training according to cfg. Because we need different eval_hook in runner. Should be deprecated in the future. """ if cfg.model.type in ['EncoderDecoder3D']: train_segmentor( model, dataset, cfg, distributed=distributed, validate=validate, timestamp=timestamp, meta=meta) else: train_detector( model, dataset, cfg, distributed=distributed, validate=validate, timestamp=timestamp, meta=meta) # Path: mmdet3d/datasets/builder.py def build_dataset(cfg, default_args=None): from mmdet3d.datasets.dataset_wrappers import CBGSDataset from mmdet.datasets.dataset_wrappers import (ClassBalancedDataset, ConcatDataset, RepeatDataset) if isinstance(cfg, (list, tuple)): dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg]) elif cfg['type'] == 'ConcatDataset': dataset = ConcatDataset( [build_dataset(c, default_args) for c in cfg['datasets']], cfg.get('separate_eval', True)) elif cfg['type'] == 'RepeatDataset': dataset = RepeatDataset( build_dataset(cfg['dataset'], default_args), cfg['times']) elif cfg['type'] == 'ClassBalancedDataset': dataset = ClassBalancedDataset( build_dataset(cfg['dataset'], default_args), cfg['oversample_thr']) elif cfg['type'] == 'CBGSDataset': dataset = CBGSDataset(build_dataset(cfg['dataset'], default_args)) elif isinstance(cfg.get('ann_file'), (list, tuple)): dataset = _concat_dataset(cfg, default_args) elif cfg['type'] in DATASETS._module_dict.keys(): dataset = build_from_cfg(cfg, DATASETS, default_args) else: dataset = build_from_cfg(cfg, MMDET_DATASETS, default_args) return dataset # Path: mmdet3d/models/builder.py def build_model(cfg, train_cfg=None, test_cfg=None): """A function warpper for building 3D detector or segmentor according to cfg. Should be deprecated in the future. """ if cfg.type in ['EncoderDecoder3D']: return build_segmentor(cfg, train_cfg=train_cfg, test_cfg=test_cfg) else: return build_detector(cfg, train_cfg=train_cfg, test_cfg=test_cfg) # Path: mmdet3d/utils/collect_env.py def collect_env(): """Collect the information of the running environments.""" env_info = collect_base_env() env_info['MMDetection'] = mmdet.__version__ env_info['MMSegmentation'] = mmseg.__version__ env_info['MMDetection3D'] = mmdet3d.__version__ + '+' + get_git_hash()[:7] env_info['spconv2.0'] = IS_SPCONV2_AVAILABLE return env_info # Path: mmdet3d/utils/logger.py def get_root_logger(log_file=None, log_level=logging.INFO, name='mmdet3d'): """Get root logger and add a keyword filter to it. The logger will be initialized if it has not been initialized. By default a StreamHandler will be added. If `log_file` is specified, a FileHandler will also be added. The name of the root logger is the top-level package name, e.g., "mmdet3d". Args: log_file (str, optional): File path of log. Defaults to None. log_level (int, optional): The level of logger. Defaults to logging.INFO. name (str, optional): The name of the root logger, also used as a filter keyword. Defaults to 'mmdet3d'. Returns: :obj:`logging.Logger`: The obtained logger """ logger = get_logger(name=name, log_file=log_file, log_level=log_level) # add a logging filter logging_filter = logging.Filter(name) logging_filter.filter = lambda record: record.find(name) != -1 return logger # Path: tools/train.py import os import argparse import copy import time import warnings import mmcv import torch import torch.distributed as dist import importlib from os import path as osp from mmcv import Config, DictAction from mmcv.runner import get_dist_info, init_dist from mmdet import __version__ as mmdet_version from mmdet3d import __version__ as mmdet3d_version from mmdet3d.apis import init_random_seed, train_model from mmdet3d.datasets import build_dataset from mmdet3d.models import build_model from mmdet3d.utils import collect_env, get_root_logger from mmdet.apis import set_random_seed from mmseg import __version__ as mmseg_version from mmdet.utils import setup_multi_processes from mmdet3d.utils import setup_multi_processes cfg.resume_from = args.resume_from if args.auto_resume: cfg.auto_resume = args.auto_resume warnings.warn('`--auto-resume` is only supported when mmdet' 'version >= 2.20.0 for 3D detection model or' 'mmsegmentation verision >= 0.21.0 for 3D' 'segmentation model') if args.gpus is not None: cfg.gpu_ids = range(1) warnings.warn('`--gpus` is deprecated because we only support ' 'single GPU mode in non-distributed training. ' 'Use `gpus=1` now.') if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids[0:1] warnings.warn('`--gpu-ids` is deprecated, please use `--gpu-id`. ' 'Because we only support single GPU mode in ' 'non-distributed training. Use the first GPU ' 'in `gpu_ids` now.') if args.gpus is None and args.gpu_ids is None: cfg.gpu_ids = [args.gpu_id] if args.autoscale_lr: # apply the linear scaling rule (https://arxiv.org/abs/1706.02677) cfg.optimizer['lr'] = cfg.optimizer['lr'] * len(cfg.gpu_ids) / 8 # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # re-set gpu_ids with distributed training mode _, world_size = get_dist_info() cfg.gpu_ids = range(world_size) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # dump config cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') # specify logger name, if we still use 'mmdet', the output info will be # filtered and won't be saved in the log_file # TODO: ugly workaround to judge whether we are training det or seg model if cfg.model.type in ['EncoderDecoder3D']: logger_name = 'mmseg' else: logger_name = 'mmdet' logger = get_root_logger( log_file=log_file, log_level=cfg.log_level, name=logger_name) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info meta['config'] = cfg.pretty_text # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config:\n{cfg.pretty_text}') # set random seeds seed = init_random_seed(args.seed) seed = seed + dist.get_rank() if args.diff_seed else seed logger.info(f'Set random seed to {seed}, ' f'deterministic: {args.deterministic}') set_random_seed(seed, deterministic=args.deterministic) cfg.seed = seed meta['seed'] = seed meta['exp_name'] = osp.basename(args.config) model = build_model( cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg')) model.init_weights() logger.info(f'Model:\n{model}') datasets = [build_dataset(cfg.data.train)] if len(cfg.workflow) == 2: val_dataset = copy.deepcopy(cfg.data.val) # in case we use a dataset wrapper if 'dataset' in cfg.data.train: val_dataset.pipeline = cfg.data.train.dataset.pipeline else: val_dataset.pipeline = cfg.data.train.pipeline # set test_mode=False here in deep copied config # which do not affect AP/AR calculation later # refer to https://mmdetection3d.readthedocs.io/en/latest/tutorials/customize_runtime.html#customize-workflow # noqa val_dataset.test_mode = False datasets.append(build_dataset(val_dataset)) if cfg.checkpoint_config is not None: # save mmdet version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict( mmdet_version=mmdet_version, mmseg_version=mmseg_version, mmdet3d_version=mmdet3d_version, config=cfg.pretty_text, CLASSES=datasets[0].CLASSES, PALETTE=datasets[0].PALETTE # for segmentors if hasattr(datasets[0], 'PALETTE') else None) # add an attribute for visualization convenience model.CLASSES = datasets[0].CLASSES train_model( model, datasets, cfg, distributed=distributed, validate=(not args.no_validate), timestamp=timestamp,
meta=meta)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: jdejaegh/irm-kmi-ha # Path: custom_components/irm_kmi/coordinator.py class IrmKmiCoordinator(DataUpdateCoordinator): """Coordinator to update data from IRM KMI""" def __init__(self, hass: HomeAssistant, entry: ConfigEntry): """Initialize the coordinator.""" super().__init__( hass, _LOGGER, # Name of the data. For logging purposes. name="IRM KMI weather", # Polling interval. Will only be polled if there are subscribers. update_interval=timedelta(minutes=7), ) self._api_client = IrmKmiApiClient(session=async_get_clientsession(hass)) self._zone = get_config_value(entry, CONF_ZONE) self._dark_mode = get_config_value(entry, CONF_DARK_MODE) self._style = get_config_value(entry, CONF_STYLE) self._config_entry = entry async def _async_update_data(self) -> ProcessedCoordinatorData: """Fetch data from API endpoint. This is the place to pre-process the data to lookup tables so entities can quickly look up their data. """ if (zone := self.hass.states.get(self._zone)) is None: raise UpdateFailed(f"Zone '{self._zone}' not found") try: # Note: asyncio.TimeoutError and aiohttp.ClientError are already # handled by the data update coordinator. async with async_timeout.timeout(10): api_data = await self._api_client.get_forecasts_coord( {'lat': zone.attributes[ATTR_LATITUDE], 'long': zone.attributes[ATTR_LONGITUDE]} ) _LOGGER.debug(f"Observation for {api_data.get('cityName', '')}: {api_data.get('obs', '{}')}") except IrmKmiApiError as err: raise UpdateFailed(f"Error communicating with API: {err}") if api_data.get('cityName', None) in OUT_OF_BENELUX: # TODO create a repair when this triggers _LOGGER.info(f"Config state: {self._config_entry.state}") _LOGGER.error(f"The zone {self._zone} is now out of Benelux and forecast is only available in Benelux." f"Associated device is now disabled. Move the zone back in Benelux and re-enable to fix " f"this") disable_from_config(self.hass, self._config_entry) issue_registry.async_create_issue( self.hass, DOMAIN, "zone_moved", is_fixable=True, severity=issue_registry.IssueSeverity.ERROR, translation_key='zone_moved', data={'config_entry_id': self._config_entry.entry_id, 'zone': self._zone}, translation_placeholders={'zone': self._zone} ) return ProcessedCoordinatorData() return await self.process_api_data(api_data) async def async_refresh(self) -> None: """Refresh data and log errors.""" await self._async_refresh(log_failures=True, raise_on_entry_error=True) async def _async_animation_data(self, api_data: dict) -> RadarAnimationData: """From the API data passed in, call the API to get all the images and create the radar animation data object. Frames from the API are merged with the background map and the location marker to create each frame.""" animation_data = api_data.get('animation', {}).get('sequence') localisation_layer_url = api_data.get('animation', {}).get('localisationLayer') country = api_data.get('country', '') if animation_data is None or localisation_layer_url is None or not isinstance(animation_data, list): return RadarAnimationData() try: images_from_api = await self.download_images_from_api(animation_data, country, localisation_layer_url) except IrmKmiApiError: _LOGGER.warning(f"Could not get images for weather radar") return RadarAnimationData() localisation = images_from_api[0] images_from_api = images_from_api[1:] lang = self.hass.config.language if self.hass.config.language in LANGS else 'en' radar_animation = RadarAnimationData( hint=api_data.get('animation', {}).get('sequenceHint', {}).get(lang), unit=api_data.get('animation', {}).get('unit', {}).get(lang), location=localisation ) rain_graph = self.create_rain_graph(radar_animation, animation_data, country, images_from_api) radar_animation['svg_animated'] = rain_graph.get_svg_string() radar_animation['svg_still'] = rain_graph.get_svg_string(still_image=True) return radar_animation async def process_api_data(self, api_data: dict) -> ProcessedCoordinatorData: """From the API data, create the object that will be used in the entities""" return ProcessedCoordinatorData( current_weather=IrmKmiCoordinator.current_weather_from_data(api_data), daily_forecast=IrmKmiCoordinator.daily_list_to_forecast(api_data.get('for', {}).get('daily')), hourly_forecast=IrmKmiCoordinator.hourly_list_to_forecast(api_data.get('for', {}).get('hourly')), animation=await self._async_animation_data(api_data=api_data), warnings=self.warnings_from_data(api_data.get('for', {}).get('warning')) ) async def download_images_from_api(self, animation_data: list, country: str, localisation_layer_url: str) -> tuple[Any]: """Download a batch of images to create the radar frames.""" coroutines = list() coroutines.append( self._api_client.get_image(localisation_layer_url, params={'th': 'd' if country == 'NL' or not self._dark_mode else 'n'})) for frame in animation_data: if frame.get('uri', None) is not None: coroutines.append( self._api_client.get_image(frame.get('uri'), params={'rs': STYLE_TO_PARAM_MAP[self._style]})) async with async_timeout.timeout(20): images_from_api = await asyncio.gather(*coroutines) _LOGGER.debug(f"Just downloaded {len(images_from_api)} images") return images_from_api @staticmethod def current_weather_from_data(api_data: dict) -> CurrentWeatherData: """Parse the API data to build a CurrentWeatherData.""" # Process data to get current hour forecast now_hourly = None hourly_forecast_data = api_data.get('for', {}).get('hourly') if not (hourly_forecast_data is None or not isinstance(hourly_forecast_data, list) or len(hourly_forecast_data) == 0): for current in hourly_forecast_data[:2]: if datetime.now().strftime('%H') == current['hour']: now_hourly = current break # Get UV index module_data = api_data.get('module', None) uv_index = None if not (module_data is None or not isinstance(module_data, list)): for module in module_data: if module.get('type', None) == 'uv': uv_index = module.get('data', {}).get('levelValue') try: pressure = float(now_hourly.get('pressure', None)) if now_hourly is not None else None except TypeError: pressure = None try: wind_speed = float(now_hourly.get('windSpeedKm', None)) if now_hourly is not None else None except TypeError: wind_speed = None try: wind_gust_speed = float(now_hourly.get('windPeakSpeedKm', None)) if now_hourly is not None else None except TypeError: wind_gust_speed = None try: temperature = float(api_data.get('obs', {}).get('temp')) except TypeError: temperature = None current_weather = CurrentWeatherData( condition=CDT_MAP.get((api_data.get('obs', {}).get('ww'), api_data.get('obs', {}).get('dayNight')), None), temperature=temperature, wind_speed=wind_speed, wind_gust_speed=wind_gust_speed, wind_bearing=now_hourly.get('windDirectionText', {}).get('en') if now_hourly is not None else None, pressure=pressure, uv_index=uv_index ) if api_data.get('country', '') == 'NL': current_weather['wind_speed'] = api_data.get('obs', {}).get('windSpeedKm') current_weather['wind_bearing'] = api_data.get('obs', {}).get('windDirectionText', {}).get('en') return current_weather @staticmethod def hourly_list_to_forecast(data: List[dict] | None) -> List[Forecast] | None: """Parse data from the API to create a list of hourly forecasts""" if data is None or not isinstance(data, list) or len(data) == 0: return None forecasts = list() day = datetime.now() for f in data: if 'dateShow' in f: day = day + timedelta(days=1) hour = f.get('hour', None) if hour is None: continue precipitation_probability = None if f.get('precipChance', None) is not None: precipitation_probability = int(f.get('precipChance')) ww = None if f.get('ww', None) is not None: ww = int(f.get('ww')) forecast = Forecast( datetime=day.strftime(f'%Y-%m-%dT{hour}:00:00'), condition=CDT_MAP.get((ww, f.get('dayNight', None)), None), native_precipitation=f.get('precipQuantity', None), native_temperature=f.get('temp', None), native_templow=None, native_wind_gust_speed=f.get('windPeakSpeedKm', None), native_wind_speed=f.get('windSpeedKm', None), precipitation_probability=precipitation_probability, wind_bearing=f.get('windDirectionText', {}).get('en'), native_pressure=f.get('pressure', None), is_daytime=f.get('dayNight', None) == 'd' ) forecasts.append(forecast) return forecasts @staticmethod def daily_list_to_forecast(data: List[dict] | None) -> List[Forecast] | None: """Parse data from the API to create a list of daily forecasts""" if data is None or not isinstance(data, list) or len(data) == 0: return None forecasts = list() n_days = 0 for (idx, f) in enumerate(data): precipitation = None if f.get('precipQuantity', None) is not None: try: precipitation = float(f.get('precipQuantity')) except TypeError: pass native_wind_gust_speed = None if f.get('wind', {}).get('peakSpeed') is not None: try: native_wind_gust_speed = int(f.get('wind', {}).get('peakSpeed')) except TypeError: pass is_daytime = f.get('dayNight', None) == 'd' forecast = IrmKmiForecast( datetime=(datetime.now() + timedelta(days=n_days)).strftime('%Y-%m-%d') if is_daytime else datetime.now().strftime('%Y-%m-%d'), condition=CDT_MAP.get((f.get('ww1', None), f.get('dayNight', None)), None), native_precipitation=precipitation, native_temperature=f.get('tempMax', None), native_templow=f.get('tempMin', None), native_wind_gust_speed=native_wind_gust_speed, native_wind_speed=f.get('wind', {}).get('speed'), precipitation_probability=f.get('precipChance', None), wind_bearing=f.get('wind', {}).get('dirText', {}).get('en'), is_daytime=is_daytime, text_fr=f.get('text', {}).get('fr'), text_nl=f.get('text', {}).get('nl') ) forecasts.append(forecast) if is_daytime or idx == 0: n_days += 1 return forecasts def create_rain_graph(self, radar_animation: RadarAnimationData, api_animation_data: List[dict], country: str, images_from_api: Tuple[bytes], ) -> RainGraph: """Create a RainGraph object that is ready to output animated and still SVG images""" sequence: List[AnimationFrameData] = list() tz = pytz.timezone(self.hass.config.time_zone) current_time = datetime.now(tz=tz) most_recent_frame = None for idx, item in enumerate(api_animation_data): frame = AnimationFrameData( image=images_from_api[idx], time=datetime.fromisoformat(item.get('time')) if item.get('time', None) is not None else None, value=item.get('value', 0), position=item.get('position', 0), position_lower=item.get('positionLower', 0), position_higher=item.get('positionHigher', 0) ) sequence.append(frame) if most_recent_frame is None and current_time < frame['time']: most_recent_frame = idx - 1 if idx > 0 else idx radar_animation['sequence'] = sequence radar_animation['most_recent_image_idx'] = most_recent_frame satellite_mode = self._style == OPTION_STYLE_SATELLITE if country == 'NL': image_path = "custom_components/irm_kmi/resources/nl.png" bg_size = (640, 600) else: image_path = (f"custom_components/irm_kmi/resources/be_" f"{'satellite' if satellite_mode else 'black' if self._dark_mode else 'white'}.png") bg_size = (640, 490) return RainGraph(radar_animation, image_path, bg_size, dark_mode=self._dark_mode, tz=self.hass.config.time_zone) def warnings_from_data(self, warning_data: list | None) -> List[WarningData] | None: """Create a list of warning data instances based on the api data""" if warning_data is None or not isinstance(warning_data, list) or len(warning_data) == 0: return None result = list() for data in warning_data: try: warning_id = int(data.get('warningType', {}).get('id')) start = datetime.fromisoformat(data.get('fromTimestamp', None)) end = datetime.fromisoformat(data.get('toTimestamp', None)) except TypeError | ValueError: # Without this data, the warning is useless continue try: level = int(data.get('warningLevel')) except TypeError: level = None result.append( WarningData( slug=SLUG_MAP.get(warning_id, 'unknown'), id=warning_id, level=level, friendly_name=data.get('warningType', {}).get('name', {}).get(self.hass.config.language), text=data.get('text', {}).get(self.hass.config.language), starts_at=start, ends_at=end ) ) return result if len(result) > 0 else None # Path: custom_components/irm_kmi/data.py class CurrentWeatherData(TypedDict, total=False): """Class to hold the currently observable weather at a given location""" condition: str | None temperature: float | None wind_speed: float | None wind_gust_speed: float | None wind_bearing: float | str | None uv_index: float | None pressure: float | None # Path: custom_components/irm_kmi/data.py class IrmKmiForecast(Forecast): """Forecast class with additional attributes for IRM KMI""" # TODO: add condition_2 as well and evolution to match data from the API? # TODO: remove the _fr and _nl to have only one 'text' attribute text_fr: str | None text_nl: str | None # Path: tests/conftest.py def get_api_data(fixture: str) -> dict: return json.loads(load_fixture(fixture)) # Path: tests/test_coordinator.py from datetime import datetime, timedelta from freezegun import freeze_time from homeassistant.components.weather import (ATTR_CONDITION_CLOUDY, ATTR_CONDITION_PARTLYCLOUDY, ATTR_CONDITION_RAINY, Forecast) from homeassistant.core import HomeAssistant from pytest_homeassistant_custom_component.common import MockConfigEntry from custom_components.irm_kmi.coordinator import IrmKmiCoordinator from custom_components.irm_kmi.data import CurrentWeatherData, IrmKmiForecast from tests.conftest import get_api_data async def test_jules_forgot_to_revert_update_interval_before_pushing( hass: HomeAssistant, mock_config_entry: MockConfigEntry, ) -> None: coordinator = IrmKmiCoordinator(hass, mock_config_entry) assert timedelta(minutes=5) <= coordinator.update_interval @freeze_time(datetime.fromisoformat('2024-01-12T07:10:00')) async def test_warning_data( hass: HomeAssistant, mock_config_entry: MockConfigEntry ) -> None: api_data = get_api_data("be_forecast_warning.json") coordinator = IrmKmiCoordinator(hass, mock_config_entry) result = coordinator.warnings_from_data(api_data.get('for', {}).get('warning')) assert isinstance(result, list) assert len(result) == 2 first = result[0] assert first.get('starts_at').replace(tzinfo=None) < datetime.now() assert first.get('ends_at').replace(tzinfo=None) > datetime.now() assert first.get('slug') == 'fog' assert first.get('friendly_name') == 'Fog' assert first.get('id') == 7 assert first.get('level') == 1 @freeze_time(datetime.fromisoformat('2023-12-26T18:30:00')) def test_current_weather_be() -> None: api_data = get_api_data("forecast.json") result = IrmKmiCoordinator.current_weather_from_data(api_data) expected = CurrentWeatherData(
condition=ATTR_CONDITION_CLOUDY,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: v3ucn/Bert-vits2-V2.2 # Path: tools/sentence.py def split_by_language(text: str, target_languages: list = None) -> list: pattern = ( r"[\!\"\#\$\%\&\'\(\)\*\+\,\-\.\/\:\;\<\>\=\?\@\[\]\{\}\\\\\^\_\`" r"\!?\。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」" r"『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘\'\‛\“\”\„\‟…‧﹏.]+" ) sentences = re.split(pattern, text) pre_lang = "" start = 0 end = 0 sentences_list = [] if target_languages is not None: sorted_target_languages = sorted(target_languages) if sorted_target_languages in [["en", "zh"], ["en", "ja"], ["en", "ja", "zh"]]: new_sentences = [] for sentence in sentences: new_sentences.extend(split_alpha_nonalpha(sentence)) sentences = new_sentences for sentence in sentences: if check_is_none(sentence): continue lang = classify_language(sentence, target_languages) end += text[end:].index(sentence) if pre_lang != "" and pre_lang != lang: sentences_list.append((text[start:end], pre_lang)) start = end end += len(sentence) pre_lang = lang sentences_list.append((text[start:], pre_lang)) return sentences_list # Path: infer.py def get_net_g(model_path: str, version: str, device: str, hps): def get_text(text, language_str, hps, device): def infer( text, emotion, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language, hps, net_g, device, reference_audio=None, skip_start=False, skip_end=False, ): def infer_multilang( text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language, hps, net_g, device, reference_audio=None, emotion=None, skip_start=False, skip_end=False, ): # Path: config.py class Resample_config: class Preprocess_text_config: class Bert_gen_config: class Emo_gen_config: class Train_ms_config: class Webui_config: class Server_config: class Translate_config: class Config: def __init__(self, in_dir: str, out_dir: str, sampling_rate: int = 44100): def from_dict(cls, dataset_path: str, data: Dict[str, any]): def __init__( self, transcription_path: str, cleaned_path: str, train_path: str, val_path: str, config_path: str, val_per_lang: int = 5, max_val_total: int = 10000, clean: bool = True, ): def from_dict(cls, dataset_path: str, data: Dict[str, any]): def __init__( self, config_path: str, num_processes: int = 2, device: str = "cuda", use_multi_device: bool = False, ): def from_dict(cls, dataset_path: str, data: Dict[str, any]): def __init__( self, config_path: str, num_processes: int = 2, device: str = "cuda", use_multi_device: bool = False, ): def from_dict(cls, dataset_path: str, data: Dict[str, any]): def __init__( self, config_path: str, env: Dict[str, any], base: Dict[str, any], model: str, num_workers: int, spec_cache: bool, keep_ckpts: int, ): def from_dict(cls, dataset_path: str, data: Dict[str, any]): def __init__( self, device: str, model: str, config_path: str, language_identification_library: str, port: int = 7860, share: bool = False, debug: bool = False, ): def from_dict(cls, dataset_path: str, data: Dict[str, any]): def __init__( self, models: List[Dict[str, any]], port: int = 5000, device: str = "cuda" ): def from_dict(cls, data: Dict[str, any]): def __init__(self, app_key: str, secret_key: str): def from_dict(cls, data: Dict[str, any]): def __init__(self, config_path: str): # Path: tools/translate.py def translate(Sentence: str, to_Language: str = "jp", from_Language: str = ""): """ :param Sentence: 待翻译语句 :param from_Language: 待翻译语句语言 :param to_Language: 目标语言 :return: 翻译后语句 出错时返回None 常见语言代码:中文 zh 英语 en 日语 jp """ appid = config.translate_config.app_key key = config.translate_config.secret_key if appid == "" or key == "": return "请开发者在config.yml中配置app_key与secret_key" url = "https://fanyi-api.baidu.com/api/trans/vip/translate" texts = Sentence.splitlines() outTexts = [] for t in texts: if t != "": # 签名计算 参考文档 https://api.fanyi.baidu.com/product/113 salt = str(random.randint(1, 100000)) signString = appid + t + salt + key hs = hashlib.md5() hs.update(signString.encode("utf-8")) signString = hs.hexdigest() if from_Language == "": from_Language = "auto" headers = {"Content-Type": "application/x-www-form-urlencoded"} payload = { "q": t, "from": from_Language, "to": to_Language, "appid": appid, "salt": salt, "sign": signString, } # 发送请求 try: response = requests.post( url=url, data=payload, headers=headers, timeout=3 ) response = response.json() if "trans_result" in response.keys(): result = response["trans_result"][0] if "dst" in result.keys(): dst = result["dst"] outTexts.append(dst) except Exception: return Sentence else: outTexts.append(t) return "\n".join(outTexts) # Path: webui.py import os import logging import re_matching import torch import utils import gradio as gr import webbrowser import numpy as np import librosa from tools.sentence import split_by_language from infer import infer, latest_version, get_net_g, infer_multilang from config import config from tools.translate import translate language=language, hps=hps, net_g=net_g, device=device, skip_start=skip_start, skip_end=skip_end, ) audio16bit = gr.processing_utils.convert_to_16_bit_wav(audio) audio_list.append(audio16bit) silence = np.zeros((int)(44100 * interval_between_para), dtype=np.int16) audio_list.append(silence) else: for idx, p in enumerate(para_list): skip_start = idx != 0 skip_end = idx != len(para_list) - 1 audio_list_sent = [] sent_list = re_matching.cut_sent(p) for idx, s in enumerate(sent_list): skip_start = (idx != 0) and skip_start skip_end = (idx != len(sent_list) - 1) and skip_end audio = infer( s, reference_audio=reference_audio, emotion=emotion, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker, language=language, hps=hps, net_g=net_g, device=device, skip_start=skip_start, skip_end=skip_end, ) audio_list_sent.append(audio) silence = np.zeros((int)(44100 * interval_between_sent)) audio_list_sent.append(silence) if (interval_between_para - interval_between_sent) > 0: silence = np.zeros( (int)(44100 * (interval_between_para - interval_between_sent)) ) audio_list_sent.append(silence) audio16bit = gr.processing_utils.convert_to_16_bit_wav( np.concatenate(audio_list_sent) ) # 对完整句子做音量归一 audio_list.append(audio16bit) audio_concat = np.concatenate(audio_list) return ("Success", (44100, audio_concat)) def tts_fn( text: str, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language, reference_audio, emotion, prompt_mode, ): if prompt_mode == "Audio prompt": if reference_audio == None: return ("Invalid audio prompt", None) else: reference_audio = load_audio(reference_audio)[1] else: reference_audio = None audio_list = [] if language == "mix": bool_valid, str_valid = re_matching.validate_text(text) if not bool_valid: return str_valid, ( hps.data.sampling_rate, np.concatenate([np.zeros(hps.data.sampling_rate // 2)]), ) result = [] for slice in re_matching.text_matching(text): _speaker = slice.pop() temp_contant = [] temp_lang = [] for lang, content in slice: if "|" in content: temp = [] temp_ = [] for i in content.split("|"): if i != "": temp.append([i]) temp_.append([lang]) else: temp.append([]) temp_.append([]) temp_contant += temp temp_lang += temp_ else: if len(temp_contant) == 0: temp_contant.append([]) temp_lang.append([]) temp_contant[-1].append(content) temp_lang[-1].append(lang) for i, j in zip(temp_lang, temp_contant): result.append([*zip(i, j), _speaker]) for i, one in enumerate(result): skip_start = i != 0 skip_end = i != len(result) - 1 _speaker = one.pop() idx = 0 while idx < len(one): text_to_generate = [] lang_to_generate = [] while True: lang, content = one[idx] temp_text = [content] if len(text_to_generate) > 0: text_to_generate[-1] += [temp_text.pop(0)] lang_to_generate[-1] += [lang] if len(temp_text) > 0:
text_to_generate += [[i] for i in temp_text]
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: d-krupke/CP-SAT-Log-Analyzer # Path: cpsat_log_parser/blocks/search_progress.py class SearchProgressBlock(LogBlock): def __init__(self, lines: typing.List[str]) -> None: lines = [line.strip() for line in lines if line.strip()] if not lines: raise ValueError("No lines to parse") if not self.matches(lines): raise ValueError("Lines do not match SearchProgressBlock") self.lines = lines @staticmethod def matches(lines: typing.List[str]) -> bool: if not lines: return False return lines[0].strip().lower().startswith("Starting search".lower()) def _parse_events( self, ) -> typing.List[typing.Union[BoundEvent, ObjEvent, ModelEvent]]: """ Parse the log file into a list of BoundEvent and ObjEvent. """ events = [] for line in self.lines: obj_event = ObjEvent.parse(line) if obj_event: events.append(obj_event) continue bound_event = BoundEvent.parse(line) if bound_event: events.append(bound_event) continue model_event = ModelEvent.parse(line) if model_event: events.append(model_event) continue return events def get_presolve_time(self) -> float: # first line looks like this "Starting search at 16.74s with 24 workers." m = re.match( r"Starting [Ss]earch at (?P<time>\d+\.\d+s) with \d+ workers.", self.lines[0], ) if m: return parse_time(m.group("time")) raise ValueError(f"Could not parse presolve time from '{self.lines[0]}'") def get_title(self) -> str: return "Search progress:" def get_help(self) -> typing.Optional[str]: return """ The search progress log is an essential element of the overall log, crucial for identifying performance bottlenecks. It clearly demonstrates the solver's progression over time and pinpoints where it faces significant challenges. It is important to discern whether the upper or lower bounds are causing issues, or if the solver initially finds a near-optimal solution but struggles to minimize a small remaining gap. The structure of the log entries is standardized as follows: `EVENT NAME\t|\tTIME\t|\tBEST SOLUTION\t|\tRANGE OF THE SEARCH\t|\tCOMMENT` For instance, an event marked `#2` indicates the discovery of the second solution. Here, you will observe an improvement in the `BEST SOLUTION` metric. A notation like `best:16` confirms that the solver has found a solution with a value of 16. An event with `#Bound` denotes an enhancement in the bound, as seen by a reduction in the `RANGE OF THE SEARCH`. A detail such as `next:[7,14]` signifies that the solver is now focused on finding a solution valued between 7 and 14. The `COMMENT` section provides essential information about the strategies that led to these improvements. Events labeled `#Model` signal modifications to the model, such as fixing certain variables. To fully grasp the nuances, zooming into the plot is necessary, especially since the initial values can be quite large. A thorough examination of which sections of the process converge quickest is crucial for a comprehensive understanding. """ def gap_as_plotly(self) -> typing.Optional[go.Figure]: gap_events = [ e for e in self._parse_events() if isinstance(e, BoundEvent) or isinstance(e, ObjEvent) ] def is_valid_gap(gap): if gap is None: return False if not math.isfinite(gap): return False return True gaps = [(e.time, e.get_gap()) for e in gap_events if is_valid_gap(e.get_gap())] fig = go.Figure() if not gap_events: return None # add gaps fig.add_trace( go.Scatter( x=[t for t, _ in gaps], y=[gap for _, gap in gaps], mode="lines+markers", line=dict(color="purple"), name="Gap", hovertext=[e.msg for e in gap_events], ) ) # make the x-axis start at 0 fig.update_xaxes(range=[0, 1.01 * gaps[-1][0]]) max_gap = max(gap for _, gap in gaps if gap is not None) # make the y-axis start at 0 fig.update_yaxes(range=[-1, min(300, 1.01 * max_gap)]) fig.update_layout( title="Optimality Gap", xaxis_title="Time (s)", yaxis_title="Gap (%)", legend_title="Legend", font=dict(family="Courier New, monospace", size=18, color="RebeccaPurple"), ) return fig def model_changes_as_plotly(self) -> typing.Optional[go.Figure]: """ Plot the model changes in percent over time. """ model_events = [e for e in self._parse_events() if isinstance(e, ModelEvent)] fig = go.Figure() if not model_events: return None # add number of vars fig.add_trace( go.Scatter( x=[e.time for e in model_events], y=[100 * (e.vars_remaining / e.vars) for e in model_events], mode="lines+markers", line=dict(color="green"), name="Variables", hovertext=[e.msg for e in model_events], ) ) # add number of constraints fig.add_trace( go.Scatter( x=[e.time for e in model_events], y=[100 * (e.constr_remaining / e.constr) for e in model_events], mode="lines+markers", line=dict(color="orange"), name="Constraints", hovertext=[e.msg for e in model_events], ) ) # make the x-axis start at 0 fig.update_xaxes(range=[0, 1.01 * model_events[-1].time]) # make the y-axis range from 0 to 100 fig.update_yaxes(range=[0, 101]) fig.update_layout( title="Model changes", xaxis_title="Time (s)", yaxis_title="Remaining (%)", legend_title="Legend", font=dict(family="Courier New, monospace", size=18, color="RebeccaPurple"), ) return fig def as_plotly(self) -> typing.Optional[go.Figure]: """ Plot the progress of the solver. """ events = self._parse_events() obj_events = [e for e in events if isinstance(e, ObjEvent)] bound_events = [e for e in events if isinstance(e, BoundEvent)] fig = go.Figure() if not obj_events and not bound_events: return None max_time = max([e.time for e in bound_events + obj_events]) # make sure that both bounds and objs have a value at max_time if obj_events and obj_events[-1].time < max_time: if bound_events[-1].obj is None: # Should nearly never happen obj_events.append( ObjEvent( time=max_time, obj=obj_events[-1].obj, bound=bound_events[-1].bound, msg="", ) ) else: obj_events.append( ObjEvent( time=max_time, obj=bound_events[-1].obj, bound=bound_events[-1].bound, msg="", ) ) if bound_events and bound_events[-1].time < max_time: bound_events.append( BoundEvent( time=max_time, obj=obj_events[-1].obj, bound=obj_events[-1].bound, msg="", ) ) # plot the bounds over time. Add the comment as hover text fig.add_trace( go.Scatter( x=[b.time for b in bound_events], y=[b.bound for b in bound_events], mode="lines+markers", line=dict(color="cyan"), name="Bound", hovertext=[b.msg for b in bound_events], ) ) # plot the objective values over time. Add the comment as hover text fig.add_trace( go.Scatter( x=[o.time for o in obj_events], y=[o.obj for o in obj_events], mode="lines+markers", line=dict(color="red"), name="Objective", hovertext=[o.msg for o in obj_events], ) ) # make the x-axis start at 0 fig.update_xaxes(range=[0, 1.01 * max_time]) fig.update_layout( title="Search progress", xaxis_title="Time (s)", yaxis_title="Objective", legend_title="Legend", font=dict(family="Courier New, monospace", size=18, color="RebeccaPurple"), ) return fig # Path: cpsat_log_parser/blocks/solver.py class SolverBlock(LogBlock): def __init__(self, lines: typing.List[str]) -> None: super().__init__(lines) def _parse_parameters(self, line: str) -> typing.Dict: """ The parameters line can look like this: "Parameters: log_search_progress: true use_timetabling_in_no_overlap_2d: true use_energetic_reasoning_in_no_overlap_2d: true use_pairwise_reasoning_in_no_overlap_2d: true" """ parameters = {} line = line[len("Parameters:") :] for match in re.finditer(r"(?P<key>\w+): (?P<value>[^ ]+)", line): parameters[match.group("key")] = match.group("value") return parameters def get_title(self) -> str: return "Solver Information" def get_help(self) -> str: return """This block contains basic information about the solver. As CP-SAT is still under active development and makes serious improvements with every release, it is important to know which version of the solver was used. The number of workers, i.e., the level of parallelism, is also important to know. CP-SAT is a portfolio solver and the higher the number of workers, the more strategies are used. You can find an overview of the different tiers activated by the number of workers in the [CP-SAT documentation](https://github.com/google/or-tools/blob/main/ortools/sat/docs/troubleshooting.md#improving-performance-with-multiple-workers). While you should be careful with tinkering with the parameters (they have sensible defaults), it is still good to know which parameters were used. All of these information are actually already shown in the overview. """ @staticmethod def matches(lines: typing.List[str]) -> bool: if not lines: return False return lines[0].strip().startswith("Starting CP-SAT solver") def get_parameters(self) -> typing.Dict: for line in self.lines: if line.startswith("Parameters:"): return self._parse_parameters(line) raise ValueError("No parameters found") def get_number_of_workers(self) -> int: # the line looks like this: "Setting number of workers to 24" for line in self.lines: if line.startswith("Setting number of workers to"): return int(line.strip().split(" ")[-1]) # If `num_search_workers` is set, the number of workers is not shown in the log. if "num_search_workers" in self.get_parameters(): return int(self.get_parameters()["num_search_workers"]) raise ValueError("No number of workers found") def get_version(self) -> str: # the line looks like this: "Starting CP-SAT solver v9.7.2996" for line in self.lines: if line.startswith("Starting CP-SAT solver"): return line.strip().split(" ")[-1] raise ValueError("No version found") def get_parsed_version(self) -> typing.Tuple[int, int, int]: # the line looks like this: "Starting CP-SAT solver v9.7.2996" version = self.get_version()[1:] major, minor, patch = version.split(".") return int(major), int(minor), int(patch) # Path: cpsat_log_parser/blocks/solver_response.py class ResponseBlock(LogBlock): def __init__(self, lines: typing.List[str]) -> None: super().__init__(lines) @staticmethod def matches(lines: typing.List[str]) -> bool: if not lines: return False return lines[0].startswith("CpSolverResponse") def get_title(self) -> str: return "CpSolverResponse" def to_dict(self) -> dict: d = {} for line in self.lines: if line.startswith("CpSolverResponse"): continue key, value = line.split(":") key = key.strip() value = value.strip() if key == "status": value = value.split(" ")[0] d[key] = value return d def get_gap(self): vals = self.to_dict() try: obj = float(vals["objective"]) bound = float(vals["best_bound"]) except TypeError: return None except ValueError: return None return 100 * (abs(obj - bound) / max(1, abs(obj))) def to_pandas(self) -> pd.DataFrame: return pd.DataFrame([self.to_dict()]) def get_help(self) -> typing.Optional[str]: return """ This final block of the log contains a summary by the solver. Here you find the most important information, such as how successful the search was. You can find the original documentation [here](https://github.com/google/or-tools/blob/8768ed7a43f8899848effb71295a790f3ecbe2f2/ortools/sat/cp_model.proto#L720). """ # Path: cpsat_log_parser/blocks/initial_model.py class InitialModelBlock(LogBlock): def __init__(self, lines: typing.List[str]) -> None: super().__init__(lines) if not self.lines: raise ValueError("No lines given") if not self.matches(self.lines): raise ValueError("Lines do not match") @staticmethod def matches(lines: typing.List[str]) -> bool: if not lines: return False if re.match(r"Initial (satisfaction|optimization) model", lines[0]): return True return False def is_optimization(self) -> bool: if not self.lines: return False return self.lines[0].startswith("Initial optimization model") def get_title(self) -> str: return "Initial Optimization Model" def get_model_fingerprint(self) -> str: return self.lines[0].split("model_fingerprint: ")[1].strip(")") def get_num_variables(self) -> int: return int( self.lines[1] .split("#Variables: ")[1] .strip() .split(" ")[0] .replace("'", "") ) def get_num_constraints(self) -> int: n = 0 for line in self.lines: if line.startswith("#k"): # "#kNoOverlap2D: 1 (#rectangles: 24)" # "#kInterval: 48" n += int(line.split(":")[1].strip().split(" ")[0].replace("'", "")) return n def get_help(self) -> typing.Optional[str]: return """ This block gives an overview of the model before presolve. It contains the number of variables and constraints, as well as coefficients and domains. `- 200 in [0,199]` will indicate that there are 200 variables with domain `[0,199]`, i.e., values between 0 and 199. `#kLinearN: 3'000 (#terms: 980'948)` indicates that there are 3000 linear constraints with 980'948 coefficients.` It is useful to compare this to the model after presolve and also if this matches your expectations. The presolve-phase may reformulate your model extensively to make it more efficient. """ # Path: _app/overview.py import streamlit as st from cpsat_log_parser.blocks import ( SearchProgressBlock, SolverBlock, ResponseBlock, InitialModelBlock, ) def show_overview(parser): st.subheader("Overview", divider=True) if parser.comments: with st.chat_message("user"): # escape markdown to prevent XSS comment = "\n".join(parser.comments) comment = comment.replace("\\", "") comment = comment.replace("[", "\\[*") comment = comment.replace("]", "*\\]") st.write(comment) try: solver_block = parser.get_block_of_type(SolverBlock) initial_model_block = parser.get_block_of_type(InitialModelBlock) search_progress_block = parser.get_block_of_type(SearchProgressBlock) response_block = parser.get_block_of_type(ResponseBlock) col1, col2 = st.columns(2) major, minor, patch = solver_block.get_parsed_version() if major < 9 or (major == 9 and minor < 8): col1.metric( label="CP-SAT Version", value=solver_block.get_version(), help="CP-SAT has seen significant performance improvements over the last years. Make sure to use the latest version.", delta="outdated", delta_color="inverse", ) else: col1.metric( label="CP-SAT Version", value=solver_block.get_version(), help="CP-SAT has seen significant performance improvements over the last years. Make sure to use the latest version.", ) col2.metric( label="Number of workers", value=solver_block.get_number_of_workers(), help="CP-SAT has different parallelization tiers, triggered by the number of workers. More workers can improve performance. Fine more information [here](https://github.com/google/or-tools/blob/main/ortools/sat/docs/troubleshooting.md#improving-performance-with-multiple-workers)", ) # https://github.com/google/or-tools/blob/main/ortools/sat/docs/troubleshooting.md#improving-performance-with-multiple-workers # print all parameters (key: value) if solver_block.get_parameters(): md = "*CP-SAT was setup with the following parameters:*\n" st.markdown(md) st.json(solver_block.get_parameters()) st.markdown( "*You can find more information about the parameters [here](https://github.com/google/or-tools/blob/stable/ortools/sat/sat_parameters.proto).*" ) col1, col2, col3 = st.columns(3) response = response_block.to_dict() col1.metric( label="Status",
value=response["status"],
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: MMC-K/multimodal_understanding # Path: index_scorer.py class FaissScorerExhaustiveGPU(object): _NEED_TO_SET_CANDIDATES=False def __init__(self, fvec_root, nprobe=1, gpu=0, **kwargs, ) -> None: self.gpu = gpu self.fpath_list = list(sorted(list(glob.glob(os.path.join(fvec_root, "*"))))) self.index = self.load_index(gpu) self.index.nprobe = nprobe def load_index(self, fvec_root, gpu=0): # gpu resources res = faiss.StandardGpuResources() logger.info('loading fvecs...') data = [fvecs_read(path) for path in self.fpath_list] d = data[0].shape[-1] logger.info('vector dim: {}'.format(d)) index_flat = faiss.IndexFlatIP(d) index = faiss.index_cpu_to_gpu(res, gpu, index_flat) logger.info('adding index...') for ds in data: index.add(ds) return index def get_topk(self, query_vec, k=4): return self.index.search(query_vec, k) # Path: index_scorer.py class FaissScorerExhaustiveMultiGPU(object): _NEED_TO_SET_CANDIDATES=False def __init__(self, fvec_root, nprobe=1, gpu_list=None, **kwargs, ) -> None: self.fpath_list = list(sorted(list(glob.glob(os.path.join(fvec_root, "*"))))) self.gpu_list = gpu_list if self.gpu_list is None: self.gpu_list = list(range(faiss.get_num_gpus())) self.index = self.load_index(fvec_root) self.index.nprobe = nprobe def load_index(self, fvec_root): logger.info('loading fvecs...') logger.info(self.fpath_list) data = [fvecs_read(path) for path in self.fpath_list] data = np.concatenate(tuple(data), axis=0) d = data.shape[-1] logger.info('vector dim: {}'.format(d)) index_flat = faiss.IndexFlatIP(d) gmco = faiss.GpuMultipleClonerOptions() gmco.shard = True index = faiss.index_cpu_to_gpus_list(index_flat, gmco, self.gpu_list) logger.info('adding index...') index.add(data) return index def get_topk(self, query_vec, k=4): return self.index.search(query_vec, k) # Path: index_scorer.py class FaissScorer(FaissScorerBase): def __init__(self, index_path, fvec_root="", proportion_for_training=1.0, index_str="IVF65536,Flat", nprobe=4, **kwargs, ) -> None: super(FaissScorer, self).__init__(fvec_root) self.index_path=index_path self.proportion_for_training = proportion_for_training self.index = self.load_index(index_str) self.index.nprobe = nprobe def load_index(self, index_str="IVF65536,Flat"): if not os.path.isfile(self.index_path): data = self.load_data(self.proportion_for_training) d = data.shape[-1] index = faiss.index_factory(d, index_str, faiss.METRIC_INNER_PRODUCT) logger.info('training index...') index.train(data) logger.info('loading fvecs...') data = self.load_data() logger.info('adding index...') index.add(data) faiss.write_index(index, self.index_path) return faiss.read_index(self.index_path) def get_topk(self, query_vec, k=4): return self.index.search(query_vec, k) # Path: data_utils.py class DatasetForImages(Dataset): def __init__( self, file_path: str, image_tokenizer: ViTFeatureExtractor, shard_idx: int=0, num_shards: int=1, image_root_dir=None, ): super().__init__() self.file_path = file_path self.image_tokenizer = image_tokenizer self.image_root_dir=image_root_dir logger.info("loading dataset...") self.data = [ item for item in csv.DictReader( open(file_path, "r"), delimiter="\t", quoting=csv.QUOTE_NONE, fieldnames=['path', 'image_url'] ) ] self.shard_idx = shard_idx if num_shards > 1: self.data = get_list(self.data, num_shards, shard_idx) logger.info("{} examples was loaded.".format(len(self.data))) def __getitem__(self, index): sample = self.data[index] path = sample["path"] if self.image_root_dir is not None: path = os.path.join(self.image_root_dir, path) image = Image.open(path).convert("RGB") image_feature = self.image_tokenizer(images=image, return_tensors="pt") return { "pixel_values": image_feature["pixel_values"], } def __len__(self): return len(self.data) def get_collate_fn(self): def collate_fn(samples): if len(samples) == 0: return {} return { "pixel_values": default_collate([s["pixel_values"][0] for s in samples]) } return collate_fn # Path: modeling_encoder.py class VisionT5SimpleBiEncoder(BiEncoderBase): _ENCODER_TYPE='biencoder' def __init__(self, args=None, vision_encoder=None, language_encoder=None): super(VisionT5SimpleBiEncoder, self).__init__( args=args, vision_encoder=vision_encoder, language_encoder=language_encoder ) def load_weight_from_args(self, args): self.vision_encoder = ViTModel.from_pretrained(args.vision_model) self.language_encoder = T5EncoderSimple.from_pretrained(args.language_model) @classmethod def from_pretrained(cls, *args, **kwargs): root_path = args[0] enc_path_q = os.path.join(root_path, "vision") args_q = copy.deepcopy(list(args)) args_q[0] = enc_path_q vision_encoder = ViTModel.from_pretrained(*tuple(args_q), **kwargs) enc_path_k = os.path.join(root_path, "language") args_k = copy.deepcopy(list(args)) args_k[0] = enc_path_k language_encoder = T5EncoderSimple.from_pretrained(*tuple(args_k), **kwargs) return cls(vision_encoder=vision_encoder, language_encoder=language_encoder) # Path: modeling_encoder.py class VisionT5MeanBiEncoder(BiEncoderBase): _ENCODER_TYPE='biencoder' def __init__(self, args=None, vision_encoder=None, language_encoder=None): super(VisionT5MeanBiEncoder, self).__init__( args=args, vision_encoder=vision_encoder, language_encoder=language_encoder ) def load_weight_from_args(self, args): self.vision_encoder = ViTModel.from_pretrained(args.vision_model) self.language_encoder = T5EncoderMean.from_pretrained(args.language_model) @classmethod def from_pretrained(cls, *args, **kwargs): root_path = args[0] enc_path_q = os.path.join(root_path, "vision") args_q = copy.deepcopy(list(args)) args_q[0] = enc_path_q vision_encoder = ViTModel.from_pretrained(*tuple(args_q), **kwargs) enc_path_k = os.path.join(root_path, "language") args_k = copy.deepcopy(list(args)) args_k[0] = enc_path_k language_encoder = T5EncoderMean.from_pretrained(*tuple(args_k), **kwargs) return cls(vision_encoder=vision_encoder, language_encoder=language_encoder) # Path: modeling_encoder.py class VisionT5SimpleBiEncoderHN(BiEncoderBaseHN): _ENCODER_TYPE='biencoder' def __init__(self, args=None, vision_encoder=None, language_encoder=None): super(VisionT5SimpleBiEncoderHN, self).__init__( args=args, vision_encoder=vision_encoder, language_encoder=language_encoder ) def load_weight_from_args(self, args): self.vision_encoder = ViTModel.from_pretrained(args.vision_model) self.language_encoder = T5EncoderSimple.from_pretrained(args.language_model) @classmethod def from_pretrained(cls, *args, **kwargs): root_path = args[0] enc_path_q = os.path.join(root_path, "vision") args_q = copy.deepcopy(list(args)) args_q[0] = enc_path_q vision_encoder = ViTModel.from_pretrained(*tuple(args_q), **kwargs) enc_path_k = os.path.join(root_path, "language") args_k = copy.deepcopy(list(args)) args_k[0] = enc_path_k language_encoder = T5EncoderSimple.from_pretrained(*tuple(args_k), **kwargs) return cls(vision_encoder=vision_encoder, language_encoder=language_encoder) # Path: modeling_encoder.py class VisionT5MeanBiEncoderHN(BiEncoderBaseHN): _ENCODER_TYPE='biencoder' def __init__(self, args=None, vision_encoder=None, language_encoder=None): super(VisionT5MeanBiEncoderHN, self).__init__( args=args, vision_encoder=vision_encoder, language_encoder=language_encoder ) def load_weight_from_args(self, args): self.vision_encoder = ViTModel.from_pretrained(args.vision_model) self.language_encoder = T5EncoderMean.from_pretrained(args.language_model) @classmethod def from_pretrained(cls, *args, **kwargs): root_path = args[0] enc_path_q = os.path.join(root_path, "vision") args_q = copy.deepcopy(list(args)) args_q[0] = enc_path_q vision_encoder = ViTModel.from_pretrained(*tuple(args_q), **kwargs) enc_path_k = os.path.join(root_path, "language") args_k = copy.deepcopy(list(args)) args_k[0] = enc_path_k language_encoder = T5EncoderMean.from_pretrained(*tuple(args_k), **kwargs) return cls(vision_encoder=vision_encoder, language_encoder=language_encoder) # Path: training_retriever.py def create_directory_info(args, create_dir=True): model_dir = os.path.join(args.output_dir, "{}-{}-{}".format( args.model_cls.replace('/', '_'), args.vision_model.replace('/', '_'), args.language_model.replace('/', '_'))) if args.dir_suffix is not None: model_dir = '_'.join([model_dir, args.dir_suffix]) weights_dir = os.path.join(model_dir, "weights") logs_dir = os.path.join(model_dir, "logs") path_info = { 'model_dir': model_dir, 'weights_dir': weights_dir, 'logs_dir': logs_dir, } if create_dir: for k, v in path_info.items(): create_dir_if_not_exist(v) path_info['best_model_path'] = os.path.join(weights_dir, "best_model.pth") path_info['ckpt_path'] = os.path.join(weights_dir, "checkpoint.pth") return path_info # Path: training_retriever.py MODEL_CLS = { "VisionT5SimpleBiEncoder": { "model_cls": VisionT5SimpleBiEncoder, }, "VisionT5MeanBiEncoder": { "model_cls": VisionT5MeanBiEncoder, }, "VisionT5SimpleBiEncoderHN": { "model_cls": VisionT5SimpleBiEncoderHN, }, "VisionT5MeanBiEncoderHN": { "model_cls": VisionT5MeanBiEncoderHN, }, } # Path: text_generated_image_to_image_retriever/text_to_image_retrieval.py import argparse import sys import os import csv import time import json import shutil import logging import hashlib import functools import numpy as np import tqdm import torch import torch.nn.functional as F import torch.distributed as dist import torch.utils.data import torch.utils.data.distributed import torch.nn.parallel from numpy.core.numeric import indices from torch.utils.data import DataLoader from torch.nn import CrossEntropyLoss from torch import optim from torch.nn.parallel import DistributedDataParallel as DDP from transformers import AutoTokenizer, ViTFeatureExtractor from torch.utils.tensorboard import SummaryWriter from index_scorer import FaissScorerExhaustiveGPU, FaissScorerExhaustiveMultiGPU, FaissScorer from data_utils import DatasetForImages from modeling_encoder import ( VisionT5SimpleBiEncoder, VisionT5MeanBiEncoder, VisionT5SimpleBiEncoderHN, VisionT5MeanBiEncoderHN, ) from training_retriever import ( create_directory_info, MODEL_CLS) # model parser.add_argument("--vision_model", default="google/vit-base-patch16-384", type=str) parser.add_argument("--language_model", default="KETI-AIR/ke-t5-base", type=str) parser.add_argument("--model_cls", default="VisionT5MeanBiEncoder", choices=["VisionT5SimpleBiEncoder", "VisionT5MeanBiEncoder"], type=str, help="model class") parser.add_argument("--dir_suffix", default=None, type=str) parser.add_argument("--output_dir", default="output", type=str) parser.add_argument("--markdown_out", default="md", type=str) # resume parser.add_argument("--hf_path", default=None, type=str, help="path to score huggingface model") parser.add_argument("--topk", default=10, type=int, help="top k") parser.add_argument("--image_size", default=180, type=int, help="image size for html formatting") # default settings for training, evaluation parser.add_argument("--batch_size", default=16, type=int, help="mini batch size") parser.add_argument("--num_workers", default=0, type=int, help="number of workers") # distributed setting parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument("--local_world_size", type=int, default=1, help="The size of the local worker group.") parser.add_argument("--rank", type=int, default=0, help="The rank of the worker within a worker group.") parser.add_argument("--world_size", type=int, default=1, help="world size. (num_nodes*num_dev_per_node)") parser.add_argument("--distributed", action='store_true', help="is distributed training") parser.add_argument('--model_gpu', default=0, type=int) parser.add_argument('--scorer_gpus', nargs="+", default=[0, 1, 2, 3], type=int) # --data_path ../kfashion_images_group.tsv --fvecs_dir result/simple_query_ko/fvecs --hf_path result/simple_query_ko/hf_model --query_path query.json --markdown_out result/simple_query_ko/md --model_cls VisionT5MeanBiEncoder args = parser.parse_args(["--data_path", "../kfashion_images_group.tsv",\ "--fvecs_dir", FVECS_DIR, \ "--hf_path", HF_PATH,\ "--markdown_out", MARKDOWN_OUT,\ "--model_cls", "VisionT5MeanBiEncoder",\ "--scorer_gpus", "0"]) print(args.scorer_gpus) print(args.fvecs_dir) path_info = create_directory_info(args, create_dir=False) if args.fvecs_dir is None: args.fvecs_dir = os.path.join(path_info["model_dir"], "fvecs") if args.hf_path.lower()=='default': args.hf_path = os.path.join(path_info["model_dir"], "hf") model_device = torch.device('cuda:{}'.format(args.model_gpu)) if faiss_scorer is None: faiss_scorer = FaissScorerExhaustiveMultiGPU( fvec_root=args.fvecs_dir, gpu_list=args.scorer_gpus ) # get model class model_cls_cfg = MODEL_CLS[args.model_cls] model_cls = model_cls_cfg["model_cls"] # load model model = model_cls.from_pretrained(args.hf_path) model = model.to(model_device) # get tokenizer text_tokenizer = AutoTokenizer.from_pretrained(args.language_model) # image_tokenizer = ViTFeatureExtractor.from_pretrained(args.vision_model) ref_data = [ item for item in tqdm.tqdm(csv.DictReader( open(args.data_path, "r"), delimiter="\t", quoting=csv.QUOTE_MINIMAL, fieldnames=['path', 'image_url'] ), desc="loading item...") ] model.eval() markdown_out_dir = args.markdown_out if not os.path.isdir(markdown_out_dir): os.makedirs(markdown_out_dir, exist_ok=True) with torch.no_grad(): text_feature = text_tokenizer(text_query_list, return_tensors="pt", truncation='longest_first', padding=True) q_vecs = model.encode_text({ "input_ids":text_feature["input_ids"].to(model_device), "attention_mask":text_feature["attention_mask"].to(model_device),}) q_vecs = q_vecs.cpu().numpy() scores, indice = faiss_scorer.get_topk(q_vecs, args.topk) result_list = [] for t, score, index in zip(range(len(text_query_list)), scores, indice): result = [ {
"k": k+1,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: CASIA-IVA-Lab/FLAP # Path: models/hf_llama/modeling_llama.py class LlamaForCausalLM(LlamaPreTrainedModel): def __init__(self, config): super().__init__(config) self.model = LlamaModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing #self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, LlamaForCausalLM >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) >>> prompt = "Hey, are you consciours? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): if past_key_values: input_ids = input_ids[:, -1:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -1].unsqueeze(-1) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past # Path: lib/prune.py def prune_wanda_sp(args, model, tokenizer, device=torch.device("cuda:0")): """ Wanda on structured pruning. Args: args (object): Command line arguments parsed via argparse. model (nn.Module): PyTorch model to prune. tokenizer (Tokenizer): Tokenizer associated with the model. device (torch.device, optional): Device to move tensors to. Defaults to CUDA device 0. """ use_cache = model.config.use_cache model.config.use_cache = False print("loading calibdation data") dataloader, _ = get_loaders("c4",nsamples=128,seed=args.seed,seqlen=model.seqlen,tokenizer=tokenizer) print("dataset loading complete") with torch.no_grad(): inps, outs, attention_mask, position_ids = prepare_calibration_input(model, dataloader, device) layers = model.model.layers for i in range(len(layers)): layer = layers[i] subset = {} subset.update({'self_attn.o_proj': find_layers(layer)['self_attn.o_proj']}) subset.update({'mlp.down_proj': find_layers(layer)['mlp.down_proj']}) if f"model.layers.{i}" in getattr(model, 'hf_device_map', {}): ## handle the case for llama-30B and llama-65B, when the device map has multiple GPUs; dev = model.hf_device_map[f"model.layers.{i}"] inps, outs, attention_mask, position_ids = inps.to(dev), outs.to(dev), attention_mask.to(dev), position_ids.to(dev) wrapped_layers = {} for name in subset: wrapped_layers[name] = WrappedGPT(subset[name]) def add_batch(name): def tmp(_, inp, out): wrapped_layers[name].add_batch(inp[0].data, out.data) return tmp handles = [] for name in wrapped_layers: handles.append(subset[name].register_forward_hook(add_batch(name))) for j in range(args.nsamples): with torch.no_grad(): outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids=position_ids)[0] for h in handles: h.remove() for name in subset: print(f"pruning layer {i} name {name}") W_metric = torch.abs(subset[name].weight.data) * torch.sqrt(wrapped_layers[name].scaler_row.reshape((1,-1))) if name == 'self_attn.o_proj': W_metric = W_metric.mean(axis=0).reshape(-1, 128).sum(dim=1) # importance score of each head thresh = torch.sort(W_metric.cuda())[0][int(args.pruning_ratio*layer.self_attn.num_heads)].cpu() W_mask = (W_metric>=thresh) compress(layer, W_mask, None, None, None, device, bias=False, unstr=args.unstr) else: W_metric = W_metric.mean(axis=0) thresh = torch.sort(W_metric.cuda())[0][int(W_metric.numel()*args.pruning_ratio)].cpu() W_mask = (W_metric>=thresh) compress(layer, None, W_mask, None, None, device, bias=False, unstr=args.unstr) wrapped_layers[name].free() for j in range(args.nsamples): with torch.no_grad(): outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids=position_ids)[0] inps, outs = outs, inps # the pruned output as input to the next layer torch.cuda.empty_cache() model.config.use_cache = use_cache torch.cuda.empty_cache() # Path: lib/prune.py def prune_flap(args, model, tokenizer, device=torch.device("cuda:0")): """ Our FLAP Pruning. Args: args (object): Command line arguments parsed via argparse. model (nn.Module): PyTorch model to prune. tokenizer (Tokenizer): Tokenizer associated with the model. device (torch.device, optional): Device to move tensors to. Defaults to CUDA device 0. """ use_cache = model.config.use_cache model.config.use_cache = False print("loading calibdation data") dataloader, _ = get_loaders("wikitext2", nsamples=args.nsamples,seed=args.seed,seqlen=model.seqlen,tokenizer=tokenizer) print("dataset loading complete") with torch.no_grad(): inps, outs, attention_mask, position_ids = prepare_calibration_input(model, dataloader, device) layers = model.model.layers attn_metric_list, mlp_metric_list = [], [] attn_baseline_inp_list, mlp_baseline_inp_list = [], [] attn_mask, mlp_mask = [], [] # Split into sub-problems, separate statistics for each module for i in tqdm(range(len(layers)), desc="Processing layers"): layer = layers[i] subset = {} subset.update({'self_attn.o_proj': find_layers(layer)['self_attn.o_proj']}) subset.update({'mlp.down_proj': find_layers(layer)['mlp.down_proj']}) if f"model.layers.{i}" in getattr(model, 'hf_device_map', {}): ## handle the case for llama-30B and llama-65B, when the device map has multiple GPUs; dev = model.hf_device_map[f"model.layers.{i}"] inps, outs, attention_mask, position_ids = inps.to(dev), outs.to(dev), attention_mask.to(dev), position_ids.to(dev) wrapped_layers = {} for name in subset: wrapped_layers[name] = BiasGPT(subset[name], args.metrics) def add_batch(name): def tmp(_, inp, out): wrapped_layers[name].add_batch(inp[0].data, out.data) return tmp handles = [] for name in wrapped_layers: handles.append(subset[name].register_forward_hook(add_batch(name))) for j in range(args.nsamples): with torch.no_grad(): outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids=position_ids)[0] for h in handles: h.remove() for name in subset: if name == 'self_attn.o_proj': W_metric = metrics[args.metrics](wrapped_layers, subset, name) ** 2 if args.structure == "UL-UM": W_metric = W_metric.reshape(-1, 128).sum(dim=1) thresh = torch.sort(W_metric.cuda())[0][int(args.pruning_ratio*layer.self_attn.num_heads)].cpu() W_mask = (W_metric>=thresh) attn_mask.append(W_mask) elif args.structure == "UL-MM": W_metric = W_metric.reshape(-1, 128).sum(dim=1) thresh = torch.sort(W_metric.cuda())[0][args.remove_heads // len(layers)].cpu() W_mask = (W_metric>=thresh) attn_mask.append(W_mask) else: attn_metric_list.append(W_metric.cpu()) attn_baseline_inp_list.append(wrapped_layers[name].baseline_inp.type(torch.half)) else: W_metric = metrics[args.metrics](wrapped_layers, subset, name) if args.structure == "UL-UM": thresh = torch.sort(W_metric.cuda())[0][int(W_metric.numel()*args.pruning_ratio)].cpu() W_mask = (W_metric>=thresh) mlp_mask.append(W_mask) elif args.structure == "UL-MM": thresh = torch.sort(W_metric.cuda())[0][cal_remove_neuron(args, model)].cpu() W_mask = (W_metric>=thresh) mlp_mask.append(W_mask) else: mlp_metric_list.append(W_metric.cpu()) mlp_baseline_inp_list.append(wrapped_layers[name].baseline_inp.type(torch.half)) wrapped_layers[name].free() inps, outs = outs, inps # Use the original output as input to the next layer torch.cuda.empty_cache() standarlization = lambda x: (x - torch.mean(x, axis=1, keepdim=True)) / torch.std(x, axis=1, keepdim=True) if args.structure in ["AL-MM", "AL-AM"]: attn_metric = torch.stack(attn_metric_list) attn_metric = standarlization(attn_metric) attn_metric = attn_metric.reshape(len(layers), -1, 128).mean(dim=2) mlp_metric = torch.stack(mlp_metric_list) mlp_metric = standarlization(mlp_metric) if args.structure == "AL-MM": sorted_attn = torch.sort(attn_metric.view(-1), descending=True)[0] attn_thres = sorted_attn[-int(args.remove_heads)] attn_mask = (attn_metric > attn_thres) # 1 means retain sorted_mlp = torch.sort(mlp_metric.view(-1), descending=True)[0] mlp_thres = sorted_mlp[-cal_remove_neuron(args, model)] mlp_mask = (mlp_metric > mlp_thres) else: prune_metric = torch.cat([attn_metric.view(-1), mlp_metric.view(-1)]) sorted_prune, indices = torch.sort(prune_metric, descending=True) compression_weight = torch.ones_like(indices) compression_weight[indices < attn_metric.numel()] = 512.0 / 3 threshold = sorted_prune[torch.argmin(torch.abs(torch.cumsum(compression_weight, 0) - torch.sum(compression_weight)*(1 - args.pruning_ratio)))] attn_mask = (attn_metric > threshold) mlp_mask = (mlp_metric > threshold) else: attn_mask = torch.stack(attn_mask) mlp_mask = torch.stack(mlp_mask) for idx in range(len(layers)): if f"model.layers.{i}" in getattr(model, 'hf_device_map', {}): compress(model.model.layers[idx], attn_mask[idx], None, attn_baseline_inp_list[idx], None, model.hf_device_map[f"model.layers.{idx}"], unstr=args.unstr) else: compress(model.model.layers[idx], attn_mask[idx], None, attn_baseline_inp_list[idx], None, device, unstr=args.unstr) if f"model.layers.{i}" in getattr(model, 'hf_device_map', {}): compress(model.model.layers[idx], None, mlp_mask[idx], None, mlp_baseline_inp_list[idx], model.hf_device_map[f"model.layers.{idx}"], unstr=args.unstr) else: compress(model.model.layers[idx], None, mlp_mask[idx], None, mlp_baseline_inp_list[idx], device, unstr=args.unstr) model.config.use_cache = use_cache torch.cuda.empty_cache() # Path: lib/prune.py def prune_magnitude_sp(args, model, tokenizer, device=torch.device("cuda:0")): """ Magnitude Pruning on structured pruning. Args: args (object): Command line arguments parsed via argparse. model (nn.Module): PyTorch model to prune. tokenizer (Tokenizer): Tokenizer associated with the model. device (torch.device, optional): Device to move tensors to. Defaults to CUDA device 0. """ layers = model.model.layers for i in range(len(layers)): layer = layers[i] subset = {} subset.update({'self_attn.o_proj': find_layers(layer)['self_attn.o_proj']}) subset.update({'mlp.down_proj': find_layers(layer)['mlp.down_proj']}) for name in subset: print(f"pruning layer {i} name {name}") W_metric = torch.norm(subset[name].weight.data, dim=0) if name == 'self_attn.o_proj': W_metric = W_metric.reshape(-1, 128).sum(dim=1) # importance score of each head thresh = torch.sort(W_metric.cuda())[0][int(args.pruning_ratio*layer.self_attn.num_heads)].cpu() W_mask = (W_metric>=thresh) compress(layer, W_mask, None, None, None, device, bias=False, unstr=args.unstr) else: thresh = torch.sort(W_metric.cuda())[0][int(W_metric.numel()*args.pruning_ratio)].cpu() W_mask = (W_metric>=thresh) compress(layer, None, W_mask, None, None, device, bias=False, unstr=args.unstr) # Path: lib/prune.py def check_sparsity(model): """ Check the sparsity of the weights in different layers of the model. Args: model (nn.Module): The model to check. Returns: float: Ratio of the count of non-zero weights to total parameters in the model. """ use_cache = model.config.use_cache model.config.use_cache = False layers = model.model.layers intermediate_size = model.config.intermediate_size hidden_size = model.config.hidden_size count = 0 total_params = 0 for i in range(len(layers)): layer = layers[i] subset = find_layers(layer) sub_count = 0 sub_params = 0 for name in subset: W = subset[name].weight.data sub_count += W.numel() count += W.numel() if 'self_attn' in name: total_params += hidden_size * hidden_size sub_params += hidden_size * hidden_size else: total_params += hidden_size * intermediate_size sub_params += hidden_size * intermediate_size if subset[name].bias is not None: count += subset[name].bias.data.numel() sub_count += subset[name].bias.data.numel() print(f"layer {i} sparsity {float(sub_count)/sub_params:.6f}") model.config.use_cache = use_cache return float(count)/total_params # Path: lib/eval.py def eval_ppl(model, tokenizer, device=torch.device("cuda:0")): """ Evaluate perplexity (ppl) on a specified model and tokenizer. Args: model (torch.nn.Module): The language model to be evaluated. tokenizer (Tokenizer): Tokenizer instance for encoding texts. device (torch.device): Device to move data onto (e.g., 'cuda:0' or 'cpu'). Returns: float: The perplexity of the language model on the test dataset. """ # Set dataset dataset = "wikitext2" # Dataset consisting of extracted sentences from Wikipedia articles # Print status print(f"evaluating on {dataset}") # Get the test loader _, testloader = get_loaders( dataset, seed=0, seqlen=model.seqlen, tokenizer=tokenizer ) # Evaluate perplexity in no grad context to avoid updating the model with torch.no_grad(): # Perplexity measures how well the probability distribution predicted by the model aligns with the actual distribution of the words. Lower perplexity is better. ppl = eval_ppl_wikitext(model, testloader, 1, device) return ppl # Path: main.py import argparse import os import numpy as np import torch from transformers import AutoTokenizer, AutoModelForCausalLM from models.hf_llama.modeling_llama import LlamaForCausalLM from importlib.metadata import version from lib.prune import prune_wanda_sp, prune_flap, prune_magnitude_sp, check_sparsity from lib.eval import eval_ppl print('torch', version('torch')) print('transformers', version('transformers')) print('accelerate', version('accelerate')) print('# of gpus: ', torch.cuda.device_count()) def get_llm(model, cache_dir="llm_weights"): # model = AutoModelForCausalLM.from_pretrained( # model, # torch_dtype=torch.float16, # cache_dir=cache_dir, # low_cpu_mem_usage=True, # device_map="auto" # ) model = LlamaForCausalLM.from_pretrained( model, torch_dtype=torch.float16, cache_dir=cache_dir, low_cpu_mem_usage=True, # device_map="auto" ) for i in range(32): model.model.layers[i].self_attn.o_proj.bias = torch.nn.Parameter(torch.zeros_like(model.model.layers[i].self_attn.o_proj.bias, device='cpu')) # 或 'cuda' model.model.layers[i].mlp.down_proj.bias = torch.nn.Parameter(torch.zeros_like(model.model.layers[i].mlp.down_proj.bias, device='cpu')) # 或 'cuda' torch.nn.init.zeros_(model.model.layers[i].self_attn.o_proj.bias) torch.nn.init.zeros_(model.model.layers[i].mlp.down_proj.bias) model.seqlen = 128 return model def main(): parser = argparse.ArgumentParser() parser.add_argument('--model', type=str, help='LLaMA model') # Huggingface model name parser.add_argument('--seed', type=int, default=0, help='Seed for sampling the calibration data.') parser.add_argument('--nsamples', type=int, default=2048, help='Number of calibration samples.') parser.add_argument('--pruning_ratio', type=float, default=0, help='Pruning ratio.') parser.add_argument('--remove_heads', type=int, default=8, help='Remove num_heads') parser.add_argument("--metrics", type=str, default="WIFV", choices=["IFV", "WIFV", "WIFN", 'N/A']) parser.add_argument("--structure", type=str, default="AL-AM", choices=["UL-UM", "UL-MM", "AL-MM", "AL-AM", 'N/A']) parser.add_argument("--prune_method", type=str, default="flap", choices=["flap", "wanda_sp", "mag_sp"]) parser.add_argument("--cache_dir", default="llm_weights", type=str) parser.add_argument('--unstr', action="store_true") parser.add_argument('--eval', action="store_true") parser.add_argument('--save_model', type=str, default=None, help='Path to save the pruned model.') args = parser.parse_args() # Setting seeds for reproducibility np.random.seed(args.seed) torch.random.manual_seed(args.seed) # Build the model and tokenizer print(f"loading llm model {args.model}") model = get_llm(args.model, args.cache_dir) device = torch.device("cuda:0") model.to(device) model.eval() tokenizer = AutoTokenizer.from_pretrained(args.model, use_fast=False) if "30b" in args.model or "65b" in args.model: # for 30b and 65b we use device_map to load onto multiple A6000 GPUs, thus the processing here. device = model.hf_device_map["lm_head"] print("use device ", device) # Prune the model print("pruning starts") if args.prune_method == "flap": if args.metrics == 'N/A': raise ValueError("For FLAP pruning, the metrics parameter must be chosen from ['IFV', 'WIFV', 'WIFN']. 'N/A' is not a valid choice.")
if args.structure == 'N/A':
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: alibaba/u2mot # Path: yolox/tracker/basetrack.py class BaseTrack(object): _count = 0 track_id = 0 is_activated = False state = TrackState.New history = OrderedDict() features = [] curr_feature = None score = 0 start_frame = 0 frame_id = 0 time_since_update = 0 # multi-camera location = (np.inf, np.inf) @property def end_frame(self): return self.frame_id @staticmethod def next_id(): BaseTrack._count += 1 return BaseTrack._count def activate(self, *args): raise NotImplementedError def predict(self): raise NotImplementedError def update(self, *args, **kwargs): raise NotImplementedError def mark_lost(self): self.state = TrackState.Lost def mark_long_lost(self): self.state = TrackState.LongLost def mark_removed(self): self.state = TrackState.Removed @staticmethod def clear_count(): BaseTrack._count = 0 # Path: yolox/tracker/basetrack.py class TrackState(object): New = 0 Tracked = 1 Lost = 2 LongLost = 3 Removed = 4 # Path: yolox/tracker/kalman_filter.py class KalmanFilter(object): """ A simple Kalman filter for tracking bounding boxes in image space. The 8-dimensional state space x, y, w, h, vx, vy, vw, vh contains the bounding box center position (x, y), width w, height h, and their respective velocities. Object motion follows a constant velocity model. The bounding box location (x, y, w, h) is taken as direct observation of the state space (linear observation model). """ def __init__(self): ndim, dt = 4, 1. # Create Kalman filter model matrices. self._motion_mat = np.eye(2 * ndim, 2 * ndim) for i in range(ndim): self._motion_mat[i, ndim + i] = dt self._update_mat = np.eye(ndim, 2 * ndim) # Motion and observation uncertainty are chosen relative to the current # state estimate. These weights control the amount of uncertainty in # the model. This is a bit hacky. self._std_weight_position = 1. / 20 self._std_weight_velocity = 1. / 160 def initiate(self, measurement): """Create track from unassociated measurement. Parameters ---------- measurement : ndarray Bounding box coordinates (x, y, w, h) with center position (x, y), width w, and height h. Returns ------- (ndarray, ndarray) Returns the mean vector (8 dimensional) and covariance matrix (8x8 dimensional) of the new track. Unobserved velocities are initialized to 0 mean. """ mean_pos = measurement mean_vel = np.zeros_like(mean_pos) mean = np.r_[mean_pos, mean_vel] std = [ 2 * self._std_weight_position * measurement[2], 2 * self._std_weight_position * measurement[3], 2 * self._std_weight_position * measurement[2], 2 * self._std_weight_position * measurement[3], 10 * self._std_weight_velocity * measurement[2], 10 * self._std_weight_velocity * measurement[3], 10 * self._std_weight_velocity * measurement[2], 10 * self._std_weight_velocity * measurement[3]] covariance = np.diag(np.square(std)) return mean, covariance def predict(self, mean, covariance): """Run Kalman filter prediction step. Parameters ---------- mean : ndarray The 8 dimensional mean vector of the object state at the previous time step. covariance : ndarray The 8x8 dimensional covariance matrix of the object state at the previous time step. Returns ------- (ndarray, ndarray) Returns the mean vector and covariance matrix of the predicted state. Unobserved velocities are initialized to 0 mean. """ std_pos = [ self._std_weight_position * mean[2], self._std_weight_position * mean[3], self._std_weight_position * mean[2], self._std_weight_position * mean[3]] std_vel = [ self._std_weight_velocity * mean[2], self._std_weight_velocity * mean[3], self._std_weight_velocity * mean[2], self._std_weight_velocity * mean[3]] motion_cov = np.diag(np.square(np.r_[std_pos, std_vel])) mean = np.dot(mean, self._motion_mat.T) covariance = np.linalg.multi_dot(( self._motion_mat, covariance, self._motion_mat.T)) + motion_cov return mean, covariance def project(self, mean, covariance): """Project state distribution to measurement space. Parameters ---------- mean : ndarray The state's mean vector (8 dimensional array). covariance : ndarray The state's covariance matrix (8x8 dimensional). Returns ------- (ndarray, ndarray) Returns the projected mean and covariance matrix of the given state estimate. """ std = [ self._std_weight_position * mean[2], self._std_weight_position * mean[3], self._std_weight_position * mean[2], self._std_weight_position * mean[3]] innovation_cov = np.diag(np.square(std)) mean = np.dot(self._update_mat, mean) covariance = np.linalg.multi_dot(( self._update_mat, covariance, self._update_mat.T)) return mean, covariance + innovation_cov def multi_predict(self, mean, covariance): """Run Kalman filter prediction step (Vectorized version). Parameters ---------- mean : ndarray The Nx8 dimensional mean matrix of the object states at the previous time step. covariance : ndarray The Nx8x8 dimensional covariance matrics of the object states at the previous time step. Returns ------- (ndarray, ndarray) Returns the mean vector and covariance matrix of the predicted state. Unobserved velocities are initialized to 0 mean. """ std_pos = [ self._std_weight_position * mean[:, 2], self._std_weight_position * mean[:, 3], self._std_weight_position * mean[:, 2], self._std_weight_position * mean[:, 3]] std_vel = [ self._std_weight_velocity * mean[:, 2], self._std_weight_velocity * mean[:, 3], self._std_weight_velocity * mean[:, 2], self._std_weight_velocity * mean[:, 3]] sqr = np.square(np.r_[std_pos, std_vel]).T motion_cov = [] for i in range(len(mean)): motion_cov.append(np.diag(sqr[i])) motion_cov = np.asarray(motion_cov) mean = np.dot(mean, self._motion_mat.T) left = np.dot(self._motion_mat, covariance).transpose((1, 0, 2)) covariance = np.dot(left, self._motion_mat.T) + motion_cov return mean, covariance def update(self, mean, covariance, measurement): """Run Kalman filter correction step. Parameters ---------- mean : ndarray The predicted state's mean vector (8 dimensional). covariance : ndarray The state's covariance matrix (8x8 dimensional). measurement : ndarray The 4 dimensional measurement vector (x, y, w, h), where (x, y) is the center position, w the width, and h the height of the bounding box. Returns ------- (ndarray, ndarray) Returns the measurement-corrected state distribution. """ projected_mean, projected_cov = self.project(mean, covariance) chol_factor, lower = scipy.linalg.cho_factor( projected_cov, lower=True, check_finite=False) kalman_gain = scipy.linalg.cho_solve( (chol_factor, lower), np.dot(covariance, self._update_mat.T).T, check_finite=False).T innovation = measurement - projected_mean new_mean = mean + np.dot(innovation, kalman_gain.T) new_covariance = covariance - np.linalg.multi_dot(( kalman_gain, projected_cov, kalman_gain.T)) return new_mean, new_covariance def gating_distance(self, mean, covariance, measurements, only_position=False, metric='maha'): """Compute gating distance between state distribution and measurements. A suitable distance threshold can be obtained from `chi2inv95`. If `only_position` is False, the chi-square distribution has 4 degrees of freedom, otherwise 2. Parameters ---------- mean : ndarray Mean vector over the state distribution (8 dimensional). covariance : ndarray Covariance of the state distribution (8x8 dimensional). measurements : ndarray An Nx4 dimensional matrix of N measurements, each in format (x, y, a, h) where (x, y) is the bounding box center position, a the aspect ratio, and h the height. only_position : Optional[bool] If True, distance computation is done with respect to the bounding box center position only. Returns ------- ndarray Returns an array of length N, where the i-th element contains the squared Mahalanobis distance between (mean, covariance) and `measurements[i]`. """ mean, covariance = self.project(mean, covariance) if only_position: mean, covariance = mean[:2], covariance[:2, :2] measurements = measurements[:, :2] d = measurements - mean if metric == 'gaussian': return np.sum(d * d, axis=1) elif metric == 'maha': cholesky_factor = np.linalg.cholesky(covariance) z = scipy.linalg.solve_triangular( cholesky_factor, d.T, lower=True, check_finite=False, overwrite_b=True) squared_maha = np.sum(z * z, axis=0) return squared_maha else: raise ValueError('invalid distance metric') # Path: yolox/tracker/gmc.py class GMC: def __init__(self, method='orb', downscale=2, verbose=None): super(GMC, self).__init__() self.method = method self.downscale = max(1, int(downscale)) if self.method == 'orb': self.detector = cv2.FastFeatureDetector_create(20) self.extractor = cv2.ORB_create() self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING) seqName = verbose[0] fileDir = verbose[1] if '-FRCNN' in seqName: seqName = seqName[:-6] elif '-DPM' in seqName: seqName = seqName[:-4] elif '-SDP' in seqName: seqName = seqName[:-4] self.gmcFile = open(f"yolox/tracker/GMC_files/{fileDir}/GMC-{seqName}.txt", 'w+') elif self.method == 'sift': self.detector = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20) self.extractor = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20) self.matcher = cv2.BFMatcher(cv2.NORM_L2) elif self.method == 'ecc': number_of_iterations = 5000 termination_eps = 1e-6 self.warp_mode = cv2.MOTION_EUCLIDEAN self.criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps) elif self.method == 'file' or self.method == 'files': seqName = verbose[0] # MOT17_ablation, MOTChallenge, VisDrone/test-dev, BDD100K/val, BDD100K/test fileDir = verbose[1] filePath = f'yolox/tracker/GMC_files/{fileDir}' if '-FRCNN' in seqName: seqName = seqName[:-6] elif '-DPM' in seqName: seqName = seqName[:-4] elif '-SDP' in seqName: seqName = seqName[:-4] self.gmcFile = open(filePath + "/GMC-" + seqName + ".txt", 'r') if self.gmcFile is None: raise ValueError("Error: Unable to open GMC file in directory:" + filePath) elif self.method == 'none' or self.method == 'None': self.method = 'none' else: raise ValueError("Error: Unknown CMC method:" + method) self.prevFrame = None self.prevKeyPoints = None self.prevDescriptors = None self.initializedFirstFrame = False self.frameCnt = 0 def apply(self, raw_frame, detections=None): if self.method == 'orb' or self.method == 'sift': try: H = self.applyFeaures(raw_frame, detections) except: H = np.array([[1., 0., 0.], [0., 1., 0.]]) self.gmcFile.write('%d\t%.6f\t%.6f\t%.6f\t%.6f\t%.6f\t%.6f\t\n' % \ (self.frameCnt, H[0, 0], H[0, 1], H[0, 2], H[1, 0], H[1, 1], H[1, 2])) self.frameCnt += 1 return H elif self.method == 'ecc': return self.applyEcc(raw_frame, detections) elif self.method == 'file': return self.applyFile(raw_frame, detections) elif self.method == 'none': return np.eye(2, 3) else: return np.eye(2, 3) def applyEcc(self, raw_frame, detections=None): # Initialize height, width, _ = raw_frame.shape frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) H = np.eye(2, 3, dtype=np.float32) # Downscale image (TODO: consider using pyramids) if self.downscale > 1.0: frame = cv2.GaussianBlur(frame, (3, 3), 1.5) frame = cv2.resize(frame, (width // self.downscale, height // self.downscale)) width = width // self.downscale height = height // self.downscale # Handle first frame if not self.initializedFirstFrame: # Initialize data self.prevFrame = frame.copy() # Initialization done self.initializedFirstFrame = True return H # Run the ECC algorithm. The results are stored in warp_matrix. # (cc, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria) try: (cc, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria, None, 1) except: print('Warning: find transform failed. Set warp as identity') return H def applyFeaures(self, raw_frame, detections=None): # Initialize height, width, _ = raw_frame.shape frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) H = np.eye(2, 3) # Downscale image (TODO: consider using pyramids) if self.downscale > 1.0: # frame = cv2.GaussianBlur(frame, (3, 3), 1.5) frame = cv2.resize(frame, (width // self.downscale, height // self.downscale)) width = width // self.downscale height = height // self.downscale # find the keypoints mask = np.zeros_like(frame) # mask[int(0.05 * height): int(0.95 * height), int(0.05 * width): int(0.95 * width)] = 255 mask[int(0.02 * height): int(0.98 * height), int(0.02 * width): int(0.98 * width)] = 255 if detections is not None: for det in detections: tlbr = (det[:4] / self.downscale).astype(np.int_) mask[tlbr[1]:tlbr[3], tlbr[0]:tlbr[2]] = 0 keypoints = self.detector.detect(frame, mask) # compute the descriptors keypoints, descriptors = self.extractor.compute(frame, keypoints) # Handle first frame if not self.initializedFirstFrame: # Initialize data self.prevFrame = frame.copy() self.prevKeyPoints = copy.copy(keypoints) self.prevDescriptors = copy.copy(descriptors) # Initialization done self.initializedFirstFrame = True return H # Match descriptors. knnMatches = self.matcher.knnMatch(self.prevDescriptors, descriptors, 2) # Filtered matches based on smallest spatial distance matches = [] spatialDistances = [] maxSpatialDistance = 0.25 * np.array([width, height]) # Handle empty matches case if len(knnMatches) == 0: # Store to next iteration self.prevFrame = frame.copy() self.prevKeyPoints = copy.copy(keypoints) self.prevDescriptors = copy.copy(descriptors) return H for m, n in knnMatches: if m.distance < 0.9 * n.distance: prevKeyPointLocation = self.prevKeyPoints[m.queryIdx].pt currKeyPointLocation = keypoints[m.trainIdx].pt spatialDistance = (prevKeyPointLocation[0] - currKeyPointLocation[0], prevKeyPointLocation[1] - currKeyPointLocation[1]) if (np.abs(spatialDistance[0]) < maxSpatialDistance[0]) and \ (np.abs(spatialDistance[1]) < maxSpatialDistance[1]): spatialDistances.append(spatialDistance) matches.append(m) meanSpatialDistances = np.mean(spatialDistances, 0) stdSpatialDistances = np.std(spatialDistances, 0) inliesrs = (spatialDistances - meanSpatialDistances) < 2.5 * stdSpatialDistances goodMatches = [] prevPoints = [] currPoints = [] for i in range(len(matches)): if inliesrs[i, 0] and inliesrs[i, 1]: goodMatches.append(matches[i]) prevPoints.append(self.prevKeyPoints[matches[i].queryIdx].pt) currPoints.append(keypoints[matches[i].trainIdx].pt) prevPoints = np.array(prevPoints) currPoints = np.array(currPoints) # Draw the keypoint matches on the output image if 0: matches_img = np.hstack((self.prevFrame, frame)) matches_img = cv2.cvtColor(matches_img, cv2.COLOR_GRAY2BGR) W = np.size(self.prevFrame, 1) for m in goodMatches: prev_pt = np.array(self.prevKeyPoints[m.queryIdx].pt, dtype=np.int_) curr_pt = np.array(keypoints[m.trainIdx].pt, dtype=np.int_) curr_pt[0] += W color = np.random.randint(0, 255, (3,)) color = (int(color[0]), int(color[1]), int(color[2])) matches_img = cv2.line(matches_img, prev_pt, curr_pt, tuple(color), 1, cv2.LINE_AA) matches_img = cv2.circle(matches_img, prev_pt, 2, tuple(color), -1) matches_img = cv2.circle(matches_img, curr_pt, 2, tuple(color), -1) plt.figure() plt.imshow(matches_img) plt.show() # Find rigid matrix if (np.size(prevPoints, 0) > 4) and (np.size(prevPoints, 0) == np.size(prevPoints, 0)): H, inliesrs = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC) # Handle downscale if self.downscale > 1.0: H[0, 2] *= self.downscale H[1, 2] *= self.downscale else: print('Warning: not enough matching points') # Store to next iteration self.prevFrame = frame.copy() self.prevKeyPoints = copy.copy(keypoints) self.prevDescriptors = copy.copy(descriptors) return H def applyFile(self, raw_frame=None, detections=None): line = self.gmcFile.readline() tokens = line.split("\t") H = np.eye(2, 3, dtype=np.float_) if len(tokens) > 6: H[0, 0] = float(tokens[1]) H[0, 1] = float(tokens[2]) H[0, 2] = float(tokens[3]) H[1, 0] = float(tokens[4]) H[1, 1] = float(tokens[5]) H[1, 2] = float(tokens[6]) return H # Path: yolox/tracker/u2mot_tracker.py import numpy as np from collections import deque from .basetrack import BaseTrack, TrackState from .kalman_filter import KalmanFilter from .gmc import GMC from . import matching #!/usr/bin/env python3 # -*- encoding:utf-8 -*- # Copyright (c) Alibaba, Inc. and its affiliates. class STrack(BaseTrack): shared_kalman = KalmanFilter() def __init__(self, tlwh, score, cls=0, feat=None, feat_history=50): # wait activate self._tlwh = np.asarray(tlwh, dtype=np.float) self.kalman_filter = None self.mean, self.covariance = None, None self.is_activated = False self.cls = -1 self.cls_hist = [] # (cls id, freq) self.update_cls(cls, score) self.score = score self.tracklet_len = 0 self.smooth_feat = None self.curr_feat = None self.features = deque([], maxlen=feat_history) if feat is not None: self.update_features(feat) self.alpha = 0.9 def update_features(self, feat): feat /= np.linalg.norm(feat) self.curr_feat = feat if self.smooth_feat is None: self.smooth_feat = feat else: self.smooth_feat = self.alpha * self.smooth_feat + (1 - self.alpha) * feat self.features.append(feat) self.smooth_feat /= np.linalg.norm(self.smooth_feat) def update_cls(self, cls, score): if len(self.cls_hist) > 0: max_freq = 0 found = False for c in self.cls_hist: if cls == c[0]: c[1] += score found = True if c[1] > max_freq: max_freq = c[1] self.cls = c[0] if not found: self.cls_hist.append([cls, score]) self.cls = cls else: self.cls_hist.append([cls, score]) self.cls = cls def predict(self): mean_state = self.mean.copy() if self.state != TrackState.Tracked: mean_state[6] = 0 mean_state[7] = 0 self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance) @staticmethod def multi_predict(stracks): if len(stracks) > 0: multi_mean = np.asarray([st.mean.copy() for st in stracks]) multi_covariance = np.asarray([st.covariance for st in stracks]) for i, st in enumerate(stracks): if st.state != TrackState.Tracked: multi_mean[i][6] = 0
multi_mean[i][7] = 0
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: liuhuang31/HiFTNet-sr # Path: env.py class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self # Path: env.py def build_env(config, config_name, path): t_path = os.path.join(path, config_name) if config != t_path: os.makedirs(path, exist_ok=True) shutil.copyfile(config, os.path.join(path, config_name)) # Path: meldataset.py class MelDataset(torch.utils.data.Dataset): def __init__(self, training_files, segment_size, n_fft, num_mels, hop_size, win_size, sampling_rate, fmin, fmax, split=True, shuffle=True, n_cache_reuse=1, device=None, fmax_loss=None, fine_tuning=False, base_mels_path=None): self.audio_files = training_files random.seed(1234) if shuffle: random.shuffle(self.audio_files) self.segment_size = segment_size self.sampling_rate = sampling_rate self.split = split self.n_fft = n_fft self.num_mels = num_mels self.hop_size = hop_size self.win_size = win_size self.fmin = fmin self.fmax = fmax self.fmax_loss = fmax_loss self.cached_wav = None self.n_cache_reuse = n_cache_reuse self._cache_ref_count = 0 self.device = device self.fine_tuning = fine_tuning self.base_mels_path = base_mels_path def __getitem__(self, index): filename = self.audio_files[index] if self._cache_ref_count == 0: audio, sampling_rate = load_wav(filename, self.sampling_rate) # audio = audio / MAX_WAV_VALUE if not self.fine_tuning: audio = normalize(audio) * 0.95 self.cached_wav = audio if sampling_rate != self.sampling_rate: raise ValueError("{} SR doesn't match target {} SR".format( sampling_rate, self.sampling_rate)) self._cache_ref_count = self.n_cache_reuse else: audio = self.cached_wav self._cache_ref_count -= 1 audio = torch.FloatTensor(audio) audio = audio.unsqueeze(0) if not self.fine_tuning: if self.split: if audio.size(1) >= self.segment_size: max_audio_start = audio.size(1) - self.segment_size audio_start = random.randint(0, max_audio_start) audio = audio[:, audio_start:audio_start+self.segment_size] else: audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant') mel = mel_spectrogram(audio, self.n_fft, self.num_mels, self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax, center=False, training=True) else: mel = np.load( os.path.join(self.base_mels_path, os.path.splitext(os.path.split(filename)[-1])[0] + '.npy')) mel = torch.from_numpy(mel) if len(mel.shape) < 3: mel = mel.unsqueeze(0) if self.split: frames_per_seg = math.ceil(self.segment_size / self.hop_size) if audio.size(1) >= self.segment_size: mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1) mel = mel[:, :, mel_start:mel_start + frames_per_seg] audio = audio[:, mel_start * self.hop_size:(mel_start + frames_per_seg) * self.hop_size] else: mel = torch.nn.functional.pad(mel, (0, frames_per_seg - mel.size(2)), 'constant') audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant') mel_loss = mel_spectrogram(audio, self.n_fft, self.num_mels, self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax_loss, center=False) return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze()) def __len__(self): return len(self.audio_files) # Path: meldataset.py def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False, training=False): # if torch.min(y) < -1.: # print('min value is ', torch.min(y)) # if torch.max(y) > 1.: # print('max value is ', torch.max(y)) if training: with torch.no_grad(): # 16k to 24k/48k if fmax <= 8000 and (sampling_rate == 24000 or sampling_rate == 48000): y = y.squeeze().cpu().numpy() y = librosa.resample(y, sampling_rate, 16000) y = librosa.resample(y, 16000, 24000) y = torch.FloatTensor(y) y = y.unsqueeze(0) sampling_rate = 24000 n_fft = int(n_fft/2) hop_size=int(hop_size/2) win_size=int(win_size/2) # 24k to 48k elif fmax <= 12000 and sampling_rate == 48000: y = y.squeeze().cpu().numpy() y = librosa.resample(y, sampling_rate, 24000) y = torch.FloatTensor(y) y = y.unsqueeze(0) sampling_rate = 24000 n_fft = int(n_fft/2) hop_size=int(hop_size/2) win_size=int(win_size/2) else: pass global mel_basis, hann_window if fmax not in mel_basis: mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device) hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device) y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') y = y.squeeze(1) # complex tensor as default, then use view_as_real for future pytorch compatibility spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)], center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True) spec = torch.view_as_real(spec) spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9)) spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec) spec = spectral_normalize_torch(spec) return spec # Path: meldataset.py def get_dataset_filelist(a): training_files =[] validation_files =[] total_files = 0 input_wave_dirs = a.input_wavs_dir.split(",") for wave_dir in input_wave_dirs: num_validation_files = 3 files_under_path = 0 allfiles = find_all_wav_path(wave_dir) for input_file_name in allfiles: if not os.path.splitext(input_file_name)[-1] == '.wav': continue files_under_path +=1 full_file_path = input_file_name if num_validation_files <=0: training_files.append(full_file_path) else: validation_files.append(full_file_path) num_validation_files -=1 if files_under_path == 0: raise Exception("no wave file found!") total_files +=files_under_path print(f'total files:{total_files}') return training_files, validation_files # Path: models.py class Generator(torch.nn.Module): def __init__(self, h, F0_model): super(Generator, self).__init__() self.h = h self.num_kernels = len(h.resblock_kernel_sizes) self.num_upsamples = len(h.upsample_rates) self.conv_pre = weight_norm(Conv1d(80, h.upsample_initial_channel, 7, 1, padding=3)) resblock = ResBlock1 if h.resblock == '1' else ResBlock2 self.m_source = SourceModuleHnNSF( sampling_rate=h.sampling_rate, upsample_scale=np.prod(h.upsample_rates) * h.gen_istft_hop_size, harmonic_num=8, voiced_threshod=10) self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(h.upsample_rates) * h.gen_istft_hop_size) self.noise_convs = nn.ModuleList() self.noise_res = nn.ModuleList() self.F0_model = F0_model self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): self.ups.append(weight_norm( ConvTranspose1d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)), k, u, padding=(k-u)//2))) c_cur = h.upsample_initial_channel // (2 ** (i + 1)) if i + 1 < len(h.upsample_rates): # stride_f0 = np.prod(h.upsample_rates[i + 1:]) self.noise_convs.append(Conv1d( h.gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2)) self.noise_res.append(resblock(h, c_cur, 7, [1,3,5])) else: self.noise_convs.append(Conv1d(h.gen_istft_n_fft + 2, c_cur, kernel_size=1)) self.noise_res.append(resblock(h, c_cur, 11, [1,3,5])) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = h.upsample_initial_channel//(2**(i+1)) for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): self.resblocks.append(resblock(h, ch, k, d)) self.post_n_fft = h.gen_istft_n_fft self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3)) self.ups.apply(init_weights) self.conv_post.apply(init_weights) self.reflection_pad = torch.nn.ReflectionPad1d((1, 0)) self.stft = TorchSTFT(filter_length=h.gen_istft_n_fft, hop_length=h.gen_istft_hop_size, win_length=h.gen_istft_n_fft) def forward(self, x): f0, _, _ = self.F0_model(x.unsqueeze(1)) if len(f0.shape) == 1: f0 = f0.unsqueeze(0) f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t har_source, _, _ = self.m_source(f0) har_source = har_source.transpose(1, 2).squeeze(1) har_spec, har_phase = self.stft.transform(har_source) har = torch.cat([har_spec, har_phase], dim=1) x = self.conv_pre(x) for i in range(self.num_upsamples): x = F.leaky_relu(x, LRELU_SLOPE) x_source = self.noise_convs[i](har) x_source = self.noise_res[i](x_source) x = self.ups[i](x) if i == self.num_upsamples - 1: x = self.reflection_pad(x) x = x + x_source xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i*self.num_kernels+j](x) else: xs += self.resblocks[i*self.num_kernels+j](x) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.conv_post(x) spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :]) phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :]) return spec, phase def remove_weight_norm(self): print('Removing weight norm...') for l in self.ups: remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() remove_weight_norm(self.conv_pre) remove_weight_norm(self.conv_post) # Path: models.py class MultiPeriodDiscriminator(torch.nn.Module): def __init__(self): super(MultiPeriodDiscriminator, self).__init__() self.discriminators = nn.ModuleList([ DiscriminatorP(2), DiscriminatorP(3), DiscriminatorP(5), DiscriminatorP(7), DiscriminatorP(11), ]) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs # Path: models.py class MultiResSpecDiscriminator(torch.nn.Module): def __init__(self, fft_sizes=[1024, 2048, 512], hop_sizes=[120, 240, 50], win_lengths=[600, 1200, 240], window="hann_window"): super(MultiResSpecDiscriminator, self).__init__() self.discriminators = nn.ModuleList([ SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window), SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window), SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window) ]) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs # Path: models.py def feature_loss(fmap_r, fmap_g): loss = 0 for dr, dg in zip(fmap_r, fmap_g): for rl, gl in zip(dr, dg): loss += torch.mean(torch.abs(rl - gl)) return loss*2 # Path: models.py def generator_loss(disc_outputs): loss = 0 gen_losses = [] for dg in disc_outputs: l = torch.mean((1-dg)**2) gen_losses.append(l) loss += l return loss, gen_losses # Path: models.py def discriminator_loss(disc_real_outputs, disc_generated_outputs): loss = 0 r_losses = [] g_losses = [] for dr, dg in zip(disc_real_outputs, disc_generated_outputs): r_loss = torch.mean((1-dr)**2) g_loss = torch.mean(dg**2) loss += (r_loss + g_loss) r_losses.append(r_loss.item()) g_losses.append(g_loss.item()) return loss, r_losses, g_losses # Path: models.py def discriminator_TPRLS_loss(disc_real_outputs, disc_generated_outputs): loss = 0 for dr, dg in zip(disc_real_outputs, disc_generated_outputs): tau = 0.04 m_DG = torch.median((dr-dg)) L_rel = torch.mean((((dr - dg) - m_DG)**2)[dr < dg + m_DG]) loss += tau - F.relu(tau - L_rel) return loss # Path: models.py def generator_TPRLS_loss(disc_real_outputs, disc_generated_outputs): loss = 0 for dg, dr in zip(disc_real_outputs, disc_generated_outputs): tau = 0.04 m_DG = torch.median((dr-dg)) L_rel = torch.mean((((dr - dg) - m_DG)**2)[dr < dg + m_DG]) loss += tau - F.relu(tau - L_rel) return loss # Path: utils.py def plot_spectrogram(spectrogram): fig, ax = plt.subplots(figsize=(10, 2)) im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation='none') plt.colorbar(im, ax=ax) fig.canvas.draw() plt.close() return fig # Path: utils.py def scan_checkpoint(cp_dir, prefix): pattern = os.path.join(cp_dir, prefix + '????????') cp_list = glob.glob(pattern) if len(cp_list) == 0: return None return sorted(cp_list)[-1] # Path: utils.py def load_checkpoint(filepath, device): assert os.path.isfile(filepath) print("Loading '{}'".format(filepath)) checkpoint_dict = torch.load(filepath, map_location=device) print("Complete.") return checkpoint_dict # Path: utils.py def save_checkpoint(filepath, obj): print("Saving checkpoint to {}".format(filepath)) torch.save(obj, filepath) print("Complete.") # Path: stft.py class TorchSTFT(torch.nn.Module): def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'): super().__init__() self.filter_length = filter_length self.hop_length = hop_length self.win_length = win_length self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32)) def transform(self, input_data): forward_transform = torch.stft( input_data, self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device), return_complex=True) return torch.abs(forward_transform), torch.angle(forward_transform) def inverse(self, magnitude, phase): inverse_transform = torch.istft( magnitude * torch.exp(phase * 1j), self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device)) return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation def forward(self, input_data): self.magnitude, self.phase = self.transform(input_data) reconstruction = self.inverse(self.magnitude, self.phase) return reconstruction # Path: Utils/JDC/model.py class JDCNet(nn.Module): """ Joint Detection and Classification Network model for singing voice melody. """ def __init__(self, num_class=722, seq_len=31, leaky_relu_slope=0.01): super().__init__() self.num_class = num_class # input = (b, 1, 31, 513), b = batch size self.conv_block = nn.Sequential( nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, padding=1, bias=False), # out: (b, 64, 31, 513) nn.BatchNorm2d(num_features=64), nn.LeakyReLU(leaky_relu_slope, inplace=True), nn.Conv2d(64, 64, 3, padding=1, bias=False), # (b, 64, 31, 513) ) # res blocks self.res_block1 = ResBlock(in_channels=64, out_channels=128) # (b, 128, 31, 128) self.res_block2 = ResBlock(in_channels=128, out_channels=192) # (b, 192, 31, 32) self.res_block3 = ResBlock(in_channels=192, out_channels=256) # (b, 256, 31, 8) # pool block self.pool_block = nn.Sequential( nn.BatchNorm2d(num_features=256), nn.LeakyReLU(leaky_relu_slope, inplace=True), nn.MaxPool2d(kernel_size=(1, 4)), # (b, 256, 31, 2) nn.Dropout(p=0.2), ) # maxpool layers (for auxiliary network inputs) # in = (b, 128, 31, 513) from conv_block, out = (b, 128, 31, 2) self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 40)) # in = (b, 128, 31, 128) from res_block1, out = (b, 128, 31, 2) self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 20)) # in = (b, 128, 31, 32) from res_block2, out = (b, 128, 31, 2) self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 10)) # in = (b, 640, 31, 2), out = (b, 256, 31, 2) self.detector_conv = nn.Sequential( nn.Conv2d(640, 256, 1, bias=False), nn.BatchNorm2d(256), nn.LeakyReLU(leaky_relu_slope, inplace=True), nn.Dropout(p=0.2), ) # input: (b, 31, 512) - resized from (b, 256, 31, 2) self.bilstm_classifier = nn.LSTM( input_size=512, hidden_size=256, batch_first=True, bidirectional=True) # (b, 31, 512) # input: (b, 31, 512) - resized from (b, 256, 31, 2) self.bilstm_detector = nn.LSTM( input_size=512, hidden_size=256, batch_first=True, bidirectional=True) # (b, 31, 512) # input: (b * 31, 512) self.classifier = nn.Linear(in_features=512, out_features=self.num_class) # (b * 31, num_class) # input: (b * 31, 512) self.detector = nn.Linear(in_features=512, out_features=2) # (b * 31, 2) - binary classifier # initialize weights self.apply(self.init_weights) def get_feature_GAN(self, x): seq_len = x.shape[-2] x = x.float().transpose(-1, -2) convblock_out = self.conv_block(x) resblock1_out = self.res_block1(convblock_out) resblock2_out = self.res_block2(resblock1_out) resblock3_out = self.res_block3(resblock2_out) poolblock_out = self.pool_block[0](resblock3_out) poolblock_out = self.pool_block[1](poolblock_out) return poolblock_out.transpose(-1, -2) def get_feature(self, x): seq_len = x.shape[-2] x = x.float().transpose(-1, -2) convblock_out = self.conv_block(x) resblock1_out = self.res_block1(convblock_out) resblock2_out = self.res_block2(resblock1_out) resblock3_out = self.res_block3(resblock2_out) poolblock_out = self.pool_block[0](resblock3_out) poolblock_out = self.pool_block[1](poolblock_out) return self.pool_block[2](poolblock_out) def forward(self, x): """ Returns: classification_prediction, detection_prediction sizes: (b, 31, 722), (b, 31, 2) """ ############################### # forward pass for classifier # ############################### seq_len = x.shape[-1] x = x.float().transpose(-1, -2) convblock_out = self.conv_block(x) resblock1_out = self.res_block1(convblock_out) resblock2_out = self.res_block2(resblock1_out) resblock3_out = self.res_block3(resblock2_out) poolblock_out = self.pool_block[0](resblock3_out) poolblock_out = self.pool_block[1](poolblock_out) GAN_feature = poolblock_out.transpose(-1, -2) poolblock_out = self.pool_block[2](poolblock_out) # (b, 256, 31, 2) => (b, 31, 256, 2) => (b, 31, 512) classifier_out = poolblock_out.permute(0, 2, 1, 3).contiguous().view((-1, seq_len, 512)) classifier_out, _ = self.bilstm_classifier(classifier_out) # ignore the hidden states classifier_out = classifier_out.contiguous().view((-1, 512)) # (b * 31, 512) classifier_out = self.classifier(classifier_out) classifier_out = classifier_out.view((-1, seq_len, self.num_class)) # (b, 31, num_class) # sizes: (b, 31, 722), (b, 31, 2) # classifier output consists of predicted pitch classes per frame # detector output consists of: (isvoice, notvoice) estimates per frame return torch.abs(classifier_out.squeeze()), GAN_feature, poolblock_out @staticmethod def init_weights(m): if isinstance(m, nn.Linear): nn.init.kaiming_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Conv2d): nn.init.xavier_normal_(m.weight) elif isinstance(m, nn.LSTM) or isinstance(m, nn.LSTMCell): for p in m.parameters(): if p.data is None: continue if len(p.shape) >= 2: nn.init.orthogonal_(p.data) else: nn.init.normal_(p.data) # Path: train.py import warnings import itertools import os import time import argparse import json import torch import torch.nn.functional as F import torch.multiprocessing as mp from torch.utils.tensorboard import SummaryWriter from torch.utils.data import DistributedSampler, DataLoader from torch.distributed import init_process_group from torch.nn.parallel import DistributedDataParallel from env import AttrDict, build_env from meldataset import MelDataset, mel_spectrogram, get_dataset_filelist from models import Generator, MultiPeriodDiscriminator, MultiResSpecDiscriminator, feature_loss, generator_loss,\ discriminator_loss, discriminator_TPRLS_loss, generator_TPRLS_loss from utils import plot_spectrogram, scan_checkpoint, load_checkpoint, save_checkpoint from stft import TorchSTFT from Utils.JDC.model import JDCNet warnings.simplefilter(action='ignore', category=FutureWarning) torch.backends.cudnn.benchmark = True def train(rank, a, h):
if h.num_gpus > 1:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: m-abr/FCPCodebase # Path: agent/Base_Agent.py class Base_Agent(): all_agents = [] def __init__(self, host:str, agent_port:int, monitor_port:int, unum:int, robot_type:int, team_name:str, enable_log:bool=True, enable_draw:bool=True, apply_play_mode_correction:bool=True, wait_for_server:bool=True, hear_callback=None) -> None: self.radio = None # hear_message may be called during Server_Comm instantiation self.logger = Logger(enable_log, f"{team_name}_{unum}") self.world = World(robot_type, team_name, unum, apply_play_mode_correction, enable_draw, self.logger, host) self.world_parser = World_Parser(self.world, self.hear_message if hear_callback is None else hear_callback) self.scom = Server_Comm(host,agent_port,monitor_port,unum,robot_type,team_name,self.world_parser,self.world,Base_Agent.all_agents,wait_for_server) self.inv_kinematics = Inverse_Kinematics(self.world.robot) self.behavior = Behavior(self) self.path_manager = Path_Manager(self.world) self.radio = Radio(self.world, self.scom.commit_announcement) self.behavior.create_behaviors() Base_Agent.all_agents.append(self) @abstractmethod def think_and_send(self): pass def hear_message(self, msg:bytearray, direction, timestamp:float) -> None: if direction != "self" and self.radio is not None: self.radio.receive(msg) def terminate(self): # close shared monitor socket if this is the last agent on this thread self.scom.close(close_monitor_socket=(len(Base_Agent.all_agents)==1)) Base_Agent.all_agents.remove(self) @staticmethod def terminate_all(): for o in Base_Agent.all_agents: o.scom.close(True) # close shared monitor socket, if it exists Base_Agent.all_agents = [] # Path: behaviors/custom/Step/Step_Generator.py class Step_Generator(): GRAVITY = 9.81 Z0 = 0.2 def __init__(self, feet_y_dev, sample_time, max_ankle_z) -> None: self.feet_y_dev = feet_y_dev self.sample_time = sample_time self.state_is_left_active = False self.state_current_ts = 0 self.switch = False # switch legs self.external_progress = 0 # non-overlaped progress self.max_ankle_z = max_ankle_z def get_target_positions(self, reset, ts_per_step, z_span, z_extension): ''' Get target positions for each foot Returns ------- target : `tuple` (Left leg y, Left leg z, Right leg y, Right leg z) ''' assert type(ts_per_step)==int and ts_per_step > 0, "ts_per_step must be a positive integer!" #-------------------------- Advance 1ts if reset: self.ts_per_step = ts_per_step # step duration in time steps self.swing_height = z_span self.max_leg_extension = z_extension # maximum distance between ankle to center of both hip joints self.state_current_ts = 0 self.state_is_left_active = False self.switch = False elif self.switch: self.state_current_ts = 0 self.state_is_left_active = not self.state_is_left_active # switch leg self.switch = False else: self.state_current_ts += 1 #-------------------------- Compute COM.y W = math.sqrt(self.Z0/self.GRAVITY) step_time = self.ts_per_step * self.sample_time time_delta = self.state_current_ts * self.sample_time y0 = self.feet_y_dev # absolute initial y value y_swing = y0 + y0 * ( math.sinh((step_time - time_delta)/W) + math.sinh(time_delta/W) ) / math.sinh(-step_time/W) #-------------------------- Cap maximum extension and swing height z0 = min(-self.max_leg_extension, self.max_ankle_z) # capped initial z value zh = min(self.swing_height, self.max_ankle_z - z0) # capped swing height #-------------------------- Compute Z Swing progress = self.state_current_ts / self.ts_per_step self.external_progress = self.state_current_ts / (self.ts_per_step-1) active_z_swing = zh * math.sin(math.pi * progress) #-------------------------- Accept new parameters after final step if self.state_current_ts + 1 >= self.ts_per_step: self.ts_per_step = ts_per_step # step duration in time steps self.swing_height = z_span self.max_leg_extension = z_extension # maximum distance between ankle to center of both hip joints self.switch = True #-------------------------- Distinguish active leg if self.state_is_left_active: return y0+y_swing, active_z_swing+z0, -y0+y_swing, z0 else: return y0-y_swing, z0, -y0-y_swing, active_z_swing+z0 # Path: math_ops/Math_Ops.py class Math_Ops(): ''' This class provides general mathematical operations that are not directly available through numpy ''' @staticmethod def deg_sph2cart(spherical_vec): ''' Converts SimSpark's spherical coordinates in degrees to cartesian coordinates ''' r = spherical_vec[0] h = spherical_vec[1] * pi / 180 v = spherical_vec[2] * pi / 180 return np.array([r * cos(v) * cos(h), r * cos(v) * sin(h), r * sin(v)]) @staticmethod def deg_sin(deg_angle): ''' Returns sin of degrees ''' return sin(deg_angle * pi / 180) @staticmethod def deg_cos(deg_angle): ''' Returns cos of degrees ''' return cos(deg_angle * pi / 180) @staticmethod def to_3d(vec_2d, value=0) -> np.ndarray: ''' Returns new 3d vector from 2d vector ''' return np.append(vec_2d,value) @staticmethod def to_2d_as_3d(vec_3d) -> np.ndarray: ''' Returns new 3d vector where the 3rd dimension is zero ''' vec_2d_as_3d = np.copy(vec_3d) vec_2d_as_3d[2] = 0 return vec_2d_as_3d @staticmethod def normalize_vec(vec) -> np.ndarray: ''' Divides vector by its length ''' size = np.linalg.norm(vec) if size == 0: return vec return vec / size @staticmethod def get_active_directory(dir:str) -> str: global GLOBAL_DIR return GLOBAL_DIR + dir @staticmethod def acos(val): ''' arccosine function that limits input ''' return acos( np.clip(val,-1,1) ) @staticmethod def asin(val): ''' arcsine function that limits input ''' return asin( np.clip(val,-1,1) ) @staticmethod def normalize_deg(val): ''' normalize val in range [-180,180[ ''' return (val + 180.0) % 360 - 180 @staticmethod def normalize_rad(val): ''' normalize val in range [-pi,pi[ ''' return (val + pi) % (2*pi) - pi @staticmethod def deg_to_rad(val): ''' convert degrees to radians ''' return val * 0.01745329251994330 @staticmethod def rad_to_deg(val): ''' convert radians to degrees ''' return val * 57.29577951308232 @staticmethod def vector_angle(vector, is_rad=False): ''' angle (degrees or radians) of 2D vector ''' if is_rad: return atan2(vector[1], vector[0]) else: return atan2(vector[1], vector[0]) * 180 / pi @staticmethod def vectors_angle(vec1, vec2, is_rad=False): ''' get angle between vectors (degrees or radians) ''' ang_rad = acos(np.dot(Math_Ops.normalize_vec(vec1),Math_Ops.normalize_vec(vec2))) return ang_rad if is_rad else ang_rad * 180 / pi @staticmethod def vector_from_angle(angle, is_rad=False): ''' unit vector with direction given by `angle` ''' if is_rad: return np.array([cos(angle), sin(angle)], float) else: return np.array([Math_Ops.deg_cos(angle), Math_Ops.deg_sin(angle)], float) @staticmethod def target_abs_angle(pos2d, target, is_rad=False): ''' angle (degrees or radians) of vector (target-pos2d) ''' if is_rad: return atan2(target[1]-pos2d[1], target[0]-pos2d[0]) else: return atan2(target[1]-pos2d[1], target[0]-pos2d[0]) * 180 / pi @staticmethod def target_rel_angle(pos2d, ori, target, is_rad=False): ''' relative angle (degrees or radians) of target if we're located at 'pos2d' with orientation 'ori' (degrees or radians) ''' if is_rad: return Math_Ops.normalize_rad( atan2(target[1]-pos2d[1], target[0]-pos2d[0]) - ori ) else: return Math_Ops.normalize_deg( atan2(target[1]-pos2d[1], target[0]-pos2d[0]) * 180 / pi - ori ) @staticmethod def rotate_2d_vec(vec, angle, is_rad=False): ''' rotate 2D vector anticlockwise around the origin by `angle` ''' cos_ang = cos(angle) if is_rad else cos(angle * pi / 180) sin_ang = sin(angle) if is_rad else sin(angle * pi / 180) return np.array([cos_ang*vec[0]-sin_ang*vec[1], sin_ang*vec[0]+cos_ang*vec[1]]) @staticmethod def distance_point_to_line(p:np.ndarray, a:np.ndarray, b:np.ndarray): ''' Distance between point p and 2d line 'ab' (and side where p is) Parameters ---------- a : ndarray 2D point that defines line b : ndarray 2D point that defines line p : ndarray 2D point Returns ------- distance : float distance between line and point side : str if we are at a, looking at b, p may be at our "left" or "right" ''' line_len = np.linalg.norm(b-a) if line_len == 0: # assumes vertical line dist = sdist = np.linalg.norm(p-a) else: sdist = np.cross(b-a,p-a)/line_len dist = abs(sdist) return dist, "left" if sdist>0 else "right" @staticmethod def distance_point_to_segment(p:np.ndarray, a:np.ndarray, b:np.ndarray): ''' Distance from point p to 2d line segment 'ab' ''' ap = p-a ab = b-a ad = Math_Ops.vector_projection(ap,ab) # Is d in ab? We can find k in (ad = k * ab) without computing any norm # we use the largest dimension of ab to avoid division by 0 k = ad[0]/ab[0] if abs(ab[0])>abs(ab[1]) else ad[1]/ab[1] if k <= 0: return np.linalg.norm(ap) elif k >= 1: return np.linalg.norm(p-b) else: return np.linalg.norm(p-(ad + a)) # p-d @staticmethod def distance_point_to_ray(p:np.ndarray, ray_start:np.ndarray, ray_direction:np.ndarray): ''' Distance from point p to 2d ray ''' rp = p-ray_start rd = Math_Ops.vector_projection(rp,ray_direction) # Is d in ray? We can find k in (rd = k * ray_direction) without computing any norm # we use the largest dimension of ray_direction to avoid division by 0 k = rd[0]/ray_direction[0] if abs(ray_direction[0])>abs(ray_direction[1]) else rd[1]/ray_direction[1] if k <= 0: return np.linalg.norm(rp) else: return np.linalg.norm(p-(rd + ray_start)) # p-d @staticmethod def closest_point_on_ray_to_point(p:np.ndarray, ray_start:np.ndarray, ray_direction:np.ndarray): ''' Point on ray closest to point p ''' rp = p-ray_start rd = Math_Ops.vector_projection(rp,ray_direction) # Is d in ray? We can find k in (rd = k * ray_direction) without computing any norm # we use the largest dimension of ray_direction to avoid division by 0 k = rd[0]/ray_direction[0] if abs(ray_direction[0])>abs(ray_direction[1]) else rd[1]/ray_direction[1] if k <= 0: return ray_start else: return rd + ray_start @staticmethod def does_circle_intersect_segment(p:np.ndarray, r, a:np.ndarray, b:np.ndarray): ''' Returns true if circle (center p, radius r) intersect 2d line segment ''' ap = p-a ab = b-a ad = Math_Ops.vector_projection(ap,ab) # Is d in ab? We can find k in (ad = k * ab) without computing any norm # we use the largest dimension of ab to avoid division by 0 k = ad[0]/ab[0] if abs(ab[0])>abs(ab[1]) else ad[1]/ab[1] if k <= 0: return np.dot(ap,ap) <= r*r elif k >= 1: return np.dot(p-b,p-b) <= r*r dp = p-(ad + a) return np.dot(dp,dp) <= r*r @staticmethod def vector_projection(a:np.ndarray, b:np.ndarray): ''' Vector projection of a onto b ''' b_dot = np.dot(b,b) return b * np.dot(a,b) / b_dot if b_dot != 0 else b @staticmethod def do_noncollinear_segments_intersect(a,b,c,d): ''' Check if 2d line segment 'ab' intersects with noncollinear 2d line segment 'cd' Explanation: https://www.geeksforgeeks.org/check-if-two-given-line-segments-intersect/ ''' ccw = lambda a,b,c: (c[1]-a[1]) * (b[0]-a[0]) > (b[1]-a[1]) * (c[0]-a[0]) return ccw(a,c,d) != ccw(b,c,d) and ccw(a,b,c) != ccw(a,b,d) @staticmethod def intersection_segment_opp_goal(a:np.ndarray, b:np.ndarray): ''' Computes the intersection point of 2d segment 'ab' and the opponents' goal (front line) ''' vec_x = b[0]-a[0] # Collinear intersections are not accepted if vec_x == 0: return None k = (15.01-a[0])/vec_x # No collision if k < 0 or k > 1: return None intersection_pt = a + (b-a) * k if -1.01 <= intersection_pt[1] <= 1.01: return intersection_pt else: return None @staticmethod def intersection_circle_opp_goal(p:np.ndarray, r): ''' Computes the intersection segment of circle (center p, radius r) and the opponents' goal (front line) Only the y coordinates are returned since the x coordinates are always equal to 15 ''' x_dev = abs(15-p[0]) if x_dev > r: return None # no intersection with x=15 y_dev = sqrt(r*r - x_dev*x_dev) p1 = max(p[1] - y_dev, -1.01) p2 = min(p[1] + y_dev, 1.01) if p1 == p2: return p1 # return the y coordinate of a single intersection point elif p2 < p1: return None # no intersection else: return p1, p2 # return the y coordinates of the intersection segment @staticmethod def distance_point_to_opp_goal(p:np.ndarray): ''' Distance between point 'p' and the opponents' goal (front line) ''' if p[1] < -1.01: return np.linalg.norm( p-(15,-1.01) ) elif p[1] > 1.01: return np.linalg.norm( p-(15, 1.01) ) else: return abs(15-p[0]) @staticmethod def circle_line_segment_intersection(circle_center, circle_radius, pt1, pt2, full_line=True, tangent_tol=1e-9): """ Find the points at which a circle intersects a line-segment. This can happen at 0, 1, or 2 points. :param circle_center: The (x, y) location of the circle center :param circle_radius: The radius of the circle :param pt1: The (x, y) location of the first point of the segment :param pt2: The (x, y) location of the second point of the segment :param full_line: True to find intersections along full line - not just in the segment. False will just return intersections within the segment. :param tangent_tol: Numerical tolerance at which we decide the intersections are close enough to consider it a tangent :return Sequence[Tuple[float, float]]: A list of length 0, 1, or 2, where each element is a point at which the circle intercepts a line segment. Note: We follow: http://mathworld.wolfram.com/Circle-LineIntersection.html """ (p1x, p1y), (p2x, p2y), (cx, cy) = pt1, pt2, circle_center (x1, y1), (x2, y2) = (p1x - cx, p1y - cy), (p2x - cx, p2y - cy) dx, dy = (x2 - x1), (y2 - y1) dr = (dx ** 2 + dy ** 2)**.5 big_d = x1 * y2 - x2 * y1 discriminant = circle_radius ** 2 * dr ** 2 - big_d ** 2 if discriminant < 0: # No intersection between circle and line return [] else: # There may be 0, 1, or 2 intersections with the segment intersections = [ (cx + (big_d * dy + sign * (-1 if dy < 0 else 1) * dx * discriminant**.5) / dr ** 2, cy + (-big_d * dx + sign * abs(dy) * discriminant**.5) / dr ** 2) for sign in ((1, -1) if dy < 0 else (-1, 1))] # This makes sure the order along the segment is correct if not full_line: # If only considering the segment, filter out intersections that do not fall within the segment fraction_along_segment = [ (xi - p1x) / dx if abs(dx) > abs(dy) else (yi - p1y) / dy for xi, yi in intersections] intersections = [pt for pt, frac in zip( intersections, fraction_along_segment) if 0 <= frac <= 1] # If line is tangent to circle, return just one point (as both intersections have same location) if len(intersections) == 2 and abs(discriminant) <= tangent_tol: return [intersections[0]] else: return intersections # adapted from https://stackoverflow.com/questions/3252194/numpy-and-line-intersections @staticmethod def get_line_intersection(a1, a2, b1, b2): """ Returns the point of intersection of the lines passing through a2,a1 and b2,b1. a1: [x, y] a point on the first line a2: [x, y] another point on the first line b1: [x, y] a point on the second line b2: [x, y] another point on the second line """ s = np.vstack([a1,a2,b1,b2]) # s for stacked h = np.hstack((s, np.ones((4, 1)))) # h for homogeneous l1 = np.cross(h[0], h[1]) # get first line l2 = np.cross(h[2], h[3]) # get second line x, y, z = np.cross(l1, l2) # point of intersection if z == 0: # lines are parallel return np.array([float('inf'), float('inf')]) return np.array([x/z, y/z],float) # Path: behaviors/custom/Walk/Env.py from agent.Base_Agent import Base_Agent from behaviors.custom.Step.Step_Generator import Step_Generator from math_ops.Math_Ops import Math_Ops as M import math import numpy as np class Env(): def __init__(self, base_agent : Base_Agent) -> None: self.world = base_agent.world self.ik = base_agent.inv_kinematics # State space self.obs = np.zeros(63, np.float32) # Step behavior defaults self.STEP_DUR = 8 self.STEP_Z_SPAN = 0.02 self.STEP_Z_MAX = 0.70 # IK nao_specs = self.ik.NAO_SPECS self.leg_length = nao_specs[1] + nao_specs[3] # upper leg height + lower leg height feet_y_dev = nao_specs[0] * 1.12 # wider step sample_time = self.world.robot.STEPTIME max_ankle_z = nao_specs[5] self.step_generator = Step_Generator(feet_y_dev, sample_time, max_ankle_z) self.DEFAULT_ARMS = np.array([-90,-90,8,8,90,90,70,70],np.float32) self.walk_rel_orientation = None self.walk_rel_target = None self.walk_distance = None def observe(self, init=False): r = self.world.robot if init: # reset variables self.act = np.zeros(16, np.float32) # memory variable self.step_counter = 0 # index observation naive normalization self.obs[0] = min(self.step_counter,15*8) /100 # simple counter: 0,1,2,3... self.obs[1] = r.loc_head_z *3 # z coordinate (torso) self.obs[2] = r.loc_head_z_vel /2 # z velocity (torso) self.obs[3] = r.imu_torso_roll /15 # absolute torso roll in deg self.obs[4] = r.imu_torso_pitch /15 # absolute torso pitch in deg self.obs[5:8] = r.gyro /100 # gyroscope self.obs[8:11] = r.acc /10 # accelerometer self.obs[11:17] = r.frp.get('lf', np.zeros(6)) * (10,10,10,0.01,0.01,0.01) # left foot: relative point of origin (p) and force vector (f) -> (px,py,pz,fx,fy,fz)* self.obs[17:23] = r.frp.get('rf', np.zeros(6)) * (10,10,10,0.01,0.01,0.01) # right foot: relative point of origin (p) and force vector (f) -> (px,py,pz,fx,fy,fz)* # *if foot is not touching the ground, then (px=0,py=0,pz=0,fx=0,fy=0,fz=0) # Joints: Forward kinematics for ankles + feet rotation + arms (pitch + roll)
rel_lankle = self.ik.get_body_part_pos_relative_to_hip("lankle") # ankle position relative to center of both hip joints
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: legalontech-oss/simple-search-query-parser-sample # Path: src/parser/SimpleSearchQueryLexer.py class SimpleSearchQueryLexer(Lexer): atn = ATNDeserializer().deserialize(serializedATN()) decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ] T__0 = 1 T__1 = 2 ALPHABETS = 3 OR_OPERATOR = 4 AND_OPERATOR = 5 NOT_OPERATOR = 6 WHITE_SPACES = 7 channelNames = [ u"DEFAULT_TOKEN_CHANNEL", u"HIDDEN" ] modeNames = [ "DEFAULT_MODE" ] literalNames = [ "<INVALID>", "'('", "')'", "'OR'", "'AND'", "'NOT'" ] symbolicNames = [ "<INVALID>", "ALPHABETS", "OR_OPERATOR", "AND_OPERATOR", "NOT_OPERATOR", "WHITE_SPACES" ] ruleNames = [ "T__0", "T__1", "ALPHABETS", "OR_OPERATOR", "AND_OPERATOR", "NOT_OPERATOR", "WHITE_SPACES" ] grammarFileName = "SimpleSearchQuery.g4" def __init__(self, input=None, output:TextIO = sys.stdout): super().__init__(input, output) self.checkVersion("4.13.1") self._interp = LexerATNSimulator(self, self.atn, self.decisionsToDFA, PredictionContextCache()) self._actions = None self._predicates = None # Path: src/parser/SimpleSearchQueryParser.py class SimpleSearchQueryParser ( Parser ): grammarFileName = "SimpleSearchQuery.g4" atn = ATNDeserializer().deserialize(serializedATN()) decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ] sharedContextCache = PredictionContextCache() literalNames = [ "<INVALID>", "'('", "')'", "<INVALID>", "'OR'", "'AND'", "'NOT'" ] symbolicNames = [ "<INVALID>", "<INVALID>", "<INVALID>", "ALPHABETS", "OR_OPERATOR", "AND_OPERATOR", "NOT_OPERATOR", "WHITE_SPACES" ] RULE_expr = 0 RULE_term = 1 RULE_factor = 2 RULE_keywords = 3 RULE_alphabets = 4 ruleNames = [ "expr", "term", "factor", "keywords", "alphabets" ] EOF = Token.EOF T__0=1 T__1=2 ALPHABETS=3 OR_OPERATOR=4 AND_OPERATOR=5 NOT_OPERATOR=6 WHITE_SPACES=7 def __init__(self, input:TokenStream, output:TextIO = sys.stdout): super().__init__(input, output) self.checkVersion("4.13.1") self._interp = ParserATNSimulator(self, self.atn, self.decisionsToDFA, self.sharedContextCache) self._predicates = None class ExprContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def term(self): return self.getTypedRuleContext(SimpleSearchQueryParser.TermContext,0) def expr(self): return self.getTypedRuleContext(SimpleSearchQueryParser.ExprContext,0) def OR_OPERATOR(self): return self.getToken(SimpleSearchQueryParser.OR_OPERATOR, 0) def getRuleIndex(self): return SimpleSearchQueryParser.RULE_expr def accept(self, visitor:ParseTreeVisitor): if hasattr( visitor, "visitExpr" ): return visitor.visitExpr(self) else: return visitor.visitChildren(self) def expr(self, _p:int=0): _parentctx = self._ctx _parentState = self.state localctx = SimpleSearchQueryParser.ExprContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 0 self.enterRecursionRule(localctx, 0, self.RULE_expr, _p) try: self.enterOuterAlt(localctx, 1) self.state = 11 self.term(0) self._ctx.stop = self._input.LT(-1) self.state = 18 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,0,self._ctx) while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER: if _alt==1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx localctx = SimpleSearchQueryParser.ExprContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expr) self.state = 13 if not self.precpred(self._ctx, 1): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, "self.precpred(self._ctx, 1)") self.state = 14 self.match(SimpleSearchQueryParser.OR_OPERATOR) self.state = 15 self.term(0) self.state = 20 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,0,self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx class TermContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def factor(self): return self.getTypedRuleContext(SimpleSearchQueryParser.FactorContext,0) def term(self): return self.getTypedRuleContext(SimpleSearchQueryParser.TermContext,0) def AND_OPERATOR(self): return self.getToken(SimpleSearchQueryParser.AND_OPERATOR, 0) def getRuleIndex(self): return SimpleSearchQueryParser.RULE_term def accept(self, visitor:ParseTreeVisitor): if hasattr( visitor, "visitTerm" ): return visitor.visitTerm(self) else: return visitor.visitChildren(self) def term(self, _p:int=0): _parentctx = self._ctx _parentState = self.state localctx = SimpleSearchQueryParser.TermContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 2 self.enterRecursionRule(localctx, 2, self.RULE_term, _p) try: self.enterOuterAlt(localctx, 1) self.state = 22 self.factor() self._ctx.stop = self._input.LT(-1) self.state = 29 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,1,self._ctx) while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER: if _alt==1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx localctx = SimpleSearchQueryParser.TermContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_term) self.state = 24 if not self.precpred(self._ctx, 1): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, "self.precpred(self._ctx, 1)") self.state = 25 self.match(SimpleSearchQueryParser.AND_OPERATOR) self.state = 26 self.factor() self.state = 31 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,1,self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx class FactorContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def keywords(self): return self.getTypedRuleContext(SimpleSearchQueryParser.KeywordsContext,0) def NOT_OPERATOR(self): return self.getToken(SimpleSearchQueryParser.NOT_OPERATOR, 0) def getRuleIndex(self): return SimpleSearchQueryParser.RULE_factor def accept(self, visitor:ParseTreeVisitor): if hasattr( visitor, "visitFactor" ): return visitor.visitFactor(self) else: return visitor.visitChildren(self) def factor(self): localctx = SimpleSearchQueryParser.FactorContext(self, self._ctx, self.state) self.enterRule(localctx, 4, self.RULE_factor) try: self.state = 35 self._errHandler.sync(self) token = self._input.LA(1) if token in [1, 3]: self.enterOuterAlt(localctx, 1) self.state = 32 self.keywords() pass elif token in [6]: self.enterOuterAlt(localctx, 2) self.state = 33 self.match(SimpleSearchQueryParser.NOT_OPERATOR) self.state = 34 self.keywords() pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class KeywordsContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def expr(self): return self.getTypedRuleContext(SimpleSearchQueryParser.ExprContext,0) def alphabets(self): return self.getTypedRuleContext(SimpleSearchQueryParser.AlphabetsContext,0) def getRuleIndex(self): return SimpleSearchQueryParser.RULE_keywords def accept(self, visitor:ParseTreeVisitor): if hasattr( visitor, "visitKeywords" ): return visitor.visitKeywords(self) else: return visitor.visitChildren(self) def keywords(self): localctx = SimpleSearchQueryParser.KeywordsContext(self, self._ctx, self.state) self.enterRule(localctx, 6, self.RULE_keywords) try: self.state = 42 self._errHandler.sync(self) token = self._input.LA(1) if token in [1]: self.enterOuterAlt(localctx, 1) self.state = 37 self.match(SimpleSearchQueryParser.T__0) self.state = 38 self.expr(0) self.state = 39 self.match(SimpleSearchQueryParser.T__1) pass elif token in [3]: self.enterOuterAlt(localctx, 2) self.state = 41 self.alphabets() pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class AlphabetsContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def ALPHABETS(self): return self.getToken(SimpleSearchQueryParser.ALPHABETS, 0) def getRuleIndex(self): return SimpleSearchQueryParser.RULE_alphabets def accept(self, visitor:ParseTreeVisitor): if hasattr( visitor, "visitAlphabets" ): return visitor.visitAlphabets(self) else: return visitor.visitChildren(self) def alphabets(self): localctx = SimpleSearchQueryParser.AlphabetsContext(self, self._ctx, self.state) self.enterRule(localctx, 8, self.RULE_alphabets) try: self.enterOuterAlt(localctx, 1) self.state = 44 self.match(SimpleSearchQueryParser.ALPHABETS) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx def sempred(self, localctx:RuleContext, ruleIndex:int, predIndex:int): if self._predicates == None: self._predicates = dict() self._predicates[0] = self.expr_sempred self._predicates[1] = self.term_sempred pred = self._predicates.get(ruleIndex, None) if pred is None: raise Exception("No predicate with index:" + str(ruleIndex)) else: return pred(localctx, predIndex) def expr_sempred(self, localctx:ExprContext, predIndex:int): if predIndex == 0: return self.precpred(self._ctx, 1) def term_sempred(self, localctx:TermContext, predIndex:int): if predIndex == 1: return self.precpred(self._ctx, 1) # Path: src/QueryBuilder.py class QueryBuilder: def build(self, ast: dict) -> dict: return {"query": self.build_bool_query(ast)} def build_bool_query(self, ast: dict) -> dict: operator = ast.get("operator") if operator: match operator: case "AND": return { "bool": { "must": [ self.build_bool_query(ast["children"][0]), self.build_bool_query(ast["children"][1]), ] } } case "OR": return { "bool": { "should": [ self.build_bool_query(ast["children"][0]), self.build_bool_query(ast["children"][1]), ], "minimum_should_match": 1, }, } case "NOT": return { "bool": { "must_not": [ self.build_bool_query(ast["children"][0]), ], } } else: return { "match": { "fruit": { "query": ast["value"], } } } # Path: src/VisitorInterp.py class VisitorInterp(SimpleSearchQueryVisitor): def visitExpr(self, ctx: SimpleSearchQueryParser.ExprContext): if ctx.getChildCount() == 3: opc = ctx.getChild(1).getText() v1 = self.visit(ctx.getChild(0)) v2 = self.visit(ctx.getChild(2)) return {"operator": opc, "children": [v1, v2]} else: return self.visit(ctx.getChild(0)) def visitTerm(self, ctx: SimpleSearchQueryParser.TermContext): if ctx.getChildCount() == 3: opc = ctx.getChild(1).getText() v1 = self.visit(ctx.getChild(0)) v2 = self.visit(ctx.getChild(2)) return {"operator": opc, "children": [v1, v2]} else: return self.visit(ctx.getChild(0)) def visitFactor(self, ctx: SimpleSearchQueryParser.FactorContext): if ctx.getChildCount() == 2: opc = ctx.getChild(0).getText() v1 = self.visit(ctx.getChild(1)) return {"operator": opc, "children": [v1]} else: return self.visit(ctx.getChild(0)) def visitKeywords(self, ctx: SimpleSearchQueryParser.KeywordsContext): if ctx.getChildCount() == 3: return self.visit(ctx.getChild(1)) else: return self.visit(ctx.getChild(0)) def visitAlphabets(self, ctx: SimpleSearchQueryParser.AlphabetsContext): return {"value": ctx.getText()} # Path: src/Driver2.py import json import sys from antlr4 import CommonTokenStream, FileStream from src.parser.SimpleSearchQueryLexer import SimpleSearchQueryLexer from src.parser.SimpleSearchQueryParser import SimpleSearchQueryParser from src.QueryBuilder import QueryBuilder from src.VisitorInterp import VisitorInterp def main(argv): input_stream = FileStream(argv[1]) lexer = SimpleSearchQueryLexer(input_stream) stream = CommonTokenStream(lexer) parser = SimpleSearchQueryParser(stream) tree = parser.expr() if parser.getNumberOfSyntaxErrors() > 0: print("syntax errors") else: vinterp = VisitorInterp() query_builder = QueryBuilder()
ast = vinterp.visit(tree)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: thuiar/TCL-MAP # Path: utils/functions.py def restore_model(model, model_dir, device): output_model_file = os.path.join(model_dir, 'pytorch_model.bin') m = torch.load(output_model_file, map_location=device) model.load_state_dict(m) return model # Path: utils/functions.py def save_model(model, model_dir): save_model = model.module if hasattr(model, 'module') else model model_file = os.path.join(model_dir, 'pytorch_model.bin') torch.save(save_model.state_dict(), model_file) # Path: utils/functions.py class EarlyStopping: """Early stops the training if validation loss doesn't improve after a given patience.""" def __init__(self, args, delta=1e-6): """ Args: patience (int): How long to wait after last time validation loss improved. delta (float): Minimum change in the monitored quantity to qualify as an improvement. """ self.patience = args.wait_patience self.logger = logging.getLogger(args.logger_name) self.monitor = args.eval_monitor self.counter = 0 self.best_score = 1e8 if self.monitor == 'loss' else 1e-6 self.early_stop = False self.delta = delta self.best_model = None def __call__(self, score, model): better_flag = score <= (self.best_score - self.delta) if self.monitor == 'loss' else score >= (self.best_score + self.delta) if better_flag: self.counter = 0 self.best_model = copy.deepcopy(model) self.best_score = score else: self.counter += 1 self.logger.info(f'EarlyStopping counter: {self.counter} out of {self.patience}') if self.counter >= self.patience: self.early_stop = True # Path: data/utils.py def get_dataloader(args, data): train_dataloader = DataLoader(data['train'], shuffle=True, batch_size = args.train_batch_size, num_workers = args.num_workers, pin_memory = True) dev_dataloader = DataLoader(data['dev'], batch_size = args.eval_batch_size, num_workers = args.num_workers, pin_memory = True) test_dataloader = DataLoader(data['test'], batch_size = args.eval_batch_size, num_workers = args.num_workers, pin_memory = True) return { 'train': train_dataloader, 'dev': dev_dataloader, 'test': test_dataloader } # Path: utils/metrics.py class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = float(self.sum) / self.count # Path: utils/metrics.py class Metrics(object): """ column of confusion matrix: predicted index row of confusion matrix: target index """ def __init__(self, args): self.logger = logging.getLogger(args.logger_name) self.eval_metrics = ['acc', 'f1', 'prec', 'rec', 'weighted_f1', 'weighted_prec', 'weighted_rec'] def __call__(self, y_true, y_pred, show_results = False): acc_score = self._acc_score(y_true, y_pred) macro_f1, weighted_f1 = self._f1_score(y_true, y_pred) macro_prec, weighted_prec = self._precision_score(y_true, y_pred) macro_rec, weighted_rec = self._recall_score(y_true, y_pred) eval_results = { 'acc': acc_score, 'f1': macro_f1, 'weighted_f1': weighted_f1, 'prec': macro_prec, 'weighted_prec': weighted_prec, 'rec': macro_rec, 'weighted_rec': weighted_rec } if show_results: self._show_confusion_matrix(y_true, y_pred) self.logger.info("***** In-domain Evaluation results *****") for key in sorted(eval_results.keys()): self.logger.info(" %s = %s", key, str(round(eval_results[key], 4))) return eval_results def _acc_score(self, y_true, y_pred): return accuracy_score(y_true, y_pred) def _f1_score(self, y_true, y_pred): return f1_score(y_true, y_pred, average='macro'), f1_score(y_true, y_pred, average='weighted') def _precision_score(self, y_true, y_pred): return precision_score(y_true, y_pred, average='macro'), precision_score(y_true, y_pred, average='weighted') def _recall_score(self, y_true, y_pred): return recall_score(y_true, y_pred, average='macro'), recall_score(y_true, y_pred, average='weighted') def _show_confusion_matrix(self, y_true, y_pred): cm = confusion_matrix(y_true, y_pred) self.logger.info("***** Test: Confusion Matrix *****") self.logger.info("%s", str(cm)) # Path: methods/TCL_MAP/model.py class TCL_MAP(nn.Module): def __init__(self, args): super(TCL_MAP, self).__init__() self.model = MAP_Model.from_pretrained(args.text_backbone, cache_dir = args.cache_path, args = args) self.cons_model = Cons_Model.from_pretrained(args.text_backbone, cache_dir = args.cache_path, args = args) self.ctx_vectors = self._init_ctx(args) self.ctx = nn.Parameter(self.ctx_vectors) self.label_len = args.label_len args.feat_size = args.text_feat_dim args.video_feat_size = args.video_feat_dim args.audio_feat_size = args.audio_feat_dim def _init_ctx(self, args): ctx = torch.empty(args.prompt_len, args.text_feat_dim, dtype=torch.float) nn.init.trunc_normal_(ctx) return ctx def forward(self, text_feats, video_feats, audio_feats, cons_text_feats, condition_idx): video_feats = video_feats.float() audio_feats = audio_feats.float() # process normal sample outputs, pooled_output, condition, generated_ctx = self.model( text = text_feats, visual = video_feats, acoustic = audio_feats, condition_idx=condition_idx, ctx=self.ctx ) # process augmented sample cons_input_ids, cons_input_mask, cons_segment_ids = cons_text_feats[:, 0], cons_text_feats[:, 1], cons_text_feats[:, 2] cons_outputs = self.cons_model( input_ids = cons_input_ids, condition_idx=condition_idx, ctx=generated_ctx, token_type_ids = cons_segment_ids, attention_mask = cons_input_mask ) last_hidden_state = cons_outputs.last_hidden_state cons_condition_tuple = tuple(last_hidden_state[torch.arange(last_hidden_state.shape[0]), condition_idx.view(-1) + i, :].unsqueeze(1) for i in range(self.label_len)) cons_condition = torch.cat(cons_condition_tuple, dim=1) # return classification feature and Label/[MASK] token representation return outputs[0], pooled_output, condition.mean(dim=1), cons_condition.mean(dim=1) # Path: methods/TCL_MAP/loss.py class SupConLoss(nn.Module): """Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf. It also supports the unsupervised contrastive loss in SimCLR""" def __init__(self, temperature=0.07, contrast_mode='all'): super(SupConLoss, self).__init__() self.temperature = temperature self.contrast_mode = contrast_mode def forward(self, features, labels=None, mask=None): """Compute loss for model. If both `labels` and `mask` are None, it degenerates to SimCLR unsupervised loss: https://arxiv.org/pdf/2002.05709.pdf Args: features: hidden vector of shape [bsz, n_views, ...]. labels: ground truth of shape [bsz]. mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j has the same class as sample i. Can be asymmetric. Returns: A loss scalar. """ device = (torch.device('cuda') if features.is_cuda else torch.device('cpu')) if len(features.shape) < 3: raise ValueError('`features` needs to be [bsz, n_views, ...],' 'at least 3 dimensions are required') if len(features.shape) > 3: features = features.view(features.shape[0], features.shape[1], -1) features = F.normalize(features, dim=2) batch_size = features.shape[0] if labels is not None and mask is not None: raise ValueError('Cannot define both `labels` and `mask`') elif labels is None and mask is None: mask = torch.eye(batch_size, dtype=torch.float32).to(device) elif labels is not None: labels = labels.contiguous().view(-1, 1) if labels.shape[0] != batch_size: raise ValueError('Num of labels does not match num of features') mask = torch.eq(labels, labels.T).float().to(device) else: mask = mask.float().to(device) contrast_count = features.shape[1] contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0) if self.contrast_mode == 'one': anchor_feature = features[:, 0] anchor_count = 1 elif self.contrast_mode == 'all': anchor_feature = contrast_feature anchor_count = contrast_count else: raise ValueError('Unknown mode: {}'.format(self.contrast_mode)) # compute logits anchor_dot_contrast = torch.div( torch.matmul(anchor_feature, contrast_feature.T), self.temperature) # for numerical stability logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True) logits = anchor_dot_contrast - logits_max.detach() # tile mask mask = mask.repeat(anchor_count, contrast_count) # mask-out self-contrast cases logits_mask = torch.scatter( torch.ones_like(mask), 1, torch.arange(batch_size * anchor_count).view(-1, 1).to(device), 0 ) mask = mask * logits_mask # compute log_prob exp_logits = torch.exp(logits) * logits_mask log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True)) # compute mean of log-likelihood over positive mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1) # loss loss = - mean_log_prob_pos loss = loss.view(anchor_count, batch_size).mean() return loss # Path: methods/TCL_MAP/manager.py import torch import torch.nn.functional as F import logging import numpy as np from torch import nn from utils.functions import restore_model, save_model, EarlyStopping from tqdm import trange, tqdm from data.utils import get_dataloader from utils.metrics import AverageMeter, Metrics from transformers import AdamW, get_linear_schedule_with_warmup from .model import TCL_MAP from .loss import SupConLoss early_stopping = EarlyStopping(args) for epoch in trange(int(args.num_train_epochs), desc="Epoch"): self.model.train() loss_record = AverageMeter() cons_loss_record = AverageMeter() cls_loss_record = AverageMeter() for step, batch in enumerate(tqdm(self.train_dataloader, desc="Iteration")): text_feats = batch['text_feats'].to(self.device) cons_text_feats = batch['cons_text_feats'].to(self.device) condition_idx = batch['condition_idx'].to(self.device) video_feats = batch['video_feats'].to(self.device) audio_feats = batch['audio_feats'].to(self.device) label_ids = batch['label_ids'].to(self.device) with torch.set_grad_enabled(True): logits, _, condition, cons_condition = self.model(text_feats, video_feats, audio_feats, cons_text_feats, condition_idx) cons_feature = torch.cat((condition.unsqueeze(1), cons_condition.unsqueeze(1)), dim=1) cons_loss = self.cons_criterion(cons_feature) cls_loss = self.criterion(logits, label_ids) loss = cls_loss + cons_loss self.optimizer.zero_grad() loss.backward() loss_record.update(loss.item(), label_ids.size(0)) cons_loss_record.update(cons_loss.item(), label_ids.size(0)) cls_loss_record.update(cls_loss.item(), label_ids.size(0)) if args.grad_clip != -1.0: nn.utils.clip_grad_value_([param for param in self.model.parameters() if param.requires_grad], args.grad_clip) self.optimizer.step() self.scheduler.step() outputs = self._get_outputs(args, self.eval_dataloader) eval_score = outputs[args.eval_monitor] eval_results = { 'train_loss': round(loss_record.avg, 4), 'cons_loss': round(cons_loss_record.avg, 4), 'cls_loss': round(cls_loss_record.avg, 4), 'eval_score': round(eval_score, 4), 'best_eval_score': round(early_stopping.best_score, 4), } self.logger.info("***** Epoch: %s: Eval results *****", str(epoch + 1)) for key in eval_results.keys(): self.logger.info(" %s = %s", key, str(eval_results[key])) early_stopping(eval_score, self.model) if early_stopping.early_stop: self.logger.info(f'EarlyStopping at epoch {epoch + 1}') break self.best_eval_score = early_stopping.best_score self.model = early_stopping.best_model if args.save_model: self.logger.info('Trained models are saved in %s', args.model_output_path) save_model(self.model, args.model_output_path) def _get_outputs(self, args, dataloader, show_results = False): self.model.eval() total_labels = torch.empty(0,dtype=torch.long).to(self.device) total_preds = torch.empty(0,dtype=torch.long).to(self.device) total_logits = torch.empty((0, args.num_labels)).to(self.device) total_features = torch.empty((0, args.feat_size)).to(self.device) for batch in tqdm(dataloader, desc="Iteration"): text_feats = batch['text_feats'].to(self.device) cons_text_feats = batch['cons_text_feats'].to(self.device) condition_idx = batch['condition_idx'].to(self.device) video_feats = batch['video_feats'].to(self.device) audio_feats = batch['audio_feats'].to(self.device) label_ids = batch['label_ids'].to(self.device) with torch.set_grad_enabled(False): logits, features, condition, cons_condition = self.model(text_feats, video_feats, audio_feats, cons_text_feats, condition_idx) total_logits = torch.cat((total_logits, logits)) total_labels = torch.cat((total_labels, label_ids)) total_features = torch.cat((total_features, features)) total_probs = F.softmax(total_logits.detach(), dim=1) total_maxprobs, total_preds = total_probs.max(dim = 1) y_logit = total_logits.cpu().numpy() y_pred = total_preds.cpu().numpy() y_true = total_labels.cpu().numpy() y_prob = total_maxprobs.cpu().numpy() y_feat = total_features.cpu().numpy() outputs = self.metrics(y_true, y_pred, show_results = show_results) if args.save_pred and show_results: np.save('y_true_' + str(args.seed) + '.npy', y_true) np.save('y_pred_' + str(args.seed) + '.npy', y_pred) outputs.update( { 'y_prob': y_prob, 'y_logit': y_logit, 'y_true': y_true, 'y_pred': y_pred, 'y_feat': y_feat } )
return outputs
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: CoolPointerException/Amigo # Path: gui/tab_projects.py class ProjectsTab: def __init__(self, root, frame): self.frame = frame self.root = root # Select Directory ttk.Label(frame, text="Project Directory:", style='W.Label').pack(fill=tk.X, padx=10, pady=(12, 2)) self.select_directory_button = ttk.Button(frame, text="Select Directory", command=self.select_directory) self.select_directory_button.pack(padx=10, pady=10) # Project Name ttk.Label(frame, text="Project Name:", style='W.Label').pack(fill=tk.X, padx=10, pady=2) self.project_name_entry = ttk.Entry(frame) self.project_name_entry.pack(fill=tk.X, padx=10, pady=10) # Ignore List ttk.Label(frame, text="Files to ignore:", style='W.Label').pack(fill=tk.X, padx=10, pady=2) # Frame for Listbox and scrollbars self.ignore_listbox_frame = tk.Frame(frame) self.ignore_listbox_frame.pack(fill=tk.X, padx=10, pady=10) # Vertical scrollbar self.ignore_vscrollbar = tk.Scrollbar(self.ignore_listbox_frame, orient='vertical') self.ignore_vscrollbar.pack(side='right', fill='y') # Ignore Listbox self.ignore_listbox = tk.Listbox(self.ignore_listbox_frame, height=5, yscrollcommand=self.ignore_vscrollbar.set) self.ignore_listbox.pack(side='left', fill='both', expand=True) # Configure scrollbars self.ignore_vscrollbar.config(command=self.ignore_listbox.yview) # Frame for buttons self.buttons_frame = tk.Frame(frame) self.buttons_frame.pack(fill=tk.X, padx=10, pady=10) # Select Files Button self.select_files_button = ttk.Button(self.buttons_frame, text="Select", command=self.select_files) self.select_files_button.pack(side='left', padx=5, pady=5) ttk.Label(self.buttons_frame, text="Select which files should be ignored while indexing")\ .pack(side='left', padx=10, pady=2) # Spacer frame to create gap between buttons self.spacer_frame = tk.Frame(self.buttons_frame, width=40) self.spacer_frame.pack(side='left', padx=5, pady=5) # Delete Selected File Button self.delete_file_button = ttk.Button(self.buttons_frame, text="Delete", command=self.delete_selected_file) self.delete_file_button.pack(side='left', padx=5, pady=5) ttk.Label(self.buttons_frame, text="Remove selected file from the list").pack(side='left', padx=10, pady=2) # Ignore Directory List ttk.Label(frame, text="Directories to ignore:", style='W.Label').pack(fill=tk.X, padx=10, pady=2) # Frame for Listbox and scrollbars self.ignore_directory_listbox_frame = tk.Frame(frame) self.ignore_directory_listbox_frame.pack(fill=tk.X, padx=10, pady=10) # Vertical scrollbar self.ignore_directory_vscrollbar = tk.Scrollbar(self.ignore_directory_listbox_frame, orient='vertical') self.ignore_directory_vscrollbar.pack(side='right', fill='y') # Ignore Listbox self.ignore_directory_listbox = tk.Listbox(self.ignore_directory_listbox_frame, height=5, yscrollcommand=self.ignore_directory_vscrollbar.set) self.ignore_directory_listbox.pack(side='left', fill='both', expand=True) # Configure scrollbars self.ignore_directory_vscrollbar.config(command=self.ignore_directory_listbox.yview) # Frame for buttons self.buttons_directory_frame = tk.Frame(frame) self.buttons_directory_frame.pack(fill=tk.X, padx=10, pady=10) # Select Files Button self.select_directories_button = ttk.Button(self.buttons_directory_frame, text="Select", command=self.select_ignored_directory) self.select_directories_button.pack(side='left', padx=5, pady=5) ttk.Label(self.buttons_directory_frame, text="Select which directories should be ignored while indexing") \ .pack(side='left', padx=10, pady=2) # Spacer frame to create gap between buttons self.spacer_directories_frame = tk.Frame(self.buttons_directory_frame, width=40) self.spacer_directories_frame.pack(side='left', padx=5, pady=5) # Delete Selected File Button self.delete_directory_button = ttk.Button(self.buttons_directory_frame, text="Delete", command=self.delete_selected_directory) self.delete_directory_button.pack(side='left', padx=5, pady=5) ttk.Label(self.buttons_directory_frame, text="Remove selected directory from the list").pack(side='left', padx=10, pady=2) # Add new Project Button self.execute_action_button = ttk.Button(frame, text="Create Index", command=self.add_new_project, style='W.TButton') self.execute_action_button.pack(padx=10, pady=10) self.generating_label = ttk.Label(frame, text="") self.generating_label.pack(padx=10, pady=10) # Project List Area ttk.Label(frame, text="Reindex Project:", style='W.Label').pack(fill=tk.X, padx=10, pady=2) ttk.Label(frame, text="In case there is a .git folder in your root directory, you have an option to reindex " "only the files that were added or modified since the last indexing.", wraplength=880)\ .pack(fill=tk.X, padx=10, pady=2) self.reindex_frame = tk.Frame(frame) self.reindex_frame.pack(fill=tk.X) self.reindex_project = ttk.Combobox(self.reindex_frame) self.reindex_project.pack(side='left', padx=10, pady=10, fill=tk.X, expand=True) # Add new Project Button self.reindex_project_button = ttk.Button(self.reindex_frame, text="Reindex", command=self.reindex_project_action) self.reindex_project_button.pack(side='left', padx=10, pady=10) # Logs ttk.Label(frame, text="Logs:", style='W.Label').pack(fill=tk.X, padx=10, pady=2) # Frame for Logs self.logs_frame = tk.Frame(frame) self.logs_frame.pack(fill=tk.X, padx=10, pady=10) # Vertical scrollbar self.logs_vscrollbar = tk.Scrollbar(self.logs_frame, orient='vertical') self.logs_vscrollbar.pack(side='right', fill='y') # Logs Listbox self.logs_listbox = tk.Listbox(self.logs_frame, height=8, yscrollcommand=self.logs_vscrollbar.set) self.logs_listbox.pack(side='left', fill='both', expand=True) # Configure scrollbars self.logs_vscrollbar.config(command=self.logs_listbox.yview) def select_directory(self): directory = filedialog.askdirectory() if directory: self.selected_directory = directory self.select_directory_button.config(text=f"Directory: {directory}") def select_files(self): if hasattr(self, 'selected_directory'): files = filedialog.askopenfilenames(initialdir=self.selected_directory, title="Select Files", filetypes=(("All files", "*.*"),)) for file in files: if file not in self.ignore_listbox.get(0, tk.END): # Avoid duplicates self.ignore_listbox.insert(tk.END, file) else: messagebox.showerror("Error", "Please select a directory first.") def delete_selected_file(self): selected_items = self.ignore_listbox.curselection() # Must delete from the end to avoid shifting of the indices for i in reversed(selected_items): self.ignore_listbox.delete(i) def select_ignored_directory(self): if hasattr(self, 'selected_directory'): directory = filedialog.askdirectory(initialdir=self.selected_directory, title="Select Directory") if directory: if directory not in self.ignore_directory_listbox.get(0, tk.END): self.ignore_directory_listbox.insert(tk.END, directory) def delete_selected_directory(self): selected_items = self.ignore_directory_listbox.curselection() # Must delete from the end to avoid shifting of the indices for i in reversed(selected_items): self.ignore_directory_listbox.delete(i) def reindex_project_action(self): is_valid = validate(self.root, [ Properties.REINDEX_PROJECT, Properties.THREADS, ]) if not is_valid: return reindex_project = self.reindex_project.get() # parse project name and project directory reindex_project = reindex_project.split(" | ") project_name = reindex_project[0] project_dir = reindex_project[1] f = open(project_name + "/ignored_files.txt", "r") ignored_files = f.read().split("\n") f = open(project_name + "/ignored_directories.txt", "r") ignored_directories = f.read().split("\n") self.create_index_project( project_name, project_dir, ignored_files, ignored_directories, True ) def add_new_project(self): is_valid = validate(self.root, [ Properties.PROJECT_NAME, Properties.SELECTED_DIRECTORY, Properties.THREADS, ]) if not is_valid: return project_name = self.project_name_entry.get() directory = self.selected_directory files = self.ignore_listbox.get(0, tk.END) directories = self.ignore_directory_listbox.get(0, tk.END) self.create_index_project( project_name, directory, files, directories, ) def create_index_project( self, project_name, directory, files, directories, is_reindex=False ): if not is_api_type_set(self.root): return api_type = self.root.settings_tab.api_type.get() threads = int(self.root.settings_tab.threads.get()) init_llama_index(self.root, api_type) diff = None if is_reindex: diff = git_diff(project_name, self.root) self.generating_label.config(text="Generating index, please wait...") try: thread = threading.Thread(target=add_project, args=( self.root, directory, project_name, files, directories, is_reindex, diff, threads )) thread.start() except Exception as e: messagebox.showerror("Error", f"Error while generating index!") self.generating_label.config(text="Finished!") self.logs_listbox.insert(tk.END, f"Error: {e}") # Path: gui/settings.py def load_settings(self): try: with open(self.settings_file, 'r') as f: settings = json.load(f) if settings.get('api_version'): self.settings_tab.api_version_entry.delete(0, tk.END) self.settings_tab.api_version_entry.insert(0, settings.get('api_version')) if settings.get('api_type'): self.settings_tab.api_type.set(settings.get('api_type')) self.settings_tab.show_only_relevant_settings() if settings.get('api_key'): self.settings_tab.api_key_entry.delete(0, tk.END) self.settings_tab.api_key_entry.insert(0, settings.get('api_key')) if settings.get('api_host'): self.settings_tab.api_host_entry.delete(0, tk.END) self.settings_tab.api_host_entry.insert(0, settings.get('api_host')) if settings.get('gpt_model'): self.settings_tab.gpt_model.delete(0, tk.END) self.settings_tab.gpt_model.insert(0, settings.get('gpt_model')) if settings.get('gpt_deployment'): self.settings_tab.gpt_deployment.delete(0, tk.END) self.settings_tab.gpt_deployment.insert(0, settings.get('gpt_deployment')) if settings.get('embeddings_model'): self.settings_tab.embeddings_model_entry.delete(0, tk.END) self.settings_tab.embeddings_model_entry.insert(0, settings.get('embeddings_model')) if settings.get('embeddings_deployment'): self.settings_tab.embeddings_deployment_entry.delete(0, tk.END) self.settings_tab.embeddings_deployment_entry.insert(0, settings.get('embeddings_deployment')) if settings.get('prompt'): self.settings_tab.prompt_entry.delete('1.0', tk.END) self.settings_tab.prompt_entry.insert(INSERT, settings.get('prompt', 'This is a prompt')) if settings.get('projects'): projects = settings.get('projects') for project in projects: values = list(self.task_tab.selected_project["values"]) self.task_tab.selected_project["values"] = values + [project] self.projects_tab.reindex_project["values"] = values + [project] if settings.get('selected_project'): self.task_tab.selected_project.set(settings.get('selected_project')) self.projects_tab.reindex_project.set(settings.get('selected_project')) if settings.get('max_tokens'): self.settings_tab.max_tokens.delete(0, tk.END) self.settings_tab.max_tokens.insert(INSERT, settings.get('max_tokens')) if settings.get('threads'): self.settings_tab.threads.delete(0, tk.END) self.settings_tab.threads.insert(INSERT, settings.get('threads')) except FileNotFoundError: print("Settings file not found. Using default values.") # Path: gui/settings.py def save_settings(self): settings = { 'api_version': self.settings_tab.api_version_entry.get(), 'api_type': self.settings_tab.api_type.get(), 'api_key': self.settings_tab.api_key_entry.get(), 'api_host': self.settings_tab.api_host_entry.get(), 'gpt_model': self.settings_tab.gpt_model.get(), 'gpt_deployment': self.settings_tab.gpt_deployment.get(), 'embeddings_model': self.settings_tab.embeddings_model_entry.get(), 'embeddings_deployment': self.settings_tab.embeddings_deployment_entry.get(), 'prompt': self.settings_tab.prompt_entry.get("1.0", tk.END).strip(), 'projects': list(self.task_tab.selected_project["values"]), 'selected_project': self.task_tab.selected_project.get(), 'max_tokens': self.settings_tab.max_tokens.get(), 'threads': self.settings_tab.threads.get() } with open(self.settings_file, 'w') as f: json.dump(settings, f, indent=4) # Path: gui/tab_settings.py class SettingsTab: def __init__(self, root, frame): self.frame = frame self.root = root # API Type ttk.Label(frame, text="API Type:", style='W.Label').grid(column=0, row=0, sticky='E', padx=8) self.api_type = ttk.Combobox(frame, state="readonly", values=["azure", "openai", "gemini"]) self.api_type.grid(column=1, row=0, padx=24, pady=5, sticky='EW') self.api_type.bind('<<ComboboxSelected>>', self.api_type_changed) # API Key ttk.Label(frame, text="API Key:", style='W.Label').grid(column=0, row=1, sticky='E', padx=8) self.api_key_entry = ttk.Entry(frame) self.api_key_entry.grid(column=1, row=1, padx=24, pady=5, sticky='EW') # API Host URL self.api_host_label = ttk.Label(frame, text="API Host URL:", style='W.Label') self.api_host_label.grid(column=0, row=2, sticky='E', padx=8) self.api_host_entry = ttk.Entry(frame) self.api_host_entry.grid(column=1, row=2, padx=24, pady=5, sticky='EW') # API Version self.api_version_label = ttk.Label(frame, text="API Version:", style='W.Label') self.api_version_label.grid(column=0, row=3, sticky='E', padx=8) self.api_version_entry = ttk.Entry(frame) self.api_version_entry.grid(column=1, row=3, padx=24, pady=5, sticky='EW') # GPT Model Name ttk.Label(frame, text="GPT Model Name:", style='W.Label').grid(column=0, row=4, sticky='E', padx=8) self.gpt_model = ttk.Entry(frame) self.gpt_model.grid(column=1, row=4, padx=24, pady=5, sticky='EW') # GPT Deployment Name self.gpt_deployment_label = ttk.Label(frame, text="GPT Deployment Name:", style='W.Label') self.gpt_deployment_label.grid(column=0, row=5, sticky='E', padx=8) self.gpt_deployment = ttk.Entry(frame) self.gpt_deployment.grid(column=1, row=5, padx=24, pady=5, sticky='EW') # Embeddings Model Name ttk.Label(frame, text="Embed Model Name:", style='W.Label').grid(column=0, row=6, sticky='E', padx=8) self.embeddings_model_entry = ttk.Entry(frame) self.embeddings_model_entry.grid(column=1, row=6, padx=24, pady=5, sticky='EW') # Embeddings Deployment Name self.embeddings_deployment_label = ttk.Label(frame, text="Embed Depl Name:", style='W.Label') self.embeddings_deployment_label.grid(column=0, row=7, sticky='E', padx=8) self.embeddings_deployment_entry = ttk.Entry(frame) self.embeddings_deployment_entry.grid(column=1, row=7, padx=24, pady=5, sticky='EW') # Prompt ttk.Label(frame, text="Prompt:", style='W.Label').grid(column=0, row=8, sticky='E', padx=8) self.prompt_entry = scrolledtext.ScrolledText(frame, wrap=tk.WORD, height=7) self.prompt_entry.configure(state='normal') self.prompt_entry.insert(INSERT, """You are a programmer who tries to complete tasks that your analytic team provides. They give you a task description and code they think might be relevant. Prepare all the necessary changes that are required for the task to be finished. If the team did not provide enough information, point out what information you still need. If you have enough information then your solutions for tasks should follow these guidelines without any additional explanation: - include only the code that needs to be modified/added, - print line numbers of the code snippet if a file was modified (use the standard with + prefix for added and - for deleted lines) - include in the changes also all the required imports - follow the coding style and conventions from the existing files - do not explain what the code does - explain only if there are some things that needs to be checked, before applying changes (vulnerabilities, ambiguity ... ) - if you think there are other files that need to be modified, but were not included in the question, point that out (use the project structure as reference) - do not create any comments in code snippets """) self.prompt_entry.grid(column=1, row=8, padx=24, pady=5) # Optional Settings ttk.Label(frame, text="Max input token length:", style='W.Label').grid(column=0, row=9, sticky='E', padx=8) self.max_tokens = ttk.Entry(frame) self.max_tokens.grid(column=1, row=9, padx=24, pady=5, sticky='EW') self.max_tokens.insert(INSERT, "64000") ttk.Label(frame, text="Number of threads:", style='W.Label').grid(column=0, row=10, sticky='E', padx=8) self.threads = ttk.Entry(frame) self.threads.insert(INSERT, "1") self.threads.grid(column=1, row=10, padx=24, pady=5, sticky='EW') def api_type_changed(self, event): self.root.isLlamaInitialized = False self.show_only_relevant_settings() def show_only_relevant_settings(self): if self.api_type.get() == "openai" or self.api_type.get() == "gemini": self.api_host_label.grid_remove() self.api_host_entry.grid_remove() self.api_version_label.grid_remove() self.api_version_entry.grid_remove() self.gpt_deployment_label.grid_remove() self.gpt_deployment.grid_remove() self.embeddings_deployment_label.grid_remove() self.embeddings_deployment_entry.grid_remove() if self.api_type.get() == "azure": self.api_host_label.grid(column=0, row=2, sticky='E', padx=8) self.api_host_entry.grid(column=1, row=2, padx=24, pady=5, sticky='EW') self.api_version_label.grid(column=0, row=3, sticky='E', padx=8) self.api_version_entry.grid(column=1, row=3, padx=24, pady=5, sticky='EW') self.gpt_deployment_label.grid(column=0, row=5, sticky='E', padx=8) self.gpt_deployment.grid(column=1, row=5, padx=24, pady=5, sticky='EW') self.embeddings_deployment_label.grid(column=0, row=7, sticky='E', padx=8) self.embeddings_deployment_entry.grid(column=1, row=7, padx=24, pady=5, sticky='EW') # Path: gui/tab_task.py class TaskTab: def __init__(self, root, frame): self.frame = frame self.root = root # Task Requirements ttk.Label(frame, text="Task Requirements:", style='W.Label').pack(fill=tk.X, padx=10, pady=(12, 2)) self.task_requirements_entry = scrolledtext.ScrolledText(frame, wrap=tk.WORD, height=7) self.task_requirements_entry.configure(state='normal') self.task_requirements_entry.pack(fill=tk.X, padx=10, pady=10) # Select project ttk.Label(frame, text="Selected Project:", style='W.Label').pack(fill=tk.X, padx=10, pady=2) self.selected_project = ttk.Combobox(frame) self.selected_project.pack(fill=tk.X, padx=10, pady=10) # Run Generation Button self.run_generation_button = ttk.Button(frame, text="Generate", command=self.generate_answer) self.run_generation_button.pack(padx=10, pady=10) # Clear chat Button self.run_generation_button = ttk.Button(frame, text="Clear chat", command=self.clear_chat) self.run_generation_button.pack(padx=10, pady=10) # Generation Response Field self.generation_response_frame = ttk.Frame(self.frame) self.generation_response = HtmlFrame(self.generation_response_frame) # Loading screen self.loading_frame = ttk.Frame(self.frame) self.loader = HtmlFrame(self.loading_frame) self.load_loading_page() def clear_chat(self): self.root.messages = [] self.load_web_page() def generate_answer(self): is_valid = validate(self.root, [ Properties.TASK_REQUIREMENTS, Properties.SELECTED_PROJECT, Properties.PROMPT, Properties.MAX_TOKENS, Properties.API_TYPE, ]) if not is_valid: return api_type = self.root.settings_tab.api_type.get() task_requirements = self.task_requirements_entry.get("1.0", tk.END) project_name = self.selected_project.get() prompt = self.root.settings_tab.prompt_entry.get("1.0", tk.END) max_tokens = self.root.settings_tab.max_tokens.get() init_llama_index(self.root, api_type) self.generation_response_frame.place_forget() self.loading_frame.place(y=380, x=0, relwidth=1, height=900) if not self.root.messages: self.root.messages.append( ChatMessage(role="system", content=prompt) ) try: thread = threading.Thread(target=question, args=( project_name, task_requirements, prompt, max_tokens, self.root )) thread.start() except Exception as e: messagebox.showerror("Error", "Error occurred while generating response: \n" + str(e)) self.root.messages = [] def load_web_page(self): tempfile.NamedTemporaryFile(mode='w') f = open("temp.html", 'w') f.write("<html><body style='background: rgb(28, 28, 28)'>") for message in self.root.messages: content = message.content.replace("\n", "<br>") if message.role == "system": continue if message.role == "user": f.write(f"<p style='color: rgb(255, 255, 255); font-size: 12px; font-family: Arial; margin-right: " f"40px; border-radius: 0 12px 12px 0; background: " f"rgb(117, 92, 129); padding: 10px;'>{content}</p>") if message.role == "assistant": f.write(f"<p style='color: rgb(255, 255, 255); font-size: 12px; font-family: Arial; margin-left: " f"40px; border-radius: 12px 0 0 12px; background: rgb(117, 92, 129); padding: 10px'>{content}</p>") f.write("</body></html>") f.flush() f.close() self.generation_response.load_file(os.path.abspath(f.name), force=True) self.generation_response.pack() return True def load_loading_page(self): temp_folder = getattr(sys, '_MEIPASS', os.path.dirname(os.path.abspath(__file__))) script_dir = os.path.dirname(os.path.abspath(__file__)) if temp_folder == script_dir: # Running as a Python script. loading_animation = os.path.abspath("assets/loading.png").replace('\\', '/') else: # Running as a PyInstaller bundle. loading_animation = os.path.join(temp_folder, 'loading.png').replace('\\', '/') tempfile.NamedTemporaryFile(mode='r') tempfile.NamedTemporaryFile(mode='w') f = open("loading.html", 'w') f.write(f"<html><body style='background-color: rgb(28, 28, 28)'><img src='file:///{loading_animation}' style" f"='width: 300px; height: 300px; margin: auto; display: block; padding-top: 100px'></body></html>") f.flush() f.close() self.loader.load_file(os.path.abspath("loading.html"), force=True) self.loader.pack() return True # Path: main.py import tkinter as tk import sv_ttk from tkinter import ttk from tkinter.ttk import Style from gui.tab_projects import ProjectsTab from gui.settings import load_settings, save_settings from gui.tab_settings import SettingsTab from gui.tab_task import TaskTab class Application(tk.Tk): def __init__(self): super().__init__() self.title("Amigo") self.geometry("900x1100") self.style = Style() self.isLlamaInitialized = False sv_ttk.set_theme("dark") self.messages = [] self.style.configure('W.TButton', font=('calibri', 18, 'bold', 'underline'), borderwidth='4') self.style.configure('W.Label', font=('calibri', 13, 'bold')) # Create the tab control self.tab_control = ttk.Notebook(self) # Create tabs self.settings_frame = ttk.Frame(self.tab_control) self.task_frame = ttk.Frame(self.tab_control) self.projects_frame = ttk.Frame(self.tab_control) # Add tabs to notebook self.tab_control.add(self.task_frame, text='Task') self.tab_control.add(self.projects_frame, text='Projects') self.tab_control.add(self.settings_frame, text='Settings') # Init UI self.settings_tab = SettingsTab(self, self.settings_frame) self.task_tab = TaskTab(self, self.task_frame) self.projects_tab = ProjectsTab(self, self.projects_frame) # Init settings self.settings_file = 'app_settings.json' load_settings(self) self.tab_control.pack(expand=1, fill="both") def on_close(self): save_settings(self) self.destroy() def main(self): self.protocol("WM_DELETE_WINDOW", self.on_close) self.mainloop()
if __name__ == "__main__":
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: quocanh34/magic-animate-modified # Path: magicanimate/models/attention.py class Transformer3DModel(ModelMixin, ConfigMixin): @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, norm_num_groups: int = 32, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, use_linear_projection: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, ): super().__init__() self.use_linear_projection = use_linear_projection self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim # Define input layers self.in_channels = in_channels self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) if use_linear_projection: self.proj_in = nn.Linear(in_channels, inner_dim) else: self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) # Define transformers blocks self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, ) for d in range(num_layers) ] ) # 4. Define output layers if use_linear_projection: self.proj_out = nn.Linear(in_channels, inner_dim) else: self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True): # Input assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." video_length = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") # JH: need not repeat when a list of prompts are given if encoder_hidden_states.shape[0] != hidden_states.shape[0]: encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length) batch, channel, height, weight = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) if not self.use_linear_projection: hidden_states = self.proj_in(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) else: inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) hidden_states = self.proj_in(hidden_states) # Blocks for block in self.transformer_blocks: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep, video_length=video_length ) # Output if not self.use_linear_projection: hidden_states = ( hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() ) hidden_states = self.proj_out(hidden_states) else: hidden_states = self.proj_out(hidden_states) hidden_states = ( hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() ) output = hidden_states + residual output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) if not return_dict: return (output,) return Transformer3DModelOutput(sample=output) # Path: magicanimate/models/resnet.py class Downsample3D(nn.Module): def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.padding = padding stride = 2 self.name = name if use_conv: self.conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding) else: raise NotImplementedError def forward(self, hidden_states): assert hidden_states.shape[1] == self.channels if self.use_conv and self.padding == 0: raise NotImplementedError assert hidden_states.shape[1] == self.channels hidden_states = self.conv(hidden_states) return hidden_states # Path: magicanimate/models/resnet.py class ResnetBlock3D(nn.Module): def __init__( self, *, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, temb_channels=512, groups=32, groups_out=None, pre_norm=True, eps=1e-6, non_linearity="swish", time_embedding_norm="default", output_scale_factor=1.0, use_in_shortcut=None, ): super().__init__() self.pre_norm = pre_norm self.pre_norm = True self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.time_embedding_norm = time_embedding_norm self.output_scale_factor = output_scale_factor if groups_out is None: groups_out = groups self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels is not None: if self.time_embedding_norm == "default": time_emb_proj_out_channels = out_channels elif self.time_embedding_norm == "scale_shift": time_emb_proj_out_channels = out_channels * 2 else: raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels) else: self.time_emb_proj = None self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) self.dropout = torch.nn.Dropout(dropout) self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if non_linearity == "swish": self.nonlinearity = lambda x: F.silu(x) elif non_linearity == "mish": self.nonlinearity = Mish() elif non_linearity == "silu": self.nonlinearity = nn.SiLU() self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut self.conv_shortcut = None if self.use_in_shortcut: self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, input_tensor, temb): hidden_states = input_tensor hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.conv1(hidden_states) if temb is not None: temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None] if temb is not None and self.time_embedding_norm == "default": hidden_states = hidden_states + temb hidden_states = self.norm2(hidden_states) if temb is not None and self.time_embedding_norm == "scale_shift": scale, shift = torch.chunk(temb, 2, dim=1) hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: input_tensor = self.conv_shortcut(input_tensor) output_tensor = (input_tensor + hidden_states) / self.output_scale_factor return output_tensor # Path: magicanimate/models/resnet.py class Upsample3D(nn.Module): def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.use_conv_transpose = use_conv_transpose self.name = name conv = None if use_conv_transpose: raise NotImplementedError elif use_conv: self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1) def forward(self, hidden_states, output_size=None): assert hidden_states.shape[1] == self.channels if self.use_conv_transpose: raise NotImplementedError # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 dtype = hidden_states.dtype if dtype == torch.bfloat16: hidden_states = hidden_states.to(torch.float32) # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 if hidden_states.shape[0] >= 64: hidden_states = hidden_states.contiguous() # if `output_size` is passed we force the interpolation output # size and do not make use of `scale_factor=2` if output_size is None: hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest") else: hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") # If the input is bfloat16, we cast back to bfloat16 if dtype == torch.bfloat16: hidden_states = hidden_states.to(dtype) hidden_states = self.conv(hidden_states) return hidden_states # Path: magicanimate/models/motion_module.py def get_motion_module( in_channels, motion_module_type: str, motion_module_kwargs: dict ): if motion_module_type == "Vanilla": return VanillaTemporalModule(in_channels=in_channels, **motion_module_kwargs,) else: raise ValueError # Path: magicanimate/models/unet_3d_blocks.py import torch from torch import nn from .attention import Transformer3DModel from .resnet import Downsample3D, ResnetBlock3D, Upsample3D from .motion_module import get_motion_module out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ] attentions = [] motion_modules = [] for _ in range(num_layers): if dual_cross_attention: raise NotImplementedError attentions.append( Transformer3DModel( attn_num_head_channels, in_channels // attn_num_head_channels, in_channels=in_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, ) ) motion_modules.append( get_motion_module( in_channels=in_channels, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) if use_motion_module else None ) resnets.append( ResnetBlock3D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) self.motion_modules = nn.ModuleList(motion_modules) def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None): hidden_states = self.resnets[0](hidden_states, temb) for attn, resnet, motion_module in zip(self.attentions, self.resnets[1:], self.motion_modules): hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states hidden_states = resnet(hidden_states, temb) return hidden_states class CrossAttnDownBlock3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, cross_attention_dim=1280, output_scale_factor=1.0, downsample_padding=1, add_downsample=True, dual_cross_attention=False, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): super().__init__() resnets = [] attentions = [] motion_modules = [] self.has_cross_attention = True self.attn_num_head_channels = attn_num_head_channels for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock3D( in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: JonatanNevo/better-iptables # Path: iptables/enums.py class ConnbytesDirection(str, Enum): ORIGINAL = "original" REPLY = "reply" BOTH = "both" # Path: iptables/enums.py class ConnbytesMode(str, Enum): BYTES = "bytes" PACKETS = "packets" AVGERAGE = "avgpkt" # Path: iptables/enums.py class ConntrackStates(str, Enum): INVALID = "INVALID" ESTABLISHED = "ESTABLISHED" RELATED = "RELATED" UNTRACKED = "UNTRACKED" SNAT = "SNAT" DNAT = "DNAT" NEW = "NEW" # Path: iptables/enums.py class ConntrackStatus(str, Enum): NONE = "NONE" EXPECTED = "EXPECTED" SEEN_REPLY = "SEEN_REPLY" ASSURED = "ASSURED" CONFIRMED = "CONFIRMED" # Path: iptables/enums.py class ConntrackDirection(str, Enum): ORIGINAL = "original" REPLY = "reply" # Path: iptables/enums.py class LimitUnits(str, Enum): SECOND = "second" MINUTE = "minute" HOUR = "hour" DAY = "day" # Path: iptables/enums.py class State(str, Enum): INVALID = "INVALID" ESTABLISHED = "ESTABLISHED" NEW = "NEW" RELATED = "RELATED" UNTRACKED = "UNTRACKED" # Path: iptables/enums.py class TcpFlags(str, Enum): SYN = "SYN" ACK = "ACK" FIN = "FIN" RST = "RST" URG = "URG" PSH = "PSH" ALL = "ALL" NONE = "NONE" # Path: iptables/enums.py class Targets(str, Enum): ACCEPT = "ACCEPT" DROP = "DROP" RETURN = "RETURN" AUDIT = "AUDIT" CHECKSUM = "CHECKSUM" CLASSIFY = "CLASSIFY" CLUSTERIP = "CLUSTERIP" CONNMARK = "CONNMARK" CONNSECMARK = "CONNSECMARK" CT = "CT" DNAT = "DNAT" DNPT = "DNPT" DSCP = "DSCP" ECN = "ECN" HL = "HL" HMARK = "HMARK" IDLETIMER = "IDLETIMER" LED = "LED" LOG = "LOG" MARK = "MARK" MASQUERADE = "MASQUERADE" NETMAP = "NETMAP" NFLOG = "NFLOG" NFQUEUE = "NFQUEUE" NOTRACK = "NOTRACK" RATEEST = "RATEEST" REDIRECT = "REDIRECT" REJECT = "REJECT" SECMARK = "SECMARK" SET = "SET" SNAT = "SNAT" SNPT = "SNPT" SYNPROXY = "SYNPROXY" TCPMSS = "TCPMSS" TCPOPTSTRIP = "TCPOPTSTRIP" TEE = "TEE" TOS = "TOS" TPROXY = "TPROXY" TRACE = "TRACE" TTL = "TTL" ULOG = "ULOG" # Path: iptables/enums.py class Protocols(str, Enum): TCP = "tcp" UDP = "udp" ICMP = "icmp" ALL = "all" # Path: iptables/enums.py class Tables(str, Enum): FILTER = "filter" NAT = "nat" MANGLE = "mangle" RAW = "raw" SECURITY = "security" # Path: iptables/enums.py class Chains(str, Enum): INPUT = "INPUT" FORWARD = "FORWARD" OUTPUT = "OUTPUT" PREROUTING = "PREROUTING" POSTROUTING = "POSTROUTING" # Path: iptables/enums.py class Actions(str, Enum): APPEND = "-A" DELETE = "-D" INSERT = "-I" REPLACE = "-R" CHECK = "-C" LIST = "-L" FLUSH = "-F" ZERO = "-Z" NEW_CHAIN = "-N" DELETE_CHAIN = "-X" RENAME_CHAIN = "-E" POLICY = "-P" LIST_RULES = "-S" # Path: iptables/enums.py class RejectType(str, Enum): ICMP_NET_UNREACHABLE = "icmp-net-unreachable" ICMP_HOST_UNREACHABLE = "icmp-host-unreachable" ICMP_PORT_UNREACHABLE = "icmp-port-unreachable" ICMP_PROT_UNREACHABLE = "icmp-proto-unreachable" ICMP_NET_PROHIBITED = "icmp-net-prohibited" ICMP_HOST_PROHIBITED = "icmp-host-prohibited" ICMP_ADMIN_PROHIBITED = "icmp-admin-prohibited" TCP_RESET = "tcp-reset" ICMP6_NO_ROUTE = "icmp6-no-route" NO_ROUTE = "no-route" ICMP6_ADM_PROHIBITED = "icmp6-adm-prohibited" ADM_PROHIBITED = "adm-prohibited" ICMP6_ADDR_UNREACHABLE = "icmp6-addr-unreachable" ADDR_UNREACHABLE = "addr-unreach" ICMP6_PORT_UNREACHABLE = "icmp6-port-unreachable" # Path: iptables/exceptions.py class IPTablesError(Exception): pass # Path: iptables/exceptions.py class IPVersionError(IPTablesError): def __init__(self): super().__init__("ipv4 and ipv6 cannot be both True") # Path: iptables/exceptions.py class ConnbytesError(IPTablesError): def __init__(self): super().__init__("connbytes must be in the format of 'bytes:bytes'") # Path: iptables/exceptions.py class ConnlimitAddrError(IPTablesError): def __init__(self): super().__init__("saddr and daddr cannot be both True") # Path: iptables/exceptions.py class MultiportSourceAndDestinationError(IPTablesError): def __init__(self): super().__init__("source_ports and destination_ports cannot be both True") # Path: iptables/exceptions.py class MultiportPortsAndOtherError(IPTablesError): def __init__(self): super().__init__("ports cannot be used with source_ports or destination_ports") # Path: iptables/exceptions.py class MultiportFormatError(IPTablesError): def __init__(self): super().__init__("ports must be an int or a string in format of 'port:port'") # Path: iptables/iptables.py import dataclasses import re from enum import Enum from typing import Optional, Union, List, Tuple from typing_extensions import Self from iptables.enums import ConnbytesDirection, ConnbytesMode, ConntrackStates, ConntrackStatus, ConntrackDirection, \ LimitUnits, State, TcpFlags, Targets, Protocols, Tables, Chains, Actions, RejectType from iptables.exceptions import IPTablesError, IPVersionError, ConnbytesError, ConnlimitAddrError, \ MultiportSourceAndDestinationError, MultiportPortsAndOtherError, MultiportFormatError return self def connmark(self, mark: int, mask: Optional[int] = None) -> Self: if mask: parameters = [("mark", f"{mark}/{mask}")] else: parameters = [("mark", mark)] self._modules.append(Module(module="connmark", parameters=parameters)) return self def conntrack( self, *, state: Optional[List[ConntrackStates]] = None, status: Optional[List[ConntrackStatus]] = None, protocol: Optional[Protocols] = None, original_source: Optional[str] = None, original_source_port: Optional[int] = None, original_destination: Optional[str] = None, original_destination_port: Optional[int] = None, reply_source: Optional[str] = None, reply_source_port: Optional[int] = None, reply_destination: Optional[str] = None, reply_destination_port: Optional[int] = None, expire: Optional[int] = None, direction: Optional[ConntrackDirection] = None, ) -> Self: parameters = [] if state: parameters.append(("ctstate", ",".join(state))) if status: parameters.append(("ctstatus", ",".join(status))) if protocol: parameters.append(("ctproto", protocol)) if original_source: parameters.append(("ctorigsrc", original_source)) if original_source_port: parameters.append(("ctorigsrcport", original_source_port)) if original_destination: parameters.append(("ctorigdst", original_destination)) if original_destination_port: parameters.append(("ctorigdstport", original_destination_port)) if reply_source: parameters.append(("ctreplsrc", reply_source)) if reply_source_port: parameters.append(("ctreplsrcport", reply_source_port)) if reply_destination: parameters.append(("ctrepldst", reply_destination)) if reply_destination_port: parameters.append(("ctrepldstport", reply_destination_port)) if expire: parameters.append(("ctexpire", expire)) if direction: parameters.append(("ctdir", direction)) self._modules.append(Module(module="conntrack", parameters=parameters)) return self def cpu(self, cpu: int) -> Self: self._modules.append(Module(module="cpu", parameters=[("cpu", str(cpu))])) return self def limit(self, rate: int = 3, units: LimitUnits = LimitUnits.HOUR, burst: int = 5) -> Self: self._modules.append(Module(module="limit", parameters=[("limit", f"{rate}/{units}"), ("limit-burst", burst)])) return self def mac(self, mac: str) -> Self: self._modules.append(Module(module="mac", parameters=[("mac-source", mac)])) return self def mark(self, mark: int, mask: Optional[int] = None) -> Self: if mask: parameters = [("mark", f"{mark}/{mask}")] else: parameters = [("mark", mark)] self._modules.append(Module(module="mark", parameters=parameters)) return self def multiport( self, source_ports: Optional[List[Union[int, str]]] = None, destination_ports: Optional[List[Union[int, str]]] = None, ports: Optional[List[Union[int, str]]] = None ) -> Self: if source_ports and destination_ports: raise MultiportSourceAndDestinationError if ports and (source_ports or destination_ports): raise MultiportPortsAndOtherError for port_type, port_list in [("ports", ports), ("source-ports", source_ports), ("destination-ports", destination_ports)]: for port in port_list: if isinstance(port, str) and not re.match("\d*:\d*", port): raise MultiportFormatError parameters = [(port_type, ",".join(port_list))] self._modules.append(Module(module="multiport", parameters=parameters)) return self def state(self, state: State) -> Self: self._modules.append(Module(module="state", parameters=[("state", state)])) return self def tcp( self, syn: bool = False, option: Optional[int] = None, flags: Optional[Tuple[List[TcpFlags], List[TcpFlags]]] = None, source_port: Optional[Union[int, str]] = None, destination_port: Optional[Union[int, str]] = None ) -> Self: parameters = [] if syn: parameters.append(("syn", None)) if option: parameters.append(("tcp-option", option)) if flags: mask, comp = flags mask_list = ",".join(mask) comp_list = ",".join(comp)
parameters.append(("tcp-flags", f"{mask_list} {comp_list}"))
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: daihaojun554/biliscrapy # Path: biliscrapy/models.py class BiliDanmu(models.Model): _id = models.CharField(max_length=255) cid = models.CharField(max_length=255) content = models.TextField() color = models.CharField(max_length=255) fontsize = models.IntegerField() midHash = models.CharField(max_length=255) mode = models.CharField(max_length=255) progress = models.FloatField() ctime = models.DateTimeField() def __str__(self): return self.content # Path: biliscrapy/models.py class BiliComment(models.Model): avid = models.CharField(max_length=255) uname = models.CharField(max_length=255) # 最高等级就是6级 current_level = models.IntegerField() # 用户等级 like = models.IntegerField() # 用户性别 男 女 保密 sex = models.CharField(max_length=10) ctime = models.DateTimeField() message = models.TextField() def __str__(self): return self.message # Path: biliscrapy/models.py class BiliVideo(models.Model): bvid = models.CharField(max_length=30, unique=True) avid = models.IntegerField(unique=True) oid = models.IntegerField(unique=True) title = models.CharField(max_length=100) author = models.CharField(max_length=100) tag = models.CharField(max_length=100) pubdate = models.DateField() pic = models.URLField() desc = models.TextField() danmu_fetched = models.BooleanField(default=False) comment_fetched = models.BooleanField(default=False) danmaku_count = models.IntegerField(default=0) comment_count = models.IntegerField(default=0) def __str__(self): return self.title # Path: biliscrapy/models.py class Card(models.Model): card_code = models.CharField(max_length=100, unique=True) expiration_date = models.DateTimeField() last_used_address = models.GenericIPAddressField(null=True, blank=True) is_used = models.BooleanField(default=False) # action = models.CharField(max_length=100) # is_active = models.BooleanField(default=True) # is_expired = models.BooleanField(default=False) # count = models.IntegerField(default=0) def __str__(self): return self.card_code # Path: biliscrapy/network/bilibili_comment.py class Comments: def __init__(self): script_dir = os.path.dirname(os.path.abspath(__file__)) # 构建文件路径 file_path = os.path.join(script_dir, 'bilibili_cookies.json') if not file_path: self.cookies = {} with open(file_path, 'r', encoding='utf-8') as file: self.cookies_data = json.load(file) self.cookies = {cookie['name']: cookie['value'] for cookie in self.cookies_data} self.utils = bili_utils() self.logger = logging.getLogger('log') def extract_comments(self, replies): extracted_comments = [] if not replies: return extracted_comments for reply in replies: extracted_comment = { 'uname': reply['member']['uname'], 'current_level': reply['member']['level_info']['current_level'], 'like': reply['like'], 'sex': reply['member']['sex'], 'ctime': reply['ctime'], 'message': reply['content']['message'] } extracted_comments.append(extracted_comment) if 'replies' in reply and reply['replies']: nested_replies = self.extract_comments(reply['replies']) extracted_comments.extend(nested_replies) return extracted_comments def get_comments(self, bvorurl): self.logger.info("Getting comments for bvorurl:{}".format(bvorurl)) bv = self.utils.bv_get(bvorurl) avid = self.utils.bv2av(bv) count = 1 while avid is None: avid = self.utils.bv2av(bv) count += 1 self.logger.info(f"avid is None, retrying...count is {count}") time.sleep(3) self.logger.info(f"avid===>{avid}") comments = [] # 使用列表存储评论 # 获取评论总数和每页评论数量 # 计算总页数 page_num = 1 page_size = 20 while True: url = f'https://api.bilibili.com/x/v2/reply?type=1&oid={avid}&sort=2&pn={page_num}&ps={page_size}' response = requests.get(url, headers=headers, cookies=self.cookies) data = response.json() if data['code'] != 0: break # 提取回复信息 extracted_data = self.extract_comments(data['data']['replies']) # 过滤重复的评论 new_comments = [comment for comment in extracted_data if comment not in comments] comments.extend(new_comments) # 将新的评论添加到列表中 self.logger.info(f"提取到了{len(new_comments)}条评论,从第 {page_num} 页") if len(new_comments) == 0: self.logger.info("提取完毕所有评论,共提取到{}条评论!=====>avid{}".format(len(comments), avid)) break # 判断是否有下一页 total_count = data['data']['page']['count'] total_pages = (total_count + page_size - 1) // page_size # 计算总页数 if page_num >= total_pages: self.logger.info("提取完毕所有评论,共提取到{}条评论!=====>avid{}".format(len(comments), avid)) break # 构建下一页的URL page_num += 1 self.logger.info("开始提取第{}页评论".format(page_num)) time.sleep(random.uniform(0.5, 1.5)) self.logger.info(f"总共{len(comments)}条评论!") # 写入JSON文件 os.makedirs("./data/comment/", exist_ok=True) # 创建多层目录 file_path = f'./data/comment/{avid}_{page_num}-{page_size}_{len(comments)}.json' if len(comments) < 2000: with open(file_path, 'w', encoding='utf-8') as f: json.dump(comments, f, indent=4, ensure_ascii=False) return comments # Path: biliscrapy/network/bilibili_utils.py class bili_utils: def __init__(self): self.logger = logging.getLogger('log') self.header = headers self.script_dir = os.path.dirname(os.path.abspath(__file__)) file_path = os.path.join(self.script_dir, 'bilibili_cookies.json') with open(file_path, 'r') as file: self.cookies_data = json.load(file) self.cookies = {cookie['name']: cookie['value'] for cookie in self.cookies_data} def bv_get(self, bvorurl): # https://api.bilibili.com/x/web-interface/view?bvid=BV1uG41197Tf # 将bv提取出来 bv_identifier = "BV" # BV号的标识符 if "http://" in bvorurl or "https://" in bvorurl: # 检查是否是一个URL self.logger.info("你输入的是http链接,正在解析...") bv_index = bvorurl.find(bv_identifier) if bv_index != -1: # 如果找到了BV号 bv = bvorurl[bv_index:bv_index + len(bv_identifier) + 10] # 提取BV号 self.logger.info(f"BV号为......: {bv}") return bv else: self.logger.info("你输入的链接地址有误!") return elif bv_identifier in bvorurl: # 如果输入的是BV号 self.logger.info(f"你输入的是BV号{bvorurl},正在解析...") bv = bvorurl return bv else: self.logger.info(f"请输入正确的链接地址或BV号!,{bvorurl}") return "BV1111111111" ''' av 就是 oid 评论里面的参数 ''' def bv2av(self, bv): bv2av_url = 'https://api.bilibili.com/x/web-interface/view?bvid=' if bv.startswith("BV"): url = bv2av_url + str(bv) retry_count = 0 max_retries = 10 retry_delay = 1 # seconds while retry_count < max_retries: try: response = requests.get(url,headers=headers,cookies=self.cookies) response.raise_for_status() # 检查请求是否成功 data = response.json() # self.logger.info(data) if 'data' in data and 'aid' in data['data']: avid = data['data']['aid'] self.logger.info(f"找到的avid{avid}") return avid else: self.logger.info("未找到有效的aid值,正在重新尝试获取...") retry_count += 1 time.sleep(retry_delay) except (requests.RequestException, ValueError) as e: self.logger.info(f"请求发生错误:{e}") retry_count += 1 self.logger.info("服务器返回错误!请稍后再试!") self.logger.info(f"正在重新尝试获取aid,尝试次数==>{retry_count}") time.sleep(retry_delay) return None ''' cid 是弹幕用的参数 ''' def bv2cid(self, bv): url = f"https://api.bilibili.com/x/player/pagelist?bvid={str(bv)}&jsonp=jsonp" retry_count = 1 json_s = requests.get(url,headers=headers,cookies=self.cookies).json() self.logger.info("bv====》"+bv) if json_s['code'] == 0: cid = json_s['data'][0]['cid'] self.logger.info("提取出来的cid是:" + str(cid)) return cid else: self.logger.error("服务器返回错误!请稍后再试!") retry_count+=1 if retry_count > 10: self.logger.error("尝试次数过多,请稍后再试!") return None else: self.logger.error("正在重新尝试获取cid,尝试次数==>" + str(retry_count)) return self.bv2cid(bv) def get_bilibili_cookies(self): options = webdriver.ChromeOptions() # options.add_argument('--headless') # options.add_argument('--disable-gpu') # 动态获取路径 不用每次都手动输入路径 # chromedriver.exe 的路径 # 获取当前脚本的绝对路径 current_path = os.path.dirname(os.path.abspath(__file__)) # 构建 chromedriver 的绝对路径 driver_path = os.path.join(current_path, 'chromedriver.exe') # 创建 WebDriver 服务 service = Service(driver_path) # service = Service('./chromedriver.exe') options.add_argument('--no-sandbox') options.binary_location='C:\\Program Files\\Google\\chrome-win64\\chrome.exe' driver = webdriver.Chrome(options=options, service=service) # 打开 Bilibili 网站 driver.get('https://www.bilibili.com/') # login_btn = WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.CSS_SELECTOR, '#i_cecream > div.bili-feed4 > div.bili-header.large-header > div.bili-header__bar > ul.right-entry > li:nth-child(1) > li > div.right-entry__outside.go-login-btn'))) login_btn.click() # 等待登录完成成 time.sleep(10) driver.get('https://www.bilibili.com/') # 在这里,模拟登录流程(需要输入账号和密码) # 扫码登录然后,等待完成,完成的条件是屏幕上出现了某个 search = WebDriverWait(driver, 20).until( EC.presence_of_element_located((By.CSS_SELECTOR, '#nav-searchform > div.nav-search-btn'))) search.click() time.sleep(3) cookies = driver.get_cookies() # 获取当前脚本的路径 current_path = os.path.dirname(os.path.abspath(__file__)) with open(os.path.join(current_path, 'bilibili_cookies.json'), 'w') as f: # 写入当前文件 f.write(json.dumps(cookies)) # 写入成功 self.logger.info('写入成功{}'.format(cookies)) driver.quit() return def get_info_by_bv(self, bv): url = f"https://api.bilibili.com/x/web-interface/view?bvid={str(bv)}" def try_get(url): try: response = requests.get(url, headers=self.header, cookies=self.cookies) js_str = response.json() if js_str.get('code', 0) == 0: return js_str['data'] else: # 可能需要根据API的设计,记录不同的错误 self.logger.error( f"Video API returned non-success code: {js_str.get('code', 'Unknown')} with message: {js_str.get('msg', 'Unknown')}") except requests.exceptions.RequestException as e: self.logger.error(f"An error occurred: {e}") return None result = None retry_count = 10 for _ in range(retry_count): result = try_get(url) if result: break return result # 检查url是否合法 def check_url(self, url): if url.startswith("BV"): return True elif url.startswith("https://www.bilibili.com/"): return True else: return False # Path: biliscrapy/network/bilibili_video.py class Video: def __init__(self): script_path = os.path.dirname(os.path.abspath(__file__)) self.dir_path = os.path.join(script_path, 'data', 'video') os.makedirs(self.dir_path, exist_ok=True) self.utils = bili_utils() self.script_dir = os.path.dirname(os.path.abspath(__file__)) # 构建文件路径 file_path = os.path.join(self.script_dir, 'bilibili_cookies.json') if not file_path: self.cookies = {} with open(file_path, 'r') as file: self.cookies_data = json.load(file) self.cookies = {cookie['name']: cookie['value'] for cookie in self.cookies_data} self.headers = headers self.logger = logging.getLogger('log') def get_video_info(self, url: str) -> str: """ 从给定的URL中提取视频信息。 :param url: 要获取信息的视频的URL。 :return: 返回包含视频信息的JSON字符串,如果URL无效,则返回字符串'invalid url'。 """ try: isValid = self.utils.check_url(url) if not isValid: return 'url is invalid' resp = requests.get(url, headers=self.headers, cookies=self.cookies) cont = re.compile(r".*?window.__playinfo__=(?P<info1>.*?);\(function\(\)", re.S) a = cont.search(resp.text, re.S) info = a.group('info1').replace("</script><script>window.__INITIAL_STATE__=", ',') return f"[{info}]" except requests.RequestException as e: self.logger.error("Error occurred while getting video info: {}".format(str(e))) return '' def download_file(self, url, filename): """ 下载文件的函数 参数: url (str): 要下载的文件的URL filename (str): 下载的文件保存的路径和文件名 """ try: response = requests.get(url, headers=self.headers, stream=True, cookies=self.cookies) total_size = int(response.headers.get('Content-Length', 0)) block_size = 1024 progress_bar = tqdm(total=total_size, unit='B', unit_scale=True) with open(os.path.join(self.dir_path, filename), 'wb') as file: for data in response.iter_content(block_size): file.write(data) progress_bar.update(len(data)) progress_bar.close() self.logger.info("Downloading file.{}".format(filename)) except requests.exceptions.RequestException as e: self.logger.error("Error occurred while downloading the file: {}".format(str(e))) def merge_video_audio(self, video_file, audio_file): """ 合并视频和音频文件。 参数: self: 类自身引用。 video_file: 视频文件路径。 audio_file: 音频文件路径。 返回值: 无 异常: 如果视频文件或音频文件不存在,则会打印错误消息并返回。 注意: 合并后的文件以视频文件的基础名称和 '.mp4' 扩展名的形式保存。 原始视频和音频文件在合并成功后会被删除。 """ if not os.path.isfile(os.path.join(self.dir_path, video_file)): print(f"Error: {video_file} 不是文件或不存在。") return if not os.path.isfile(os.path.join(self.dir_path, audio_file)): print(f"Error: {audio_file} 不是文件或不存在。") return # 合并视频和音频文件 # 使用ffmpeg命令行工具将视频和音频文件合并为mp4格式文件 cmd = f"ffmpeg -i {os.path.join(self.dir_path, video_file)} -i {os.path.join(self.dir_path, audio_file)} -c:v copy -c:a aac -strict experimental {os.path.join(self.dir_path, video_file.replace('.flv', ''))}.mp4" self.logger.info(cmd) try: os.system(cmd) except Exception as e: print(f"运行 ffmpeg 时发生错误: {e}") return # 检查合并后的文件是否成功创建 output_file = os.path.splitext(os.path.basename(video_file))[0] + '.mp4' if not os.path.isfile(os.path.join(self.dir_path, output_file)): print("文件合并失败。") return # 删除原始视频和音频文件 os.remove(os.path.join(self.dir_path, video_file)) os.remove(os.path.join(self.dir_path, audio_file)) self.logger.info(f"成功合并视频和音频,------->{output_file}") # Path: biliscrapy/views.py import time from django.core.paginator import Paginator from django.shortcuts import render, redirect from django.utils.timezone import make_aware from .models import BiliDanmu, BiliComment, BiliVideo, Card from .network.bilibili_danmu import * from .network.bilibili_comment import Comments from .network.bilibili_utils import bili_utils from .network.bilibili_video import Video from django.utils import timezone from django.http import JsonResponse, HttpResponse logger.error("error~~~~~~~~~") logger.error(e) # 如果视频记录不存在,则创建新的视频记录 info = utils.get_info_by_bv(bvid) logger.info("info---->{}".format(info)) if info is None: return render(request, 'danmaku.html', context) cid = utils.bv2cid(bvid) logger.info(f'{cid}, cid') video = BiliVideo(bvid=bvid, avid=info['aid'], oid=cid, title=info['title'], author=info['owner']['name'], tag=info['tname'], pubdate=make_aware(datetime.fromtimestamp(info['pubdate'])), pic=info['pic'], desc=info['desc'], danmu_fetched=True, danmaku_count=danmaku_count ) # 设置弹幕抓取状态 video.save() logger.info("新视频信息已添加") # 查询数据库并返回结果 # 查询数据库并返回结果 danmakus = BiliDanmu.objects.filter(cid=cid).values().order_by('ctime') paginator = Paginator(danmakus, 15) # 每页显示10条记录 page_number = request.POST.get('page') if request.POST.get('page') else 1 # 获取页码参数 page_obj = paginator.get_page(page_number) # 获取对应页码的数据 print(paginator.count) context = { "url": url, 'result': 'error', 'bvid': bv, 'total': paginator.count, 'data': page_obj, 'new_request': not bvid_exists, } if len(danmakus) > 0: context['result'] = 'success' return render(request, 'danmaku.html', context) return render(request, 'danmaku.html') def comment(request): if request.method == 'POST': bv = request.POST.get('bv') # 获取用户输入的 BV 号或链接 url = bv context = { 'result': 'error', 'data': [], 'message': '请输入正确的链接地址或BV号!', 'cid': '' } c = Comments() bv_ = utils.bv_get(bv) if bv.startswith("https://www.bilibili.com/video/BV") or bv.startswith( "BV") or bv.startswith("bv") else bv logger.info(f'bv_====>{bv_}') vv = BiliVideo.objects.filter(bvid=bv_).values() # logger.info(vv[0]['avid'], 'sadjkaskjadssajasjdsjkaaashhakads') av = utils.bv2av(bv_) av_count = 1 while av is None: logger.info(f"av is None, retrying...{av_count}") av_count += 1 av = utils.bv2av(bv_) avid = vv[0]['avid'] if vv else av logger.info(f"avid=====>{avid}") if avid is None: context = { 'result': 'error', 'data': [], 'message': 'b站服务器返回错误,请重新尝试' } return render(request, 'comment.html', context) comments_exist = BiliComment.objects.filter(avid=avid).exists() if not comments_exist: comments = c.get_comments(bv) comment_obj = [BiliComment( avid=avid, uname=cmt['uname'], current_level=cmt['current_level'], like=cmt['like'], sex=cmt['sex'], ctime=make_aware(datetime.fromtimestamp(cmt['ctime'])), message=cmt['message'] ) for cmt in comments] BiliComment.objects.bulk_create(comment_obj) bili_comment_count = BiliComment.objects.filter(avid=avid).count() try: # 尝试更新视频的抓取弹幕的状态 video = BiliVideo.objects.get(avid=avid) video.comment_fetched = True video.comment_count = bili_comment_count video.save() except BiliVideo.DoesNotExist: # 如果视频记录不存在,则创建新的视频记录 info = utils.get_info_by_bv(bv_) if info is None: return render(request, 'comment.html', context) cid = utils.bv2cid(bv_) # 如果cid 为空的话就一直重新尝试获取cid cid_count = 1 while cid is None: cid = utils.bv2cid(bv_) logger.info(f'{cid}, cid,尝试了{cid_count}次') cid_count += 1 time.sleep(3) video = BiliVideo(avid=avid, bvid=bv_, oid=cid, title=info['title'], author=info['owner']['name'], tag=info['tname'], pubdate=make_aware(datetime.fromtimestamp(info['pubdate'])), pic=info['pic'], desc=info['desc'], comment_fetched=True, comment_count=bili_comment_count ) # 设置弹幕抓取状态
video.save()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: mjavadpur/Sadtalker_LongVideos # Path: src/face3d/models/bfm.py class ParametricFaceModel: def __init__(self, bfm_folder='./BFM', recenter=True, camera_distance=10., init_lit=np.array([ 0.8, 0, 0, 0, 0, 0, 0, 0, 0 ]), focal=1015., center=112., is_train=True, default_name='BFM_model_front.mat'): if not os.path.isfile(os.path.join(bfm_folder, default_name)): transferBFM09(bfm_folder) model = loadmat(os.path.join(bfm_folder, default_name)) # mean face shape. [3*N,1] self.mean_shape = model['meanshape'].astype(np.float32) # identity basis. [3*N,80] self.id_base = model['idBase'].astype(np.float32) # expression basis. [3*N,64] self.exp_base = model['exBase'].astype(np.float32) # mean face texture. [3*N,1] (0-255) self.mean_tex = model['meantex'].astype(np.float32) # texture basis. [3*N,80] self.tex_base = model['texBase'].astype(np.float32) # face indices for each vertex that lies in. starts from 0. [N,8] self.point_buf = model['point_buf'].astype(np.int64) - 1 # vertex indices for each face. starts from 0. [F,3] self.face_buf = model['tri'].astype(np.int64) - 1 # vertex indices for 68 landmarks. starts from 0. [68,1] self.keypoints = np.squeeze(model['keypoints']).astype(np.int64) - 1 if is_train: # vertex indices for small face region to compute photometric error. starts from 0. self.front_mask = np.squeeze(model['frontmask2_idx']).astype(np.int64) - 1 # vertex indices for each face from small face region. starts from 0. [f,3] self.front_face_buf = model['tri_mask2'].astype(np.int64) - 1 # vertex indices for pre-defined skin region to compute reflectance loss self.skin_mask = np.squeeze(model['skinmask']) if recenter: mean_shape = self.mean_shape.reshape([-1, 3]) mean_shape = mean_shape - np.mean(mean_shape, axis=0, keepdims=True) self.mean_shape = mean_shape.reshape([-1, 1]) self.persc_proj = perspective_projection(focal, center) self.device = 'cpu' self.camera_distance = camera_distance self.SH = SH() self.init_lit = init_lit.reshape([1, 1, -1]).astype(np.float32) def to(self, device): self.device = device for key, value in self.__dict__.items(): if type(value).__module__ == np.__name__: setattr(self, key, torch.tensor(value).to(device)) def compute_shape(self, id_coeff, exp_coeff): """ Return: face_shape -- torch.tensor, size (B, N, 3) Parameters: id_coeff -- torch.tensor, size (B, 80), identity coeffs exp_coeff -- torch.tensor, size (B, 64), expression coeffs """ batch_size = id_coeff.shape[0] id_part = torch.einsum('ij,aj->ai', self.id_base, id_coeff) exp_part = torch.einsum('ij,aj->ai', self.exp_base, exp_coeff) face_shape = id_part + exp_part + self.mean_shape.reshape([1, -1]) return face_shape.reshape([batch_size, -1, 3]) def compute_texture(self, tex_coeff, normalize=True): """ Return: face_texture -- torch.tensor, size (B, N, 3), in RGB order, range (0, 1.) Parameters: tex_coeff -- torch.tensor, size (B, 80) """ batch_size = tex_coeff.shape[0] face_texture = torch.einsum('ij,aj->ai', self.tex_base, tex_coeff) + self.mean_tex if normalize: face_texture = face_texture / 255. return face_texture.reshape([batch_size, -1, 3]) def compute_norm(self, face_shape): """ Return: vertex_norm -- torch.tensor, size (B, N, 3) Parameters: face_shape -- torch.tensor, size (B, N, 3) """ v1 = face_shape[:, self.face_buf[:, 0]] v2 = face_shape[:, self.face_buf[:, 1]] v3 = face_shape[:, self.face_buf[:, 2]] e1 = v1 - v2 e2 = v2 - v3 face_norm = torch.cross(e1, e2, dim=-1) face_norm = F.normalize(face_norm, dim=-1, p=2) face_norm = torch.cat([face_norm, torch.zeros(face_norm.shape[0], 1, 3).to(self.device)], dim=1) vertex_norm = torch.sum(face_norm[:, self.point_buf], dim=2) vertex_norm = F.normalize(vertex_norm, dim=-1, p=2) return vertex_norm def compute_color(self, face_texture, face_norm, gamma): """ Return: face_color -- torch.tensor, size (B, N, 3), range (0, 1.) Parameters: face_texture -- torch.tensor, size (B, N, 3), from texture model, range (0, 1.) face_norm -- torch.tensor, size (B, N, 3), rotated face normal gamma -- torch.tensor, size (B, 27), SH coeffs """ batch_size = gamma.shape[0] v_num = face_texture.shape[1] a, c = self.SH.a, self.SH.c gamma = gamma.reshape([batch_size, 3, 9]) gamma = gamma + self.init_lit gamma = gamma.permute(0, 2, 1) Y = torch.cat([ a[0] * c[0] * torch.ones_like(face_norm[..., :1]).to(self.device), -a[1] * c[1] * face_norm[..., 1:2], a[1] * c[1] * face_norm[..., 2:], -a[1] * c[1] * face_norm[..., :1], a[2] * c[2] * face_norm[..., :1] * face_norm[..., 1:2], -a[2] * c[2] * face_norm[..., 1:2] * face_norm[..., 2:], 0.5 * a[2] * c[2] / np.sqrt(3.) * (3 * face_norm[..., 2:] ** 2 - 1), -a[2] * c[2] * face_norm[..., :1] * face_norm[..., 2:], 0.5 * a[2] * c[2] * (face_norm[..., :1] ** 2 - face_norm[..., 1:2] ** 2) ], dim=-1) r = Y @ gamma[..., :1] g = Y @ gamma[..., 1:2] b = Y @ gamma[..., 2:] face_color = torch.cat([r, g, b], dim=-1) * face_texture return face_color def compute_rotation(self, angles): """ Return: rot -- torch.tensor, size (B, 3, 3) pts @ trans_mat Parameters: angles -- torch.tensor, size (B, 3), radian """ batch_size = angles.shape[0] ones = torch.ones([batch_size, 1]).to(self.device) zeros = torch.zeros([batch_size, 1]).to(self.device) x, y, z = angles[:, :1], angles[:, 1:2], angles[:, 2:], rot_x = torch.cat([ ones, zeros, zeros, zeros, torch.cos(x), -torch.sin(x), zeros, torch.sin(x), torch.cos(x) ], dim=1).reshape([batch_size, 3, 3]) rot_y = torch.cat([ torch.cos(y), zeros, torch.sin(y), zeros, ones, zeros, -torch.sin(y), zeros, torch.cos(y) ], dim=1).reshape([batch_size, 3, 3]) rot_z = torch.cat([ torch.cos(z), -torch.sin(z), zeros, torch.sin(z), torch.cos(z), zeros, zeros, zeros, ones ], dim=1).reshape([batch_size, 3, 3]) rot = rot_z @ rot_y @ rot_x return rot.permute(0, 2, 1) def to_camera(self, face_shape): face_shape[..., -1] = self.camera_distance - face_shape[..., -1] return face_shape def to_image(self, face_shape): """ Return: face_proj -- torch.tensor, size (B, N, 2), y direction is opposite to v direction Parameters: face_shape -- torch.tensor, size (B, N, 3) """ # to image_plane face_proj = face_shape @ self.persc_proj face_proj = face_proj[..., :2] / face_proj[..., 2:] return face_proj def transform(self, face_shape, rot, trans): """ Return: face_shape -- torch.tensor, size (B, N, 3) pts @ rot + trans Parameters: face_shape -- torch.tensor, size (B, N, 3) rot -- torch.tensor, size (B, 3, 3) trans -- torch.tensor, size (B, 3) """ return face_shape @ rot + trans.unsqueeze(1) def get_landmarks(self, face_proj): """ Return: face_lms -- torch.tensor, size (B, 68, 2) Parameters: face_proj -- torch.tensor, size (B, N, 2) """ return face_proj[:, self.keypoints] def split_coeff(self, coeffs): """ Return: coeffs_dict -- a dict of torch.tensors Parameters: coeffs -- torch.tensor, size (B, 256) """ id_coeffs = coeffs[:, :80] exp_coeffs = coeffs[:, 80: 144] tex_coeffs = coeffs[:, 144: 224] angles = coeffs[:, 224: 227] gammas = coeffs[:, 227: 254] translations = coeffs[:, 254:] return { 'id': id_coeffs, 'exp': exp_coeffs, 'tex': tex_coeffs, 'angle': angles, 'gamma': gammas, 'trans': translations } def compute_for_render(self, coeffs): """ Return: face_vertex -- torch.tensor, size (B, N, 3), in camera coordinate face_color -- torch.tensor, size (B, N, 3), in RGB order landmark -- torch.tensor, size (B, 68, 2), y direction is opposite to v direction Parameters: coeffs -- torch.tensor, size (B, 257) """ coef_dict = self.split_coeff(coeffs) face_shape = self.compute_shape(coef_dict['id'], coef_dict['exp']) rotation = self.compute_rotation(coef_dict['angle']) face_shape_transformed = self.transform(face_shape, rotation, coef_dict['trans']) face_vertex = self.to_camera(face_shape_transformed) face_proj = self.to_image(face_vertex) landmark = self.get_landmarks(face_proj) face_texture = self.compute_texture(coef_dict['tex']) face_norm = self.compute_norm(face_shape) face_norm_roted = face_norm @ rotation face_color = self.compute_color(face_texture, face_norm_roted, coef_dict['gamma']) return face_vertex, face_texture, face_color, landmark def compute_for_render_woRotation(self, coeffs): """ Return: face_vertex -- torch.tensor, size (B, N, 3), in camera coordinate face_color -- torch.tensor, size (B, N, 3), in RGB order landmark -- torch.tensor, size (B, 68, 2), y direction is opposite to v direction Parameters: coeffs -- torch.tensor, size (B, 257) """ coef_dict = self.split_coeff(coeffs) face_shape = self.compute_shape(coef_dict['id'], coef_dict['exp']) #rotation = self.compute_rotation(coef_dict['angle']) #face_shape_transformed = self.transform(face_shape, rotation, coef_dict['trans']) face_vertex = self.to_camera(face_shape) face_proj = self.to_image(face_vertex) landmark = self.get_landmarks(face_proj) face_texture = self.compute_texture(coef_dict['tex']) face_norm = self.compute_norm(face_shape) face_norm_roted = face_norm # @ rotation face_color = self.compute_color(face_texture, face_norm_roted, coef_dict['gamma']) return face_vertex, face_texture, face_color, landmark # Path: src/face3d/models/facerecon_model.py class FaceReconModel(BaseModel): @staticmethod def modify_commandline_options(parser, is_train=False): """ Configures options specific for CUT model """ # net structure and parameters parser.add_argument('--net_recon', type=str, default='resnet50', choices=['resnet18', 'resnet34', 'resnet50'], help='network structure') parser.add_argument('--init_path', type=str, default='./checkpoints/init_model/resnet50-0676ba61.pth') parser.add_argument('--use_last_fc', type=util.str2bool, nargs='?', const=True, default=False, help='zero initialize the last fc') parser.add_argument('--bfm_folder', type=str, default='./checkpoints/BFM_Fitting/') parser.add_argument('--bfm_model', type=str, default='BFM_model_front.mat', help='bfm model') # renderer parameters parser.add_argument('--focal', type=float, default=1015.) parser.add_argument('--center', type=float, default=112.) parser.add_argument('--camera_d', type=float, default=10.) parser.add_argument('--z_near', type=float, default=5.) parser.add_argument('--z_far', type=float, default=15.) if is_train: # training parameters parser.add_argument('--net_recog', type=str, default='r50', choices=['r18', 'r43', 'r50'], help='face recog network structure') parser.add_argument('--net_recog_path', type=str, default='checkpoints/recog_model/ms1mv3_arcface_r50_fp16/backbone.pth') parser.add_argument('--use_crop_face', type=util.str2bool, nargs='?', const=True, default=False, help='use crop mask for photo loss') parser.add_argument('--use_predef_M', type=util.str2bool, nargs='?', const=True, default=False, help='use predefined M for predicted face') # augmentation parameters parser.add_argument('--shift_pixs', type=float, default=10., help='shift pixels') parser.add_argument('--scale_delta', type=float, default=0.1, help='delta scale factor') parser.add_argument('--rot_angle', type=float, default=10., help='rot angles, degree') # loss weights parser.add_argument('--w_feat', type=float, default=0.2, help='weight for feat loss') parser.add_argument('--w_color', type=float, default=1.92, help='weight for loss loss') parser.add_argument('--w_reg', type=float, default=3.0e-4, help='weight for reg loss') parser.add_argument('--w_id', type=float, default=1.0, help='weight for id_reg loss') parser.add_argument('--w_exp', type=float, default=0.8, help='weight for exp_reg loss') parser.add_argument('--w_tex', type=float, default=1.7e-2, help='weight for tex_reg loss') parser.add_argument('--w_gamma', type=float, default=10.0, help='weight for gamma loss') parser.add_argument('--w_lm', type=float, default=1.6e-3, help='weight for lm loss') parser.add_argument('--w_reflc', type=float, default=5.0, help='weight for reflc loss') opt, _ = parser.parse_known_args() parser.set_defaults( focal=1015., center=112., camera_d=10., use_last_fc=False, z_near=5., z_far=15. ) if is_train: parser.set_defaults( use_crop_face=True, use_predef_M=False ) return parser def __init__(self, opt): """Initialize this model class. Parameters: opt -- training/test options A few things can be done here. - (required) call the initialization function of BaseModel - define loss function, visualization images, model names, and optimizers """ BaseModel.__init__(self, opt) # call the initialization method of BaseModel self.visual_names = ['output_vis'] self.model_names = ['net_recon'] self.parallel_names = self.model_names + ['renderer'] self.facemodel = ParametricFaceModel( bfm_folder=opt.bfm_folder, camera_distance=opt.camera_d, focal=opt.focal, center=opt.center, is_train=self.isTrain, default_name=opt.bfm_model ) fov = 2 * np.arctan(opt.center / opt.focal) * 180 / np.pi self.renderer = MeshRenderer( rasterize_fov=fov, znear=opt.z_near, zfar=opt.z_far, rasterize_size=int(2 * opt.center) ) if self.isTrain: self.loss_names = ['all', 'feat', 'color', 'lm', 'reg', 'gamma', 'reflc'] self.net_recog = networks.define_net_recog( net_recog=opt.net_recog, pretrained_path=opt.net_recog_path ) # loss func name: (compute_%s_loss) % loss_name self.compute_feat_loss = perceptual_loss self.comupte_color_loss = photo_loss self.compute_lm_loss = landmark_loss self.compute_reg_loss = reg_loss self.compute_reflc_loss = reflectance_loss self.optimizer = torch.optim.Adam(self.net_recon.parameters(), lr=opt.lr) self.optimizers = [self.optimizer] self.parallel_names += ['net_recog'] # Our program will automatically call <model.setup> to define schedulers, load networks, and print networks def set_input(self, input): """Unpack input data from the dataloader and perform necessary pre-processing steps. Parameters: input: a dictionary that contains the data itself and its metadata information. """ self.input_img = input['imgs'].to(self.device) self.atten_mask = input['msks'].to(self.device) if 'msks' in input else None self.gt_lm = input['lms'].to(self.device) if 'lms' in input else None self.trans_m = input['M'].to(self.device) if 'M' in input else None self.image_paths = input['im_paths'] if 'im_paths' in input else None def forward(self, output_coeff, device): self.facemodel.to(device) self.pred_vertex, self.pred_tex, self.pred_color, self.pred_lm = \ self.facemodel.compute_for_render(output_coeff) self.pred_mask, _, self.pred_face = self.renderer( self.pred_vertex, self.facemodel.face_buf, feat=self.pred_color) self.pred_coeffs_dict = self.facemodel.split_coeff(output_coeff) def compute_losses(self): """Calculate losses, gradients, and update network weights; called in every training iteration""" assert self.net_recog.training == False trans_m = self.trans_m if not self.opt.use_predef_M: trans_m = estimate_norm_torch(self.pred_lm, self.input_img.shape[-2]) pred_feat = self.net_recog(self.pred_face, trans_m) gt_feat = self.net_recog(self.input_img, self.trans_m) self.loss_feat = self.opt.w_feat * self.compute_feat_loss(pred_feat, gt_feat) face_mask = self.pred_mask if self.opt.use_crop_face: face_mask, _, _ = self.renderer(self.pred_vertex, self.facemodel.front_face_buf) face_mask = face_mask.detach() self.loss_color = self.opt.w_color * self.comupte_color_loss( self.pred_face, self.input_img, self.atten_mask * face_mask) loss_reg, loss_gamma = self.compute_reg_loss(self.pred_coeffs_dict, self.opt) self.loss_reg = self.opt.w_reg * loss_reg self.loss_gamma = self.opt.w_gamma * loss_gamma self.loss_lm = self.opt.w_lm * self.compute_lm_loss(self.pred_lm, self.gt_lm) self.loss_reflc = self.opt.w_reflc * self.compute_reflc_loss(self.pred_tex, self.facemodel.skin_mask) self.loss_all = self.loss_feat + self.loss_color + self.loss_reg + self.loss_gamma \ + self.loss_lm + self.loss_reflc def optimize_parameters(self, isTrain=True): self.forward() self.compute_losses() """Update network weights; it will be called in every training iteration.""" if isTrain: self.optimizer.zero_grad() self.loss_all.backward() self.optimizer.step() def compute_visuals(self): with torch.no_grad(): input_img_numpy = 255. * self.input_img.detach().cpu().permute(0, 2, 3, 1).numpy() output_vis = self.pred_face * self.pred_mask + (1 - self.pred_mask) * self.input_img output_vis_numpy_raw = 255. * output_vis.detach().cpu().permute(0, 2, 3, 1).numpy() if self.gt_lm is not None: gt_lm_numpy = self.gt_lm.cpu().numpy() pred_lm_numpy = self.pred_lm.detach().cpu().numpy() output_vis_numpy = util.draw_landmarks(output_vis_numpy_raw, gt_lm_numpy, 'b') output_vis_numpy = util.draw_landmarks(output_vis_numpy, pred_lm_numpy, 'r') output_vis_numpy = np.concatenate((input_img_numpy, output_vis_numpy_raw, output_vis_numpy), axis=-2) else: output_vis_numpy = np.concatenate((input_img_numpy, output_vis_numpy_raw), axis=-2) self.output_vis = torch.tensor( output_vis_numpy / 255., dtype=torch.float32 ).permute(0, 3, 1, 2).to(self.device) def save_mesh(self, name): recon_shape = self.pred_vertex # get reconstructed shape recon_shape[..., -1] = 10 - recon_shape[..., -1] # from camera space to world space recon_shape = recon_shape.cpu().numpy()[0] recon_color = self.pred_color recon_color = recon_color.cpu().numpy()[0] tri = self.facemodel.face_buf.cpu().numpy() mesh = trimesh.Trimesh(vertices=recon_shape, faces=tri, vertex_colors=np.clip(255. * recon_color, 0, 255).astype(np.uint8)) mesh.export(name) def save_coeff(self,name): pred_coeffs = {key:self.pred_coeffs_dict[key].cpu().numpy() for key in self.pred_coeffs_dict} pred_lm = self.pred_lm.cpu().numpy() pred_lm = np.stack([pred_lm[:,:,0],self.input_img.shape[2]-1-pred_lm[:,:,1]],axis=2) # transfer to image coordinate pred_coeffs['lm68'] = pred_lm savemat(name,pred_coeffs) # Path: src/face3d/visualize.py import cv2 import numpy as np import torch import subprocess, platform import scipy.io as scio from src.face3d.models.bfm import ParametricFaceModel from src.face3d.models.facerecon_model import FaceReconModel from tqdm import tqdm # check the sync of 3dmm feature and the audio # draft def gen_composed_video(args, device, first_frame_coeff, coeff_path, audio_path, save_path, exp_dim=64): coeff_first = scio.loadmat(first_frame_coeff)['full_3dmm'] coeff_pred = scio.loadmat(coeff_path)['coeff_3dmm'] coeff_full = np.repeat(coeff_first, coeff_pred.shape[0], axis=0) # 257 coeff_full[:, 80:144] = coeff_pred[:, 0:64] coeff_full[:, 224:227] = coeff_pred[:, 64:67] # 3 dim translation coeff_full[:, 254:] = coeff_pred[:, 67:] # 3 dim translation tmp_video_path = '/tmp/face3dtmp.mp4' facemodel = FaceReconModel(args) video = cv2.VideoWriter(tmp_video_path, cv2.VideoWriter_fourcc(*'mp4v'), 25, (224, 224)) for k in tqdm(range(coeff_pred.shape[0]), 'face3d rendering:'): cur_coeff_full = torch.tensor(coeff_full[k:k+1], device=device) facemodel.forward(cur_coeff_full, device) predicted_landmark = facemodel.pred_lm # TODO. predicted_landmark = predicted_landmark.cpu().numpy().squeeze() rendered_img = facemodel.pred_face rendered_img = 255. * rendered_img.cpu().numpy().squeeze().transpose(1,2,0) out_img = rendered_img[:, :, :3].astype(np.uint8) video.write(np.uint8(out_img[:,:,::-1])) video.release()
command = 'ffmpeg -v quiet -y -i {} -i {} -strict -2 -q:v 1 {}'.format(audio_path, tmp_video_path, save_path)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Westlake-geeks/bilibili-livestream-slicer # Path: Ui_test.py class Ui_MainWindow(object): def setupUi(self, MainWindow): # 主窗口和网格布局 MainWindow.setObjectName("MainWindow") MainWindow.resize(800, 550) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.gridLayoutWidget = QtWidgets.QWidget(self.centralwidget) self.gridLayoutWidget.setGeometry(QtCore.QRect(150, 70, 510, 300)) self.gridLayoutWidget.setObjectName("gridLayoutWidget") self.gridLayout = QtWidgets.QGridLayout(self.gridLayoutWidget) self.gridLayout.setContentsMargins(0, 0, 0, 0) self.gridLayout.setObjectName("gridLayout") #输入框左侧的文字 self.roomLabel = QtWidgets.QLabel(self.gridLayoutWidget) self.roomLabel.setObjectName("roomLabel") self.gridLayout.addWidget(self.roomLabel, 0, 0, 1, 1) # 输入框 self.roomEdit = QtWidgets.QLineEdit(self.gridLayoutWidget) self.roomEdit.setObjectName("roomEdit") self.gridLayout.addWidget(self.roomEdit, 0, 1, 1, 1) # 垂直布局 用于排列按钮 self.verticalLayout = QtWidgets.QVBoxLayout() self.verticalLayout.setObjectName("verticalLayout") # add按钮 self.addButton = QtWidgets.QPushButton(self.gridLayoutWidget) self.addButton.setObjectName("addButton") self.verticalLayout.addWidget(self.addButton) # start按钮 self.startButton = QtWidgets.QPushButton(self.gridLayoutWidget) self.startButton.setObjectName("startButton") self.verticalLayout.addWidget(self.startButton) # stop按钮 self.stopButton = QtWidgets.QPushButton(self.gridLayoutWidget) self.stopButton.setObjectName("stopButton") self.verticalLayout.addWidget(self.stopButton) # 按钮下方的占位控件 spacerItem = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.verticalLayout.addItem(spacerItem) # 把垂直布局部署到网格 self.gridLayout.addLayout(self.verticalLayout, 1, 0, 1, 1) # 直播间列表 self.logPoster = QtWidgets.QListWidget(self.gridLayoutWidget) self.logPoster.setObjectName("logPoster") self.gridLayout.addWidget(self.logPoster, 1, 1, 1, 1) # 主窗口布局相关设置 MainWindow.setCentralWidget(self.centralwidget) # 并没有用到的顶部菜单栏和底部状态栏 self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 26)) self.menubar.setObjectName("menubar") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) # 设置文字 self.retranslateUi(MainWindow) # 连接槽 QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): # 设置文字 _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "LiveStreamSlicer")) self.addButton.setText(_translate("MainWindow", "add")) self.startButton.setText(_translate("MainWindow", "start all")) self.stopButton.setText(_translate("MainWindow", "stop all")) self.roomLabel.setText(_translate("MainWindow", "roomnumber:")) # Path: api.py def is_live(uid): live_api = "https://api.live.bilibili.com/room/v1/Room/room_init?id=%s" % str( uid) rtn = my_request(live_api) data_dict = json.loads(rtn) data_value = data_dict.get('data') live_status_value = data_value.get('live_status') if live_status_value: return True else: return False # Path: api.py def get_name(uid): live_api = "https://api.live.bilibili.com/room/v1/Room/room_init?id=%s" % str( uid) rtn = my_request(live_api) data_dict = json.loads(rtn) data_value = data_dict.get('data') duid_value = data_value.get('uid') home_url = "https://space.bilibili.com/%s/" % duid_value headers = { 'cookie': "buvid_fp_plain=undefined; CURRENT_BLACKGAP=0; blackside_state=0; LIVE_BUVID=AUTO2616596088417426; rpdid=|(k|m|))Y~k~0J'uYY)lmlul~; hit-new-style-dyn=1; go-back-dyn=1; is-2022-channel=1; header_theme_version=CLOSE; CURRENT_PID=b03f3c10-ceb5-11ed-b59d-47f8dacf4eec; FEED_LIVE_VERSION=V8; buvid3=103FCEA2-4D34-4196-5E7B-7321C8A1082118620infoc; b_nut=1690476718; _uuid=B1038F2AB-E8CD-29A2-4728-F82FE285F59D84428infoc; buvid4=CFCD8B8D-0FCC-F601-2753-DA825E11CFE613020-022072800-fr%2BgMSZdqRJTFAAYsS9ACQ%3D%3D; i-wanna-go-back=-1; b_ut=5; hit-dyn-v2=1; i-wanna-go-feeds=2; DedeUserID=325718681; DedeUserID__ckMd5=319313351948fd48; CURRENT_QUALITY=116; SESSDATA=c555e98c%2C1711883936%2Caf616%2Aa2CjAD_KFN4n_1-0P_VrGmaHuTOhode3kKsjtR7Aq0iz1U5TFRzKUl69JUDZ-5W532pswSVkFKMUpyQkQ3NmlWYldjLWtnSG9hcG9lQ1RYa0VKaEh3TFlybGxjdlpJQkkwekYwYy0tckZhc1d3eWlrT1k2NHpvQmQtS1MtUGlxU2RxdEM2UFcyWWlnIIEC; bili_jct=f30d6a38050b9fd22f87748b88e5c40f; sid=8nj7ny5x; bili_ticket=eyJhbGciOiJIUzI1NiIsImtpZCI6InMwMyIsInR5cCI6IkpXVCJ9.eyJleHAiOjE2OTY2MDgwNDYsImlhdCI6MTY5NjM0ODc4NiwicGx0IjotMX0.P976bqS0e1zm2k4khjnX5aqxWCmSIE-zA6MlVXq32wo; bili_ticket_expires=1696607986; fingerprint=c2d58d86c60e35d56558bf9942a9deac; CURRENT_FNVAL=4048; home_feed_column=5; browser_resolution=1699-945; share_source_origin=WEIXIN; bsource=share_source_weixinchat; bp_video_offset_325718681=849021837940621320; buvid_fp=c2d58d86c60e35d56558bf9942a9deac; b_lsid=5469973A_18B009161BC; PVID=1", # 'referer': "https://space.bilibili.com/353609978/", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36 Edg/117.0.2045.47" } response = requests.get(url=home_url, headers=headers) user_name = re.findall(r'<title>(.*?)的个人空间', response.text)[0] if user_name: return (user_name) else: return ("未找到指定用户名称") # Path: AutoSliceMachine.py import sys import matplotlib.pyplot as plt import numpy as np import main import os import time import json import sys import moviepy import whisper import requests import re from PyQt5 import QtCore, QtGui, QtWidgets from Ui_test import Ui_MainWindow from bilibili_api import live, sync, Credential,video_uploader from datetime import datetime, timedelta from api import is_live from matplotlib.backends.backend_pdf import PdfPages from moviepy.editor import VideoFileClip from selenium import webdriver from api import get_name from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from selenium.webdriver import ChromeOptions from PIL import Image from PIL import Image, ImageDraw, ImageFont try: time.sleep(1) submit_button = web.find_element(By.CLASS_NAME, "submit-add") submit_button.click() time.sleep(100000) except: pass #建一个用于爬取直播视频的线程,核心代码是main.__main__(id),其中id是房间号是一个str class ThreadC_C(QtCore.QThread): # 多线程 def __init__(self, file_name,num,start_time,end_time): super(ThreadC_C, self).__init__() self.num = num self.start_time = start_time self.end_time = end_time #self.now = datetime.now() self.file_name = file_name def run(self): #print('1111111111111111111111-------------------------------------------------------------------------------------111111111111111111111111-------------------------------------111') time.sleep(10)#wait for 10 seconds output_file_path = clipP(self.file_name,self.num,self.start_time,self.end_time) try: sync(uploader_video(output_file_path,self.num)) except: print('上传失败') class ThreadV(QtCore.QThread): # 多线程 def __init__(self, num): super(ThreadV, self).__init__() self.num = num self.now = datetime.now()+ timedelta(seconds=2) self.file_name = "videos/" + str(self.num) + self.now.strftime("_%Y_%m_%d_%H_%M_%S_%f_"+"_.flv") self.clip = 0 def run(self): #pass main.__main__(self.num,self.file_name) class Thread(QtCore.QThread): # 多线程 def __init__(self, num): super(Thread, self).__init__() self.num = num def run(self): #爬取弹幕 def parse_datetime(datetime_str): return datetime.strptime(datetime_str, "%Y-%m-%d %H:%M:%S") credential = Credential( sessdata="daaa877d%2C1718024867%2C467ef%2Ac1CjBp5PW0dsSQNj39aOl6oD7y3C6KnP_5VRmTVGJBAI822wuSR5E-aQqFHqOr9C8qKoISVldObldPTmgwM0lFV3pOWWlDeGlyLTI5UWtjRmQ2T1NScGFyQzNHRnczeGRtUnI2S0xPNXV2TVM1N0NHS3ZSc1A4RXBweVphcURsTExiano1SXl6aDVRIIEC", bili_jct="71b585f44771a21249f38244524e8a65", buvid3="E69A492D-3A10-E4EE-138B-ED2AE0BC42CE15929infoc", dedeuserid="142351113" ) room = live.LiveDanmaku(self.num, credential=credential) danmu_count = {} danmu_sentiment = {} sentiment_list = [] #main.__main__(self.num) danmu_list={} @room.on('DANMU_MSG') async def on_danmaku(event): # 收到弹幕f timestamp = event["data"]["info"][9]['ts'] dt_object = datetime.fromtimestamp(timestamp) danmu = event["data"]["info"][1] #print(danmu) ren = event["data"]["info"][2][1] time = str(dt_object) global que try: datetime_obj = parse_datetime(time) # 5s time_key = datetime_obj - timedelta(seconds=datetime_obj.second % 5) #40 s #time_key = datetime_obj - timedelta(seconds=datetime_obj.second % 40) #time_key = datetime_obj - timedelta(seconds=0) #danmu_count[time_key] = danmu_count.get(time_key, 0) + 1 #time_key = datetime_obj - timedelta(seconds=1) #danmu_count[time_key] = danmu_count.get(time_key, 0) + 1 #time_key = datetime_obj - timedelta(seconds=2) #danmu_count[time_key] = danmu_count.get(time_key, 0) + 1 #time_key = datetime_obj - timedelta(seconds=3) #danmu_count[time_key] = danmu_count.get(time_key, 0) + 1 #time_key = datetime_obj - timedelta(seconds=4) que[self.num][time_key] = que[self.num].get(time_key, 0) + 1 except: print("Someting Wrong!") sync(room.connect()) class MainForm(QtWidgets.QMainWindow, Ui_MainWindow): # 继承UI窗口类Ui_MainWindow def __init__(self): super(MainForm, self).__init__() self.setupUi(self) self.roomlist = [] # 直播间列表 self.processlist = [] self.roomstatus = {} # 开播状态 self.roomtot = 0 self.maximum = 40 # 多线程上限 self.addButton.clicked.connect(self.add) # 把UI上的按钮连接到控制函数 self.startButton.clicked.connect(self.start) self.stopButton.clicked.connect(self.stop) def add(self): # 添加新链接 self.roominput = self.roomEdit.text() if not self.roominput.isdigit(): # self.logPoster.append('invalid room number!') print('invalid room number!')
pass
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Angryrou/udao # Path: udao/utils/logging.py def _get_logger(name: str = "udao", level: int = logging.DEBUG) -> logging.Logger: # Path: udao/optimization/concepts/objective.py class Objective(Constraint): """ Parameters ---------- name : str Name of the objective. minimize : bool Direction of the objective: if True, minimize, else maximize. type: VarTypes Type of the objective, by default VarTypes.FLOAT """ def __init__( self, name: str, minimize: bool, function: Union[UdaoFunction, th.nn.Module, Callable[..., th.Tensor]], lower: Optional[float] = None, upper: Optional[float] = None, type: VarTypes = VarTypes.FLOAT, ): super().__init__(function=function, lower=lower, upper=upper) self.name = name self.minimize = minimize self.type = type @property def direction(self) -> int: """Get gradient direction from optimization type""" if self.minimize: return 1 else: return -1 def __repr__(self) -> str: return ( f"Objective(name={self.name}, " f"direction={'min' if self.minimize else 'max'}, " f"lower={self.lower}, upper={self.upper})" ) # Path: udao/optimization/concepts/problem.py class MOProblem(BaseProblem): """Multi-objective optimization problem.""" def __init__( self, objectives: Sequence[Objective], variables: Dict[str, Variable], constraints: Sequence[Constraint], data_processor: Optional[DataProcessor] = None, input_parameters: Optional[Dict[str, Any]] = None, ) -> None: self.objectives = objectives super().__init__( variables, constraints, data_processor=data_processor, input_parameters=input_parameters, ) def __repr__(self) -> str: return ( f"MOProblem(objectives={self.objectives}, " f"variables={self.variables}, " f"constraints={self.constraints}, " f"input_parameters={self.input_parameters})" ) # Path: udao/optimization/concepts/problem.py class SOProblem(BaseProblem): """Single-objective optimization problem.""" def __init__( self, objective: Objective, variables: Dict[str, Variable], constraints: Sequence[Constraint], data_processor: Optional[DataProcessor] = None, input_parameters: Optional[Dict[str, Any]] = None, ) -> None: self.objective = objective super().__init__( variables, constraints, data_processor=data_processor, input_parameters=input_parameters, ) def __repr__(self) -> str: return ( f"SOProblem(objective={self.objective}, " f"variables={self.variables}, " f"constraints={self.constraints}, " f"input_parameters={self.input_parameters})" ) # Path: udao/optimization/soo/so_solver.py class SOSolver(ABC): @abstractmethod def solve( self, problem: SOProblem, seed: Optional[int] = None, ) -> Tuple[float, Dict[str, float]]: """Solve a single-objective optimization problem Parameters ---------- problem : SOProblem Single-objective optimization problem to solve seed : Optional[int], optional Random seed, by default None Returns ------- Tuple[float, Dict[str, float]] A tuple of the objective value and the variables that optimize the objective """ ... # Path: udao/optimization/utils/moo_utils.py class Point: class Rectangle: def __init__(self, objs: np.ndarray, vars: Optional[Dict] = None) -> None: def __repr__(self) -> str: def __eq__(self, other: "Point") -> bool: # type: ignore def __init__(self, utopia: Point, nadir: Point) -> None: def __repr__(self) -> str: def cal_volume(self, upper_bounds: np.ndarray, lower_bounds: np.ndarray) -> float: def __lt__(self, other: "Rectangle") -> bool: def __eq__(self, other: "Rectangle") -> bool: # type: ignore def is_pareto_efficient(costs: np.ndarray, return_mask: bool = True) -> np.ndarray: def summarize_ret( po_obj_list: Sequence, po_var_list: Sequence ) -> Tuple[np.ndarray, np.ndarray]: def even_weights(stepsize: float, n_objectives: int) -> np.ndarray: def plot_po(po: np.ndarray, n_obj: int = 2, title: str = "pf_ap") -> None: def get_default_device() -> th.device: # Path: udao/optimization/utils/exceptions.py class NoSolutionError(ValueError): "Raised when no solution is found for an MOO problem" ... # Path: udao/optimization/utils/moo_utils.py class Point: def __init__(self, objs: np.ndarray, vars: Optional[Dict] = None) -> None: """ A point in the objective space. Variables are optional, and are not specified for imaginary points (e.g., utopia and nadir) Parameters ---------- objs : np.ndarray Array of objective values of shape (n_objs,) vars :np.ndarray, optional Array of variable values of shape (n_vars,), by default None """ self.objs = objs self.vars = vars self.n_objs = objs.shape[0] def __repr__(self) -> str: return f"Point(objs={self.objs}, vars={self.vars})" def __eq__(self, other: "Point") -> bool: # type: ignore return bool(np.all(self.objs == other.objs) and np.all(self.vars == other.vars)) # Path: udao/optimization/utils/moo_utils.py class Rectangle: def __init__(self, utopia: Point, nadir: Point) -> None: """ Parameters ---------- utopia : Points utopia point nadir : Points nadir point """ self.upper_bounds = nadir.objs self.lower_bounds = utopia.objs self.n_objs = nadir.objs.shape[0] self.volume = self.cal_volume(nadir.objs, utopia.objs) self.neg_vol = -self.volume self.utopia = utopia self.nadir = nadir def __repr__(self) -> str: return f"Rectangle(utopia={self.utopia}, nadir={self.nadir})" def cal_volume(self, upper_bounds: np.ndarray, lower_bounds: np.ndarray) -> float: """ Calculate the volume of the hyper_rectangle Parameters ---------- upper_bounds : np.ndarray( Array of upper bounds of the hyper_rectangle, of shape (n_objs,) lower_bounds : np.ndarrays Array of lower bounds of the hyper_rectangle of shape (n_objs,) Returns ------- float volume of the hyper_rectangle """ volume = np.abs(np.prod(upper_bounds - lower_bounds)) return volume # Override the `__lt__()` function to make `Rectangles` # class work with min-heap (referred from VLDB2022) def __lt__(self, other: "Rectangle") -> bool: return self.neg_vol < other.neg_vol def __eq__(self, other: "Rectangle") -> bool: # type: ignore return bool( np.all(self.upper_bounds == other.upper_bounds) and np.all(self.lower_bounds == other.lower_bounds) ) # Path: udao/optimization/moo/progressive_frontier/base_progressive_frontier.py class BaseProgressiveFrontier(MOSolver, ABC): """ Base class for Progressive Frontier. Includes the common methods for Progressive Frontier. """ @dataclass class Params: """Parameters for Progressive Frontier""" pass def __init__( self, solver: SOSolver, params: Params, ) -> None: super().__init__() self.solver = solver self.opt_obj_ind = 0 def get_anchor_point( self, problem: MOProblem, obj_ind: int, seed: Optional[int] = None, ) -> Point: """ Find the anchor point for the given objective, by unbounded single objective optimization Parameters ---------- problem : MOProblem MOO problem in which the objective is to be optimized obj_ind : int index of the objective to be optimized Returns ------- Point anchor point for the given objective """ try: _, soo_vars = self.solver.solve( problem.derive_SO_problem( objective=problem.objectives[obj_ind], ), seed=seed, ) except NoSolutionError: raise NoSolutionError("Cannot find anchor points.") else: objs = self._compute_objectives(problem, soo_vars) # If the current objective type is Integer, # further find the optimal value for other objectives with float type if problem.objectives[obj_ind].type == VarTypes.INT: utopia_init = np.array( [0 if i != obj_ind else objs[obj_ind] for i in problem.objectives] ) utopia_tmp, nadir_tmp = Point(objs=utopia_init), Point(objs=objs) # select the first objective with float type float_obj_ind = [ i for i, objective in enumerate(problem.objectives) if objective.type == VarTypes.FLOAT ][0] obj_bounds_dict_so = self._form_obj_bounds_dict( problem, utopia_tmp, nadir_tmp ) so_problem = self._so_problem_from_bounds_dict( problem, obj_bounds_dict_so, problem.objectives[float_obj_ind] ) try: _, soo_vars_update = self.solver.solve(so_problem, seed=seed) except NoSolutionError: raise NoSolutionError("Cannot find anchor points.") else: logger.debug(f"soo_vars_update is: {soo_vars_update}") objs = self._compute_objectives(problem, soo_vars_update) return Point(objs, soo_vars_update) else: return Point(objs, soo_vars) def _form_obj_bounds_dict( self, problem: MOProblem, utopia: Point, nadir: Point ) -> dict[str, list[float]]: """ form the dict used in the constrained optimization e.g. the format: obj_bounds_dict = { "latency": [0, 10000000], "cores": [0, 58] } Parameters ---------- utopia: Point the utopia point nadir: Point the nadir point opt_obj_ind: int the index of objective to be optimized Returns ------- dict with upper and lower bound for each objective """ bounds = {} for i, objective in enumerate(problem.objectives): if objective.direction < 0: bounds[objective.name] = [ nadir.objs[i] * objective.direction, utopia.objs[i] * objective.direction, ] else: bounds[objective.name] = [ utopia.objs[i] * objective.direction, nadir.objs[i] * objective.direction, ] return bounds def _so_problem_from_bounds_dict( self, problem: MOProblem, obj_bounds_dict: dict[str, list], primary_obj: Objective, ) -> SOProblem: """ Parameters ---------- obj_bounds_dict : dict[str, list] A lower and upper bound for each objective primary_obj : Objective The objective to be optimized Returns ------- Tuple[Objective, Sequence[Constraint]] The objective and constraints for the single-objective optimization """ soo_objective = Objective( name=primary_obj.name, minimize=primary_obj.minimize, function=primary_obj.function, lower=obj_bounds_dict[primary_obj.name][0], upper=obj_bounds_dict[primary_obj.name][1], ) so_problem = problem.derive_SO_problem(soo_objective) soo_constraints = list(so_problem.constraints) for obj in problem.objectives: obj_name = obj.name if obj_name != primary_obj.name: soo_constraints.append( Objective( name=obj.name, minimize=obj.minimize, lower=obj_bounds_dict[obj_name][0], upper=obj_bounds_dict[obj_name][1], function=obj.function, ) ) so_problem.constraints = soo_constraints return so_problem @staticmethod def get_utopia_and_nadir(points: list[Point]) -> Tuple[Point, Point]: """ get the utopia and nadir points from a list of points Parameters ---------- points: list[Point], each element is a Point (defined class). Returns ------- Tuple[Point, Point] utopia and nadir point """ if len(points) == 0: raise ValueError("The input list of points is empty.") n_objs = points[0].n_objs if any([point.n_objs != n_objs for point in points]): raise Exception("The number of objectives is not consistent among points.") best_objs = [min([point.objs[i] for point in points]) for i in range(n_objs)] worst_objs = [max([point.objs[i] for point in points]) for i in range(n_objs)] logger.debug(f"best_objs {best_objs}") utopia = Point(np.array(best_objs)) nadir = Point(np.array(worst_objs)) return utopia, nadir def _compute_objectives( self, problem: MOProblem, variable_values: dict[str, Any], ) -> np.ndarray: """Compute an array of objective for a given point. (variable_values is a dict of variable name and single value) Parameters ---------- variable_values : dict[str, Any] Name: value of variables input_parameters : Optional[dict[str, Any]] Name: value of other fixed input parameters Returns ------- np.ndarray _description_ """ obj_list = [] for obj in problem.objectives: obj_value = problem.apply_function( obj, variable_values, device=th.device("cpu") ) obj_value = (obj_value * obj.direction).squeeze() obj_list.append(obj_value.detach()) return np.array(obj_list) # Path: udao/optimization/moo/progressive_frontier/parallel_progressive_frontier.py import itertools import numpy as np import torch as th from dataclasses import dataclass from typing import Any, Dict, List, Optional, Tuple from torch.multiprocessing import Pool from ....utils.logging import logger from ...concepts import MOProblem, Objective, SOProblem from ...soo.so_solver import SOSolver from ...utils import moo_utils as moo_ut from ...utils.exceptions import NoSolutionError from ...utils.moo_utils import Point, Rectangle from .base_progressive_frontier import BaseProgressiveFrontier class ParallelProgressiveFrontier(BaseProgressiveFrontier): @dataclass class Params(BaseProgressiveFrontier.Params):
processes: int = 1
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: XLearning-SCU/2023-TPAMI-SMILE # Path: DistComput.py def get_dist_release(loader, dist_path): if not os.path.exists(dist_path): # loader = test_loader num_data = [10] with torch.no_grad(): dist_list = [[] for i in range(len(num_data))] for j, data_t in enumerate(loader, 0): # get all inputs fea0, fea1, class_labels0, class_labels1, mask, is_pair, idx = data_t inputs_t = fea0.cuda() # inputs_t = torch.cat([fea0,fea1]).cuda() # labels_t = torch.cat([class_labels0,class_labels1]).cuda() # inputs_t, _, labels_t, _ = data_t # inputs_t, labels_t = inputs_t.cuda(), labels_t.cuda() for i in range(len(inputs_t)): if i % 1000 == 0: print(i) aa = torch.mul(inputs_t - inputs_t[i], inputs_t - inputs_t[i]) # dist = torch.sqrt(torch.sum(aa, dim=(2, 3))) # dist_m = dist[:, 0] # print(aa.shape) dist_m = torch.sqrt(torch.sum(aa, dim=tuple(torch.arange(1, len(aa.shape))))) dist_m[i] = 1000 sorted_dist = np.sort(dist_m.cpu().numpy()) for jj in range(len(num_data)): dist_list[jj].append(sorted_dist[num_data[jj]]) inputs_t = fea1.cuda() for i in range(len(inputs_t)): if i % 1000 == 0: print(i) aa = torch.mul(inputs_t - inputs_t[i], inputs_t - inputs_t[i]) # dist = torch.sqrt(torch.sum(aa, dim=(2, 3))) # dist_m = dist[:, 0] # print(aa.shape) dist_m = torch.sqrt(torch.sum(aa, dim=tuple(torch.arange(1, len(aa.shape))))) dist_m[i] = 1000 sorted_dist = np.sort(dist_m.cpu().numpy()) for jj in range(len(num_data)): dist_list[jj].append(sorted_dist[num_data[jj]]) for ii in range(len(num_data)): DirectoryOperator(dist_path).make_fold() np.savetxt(dist_path, np.array(dist_list[ii])) dist = torch.from_numpy( np.loadtxt( dist_path ).astype(np.float32) ) return dist # Path: _Utils/Calculator.py def get_nearest_k(h0, h1, k=1, sp_size=1000): hh0 = h0.half() hh1 = h1.half() split = int(np.ceil(len(hh0) / sp_size)) near = [] for i in range(split): dist = torch.cdist(hh0[i * sp_size:(i + 1) * sp_size], hh1) nearest = torch.argsort(dist, dim=1)[:, :k] near.append(nearest) nearest = torch.cat(near) return nearest # Path: _Utils/Logs.py def update_log(dic, path='../log/res.csv'): index = 'Epoch' val = [] name = [] for na, v in dic.items(): val.append(v) name.append(na) dt = pd.DataFrame([val], columns=name) dt = dt.set_index(index) if os.path.exists(path): dt_old = pd.read_csv(path, index_col=index) dt = merge_csv(dt_old, dt) DirectoryOperator(path).make_fold() dt.to_csv(path) # Path: _Utils/Scatter.py def visualize2(feature_vec, type_vec, group_vec, pred_vec, prefix, ): fv = feature_vec.reshape((len(feature_vec), -1)) for perplexity in []:# 50 vis_fea_multi = TSNE(perplexity=perplexity).fit_transform( np.concatenate((fv[group_vec == 0], fv[group_vec == 1]), axis=1) ) for s in [5]: prefix2 = prefix + 'P{}S{}'.format(perplexity, s) visualize_scatter(vis_fea_multi, fig_path='{}Multi.svg'.format(prefix2), label_color=type_vec[group_vec == 0], # label_shape=type_vec, s=s ) for perplexity in [50]: vis_fea = TSNE(perplexity=perplexity).fit_transform(fv) for s in [5]: # 5 prefix2 = prefix + 'P{}S{}'.format(perplexity, s) visualize_scatter(vis_fea, fig_path='{}Type.svg'.format(prefix2), label_color=type_vec, # label_shape=type_vec, s=s ) # visualize_scatter(vis_fea, # fig_path='{}Cluster.svg'.format(prefix), # label_color=pred_vec, # label_shape=type_vec, # # ) visualize_scatter(vis_fea, fig_path='{}Group.svg'.format(prefix2), label_color=group_vec, # label_shape=type_vec, s=s ) # Path: _Utils/Visualize.py def visualize(feature_vec, type_vec, group_vec, pred_vec, prefix='../Visualization/E{:03d}'.format(0)): vis_fea = tsne(feature_vec) visualize_scatter(vis_fea, fig_path='{}Type.jpg'.format(prefix), label_color=type_vec, label_shape=type_vec, ) visualize_scatter(vis_fea, fig_path='{}Cluster.jpg'.format(prefix), label_color=pred_vec, label_shape=type_vec, ) visualize_scatter(vis_fea, fig_path='{}Group.jpg'.format(prefix), label_color=group_vec, label_shape=type_vec, ) # Path: _Utils/Visualize.py def visual_matrix_console(x): if len(x.shape) <= 2: x = x.reshape((*x.shape, 1)) base_wid = int(np.log10(np.max(x) + 0.5)) + 1 head_wid = x.shape[2] * (1 + base_wid) head_sep = int(head_wid // 2) + 1 print('t\\c ', end='') for i in range(x.shape[1]): print(('{:' + '{}'.format(head_sep) + 'd}').format(i), end=' ' * (head_wid - head_sep)) print() for i, line in enumerate(x): print('{:2d}: '.format(i), end='') for cl in line: sg = True for g in cl: if sg: sg = False else: print(' ', end='') if g != 0: # print('base_wid == {}'.format(base_wid)) # print('g == {}'.format(g)) print(('{:' + str(base_wid) + 'd}').format(g), end='') else: print(' ' * base_wid, end='') print('|', end='') print() # Path: _Utils/Visualize.py def visualize_image(x, verbose=0, show=False, fig_path=None): """ :param show: :param fig_path: :param x: (row, line, pic_h, pic_w) or (row, line, pic_h, pic_w, pic_c), pic_c = 1,3,4 :return: """ x = np.asarray(x) if verbose: print('img.min() == {}'.format(np.min(x))) print('img.max() == {}'.format(np.max(x))) x -= np.min(x) x /= np.max(x) row, line = x.shape[:2] w, h = x.shape[1] * x.shape[3] / 90, x.shape[0] * x.shape[2] / 90 plt.figure(figsize=(w, h)) # w, h count = 0 for rx in x: for image in rx: count += 1 plt.subplot(row, line, count) plt.imshow(image, cmap='gray', ) plt.xticks([]) plt.yticks([]) plt.subplots_adjust(left=0, right=1, top=1, bottom=0, hspace=0.1 / h, wspace=0.1 / w) if not show and fig_path is None: fig_path = '../_fig/fig.jpg' if fig_path is not None: DirectoryOperator.FoldOperator(directory=fig_path).make_fold() plt.savefig(fig_path, transparent=True) if show: plt.show() plt.close() # Path: _Utils/Visualize.py def plot_heat_map(z, xticks=None, yticks=None, xlabel=None, ylabel=None, title=None, show=False, fig_path=None): """ :param z: z[i,j] shown in i-th row, j-th line :param xlabel: :param ylabel: :param show: :param fig_path: :return: """ left = 0.15 right = 1 top = 0.95 bottom = 0.15 w, h = z.shape plt.figure(figsize=(w / (right - left), h / (top - bottom))) # plt.figure(figsize=(w / (right - left), h / (top - bottom))) # plt.subplots_adjust(left=left, right=right, top=top, bottom=bottom) if xticks is not None: plt.xticks(np.arange(len(xticks)), np.round(xticks, 2), rotation=45) if yticks is not None: plt.yticks(np.arange(len(yticks)), np.round(yticks, 2)) for i in range(z.shape[0]): for j in range(z.shape[1]): # plt.text(j, i, accs[i, j].round(2), ha="center", va="center", color="b", fontsize=12, # fontname='Times New Roman') plt.text(j, i, z[i, j], ha="center", va="center") if xlabel is not None: plt.xlabel(xlabel) if ylabel is not None: plt.ylabel(ylabel) if title is not None: plt.title(title) plt.imshow(z, interpolation='nearest', aspect='auto') plt.colorbar() if fig_path is not None: DirectoryOperator.FoldOperator(directory=fig_path).make_fold() plt.savefig(fig_path, transparent=True) if show: plt.show() plt.close() # Path: _Utils/TimeOperator.py class TimeOperator: def __init__(self): self.time_buffer = None self.time_record = 0 self.time_sum = 0 self.time_count = 0 def time(self, output=False, promt=''): if self.time_buffer is None: self.time_buffer = time() else: self.time_record = time() - self.time_buffer self.time_buffer = None self.time_sum += self.time_record self.time_count += 1 if output: print('{}Time == {:7.05f}'.format(promt, self.time_record)) def get_time_sum(self): return self.time_sum def show_time_sum(self): print('{:.02f}'.format(self.get_time_sum())) def get_fps(self): return self.time_count / self.time_sum def __get_speed(self, to_metric=None): speed = self.get_fps() metric = 'Second' if speed < 1 and to_metric != metric: speed *= 60 metric = 'Minute' if speed < 1 and to_metric != metric: speed *= 60 metric = 'Hour' if speed < 1 and to_metric != metric: speed *= 24 metric = 'Day' return speed, metric def show_process(self, process_now, process_total, name='Epoch'): if self.time_sum <= 0: return speed = self.time_sum / self.time_count print('{:<5s} [{:3.0f}/{:3.0f}] [{:8.02f}/{:8.02f}]: {:5.02f}({:5.02f}) '.format( name, process_now, process_total, process_now * speed, process_total * speed, self.time_record, speed )) def show_speed(self): speed, metric = self.__get_speed() print('{:4.01f} Frames/{}'.format(speed, metric)) # Path: _Utils/DirectoryOperator.py class DirectoryOperator: def __init__(self, directory: str): self.directory = directory def make_fold(self): if not TestMode: # print('mk dir {}'.format(os.path.dirname(self.directory))) os.makedirs(os.path.dirname(self.directory), exist_ok=True) def modification_time(self): if os.path.exists(self.directory): return os.path.getmtime(self.directory) else: warnings.warn('Time_now is returned since the modification time for non-exist file is not available. File: {}'.format(self.directory)) return time.time() # Path: DataSetMaster/dataset.py def get_clusters(args): item_path = os.path.join(path_operator.get_checkpoint_path(level=1), 'Items0321') file_mnist_test = os.path.join(item_path, 'mnist_test_clusters89.67.txt') file_mnist_train = os.path.join(item_path, 'MnistTrain94.31B256.txt') file_amazon = os.path.join(item_path, 'amazon72.81B032ReValue.txt') file_webcam = os.path.join(item_path, 'webcamOurLoaderRevalveBatchWiseB032_84.03.txt') file_usps = os.path.join(item_path, 'usps_train_clusters85.10.txt') root_har = os.path.join(item_path, 'HAR') root_mtfl = os.path.join(item_path, 'MTFL') if args.dataset == 'MNISTUSPS': # 87.75 93.31 if args.MnistTrain: file_mnist = file_mnist_train else: file_mnist = file_mnist_test file_list = [ file_mnist, file_usps, ] elif args.dataset == 'ReverseMNIST': # 89.67 94.31 if args.MnistTrain: file_mnist = file_mnist_train else: file_mnist = file_mnist_test file_list = [ file_mnist, file_mnist, ] elif args.dataset == 'Office': # 75.28 file_list = [ file_amazon, file_webcam, ] elif args.dataset == 'MTFL': file_list = np.sort([os.path.join(root_mtfl, f) for f in os.listdir(root_mtfl) if f.endswith('txt')]) elif args.dataset == 'HAR': # 81.70 file_list = np.sort([os.path.join(root_har, f) for f in os.listdir(root_har) if f.endswith('txt')]) else: raise NotImplementedError("") def debug(x): print(x.shape) return x clusters = torch.cat( [debug(torch.from_numpy(np.loadtxt(c).astype(np.float32)).long()) for c in file_list], dim=0, ).cuda() return clusters # Path: classification.py def svm_classify(data, data_gt, label, test_prop, C): """ trains a linear SVM on the data input C specifies the penalty factor of SVM """ seed = random.randint(0, 1000) train_idx, test_idx = TT_split(data.shape[1], test_prop, seed) train_data = np.concatenate([data[0][train_idx], data[1][train_idx]], axis=1) test_data = np.concatenate([data_gt[0][test_idx], data_gt[1][test_idx]], axis=1) test_label = label[test_idx] train_label = label[train_idx] # print('training SVM...') clf = svm.LinearSVC(C=C, dual=False) clf.fit(train_data, train_label.ravel()) p = clf.predict(test_data) test_acc = accuracy_score(test_label, p) return test_acc # Path: evaluate.py def UMAP(feature_vec, type_vec, group_vec, pred_vec, n_type, n_batch, args, epoch, dst_root='../Visualization'): t = time.time() # print("Performing UMAP Visualization...") # print('feature_vec.shape == {}'.format(feature_vec.shape)) sc.set_figure_params(figsize=(4, 4), dpi=300) # type_vec = pd.DataFrame(type_vec) # for key in cell_type_dict.keys(): # type_vec.replace(key, cell_type_dict[key], inplace=True) # group_vec = pd.DataFrame(group_vec) # for key in batch_dict.keys(): # batch_vec.replace(key, batch_dict[key], inplace=True) adata = sc.AnnData(feature_vec) # print('adata.shape == {}'.format(adata.shape)) sc.pp.neighbors(adata) adata.obs['cluster'] = pd.DataFrame(pred_vec).values.astype(np.str_) adata.obs['type'] = pd.DataFrame(type_vec).values.astype(np.str_) adata.obs['group'] = pd.DataFrame(group_vec).values.astype(np.str_) sc.tl.umap(adata) sc.pl.umap(adata, color=['cluster'], palette=sns.color_palette("husl", n_type), save='E{:03d}UmapCluster{}.png'.format(epoch, str(args.dataset)), show=False) sc.pl.umap(adata, color=['type'], palette=sns.color_palette("husl", n_type), save='E{:03d}UmapType{}.png'.format(epoch, str(args.dataset)), show=False) sc.pl.umap(adata, color=['group'], palette=sns.color_palette("hls", n_batch), save='E{:03d}UmapGroup{}.png'.format(epoch, str(args.dataset)), show=False) roott = './figures/' for root, dirs, files in os.walk(roott): # print(root) # print(dirs) # print(files) for f in files: # print(os.path.join('../Visualization', f)) FileOperator( os.path.join(root, f) ).rename( os.path.join(dst_root, f.replace('umapE', 'E')), auto_rename=False ) if PrintTimer: print('VisualizeScatter finished with in {:.03f} seconds (x.shape == {}).'.format( time.time() - t, feature_vec.shape, )) # Path: evaluate.py def evaluate2(feature_vec, pred_vec, type_vec, group_vec): nmi, ari, acc, pred_adjusted = cluster_metrics(type_vec, pred_vec) gs = np.unique(group_vec) ts = np.unique(type_vec) class_num = len(ts) group_num = len(gs) if group_vec is not None and group_num > 1: balance, entro = my_balance(pred_vec, group_vec, cluster_num=np.unique(type_vec).shape[0], group_num=np.unique(group_vec).shape[0]) O = torch.zeros((class_num, group_num)).cuda() for b in gs: ind_g = b == group_vec pred_vec_g = pred_vec[ind_g] for t in ts: O[t, b] = np.sum(pred_vec_g == t) O += 1e-6 O = (O / torch.sum(O)) NmiFair = normalized_mutual_information(O).cpu().numpy() Fmeasure = FMeasure(beta=1)(acc, NmiFair) else: balance, entro = 0, 0 NmiFair = 0 Fmeasure = 0 entro_v = np.mean(entro) global BestAcc, BestAri, BestNmi, BestBalance, BestEntropy, BestFairness, BestNmiFair, BestFmeasure if BestAcc < acc: BestAcc = acc if BestAri < ari: BestAri = ari if BestNmi < nmi: BestNmi = nmi if BestBalance < balance: BestBalance = balance # if BestFairness < fairness: # BestFairness = fairness if BestNmiFair < NmiFair: BestNmiFair = NmiFair if BestFmeasure < Fmeasure: BestFmeasure = Fmeasure if BestEntropy < entro_v: BestEntropy = entro_v print( 'NMI={:5.02f}|{:5.02f}, ARI={:5.02f}|{:5.02f}, ACC={:5.02f}|{:5.02f}, Balance={:5.02f}|{:5.02f}, NmiFair={:5.02f}|{:5.02f}, Fmeasure={:5.02f}|{:5.02f}, Entropy={:5.02f}|{:5.02f}[{}],'.format( nmi * 100, BestNmi * 100, ari * 100, BestAri * 100, acc * 100, BestAcc * 100, balance * 100, BestBalance * 100, # fairness * 100, BestFairness * 100, NmiFair * 100, BestNmiFair * 100, Fmeasure * 100, BestFmeasure * 100, entro_v, BestEntropy, entro ) ) met = { 'nmi' : nmi, 'ari' : ari, 'acc' : acc, 'balance' : balance, 'NmiFair' : NmiFair, 'Fmeasure': Fmeasure, } return pred_adjusted, met # tqdm.write('NMI=%.4f, ACC=%.4f, ARI=%.4f' % (nmi, acc, ari), end='') # if fair_metric: # kl, ari_b = fair_metrics(feature_vec, group_vec, pred_vec, type_vec) # print(', KL=%.4f, ARI_b=%.4f' % (kl, ari_b), end='') # tqdm.write('') # Path: figures/ScatterMaster.py def visual_image_scatter(): np_path = os.path.join( 'D:/VirtualMachine/Codes/230904/SMAIL_RunSet_Visual/ --QuickConfig C100 --VisualFreq 5 --VisualRandom 1 --dataset NoisyMNIST30000 --seed 1999 --train_epoch 100/Checkpoints/Epoch099.npz') # np_path_row = os.path.join(root, np_paths[np_names.index(np_tag)], 'NpPoints', np_epoch) data = np.load(np_path, allow_pickle=False) data_vec = data['data_vec'] feature_vec = data['feature_vec'] group_vec = data['group_vec'] type_vec = data['type_vec'] # visualize_image(x=[ # [it.reshape([28, 28]) for it in data_vec[:10]], # [it.reshape([28, 28]) for it in data_vec[10:20]], # [it.reshape([28, 28]) for it in data_vec[20:30]], # ], show=True) DrawMax = 3000 if len(feature_vec) > DrawMax: it = np.arange(len(feature_vec)) np.random.shuffle(it) ind = it[:DrawMax] feature_vec = feature_vec[ind] type_vec = type_vec[ind] group_vec = group_vec[ind] data_vec = data_vec[ind] vis_fea = TSNE(perplexity=50).fit_transform(feature_vec) _, ax = plt.subplots(figsize=(5 * 1 * 2, 5 * 1 * 2 / 1.6)) label_color = np.unique(type_vec) color_num = len(np.unique(type_vec)) # if color_num <= 2: # cmap = None if color_num <= 10: cmap = 'tab10' elif color_num <= 20: cmap = 'tab20' else: cmap = 'gist_ncar' for digit in np.unique(type_vec): ax.scatter( *vis_fea[type_vec == digit].T, # marker=f"${digit}$", s=0.5, # color=plt.cm.Dark2(digit), alpha=0.7, c=type_vec[type_vec == digit], cmap=cmap, vmax=max(4, np.max(label_color)), vmin=min(0, np.min(label_color)), zorder=2, ) w = int(np.sqrt(len(data_vec[0]))) h = w shown_images = np.array([[1.0, 1.0]]) # just something big for i in range(data_vec.shape[0]): # plot every digit on the embedding # show an annotation box for a group of digits dist = np.sum((vis_fea[i] - shown_images) ** 2, 1) if np.min(dist) < 2e1: # don't show points that are too close continue if np.min(dist) < 2e1: # don't show points that are too close continue shown_images = np.concatenate([shown_images, [vis_fea[i]]], axis=0) # img = offsetbox.OffsetImage(data_vec[i].reshape([w, h]), cmap=plt.cm.gray_r, ) img = offsetbox.OffsetImage(data_vec[i].reshape([w, h]), cmap=plt.cm.gray_r, zoom=0.5) # img.ti imagebox = offsetbox.AnnotationBbox( img, # [w, h, 3] vis_fea[i], pad=0, frameon=False ) imagebox.set(zorder=1) ax.add_artist(imagebox) ax.set_title('title') ax.axis("off") plt.tight_layout() plt.savefig('D:/Pengxin/Temp/tmp.pdf') plt.show() print() pass # Path: Net.py import math import os import time import warnings import numpy as np import torch import torchvision import torch.nn.functional as F import evaluate import faiss import scipy.io as sio from torch import nn from torch.autograd import Variable from DistComput import get_dist_release from _Utils.Calculator import get_nearest_k from _Utils.Logs import update_log from _Utils.Scatter import visualize2 from _Utils.Visualize import visualize, visual_matrix_console, visualize_image, plot_heat_map from _Utils import TimeOperator, DirectoryOperator from DataSetMaster.dataset import get_clusters from classification import svm_classify from evaluate import UMAP, evaluate2 from sklearn import metrics from munkres import Munkres from figures.ScatterMaster import visual_image_scatter def show_distribution_ct(type_vec, group_vec, pred_vec, class_num, group_num): v = np.zeros((class_num, class_num, group_num), dtype=int) for t, c, g in zip(type_vec, pred_vec, group_vec): v[t, c, g] += 1 visual_matrix_console(x=v)
def kmeans(feature_vec, class_num):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: botcs/wolfson-scheduler # Path: solver.py def unravel_indices(indices, shape): coord = [] for dim in reversed(shape): coord.append(indices % dim) indices = indices // dim coord = torch.stack(coord[::-1], dim=-1) return coord # Path: solver.py def generalized_outer_addition(vectors, output=None): """ Corrected function to compute the outer addition of N K-dimensional vectors using broadcasting. This function is equivalent to the following code: ``` result = torch.zeros((K1, K2, ..., KN)) for idx1 in range(K1): for idx2 in range(K2): ... result[idx1, idx2, ..., idxn] = vectors[idx1] + vectors[idx2] + ... + vectors[idxn] ``` However, it is much faster because it uses pre-computed sums and sums of squares. :param vectors: List of N vectors of shape (K1, K2, ..., KN) :param output: Optional output tensor if provided, must be of shape (K1, K2, ..., KN) :return: Tensor of shape (K1, K2, ..., KN) """ # Assert all vectors are on the same device device = vectors[0].device assert all( v.device == device for v in vectors ), "All vectors must be on the same device" # Number of vectors (N) and dimensions (K) # N, K = vectors.shape N = len(vectors) Ks = [len(v) for v in vectors] if output is None: output = torch.zeros(Ks, dtype=vectors[0].dtype, device=vectors[0].device) else: assert output.shape == tuple(Ks), "Output tensor has incorrect shape" output.zero_() # Reshape each vector to have a unique non-singleton dimension for i in range(N): expanded_shape = [1] * N expanded_shape[i] = Ks[i] reshaped_vector = vectors[i].view(*expanded_shape) output += reshaped_vector return output # Path: solver.py def compute_variances(X, Y): """ Compute variances between all combinations of vectors in X and Y. This function is equivalent to the following code: ``` variances = torch.zeros((X.size(0), Y.size(0))) for i in range(X.size(0)): for j in range(Y.size(0)): concatenated = torch.cat((X[i], Y[j])) variances[i, j] = torch.var(concatenated, unbiased=False) ``` However, it is much faster because it uses pre-computed sums and sums of squares. :param X: Tensor of shape (N, K) :param Y: Tensor of shape (M, L) """ # Compute sums and sums of squares for X sum_X = torch.sum(X, dim=1) sum_sq_X = torch.sum(X**2, dim=1) # Compute sums and sums of squares for Y sum_Y = torch.sum(Y, dim=1) sum_sq_Y = torch.sum(Y**2, dim=1) # Lengths of vectors in X and Y len_X = X.shape[1] len_Y = Y.shape[1] # Broadcasting sums and sum of squares for all combinations total_sum = sum_X.unsqueeze(1) + sum_Y.unsqueeze(0) total_sum_sq = sum_sq_X.unsqueeze(1) + sum_sq_Y.unsqueeze(0) total_len = len_X + len_Y # Compute variances mean = total_sum / total_len variances = total_sum_sq / total_len - mean**2 return variances # Path: solver.py def get_max_numel(dtype, memory_capacity=None, device="cpu"): """ Compute the maximum number of elements that fit in specified memory. :param dtype: Data type of the tensor (e.g., torch.float32) :param memory_capacity: Memory capacity in bytes :param device: 'cpu' or 'cuda' :return: maximum number of elements that fit """ # Get memory capacity if memory_capacity is None: memory_capacity = get_free_memory(device) # Calculate maximum number of elements that fit element_size = torch.tensor( [], dtype=dtype ).element_size() # Size in bytes of one element max_numel = memory_capacity // element_size return max_numel # Path: solver.py def check_matrix_fit_and_num_chunks( dimensions, dtype, memory_capacity=None, device="cpu" ): """ Check if a tensor of given dimensions and data type fits in specified memory. If not, return chunk sizes that maximize the capacity, slicing only along the first dimension. :param dimensions: Tuple of dimensions for the tensor :param dtype: Data type of the tensor (e.g., torch.float32) :param memory_capacity: Memory capacity in bytes :param device: 'cpu' or 'cuda' :return: number of chunks along the first dimension """ # Get memory capacity if memory_capacity is None: memory_capacity = get_memory_capacity(device) # Calculate total number of elements total_elements = 1 for dim in dimensions: total_elements *= dim element_size = torch.tensor( [], dtype=dtype ).element_size() # Size in bytes of one element total_size = total_elements * element_size # Total memory required for the tensor if total_size <= memory_capacity: return 1 # If doesn't fit, calculate chunk size for the first dimension other_dims_product = 1 for dim in dimensions[1:]: other_dims_product *= dim max_first_dim_size = memory_capacity // (other_dims_product * element_size) if max_first_dim_size == 0: raise ValueError("Tensor does not fit in memory.") num_chunks = math.ceil(dimensions[0] / max_first_dim_size) return num_chunks # Path: solver.py def convert_property_to_categorical(property): """ Convert the properties to a categorical variable. :param property: List of properties for each rower. Shape: (num_rowers) dtype: Any :return: Tensor of categorical properties. Shape: (num_rowers) dtype: torch.long """ unique_properties = set() for p in property: unique_properties.add(p) unique_properties = sorted(list(unique_properties)) property = [unique_properties.index(p) for p in property] property = torch.tensor(property) return property # Path: solver.py def extract_best_assignment(assignments_per_week, total_score): """ Extract the best assignment for each outing. :param assignments_per_week: Tensor of assignments per week. shape: (num_outings, num_combinations, num_rowers) :param total_score: Tensor of total score for each assignment. shape: (num_combinations, num_combinations, ..., num_combinations) x num_outings :return: Tensor of best assignment per outing. shape: (num_outings, 1, num_rowers) """ num_outings, num_combinations, num_rowers = assignments_per_week.shape # Find the top assignments # top_inds = torch.argsort(total_score.flatten(), descending=True)[0] top_idx = torch.argmax(total_score.flatten()) top_idx = unravel_indices(top_idx, total_score.shape) # top_inds tells us for each outing the index of the top assignment top_assignment = torch.zeros( num_outings, 1, num_rowers, dtype=torch.uint8, device=assignments_per_week.device, ) for outing_idx, comb_idx in enumerate(top_idx): top_assignment[outing_idx] = assignments_per_week[outing_idx, comb_idx] return top_assignment # Path: solver.py @torch.no_grad() def get_no_overlap_inds(A, B): """ Perform matrix multiplication of A and B in chunks. Return the indices of rows in A and columns in B that have no overlap. Overlap is defined as a non-zero value in the product of A and B. :param A: First matrix shape: (num_combinations_A, num_rowers) :param B: Second matrix shape: (num_combinations_B, num_rowers) :param chunk_sizes: Chunk sizes for the first dimension of A :return: indices of rows in A and columns in B that have no overlap """ # check if the product of the two matrices fits in memory # if not, chunk the matrices and check for overlap in chunks num_chunks = check_matrix_fit_and_num_chunks( (A.shape[0], A.shape[1], B.shape[0]), dtype=A.dtype, device=A.device ) # num_chunks = 1 def multiply_and_find(A_chunk, B): # counts the number of double-assignments for each rower between the two boats assignment_count = torch.matmul(A_chunk, B.T) no_overlap_inds = torch.nonzero(assignment_count == 0) return no_overlap_inds # if the product fits in memory, check for overlap in one go if num_chunks == 1: return multiply_and_find(A, B) A_chunks = torch.chunk(A, num_chunks) # otherwise, chunk the matrices and check for overlap in chunks no_overlap_inds = [] offset_idx = 0 for A_chunk in tqdm.tqdm(A_chunks): # no_overlap_inds.append(multiply_and_find(A_chunk, B).tolist()) chunk_inds = multiply_and_find(A_chunk, B) # add the chunk size to offset the indices chunk_inds[:, 0] += offset_idx offset_idx += A_chunk.shape[0] no_overlap_inds.append(chunk_inds) return torch.cat(no_overlap_inds) # Path: solver.py @torch.no_grad() def generate_binary_matrices( num_rowers, boat_sizes, device="cpu", max_num_combinations=NUM_MAX_COMBINATION_PER_BOAT, ): """ Generate binary matrices for each combination of rowers in boats. :param num_rowers: Total number of rowers :param boat_sizes: List of boat sizes """ per_boat_binary_matrices = [] for boat_size in boat_sizes: # Precompute indices for combinations row_indices = [] col_indices = [] num_combinations = math.comb(num_rowers, boat_size) if num_combinations > max_num_combinations: M = torch.zeros((max_num_combinations, num_rowers), dtype=torch.bool) keep_indices = sample( torch.arange(num_combinations), k=max_num_combinations ) keep_indices = keep_indices.sort().values i = 0 for row, combination in enumerate( itertools.combinations(range(num_rowers), boat_size) ): if keep_indices[i] != row: continue for col in combination: row_indices.append(i) col_indices.append(col) i += 1 if i == max_num_combinations: break else: M = torch.zeros((num_combinations, num_rowers), dtype=torch.bool) for row, combination in enumerate( itertools.combinations(range(num_rowers), boat_size) ): for col in combination: row_indices.append(row) col_indices.append(col) # Use advanced indexing to fill the matrix M[row_indices, col_indices] = 1 per_boat_binary_matrices.append(M) return per_boat_binary_matrices # Path: solver.py @torch.no_grad() def eliminate_invalid_boats( binary_matrix, rower_sides, num_max_combinations=NUM_MAX_COMBINATION_PER_BOAT ): """ Eliminate invalid boats from a binary matrix. Currently we consider a boat invalid if there are more rowers on one side than the other. We represent stroke as 1 and bow as -1 and 0 for no preference. :param binary_matrix: Binary matrix of rower combinations shape: (num_combinations, num_rowers) :return: Binary matrix with invalid boats eliminated """ # gather the rower sides for each rower in each boat for each combination num_assigned_rowers = binary_matrix[0].sum() # assert each row has the same number of assigned rowers assert (binary_matrix.sum(dim=1) == num_assigned_rowers).all() assert len(rower_sides) == binary_matrix.shape[1] idx = binary_matrix.nonzero()[:, 1].view(len(binary_matrix), num_assigned_rowers) outings = rower_sides[idx] # Compute the offset between the number of stroke and bow seats offset = torch.sum(outings, dim=1).abs() # Determine the number of rowers that are both stroke and bow seat count_where_both = torch.sum(outings == 0, dim=1) # Eliminate invalid boats is_valid = count_where_both >= offset binary_matrix = binary_matrix[is_valid] if len(binary_matrix) > num_max_combinations: binary_matrix = sample(binary_matrix, k=num_max_combinations) return binary_matrix # Path: solver.py @torch.no_grad() def generate_valid_assignments( single_boat_bin_matrices, num_max_combinations=NUM_MAX_PAIRWISE_COMBINATION ): """ Generate valid combinations of rowers across multiple boats on a single outing :param matrices: List of binary matrices, each representing combinations for a boat. shape: List[ Tensor(num_combinations_1, num_rowers), Tensor(num_combinations_2, num_rowers), ... Tensor(num_combinations_n, num_rowers), ] :return: Tensor of valid combinations across all boats. """ assert len(single_boat_bin_matrices) > 0, "Must have at least one boat" assert all( m.shape[1] == single_boat_bin_matrices[0].shape[1] for m in single_boat_bin_matrices ), "All matrices must have the same number of rowers" assignments = single_boat_bin_matrices[0] for boat_ind, boat_B in enumerate(single_boat_bin_matrices[1:], start=2): no_overlap_inds = get_no_overlap_inds(assignments, boat_B) if len(no_overlap_inds) > num_max_combinations: no_overlap_inds = sample(no_overlap_inds, k=num_max_combinations) A_inds, B_inds = no_overlap_inds.T # update boat_A to be the combination of boat_A and boat_B with no overlap assignments = assignments[A_inds] + boat_B[B_inds] * boat_ind return assignments # Path: solver.py def evaluate_skill_variance(assignments_per_week, skill_levels, dtype=torch.float16): """ This relies on the notion that the skill levels entered are not categorical but integer values (or can be mapped to ordered categories, e.g. M1 > M2 > M3 ... ) :param assignments_per_week: Tensor of assignments per week. shape: (num_outings, num_combinations, num_rowers) :param skill_levels: Tensor of skill levels for each rower. shape: (num_rowers,) :return: Tensor of variance for each combination in each outing. shape: (num_combinations, num_combinations, ..., num_combinations) x num_outings """ # assert that the number of assigned rowers is the same for each outing for outing_idx in range(len(assignments_per_week)): num_assigned_rowers = assignments_per_week[outing_idx][0].sum() assert ( assignments_per_week[outing_idx].sum(dim=1) == num_assigned_rowers ).all() num_outings, num_combinations, num_rowers = assignments_per_week.shape max_num_boats = assignments_per_week.max().item() outing_variance = torch.zeros( num_outings, num_combinations, device=assignments_per_week.device, dtype=dtype ) for boat_idx in range(max_num_boats): boat_assignment = assignments_per_week == boat_idx + 1 # we use binary masking X = skill_levels * boat_assignment # but we need to make sure that we don't include the rowers that are not assigned X_sum = X.sum(dim=2) X_len = boat_assignment.sum(dim=2) X_mean = X_sum / X_len boat_variance = ((X - X_mean.unsqueeze_(2)) * boat_assignment) ** 2 boat_variance = boat_variance.sum(dim=2) # we use the unbiased variance since the sample size is small boat_variance /= torch.clamp(X_len - 1, min=1) outing_variance += boat_variance # now we need to compute the variance between the outings across the week week_variance = generalized_outer_addition(outing_variance) return week_variance # Path: solver.py def evaluate_num_preferred_outings( assignments_per_week, num_preferred_outings, dtype=torch.long ): # assert that the number of assigned rowers is the same for each outing for outing_idx in range(len(assignments_per_week)): num_assigned_rowers = assignments_per_week[outing_idx, 0].sum() assert ( assignments_per_week[outing_idx].sum(dim=1) == num_assigned_rowers ).all() assignments_per_week = assignments_per_week > 0 num_outings, num_combinations, num_rowers = assignments_per_week.shape # just to pin memory and reuse the output tensor num_assignment_per_rower = torch.zeros( [num_combinations] * num_outings, device=assignments_per_week.device, dtype=dtype, ) week_over_assignment = torch.zeros( [num_combinations] * num_outings, device=assignments_per_week.device, dtype=dtype, ) for rower_idx in range(num_rowers): num_assignment_per_rower = generalized_outer_addition( assignments_per_week[:, :, rower_idx], output=num_assignment_per_rower ) num_preferred_outings_per_rower = num_preferred_outings[rower_idx] assignment_diff = num_assignment_per_rower - num_preferred_outings_per_rower over_assignment = assignment_diff.clamp_(min=0) week_over_assignment += over_assignment return week_over_assignment # Path: solver.py def evaluate_assignments_per_week( assignments_per_week, properties, weights, return_stats=False ): """ Evaluate the assignments per week. :param assignments_per_week: Tensor of num_outings different assignments for the week. Shape: (num_outings, num_combinations, num_rowers) dtype: torch.uint8 :param properties: dict of Tensors of properties. Shape: {property_name: Tensor(num_rowers)} dtype: torch.long :param weights: dict of weights for each property. Shape: {property_name: float} :param return_stats: Whether to return the stats for each property. :return: Total score for the week. Shape: (num_combinations, num_combinations, ..., num_combinations) x num_outings :return: Stats for each weight category. """ # Compute variance of skill levels week_variance = evaluate_skill_variance( assignments_per_week, properties["skill_level"] ) # Compute number of preferred outings week_num_preferred_outings = evaluate_num_preferred_outings( assignments_per_week, properties["num_preferred_outings"] ) # Compute total score total_score = ( weights["skill variance"] * week_variance + weights["over assignment"] * week_num_preferred_outings ) if return_stats: stats = { "values": { "skill variance": week_variance, "over assignment": week_num_preferred_outings, }, "weights": weights, "total": total_score, } return total_score, stats return total_score # Path: solver.py def permute_top_assignments( valid_assignments, assignments_per_week, total_scores, num_permutations=10, randomize_permutations=True, ): """ Permute the top assignments for the week. """ num_outings, num_combinations, num_rowers = assignments_per_week.shape assert len(valid_assignments) == num_outings, "Must have the same number of outings" assert ( len(assignments_per_week) == num_outings ), "Must have the same number of outings" if any(m.ndim != 2 for m in valid_assignments): raise ValueError("All outing assignments have to be 2D for every outing") if any(m.shape[1] != num_rowers for m in valid_assignments): raise ValueError( "All outing assignments have to have the same number of rowers" ) if any((m.sum(dim=1) != m[0].sum()).any() for m in valid_assignments): raise ValueError( f"In each combination of every outing,\ the number of rowers assigned must be the same." ) # assert all( # m.ndim == 2 # for m in valid_assignments # ), f"All matrices must have the same number of dim: {[m.shape for m in valid_assignments]}" # assert all( # m.shape[1] == num_rowers # for m in valid_assignments # ), "All matrices must have the same number of rowers" # for outing_idx in range(len(valid_assignments)): # assert (valid_assignments[outing_idx].sum() == valid_assignments[outing_idx][0].sum()).all(),\ # "Combinations must have the same number of rowers assigned in an outing" # assert that the number of assigned rowers is the same for each outing for outing_idx in range(len(assignments_per_week)): num_assigned_rowers = assignments_per_week[outing_idx, 0].sum() assert ( assignments_per_week[outing_idx].sum(dim=1) == num_assigned_rowers ).all() best_assignment = extract_best_assignment(assignments_per_week, total_scores) # in the permutations we fix all outings except the outing we are permuting permuted_assignment = best_assignment.repeat(1, num_permutations + 1, 1) for outing_idx in range(len(assignments_per_week)): # just copy the best assignment num_permutations times if randomize_permutations: # we need to make sure that the best assignment is included permuted_assignment[outing_idx, 1:] = sample( valid_assignments[outing_idx], k=num_permutations ) else: permuted_assignment[outing_idx, 1:] = valid_assignments[outing_idx][ :num_permutations ] return permuted_assignment # Path: tests/test_solver.py import torch import unittest import math from unittest.mock import patch from solver import ( unravel_indices, generalized_outer_addition, compute_variances, get_max_numel, check_matrix_fit_and_num_chunks, convert_property_to_categorical, extract_best_assignment, get_no_overlap_inds, generate_binary_matrices, eliminate_invalid_boats, generate_valid_assignments, evaluate_skill_variance, evaluate_num_preferred_outings, evaluate_assignments_per_week, permute_top_assignments, ) class TestUnravelIndices(unittest.TestCase): def test_simple_case(self): indices = torch.tensor([0, 1, 2, 3, 4, 5]) shape = (2, 3) expected_result = torch.tensor([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2]]) result = unravel_indices(indices, shape) self.assertTrue(torch.equal(result, expected_result))
def test_single_dimension(self):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Azure-Samples/functions-python-web-crawler # Path: .venv/Lib/site-packages/azure/functions/decorators/generic.py class GenericInputBinding(InputBinding): @staticmethod def get_binding_name(): pass def __init__(self, name: str, type: str, data_type: Optional[DataType] = None, **kwargs): super().__init__(name=name, data_type=data_type, type=type) # Path: .venv/Lib/site-packages/azure/functions/decorators/generic.py class GenericTrigger(Trigger): @staticmethod def get_binding_name(): pass def __init__(self, name: str, type: str, data_type: Optional[DataType] = None, **kwargs): super().__init__(name=name, data_type=data_type, type=type) # Path: .venv/Lib/site-packages/azure/functions/decorators/generic.py class GenericOutputBinding(OutputBinding): @staticmethod def get_binding_name(): pass def __init__(self, name: str, type: str, data_type: Optional[DataType] = None, **kwargs): super().__init__(name=name, data_type=data_type, type=type) # Path: .venv/Lib/site-packages/azure/functions/decorators/warmup.py class WarmUpTrigger(Trigger): @staticmethod def get_binding_name() -> str: return WARMUP_TRIGGER def __init__(self, name: str, data_type: Optional[DataType] = None, **kwargs) -> None: super().__init__(name=name, data_type=data_type) # Path: .venv/Lib/site-packages/azure/functions/_http_asgi.py class AsgiMiddleware: """This middleware is to adapt an ASGI supported Python server framework into Azure Functions. It can be used by either calling the .handle() function or exposing the .main property in a HttpTrigger. """ _logger = logging.getLogger('azure.functions.AsgiMiddleware') _usage_reported = False def __init__(self, app): """Instantiate an ASGI middleware to convert Azure Functions HTTP request into ASGI Python object. Example on handling ASGI app in a HTTP trigger by overwriting the .main() method: import azure.functions as func from FastapiApp import app main = func.AsgiMiddleware(app).main """ if not self._usage_reported: self._logger.debug("Starting Azure Functions ASGI middleware.") self._usage_reported = True self._app = app self.main = self._handle def handle(self, req: HttpRequest, context: Optional[Context] = None): """Deprecated. Please use handle_async instead: import azure.functions as func from FastapiApp import app async def main(req, context): return await func.AsgiMiddleware(app).handle_async(req, context) """ warn("handle() is deprecated. Please await .handle_async() instead.", DeprecationWarning, stacklevel=2) self._logger.warning( "handle() is deprecated. Please `await .handle_async()` instead.") return self._handle(req, context) def _handle(self, req, context): asgi_request = AsgiRequest(req, context) scope = asgi_request.to_asgi_http_scope() asgi_response = asyncio.run( AsgiResponse.from_app(self._app, scope, req.get_body()) ) return asgi_response.to_func_response() async def handle_async(self, req: HttpRequest, context: Optional[Context] = None): """Method to convert an Azure Functions HTTP request into a ASGI Python object. Example on handling ASGI app in a HTTP trigger by calling .handle_async() in .main() method: import azure.functions as func from FastapiApp import app async def main(req, context): return await func.AsgiMiddleware(app).handle_async(req, context) """ return await self._handle_async(req, context) async def _handle_async(self, req, context): asgi_request = AsgiRequest(req, context) scope = asgi_request.to_asgi_http_scope() asgi_response = await AsgiResponse.from_app(self._app, scope, req.get_body()) return asgi_response.to_func_response() # Path: .venv/Lib/site-packages/azure/functions/_http_wsgi.py class WsgiRequest: class WsgiResponse: class WsgiMiddleware: def __init__(self, func_req: HttpRequest, func_ctx: Optional[Context] = None): def to_environ(self, errors_buffer: StringIO) -> Dict[str, Any]: def _get_port(self, parsed_url, lowercased_headers: Dict[str, str]) -> int: def _get_http_headers(self, func_headers: Dict[str, str]) -> Dict[str, str]: def __init__(self): def from_app(cls, app, environ) -> 'WsgiResponse': def to_func_response(self) -> HttpResponse: def _start_response(self, status: str, response_headers: List[Any]): def __init__(self, app): def handle(self, req: HttpRequest, context: Optional[Context] = None): def _handle(self, req, context): def _handle_errors(self, wsgi_response): # Path: .venv/Lib/site-packages/azure/functions/decorators/function_app.py import abc import json import logging from abc import ABC from datetime import time from typing import Any, Callable, Dict, List, Optional, Union, \ Iterable from azure.functions.decorators.blob import BlobTrigger, BlobInput, BlobOutput from azure.functions.decorators.core import Binding, Trigger, DataType, \ AuthLevel, SCRIPT_FILE_NAME, Cardinality, AccessRights from azure.functions.decorators.cosmosdb import CosmosDBTrigger, \ CosmosDBOutput, CosmosDBInput, CosmosDBTriggerV3, CosmosDBInputV3, \ CosmosDBOutputV3 from azure.functions.decorators.eventgrid import EventGridTrigger, \ EventGridOutput from azure.functions.decorators.eventhub import EventHubTrigger, EventHubOutput from azure.functions.decorators.http import HttpTrigger, HttpOutput, \ HttpMethod from azure.functions.decorators.queue import QueueTrigger, QueueOutput from azure.functions.decorators.servicebus import ServiceBusQueueTrigger, \ ServiceBusQueueOutput, ServiceBusTopicTrigger, \ ServiceBusTopicOutput from azure.functions.decorators.table import TableInput, TableOutput from azure.functions.decorators.timer import TimerTrigger from azure.functions.decorators.utils import parse_singular_param_to_enum, \ parse_iterable_param_to_enums, StringifyEnumJsonEncoder from azure.functions.http import HttpRequest from .generic import GenericInputBinding, GenericTrigger, GenericOutputBinding from .warmup import WarmUpTrigger from .._http_asgi import AsgiMiddleware from .._http_wsgi import WsgiMiddleware, Context f" in bindings {bindings}") # Set route to function name if unspecified in the http trigger # Set auth level to function app auth level if unspecified in the # http trigger if Trigger.is_supported_trigger_type(trigger, HttpTrigger): if getattr(trigger, 'route', None) is None: getattr(trigger, 'init_params').append('route') setattr(trigger, 'route', function_name) if getattr(trigger, 'auth_level', None) is None and auth_level is not None: getattr(trigger, 'init_params').append('auth_level') setattr(trigger, 'auth_level', parse_singular_param_to_enum(auth_level, AuthLevel)) self._function._is_http_function = True def build(self, auth_level: Optional[AuthLevel] = None) -> Function: """ Validates and builds the function object. :param auth_level: Http auth level that will be set if http trigger function auth level is None. """ self._validate_function(auth_level) return self._function class DecoratorApi(ABC): """Interface which contains essential decorator function building blocks to extend for creating new function app or blueprint classes. """ def __init__(self, *args, **kwargs): self._function_builders: List[FunctionBuilder] = [] self._app_script_file: str = SCRIPT_FILE_NAME @property def app_script_file(self) -> str: """Name of function app script file in which all the functions are defined. \n Script file defined here is for placeholder purpose, please refer to worker defined script file path as the single point of truth. :return: Script file name. """ return self._app_script_file def _validate_type(self, func: Union[Callable[..., Any], FunctionBuilder]) \ -> FunctionBuilder: """Validate the type of the function object and return the created :class:`FunctionBuilder` object. :param func: Function object passed to :meth:`_configure_function_builder` :raises ValueError: Raise error when func param is neither :class:`Callable` nor :class:`FunctionBuilder`. :return: :class:`FunctionBuilder` object. """ if isinstance(func, FunctionBuilder): fb = self._function_builders.pop() elif callable(func): fb = FunctionBuilder(func, self._app_script_file) else: raise ValueError( "Unsupported type for function app decorator found.") return fb def _configure_function_builder(self, wrap) -> Callable[..., Any]: """Decorator function on user defined function to create and return :class:`FunctionBuilder` object from :class:`Callable` func. """ def decorator(func): fb = self._validate_type(func) self._function_builders.append(fb) return wrap(fb) return decorator def function_name(self, name: str) -> Callable[..., Any]: """Set name of the :class:`Function` object. :param name: Name of the function. :return: Decorator function. """ @self._configure_function_builder def wrap(fb): def decorator(): fb.configure_function_name(name) return fb return decorator() return wrap def http_type(self, http_type: str) -> Callable[..., Any]: """Set http type of the :class:`Function` object. :param http_type: Http type of the function. :return: Decorator function. """ @self._configure_function_builder def wrap(fb): def decorator(): fb.configure_http_type(http_type) return fb return decorator() return wrap class HttpFunctionsAuthLevelMixin(ABC): """Interface to extend for enabling function app level http authorization level setting"""
def __init__(self, auth_level: Union[AuthLevel, str], *args, **kwargs):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: ict-bigdatalab/RIGHT # Path: dense_retrieval.py class MySimCSE(SimCSE): def encode(self, sentence: Union[str, List[str]], device: str = None, return_numpy: bool = False, normalize_to_unit: bool = True, keepdim: bool = False, batch_size: int = 64, max_length: int = 128) -> Union[ndarray, Tensor]: target_device = self.device if device is None else device self.model = self.model.to(target_device) single_sentence = False if isinstance(sentence, str): sentence = [sentence] single_sentence = True embedding_list = [] with torch.no_grad(): total_batch = len(sentence) // batch_size + (1 if len(sentence) % batch_size > 0 else 0) for batch_id in range(total_batch): inputs = self.tokenizer( sentence[batch_id * batch_size:(batch_id + 1) * batch_size], padding=True, truncation=True, max_length=max_length, return_tensors="pt" ) inputs = {k: v.to(target_device) for k, v in inputs.items()} outputs = self.model(**inputs, return_dict=True) if self.pooler == "cls": embeddings = outputs.pooler_output elif self.pooler == "cls_before_pooler": embeddings = outputs.last_hidden_state[:, 0] elif self.pooler == 'all_token_pooling': embeddings = outputs.last_hidden_state[:, 1:].mean(1) else: raise NotImplementedError if normalize_to_unit: embeddings = embeddings / embeddings.norm(dim=1, keepdim=True) embedding_list.append(embeddings.cpu()) embeddings = torch.cat(embedding_list, 0) if single_sentence and not keepdim: embeddings = embeddings[0] if return_numpy and not isinstance(embeddings, ndarray): return embeddings.numpy() return embeddings def search(self, queries: Union[str, List[str]], device: str = None, threshold: float = 0.6, top_k: int = 5) -> Union[List[Tuple[str, float]], List[List[Tuple[str, float]]]]: if not self.is_faiss_index: if isinstance(queries, list): combined_results = [] for query in queries: results = self.search(query, device) combined_results.append(results) return combined_results similarities = self.similarity(queries, self.index["index"]).tolist() id_and_score = [] for i, s in enumerate(similarities): if s >= threshold: id_and_score.append((i, s)) id_and_score = sorted(id_and_score, key=lambda x: x[1], reverse=True)[:top_k] results = [(idx, score) for idx, score in id_and_score] return results else: query_vecs = self.encode(queries, device=device, normalize_to_unit=True, keepdim=True, return_numpy=True) distance, idx = self.index["index"].search(query_vecs.astype(np.float32), top_k) def pack_single_result(dist, idx): results = [(i, s) for i, s in zip(idx, dist) if s >= threshold] return results if isinstance(queries, list): combined_results = [] for i in range(len(queries)): results = pack_single_result(distance[i], idx[i]) combined_results.append(results) return combined_results else: return pack_single_result(distance[0], idx[0]) # Path: get_datasets.py def get_transformed_io(src_path, dst_path): src = read_line_examples_from_file(src_path) dst = read_line_examples_from_file(dst_path) assert len(src) == len(dst) print(f"Total examples = {len(dst)}") targets, hashtags = get_para_targets(dst) assert len(src) == len(targets) return src, targets, hashtags # Path: get_datasets.py def get_hashtag_list(dst): tags = dst.split('[SEP]') target = [] for j in range(len(tags)): tags[j] = tags[j].strip() if tags[j] != '' and tags[j] not in target: target.append(tags[j]) # if the dst is nothing if len(target) == 0: target.append('None') # statistic_hashtags(hashtags) return target # Path: eval_utils.py def f1(pre, rec): if pre == 0 and rec == 0: return 0.0 return 2 * pre * rec / (pre + rec) # Path: data_augmentation.py def random_augmentation(words, n=1): for _ in range(20): random_percent = random.random() if random_percent <= 0.7: new_words = synonym_replacement(words, n) elif random_percent <= 0.8: new_words = random_deletion(words, n) elif random_percent <= 0.9: new_words = random_swap(words, n) elif random_percent <= 1: new_words = random_insertion(words, n) if new_words != words: return new_words return new_words + ' ' + stop_words[random.randint(0, 178)] # Path: data_preprocess.py import json import csv import jieba import jieba.posseg as pseg from tqdm import tqdm from gensim import corpora from gensim.summarization.bm25 import BM25 from nltk.corpus import stopwords from transformers import BertModel from transformers import BertTokenizer from dense_retrieval import MySimCSE from get_datasets import get_transformed_io, get_hashtag_list from eval_utils import f1 from functools import cmp_to_key from data_augmentation import random_augmentation p = true_num / total_p r = true_num / total_r f = f1(p, r) return p, r, f def hashtag_coverage_cmp(x, y): # x is in front of y if the function returns -1 if x[1][1] + x[1][2] > y[1][1] + y[1][2]: return -1 if x[1][1] + x[1][2] == y[1][1] + y[1][2]: if x[1][0] > y[1][0]: return -1 elif x[1][0] == y[1][0]: return 0 else: return 1 return 1 def generate_training_data_for_retrieval(src_data_path, dst_data_path, retrieval_data_path, output_path): src, targets, hashtags = get_transformed_io(src_data_path, dst_data_path) with open(retrieval_data_path, 'r', encoding='UTF-8') as fp: rev_index_list = json.load(fp) total_num = len(src) positive_samples = [] hard_negative_samples = [] for i in tqdm(range(total_num)): coverage_rate = dict() for j in range(total_num): if i == j: coverage_rate[i] = (-99, -99, -99) continue rate = compute_hashtag_coverage(hashtags[i], hashtags[j]) coverage_rate[j] = rate coverage_rate = sorted(coverage_rate.items(), key=cmp_to_key(hashtag_coverage_cmp), reverse=False)[0] positive_sample = src[coverage_rate[0]] rev_index = rev_index_list[i]["index"] nega_rate = dict() for ind in rev_index: rate = compute_hashtag_coverage(hashtags[i], hashtags[ind]) nega_rate[ind] = rate nega_rate = sorted(nega_rate.items(), key=cmp_to_key(hashtag_coverage_cmp), reverse=True)[:2] hard_negative_sample = src[nega_rate[0][0]] if hard_negative_sample == positive_sample: hard_negative_sample = src[nega_rate[1][0]] positive_samples.append(positive_sample) hard_negative_samples.append(hard_negative_sample) assert len(src) == len(positive_samples) == len(hard_negative_samples) with open(output_path, 'w', encoding='UTF-8') as fp: header = ['sent0', 'sent1', 'hard_neg'] writer = csv.writer(fp) writer.writerow(header) data = [] for i in range(total_num): line = [src[i], positive_samples[i], hard_negative_samples[i]] data.append(line) writer.writerows(data) # print(src[i]) # print(hashtags[i]) # print(coverage_rate) # for cov in coverage_rate: # print(cov[0]) # print(src[cov[0]]) # print(hashtags[cov[0]]) # print('-'*30) def generate_training_data_for_selector(src_data_path, dst_data_path, output_path): src, targets, hashtags = get_transformed_io(src_data_path, dst_data_path) constructive_src = [] positive_samples = [] hard_negative_samples = [] for i in tqdm(range(len(src))): for hashtag in hashtags[i]: hard_negative_hashtag = random_augmentation(hashtag) constructive_src.append(src[i]) positive_samples.append(hashtag) hard_negative_samples.append(hard_negative_hashtag) total_num = len(constructive_src) with open(output_path, 'w', encoding='UTF-8') as fp: header = ['sent0', 'sent1', 'hard_neg'] writer = csv.writer(fp) writer.writerow(header) data = [] for i in range(total_num): line = [constructive_src[i], positive_samples[i], hard_negative_samples[i]] data.append(line) writer.writerows(data) def generate_selector_result_for_retrieval_result(src_data_path, retrieval_index_path, retrieval_document_path, selector_model_path, out_path): src_data = [] with open(src_data_path, 'r', encoding='utf-8') as f: for line in f: line = line.strip("\n") if not line: continue src_data.append(line) retrieval_document = [] with open(retrieval_document_path, 'r', encoding='utf-8') as f: for line in f: line = line.strip("\n") if not line: continue retrieval_document.append(line) with open(retrieval_index_path, 'r', encoding='UTF-8') as fp: retrieval_index = json.load(fp) assert len(src_data) == len(retrieval_index) rev_dst = [[get_hashtag_list(retrieval_document[index]) for index in retrieval_index[i]["index"]] for i in range(len(src_data))] model = MySimCSE(selector_model_path, device='cuda') out_put = [] for i in range(len(src_data)): hashtag_set = [] for hashtag in rev_dst[i]:
hashtag_set += hashtag
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: ilyamiro/Stewart # Path: Audio/synthesizer.py class Synthesizer: """ Class for synthesizing Stewart voice Based on silero-tts v4 model from https://github.com/snakers4/silero-models """ def __init__(self, speaker="eugene"): """ Synthesizer initializing :param speaker: One of eugene; kseniya; baya; xenia; aidar; random; """ # initialize pygame for playing audio self.audio_init() # initialize sample rate and the speaker_voice self.sample_rate = 48000 self.speaker = speaker # initialization for torch package self.device = torch.device("cpu") torch.set_num_threads(32) # downloading model from source self.local_file = "model.pt" self.download_model() # creating model self.model = torch.package.PackageImporter( f"{os.path.abspath(os.path.join(os.getcwd(), os.pardir))}/Audio/model.pt").load_pickle("tts_models", "model") self.model.to(self.device) synthesis_logger.info("Model has beed set") # setting audio state checker for synthesizer self.audio = PlayChecker() self.music_playing = False self.music_stopped = True def download_model(self, url="https://models.silero.ai/models/tts/ru/v4_ru.pt"): """ Function for downloading voice model :param url: address for downloading voice model """ # downloading model from source if not os.path.isfile(f"{os.path.abspath(os.path.join(os.getcwd(), os.pardir))}/Audio/model.pt"): synthesis_logger.info("Downloading synthesis model") torch.hub.download_url_to_file(url, self.local_file) @staticmethod def audio_init(): """ Function for initializing pygame audio player """ pygame.init() pygame.mixer.init() synthesis_logger.debug("Audio initialized") def say(self, text: str) -> None: """ Function for saying something :param text: text for saying :return: None """ self.synthesize(text) # playing audio from file using pygame. # playsound() could be used instead, but it doesn't really imply stop() func, while pygame does try: pygame.mixer.music.load(f"{os.path.abspath(os.path.join(os.getcwd(), os.pardir))}/Audio/audio.wav") pygame.mixer.music.play() except pygame.error: synthesis_logger.error("Audio playing error") def synthesize(self, text: str) -> None: if self.music_stopped: # synthesizing voice try: self.model.save_wav(ssml_text=f"<speak><prosody rate='100%'>{text}</prosody></speak>", speaker=self.speaker, sample_rate=self.sample_rate, audio_path=f"{os.path.abspath(os.path.join(os.getcwd(), os.pardir))}/Audio/audio.wav") # ssml text supports a lot of parameters, such as intonation, pauses etc. except AssertionError: raise SpeakerInvalid except Exception: raise SynthesisError @staticmethod def is_saying() -> bool: """ Function for checking if synthesized audio is being played :return: checks if stewart is saying something. Returns True if yes, else False """ return pygame.mixer.music.get_busy() def change_speaker(self, speaker: str): """ Function for changing voice model's speaker :param speaker: speaker name. One of eugene; kseniya; baya; xenia; aidar; random; """ self.speaker = speaker def change_sample_rate(self, rate: int): """ Function for changing voice model's rate :param rate: rate of a synthesizer model """ self.sample_rate = rate # Path: Audio/recognition.py class Voice: """ Class for recognizing user's voice All models taken from: https://alphacephei.com/vosk/models Usage example voice = Voice() voice.start_stream() while True: for word in voice.listen(): print(word) """ def __init__(self, lang="ru", big_model=False): # if platform == "linux" or platform == "linux2": # # on some linux systems, jack_control is disabled on boot, and audio input is not working properly # # if there is another audio input driver controller, it should be enabled itself # os.system("jack_control start") self.rate = 16000 self.init_model(lang, big_model) self.init_audio(16000) self.init_recognizer() def listen(self): """ Generator for handling user input. Reads data from stream and uses recognizer to analyze the data """ data = self.stream.read(4000, exception_on_overflow=False) # checking if data is valid if self.recognizer.AcceptWaveform(data) and len(data) > 1 and self.stream.is_active(): # using json to load results of user input's analyzing answer = json.loads(self.recognizer.Result()) # if user said something - it yields if answer['text']: # recognition_logger.info("Data readed and analyzed") yield answer['text'] def init_model(self, model_lang="ru", big_model: bool = False): """ :param model_lang: choose model's language: ru/en :param big_model: choose if the model is going to be big or not. -> Big models can take up to 8 Gb of RAM on your device, so using them might not be optimal for you Small models are mainly used for Android/IOS apps, they are much easier to handle, but they are worse at voice detection. """ # default model path model_path = f"{os.path.abspath(os.path.join(os.getcwd(), os.pardir))}/Speech-models/vosk-model-small-ru-0.22" # choosing model depending on user's choice if model_lang == "ru": model_path = f"{os.path.abspath(os.path.join(os.getcwd(), os.pardir))}/Speech-models/vosk-model{'-small' if not big_model else ''}-ru-{'0.42' if big_model else '0.22'}" elif model_lang == "en": model_path = f"{os.path.abspath(os.path.join(os.getcwd(), os.pardir))}/Speech-models/vosk-model{'-small' if not big_model else ''}-en-us-{'0.22' if big_model else '0.15'}" # initializing the model self.model = Model(model_path) recognition_logger.info("Model initialized") def init_audio(self, rate): """ Function for initializing pyaudio stream :param rate: the quality of audio coming from your microphone into the system. rate from 16000 to 48000 doesn't really change model's behavior """ p = pyaudio.PyAudio() self.rate = rate try: # the number of frames per buffer should preferably be half the rate value self.stream = p.open(format=pyaudio.paInt16, rate=rate, channels=1, frames_per_buffer=int(rate / 2), input=True) recognition_logger.info("stream created") except TypeError: raise StreamParametersError("Stream parameters (rate) are corrupted. Failed to open stream") def init_recognizer(self): """ Function for initializing recognizer """ try: self.recognizer = KaldiRecognizer(self.model, self.rate) recognition_logger.info("Recognizer initialized") except AttributeError: recognition_logger.error("Model error") raise ModelError("There was an error initializing this model") def start_stream(self): """ Start voice input """ self.stream.start_stream() recognition_logger.info("stream started") def stop_stream(self): """ Stop voice input """ self.stream.stop_stream() recognition_logger.info("stream stopped") def is_enabled(self): """ Function for checking if the voice input is active """ return self.stream.is_active() # Path: Database/Data.py class Data: """ class for data handling """ def __init__(self): with open(f"{os.path.abspath(os.path.join(os.getcwd(), os.pardir))}/Database/data.json", "r") as file: data = json.load(file) for key in data.keys(): self.__setattr__(key, data[key]) # Path: PluginSystem/Plugin_system.py class PluginOperation: @staticmethod def register_plugin(plugin: Plugin): with open(f"{os.path.abspath(os.path.join(os.getcwd(), os.pardir))}/Database/config.json", "r") as file: data = json.load(file) __info__ = asdict(plugin.info) if __info__ not in data["plugins"] and os.path.exists( f'{os.path.abspath(os.path.join(os.getcwd(), os.pardir))}/{__info__["path"]}'): data["plugins"].append(__info__) with open(f"{os.path.abspath(os.path.join(os.getcwd(), os.pardir))}/Database/config.json", "w") as file: json.dump(data, file, ensure_ascii=False) plugin_system_logger.info(f"Plugin {__info__['name']} has been registered") else: plugin_system_logger.info(f"Plugin {__info__['name']} is already registered") @staticmethod def __check_plugin__(name: str, check: str): with open(f"{os.path.abspath(os.path.join(os.getcwd(), os.pardir))}/Database/config.json", "r") as file: data = json.load(file) for plugin in data["plugins"]: if plugin["name"] == name: prm = plugin[check] plugin_system_logger.info(f"Plugin's named {name} parameter {check} is equal to {prm}") return prm @staticmethod def unregister_plugin(name: str): with open(f"{os.path.abspath(os.path.join(os.getcwd(), os.pardir))}/Database/config.json", "r") as file: data = json.load(file) for plugin in data["plugins"]: if plugin["name"] == name: data["plugins"].remove(plugin) break with open(f"{os.path.abspath(os.path.join(os.getcwd(), os.pardir))}/Database/config.json", "w") as file: json.dump(data, file, ensure_ascii=False) plugin_system_logger.debug(f"Plugin {name} was successfully unregistered") @staticmethod def __plugin_load__(name): with open(f"{os.path.abspath(os.path.join(os.getcwd(), os.pardir))}/Database/config.json", "r") as file: data = json.load(file) plugin_info = None for go in data["plugins"]: if go["name"] == name: plugin_info = go plugin_system_logger.info(f"Plugin {plugin_info['name']} is going to be loaded to the core") break if plugin_info: spec = importlib.util.spec_from_file_location("main", f"{os.path.abspath(os.path.join(os.getcwd(), os.pardir))}/{plugin_info['path']}/main.py") plugin_module = importlib.util.module_from_spec(spec) spec.loader.exec_module(plugin_module) return plugin_module.Main else: plugin_system_logger.error("Plugin not found") # Path: PluginSystem/Plugin_system.py class PluginInfo: name: str author: str type: str path: str platform: str about: str # Path: LogSystem/Loggers.py class BaseLogger(Logger): def __init__(self, name, level=logging.NOTSET, ): def _setup_logger(self): # Path: Core/Core.py import json import os import random import threading import pyautogui import importlib.util from Audio.synthesizer import Synthesizer from Audio.recognition import Voice from Database.Data import Data from PluginSystem.Plugin_system import PluginOperation, PluginInfo from Command_System import * from LogSystem import core_logger self.plugin_ref: dict[str: dict] = {} self.plugin_enable: dict[str: bool] = {} self.multi_handle_answers = ["Конечно, сэр", "Выполняю, сэр", "Есть, сэр"] self.default_answers = ["Я тут, сэр", "Слушаю вас, сэр", "Что-то хотели, сэр?", "Всегда к вашим услугам, сэр", "Я весь внимание, сэр", "Добрый день, сэр!"] core_logger.debug("Config parameters imported") def __speech_recognition__(self): core_logger.debug("Speech recognition started") while True: # iterating through speech recognition generator for data in self.recognition.listen(): # setting recognized data as an attribute for access to the current data in outer field in class self.said_word = data # logging self.log("user", data) # checking if the application is enabled if self.power: # removing trigger word from data for it no to bother the main command processin request = self.__remove_trigger_word__(data) if request != "-": self.__handle_input__(request) def __handle_input__(self, request): if not request: thread = threading.Thread(target=self.synthesizer.say, args=[random.choice(self.default_answers)]) thread.start() else: total = self.__multihandle__(request) if len(total) == 1: result = self.command_tree.find_command(total[0]) if result: if result[2]: thread = threading.Thread(target=self.synthesizer.say, args=[random.choice(result[2])]) thread.start() result = list(result) result.extend([total[0], request]) self.__synthesis_handler__(result) elif len(total) > 1: thread = threading.Thread(target=self.synthesizer.say, args=[random.choice(self.multi_handle_answers)]) thread.start() said = False for command in total: result = self.command_tree.find_command(command) if result: result = list(result) result.extend([total[0], request]) output = getattr(self, result[0])(parameters=result[1], command=result[3], request=result[4]) if output and not said: said = True choiced = random.choice(self.multi_handle_answers) thread = threading.Thread(target=self.synthesizer.say, args=[choiced]) thread.start() self.log("assistant", choiced) def __synthesis_handler__(self, request): @self.__say_dec__(request[2]) def __send_handler_request__(): return getattr(self, request[0])(parameters=request[1], command=request[3], request=request[4]) __send_handler_request__() def __say_dec__(self, synthesis): def decorator(func): def wrapper(): if synthesis: self.log("assistant", synthesis) to_say = func() if to_say is not None and not synthesis: choiced = to_say if not isinstance(to_say, list) else random.choice(to_say) self.log("assistant", choiced) thread = threading.Thread(target=self.synthesizer.say, args=[choiced]) thread.start() return wrapper return decorator def __install_plugins__(self): for plugin in self.loaded_plugins: plugin_instance = plugin() if plugin_instance.info.type == "voice": plugin_instance.__add_commands__() self.plugin_enable[plugin_instance.info.name] = True self.default_answers.extend(plugin_instance.default_answers) self.multi_handle_answers.extend(plugin_instance.multi_handle_answers) for handler in plugin_instance.handlers: self.__setattr__(handler, plugin_instance.__getattribute__(handler)) core_logger.debug(f"Voice plugin {plugin_instance.info.name} has been set") elif plugin_instance.info.type == "command": plugin_instance.__add_commands__() self.plugin_enable[plugin_instance.info.name] = True self.command_tree.add_commands(plugin_instance.command_tree) self.plagin_commands(plugin_instance.info.name, plugin_instance.command_tree) self.__register_commands__(plugin_instance.command_tree) for handler in plugin_instance.handlers: self.__setattr__(handler, plugin_instance.__getattribute__(handler)) for var in plugin_instance.variables.keys(): self.__setattr__(var, plugin_instance.variables[var]) core_logger.debug(f"Command Plugin {plugin_instance.info.name} has been set") self.set_plugins_status() def disable_plagin(self, name): if self.plugin_enable[name]: self.plugin_enable[name] = False with open(f"{os.path.abspath(os.path.join(os.getcwd(), os.pardir))}/Database/commands.json", "r") as file: data = json.load(file) data: dict for command in self.plugin_ref[name].keys(): self.command_tree.delete_command(command) to_remove = " ".join(command) if data[to_remove]: del data[to_remove] with open(f"{os.path.abspath(os.path.join(os.getcwd(), os.pardir))}/Database/commands.json", "w") as file: json.dump(data, file, ensure_ascii=False) self.set_plugins_status()
def enable_plugin(self, name):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: LLM-Evaluation-s-Always-Fatiguing/leaf-playground-hub # Path: who_is_the_spy_cn/who_is_the_spy_cn/agents/moderator.py class Moderator( SceneStaticAgent, role_definition=ROLE_DEFINITION, cls_description="An agent who moderate the game: Who is the Spy" ): config_cls = ModeratorConfig config: config_cls game_rule_with_blank = ( "下面是游戏规则:\n\n" "###基础信息###\n\n" "游戏中有三个角色:平民,卧底和白板。在游戏的开始,每个人都会收到一条关键词,仅自己可见\n" "- 平民们会收到相同的正确的关键词。\n" "- 卧底们会收到相同的错误的关键词,但是跟正确的关键词较为相似。\n" "- 白板会被告知自己是白板角色。\n" "你不会被告知自己的角色,只能通过观察和分析进行猜测。\n\n" "###游戏阶段###\n\n" "这场游戏有四个阶段:\n" "1.描述阶段:所有玩家同时进行一句话描述,无先后顺序。描述的对象可以是你收到的关键词,也可以是任何你认为可能是正确的关键词。" "当你不确定自己的角色时,可以通过模糊的描述从而隐藏自己的角色和关键词。\n" "2.预测阶段:根据本场游戏的历史上下文,判断自己是否是卧底,并预测其他的卧底和白板。仅自己可见。\n" "3.投票阶段:为了达到你的胜利条件,请投出你的选票。被投票最多的人将被淘汰。\n" "4.游戏结束:当卧底全部被淘汰,或者仅剩两位玩家时,游戏结束。\n\n" "###胜利条件###\n\n" "你的胜利条件取决于你的角色:\n" "- 作为平民,你需要找出白板和卧底并通过投票将他们淘汰。请记住,优先淘汰白板。\n" "- 作为卧底,你需要隐藏自己的角色并潜伏下去,通过投票淘汰其他角色,活到最后你就胜利了。\n" "- 作为白板,你需要隐藏自己的角色并潜伏下去,通过投票淘汰卧底。\n\n" "###限定规则###\n\n" "- 你的描述应该足够简短,并且不能直接包含你收到的关键词。\n" "- 你的描述不能与之前的描述重复。\n" "- 在投票阶段,你不能投自己或者已经被淘汰的人,一人只能投一票。\n" "- 每句话必须以<EOS>作为结束。" ) game_rule_without_blank = ( "下面是游戏规则:\n\n" "###基础信息###\n\n" "游戏中有两个角色:平民,卧底。在游戏的开始,每个人都会收到一条关键词,仅自己可见\n" "- 平民们会收到相同的正确的关键词。\n" "- 卧底们会收到相同的错误的关键词,但是跟正确的关键词较为相似。\n" "你不会被告知自己的角色,只能通过观察和分析进行猜测。\n\n" "###游戏阶段###\n\n" "这场游戏有四个阶段:\n" "1.描述阶段:所有玩家同时进行一句话描述,无先后顺序。描述的对象可以是你收到的关键词,也可以是任何你认为可能是正确的关键词。" "当你不确定自己的角色时,可以通过模糊的描述从而隐藏自己的角色和关键词。\n" "2.预测阶段:根据本场游戏的历史上下文,判断自己是否是卧底,并预测其他的卧底。仅自己可见。\n" "3.投票阶段:为了达到你的胜利条件,请投出你的选票。被投票最多的人将被淘汰。\n" "4.游戏结束:当卧底全部被淘汰,或者仅剩两位玩家时,游戏结束。\n\n" "###胜利条件###\n\n" "你的胜利条件取决于你的角色:\n" "- 作为平民,你需要找出卧底并通过投票将他们淘汰。\n" "- 作为卧底,你需要隐藏自己的角色并潜伏下去,通过投票淘汰其他角色,活到最后你就胜利了。\n\n" "###限定规则###\n\n" "- 你的描述应该足够简短,并且不能直接包含你收到的关键词。\n" "- 你的描述不能与之前的描述重复。\n" "- 在投票阶段,你不能投自己或者已经被淘汰的人,一人只能投一票。\n" "- 每句话必须以<EOS>作为结束。" ) def __init__(self, config: config_cls): super().__init__(config=config) self.id2role: Dict[str, PlayerRoles] = {} self.role2players: Dict[PlayerRoles, List[Profile]] = { PlayerRoles.CIVILIAN: [], PlayerRoles.SPY: [], PlayerRoles.BLANK: [] } self.id2player: Dict[str, Profile] = {} self.id2status: Dict[str, PlayerStatus] = {} self.civilian_key: KeyTypes = None self.spy_key: KeyTypes = None async def registry_players(self, players: List[Profile]) -> None: for player in players: self.id2player[player.id] = player self.id2status[player.id] = PlayerStatus.ALIVE async def init_game(self) -> ModeratorInitGameSummary: num_players = len(self.id2player) has_blank = self.env_var["has_blank"].current_value key_modality = self.env_var["key_modality"].current_value roles_assignment_strategy = { 4: { PlayerRoles.CIVILIAN: 3, PlayerRoles.SPY: 1, PlayerRoles.BLANK: 0 }, 5: { PlayerRoles.CIVILIAN: 3 if has_blank else 4, PlayerRoles.SPY: 1, PlayerRoles.BLANK: 1 if has_blank else 0 }, 6: { PlayerRoles.CIVILIAN: 4 if has_blank else 5, PlayerRoles.SPY: 1, PlayerRoles.BLANK: 1 if has_blank else 0 }, 7: { PlayerRoles.CIVILIAN: 4 if has_blank else 5, PlayerRoles.SPY: 2, PlayerRoles.BLANK: 1 if has_blank else 0 }, 8: { PlayerRoles.CIVILIAN: 5 if has_blank else 6, PlayerRoles.SPY: 2, PlayerRoles.BLANK: 1 if has_blank else 0 }, 9: { PlayerRoles.CIVILIAN: 6 if has_blank else 7, PlayerRoles.SPY: 2, PlayerRoles.BLANK: 1 if has_blank else 0 } } roles_agent_num = roles_assignment_strategy[num_players] roles = list(chain(*[[role] * agent_num for role, agent_num in roles_agent_num.items()])) random.shuffle(roles) # shuffle to randomize the role assignment for player_id, role in zip(list(self.id2player.keys()), roles): self.role2players[role].append(self.id2player[player_id]) self.id2role[player_id] = role if key_modality == KeyModalities.TEXT: keys = random.choice(load_textual_key()) self.civilian_key, self.spy_key = Text(text=keys["Civilian"]), Text(text=keys["Spy"]) elif key_modality == KeyModalities.IMAGE: keys = random.choice(load_image_key()) self.civilian_key, self.spy_key = Image(url=keys["Civilian"]), Image(url=keys["Spy"]) else: raise NotImplementedError(f"[{key_modality.value}] modal not supported yet.") role_assign_summary = "\n".join( [f"- {role.value} :: {[f'{player.name}({player.id})' for player in players]}" for role, players in self.role2players.items()] ) key_assign_summary = ( f"- {PlayerRoles.CIVILIAN.value} :: {self.civilian_key}\n" f"- {PlayerRoles.SPY.value} :: {self.spy_key}" ) msg = ( f"## 角色和关键词分配结果\n\n" f"### 角色\n{role_assign_summary}\n\n### 关键词\n{key_assign_summary}" ) keys={ PlayerRoles.CIVILIAN.value: self.civilian_key.display_text, PlayerRoles.SPY.value: self.spy_key.display_text } if has_blank: keys[PlayerRoles.BLANK.value] = '空白' return ModeratorInitGameSummary( sender=self.profile, receivers=[self.profile], content=Text(text=msg, display_text=msg), role2players={role.value: [p.name for p in players] for role, players in self.role2players.items()}, keys=keys ) async def introduce_game_rule(self) -> ModeratorSummary: has_blank = self.env_var["has_blank"].current_value msg = self.game_rule_with_blank if has_blank else self.game_rule_without_blank return ModeratorSummary( sender=self.profile, receivers=list(self.id2player.values()), content=Text(text=msg, display_text=msg) ) async def announce_game_start(self) -> ModeratorSummary: num_players = len(self.id2player) role2word = { PlayerRoles.CIVILIAN: f"名{PlayerRoles.CIVILIAN.value}", PlayerRoles.SPY: f"名{PlayerRoles.SPY.value}", PlayerRoles.BLANK: f"名{PlayerRoles.BLANK.value}" } roles_num_description = ", ".join( [f"{len(role_players)} {role2word[role]}" for role, role_players in self.role2players.items()] ) msg = ( f"现在游戏开始!本场游戏有 {num_players} 名玩家, 包括 " f"{roles_num_description}." ) return ModeratorSummary( sender=self.profile, receivers=list(self.id2player.values()), content=Text(text=msg, display_text=msg) ) async def assign_keys(self, player: Profile) -> ModeratorKeyAssignment: role = self.id2role[player.id] if role == PlayerRoles.CIVILIAN: return ModeratorKeyAssignment.create_with_key( key=self.civilian_key, sender=self.profile, receiver=player ) elif role == PlayerRoles.SPY: return ModeratorKeyAssignment.create_with_key( key=self.spy_key, sender=self.profile, receiver=player ) else: return ModeratorKeyAssignment.create_without_key( sender=self.profile, receiver=player ) async def ask_for_key_description(self) -> ModeratorAskForDescription: return ModeratorAskForDescription.create( sender=self.profile, receivers=[ player for player in self.id2player.values() ] ) async def valid_player_description(self, description: PlayerDescription) -> ModeratorWarning: player_id = description.sender_id player_role = self.id2role[player_id] if player_role != PlayerRoles.BLANK and self.env_var["key_modality"].current_value == KeyModalities.TEXT: warn_msg = ( "你的描述中包含你的关键词,这是不被允许的,请重新进行描述。回复仅包含你对关键词的描述,不需要多余的回答。" ) if (player_role == PlayerRoles.CIVILIAN and self.civilian_key.text.lower() in description.content.text.lower()) or \ (player_role == PlayerRoles.SPY and self.spy_key.text.lower() in description.content.text.lower()): return ModeratorWarning( sender=self.profile, receivers=[description.sender], content=Text(text=warn_msg, display_text=warn_msg), has_warn=True ) return ModeratorWarning( sender=self.profile, receivers=[description.sender], content=Text(text="", display_text=""), has_warn=False ) async def ask_for_role_prediction(self) -> ModeratorAskForRolePrediction: has_blank = self.env_var["has_blank"].current_value return ModeratorAskForRolePrediction.create( sender=self.profile, receivers=[ player for player in self.id2player.values() if self.id2status[player.id] == PlayerStatus.ALIVE ], player_names=[ player.name for player in self.id2player.values() if self.id2status[player.id] == PlayerStatus.ALIVE ], has_blank=has_blank ) async def summarize_players_prediction(self, predictions: List[PlayerPrediction]) -> ModeratorPredictionSummary: has_blank = self.env_var["has_blank"].current_value summaries = [] extracted_predictions = {} for prediction in predictions: preds = prediction.get_prediction( player_names=[player.name for player in self.id2player.values()], has_blank=has_blank ) extracted_predictions[prediction.sender_name] = {role.value: list(names) for role, names in preds.items()} summary = ( f"**{prediction.sender_name}({prediction.sender_id})'s prediction**\n" f"- {PlayerRoles.SPY.value} :: {list(preds[PlayerRoles.SPY])}" ) if has_blank: summary += f"\n- {PlayerRoles.BLANK.value} :: {list(preds[PlayerRoles.BLANK])}" summaries.append(summary) alive_spies = [ player.name for player in self.role2players[PlayerRoles.SPY] if self.id2status[player.id] == PlayerStatus.ALIVE ] label = ( f"**Correct Answer**\n- {PlayerRoles.SPY.value} :: {alive_spies}" ) ground_truth = {PlayerRoles.SPY.value: alive_spies} if has_blank: alive_blanks = [ player.name for player in self.role2players[PlayerRoles.BLANK] if self.id2status[player.id] == PlayerStatus.ALIVE ] label += f"\n- {PlayerRoles.BLANK.value} :: {alive_blanks}" ground_truth[PlayerRoles.BLANK.value] = alive_blanks msg = "\n\n".join(summaries) + f"\n\n{label}" return ModeratorPredictionSummary( sender=self.profile, receivers=[self.profile], content=Text(text=msg, display_text=msg), predictions=extracted_predictions, ground_truth=ground_truth ) async def ask_for_vote(self, targets: List[Profile]) -> ModeratorAskForVote: return ModeratorAskForVote.create( sender=self.profile, receivers=[ player for player in self.id2player.values() if self.id2status[player.id] == PlayerStatus.ALIVE ], targets=targets ) async def summarize_player_votes( self, votes: List[PlayerVote], patience: int, focused_players: Optional[List[Profile]] ) -> ModeratorVoteSummary: def get_most_voted_players() -> List[Profile]: eliminated_names = [ player_name for player_name, num_be_voted in player2num_be_voted.items() if num_be_voted == max(player2num_be_voted.values()) ] return [player for player in self.id2player.values() if player.name in eliminated_names] player2num_be_voted = {player.name: 0 for player in self.id2player.values()} player2votes = {} for vote in votes: vote_to = vote.get_vote([player.name for player in self.id2player.values()]) if not vote_to: continue player2votes[vote.sender_name] = vote_to player2num_be_voted[vote_to] += 1 if focused_players: focused_names = [p.name for p in focused_players] for player_name in player2num_be_voted: if player_name not in focused_names: player2num_be_voted[player_name] = 0 voting_detail = "\n".join([f"{voter} 投票给 {voted}" for voter, voted in player2votes.items()]) + "\n" if focused_players: voting_detail += ( f"这是一次针对平票玩家的重新投票, 因此将仅统计上次投票中平票玩家 {[p.name for p in focused_players]} 的本次得票。\n" ) most_voted_players = get_most_voted_players() if len(most_voted_players) > 1 and patience > 0: # tied msg = ( f"{voting_detail}\n玩家 {[p.name for p in most_voted_players]} 有相同的票数。" f"请这些玩家额外进行一次针对自己获得的关键词的一句话描述。" ) return ModeratorVoteSummary( sender=self.profile, receivers=[player for player in self.id2player.values()], content=Text(text=msg, display_text=msg), tied_players=most_voted_players, player_received_votes=player2num_be_voted, players_voted_to=player2votes ) else: # eliminate for player in most_voted_players: self.id2status[player.id] = PlayerStatus.ELIMINATED msg = f"{voting_detail}\n玩家 {[p.name for p in most_voted_players]} 获得的票数最多,本轮被淘汰。" return ModeratorVoteSummary( sender=self.profile, receivers=[player for player in self.id2player.values()], content=Text(text=msg, display_text=msg), player_received_votes=player2num_be_voted, players_voted_to=player2votes ) async def check_if_game_over(self) -> ModeratorCheckGameOverSummary: def return_game_over(role: PlayerRoles): winners = [ player.name for player in self.role2players[role] if self.id2status[player.id] == PlayerStatus.ALIVE ] msg = f"游戏结束! {role.value} 胜利, 赢家是: {winners}." return ModeratorCheckGameOverSummary( sender=self.profile, receivers=[player for player in self.id2player.values()], content=Text(text=msg, display_text=msg), is_game_over=True, winners=winners ) has_blank = self.env_var["has_blank"].current_value num_players = len(self.id2player) num_alive_players = len( [player for player, status in self.id2status.items() if status == PlayerStatus.ALIVE] ) num_alive_civilians = len( [ player for player in self.role2players[PlayerRoles.CIVILIAN] if self.id2status[player.id] == PlayerStatus.ALIVE ] ) num_alive_spies = len( [ player for player in self.role2players[PlayerRoles.SPY] if self.id2status[player.id] == PlayerStatus.ALIVE ] ) if num_alive_civilians == num_alive_players: # civilians win return return_game_over(PlayerRoles.CIVILIAN) if ( (num_players > 6 and num_alive_players <= 3 and num_alive_spies > 0) or (num_players <= 6 and num_alive_players <= 2 and num_alive_spies > 0) ): # spies win return return_game_over(PlayerRoles.SPY) if has_blank and num_alive_spies == 0 and num_alive_civilians != num_alive_players: # blank wins return return_game_over(PlayerRoles.BLANK) msg = f"没有任何角色获胜,游戏继续。" return ModeratorCheckGameOverSummary( sender=self.profile, receivers=[player for player in self.id2player.values()], content=Text(text=msg, display_text=msg), is_game_over=False, winners=None ) async def reset_inner_status(self): self.id2role: Dict[str, PlayerRoles] = {} self.role2players: Dict[PlayerRoles, List[Profile]] = { PlayerRoles.CIVILIAN: [], PlayerRoles.SPY: [], PlayerRoles.BLANK: [] } self.id2player: Dict[str, Profile] = {} self.id2status: Dict[str, PlayerStatus] = {} self.civilian_key: Union[Audio, Image, Text] = None self.spy_key: Union[Audio, Image, Text] = None # Path: who_is_the_spy_cn/who_is_the_spy_cn/agents/player.py class BaseAIPlayer( SceneAIAgent, ABC, role_definition=ROLE_DEFINITION, cls_description="An AI agent who participants in the game Who is the Spy as a player", action_exec_timeout=120 ): config_cls = BaseAIPlayerConfig config: config_cls def __init__(self, config: config_cls): super().__init__(config=config) @abstractmethod async def receive_key(self, key_assignment: ModeratorKeyAssignment) -> None: pass @abstractmethod async def describe_key(self, history: List[MessageTypes], receivers: List[Profile]) -> PlayerDescription: pass @abstractmethod async def predict_role(self, history: List[MessageTypes], moderator: Profile) -> PlayerPrediction: pass @abstractmethod async def vote(self, history: List[MessageTypes], moderator: Profile) -> PlayerVote: pass @abstractmethod async def reset_inner_status(self): pass # Path: who_is_the_spy_cn/who_is_the_spy_cn/agents/human_player.py class HumanPlayer( SceneHumanAgent, role_definition=ROLE_DEFINITION, cls_description="参与谁是卧底游戏的人类玩家的代理", action_exec_timeout=120 ): config_cls = HumanPlayerConfig config: config_cls def __init__(self, config: config_cls): super().__init__(config=config) async def receive_key(self, key_assignment: ModeratorKeyAssignment) -> None: pass async def describe_key(self, history: List[MessageTypes], receivers: List[Profile]) -> PlayerDescription: description = (await self.wait_human_text_input()) or "" return PlayerDescription( sender=self.profile, receivers=receivers, content=Text(text=description, display_text=description) ) async def predict_role(self, history: List[MessageTypes], moderator: Profile) -> PlayerPrediction: prediction = (await self.wait_human_text_input()) or "" return PlayerPrediction( sender=self.profile, receivers=[moderator, self.profile], content=Text(text=prediction, display_text=prediction) ) async def vote(self, history: List[MessageTypes], moderator: Profile) -> PlayerVote: vote = (await self.wait_human_text_input()) or "" return PlayerVote( sender=self.profile, receivers=[moderator, self.profile], content=Text(text=vote, display_text=vote) ) async def reset_inner_status(self): pass # Path: who_is_the_spy_cn/who_is_the_spy_cn/scene.py import asyncio import random from typing import List, Optional, Type, Union from pydantic import Field from leaf_playground.core.workers import Logger from leaf_playground.core.scene import Scene from leaf_playground.core.scene_definition import SceneConfig from leaf_playground.data.log_body import ActionLogBody from leaf_playground.data.media import Text from .agents.moderator import Moderator from .agents.player import BaseAIPlayer from .agents.human_player import HumanPlayer from .scene_definition import * Player = Union[BaseAIPlayer, HumanPlayer] class WhoIsTheSpyLogBody(ActionLogBody): references: Optional[List[MessageTypes]] = Field(default=None) response: MessageTypes = Field(default=...) game_id: int = Field(default=...) round_id: int = Field(default=...) WhoIsTheSpySceneConfig = SceneConfig.create_config_model( SCENE_DEFINITION, additional_config_fields={ "debug_mode": (bool, Field(default=False, exclude=True)) } ) class WhoIsTheSpyScene(Scene, scene_definition=SCENE_DEFINITION, log_body_class=WhoIsTheSpyLogBody): config_cls = WhoIsTheSpySceneConfig config: config_cls log_body_class: Type[WhoIsTheSpyLogBody] def __init__(self, config: config_cls, logger: Logger): super().__init__(config=config, logger=logger) self.moderator: Moderator = self.static_agents["moderator"][0] self.players: List[Player] = self.agents["player"] async def _run(self): def put_message(message: MessageTypes, log_msg: str, action_belonged_chain: Optional[str] = None): references = None if not message.sender_id == self.moderator.id: references = self.message_pool.get_messages(message.sender) self.message_pool.put_message(message) log = self.log_body_class(
references=references,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: djkcyl/ABot-NT # Path: services/aiohttp.py class AiohttpClientService(Service): id = "http.client/aiohttp" session: ClientSession def __init__(self, session: ClientSession | None = None) -> None: self.session = cast(ClientSession, session) super().__init__() @property def stages(self) -> set[str]: return {"preparing", "cleanup"} @property def required(self) -> set: return set() async def launch(self, _: Launart) -> None: async with self.stage("preparing"): if self.session is None: self.session = ClientSession(timeout=ClientTimeout(total=None)) async with self.stage("cleanup"): await self.session.close() # Path: services/s3file.py class S3File(Minio): async def get_object(self, object_name: str) -> ClientResponse: launart = Launart.current() session = launart.get_component(AiohttpClientService).session return await super().get_object("abot7f8befa44d10", object_name, session) async def put_object( self, object_name: str, data: bytes | BytesIO, content_type: str = "application/octet-stream", o_type: str | None = None, ) -> ObjectWriteResult: if isinstance(data, bytes): readble = BytesIO(data) legnth = len(data) elif isinstance(data, BytesIO): readble = data legnth = data.getbuffer().nbytes else: msg = "data must be bytes or BytesIO" raise TypeError(msg) readble.seek(0) tags = Tags() if o_type: tags["O_Type"] = o_type return await super().put_object("abot7f8befa44d10", object_name, readble, legnth, content_type, tags=tags) async def object_exists(self, object_name: str) -> bool: try: await self.get_object(object_name) except S3Error as e: if e.code == "NoSuchKey": return False raise return True async def list_objects(self, prefix: str) -> list | None: return await super().list_objects("abot7f8befa44d10", prefix) async def get_presigned_url(self, object_name: str, expires_seconds: int = 300) -> str: return await super().get_presigned_url( "GET", "abot7f8befa44d10", object_name, timedelta(seconds=expires_seconds) ) async def remove_object(self, object_name: str) -> None: return await super().remove_object("abot7f8befa44d10", object_name) async def set_object_tags(self, object_name: str, tag: Tags | dict[str, str]) -> None: if isinstance(tag, dict): tags = Tags() tags.update(tag) return await super().set_object_tags("abot7f8befa44d10", object_name, tags) # Path: services/s3file.py class S3FileService(Service): id: str = "abot/s3file" def __init__( self, endpoint: str = "127.0.0.1:8333", access_key: str | None = None, secret_key: str | None = None, *, secure: bool = False, ) -> None: super().__init__() self.s3file = S3File(endpoint, access_key, secret_key, secure=secure) # def get_interface(self, _) -> Minio: # return self.s3file @property def required(self) -> set: return set() @property def stages(self) -> set[str]: return {"preparing"} async def launch(self, _: Launart) -> None: async with self.stage("preparing"): if await self.s3file.bucket_exists("abot7f8befa44d10"): logger.info("S3 Bucket 已存在") else: logger.info("正在创建 S3 Bucket") await self.s3file.make_bucket("abot7f8befa44d10") logger.success("S3 Bucket 创建成功") test_text = secrets.token_hex(16).encode() if await self.s3file.object_exists(".keep"): await self.s3file.remove_object(".keep") put_test = await self.s3file.put_object(".keep", test_text) if put_test: logger.info("S3 Bucket 可写") else: logger.error("S3 Bucket 不可写") msg = "S3 Bucket 不可写" raise S3FileError(msg) read_test: ClientResponse = await self.s3file.get_object(".keep") if await read_test.read() == test_text: logger.info("S3 Bucket 可读") else: logger.error("S3 Bucket 不可读") msg = "S3 Bucket 不可读" raise S3FileError(msg) logger.success("S3 Bucket 测试完成") # Path: utils/builder.py class AGroupBuilder(GroupData): @classmethod async def init(cls, group: GroupData | str | int) -> GroupData: if isinstance(group, str | int): group_id = str(group) elif not isinstance(group, GroupData): msg = f"无法识别的群组类型: {type(group)}" raise TypeError(msg) else: group_id = group.group_id if isinstance(group, GroupData): return group group_ = await GroupData.find_one(Eq(GroupData.group_id, group_id)) if group is None: await cls.insert(GroupData(group_id=group_id)) group_ = await GroupData.find_one(Eq(GroupData.group_id, group_id)) logger.info(f"[Core.db] 已初始化群: {group_id}") return cast(GroupData, group_) return cast(GroupData, group_) async def ban(self, reason: str, source: str) -> bool: if self.banned: return False self.banned = True await GroupData.save() # type: ignore await BanLog.insert( BanLog( target_id=self.group_id, target_type="group", action="ban", ban_reason=reason, ban_source=source, ) ) return True async def unban(self, reason: str, source: str) -> bool: if not self.banned: return False self.banned = False await GroupData.save() # type: ignore await BanLog.insert( BanLog( target_id=self.group_id, target_type="group", action="unban", ban_reason=reason, ban_source=source, ) ) return True async def disable_function(self, function: str, meta: "FuncItem") -> bool: if function in self.disable_functions or not meta.can_be_disabled: return False self.disable_functions.append(function) await GroupData.save() # type: ignore return True async def enable_function(self, function: str, meta: "FuncItem") -> bool: if function not in self.disable_functions or meta.maintain: return False self.disable_functions.remove(function) await GroupData.save() # type: ignore return True # Path: utils/builder.py class AUserBuilder(AUser): @classmethod async def get_user(cls, user: AUser | str | int, create_type: Literal["cid", "aid"] = "cid") -> AUser | None: if isinstance(user, str | int): if isinstance(user, str) and not user.isdigit(): msg = f"无法识别的用户类型: {type(user)}" raise ValueError(msg) user_id = str(user) elif not isinstance(user, AUser): msg = f"无法识别的用户类型: {type(user)}" raise TypeError(msg) else: user_id = user.cid if isinstance(user, AUser): return user if create_type == "cid": user_: AUser | None = await AUser.find_one(Eq(AUser.cid, user_id)) elif create_type == "aid": user_: AUser | None = await AUser.find_one(Eq(AUser.aid, int(user_id))) else: msg = f"无法识别的用户类型: {create_type}" raise TypeError(msg) return user_ @classmethod async def init(cls, user: AUser | str | int, create_type: Literal["cid", "aid"] = "cid") -> AUser: if isinstance(user, str | int): if isinstance(user, str) and not user.isdigit(): msg = f"无法识别的用户类型: {user}" raise ValueError(msg) user_id = str(user) elif not isinstance(user, AUser): msg = f"无法识别的用户类型: {type(user)}" raise TypeError(msg) else: user_id = user.cid if isinstance(user, AUser): return user if create_type == "cid": user_ = await AUser.find_one(Eq(AUser.cid, user_id)) elif create_type == "aid": user_ = await AUser.find_one(Eq(AUser.aid, int(user_id))) else: msg = f"无法识别的用户类型: {create_type}" raise TypeError(msg) if user_ is None: last_userid = await AUser.find_one(sort=[("_id", SortDirection.DESCENDING)]) aid = int(last_userid.aid) + 1 if last_userid else 1 await AUser.insert(AUser(aid=aid, cid=user_id)) user_ = await AUser.find_one(Eq(AUser.aid, aid)) logger.info(f"[Core.db] 已初始化用户: {user_id}") return cast(AUser, user_) return cast(AUser, user_) # Path: utils/db/group.py class GroupData(Document): group_id: str disable_functions: list[str] = [] banned: bool = False class Settings: name = "core_group" indexes = [IndexModel("group_id", unique=True)] # Path: utils/db/user.py class AUser(Document): aid: int cid: str coin: int = 10 nickname: str | None = None is_sign: bool = False is_chat: bool = False today_transferred: int = 0 total_sign: int = 0 totle_talk: int = 0 continue_sign: int = 0 exp: int = 0 banned: bool = False join_time: datetime = Field(default_factory=datetime.now, tzinfo=CHINA_TZ) class Settings: name = "core_user" indexes = [IndexModel("aid", unique=True), IndexModel("cid", unique=True)] @property def level(self) -> int: """计算用户等级""" level_map = [0, 200, 1500, 4500, 10800, 28800, 74100, 190300, 488300] for i, v in enumerate(level_map): if self.exp < v: return i return len(level_map) @property def next_level_exp(self) -> int: """计算下一等级需要达到的经验""" level_map = [0, 200, 1500, 4500, 10800, 28800, 74100, 190300, 488300] for v in level_map: if self.exp < v: return v return 0 @property def next_level_need(self) -> int: """计算距离升级下一等级还需要多少经验""" return self.next_level_exp - self.exp @property def exp_to_next_level(self) -> int: """计算当前等级升级到下一等级需要多少经验""" level_map = [0, 200, 1500, 4500, 10800, 28800, 74100, 190300, 488300] current_level = self.level if current_level >= len(level_map): return 0 # 当前等级已是最高等级,没有下一级 return level_map[current_level] - level_map[current_level - 1] @property def progress_bar(self) -> str: """计算用户经验进度条""" total_length = 30 # 计算当前等级起始的经验值 current_level_start_exp = self.next_level_exp - self.exp_to_next_level # 从当前等级升级到下一等级所需的总经验 exp_for_next_level = self.exp_to_next_level if exp_for_next_level == 0: # 当前等级已是最高等级,进度条为满 return "[" + "#" * total_length + "] 100.0%" # 计算当前经验在当前等级的进度比例 progress_ratio = (self.exp - current_level_start_exp) / exp_for_next_level progress_ratio = min(progress_ratio, 0.999) # 确保进度条不会因为计算误差而显示为 100% progress_length = int(progress_ratio * total_length) progress_bar = "#" * progress_length remaining_bar = "-" * (total_length - progress_length) return f"[{progress_bar}{remaining_bar}] {progress_ratio * 100:.1f}%" async def sign(self, group_id: str | int) -> bool: if self.is_sign: return False self.is_sign = True self.total_sign += 1 self.continue_sign += 1 await self.save() # type: ignore await SignLog.insert(SignLog(qid=self.cid, group_id=str(group_id))) return True async def ban(self, reason: str, source: str) -> bool: if self.banned: return False self.banned = True await self.save() # type: ignore await BanLog.insert( BanLog( target_id=self.cid, target_type="user", action="ban", ban_reason=reason, ban_source=source, ) ) return True async def unban(self, reason: str, source: str) -> bool: if not self.banned: return False self.banned = False await self.save() # type: ignore await BanLog.insert( BanLog( target_id=self.cid, target_type="user", action="unban", ban_reason=reason, ban_source=source, ) ) return True async def add_coin( self, num: int, group_id: str | int | None = None, source: str = "未知", detail: str = "", ) -> None: self.coin += num await self.save() # type: ignore await CoinLog.insert( CoinLog( qid=self.cid, group_id=str(group_id), coin=num, source=source, detail=detail, ) ) async def reduce_coin( self, num: int, group_id: str | int | None = None, source: str = "未知", detail: str = "", *, force: bool = False, ) -> int | bool: if self.coin < num: if not force: return False now_coin = self.coin self.coin = 0 await self.save() # type: ignore await CoinLog.insert( CoinLog( qid=self.cid, group_id=str(group_id), coin=-now_coin, source=source, detail=detail, ) ) return now_coin self.coin -= num await self.save() # type: ignore await CoinLog.insert( CoinLog( qid=self.cid, group_id=str(group_id), coin=-num, source=source, detail=detail, ) ) return True async def add_talk(self) -> None: self.totle_talk += 1 self.is_chat = True await self.save() # type: ignore async def set_nickname(self, nickname: str | None) -> None: self.nickname = nickname await self.save() # type: ignore # Path: utils/saya/dispachers.py from aiohttp import ClientSession from avilla.core import MessageReceived from graia.amnesia.builtins.memcache import Memcache, MemcacheService from graia.broadcast.entities.dispatcher import BaseDispatcher from graia.broadcast.interfaces.dispatcher import DispatcherInterface from launart import Launart from loguru import logger from services import AiohttpClientService, S3File, S3FileService from utils.builder import AGroupBuilder, AUserBuilder from utils.db import AUser, GroupData class ABotDispatcher(BaseDispatcher): @staticmethod async def catch( interface: DispatcherInterface[MessageReceived], ) -> AUser | GroupData | S3File | ClientSession | Memcache | None: ctx = interface.event.context if interface.annotation == AUser: cid = ctx.client.last_value if not await AUser.find_one(AUser.cid == cid): last_userid = await AUser.find_one(sort=[("_id", -1)]) user_id = int(last_userid.aid) + 1 if last_userid else 1 await AUser(aid=user_id, cid=cid).insert() # type: ignore[call-arg] logger.info(f"[Core.db] 已初始化用户: {cid}") user = await AUser.find_one(AUser.cid == cid) if not user: msg = f"未找到用户: {cid}" raise ValueError(msg) return await AUserBuilder.init(user) if interface.annotation == GroupData: if ctx.scene.path_without_land in {"guild.channel", "guild.user"}: group_id = ctx.scene["guild"] else:
group_id = ctx.scene["group"]
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Varexa/Gateway # Path: chat_exporter/ext/discord_import.py # Path: chat_exporter/construct/assets/embed.py class Embed: r: str g: str b: str title: str description: str author: str image: str thumbnail: str footer: str fields: str check_against = None def __init__(self, embed, guild): self.embed: discord.Embed = embed self.guild: discord.Guild = guild async def flow(self): self.check_against = _gather_checker() self.build_colour() await self.build_title() await self.build_description() await self.build_fields() await self.build_author() await self.build_image() await self.build_thumbnail() await self.build_footer() await self.build_embed() return self.embed def build_colour(self): self.r, self.g, self.b = ( (self.embed.colour.r, self.embed.colour.g, self.embed.colour.b) if self.embed.colour != self.check_against else (0x20, 0x22, 0x25) # default colour ) async def build_title(self): self.title = html.escape(self.embed.title) if self.embed.title != self.check_against else "" if self.title: self.title = await fill_out(self.guild, embed_title, [ ("EMBED_TITLE", self.title, PARSE_MODE_MARKDOWN) ]) async def build_description(self): self.description = html.escape(self.embed.description) if self.embed.description != self.check_against else "" if self.description: self.description = await fill_out(self.guild, embed_description, [ ("EMBED_DESC", self.embed.description, PARSE_MODE_EMBED) ]) async def build_fields(self): self.fields = "" # This does not have to be here, but Pycord. if not self.embed.fields: return for field in self.embed.fields: field.name = html.escape(field.name) field.value = html.escape(field.value) if field.inline: self.fields += await fill_out(self.guild, embed_field_inline, [ ("FIELD_NAME", field.name, PARSE_MODE_SPECIAL_EMBED), ("FIELD_VALUE", field.value, PARSE_MODE_EMBED) ]) else: self.fields += await fill_out(self.guild, embed_field, [ ("FIELD_NAME", field.name, PARSE_MODE_SPECIAL_EMBED), ("FIELD_VALUE", field.value, PARSE_MODE_EMBED)]) async def build_author(self): self.author = html.escape(self.embed.author.name) if self.embed.author.name != self.check_against else "" self.author = f'<a class="chatlog__embed-author-name-link" href="{self.embed.author.url}">{self.author}</a>' \ if self.embed.author.url != self.check_against \ else self.author author_icon = await fill_out(self.guild, embed_author_icon, [ ("AUTHOR", self.author, PARSE_MODE_NONE), ("AUTHOR_ICON", self.embed.author.icon_url, PARSE_MODE_NONE) ]) if self.embed.author.icon_url != self.check_against else "" if author_icon == "" and self.author != "": self.author = await fill_out(self.guild, embed_author, [("AUTHOR", self.author, PARSE_MODE_NONE)]) else: self.author = author_icon async def build_image(self): self.image = await fill_out(self.guild, embed_image, [ ("EMBED_IMAGE", str(self.embed.image.proxy_url), PARSE_MODE_NONE) ]) if self.embed.image.url != self.check_against else "" async def build_thumbnail(self): self.thumbnail = await fill_out(self.guild, embed_thumbnail, [ ("EMBED_THUMBNAIL", str(self.embed.thumbnail.url), PARSE_MODE_NONE)]) \ if self.embed.thumbnail.url != self.check_against else "" async def build_footer(self): self.footer = html.escape(self.embed.footer.text) if self.embed.footer.text != self.check_against else "" footer_icon = self.embed.footer.icon_url if self.embed.footer.icon_url != self.check_against else None if not self.footer: return if footer_icon is not None: self.footer = await fill_out(self.guild, embed_footer_icon, [ ("EMBED_FOOTER", self.footer, PARSE_MODE_NONE), ("EMBED_FOOTER_ICON", footer_icon, PARSE_MODE_NONE) ]) else: self.footer = await fill_out(self.guild, embed_footer, [ ("EMBED_FOOTER", self.footer, PARSE_MODE_NONE)]) async def build_embed(self): self.embed = await fill_out(self.guild, embed_body, [ ("EMBED_R", str(self.r)), ("EMBED_G", str(self.g)), ("EMBED_B", str(self.b)), ("EMBED_AUTHOR", self.author, PARSE_MODE_NONE), ("EMBED_TITLE", self.title, PARSE_MODE_NONE), ("EMBED_IMAGE", self.image, PARSE_MODE_NONE), ("EMBED_THUMBNAIL", self.thumbnail, PARSE_MODE_NONE), ("EMBED_DESC", self.description, PARSE_MODE_NONE), ("EMBED_FIELDS", self.fields, PARSE_MODE_NONE), ("EMBED_FOOTER", self.footer, PARSE_MODE_NONE), ]) # Path: chat_exporter/construct/assets/reaction.py class Reaction: def __init__(self, reaction, guild): self.reaction = reaction self.guild = guild async def flow(self): await self.build_reaction() return self.reaction async def build_reaction(self): if ":" in str(self.reaction.emoji): emoji_animated = re.compile(r"&lt;a:.*:.*&gt;") if emoji_animated.search(str(self.reaction.emoji)): await self.create_discord_reaction("gif") else: await self.create_discord_reaction("png") else: await self.create_standard_emoji() async def create_discord_reaction(self, emoji_type): pattern = r":.*:(\d*)" emoji_id = re.search(pattern, str(self.reaction.emoji)).group(1) self.reaction = await fill_out(self.guild, custom_emoji, [ ("EMOJI", str(emoji_id), PARSE_MODE_NONE), ("EMOJI_COUNT", str(self.reaction.count), PARSE_MODE_NONE), ("EMOJI_FILE", emoji_type, PARSE_MODE_NONE) ]) async def create_standard_emoji(self): react_emoji = await convert_emoji(self.reaction.emoji) self.reaction = await fill_out(self.guild, emoji, [ ("EMOJI", str(react_emoji), PARSE_MODE_NONE), ("EMOJI_COUNT", str(self.reaction.count), PARSE_MODE_NONE) ]) # Path: chat_exporter/construct/assets/attachment.py class Attachment: def __init__(self, attachments, guild): self.attachments = attachments self.guild = guild async def flow(self): await self.build_attachment() return self.attachments async def build_attachment(self): if self.attachments.content_type is not None: if "image" in self.attachments.content_type: return await self.image() elif "video" in self.attachments.content_type: return await self.video() elif "audio" in self.attachments.content_type: return await self.audio() await self.file() async def image(self): self.attachments = await fill_out(self.guild, img_attachment, [ ("ATTACH_URL", self.attachments.proxy_url, PARSE_MODE_NONE), ("ATTACH_URL_THUMB", self.attachments.proxy_url, PARSE_MODE_NONE) ]) async def video(self): self.attachments = await fill_out(self.guild, video_attachment, [ ("ATTACH_URL", self.attachments.proxy_url, PARSE_MODE_NONE) ]) async def audio(self): file_icon = DiscordUtils.file_attachment_audio file_size = self.get_file_size(self.attachments.size) self.attachments = await fill_out(self.guild, audio_attachment, [ ("ATTACH_ICON", file_icon, PARSE_MODE_NONE), ("ATTACH_URL", self.attachments.url, PARSE_MODE_NONE), ("ATTACH_BYTES", str(file_size), PARSE_MODE_NONE), ("ATTACH_AUDIO", self.attachments.proxy_url, PARSE_MODE_NONE), ("ATTACH_FILE", str(self.attachments.filename), PARSE_MODE_NONE) ]) async def file(self): file_icon = await self.get_file_icon() file_size = self.get_file_size(self.attachments.size) self.attachments = await fill_out(self.guild, msg_attachment, [ ("ATTACH_ICON", file_icon, PARSE_MODE_NONE), ("ATTACH_URL", self.attachments.url, PARSE_MODE_NONE), ("ATTACH_BYTES", str(file_size), PARSE_MODE_NONE), ("ATTACH_FILE", str(self.attachments.filename), PARSE_MODE_NONE) ]) @staticmethod def get_file_size(file_size): if file_size == 0: return "0 bytes" size_name = ("bytes", "KB", "MB") i = int(math.floor(math.log(file_size, 1024))) p = math.pow(1024, i) s = round(file_size / p, 2) return "%s %s" % (s, size_name[i]) async def get_file_icon(self) -> str: acrobat_types = "pdf" webcode_types = "html", "htm", "css", "rss", "xhtml", "xml" code_types = "py", "cgi", "pl", "gadget", "jar", "msi", "wsf", "bat", "php", "js" document_types = ( "txt", "doc", "docx", "rtf", "xls", "xlsx", "ppt", "pptx", "odt", "odp", "ods", "odg", "odf", "swx", "sxi", "sxc", "sxd", "stw" ) archive_types = ( "br", "rpm", "dcm", "epub", "zip", "tar", "rar", "gz", "bz2", "7x", "deb", "ar", "Z", "lzo", "lz", "lz4", "arj", "pkg", "z" ) extension = self.attachments.url.rsplit('.', 1)[1] if extension in acrobat_types: return DiscordUtils.file_attachment_acrobat elif extension in webcode_types: return DiscordUtils.file_attachment_webcode elif extension in code_types: return DiscordUtils.file_attachment_code elif extension in document_types: return DiscordUtils.file_attachment_document elif extension in archive_types: return DiscordUtils.file_attachment_archive else: return DiscordUtils.file_attachment_unknown # Path: chat_exporter/construct/assets/component.py class Component: styles = { "primary": "#5865F2", "secondary": "#4F545C", "success": "#2D7D46", "danger": "#D83C3E", "blurple": "#5865F2", "grey": "#4F545C", "gray": "#4F545C", "green": "#2D7D46", "red": "#D83C3E", "link": "#4F545C", } components: str = "" menus: str = "" buttons: str = "" menu_div_id: int = 0 def __init__(self, component, guild): self.component = component self.guild = guild async def build_component(self, c): if isinstance(c, discord.Button): await self.build_button(c) elif isinstance(c, discord.SelectMenu): await self.build_menu(c) Component.menu_div_id += 1 async def build_button(self, c): url = c.url if c.url else "" label = c.label if c.label else "" style = self.styles[str(c.style).split(".")[1]] icon = DiscordUtils.button_external_link if url else "" emoji = str(c.emoji) if c.emoji else "" self.buttons += await fill_out(self.guild, component_button, [ ("DISABLED", "chatlog__component-disabled" if c.disabled else "", PARSE_MODE_NONE), ("URL", str(url), PARSE_MODE_NONE), ("LABEL", str(label), PARSE_MODE_MARKDOWN), ("EMOJI", str(emoji), PARSE_MODE_EMOJI), ("ICON", str(icon), PARSE_MODE_NONE), ("STYLE", style, PARSE_MODE_NONE) ]) async def build_menu(self, c): placeholder = c.placeholder if c.placeholder else "" options = c.options content = "" if not c.disabled: content = await self.build_menu_options(options) self.menus += await fill_out(self.guild, component_menu, [ ("DISABLED", "chatlog__component-disabled" if c.disabled else "", PARSE_MODE_NONE), ("ID", str(self.menu_div_id), PARSE_MODE_NONE), ("PLACEHOLDER", str(placeholder), PARSE_MODE_MARKDOWN), ("CONTENT", str(content), PARSE_MODE_NONE), ("ICON", DiscordUtils.interaction_dropdown_icon, PARSE_MODE_NONE), ]) async def build_menu_options(self, options): content = [] for option in options: if option.emoji: content.append(await fill_out(self.guild, component_menu_options_emoji, [ ("EMOJI", str(option.emoji), PARSE_MODE_EMOJI), ("TITLE", str(option.label), PARSE_MODE_MARKDOWN), ("DESCRIPTION", str(option.description) if option.description else "", PARSE_MODE_MARKDOWN) ])) else: content.append(await fill_out(self.guild, component_menu_options, [ ("TITLE", str(option.label), PARSE_MODE_MARKDOWN), ("DESCRIPTION", str(option.description) if option.description else "", PARSE_MODE_MARKDOWN) ])) if content: content = f'<div id="dropdownMenu{self.menu_div_id}" class="dropdownContent">{"".join(content)}</div>' return content async def flow(self): for c in self.component.children: await self.build_component(c) if self.menus: self.components += f'<div class="chatlog__components">{self.menus}</div>' if self.buttons: self.components += f'<div class="chatlog__components">{self.buttons}</div>' return self.components # Path: chat_exporter/ext/discord_utils.py class DiscordUtils: logo: str = 'https://cdn.jsdelivr.net/gh/mahtoid/DiscordUtils@master/discord-logo.svg' default_avatar: str = 'https://cdn.jsdelivr.net/gh/mahtoid/DiscordUtils@master/discord-default.png' pinned_message_icon: str = 'https://cdn.jsdelivr.net/gh/mahtoid/DiscordUtils@master/discord-pinned.svg' thread_channel_icon: str = 'https://cdn.jsdelivr.net/gh/mahtoid/DiscordUtils@master/discord-thread.svg' file_attachment_audio: str = 'https://cdn.jsdelivr.net/gh/mahtoid/DiscordUtils@master/discord-audio.svg' file_attachment_acrobat: str = 'https://cdn.jsdelivr.net/gh/mahtoid/DiscordUtils@master/discord-acrobat.svg' file_attachment_webcode: str = 'https://cdn.jsdelivr.net/gh/mahtoid/DiscordUtils@master/discord-webcode.svg' file_attachment_code: str = 'https://cdn.jsdelivr.net/gh/mahtoid/DiscordUtils@master/discord-code.svg' file_attachment_document: str = 'https://cdn.jsdelivr.net/gh/mahtoid/DiscordUtils@master/discord-document.svg' file_attachment_archive: str = 'https://cdn.jsdelivr.net/gh/mahtoid/DiscordUtils@master/discord-archive.svg' file_attachment_unknown: str = 'https://cdn.jsdelivr.net/gh/mahtoid/DiscordUtils@master/discord-unknown.svg' button_external_link: str = '<img class="chatlog__reference-icon" src="https://cdn.jsdelivr.net/gh/mahtoid/DiscordUtils@master/discord-external-link.svg">' reference_attachment_icon: str = '<img class="chatlog__reference-icon" src="https://cdn.jsdelivr.net/gh/mahtoid/DiscordUtils@master/discord-attachment.svg">' interaction_command_icon: str = '<img class="chatlog__interaction-icon" src="https://cdn.jsdelivr.net/gh/mahtoid/DiscordUtils@master/discord-command.svg">' interaction_dropdown_icon: str = '<img class="chatlog__dropdown-icon" src="https://cdn.jsdelivr.net/gh/mahtoid/DiscordUtils@master/discord-dropdown.svg">' # Path: chat_exporter/ext/html_generator.py PARSE_MODE_NONE = 0 PARSE_MODE_NO_MARKDOWN = 1 PARSE_MODE_MARKDOWN = 2 PARSE_MODE_EMBED = 3 PARSE_MODE_SPECIAL_EMBED = 4 PARSE_MODE_REFERENCE = 5 PARSE_MODE_EMOJI = 6 async def fill_out(guild, base, replacements): def read_file(filename): # Path: chat_exporter/construct/message.py import html from typing import List, Optional, Union from pytz import timezone from datetime import timedelta from chat_exporter.ext.discord_import import discord from chat_exporter.construct.assets import Attachment, Component, Embed, Reaction from chat_exporter.ext.discord_utils import DiscordUtils from chat_exporter.ext.html_generator import ( fill_out, bot_tag, bot_tag_verified, message_body, message_pin, message_thread, message_content, message_reference, message_reference_unknown, message_interaction, img_attachment, start_message, end_message, PARSE_MODE_NONE, PARSE_MODE_MARKDOWN, PARSE_MODE_REFERENCE, ) else DiscordUtils.default_avatar ) user_joined_at = self.message.author.joined_at if hasattr(self.message.author, "joined_at") else None user_display_name = ( f'<div class="meta__display-name">{self.message.author.display_name}</div>' if self.message.author.display_name != self.message.author.name else "" ) self.meta_data[user_id] = [ user_name_discriminator, user_created_at, user_bot, user_avatar, 1, user_joined_at, user_display_name ] async def build_content(self): if not self.message.content: self.message.content = "" return if self.message_edited_at: self.message_edited_at = _set_edit_at(self.message_edited_at) self.message.content = html.escape(self.message.content) self.message.content = await fill_out(self.guild, message_content, [ ("MESSAGE_CONTENT", self.message.content, PARSE_MODE_MARKDOWN), ("EDIT", self.message_edited_at, PARSE_MODE_NONE) ]) async def build_reference(self): if not self.message.reference: self.message.reference = "" return try: message: discord.Message = await self.message.channel.fetch_message(self.message.reference.message_id) except (discord.NotFound, discord.HTTPException) as e: self.message.reference = "" if isinstance(e, discord.NotFound): self.message.reference = message_reference_unknown return is_bot = _gather_user_bot(message.author) user_colour = await self._gather_user_colour(message.author) if not message.content and not message.interaction: message.content = "Click to see attachment" elif not message.content and message.interaction: message.content = "Click to see command" icon = "" if not message.interaction and (message.embeds or message.attachments): icon = DiscordUtils.reference_attachment_icon elif message.interaction: icon = DiscordUtils.interaction_command_icon _, message_edited_at = self.set_time(message) if message_edited_at: message_edited_at = _set_edit_at(message_edited_at) avatar_url = message.author.display_avatar if message.author.display_avatar else DiscordUtils.default_avatar self.message.reference = await fill_out(self.guild, message_reference, [ ("AVATAR_URL", str(avatar_url), PARSE_MODE_NONE), ("BOT_TAG", is_bot, PARSE_MODE_NONE), ("NAME_TAG", "%s#%s" % (message.author.name, message.author.discriminator), PARSE_MODE_NONE), ("NAME", str(html.escape(message.author.display_name))), ("USER_COLOUR", user_colour, PARSE_MODE_NONE), ("CONTENT", message.content, PARSE_MODE_REFERENCE), ("EDIT", message_edited_at, PARSE_MODE_NONE), ("ICON", icon, PARSE_MODE_NONE), ("USER_ID", str(message.author.id), PARSE_MODE_NONE), ("MESSAGE_ID", str(self.message.reference.message_id), PARSE_MODE_NONE), ]) async def build_interaction(self): if not self.message.interaction: self.message.interaction = "" return user: Union[discord.Member, discord.User] = self.message.interaction.user is_bot = _gather_user_bot(user) user_colour = await self._gather_user_colour(user) avatar_url = user.display_avatar if user.display_avatar else DiscordUtils.default_avatar self.message.interaction = await fill_out(self.guild, message_interaction, [ ("AVATAR_URL", str(avatar_url), PARSE_MODE_NONE), ("BOT_TAG", is_bot, PARSE_MODE_NONE), ("NAME_TAG", "%s#%s" % (user.name, user.discriminator), PARSE_MODE_NONE), ("NAME", str(html.escape(user.display_name))), ("USER_COLOUR", user_colour, PARSE_MODE_NONE), ("FILLER", "used ", PARSE_MODE_NONE), ("COMMAND", "/" + self.message.interaction.name, PARSE_MODE_NONE), ("USER_ID", str(user.id), PARSE_MODE_NONE), ("INTERACTION_ID", str(self.message.interaction.id), PARSE_MODE_NONE), ]) async def build_sticker(self): if not self.message.stickers or not hasattr(self.message.stickers[0], "url"): return sticker_image_url = self.message.stickers[0].url if sticker_image_url.endswith(".json"): sticker = await self.message.stickers[0].fetch() sticker_image_url = ( f"https://cdn.jsdelivr.net/gh/mahtoid/DiscordUtils@master/stickers/{sticker.pack_id}/{sticker.id}.gif" ) self.message.content = await fill_out(self.guild, img_attachment, [ ("ATTACH_URL", str(sticker_image_url), PARSE_MODE_NONE), ("ATTACH_URL_THUMB", str(sticker_image_url), PARSE_MODE_NONE) ]) async def build_assets(self): for e in self.message.embeds: self.embeds += await Embed(e, self.guild).flow() for a in self.message.attachments: self.attachments += await Attachment(a, self.guild).flow() for c in self.message.components: self.components += await Component(c, self.guild).flow()
for r in self.message.reactions:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: mariaalfaroc/a2s-transformer # Path: networks/crnn/model.py class CTCTrainedCRNN(LightningModule): def __init__( self, w2i, i2w, ytest_i2w=None, max_audio_len=100, frame_multiplier_factor=8 ): super(CTCTrainedCRNN, self).__init__() # Save hyperparameters self.save_hyperparameters() # Dictionaries self.w2i = w2i self.i2w = i2w self.ytest_i2w = ytest_i2w if ytest_i2w is not None else i2w # Model self.model = CRNN( output_size=len(self.w2i) + 1, frame_multiplier_factor=frame_multiplier_factor, ) self.width_reduction = self.model.cnn.width_reduction self.summary(max_audio_len) # Loss: the target index cannot be blank! self.compute_ctc_loss = CTCLoss(blank=len(self.w2i), zero_infinity=False) # Predictions self.Y = [] self.YHat = [] def summary(self, max_audio_len): summary(self.model, input_size=[1, NUM_CHANNELS, IMG_HEIGHT, max_audio_len]) def configure_optimizers(self): return torch.optim.Adam(self.model.parameters(), lr=1e-3, weight_decay=1e-6) def forward(self, x): return self.model(x) def training_step(self, batch, batch_idx): x, xl, y, yl = batch yhat = self.model(x) # ------ CTC Requirements ------ # yhat: [batch, frames, vocab_size] yhat = yhat.log_softmax(dim=2) yhat = yhat.permute(1, 0, 2).contiguous() # ------------------------------ loss = self.compute_ctc_loss(yhat, y, xl, yl) self.log("train_loss", loss, prog_bar=True, logger=True, on_epoch=True) return loss def ctc_greedy_decoder(self, y_pred, i2w): # y_pred = [seq_len, num_classes] # Best path y_pred_decoded = torch.argmax(y_pred, dim=1) # Merge repeated elements y_pred_decoded = torch.unique_consecutive(y_pred_decoded, dim=0).tolist() # Convert to string; len(i2w) -> CTC-blank y_pred_decoded = [i2w[i] for i in y_pred_decoded if i != len(i2w)] return y_pred_decoded def validation_step(self, batch, batch_idx): x, y = batch # batch_size = 1 # Model prediction (decoded using the vocabulary on which it was trained) yhat = self.model(x)[0] yhat = yhat.log_softmax(dim=-1).detach().cpu() yhat = self.ctc_greedy_decoder(yhat, self.i2w) # Decoded ground truth y = [self.ytest_i2w[i.item()] for i in y[0]] # Append to later compute metrics self.Y.append(y) self.YHat.append(yhat) def test_step(self, batch, batch_idx): return self.validation_step(batch, batch_idx) def on_validation_epoch_end(self, name="val", print_random_samples=False): metrics = compute_metrics(y_true=self.Y, y_pred=self.YHat) for k, v in metrics.items(): self.log(f"{name}_{k}", v, prog_bar=True, logger=True, on_epoch=True) # Print random samples if print_random_samples: index = random.randint(0, len(self.Y) - 1) print(f"Ground truth - {self.Y[index]}") print(f"Prediction - {self.YHat[index]}") # Clear predictions self.Y.clear() self.YHat.clear() return metrics def on_test_epoch_end(self): return self.on_validation_epoch_end(name="test", print_random_samples=True) # Path: networks/transformer/model.py class A2STransformer(LightningModule): def __init__( self, max_seq_len, max_audio_len, w2i, i2w, ytest_i2w=None, attn_window=-1, teacher_forcing_prob=0.5, ): super(A2STransformer, self).__init__() # Save hyperparameters self.save_hyperparameters() # Dictionaries self.w2i = w2i self.i2w = i2w self.ytest_i2w = ytest_i2w if ytest_i2w is not None else i2w self.padding_idx = w2i["<PAD>"] # Model self.max_seq_len = max_seq_len self.teacher_forcing_prob = teacher_forcing_prob self.encoder = Encoder(in_channels=NUM_CHANNELS) self.pos_2d = PositionalEncoding2D( num_channels=256, max_height=math.ceil(IMG_HEIGHT / HEIGHT_REDUCTION), max_width=math.ceil(max_audio_len / WIDTH_REDUCTION), ) self.decoder = Decoder( output_size=len(self.w2i), max_seq_len=max_seq_len, num_embeddings=len(self.w2i), padding_idx=self.padding_idx, attn_window=attn_window, ) self.summary(max_audio_len) # Loss self.compute_loss = CrossEntropyLoss(ignore_index=self.padding_idx) # Predictions self.Y = [] self.YHat = [] def summary(self, max_audio_len): print("Encoder") summary(self.encoder, input_size=[1, NUM_CHANNELS, IMG_HEIGHT, max_audio_len]) print("Decoder") tgt_size = [1, self.max_seq_len] memory_size = [ 1, math.ceil(IMG_HEIGHT / HEIGHT_REDUCTION) * math.ceil(max_audio_len / WIDTH_REDUCTION), 256, ] memory_len_size = [1] summary( self.decoder, input_size=[tgt_size, memory_size, memory_len_size], dtypes=[torch.int64, torch.float32, torch.int64], ) def configure_optimizers(self): return torch.optim.Adam( list(self.encoder.parameters()) + list(self.decoder.parameters()), lr=1e-4, amsgrad=False, ) def forward(self, x, xl, y_in): # Encoder x = self.encoder(x=x) # Prepare for decoder # 2D PE + flatten + permute x = self.pos_2d(x) x = x.flatten(2).permute(0, 2, 1).contiguous() # Decoder y_out_hat = self.decoder(tgt=y_in, memory=x, memory_len=xl) return y_out_hat def apply_teacher_forcing(self, y): # y.shape = [batch_size, seq_len] y_errored = y.clone() for i in range(y_errored.size(0)): for j in range(y_errored.size(1)): if ( random.random() < self.teacher_forcing_prob and y[i, j] != self.padding_idx ): y_errored[i, j] = random.randint(0, len(self.w2i) - 1) return y_errored def training_step(self, batch, batch_idx): x, xl, y_in, y_out = batch y_in = self.apply_teacher_forcing(y_in) yhat = self.forward(x=x, xl=xl, y_in=y_in) loss = self.compute_loss(yhat, y_out) self.log("train_loss", loss, prog_bar=True, logger=True, on_epoch=True) return loss def validation_step(self, batch, batch_idx): x, y = batch assert x.size(0) == 1, "Inference only supports batch_size = 1" # Encoder x = self.encoder(x=x) # Prepare for decoder # 2D PE + flatten + permute x = self.pos_2d(x) x = x.flatten(2).permute(0, 2, 1).contiguous() # Autoregressive decoding y_in = torch.tensor([self.w2i[SOS_TOKEN]]).unsqueeze(0).long().to(x.device) yhat = [] for _ in range(self.max_seq_len): y_out_hat = self.decoder(tgt=y_in, memory=x, memory_len=None) y_out_hat = y_out_hat[0, :, -1] # Last token y_out_hat_token = y_out_hat.argmax(dim=-1).item() y_out_hat_word = self.i2w[y_out_hat_token] yhat.append(y_out_hat_word) if y_out_hat_word == EOS_TOKEN: break y_in = torch.cat( [y_in, torch.tensor([[y_out_hat_token]]).long().to(x.device)], dim=1 ) # Decoded ground truth y = [self.ytest_i2w[i.item()] for i in y[0][1:]] # Remove SOS_TOKEN # Append to later compute metrics self.Y.append(y) self.YHat.append(yhat) def test_step(self, batch, batch_idx): return self.validation_step(batch, batch_idx) def on_validation_epoch_end(self, name="val", print_random_samples=False): metrics = compute_metrics(y_true=self.Y, y_pred=self.YHat) for k, v in metrics.items(): self.log(f"{name}_{k}", v, prog_bar=True, logger=True, on_epoch=True) # Print random samples if print_random_samples: index = random.randint(0, len(self.Y) - 1) print(f"Ground truth - {self.Y[index]}") print(f"Prediction - {self.YHat[index]}") # Clear predictions self.Y.clear() self.YHat.clear() return metrics def on_test_epoch_end(self): return self.on_validation_epoch_end(name="test", print_random_samples=True) # Path: my_utils/ctc_dataset.py class CTCDataModule(LightningDataModule): def __init__( self, ds_name: str, use_voice_change_token: bool = False, batch_size: int = 16, num_workers: int = 20, width_reduction: int = 2, ): super(CTCDataModule, self).__init__() self.ds_name = ds_name self.use_voice_change_token = use_voice_change_token self.batch_size = batch_size self.num_workers = num_workers self.width_reduction = ( width_reduction # Must be overrided with that of the model! ) def setup(self, stage: str): if stage == "fit": self.train_ds = CTCDataset( ds_name=self.ds_name, partition_type="train", width_reduction=self.width_reduction, use_voice_change_token=self.use_voice_change_token, ) self.val_ds = CTCDataset( ds_name=self.ds_name, partition_type="val", width_reduction=self.width_reduction, use_voice_change_token=self.use_voice_change_token, ) if stage == "test" or stage == "predict": self.test_ds = CTCDataset( ds_name=self.ds_name, partition_type="test", width_reduction=self.width_reduction, use_voice_change_token=self.use_voice_change_token, ) def train_dataloader(self): return DataLoader( self.train_ds, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers, collate_fn=ctc_batch_preparation, ) # prefetch_factor=2 def val_dataloader(self): return DataLoader( self.val_ds, batch_size=1, shuffle=False, num_workers=self.num_workers, ) # prefetch_factor=2 def test_dataloader(self): return DataLoader( self.test_ds, batch_size=1, shuffle=False, num_workers=self.num_workers, ) # prefetch_factor=2 def predict_dataloader(self): print("Using test_dataloader for predictions.") return self.test_dataloader(self) def get_w2i_and_i2w(self): try: return self.train_ds.w2i, self.train_ds.i2w except AttributeError: return self.test_ds.w2i, self.test_ds.i2w def get_max_seq_len(self): try: return self.train_ds.max_seq_len except AttributeError: return self.test_ds.max_seq_len def get_max_audio_len(self): try: return self.train_ds.max_audio_len except AttributeError: return self.test_ds.max_audio_len def get_frame_multiplier_factor(self): try: return self.train_ds.frame_multiplier_factor except AttributeError: return self.test_ds.frame_multiplier_factor # Path: my_utils/ar_dataset.py class ARDataModule(LightningDataModule): def __init__( self, ds_name: str, use_voice_change_token: bool = False, batch_size: int = 16, num_workers: int = 20, ): super(ARDataModule, self).__init__() self.ds_name = ds_name self.use_voice_change_token = use_voice_change_token self.batch_size = batch_size self.num_workers = num_workers def setup(self, stage: str): if stage == "fit": self.train_ds = ARDataset( ds_name=self.ds_name, partition_type="train", use_voice_change_token=self.use_voice_change_token, ) self.val_ds = ARDataset( ds_name=self.ds_name, partition_type="val", use_voice_change_token=self.use_voice_change_token, ) if stage == "test" or stage == "predict": self.test_ds = ARDataset( ds_name=self.ds_name, partition_type="test", use_voice_change_token=self.use_voice_change_token, ) def train_dataloader(self): return DataLoader( self.train_ds, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers, collate_fn=ar_batch_preparation, ) # prefetch_factor=2 def val_dataloader(self): return DataLoader( self.val_ds, batch_size=1, shuffle=False, num_workers=self.num_workers, ) # prefetch_factor=2 def test_dataloader(self): return DataLoader( self.test_ds, batch_size=1, shuffle=False, num_workers=self.num_workers, ) # prefetch_factor=2 def predict_dataloader(self): print("Using test_dataloader for predictions.") return self.test_dataloader(self) def get_w2i_and_i2w(self): try: return self.train_ds.w2i, self.train_ds.i2w except AttributeError: return self.test_ds.w2i, self.test_ds.i2w def get_max_seq_len(self): try: return self.train_ds.max_seq_len except AttributeError: return self.test_ds.max_seq_len def get_max_audio_len(self): try: return self.train_ds.max_audio_len except AttributeError: return self.test_ds.max_audio_len # Path: my_utils/seed.py def seed_everything(seed: int, deterministic: bool = True, benchmark: bool = True): import random, os import numpy as np import torch random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = deterministic torch.backends.cudnn.benchmark = benchmark # Path: test.py import gc import os import fire import torch from lightning.pytorch import Trainer from lightning.pytorch.loggers.wandb import WandbLogger from networks.crnn.model import CTCTrainedCRNN from networks.transformer.model import A2STransformer from my_utils.ctc_dataset import CTCDataModule from my_utils.ar_dataset import ARDataModule from my_utils.seed import seed_everything seed_everything(42, benchmark=False) def test( ds_name, model_type: str = "crnn", use_voice_change_token: bool = False, checkpoint_path: str = "", ): gc.collect() torch.cuda.empty_cache() # Check if checkpoint path is empty or does not exist if checkpoint_path == "": print("Checkpoint path not provided") return if not os.path.exists(checkpoint_path): print(f"Checkpoint path {checkpoint_path} does not exist") return # Get source dataset name src_ds_name = os.path.basename(checkpoint_path).split(".")[0] # Experiment info print("TEST EXPERIMENT") print(f"\tSource dataset: {src_ds_name}") print(f"\tTest dataset: {ds_name}") print(f"\tModel type: {model_type}") print(f"\tUse voice change token: {use_voice_change_token}") print(f"\tCheckpoint path: {checkpoint_path}") if model_type == "crnn": # Data module datamodule = CTCDataModule( ds_name=ds_name, use_voice_change_token=use_voice_change_token, ) datamodule.setup(stage="test") ytest_i2w = datamodule.test_ds.i2w # Model model = CTCTrainedCRNN.load_from_checkpoint( checkpoint_path, ytest_i2w=ytest_i2w ) elif model_type == "transformer": # Data module datamodule = ARDataModule( ds_name=ds_name, use_voice_change_token=use_voice_change_token, ) datamodule.setup(stage="test") ytest_i2w = datamodule.test_ds.i2w # Model model = A2STransformer.load_from_checkpoint( checkpoint_path, ytest_i2w=ytest_i2w )
else:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: yacinxx/dnakey # Path: prime_key_config.py class PrimeKeyConfig: def agent_prime_key(self, hash_key:str) -> str | int: MAX_LENGTH = 56 self.hash_key = hash_key if (self.hash_key) and (len(self.hash_key) == MAX_LENGTH) and (self.hash_key.startswith("dnakey$")): positions_to_remove = [10, 20, 30, 40, 48] self.hash_key = self.hash_key.replace('dnakey$', '') is_prime = ''.join([self.hash_key[i] for i in positions_to_remove]) if is_prime == "PRIME": valid_hash_key = ''.join([self.hash_key[i] for i in range(len(self.hash_key)) if i not in positions_to_remove]) config_has_key = f"dnakey${valid_hash_key[:32:2]}" config_manager = list(ConfigManager(config_has_key).configuration().keys()) if config_has_key in config_manager: toast("**:blue[The Prime key is valid!]**", icon="🧁") time.sleep(1) return valid_hash_key else: info("This Prime key not registered yet!", icon="😮") return 1 else: error("This is not a Prime key!") return 1 elif self.hash_key and len(self.hash_key) != MAX_LENGTH: error("The Prime key is not valid!") return 1 else: return 1 # Path: profile_config/config_manager.py class ConfigManager: def __init__(self, prime_key:str) -> None: with open("profile_config/profile_config.json", "r") as f: self.profile_data = __import__("json").loads(f.read()) self.profile_config = self.profile_data["profiles_config"] self.prime_key = prime_key self.create_date = datetime.datetime.now() self.formatted_datetime = self.create_date.isoformat() def configuration(self): return self.profile_config def update_created_profiles(self): self.profile_config[self.prime_key]["created_profiles"] +=1 toast(":orange[**1 Profile has been added to your prime key**]", icon="🍨") return self.profile_config[self.prime_key]["created_profiles"] def get_date_time(self): return self.profile_config[self.prime_key]["date_time"] def update_date_time(self): if self.profile_config[self.prime_key]["date_time"] is None: self.profile_config[self.prime_key].update({"date_time": self.formatted_datetime}) success("**You 'Prime Key' has been activated successfully!**", icon="🍧") snow() def update_profile_activity(self, id_profile:int, activate_merge:bool, save_cookies:bool, formatted_datetime:str) -> None: self.action = self.profile_config[self.prime_key]["profile_activity"]["action"] if id_profile not in self.action: self.action.update({id_profile:{ "active_usage": 0, "active_merge": activate_merge, "date_time": formatted_datetime, "request_status": "online", "save_cookies": save_cookies, "version": VERSION} }) def get_created_profiles(self): return self.profile_config[self.prime_key]["created_profiles"] def get_active_profiles(self): active_profiles_ids = [] active_profiles = 0 active_profiles_list = list(self.profile_config[self.prime_key]["profile_activity"]["action"]) for i in active_profiles_list: if self.profile_config[self.prime_key]["profile_activity"]["action"][i]["active_usage"] != 0: active_profiles+=1 active_profiles_ids.append(f"id:{i}") return active_profiles, active_profiles_ids if len(active_profiles_ids) != 0 else "" def get_online_profiles(self): all_profiles_online = [] active_profiles_list = list(self.profile_config[self.prime_key]["profile_activity"]["action"]) for i in active_profiles_list: if self.profile_config[self.prime_key]["profile_activity"]["action"][i]["request_status"] == "online": all_profiles_online.append("online") else: all_profiles_online.append("offline") if all(profile == "online" for profile in all_profiles_online): return "Online!" else: return "Not all profiles are online!" def check_active_usage(self): all_profiles_active_usage = [] for i in list(self.profile_config[self.prime_key]["profile_activity"]["action"]): all_profiles_active_usage.append(self.profile_config[self.prime_key]["profile_activity"]["action"][i]["active_usage"]) if all(profile == 0 for profile in all_profiles_active_usage): return "first_time" def get_profile_active_usage(self, id_profile:str) -> int: return self.profile_config[self.prime_key]["profile_activity"]["action"][id_profile]["active_usage"] def update_profile_active_usage(self, id_profile:str) -> None: self.profile_config[self.prime_key]["profile_activity"]["action"][id_profile]["active_usage"] +=1 def get_merge_active_usage(self): return len(list(self.profile_config[self.prime_key]["profile_activity"]["action_merge"])) def get_profile_action_merge(self, id_profile:str) -> list[int]: get_merge = self.profile_config[self.prime_key]["profile_activity"]["action_merge"][id_profile] action_merge_len = len(list(get_merge.keys())) action_merge = sum(list(get_merge.values())) return action_merge_len, action_merge def update_profile_action_merge(self, id_profile:str, merge_with:str) -> None: action_merge = self.profile_config[self.prime_key]["profile_activity"]["action_merge"] if id_profile not in list(action_merge.keys()): action_merge.update({id_profile:{f"({id_profile},{merge_with})": 0}}) if id_profile in list(action_merge.keys()): if f"({id_profile},{merge_with})" in list(action_merge[id_profile].keys()): action_merge[id_profile][f"({id_profile},{merge_with})"] +=1 else: action_merge[id_profile].update({f"({id_profile},{merge_with})": 0}) action_merge[id_profile][f"({id_profile},{merge_with})"] +=1 def update_config(self): with open("profile_config/profile_config.json", "w") as f: __import__("json").dump(self.profile_data, f, indent=3) # Path: main_builder.py class MainBuilder: def __init__(self, valid_hash_key:str, data:dict) -> None: self.valid_hash_key = valid_hash_key self.config_manager = ConfigManager(self.valid_hash_key) self.created_profiles = self.config_manager.get_created_profiles() self.data = data self.profile_brain = self.data.get("profile_brain", {}) self.profile_name = self.data.get("meta_data", {}).get("profile_name", None) self.action_status = self.data.get("meta_data", {}).get("action_status", None) self.length = self.data.get("meta_data", {}).get("profile_length", None) self.profile_id = self.data.get("meta_data", {}).get("profile_id", None) self.activate_merge = self.data.get("meta_data", {}).get("activate_merge", None) self.request_status = self.data.get("meta_data", {}).get("request_status", None) self.save_cookies = self.data.get("meta_data", {}).get("save_cookies", None) self.date_time = self.data.get("meta_data", {}).get("date_time", None) self.profile_version = self.data.get("meta_data", {}).get("version", None) self.profile_id_str = str(self.profile_id) self.length_convert = self.length // 4 self.hash_text, self.prompt_list = [], [] if self.action_status is not None: self.merge_with = self.data.get("meta_data", {}).get("merge_with", None) def dna_builder(self, prompt:str, activate_random_on:bool) -> str: self.prompt = prompt self.numbers = [str(number) for number in string.digits] idx, idx_add_on = 0, 4 for letter in prompt: if letter.isupper() or letter in self.numbers: self.hash_text.append(self.profile_brain[letter][0] ["number" if letter in self.numbers else "upper"][idx : idx + idx_add_on]) else: self.hash_text.append(self.profile_brain[letter.upper()][0]["lower"][idx : idx + idx_add_on]) idx += idx_add_on if activate_random_on: self.random_result() else: self.result_prompt() def random_result(self): if self.action_status is None: self.config_manager.update_profile_active_usage(self.profile_id_str) self.config_manager.update_config() else: self.config_manager.update_profile_action_merge(self.profile_id_str, self.merge_with) self.config_manager.update_config() hash_length = len(self.hash_text) condition = ["Weak", "#ffa347"] if hash_length < 4 else ["Medium", "#3cb371"] \ if hash_length < 10 else ["Strong", "#ec002b"] r_hash = self.create_random_result() _hash = ''.join(self.hash_text) hash_text_len = len(_hash) _token = f"{_hash[::4]}-{r_hash[: hash_text_len - 4]}" st.divider() with st.expander("Expand for random password result [See More...]"): self.col1, self.col2 = st.columns(2) with self.col1: st.write("Password: (:green[Copy])") st.code(f'"{_token}"') st.caption(f"Activate_key: {self.prompt}") st.caption(":red[Warning]: This is a random password (:blue[temporarily])") self.profile_details() # Generate and display QR code with self.col2: self.qr_code(_token, condition[1]) self.hash_text.clear() def create_random_result(self): def has_lower(): return random.choice(string.ascii_lowercase) def has_upper(): return random.choice(string.ascii_uppercase) def has_number(): return random.choice(string.digits) _char = {"lower": has_lower, "upper": has_upper, "number": has_number} r_hash = "" for _ in range(self.length): random_choice = random.choice(list(_char.keys())) r_hash += _char[random_choice]() return r_hash def result_prompt(self): if self.action_status is None: self.config_manager.update_profile_active_usage(self.profile_id_str) self.config_manager.update_config() else: self.config_manager.update_profile_action_merge(self.profile_id_str, self.merge_with) self.config_manager.update_config() jhash = ''.join(self.hash_text) hash_length = len(self.hash_text) condition = ["Weak", "#ffa347", "orange"] if hash_length < 4 else ["Medium", "#3cb371", "green"] \ if hash_length < 10 else ["Strong", "#ec002b", "red"] # Display the generated token as code st.divider() with st.expander("Expand for password result [See More...]"): self.col1, self.col2 = st.columns(2) with self.col1: st.write("Password: (:green[Copy])") st.code(f'"{jhash}"') st.caption(f"Condition: [:{condition[2]}[{condition[0]}]]") st.caption(":green[Note]: You dont have to save this password just remember your key") self.profile_details() with self.col2: # Generate and display QR code self.qr_code(jhash, condition[1]) self.hash_text.clear() def profile_details(self): with st.expander("Expand to see your 'Profile' Details [See More...]"): self.col_details1, self.col_details2 = st.columns(2) with self.col_details1: if self.action_status is None: active_usage = self.config_manager.get_profile_active_usage(self.profile_id_str) st.text("Profile MetaData!") profile_meta_data = ['profile_id', 'profile_name', 'active_usage', 'max_length', 'profile_status', 'activate_merge', 'save_cookies', 'date_time', 'version'] profile_values = [self.profile_id, self.profile_name, active_usage, self.length_convert, self.request_status, self.activate_merge, self.save_cookies, self.date_time, self.profile_version] self.profile_data_frame(profile_meta_data, profile_values) else: merge_with, action_merge = self.config_manager.get_profile_action_merge(self.profile_id_str) st.text("Profile Merge MetaData!") action_merge_name = f'{action_merge} times' if action_merge != 1 else f'{action_merge} time' merge_with_name = f'{merge_with} profiles' if merge_with != 1 else f'{merge_with} profile' profile_meta_data = ['profile_id', 'profile_name', 'action_merge', 'merge_with', 'max_length'] profile_values = [self.profile_id, self.profile_name, action_merge_name, merge_with_name, self.length_convert] self.profile_data_frame(profile_meta_data, profile_values) with self.col_details2: st.text("PrimeKey MetaData!") active_profiles, active_profiles_ids = self.config_manager.get_active_profiles() active_profiles_merge = self.config_manager.get_merge_active_usage() profiles_status = self.config_manager.get_online_profiles() st.code(f""" prime_key_id: '{self.valid_hash_key}' created_profiles: {self.created_profiles} active_profiles: {active_profiles} {active_profiles_ids} active_profiles_merge: {active_profiles_merge} profiles_status: '{profiles_status}'""") st.info("Here is your profile and prime key metadata. You can save in by download it or copy the text just to be updated!", icon="❕") st.warning("DnaKey not responsible if you delete your profiles or give it to someone!", icon="📛") def profile_data_frame(self, profile_meta_data:list[str], profile_values:list[str | int | bool]) -> None: def load_data(): return pd.DataFrame( { "Profile MetaData": profile_meta_data, "Profile Values": profile_values, } ) # Boolean to resize the dataframe, stored as a session state variable data_df = load_data() data_df['Profile Values'] = data_df['Profile Values'].astype(str) st.dataframe(data_df, use_container_width=500, hide_index=True) def qr_code(self, data_qr:str, color:str) -> None: # File name for the generated QR code image self.file_name = "qr_code.png" # Text to be encoded in the QR code qr_data_text = f"-TOKEN: {data_qr}" # Generate the QR code image self.generate_qr_code(qr_data_text, self.file_name, color) # Display the generated QR code image st.image(image=self.file_name) st.caption(f"You can scan this **:green[QR code]** to see your password in your phone faster!") st.toast(":green[Your (QR) code has been created successfully!]", icon='🎉') time.sleep(1) # Check if the image file exists if os.path.exists(self.file_name): # Delete the image file os.remove(self.file_name) print(f"Deleted the image file: {self.file_name}") else: print(f"The image file does not exist: {self.file_name}") def generate_qr_code(self, data:str, file_name:str, color:str) -> None: # Generate a QR code with the given data, file name, and color qr = qrcode.QRCode(version=1, error_correction=qrcode.constants.ERROR_CORRECT_L, box_size=5, border=2) qr.add_data(data) qr.make(fit=True) self.qr_img = qr.make_image(fill_color=color, back_color="#f5f5f5") # Save the generated QR code image to a file self.qr_img.save(file_name) # Path: create_password.py import streamlit as st import json, time, re from cryptography.fernet import Fernet from prime_key_config import PrimeKeyConfig from profile_config.config_manager import ConfigManager from main_builder import MainBuilder from create_merge import * class CreatePassword(PrimeKeyConfig): def create_new_password(self): key_id = "prime-key-password" self.hash_key = st.text_input("Enter Your Prime Key: (:red[Required])", type="password", help="Prime Key is your login token method so 'DnaKey' can recognize you!", key=key_id) self.upload_hash_key = self.agent_prime_key(self.hash_key) if self.upload_hash_key == 1: self.tab_name = "Create Password" return else: self.tab_name = "Create Password" self.config_has_key = f"dnakey${self.upload_hash_key[:32:2]}" self.config_manager = ConfigManager(self.config_has_key) self.config_manager.update_date_time() self.config_manager.update_config() self.first_time = self.config_manager.check_active_usage() self.col3, self.col4 = st.columns(2) with self.col3: if self.first_time == "first_time": st.info("Hey there. It's look like your first time using your profile!", icon="🏁") with st.expander("Upload Profile [See More...]"): self.uploaded_file = st.file_uploader(label="Upload Profile", help="Required a dkp file only!", accept_multiple_files=True, type=["dkp"], key="file-01", label_visibility="collapsed") self.profile_data() self.uploaded_files_merge = self.uploaded_file self.create_password_advance_settings() with self.col4: if self.first_time == "first_time": st.success("Let me help you get your first password easily!", icon="⚙") if not self.uploaded_file: st.caption("Hello👋, To start creating your new password you need to upload your profile!") if (self.uploaded_file) and (self.first_time == "first_time"): st.info("**_Active Profile For Now_**: Here you have to select the profile that you wanna use!", icon="🛠") self.input_for_user_key() self.decode_text_button() def profile_data(self): if not self.uploaded_file: return 1 self.create_a_fernet_object() self.verify_uploaded_file() def create_a_fernet_object(self): # Create a Fernet object with the secret key secret_key = self.upload_hash_key.encode("utf-8") self.fernet = Fernet(secret_key) def verify_uploaded_file(self): self.uploaded_file_unpack = [] for file in range(len(self.uploaded_file)): encrypted_data = self.uploaded_file[file].read().decode("utf-8") try: decrypted_data = self.fernet.decrypt(encrypted_data) decrypted_string = decrypted_data.decode() self.data = json.loads(decrypted_string) self.uploaded_file_unpack.append(self.data) except Exception: with self.col4: invalid_profile_name = self.uploaded_file[file].name[:-4].replace('dnakey_', '') st.error(f"This is not a dnakey profile! '{invalid_profile_name}'") time.sleep(0.5) st.info("If you don't know you can create a 'dnakey' profile in 'Create Profile window' in your left!", icon="ℹ️") st.stop() if len(self.uploaded_file_unpack) == 1: st.toast("**:green[The Profile Data Is Live...]**", icon="🍰") time.sleep(1) else: st.toast("**:blue[Your Profiles Data Is Live...]**", icon="🍬") time.sleep(1) def create_password_advance_settings(self): if self.uploaded_file and self.upload_hash_key: if self.first_time == "first_time": st.info("**_Advance Settings_**: Here you have the Merge it's an advanced method. You won't need it for now!", icon="🧪") with st.expander("Advance Settings [See More...]"): self.new_merge_profile = CreateMergeProfile(self.uploaded_file_unpack, self.uploaded_files_merge) self.new_merge_profile.merge_builder() st.caption(":red[Warning]: The profiles must have the same length!") if self.first_time == "first_time": st.warning("**_Activate Random_**: If you activate this it gonna give you a temporary random password!", icon="⚠") self.activate_random_on = st.toggle("Activate Random: (:green[Optional])")
def select_file_option(self):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: tamnva/hydroecolstm # Path: hydroecolstm/utility/scaler.py class Scaler: def fit(self, x=None, method=None): # concatenat all object_id for i, object_id in zip(range(len(x)), x): if i == 0: cat_x = x[object_id] else: cat_x = torch.cat((cat_x, x[object_id]),0) # Get either min max or mean and standard deviation self.mins = _column_mins(cat_x) self.maxs = _column_maxs(cat_x) # Get means and standar deviation self.means = _column_means(cat_x) self.stds = _column_stds(cat_x) scaler_a = [] scaler_b = [] for i, method_name in zip(range(len(method)), method): if method_name == "MinMaxScaler": scaler_a.append(self.mins[i]) scaler_b.append(self.maxs[i] - self.mins[i]) elif method_name=="Z-score": scaler_a.append(self.means[i]) scaler_b.append(self.stds[i]) elif method_name=="None": scaler_a.append(0.0) scaler_b.append(1.0) else: print("Error: unknown scaler") SystemExit("Program stop, please change scaler") scaler_ab = torch.cat((torch.tensor(scaler_a, dtype=torch.float32), torch.tensor(scaler_b, dtype=torch.float32)), 0) self.scaler_parameter = torch.reshape(scaler_ab, (2,len(scaler_a))) def transform(self, x:dict[str:torch.tensor]=None) -> list: x_scale = {} for object_id in x: x_scale[object_id] = torch.div(torch.sub(x[object_id], self.scaler_parameter[0,:]), self.scaler_parameter[1,:]) return x_scale def inverse(self, x:list=None) -> list: x_inverse = {} for object_id in x: x_inverse[object_id] = torch.add(self.scaler_parameter[0,:], x[object_id]*self.scaler_parameter[1,:]) return x_inverse # Path: hydroecolstm/utility/scaler.py def get_scaler_name(config): if "input_static_features" not in config.keys(): no_static_features = 0 else: no_static_features = len(config["input_static_features"]) # Get name of scaler for dynamic input scaler_name_input = config["scaler_input_dynamic_features"]*\ len(config["input_dynamic_features"]) # replicate this n times if no_static_features > 0 and\ "scaler_input_static_features" in config: for name in config["scaler_input_static_features"]*no_static_features: scaler_name_input.append(name) # scaler name target scaler_name_target = config["scaler_target_features"]*len(config["target_features"]) return scaler_name_input, scaler_name_target # Path: hydroecolstm/data/read_data.py def read_train_test_data(config:dict=None) -> dict: # Read input data dynamic_data = pd.read_csv(config['dynamic_data_file'][0], delimiter=",", header=0) dynamic_data["time"] = pd.to_datetime(dynamic_data["time"], format = "%Y-%m-%d %H:%M") # The column names must contains the following names require_columns = ["object_id","time"] require_columns.extend(config['input_dynamic_features']) require_columns.extend(config['target_features']) # Check if data header contains required names for name in require_columns: if name not in dynamic_data.columns: raise NameError(f"Error: missing column '{name}' in dynamic data file \n") # Subset of dynamic_data - only use the required columns, rows dynamic_data = dynamic_data[require_columns] dynamic_data.set_index("object_id", inplace=True) dynamic_data = dynamic_data.loc[config["object_id"]] config["train_period"] = pd.to_datetime(config["train_period"], format = "%Y-%m-%d %H:%M") train_data = dynamic_data[(dynamic_data["time"] >= config["train_period"][0]) & (dynamic_data["time"] <= config["train_period"][1])] # Colum name of the ouput tensor x_column_name = config['input_dynamic_features'].copy() y_column_name = config['target_features'].copy() # split to train data by object id x_train = _split_by_object_id(train_data[x_column_name], config["object_id"]) y_train = _split_by_object_id(train_data[y_column_name], config["object_id"]) time_train = _time_by_object_id(train_data, config["object_id"]) config["test_period"] = pd.to_datetime(config["test_period"], format = "%Y-%m-%d") test_data = dynamic_data[(dynamic_data["time"] >= config["test_period"][0]) & (dynamic_data["time"] <= config["test_period"][1])] x_test = _split_by_object_id(test_data[x_column_name], config["object_id"]) y_test = _split_by_object_id(test_data[y_column_name], config["object_id"]) time_test = _time_by_object_id(test_data, config["object_id"]) # Read static input data file if 'input_static_features' in config: if len(config['input_static_features']) > 0: static_data = pd.read_csv(config['static_data_file'][0], delimiter=",", header=0) # The column names must contains the following names require_columns = ["object_id"] require_columns.extend(config['input_static_features']) # Check if data header contains required names for name in require_columns: if name not in static_data.columns: raise NameError(f"Error: missing column '{name}' in static data\n") # Subset of dynamic_data - only use the required columns and rows static_data = static_data[require_columns] static_data.set_index("object_id", inplace=True) static_data = torch.tensor(static_data.loc[config["object_id"]].values, dtype=torch.float32) # Update columne name x_column_name.extend(config['input_static_features']) else: static_data = None # add static data to x_train and y_train if static_data is not None: for i, object_id in zip(range(len(x_train)), x_train): rep_static_data = static_data[i,].repeat(x_train[object_id].shape[0],1) x_train[object_id] = torch.cat((x_train[object_id], rep_static_data), 1) rep_static_data = static_data[i,].repeat(x_test[object_id].shape[0],1) x_test[object_id] = torch.cat((x_test[object_id], rep_static_data), 1) return {"x_train":x_train, "y_train": y_train, "time_train" : time_train, "x_test":x_test, "y_test": y_test, "time_test": time_test, "x_column_name": x_column_name, "y_column_name": y_column_name} # Path: hydroecolstm/data/read_config.py def read_config(config_file): # Open and read the configureation file with open(config_file, 'r') as file: cfg = yaml.safe_load(file) # All required keywords key = ["object_id","input_dynamic_features", "target_features", "train_period", "test_period", "n_epochs", "learning_rate", "dynamic_data_file"] # Check if required keywords are missing for keyword in key: if keyword not in cfg: raise NameError(f"Error in configuration file, keyword '{keyword}' is missing") #checkiftraiistest # Return output return cfg # Path: hydroecolstm/model/lstm_linears.py class Lstm_Linears(nn.Module): def __init__(self, config, **kwargs): super(Lstm_Linears, self).__init__() # Model structure parametery self.input_size = self.get_input_size(config) self.output_size = len(config["target_features"]) self.hidden_size = config["hidden_size"] self.num_layers = config["num_layers"] self.dropout = config["dropout"]*min(1.0, self.num_layers - 1.0) self.linears_num_layers = config["REG"]["num_layers"] self.linears_activation_function = config["REG"]["activation_function"] self.linears_num_neurons = self.find_num_neurons(config=config) # Standard LSTM from torch self.lstm = nn.LSTM(input_size=self.input_size, hidden_size=self.hidden_size, num_layers=self.num_layers, dropout=self.dropout, **kwargs) # Fully-connected layer connect hidden and output self.linear = Linears(num_layers=self.linears_num_layers, activation_function=self.linears_activation_function, num_neurons=self.linears_num_neurons) def forward(self, x: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: y_predict = {} for key in x.keys(): # get standard LSTM outputs y_lstm, _ = self.lstm(x[key]) # get final output y_predict[key] = self.linear(y_lstm) # return output return y_predict # get input size def get_input_size(self, config) -> int: if "input_static_features" in config: input_size = (len(config["input_dynamic_features"]) + len(config["input_static_features"])) else: input_size = len(config["input_dynamic_features"]) return input_size # Find number of neuron in each linear layers, including the input layer def find_num_neurons(self, config) -> int: # First number of neurons from the input layers () num_neurons = [self.hidden_size] if "REG" in config: if len(config["REG"]["num_neurons"]) > 1: for i in range(len(config["REG"]["num_neurons"])-1): num_neurons.append(config["REG"]["num_neurons"][i]) num_neurons.append(self.output_size) return num_neurons # Path: hydroecolstm/model/ea_lstm.py class Ea_Lstm_Linears(nn.Module): def __init__(self, config): super(Ea_Lstm_Linears, self).__init__() self.static_size = len(config["input_static_features"]) self.dynamic_size = len(config["input_dynamic_features"]) self.num_layers = config["num_layers"] self.hidden_size = config["hidden_size"] self.output_size = len(config["target_features"]) self.linears_num_layers = config["REG"]["num_layers"] self.linears_activation_function = config["REG"]["activation_function"] self.linears_num_neurons = self.find_num_neurons(config=config) # Model structure self.i = nn.Sequential(nn.Linear(self.static_size, self.hidden_size), nn.Sigmoid()) self.f = MultiLinear(self.dynamic_size, self.hidden_size, self.hidden_size, nn.Sigmoid()) self.g = MultiLinear(self.dynamic_size, self.hidden_size, self.hidden_size, nn.Tanh()) self.o = MultiLinear(self.dynamic_size, self.hidden_size, self.hidden_size, nn.Sigmoid()) self.linear = Linears(num_layers=self.linears_num_layers, activation_function=self.linears_activation_function, num_neurons=self.linears_num_neurons) # TODO: This forward function takes too much times, need to improve def forward(self, x): # Initial hidden, cell states c_t = torch.randn(self.hidden_size).unsqueeze(0) h_t = torch.randn(self.hidden_size).unsqueeze(0) # Forward run output = {} for key in x.keys(): output[key] = torch.zeros(size=(x[key].shape[0],self.output_size)) for i in range(x[key].shape[0]): i_t = self.i(x[key][i:i+1,self.dynamic_size:]) f_t = self.f(x[key][i:i+1,:self.dynamic_size], h_t) g_t = self.g(x[key][i:i+1,:self.dynamic_size], h_t) o_t = self.o(x[key][i:i+1,:self.dynamic_size], h_t) c_t = f_t*c_t + i_t*g_t h_t = o_t*torch.tanh(c_t) output[key][i,:] = self.linear(h_t) return output # Find number of neuron in each linear layers, including the input layer def find_num_neurons(self, config) -> int: # First number of neurons from the input layers () num_neurons = [self.hidden_size] if "REG" in config: if len(config["REG"]["num_neurons"]) > 1: for i in range(len(config["REG"]["num_neurons"])-1): num_neurons.append(config["REG"]["num_neurons"][i]) num_neurons.append(self.output_size) return num_neurons # Path: hydroecolstm/model/train.py class Train(): def __init__(self, config, model, **kwargs): super(Train, self).__init__() # Training parameters self.lr = config["learning_rate"] self.objective_function_name = config["objective_function_name"] self.n_epochs = config["n_epochs"] self.nskip = config["warmup_length"] self.loss_function = LossFunction() self.model = model # Train function def __call__(self, x: Dict[str, torch.Tensor], y: Dict[str, torch.Tensor]): # Optimization function optim = torch.optim.Adam(self.model.parameters(), lr=self.lr) # Train the model for epoch in range(self.n_epochs): # Get model output y_predict= self.model(x) # Reset the gradients to zero optim.zero_grad() # Caculate loss function loss, loss_avg =\ self.loss_function(y_true=y, y_predict=y_predict, nskip=self.nskip, objective_function_name=self.objective_function_name) # Error back propagation LSTM.state_dict() loss_avg.backward() # Update weights and biases optim.step() # Print to console print(f"Epoch [{epoch+1}/{self.n_epochs}], avg_loss = {loss_avg:.8f}") return self.model, y_predict # Path: examples/customLSTM_deleteme.py import numbers import warnings import torch import torch.jit as jit import torch.nn as nn from collections import namedtuple from typing import List, Tuple, Dict from torch import Tensor from torch.nn import Parameter from hydroecolstm.utility.scaler import Scaler, get_scaler_name from hydroecolstm.data.read_data import read_train_test_data from hydroecolstm.data.read_config import read_config from hydroecolstm.model.lstm_linears import Lstm_Linears from hydroecolstm.model.ea_lstm import Ea_Lstm_Linears from hydroecolstm.model.train import Train class EALSTMCell(jit.ScriptModule): def __init__(self, dynamic_input_size, static_input_size, hidden_size): super().__init__() self.dynamic_input_size = dynamic_input_size self.static_input_size = static_input_size self.hidden_size = hidden_size self.weight_sh = Parameter(torch.randn(hidden_size, static_input_size)) self.weight_dh = Parameter(torch.randn(3 * hidden_size, dynamic_input_size)) self.weight_hh = Parameter(torch.randn(3 * hidden_size, hidden_size)) self.bias_sh = Parameter(torch.randn(hidden_size)) self.bias_dh = Parameter(torch.randn(3 * hidden_size)) self.bias_hh = Parameter(torch.randn(3 * hidden_size)) @jit.script_method def forward(self, dynamic_input: Tensor, static_input: Tensor, state: Tuple[Tensor, Tensor]) -> Tuple[Tensor, Tuple[Tensor, Tensor]]: # Initial state hx, cx = state # Gate input gates = (torch.mm(dynamic_input, self.weight_dh.t()) + self.bias_dh + torch.mm(hx, self.weight_hh.t()) + self.bias_hh) forgetgate, cellgate, outgate = gates.chunk(3, 1) ingate = torch.mm(static_input, self.weight_sh.t()) + self.bias_sh # Gate output ingate = torch.sigmoid(ingate) forgetgate = torch.sigmoid(forgetgate) cellgate = torch.tanh(cellgate) outgate = torch.sigmoid(outgate) # Update state cy = (forgetgate * cx) + (ingate * cellgate) hy = outgate * torch.tanh(cy) # Return state output return hy, (hy, cy) class EALSTMLayer(jit.ScriptModule): def __init__(self, config): super().__init__() self.dynamic_input_size = len(config["input_dynamic_features"]) self.static_input_size = len(config["input_static_features"]) self.hidden_size = config["hidden_size"] self.cell = EALSTMCell(self.dynamic_input_size, self.static_input_size, self.hidden_size) @jit.script_method def forward(self, dynamic_input, static_input,
state:Tuple[Tensor, Tensor]):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: camenduru/OpenLRM-hf # Path: lrm/models/generator.py class LRMGenerator(nn.Module): """ Full model of the large reconstruction model. """ def __init__(self, camera_embed_dim: int, rendering_samples_per_ray: int, transformer_dim: int, transformer_layers: int, transformer_heads: int, triplane_low_res: int, triplane_high_res: int, triplane_dim: int, encoder_freeze: bool = True, encoder_model_name: str = 'facebook/dino-vitb16', encoder_feat_dim: int = 768): super().__init__() # attributes self.encoder_feat_dim = encoder_feat_dim self.camera_embed_dim = camera_embed_dim # modules self.encoder = DinoWrapper( model_name=encoder_model_name, freeze=encoder_freeze, ) self.camera_embedder = CameraEmbedder( raw_dim=12+4, embed_dim=camera_embed_dim, ) self.transformer = TriplaneTransformer( inner_dim=transformer_dim, num_layers=transformer_layers, num_heads=transformer_heads, image_feat_dim=encoder_feat_dim, camera_embed_dim=camera_embed_dim, triplane_low_res=triplane_low_res, triplane_high_res=triplane_high_res, triplane_dim=triplane_dim, ) self.synthesizer = TriplaneSynthesizer( triplane_dim=triplane_dim, samples_per_ray=rendering_samples_per_ray, ) def forward_planes(self, image, camera): # image: [N, C_img, H_img, W_img] # camera: [N, D_cam_raw] assert image.shape[0] == camera.shape[0], "Batch size mismatch for image and camera" N = image.shape[0] # encode image image_feats = self.encoder(image) assert image_feats.shape[-1] == self.encoder_feat_dim, \ f"Feature dimension mismatch: {image_feats.shape[-1]} vs {self.encoder_feat_dim}" # embed camera camera_embeddings = self.camera_embedder(camera) assert camera_embeddings.shape[-1] == self.camera_embed_dim, \ f"Feature dimension mismatch: {camera_embeddings.shape[-1]} vs {self.camera_embed_dim}" # transformer generating planes planes = self.transformer(image_feats, camera_embeddings) assert planes.shape[0] == N, "Batch size mismatch for planes" assert planes.shape[1] == 3, "Planes should have 3 channels" return planes def forward(self, image, source_camera, render_cameras, render_size: int): # image: [N, C_img, H_img, W_img] # source_camera: [N, D_cam_raw] # render_cameras: [N, M, D_cam_render] # render_size: int assert image.shape[0] == source_camera.shape[0], "Batch size mismatch for image and source_camera" assert image.shape[0] == render_cameras.shape[0], "Batch size mismatch for image and render_cameras" N, M = render_cameras.shape[:2] planes = self.forward_planes(image, source_camera) # render target views render_results = self.synthesizer(planes, render_cameras, render_size) assert render_results['images_rgb'].shape[0] == N, "Batch size mismatch for render_results" assert render_results['images_rgb'].shape[1] == M, "Number of rendered views should be consistent with render_cameras" return { 'planes': planes, **render_results, } # Path: lrm/cam_utils.py def build_camera_principle(RT: torch.Tensor, intrinsics: torch.Tensor): """ RT: (N, 3, 4) intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]] """ fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics) return torch.cat([ RT.reshape(-1, 12), fx.unsqueeze(-1), fy.unsqueeze(-1), cx.unsqueeze(-1), cy.unsqueeze(-1), ], dim=-1) # Path: lrm/cam_utils.py def build_camera_standard(RT: torch.Tensor, intrinsics: torch.Tensor): """ RT: (N, 3, 4) intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]] """ E = compose_extrinsic_RT(RT) fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics) I = torch.stack([ torch.stack([fx, torch.zeros_like(fx), cx], dim=-1), torch.stack([torch.zeros_like(fy), fy, cy], dim=-1), torch.tensor([[0, 0, 1]], dtype=torch.float32, device=RT.device).repeat(RT.shape[0], 1), ], dim=1) return torch.cat([ E.reshape(-1, 16), I.reshape(-1, 9), ], dim=-1) # Path: lrm/cam_utils.py def center_looking_at_camera_pose(camera_position: torch.Tensor, look_at: torch.Tensor = None, up_world: torch.Tensor = None): """ camera_position: (M, 3) look_at: (3) up_world: (3) return: (M, 3, 4) """ # by default, looking at the origin and world up is pos-z if look_at is None: look_at = torch.tensor([0, 0, 0], dtype=torch.float32) if up_world is None: up_world = torch.tensor([0, 0, 1], dtype=torch.float32) look_at = look_at.unsqueeze(0).repeat(camera_position.shape[0], 1) up_world = up_world.unsqueeze(0).repeat(camera_position.shape[0], 1) z_axis = camera_position - look_at z_axis = z_axis / z_axis.norm(dim=-1, keepdim=True) x_axis = torch.cross(up_world, z_axis) x_axis = x_axis / x_axis.norm(dim=-1, keepdim=True) y_axis = torch.cross(z_axis, x_axis) y_axis = y_axis / y_axis.norm(dim=-1, keepdim=True) extrinsics = torch.stack([x_axis, y_axis, z_axis, camera_position], dim=-1) return extrinsics # Path: lrm/inferrer.py import torch import math import os import imageio import mcubes import trimesh import numpy as np import argparse from PIL import Image from .models.generator import LRMGenerator from .cam_utils import build_camera_principle, build_camera_standard, center_looking_at_camera_pose [1, 0, 0, 0], [0, 0, -1, -dist_to_center], [0, 1, 0, 0], ]], dtype=torch.float32) canonical_camera_intrinsics = self._default_intrinsics().unsqueeze(0) source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics) return source_camera.repeat(batch_size, 1) def _default_render_cameras(self, batch_size: int = 1): # return: (N, M, D_cam_render) render_camera_extrinsics = self._get_surrounding_views() render_camera_intrinsics = self._default_intrinsics().unsqueeze(0).repeat(render_camera_extrinsics.shape[0], 1, 1) render_cameras = build_camera_standard(render_camera_extrinsics, render_camera_intrinsics) return render_cameras.unsqueeze(0).repeat(batch_size, 1, 1) @staticmethod def images_to_video(images, output_path, fps, verbose=False): # images: (T, C, H, W) os.makedirs(os.path.dirname(output_path), exist_ok=True) frames = [] for i in range(images.shape[0]): frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8) assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ f"Frame shape mismatch: {frame.shape} vs {images.shape}" assert frame.min() >= 0 and frame.max() <= 255, \ f"Frame value out of range: {frame.min()} ~ {frame.max()}" frames.append(frame) # imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='mpeg4', quality=10) imageio.mimwrite(output_path, np.stack(frames), fps=fps, quality=10) if verbose: print(f"Saved video to {output_path}") def infer_single(self, image: torch.Tensor, render_size: int, mesh_size: int, export_video: bool, export_mesh: bool): # image: [1, C_img, H_img, W_img] mesh_thres = 1.0 chunk_size = 2 batch_size = 1 source_camera = self._default_source_camera(batch_size).to(self.device) render_cameras = self._default_render_cameras(batch_size).to(self.device) with torch.no_grad(): planes = self.model.forward_planes(image, source_camera) results = {} if export_video: # forward synthesizer per mini-batch frames = [] for i in range(0, render_cameras.shape[1], chunk_size): frames.append( self.model.synthesizer( planes, render_cameras[:, i:i+chunk_size], render_size, ) ) # merge frames frames = { k: torch.cat([r[k] for r in frames], dim=1) for k in frames[0].keys() } # update results results.update({ 'frames': frames, }) if export_mesh: grid_out = self.model.synthesizer.forward_grid( planes=planes, grid_size=mesh_size, ) vtx, faces = mcubes.marching_cubes(grid_out['sigma'].squeeze(0).squeeze(-1).cpu().numpy(), mesh_thres) vtx = vtx / (mesh_size - 1) * 2 - 1 vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=self.device).unsqueeze(0) vtx_colors = self.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].squeeze(0).cpu().numpy() # (0, 1) vtx_colors = (vtx_colors * 255).astype(np.uint8) mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors) results.update({ 'mesh': mesh, }) return results def infer(self, source_image: str, dump_path: str, source_size: int, render_size: int, mesh_size: int, export_video: bool, export_mesh: bool): source_image_size = source_size if source_size > 0 else self.infer_kwargs['source_size'] image = torch.tensor(np.array(Image.open(source_image))).permute(2, 0, 1).unsqueeze(0) / 255.0 # if RGBA, blend to RGB print(f"[DEBUG] check 1.") if image.shape[1] == 4: image = image[:, :3, ...] * image[:, 3:, ...] + (1 - image[:, 3:, ...]) print(f"[DEBUG] image.shape={image.shape} and image[0,0,0,0]={image[0,0,0,0]}") print(f"[DEBUG] check 2.") image = torch.nn.functional.interpolate(image, size=(source_image_size, source_image_size), mode='bicubic', align_corners=True) image = torch.clamp(image, 0, 1) results = self.infer_single( image.to(self.device), render_size=render_size if render_size > 0 else self.infer_kwargs['render_size'], mesh_size=mesh_size, export_video=export_video, export_mesh=export_mesh, ) image_name = os.path.basename(source_image) uid = image_name.split('.')[0] os.makedirs(dump_path, exist_ok=True) # dump video if 'frames' in results: renderings = results['frames'] for k, v in renderings.items(): if k == 'images_rgb': self.images_to_video( v[0],
os.path.join(dump_path, f'{uid}.mp4'),
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: garinops/chat-E-AI # Path: ai/openai/tools/TOOL_TIME.py class ToolTime(object): TOOL_MODEL = { "type": "function", "function": { # [必填:value可编辑],注意所有Tools中保持唯一,且和下方的静态方法函数保持命名一致。 "name": "get_time", # [必填:value可编辑],工具功能介绍。 "description": "获取指定地理位置的时间,如果未指定,默认为北京时间", "parameters": { "type": "object", # [必填:value],联网工具参数。如果有参数,参照下方,自行配置增添所需参数,如果没有参数,则使用 "properties": {}, 。 "properties": { # [选填:key可编辑],具体所需参数。 "location": { # [必填:value可编辑],参数类型 "type": "string", # [必填:value可编辑],参数描述。 "description": "中文地理位置。", }, "offset_hours": { # [必填:value可编辑],参数类型 "type": "string", # [必填:value可编辑],参数描述。 "description": "该位置与UTC的小时偏移量,数字形式", }, }, # [选填],需要OpenAI必须返回的参数,则在下方数组中指定。如果不需要,则使用 "required": [], 。 "required": ["location", "offset_hours"], }, } } @staticmethod def get_time(location: str, offset_hours: str) -> ResponseBase: response_tool = ResponseBase(answer="", source="Time") # 获取当前时间(UTC) current_time = datetime.utcnow() # 计算指定偏移量的时间 offset = timedelta(hours=int(offset_hours)) target_time = current_time + offset # 格式化时间 format_time = target_time.strftime("%Y-%m-%d, %A, %H:%M:%S") response_tool.answer = "{}时间,{}".format(location, format_time) return response_tool # Path: ai/openai/tools/WTTR_IN.py class ToolWttrIn(object): TOOL_MODEL = { # 工具模型类型,必填,目前API支持 function "type": "function", "function": { # 函数名称,必填,The name of the get_weather to be called. Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length of 64. "name": "get_weather", # 函数描述,必填,A description of what the get_weather does, used by the model to choose when and how to call the get_weather. "description": "获取给定地理位置的天气数据", # 函数参数,必填。 "parameters": { "type": "object", # JSON键类型,及描述。 "properties": { "location": { "type": "string", "description": "中文地理位置。", }, }, "required": ["location"], }, } } @staticmethod @timeout_decorator.timeout(4) def get_weather(location: str) -> ResponseBase: language = pywttr.Language("zh-cn") response_tool = ResponseBase(answer="", source="wttr•in") """"疑难杂症处理""" if location in ["南极"]: loggerToolWttrIn.warning(f'This Entry Did Not Make a Request to the Weather Server Due to a Bug in the Weather Server, Which May Be Fix in the Future.') response_tool.answer = "亲爱的,我无法获取该地区的天气信息,你输入的地理位置是否过于宽泛呢?" return response_tool if location == "北极": location = "North Pole" """"正经处理""" try: weather_wttr = pywttr.get_weather(location=location, language=language) # print(weather_wttr) weather = f"当前{location}{weather_wttr.current_condition[0].lang_zh_cn[0].value}," \ f"{weather_wttr.current_condition[0].temp_c}°C," \ f"风速{weather_wttr.current_condition[0].windspeed_kmph}km/h," \ f"湿度{weather_wttr.current_condition[0].humidity}%," \ f"降水{weather_wttr.current_condition[0].precip_mm}mm。" response_tool.answer = weather except timeout_decorator.TimeoutError: loggerToolWttrIn.warning(f'Exception(timeout_decorator.TimeoutError) was encountered when get_weather({location})') response_tool.answer = "亲爱的,wttr·in天气服务器可能发生了宕机,在使用过程中请节制访问。" except requests.exceptions.ConnectionError: loggerToolWttrIn.warning(f'Exception(requests.exceptions.ConnectionError) was encountered when get_weather({location})') response_tool.answer = "亲爱的,我可能失去了天气服务的网络连接。" except urllib3.exceptions.MaxRetryError: loggerToolWttrIn.warning(f'Exception(urllib3.exceptions.MaxRetryError) was encountered when get_weather({location})') response_tool.answer = "亲爱的,我遇到了障碍。\n\n这可能是有很多人在同时使用天气服务。" except requests.exceptions.HTTPError: loggerToolWttrIn.warning(f'Exception(requests.exceptions.HTTPError) was encountered when get_weather({location})') response_tool.answer = "亲爱的,我无法获取该地区的天气信息,大概是我们的尚没有收录该地区的天气情况。\n\n当然你也可以给我提供其他语言,这可能会增进我的理解。" except json.decoder.JSONDecodeError: loggerToolWttrIn.warning(f'Exception(json.decoder.JSONDecodeError) was encountered when get_weather({location})') response_tool.answer = "亲爱的,我无法获取该地区的天气信息,你输入的地理位置是否过于宽泛呢?\n\n当然你也可以给我提供其他语言,这可能会增进我的理解。" return response_tool # Path: ai/openai/tools/WWW_GARINASSET_COM.py class ToolWwwGarinassetCom(object): TOOL_MODEL = { # 工具类型,必填,强制function "type": "function", "function": { # 函数名称,必填,The name of the get_weather to be called. Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length of 64. "name": "get_indicator_overview", # 函数描述,必填,A description of what the get_weather does, used by the model to choose when and how to call the get_weather. "description": "获取给定国家、行政区域的宏微观经济数据,行业数据,消费品市场价格数据,例如中国GDP,汽车产量,鸡蛋价格,如果没有给定行政区域,默认为中国大陆。", # 函数参数,必填。 "parameters": { "type": "object", # JSON键类型,及描述。 "properties": { "region": { "type": "string", "description": "中文行政区域,例如,中国大陆、香港。", }, "name": { "type": "string", "description": "中文指标名称,例如国内生产总值,GDP,鸡蛋价格。" }, }, "required": ["region", "name"], }, } } @staticmethod def _handle_datetime(name_property_json, data_latest_time) -> str: match name_property_json: case "月值": _date = pd.Timestamp(data_latest_time) _dateTime = "{}年{}月".format(_date.year, _date.month) return _dateTime case "累月值": _date = pd.Timestamp(data_latest_time) _dateTime = "{}年前{}月".format(_date.year, _date.month) return _dateTime case "季值": _date = pd.Timestamp(data_latest_time) _dateTime = "{}年{}季度".format(_date.year, _date.quarter) return _dateTime case "年值": _date = pd.Timestamp(data_latest_time) _dateTime = "{}年".format(_date.year) return _dateTime case _: _date = pd.Timestamp(data_latest_time) _dateTime = "{}年{}月{}日".format(_date.year, _date.month, _date.day) return _dateTime @staticmethod def _handle_element(element): _name_attribute = None _data_year_over_year_diff = None _currency = None _unit = None if element['names']['name_attribute_json'] is not None: _name_attribute = "(统计口径:{})".format(element['names']['name_attribute_json'][0]) if element['currencies'] is not None: _currency = element['currencies']['currency_json'][0] if element['units'] is not None: _unit = element['units']['unit_json'][0] if element['data_year_over_year'] is not None: data_year_over_year = element['data_year_over_year']['data_latest_value'] data_year_over_year_fixed = element['data_year_over_year_fixed'] _data_year_over_year_diff = round(data_year_over_year - data_year_over_year_fixed, 2) if _data_year_over_year_diff is not None and _data_year_over_year_diff > 0: _data_year_over_year_diff = ",同比:+{}%。".format(_data_year_over_year_diff) else: _data_year_over_year_diff = ",同比:{}%。".format(_data_year_over_year_diff) _data_latest_time = element['data']['data_latest_time'] _name_property_json = element['names']['name_property_json'][0] _dateTime = ToolWwwGarinassetCom._handle_datetime(data_latest_time=_data_latest_time, name_property_json=_name_property_json) element_overview = "{},{}{}{}为{}{}{}{}".format( _dateTime, element['regions']['region_json'][0], element['names']['name_json'][0], _name_attribute if _name_attribute else "", round(element['data']['data_latest_value'], 2), _unit if _unit else "", _currency if _currency else "", _data_year_over_year_diff if _data_year_over_year_diff else "。", ) return element_overview @staticmethod def get_indicator_overview(region: str, name: str) -> ResponseBase: response_tool = ResponseBase(answer="", source="嘉林数据") # API请求 query = "{} {}".format(region, name) url = "https://api.garinasset.com/www/v1/searches/indicators" params = {"q": query} response_api = None try: response_api = requests.get(url, params=params) # 检查响应状态码,如果不是 2xx,会引发异常 response_api.raise_for_status() # 返回响应的 JSON 数据 response_api = response_api.json() indicator_overview = "" data_list = response_api['data'] if data_list: for index, element in enumerate(data_list): if index == 0: indicator_overview = ToolWwwGarinassetCom._handle_element(element) elif index == 1: indicator_overview = indicator_overview + "\n\n" + "相关数据:\n" + "\n" + ToolWwwGarinassetCom._handle_element( element) elif index == 6: break else: indicator_overview = indicator_overview + "\n\n" + ToolWwwGarinassetCom._handle_element(element) response_tool.answer = indicator_overview return response_tool else: response_tool.answer = "亲爱的,我无法获取该项数据信息,大概是数据商尚没有收录该数据。\n\n当然也可能是我错误理解了你的问题。" return response_tool except requests.exceptions.HTTPError: _status_code = response_api.status_code if _status_code == 422: logger.warning(f"Exception(requests.exceptions.HTTPError{_status_code}) was encountered when get_indicator_overview({region},{name})") response_tool.answer = "亲爱的,我无法提供相关的数据服务,你是否需要修改问题呢?" return response_tool elif _status_code == 401: logger.warning(f"Exception(requests.exceptions.HTTPError[{_status_code}]) was encountered when get_indicator_overview({region},{name})") response_tool.answer = "亲爱的,你没有嘉林数据的访问权限,暂时无法给你提供数据响应。" return response_tool elif _status_code >= 500: logger.warning(f"Exception(requests.exceptions.HTTPError[{_status_code}]) was encountered when get_indicator_overview({region},{name})") response_tool.answer = "亲爱的,宏微观经济数据库正在升级,暂时无法给你提供响应。" return response_tool else: logger.warning(f"Exception(requests.exceptions.HTTPError[{_status_code}]) was encountered when get_indicator_overview({region},{name})") response_tool.answer = "亲爱的,我遇到了未知的网络故障,这需要一定的处理时间。" return response_tool except requests.exceptions.ConnectionError as e: logger.warning(f"Exception(requests.exceptions.ConnectionError was encountered when get_indicator_overview({region},{name})") response_tool.answer = "亲爱的,我可能失去了宏微观经济数据库服务的网络连接。" return response_tool except requests.exceptions.RequestException: logger.warning(f"Exception(requests.exceptions.RequestException was encountered when get_indicator_overview({region},{name})") response_tool.answer = "亲爱的,我明白我现在的处境,程序运行发生了故障哦。" return response_tool # Path: ai/openai/tools/XUEQIU_COM.py class ToolXueqiuCom(object): TOOL_MODEL = { # 工具模型类型,必填,目前API支持 function "type": "function", "function": { # 函数名称,必填 "name": "get_stock", # 函数描述,必填 "description": "获取给定股票代码的股票信息,如果获取不到股票代码询问市场及代码。", # 函数参数,必填。 "parameters": { "type": "object", # JSON键类型,及描述。 "properties": { "name": { "type": "string", "description": "股票名称", }, "symbol": { "type": "string", "description": "股票代码,上海市场前缀有SH,例如:SH600104;深圳市场前有缀SZ,例如:SZ300315;香港市场代码为五位数字,没有前缀,不足五位前面补'0',例如腾讯代码是‘00700’;其他市场保持原样,例如美国市场苹果:AAPL。", }, }, "required": ["name", "symbol"], }, } } @staticmethod @timeout_decorator.timeout(8) def get_stock(name: str, symbol: str) -> ResponseBase: response_tool = ResponseBase(answer="", source="xueqiu•com") _stock = '' try: _quote = pysnowball.quotec(symbols=symbol) _quoteD = _quote['data'][0] _xueQiu = XueQiu.model_construct() if _quoteD: _xueQiu = XueQiu(**_quoteD) _percent = '' if _xueQiu.percent: _percent = ("下跌" + str(_xueQiu.percent) + '%,') if _xueQiu.percent <0 else ("上涨+" + str(_xueQiu.percent) + '%,') else: _percent = '' _stock = "{},代码{}。{}{}{}{}{}{}{}".format( name, _xueQiu.symbol, ("当前股价" + str(_xueQiu.current)) if _xueQiu.current else '当前股价未获得', '(交易中),' if _xueQiu.is_trade else '(不在交易状态),', _percent, ("成交金额" + str(_xueQiu.amount)+ '。') if _xueQiu.amount else '。', ("目前总市值" + str(_xueQiu.market_capital) + ',') if _xueQiu.market_capital else '', ("流动市值"+ str(_xueQiu.float_market_capital) + '。') if _xueQiu.float_market_capital else '', ("该股票年初至今涨跌" + str(_xueQiu.current_year_percent) + '%。') if _xueQiu.current_year_percent else '', ) else: raise ValueError response_tool.answer = _stock except ValueError: logger.warning(f'Exception(ValueError) was encountered when get_stock({symbol})') response_tool.answer = "亲爱的,你能告诉我股票所在市场以及股票代码吗?这样可以增进我的理解。" except timeout_decorator.TimeoutError: logger.warning(f'Exception(timeout_decorator.TimeoutError) was encountered when get_stock({symbol})') response_tool.answer = "亲爱的,访问xueqiu•com服务超时,请在使用过程中保持节制。" return response_tool # Path: config/settings.py OPENAI_TOOLS_CONFIG = [ {"enable": True, "Tool": ToolWwwGarinassetCom, "description": "嘉林数据-宏微观经济数据库"}, {"enable": True, "Tool": ToolWttrIn, "description": "wttr.in-天气"}, {"enable": True, "Tool": ToolTime, "description": "time-时间"}, {"enable": True, "Tool": ToolXueqiuCom, "description": "xueqiu.com-股票"}, ] # Path: models/response.py class ResponseBase(BaseModel): answer: str source: str # Path: ai/openai/tools/tools.py from ai.openai.tools.TOOL_TIME import ToolTime from ai.openai.tools.WTTR_IN import ToolWttrIn from ai.openai.tools.WWW_GARINASSET_COM import ToolWwwGarinassetCom from ai.openai.tools.XUEQIU_COM import ToolXueqiuCom from config.settings import OPENAI_TOOLS_CONFIG from models.response import ResponseBase class OpenAITools: @staticmethod def get_tools() -> list: tools = [] for tool_config in OPENAI_TOOLS_CONFIG: if tool_config["enable"]: tool_class = tool_config["Tool"]
tools.append(tool_class.TOOL_MODEL)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: ruudjuffermans/Event-Driven-Backtester # Path: backtester/loop.py class Loop: def __init__( self, data_handler, execution_handler, portfolio, strategy, heartbeat, ): self.heartbeat = heartbeat self.data_handler = data_handler self.execution_handler = execution_handler self.portfolio = portfolio self.strategy = strategy self.events = queue.Queue() self.signals = 0 self.orders = 0 self.fills = 0 self.num_strats = 1 self._set_datahandler() self._set_portfolio() self._set_execution_handler() self._set_strategy() def _set_datahandler(self): if isinstance(self.data_handler, CSVGenerator): self.data_handler.register(self.events) else: raise NotImplementedError("Data feed not implemented") def _set_strategy(self): self.strategy.register(self.data_handler, self.events) def _set_portfolio(self): self.portfolio.register(self.data_handler, self.events) def _set_execution_handler(self): self.execution_handler.register(self.events) def _run_backtest(self): """ Executes the backtest. """ while True: if self.data_handler.continue_backtest: self.data_handler.update_bars() else: break while True: try: event = self.events.get(False) except queue.Empty: break else: if event is not None: if isinstance(event, MarketEvent): self.strategy.calculate(event) self.portfolio.update_timeindex(event) elif isinstance(event, SignalEvent): self.signals += 1 self.portfolio.update_signal(event) elif isinstance(event, OrderEvent): self.orders += 1 self.execution_handler.execute_order(event) elif isinstance(event, FillEvent): self.fills += 1 self.portfolio.update_fill(event) time.sleep(self.heartbeat) def _output_performance(self): """ Outputs the strategy performance from the backtest. """ self.portfolio.create_equity_curve_dataframe() print("Creating summary stats...") stats = self.portfolio.output_summary_stats() print("Creating equity curve...") print(self.portfolio.equity_curve.tail(10)) pprint.pprint(stats) print("Signals: %s" % self.signals) print("Orders: %s" % self.orders) print("Fills: %s" % self.fills) def start(self): """ Simulates the backtest and outputs portfolio performance. """ self._run_backtest() self._output_performance() # Path: backtester/generator/csvgenerator.py class CSVGenerator(Generator): def __init__(self, symbol_list): self.csv_dir = Path.cwd() / "data" self.symbol_list = symbol_list self.symbol_data = {} self.latest_symbol_data = {} self.continue_backtest = True self._load() def register(self, events): self.events = events def _load(self): combined_index = None for symbol in self.symbol_list: self.symbol_data[symbol] = pd.io.parsers.read_csv( os.path.join(self.csv_dir, "%s.csv" % symbol), header=0, index_col=0, names=[ "datetime", "open", "high", "low", "close", "adj_close", "volume", ], ) # Combine the index to pad forward values if combined_index is None: combined_index = self.symbol_data[symbol].index else: combined_index.union(self.symbol_data[symbol].index) # Set the latest symbol_data to None self.latest_symbol_data[symbol] = [] # Reindex the dataframes for symbol in self.symbol_list: self.symbol_data[symbol] = ( self.symbol_data[symbol] .reindex(index=combined_index, method="pad") .iterrows() ) def _get_new_bar(self, symbol): for bar in self.symbol_data[symbol]: yield bar def get_latest_bar(self, symbol): try: bars_list = self.latest_symbol_data[symbol] except KeyError: print("That symbol is not available in the historical data set.") raise else: return bars_list[-1] def get_latest_bars(self, symbol, N=1): try: bars_list = self.latest_symbol_data[symbol] except KeyError: print("That symbol is not available in the historical data set.") raise else: return bars_list[-N:] def get_latest_bar_datetime(self, symbol): try: bars_list = self.latest_symbol_data[symbol] except KeyError: print("That symbol is not available in the historical data set.") raise else: return bars_list[-1][0] def get_latest_bar_value(self, symbol, value_type): try: bars_list = self.latest_symbol_data[symbol] except KeyError: print("That symbol is not available in the historical data set.") raise else: return getattr(bars_list[-1][1], value_type) def get_latest_bars_values(self, symbol, value_type, N=1): try: bars_list = self.get_latest_bars(symbol, N) except KeyError: print("That symbol is not available in the historical data set.") raise else: return np.array([getattr(bar[1], value_type) for bar in bars_list]) def update_bars(self): for symbol in self.symbol_list: try: bar = next(self._get_new_bar(symbol)) except StopIteration: self.continue_backtest = False else: if bar is not None: self.latest_symbol_data[symbol].append(bar) self.events.put(MarketEvent()) # Path: backtester/execution.py class SimulatedExecutionHandler(ExecutionHandler): def __init__(self): pass def execute_order(self, event): if isinstance(event, OrderEvent): fill_event = FillEvent( datetime.utcnow(), event.symbol, "BT", event.quantity, event.direction, None, ) self.events.put(fill_event) # Path: backtester/portfolio.py class Portfolio: def __init__(self, window, initial_capital=100000.0): self.start_date = window.start self.initial_capital = initial_capital def register(self, bars, events): self.bars = bars self.events = events self.symbol_list = self.bars.symbol_list self.current_positions = {symbol: 0 for symbol in self.symbol_list} self.all_positions = self.define_all_positions() self.all_holdings = self.define_all_holdings() self.current_holdings = self.define_current_holdings() def define_all_positions(self): positions = {symbol: 0 for symbol in self.symbol_list} positions["datetime"] = self.start_date return [positions] def define_all_holdings(self): holdings = {symbol: 0.0 for symbol in self.symbol_list} holdings["datetime"] = self.start_date holdings["cash"] = self.initial_capital holdings["commission"] = 0.0 holdings["total"] = self.initial_capital return [holdings] def define_current_holdings(self): holdings = {symbol: 0.0 for symbol in self.symbol_list} holdings["cash"] = self.initial_capital holdings["commission"] = 0.0 holdings["total"] = self.initial_capital return holdings def update_timeindex(self, event): latest_datetime = self.bars.get_latest_bar_datetime(self.symbol_list[0]) positions = { symbol: self.current_positions[symbol] for symbol in self.symbol_list } positions["datetime"] = latest_datetime self.all_positions.append(positions) holdings = {symbol: 0.0 for symbol in self.symbol_list} holdings["datetime"] = latest_datetime holdings["cash"] = self.current_holdings["cash"] holdings["commission"] = self.current_holdings["commission"] holdings["total"] = self.current_holdings["cash"] for symbol in self.symbol_list: market_value = self.current_positions[ symbol ] * self.bars.get_latest_bar_value(symbol, "close") holdings[symbol] = market_value holdings["total"] += market_value self.all_holdings.append(holdings) def update_positions_after_fill(self, fill): fill_dir = 0 if fill.direction == "BUY": fill_dir = 1 if fill.direction == "SELL": fill_dir = -1 self.current_positions[fill.symbol] += fill_dir * fill.quantity def update_holdings_after_fill(self, fill): fill_dir = 0 if fill.direction == "BUY": fill_dir = 1 if fill.direction == "SELL": fill_dir = -1 fill_cost = self.bars.get_latest_bar_value(fill.symbol, "close") cost = fill_dir * fill_cost * fill.quantity self.current_holdings[fill.symbol] += cost self.current_holdings["commission"] += fill.commission self.current_holdings["cash"] -= cost + fill.commission self.current_holdings["total"] -= cost + fill.commission def update_fill(self, event): if isinstance(event, FillEvent): self.update_positions_after_fill(event) self.update_holdings_after_fill(event) def generate_naive_order(self, signal): order = None symbol = signal.symbol direction = signal.signal_type strength = signal.strength mkt_quantity = floor(100 * strength) current_quantity = self.current_positions[symbol] order_type = "MKT" if direction == "LONG" and current_quantity == 0: order = OrderEvent(symbol, order_type, mkt_quantity, "BUY") if direction == "SHORT" and current_quantity == 0: order = OrderEvent(symbol, order_type, mkt_quantity, "SELL") if direction == "EXIT" and current_quantity > 0: order = OrderEvent(symbol, order_type, abs(current_quantity), "SELL") if direction == "EXIT" and current_quantity < 0: order = OrderEvent(symbol, order_type, abs(current_quantity), "BUY") return order def update_signal(self, event): if isinstance(event, SignalEvent): order_event = self.generate_naive_order(event) self.events.put(order_event) def create_equity_curve_dataframe(self): equity_curve = pd.DataFrame(self.all_holdings) equity_curve.set_index("datetime", inplace=True) equity_curve["returns"] = equity_curve["total"].pct_change() equity_curve["equity_curve"] = (1.0 + equity_curve["returns"]).cumprod() self.equity_curve = equity_curve def output_summary_stats(self): total_return = self.equity_curve["equity_curve"][-1] returns = self.equity_curve["returns"] pnl = self.equity_curve["equity_curve"] sharpe_ratio = create_sharpe_ratio(returns, periods=252 * 60 * 6.5) drawdown, max_dd, max_dd_duration = create_drawdowns(pnl) self.equity_curve["drawdown"] = drawdown stats = [ ("Total Return", "%0.2f%%" % ((total_return - 1.0) * 100.0)), ("Sharpe Ratio", "%0.2f" % sharpe_ratio), ("Max Drawdown", "%0.2f%%" % (max_dd * 100.0)), ("Max Drawdown Duration", "%d" % max_dd_duration), ] self.equity_curve.to_csv("equity.csv") return stats # Path: backtester/strategy/ma_crossover.py class MACrossOverStrategy(Strategy): def __init__(self, short_window=100, long_window=400): self.short_window = short_window self.long_window = long_window def register(self, bars, events): self.bars = bars self.events = events self.symbol_list = self.bars.symbol_list self.bought = self._calculate_initial_bought() def _calculate_initial_bought(self): bought = {symbol: "OUT" for symbol in self.symbol_list} return bought def calculate(self, event): if isinstance(event, MarketEvent): for symbol in self.symbol_list: bars = self.bars.get_latest_bars_values( symbol, "close", N=self.long_window ) bar_datetime = self.bars.get_latest_bar_datetime(symbol) if bars is not None and bars != []: print(bar_datetime) # long_sma = np.mean( bars[-self.long_window:] ) # dt = datetime.datetime.utcnow() # signal_type = "" # strength = 1.0 # if short_sma > long_sma and self.bought[symbol] == "OUT": # print("LONG position at: %s" % bar_datetime) # signal_type = "LONG" # signal = SignalEvent(symbol, dt, signal_type, strength) # self.events.put(signal) # self.bought[symbol] = "LONG" # elif short_sma < long_sma and self.bought[symbol] == "LONG": # print("SHORT position at: %s" % bar_datetime) # signal_type = "EXIT" # signal = SignalEvent(symbol, dt, signal_type, strength) # self.events.put(signal) # self.bought[symbol] = "OUT" # Path: backtester/types.py class Window: def __init__(self, start, end, interval): self.start = start self.end = end self.interval = interval # Path: example.py from datetime import datetime from backtester.loop import Loop from backtester.generator import CSVGenerator from backtester.execution import SimulatedExecutionHandler from backtester.portfolio import Portfolio from backtester.strategy import MACrossOverStrategy from backtester.types import Window symbol_list = ["BIG"] window = Window( start=datetime(2016, 1, 1, 0, 0, 0), end=datetime(2021, 1, 1, 0, 0, 0), interval="1d", ) generator = CSVGenerator(symbol_list) portfolio = Portfolio(window, 100000.0) strategy = MACrossOverStrategy() execution = SimulatedExecutionHandler() backtest = Loop(generator, execution, portfolio, strategy, 0.0)
backtest.start()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Samuel-Effiong/Django-Dynamic-Table # Path: django_dynamic_table/models.py class DynamicTable(models.Model): table_name = models.CharField(_('Table Name'), max_length=255, unique=True) table_description = models.TextField(_('Table Description'), blank=True) date_created = models.DateTimeField(_('Date Created'), default=timezone.now) table_columns = models.ManyToManyField('TableColumn', blank=True) table_rows = models.ManyToManyField('TableRow', blank=True) class Meta: ordering = ('-date_created', ) def __str__(self) -> str: return f"{self.table_name}" def __total_table_rows(self) -> int: field = self.table_columns.first() if field and isinstance(field, TableColumn): return self.table_columns.all().count() else: # the table is empty return 0 def __total_table_columns(self) -> int: return self.table_columns.all().count() def table_info(self) -> dict[str, int]: description = { 'rows': self.__total_table_rows(), 'columns': self.__total_table_columns() } return description def is_empty(self) -> bool: table_info = self.table_info() rows = table_info['rows'] columns = table_info['columns'] return True if columns == 0 or rows == 0 else False def is_column(self, column_name: str) -> bool: if not isinstance(column_name, str): raise ValueError("column name must be a str") try: column = self.table_columns.get(column_name=column_name) return True except TableColumn.DoesNotExist: return False def get_supported_data_types(self) -> list[str]: return [data_type[0] for data_type in __SUPPORTED_DATA_TYPE_CHOICES__] def data_type_is_supported(self, data_type: str | list) -> bool | list[bool]: supported_data_types = self.get_supported_data_types() if isinstance(data_type, str): return data_type.lower().strip() in supported_data_types elif isinstance(data_type, (list, tuple, set)): return [_type.lower().strip() in supported_data_types for _type in data_type] else: raise ValueError('arg must be either a str or a sequence') def add_column(self, column_name: str, data_type: str): if isinstance(column_name, str) and isinstance(data_type, str): if not self.data_type_is_supported(data_type): raise UnSupportedDataType() if self.is_column(column_name): raise DuplicateColumnInTable() table_column = TableColumn( table=self, column_name=column_name, column_data_type=data_type ) table_column.save() self.table_columns.add(table_column) return table_column else: raise DynamicTableError("argument must be str, use self.bulk_add_columns to add multiple columns") def bulk_add_columns(self, column_names: Sequence[str], data_types: Sequence[str]): allowed_argument_type = (list, tuple, set) if isinstance(column_names, allowed_argument_type) and isinstance(data_types, allowed_argument_type): if len(column_names) != len(data_types): raise DynamicTableError(f"len({column_names}) = {len(column_names)} != len({data_types}) = {len(data_types)}") else: # check if list of data_types contains any unsupported data type supported_data_type = self.data_type_is_supported(data_types) if False in supported_data_type: raise UnSupportedDataType(f"{data_types} data type that are supported are: {supported_data_type}") else: # check if the provided column names contain duplicates, raise an error if it does unique_column_names = set(column_names) if len(column_names) != len(unique_column_names): raise DuplicateColumnInTable() is_column = [self.is_column(column) for column in column_names] if True in is_column: raise DuplicateColumnInTable() columns = [ TableColumn.objects.create( table=self, column_name=column_name, column_data_type=data_type ) for column_name, data_type in zip(column_names, data_types, strict=True) # the above further exception should not be activated, but adding it there, # if just in case, for some unknown reason it escape the other safeguard. ] self.table_columns.add(*columns) return columns else: raise DynamicTableError("argument must be a sequence. use self.add_column to add a single column") def add_row(self, value: dict): if not isinstance(value, dict): raise ValueError(f"{value} is not a list or a dict") if self.__total_table_columns() == 0: raise TableHaveNoColumn() row = [] table_row = TableRow.objects.create(table=self) for table_column in self.table_columns.all(): cell_value = value.get(table_column.column_name, "") cell = CellValue.objects.create( value=cell_value, table=self, table_column=table_column, table_row=table_row ) row.append(cell) # add cell to column table_column.column_cells.add(cell) # add cell to row table_row.row_cells.add(*row) # add row to table self.table_rows.add(table_row) return table_row def bulk_add_rows(self, values: Sequence[dict]) -> list: if not isinstance(values, (list, tuple, set)): raise ValueError('values must be a sequence of dict') rows = [] for row in values: if not isinstance(row, dict): raise ValueError('values must be a sequence of dict') if self.__total_table_columns() == 0: raise TableHaveNoColumn() rows.append(self.add_row(row)) return rows def delete_column(self, column_name): # using get instead of filter if for some reason the unique parameter # was disabled in the table column definition, this will doubly ensure # that the field are unique else it will always raise an error if it # encounter duplicates column names if not isinstance(column_name, str): raise ValueError('column_name must be a str') try: column = self.table_columns.get(column_name=column_name) except TableColumn.MultipleObjectsReturned: raise DuplicateColumnInTable() except TableColumn.DoesNotExist: raise ColumnNotInTable() else: # remove column from the table self.table_columns.remove(column) # delete the removed column and all the cells associated with it column.delete() return column def delete_row(self, row_index=None): """if row_index is None remove the last row""" if not isinstance(row_index, (int, type(None))): raise TypeError("Row index value must be an integer") try: if row_index is None: row = self.table_rows.last() else: row = self.table_rows.get(pk=row_index) except TableRow.DoesNotExist: raise RowNotInTable() else: # remove row from the table self.table_rows.remove(row) # delete the removed row and all the cells associated with it row.delete() return row def get_cell(self, column_name, row_index): if isinstance(row_index, str): row_index = int(row_index) if not self.is_column(column_name): raise ColumnNotInTable() try: cell = CellValue.objects.get( table=self, table_column__column_name=column_name, table_row_id=row_index ) return cell except CellValue.DoesNotExist: raise CellDoesNotExist def get_column_cells(self, column_name): if not self.is_column(column_name): raise ColumnNotInTable() column = TableColumn.objects.get(table=self, column_name=column_name) column_cells = column.column_cells.all() return list(column_cells) def get_row_cells(self, row_index): if isinstance(row_index, str): row_index = int(row_index) try: row = TableRow.objects.get(table=self, id=row_index) row_cells = row.row_cells.all() except TableRow.DoesNotExist: raise RowNotInTable() return list(row_cells) # Path: django_dynamic_table/models.py class TableColumn(models.Model): table = models.ForeignKey(DynamicTable, on_delete=models.CASCADE) column_name = models.CharField(max_length=255, unique=True) column_data_type = models.CharField(max_length=15, choices=__SUPPORTED_DATA_TYPE_CHOICES__) column_cells = models.ManyToManyField('CellValue', blank=True) def __str__(self): return f"{self.column_name}: {self.column_data_type} -- {self.table}" def _get_column_values(self): return self.column_cells.all() # Path: django_dynamic_table/models.py class TableRow(models.Model): table = models.ForeignKey(DynamicTable, on_delete=models.CASCADE) row_cells = models.ManyToManyField('CellValue', blank=True) def __str__(self): return f"{self.table} Table: Row no. {self.id}" def to_dict(self): values = { item.column.column_name: item.value for item in self.row_cells.all() } return values # Path: django_dynamic_table/models.py class CellValue(models.Model): """Synonymous with the cell in a spreadsheet, it contains the value of the table along with relevant information about it position in the table""" value = models.TextField(blank=True) table = models.ForeignKey(DynamicTable, on_delete=models.CASCADE) table_column = models.ForeignKey(TableColumn, on_delete=models.CASCADE) table_row = models.ForeignKey(TableRow, blank=True, on_delete=models.CASCADE) def __str__(self): return self.value def save(self, force_insert=False, force_update=False, using=None, update_fields=None): self.full_clean() super(CellValue, self).save() def clean(self): super(CellValue, self).clean() self.__validate_data_type__(self.value, self.table_column.column_data_type) def __validate_data_type__(self, value, data_type): """ Ensures that the values is saved in the database in the format that can be easily be converted to the desired data type """ if data_type == 'char' or data_type == 'textfield': self.value = str(value) elif data_type == 'int': if not isinstance(value, int): try: if value: self.value = int(float(value)) else: self.value = "" except ValueError: raise CantParseValueToDataType(f"{value} to {data_type}") elif data_type == 'float': if not isinstance(value, float): try: if value: self.value = float(value) else: self.value = "" except ValueError: raise CantParseValueToDataType(f"{value} to {data_type}") elif data_type == 'datetime': if value: # is it a str or a datetime object if isinstance(value, str): try: value = self.value.strip().lower() value = datetime.fromisoformat(value) self.value = value.isoformat() except ValueError: self.value = "" else: try: self.value = value.isoformat() except Exception: self.value = '' else: self.value = "" elif data_type == 'bool': if value: if not isinstance(value, bool): value = str(value).strip().title() if value == 'True' or value == 'False': self.value = eval(value) else: raise CantParseValueToDataType(f"{value} to {data_type}") else: self.value = "" def get_value(self): """Get the value base on the data type If the data type is of file, it will retrieve the file from where it was uploaded, else format the value to the data type. The value should not be accessed directly. """ data_type = self.table_column.column_data_type if data_type == 'char' or data_type == 'textfield': return self.value elif data_type == 'int': try: return int(float(self.value)) except ValueError: return self.value elif data_type == 'float': try: return float(self.value) except ValueError: return self.value elif data_type == 'bool': try: # FIXME: Put more restrictions on this return eval(self.value) except Exception: return self.value elif data_type == 'datetime': try: return datetime.fromisoformat(self.value) except ValueError: return self.value # Path: django_dynamic_table/errors.py class TableHaveNoRow(DynamicTableError): pass # Path: django_dynamic_table/errors.py class TableHaveNoColumn(DynamicTableError): pass # Path: django_dynamic_table/errors.py class ColumnNotInTable(DynamicTableError): pass # Path: django_dynamic_table/errors.py class RowNotInTable(DynamicTableError): pass # Path: django_dynamic_table/errors.py class DuplicateColumnInTable(DynamicTableError): pass # Path: django_dynamic_table/errors.py class DynamicTableError(Exception): pass # Path: django_dynamic_table/errors.py class UnSupportedDataType(TableColumnError): pass # Path: django_dynamic_table/errors.py class CantParseValueToDataType(CellValueError): pass # Path: django_dynamic_table/errors.py class CellDoesNotExist(CellValueError): pass # Path: django_dynamic_table/tests.py import datetime from typing import List from django.test import TestCase from django.utils import timezone from .models import DynamicTable, TableColumn, TableRow, CellValue from .errors import ( TableHaveNoRow, TableHaveNoColumn, ColumnNotInTable, RowNotInTable, DuplicateColumnInTable, DynamicTableError, UnSupportedDataType, CantParseValueToDataType, CellDoesNotExist ) # Create your tests here. class DynamicTableTest(TestCase): def setUp(self) -> None: self.name = 'Employee Records' self.description = "Contains company employee personal information" self.date_created = timezone.now().date() self.column_name = 'First Name' self.data_type = 'char' self.supported_data_type = ['int', 'char', 'textfield', 'float', 'bool', 'date'] self.table = DynamicTable( table_name=self.name, table_description=self.description ) self.table.save() def test_table_creation_with_no_columns_and_rows(self): self.assertEqual(self.name, str(self.table)) self.assertEqual(self.description, self.table.table_description) self.assertEqual(self.date_created, self.table.date_created.date()) default_value = { 'rows': 0, 'columns': 0 } self.assertDictEqual(default_value, self.table.table_info()) # Delete columns test self.assertRaises(ColumnNotInTable, self.table.delete_column, column_name='Name') # Delete rows test self.assertRaises(RowNotInTable, self.table.delete_row, row_index=1) self.assertRaises(TypeError, self.table.delete_row, row_index='1') self.assertTrue(self.table.is_empty()) # ensures that rows can't be added to an empty table self.assertRaises(TableHaveNoColumn, self.table.add_row, value={}) self.assertRaises(ValueError, self.table.add_row, value='love') self.assertRaises(ValueError, self.table.add_row, value=[1, 2, 3]) self.assertRaises(ValueError, self.table.add_row, value=(1, 2, 3)) self.assertRaises(TableHaveNoColumn, self.table.bulk_add_rows, values=[{}, {}]) self.assertRaises(ValueError, self.table.bulk_add_rows, values={}) self.assertRaises(ValueError, self.table.bulk_add_rows, values='love') self.assertRaises(ValueError, self.table.bulk_add_rows, values=(1, 2)) self.assertRaises(ValueError, self.table.bulk_add_rows, values=[1, '2']) def test_supported_data_types(self): self.assertListEqual(sorted(self.supported_data_type), sorted(self.table.get_supported_data_types()))
self.assertTrue(self.table.data_type_is_supported(' CHAR'))
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: zhcui/polar_preview # Path: polar/utils/misc.py def mdot(*args): """ Reduced matrix dot. """ return reduce(np.dot, args) # Path: polar/utils/misc.py def kdot(a, b): """ Matrix dot with kpoints. """ ka, s1_a, _ = a.shape kb, _, s2_b = b.shape assert ka == kb res = np.zeros((ka, s1_a, s2_b), dtype=np.result_type(a.dtype, b.dtype)) for k in range(ka): np.dot(a[k], b[k], out=res[k]) return res # Path: polar/utils/misc.py def get_spin_dim(arrays, non_spin_dim=3): """ Get spin dimension for a list of arrays. """ spin = 1 for a in arrays: a = np.asarray(a) if a.ndim == non_spin_dim: continue elif a.ndim == non_spin_dim + 1: spin = max(spin, a.shape[0]) else: raise ValueError return spin # Path: polar/utils/misc.py def add_spin_dim(H, spin, non_spin_dim=3): """ Add an additional dimension to array H. """ H = np.asarray(H) if H.ndim == non_spin_dim: H = H[None] assert H.ndim == (non_spin_dim + 1) if H.shape[0] < spin: H = np.asarray((H[0],) * spin) return H # Path: polar/basis/trans_1e.py import numpy as np import scipy.linalg as la from polar.utils.misc import (mdot, kdot, get_spin_dim, add_spin_dim) dm_ao_ao[s] = mdot(C_ao_mo[s], dm_mo_mo[s], C_ao_mo[s].conj().T) return dm_ao_ao def trans_h1_to_mo_mol(h_ao_ao, C_ao_mo): h_ao_ao = np.asarray(h_ao_ao) C_ao_mo = np.asarray(C_ao_mo) return trans_rdm1_to_ao_mol(h_ao_ao, np.swapaxes(C_ao_mo.conj(), -1, -2)) trans_h1_to_lo_mol = trans_h1_to_mo_mol def trans_rdm1_to_mo_mol(rdm1_ao_ao, C_ao_mo, ovlp): rdm1_ao_ao = np.asarray(rdm1_ao_ao) C_ao_mo = np.asarray(C_ao_mo) nao, nmo = C_ao_mo.shape[-2:] ovlp = np.asarray(ovlp) # spin should be encoded in C_ao_mo, # rdm1_ao_ao may be spin unrelated if C_ao_mo.ndim < rdm1_ao_ao.ndim: C_ao_mo = add_spin_dim(C_ao_mo, rdm1_ao_ao.shape[0], non_spin_dim=2) if C_ao_mo.ndim == 2: C_inv = C_ao_mo.conj().T.dot(ovlp) rdm1_mo_mo = mdot(C_inv, rdm1_ao_ao, C_inv.conj().T) else: spin = C_ao_mo.shape[0] rdm1_ao_ao = add_spin_dim(rdm1_ao_ao, spin, non_spin_dim=2) assert(rdm1_ao_ao.ndim == C_ao_mo.ndim) rdm1_mo_mo = np.zeros((spin, nmo, nmo), dtype=C_ao_mo.dtype) for s in range(spin): if ovlp.ndim == 3: C_inv = C_ao_mo[s].conj().T.dot(ovlp[s]) else: C_inv = C_ao_mo[s].conj().T.dot(ovlp) rdm1_mo_mo[s] = mdot(C_inv, rdm1_ao_ao[s], C_inv.conj().T) return rdm1_mo_mo trans_rdm1_to_lo_mol = trans_rdm1_to_mo_mol def trans_rdm2_to_ao_mol(rdm2_mo, C_ao_mo, aabbab=True): r""" Transform rdm2 to ao basis. [For molecular calculations, no kpts] \gamma^{AO} = C C \rdm2^{MO} C^{\dagger} C^{\dagger} NOTE assume aaaa, bbbb, aabb order """ rdm2_mo = np.asarray(rdm2_mo) C_ao_mo = np.asarray(C_ao_mo) # spin should be encoded in C_ao_mo, # rdm2_mo may be spin unrelated if C_ao_mo.ndim == 2 and rdm2_mo.ndim == 5: C_ao_mo = add_spin_dim(C_ao_mo, 2, non_spin_dim=2) if C_ao_mo.ndim == 2: rdm2_ao = _trans_rdm2_to_ao_mol(rdm2_mo, C_ao_mo) else: spin = rdm2_mo.shape[0] nao = C_ao_mo.shape[-2] rdm2_ao = np.zeros((spin, nao, nao, nao, nao), dtype=rdm2_mo.dtype) # ZHC NOTE assume aaaa, aabb, bbbb order if spin == 1: rdm2_ao[0] = _trans_rdm2_to_ao_mol(rdm2_mo[0], C_ao_mo[0]) elif spin == 3: if aabbab: # aaaa rdm2_ao[0] = _trans_rdm2_to_ao_mol(rdm2_mo[0], C_ao_mo[0]) # bbbb rdm2_ao[1] = _trans_rdm2_to_ao_mol(rdm2_mo[1], C_ao_mo[1]) # aabb rdm2_ao[2] = _trans_rdm2_to_ao_mol(rdm2_mo[2], C_ao_mo[0], C_ao_mo[1]) else: # aaaa rdm2_ao[0] = _trans_rdm2_to_ao_mol(rdm2_mo[0], C_ao_mo[0]) # aabb rdm2_ao[1] = _trans_rdm2_to_ao_mol(rdm2_mo[1], C_ao_mo[0], C_ao_mo[1]) # bbbb rdm2_ao[2] = _trans_rdm2_to_ao_mol(rdm2_mo[2], C_ao_mo[1]) else: raise ValueError return rdm2_ao def _trans_rdm2_to_ao_mol(rdm2_mo, C_a, C_b=None): if C_b is None: C_b = C_a assert C_a.shape == C_b.shape #nao, nmo = C_a.shape[-2:] ## (M1M2|M3M4) -> (A1M2|M3M4) #rdm2_ao = np.dot(C_a, rdm2_mo.reshape(nmo,-1)) ## (A1M2|M3M4) -> (A1M2|M3B4) #rdm2_ao = np.dot(rdm2_ao.reshape(-1,nmo), C_b.conj().T) ## (A1M2|M3B4) -> (M3B4|A1M2) #rdm2_ao = rdm2_ao.reshape((nao,nmo,nmo,nao)).transpose(2,3,0,1) ## (M3B4|A1M2) -> (B3B4|A1M2) #rdm2_ao = np.dot(C_b, rdm2_ao.reshape(nmo,-1)) ## (B3B4|A1M2) -> (B3B4|A1A2) #rdm2_ao = np.dot(rdm2_ao.reshape(-1,nmo), C_a.conj().T) ## (B3B4|A1A2) -> (A1A2|B3B4) #rdm2_ao = rdm2_ao.reshape([nao]*4).transpose((2,3,0,1)) rdm2_ao = np.einsum("ijkl, pi, qj, rk, sl -> pqrs", rdm2_mo, C_a.conj(), C_a, C_b.conj(), C_b, optimize=True) return rdm2_ao # ***************************************************************************** # basis rotation related # ***************************************************************************** def tile_u_matrix(u_val, u_virt=None, u_core=None): r""" Tile the u matrix from different subspaces. u has shape (nkpts, nmo, nlo) return C_mo_lo. Args: u_val: valence u_virt: virtual
u_core: core
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: YaoFANGUK/video-subtitle-remover # Path: backend/tools/train/trainer_sttn.py class Trainer: def __init__(self, config, debug=False): # 训练器初始化 self.config = config # 保存配置信息 self.epoch = 0 # 当前训练所处的epoch self.iteration = 0 # 当前训练迭代次数 if debug: # 如果是调试模式,设置更频繁的保存和验证频率 self.config['trainer']['save_freq'] = 5 self.config['trainer']['valid_freq'] = 5 self.config['trainer']['iterations'] = 5 # 设置数据集和数据加载器 self.train_dataset = Dataset(config['data_loader'], split='train', debug=debug) # 创建训练集对象 self.train_sampler = None # 初始化训练集采样器为None self.train_args = config['trainer'] # 训练过程参数 if config['distributed']: # 如果是分布式训练,则初始化分布式采样器 self.train_sampler = DistributedSampler( self.train_dataset, num_replicas=config['world_size'], rank=config['global_rank'] ) self.train_loader = DataLoader( self.train_dataset, batch_size=self.train_args['batch_size'] // config['world_size'], shuffle=(self.train_sampler is None), # 如果没有采样器则进行打乱 num_workers=self.train_args['num_workers'], sampler=self.train_sampler ) # 设置损失函数 self.adversarial_loss = AdversarialLoss(type=self.config['losses']['GAN_LOSS']) # 对抗性损失 self.adversarial_loss = self.adversarial_loss.to(self.config['device']) # 将损失函数转移到相应设备 self.l1_loss = nn.L1Loss() # L1损失 # 初始化生成器和判别器模型 self.netG = InpaintGenerator() # 生成网络 self.netG = self.netG.to(self.config['device']) # 转移到设备 self.netD = Discriminator( in_channels=3, use_sigmoid=config['losses']['GAN_LOSS'] != 'hinge' ) self.netD = self.netD.to(self.config['device']) # 判别网络 # 初始化优化器 self.optimG = torch.optim.Adam( self.netG.parameters(), # 生成器参数 lr=config['trainer']['lr'], # 学习率 betas=(self.config['trainer']['beta1'], self.config['trainer']['beta2']) ) self.optimD = torch.optim.Adam( self.netD.parameters(), # 判别器参数 lr=config['trainer']['lr'], # 学习率 betas=(self.config['trainer']['beta1'], self.config['trainer']['beta2']) ) self.load() # 加载模型 if config['distributed']: # 如果是分布式训练,则使用分布式数据并行包装器 self.netG = DDP( self.netG, device_ids=[self.config['local_rank']], output_device=self.config['local_rank'], broadcast_buffers=True, find_unused_parameters=False ) self.netD = DDP( self.netD, device_ids=[self.config['local_rank']], output_device=self.config['local_rank'], broadcast_buffers=True, find_unused_parameters=False ) # 设置日志记录器 self.dis_writer = None # 判别器写入器 self.gen_writer = None # 生成器写入器 self.summary = {} # 存放摘要统计 if self.config['global_rank'] == 0 or (not config['distributed']): # 如果不是分布式训练或者为分布式训练的主节点 self.dis_writer = SummaryWriter( os.path.join(config['save_dir'], 'dis') ) self.gen_writer = SummaryWriter( os.path.join(config['save_dir'], 'gen') ) # 获取当前学习率 def get_lr(self): return self.optimG.param_groups[0]['lr'] # 调整学习率 def adjust_learning_rate(self): # 计算衰减的学习率 decay = 0.1 ** (min(self.iteration, self.config['trainer']['niter_steady']) // self.config['trainer']['niter']) new_lr = self.config['trainer']['lr'] * decay # 如果新的学习率和当前学习率不同,则更新优化器中的学习率 if new_lr != self.get_lr(): for param_group in self.optimG.param_groups: param_group['lr'] = new_lr for param_group in self.optimD.param_groups: param_group['lr'] = new_lr # 添加摘要信息 def add_summary(self, writer, name, val): # 添加并更新统计信息,每次迭代都累加 if name not in self.summary: self.summary[name] = 0 self.summary[name] += val # 每100次迭代记录一次 if writer is not None and self.iteration % 100 == 0: writer.add_scalar(name, self.summary[name] / 100, self.iteration) self.summary[name] = 0 # 加载模型netG and netD def load(self): model_path = self.config['save_dir'] # 模型的保存路径 # 检测是否存在最近的模型检查点 if os.path.isfile(os.path.join(model_path, 'latest.ckpt')): # 读取最后一个epoch的编号 latest_epoch = open(os.path.join( model_path, 'latest.ckpt'), 'r').read().splitlines()[-1] else: # 如果不存在latest.ckpt,尝试读取存储好的模型文件列表,获取最近的一个 ckpts = [os.path.basename(i).split('.pth')[0] for i in glob.glob( os.path.join(model_path, '*.pth'))] ckpts.sort() # 排序模型文件,以获取最近的一个 latest_epoch = ckpts[-1] if len(ckpts) > 0 else None # 获取最近的epoch值 if latest_epoch is not None: # 拼接得到生成器和判别器的模型文件路径 gen_path = os.path.join( model_path, 'gen_{}.pth'.format(str(latest_epoch).zfill(5))) dis_path = os.path.join( model_path, 'dis_{}.pth'.format(str(latest_epoch).zfill(5))) opt_path = os.path.join( model_path, 'opt_{}.pth'.format(str(latest_epoch).zfill(5))) # 如果是主节点,输出加载模型的信息 if self.config['global_rank'] == 0: print('Loading model from {}...'.format(gen_path)) # 加载生成器模型 data = torch.load(gen_path, map_location=self.config['device']) self.netG.load_state_dict(data['netG']) # 加载判别器模型 data = torch.load(dis_path, map_location=self.config['device']) self.netD.load_state_dict(data['netD']) # 加载优化器状态 data = torch.load(opt_path, map_location=self.config['device']) self.optimG.load_state_dict(data['optimG']) self.optimD.load_state_dict(data['optimD']) # 更新当前epoch和迭代次数 self.epoch = data['epoch'] self.iteration = data['iteration'] else: # 如果没有找到模型文件,则输出警告信息 if self.config['global_rank'] == 0: print('Warning: There is no trained model found. An initialized model will be used.') # 保存模型参数,每次评估周期 (eval_epoch) 调用一次 def save(self, it): # 只在全局排名为0的进程上执行保存操作,通常代表主节点 if self.config['global_rank'] == 0: # 生成保存生成器模型状态字典的文件路径 gen_path = os.path.join( self.config['save_dir'], 'gen_{}.pth'.format(str(it).zfill(5))) # 生成保存判别器模型状态字典的文件路径 dis_path = os.path.join( self.config['save_dir'], 'dis_{}.pth'.format(str(it).zfill(5))) # 生成保存优化器状态字典的文件路径 opt_path = os.path.join( self.config['save_dir'], 'opt_{}.pth'.format(str(it).zfill(5))) # 打印消息表示模型正在保存 print('\nsaving model to {} ...'.format(gen_path)) # 判断模型是否是经过DataParallel或DDP包装的,若是则获取原始的模型 if isinstance(self.netG, torch.nn.DataParallel) or isinstance(self.netG, DDP): netG = self.netG.module netD = self.netD.module else: netG = self.netG netD = self.netD # 保存生成器和判别器的模型参数 torch.save({'netG': netG.state_dict()}, gen_path) torch.save({'netD': netD.state_dict()}, dis_path) # 保存当前的epoch、迭代次数和优化器的状态 torch.save({ 'epoch': self.epoch, 'iteration': self.iteration, 'optimG': self.optimG.state_dict(), 'optimD': self.optimD.state_dict() }, opt_path) # 写入最新的迭代次数到"latest.ckpt"文件 os.system('echo {} > {}'.format(str(it).zfill(5), os.path.join(self.config['save_dir'], 'latest.ckpt'))) # 训练入口 def train(self): # 初始化进度条范围 pbar = range(int(self.train_args['iterations'])) # 如果是全局rank 0的进程,则设置显示进度条 if self.config['global_rank'] == 0: pbar = tqdm(pbar, initial=self.iteration, dynamic_ncols=True, smoothing=0.01) # 开始训练循环 while True: self.epoch += 1 # epoch计数增加 if self.config['distributed']: # 如果是分布式训练,则对采样器进行设置,保证每个进程获取的数据不同 self.train_sampler.set_epoch(self.epoch) # 调用训练一个epoch的函数 self._train_epoch(pbar) # 如果迭代次数超过配置中的迭代上限,则退出循环 if self.iteration > self.train_args['iterations']: break # 训练结束输出 print('\nEnd training....') # 每个训练周期处理输入并计算损失 def _train_epoch(self, pbar): device = self.config['device'] # 获取设备信息 # 遍历数据加载器中的数据 for frames, masks in self.train_loader: # 调整学习率 self.adjust_learning_rate() # 迭代次数+1 self.iteration += 1 # 将frames和masks转移到设备上 frames, masks = frames.to(device), masks.to(device) b, t, c, h, w = frames.size() # 获取帧和蒙版的尺寸 masked_frame = (frames * (1 - masks).float()) # 应用蒙版到图像 pred_img = self.netG(masked_frame, masks) # 使用生成器生成填充图像 # 调整frames和masks的维度以符合网络的输入要求 frames = frames.view(b * t, c, h, w) masks = masks.view(b * t, 1, h, w) comp_img = frames * (1. - masks) + masks * pred_img # 生成最终的组合图像 gen_loss = 0 # 初始化生成器损失 dis_loss = 0 # 初始化判别器损失 # 判别器对抗性损失 real_vid_feat = self.netD(frames) # 判别器对真实图像判别 fake_vid_feat = self.netD(comp_img.detach()) # 判别器对生成图像判别,注意detach是为了不计算梯度 dis_real_loss = self.adversarial_loss(real_vid_feat, True, True) # 真实图像的损失 dis_fake_loss = self.adversarial_loss(fake_vid_feat, False, True) # 生成图像的损失 dis_loss += (dis_real_loss + dis_fake_loss) / 2 # 求平均的判别器损失 # 添加判别器损失到摘要 self.add_summary(self.dis_writer, 'loss/dis_vid_fake', dis_fake_loss.item()) self.add_summary(self.dis_writer, 'loss/dis_vid_real', dis_real_loss.item()) # 优化判别器 self.optimD.zero_grad() dis_loss.backward() self.optimD.step() # 生成器对抗性损失 gen_vid_feat = self.netD(comp_img) gan_loss = self.adversarial_loss(gen_vid_feat, True, False) # 生成器的对抗损失 gan_loss = gan_loss * self.config['losses']['adversarial_weight'] # 权重放大 gen_loss += gan_loss # 累加到生成器损失 # 添加生成器对抗性损失到摘要 self.add_summary(self.gen_writer, 'loss/gan_loss', gan_loss.item()) # 生成器L1损失 hole_loss = self.l1_loss(pred_img * masks, frames * masks) # 只计算有蒙版区域的损失 # 考虑蒙版的平均值,乘以配置中的hole_weight hole_loss = hole_loss / torch.mean(masks) * self.config['losses']['hole_weight'] gen_loss += hole_loss # 累加到生成器损失 # 添加hole_loss到摘要 self.add_summary(self.gen_writer, 'loss/hole_loss', hole_loss.item()) # 计算蒙版外区域的L1损失 valid_loss = self.l1_loss(pred_img * (1 - masks), frames * (1 - masks)) # 考虑非蒙版区的平均值,乘以配置中的valid_weight valid_loss = valid_loss / torch.mean(1 - masks) * self.config['losses']['valid_weight'] gen_loss += valid_loss # 累加到生成器损失 # 添加valid_loss到摘要 self.add_summary(self.gen_writer, 'loss/valid_loss', valid_loss.item()) # 生成器优化 self.optimG.zero_grad() gen_loss.backward() self.optimG.step() # 控制台日志输出 if self.config['global_rank'] == 0: pbar.update(1) # 进度条更新 pbar.set_description(( # 设置进度条描述 f"d: {dis_loss.item():.3f}; g: {gan_loss.item():.3f};" # 打印损失数值 f"hole: {hole_loss.item():.3f}; valid: {valid_loss.item():.3f}") ) # 模型保存 if self.iteration % self.train_args['save_freq'] == 0: self.save(int(self.iteration // self.train_args['save_freq'])) # 迭代次数终止判断 if self.iteration > self.train_args['iterations']: break # Path: backend/tools/train/utils_sttn.py def get_world_size(): """Find OMPI world size without calling mpi functions :rtype: int """ if os.environ.get('PMI_SIZE') is not None: return int(os.environ.get('PMI_SIZE') or 1) elif os.environ.get('OMPI_COMM_WORLD_SIZE') is not None: return int(os.environ.get('OMPI_COMM_WORLD_SIZE') or 1) else: return torch.cuda.device_count() # Path: backend/tools/train/utils_sttn.py def get_local_rank(): """Find OMPI local rank without calling mpi functions :rtype: int """ if os.environ.get('MPI_LOCALRANKID') is not None: return int(os.environ.get('MPI_LOCALRANKID') or 0) elif os.environ.get('OMPI_COMM_WORLD_LOCAL_RANK') is not None: return int(os.environ.get('OMPI_COMM_WORLD_LOCAL_RANK') or 0) else: return 0 # Path: backend/tools/train/utils_sttn.py def get_global_rank(): """Find OMPI world rank without calling mpi functions :rtype: int """ if os.environ.get('PMI_RANK') is not None: return int(os.environ.get('PMI_RANK') or 0) elif os.environ.get('OMPI_COMM_WORLD_RANK') is not None: return int(os.environ.get('OMPI_COMM_WORLD_RANK') or 0) else: return 0 # Path: backend/tools/train/utils_sttn.py def get_master_ip(): if os.environ.get('AZ_BATCH_MASTER_NODE') is not None: return os.environ.get('AZ_BATCH_MASTER_NODE').split(':')[0] elif os.environ.get('AZ_BATCHAI_MPI_MASTER_NODE') is not None: return os.environ.get('AZ_BATCHAI_MPI_MASTER_NODE') else: return "127.0.0.1" # Path: backend/tools/train/train_sttn.py import os import json import argparse import torch import torch.multiprocessing as mp from shutil import copyfile from backend.tools.train.trainer_sttn import Trainer from backend.tools.train.utils_sttn import ( get_world_size, get_local_rank, get_global_rank, get_master_ip, ) parser = argparse.ArgumentParser(description='STTN') parser.add_argument('-c', '--config', default='configs_sttn/youtube-vos.json', type=str) parser.add_argument('-m', '--model', default='sttn', type=str) parser.add_argument('-p', '--port', default='23455', type=str) parser.add_argument('-e', '--exam', action='store_true') args = parser.parse_args() def main_worker(rank, config): # 如果配置中没有提到局部排序(local_rank),就给它和全局排序(global_rank)赋值为传入的排序(rank) if 'local_rank' not in config: config['local_rank'] = config['global_rank'] = rank # 如果配置指定为分布式训练 if config['distributed']: # 设置使用的CUDA设备为当前的本地排名对应的GPU
torch.cuda.set_device(int(config['local_rank']))
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Genesis-Embodied-AI/RoboGen # Path: manipulation/panda.py class Panda(Robot): def __init__(self, controllable_joints='right', slider=True, floating=False): self.slider = slider self.floating = floating if not floating: if not slider: right_arm_joint_indices = [0, 1, 2, 3, 4, 5, 6] # Controllable arm joints right_end_effector = 11 # Used to get the pose of the end effector right_gripper_indices = [9, 10] # Gripper actuated joints else: right_arm_joint_indices = [0, 1, 2, 4, 5, 6, 7, 8, 9, 10] right_end_effector = 15 # Used to get the pose of the end effector right_gripper_indices = [13, 14] # Gripper actuated joints else: right_arm_joint_indices = [] right_end_effector = -1 right_gripper_indices = [0, 1] super(Panda, self).__init__(controllable_joints, right_arm_joint_indices, right_end_effector, right_gripper_indices) def init(self, directory, id, np_random, fixed_base=False, use_suction=True): self.body = p.loadURDF(os.path.join(directory, 'franka_mobile', 'panda_suction_slider_mobile.urdf'), useFixedBase=fixed_base, basePosition=[-1, -1, 0.5], flags=p.URDF_USE_SELF_COLLISION, physicsClientId=id) for i in range(p.getNumJoints(self.body, physicsClientId=id)): print(p.getJointInfo(self.body, i, physicsClientId=id)) link_name = p.getJointInfo(self.body, i, physicsClientId=id)[12].decode('utf-8') print("link_name: ", link_name) super(Panda, self).init(self.body, id, np_random) # Path: manipulation/ur5.py class UR5(Robot): def __init__(self, controllable_joints='right', slider=True, floating=False): self.slider = slider self.floating = floating if not floating: if not slider: right_arm_joint_indices = [0, 1, 2, 3, 4, 5, 6] # Controllable arm joints right_end_effector = 11 # Used to get the pose of the end effector right_gripper_indices = [9, 10] # Gripper actuated joints else: right_arm_joint_indices = [0, 1, 2, 4, 5, 6, 7, 8, 9, 10] right_end_effector = 21 # Used to get the pose of the end effector right_gripper_indices = [21, 19] # Gripper actuated joints else: right_arm_joint_indices = [] right_end_effector = -1 right_gripper_indices = [0, 1] super(UR5, self).__init__(controllable_joints, right_arm_joint_indices, right_end_effector, right_gripper_indices) def init(self, directory, id, np_random, fixed_base=False, use_suction=True): self.body = p.loadURDF(os.path.join(directory, 'ur5', 'ur5_robotiq85_mobile.urdf'), useFixedBase=fixed_base, basePosition=[-1, -1, 0.5], flags=p.URDF_USE_SELF_COLLISION, physicsClientId=id) for i in range(p.getNumJoints(self.body, physicsClientId=id)): print(p.getJointInfo(self.body, i, physicsClientId=id)) link_name = p.getJointInfo(self.body, i, physicsClientId=id)[12].decode('utf-8') print("link_name: ", link_name) all_joint_num = p.getNumJoints(self.body) all_joint_idx = list(range(all_joint_num)) joint_idx = [j for j in all_joint_idx if self._is_not_fixed(j)] self.right_arm_joint_indices = joint_idx self.controllable_joint_indices = self.right_arm_joint_indices super(UR5, self).init(self.body, id, np_random) # Path: manipulation/sawyer.py class Sawyer(Robot): def __init__(self, controllable_joints='right', slider=True, floating=False): self.slider = slider self.floating = floating if not floating: if not slider: right_arm_joint_indices = [0, 1, 2, 3, 4, 5, 6] # Controllable arm joints right_end_effector = 11 # Used to get the pose of the end effector right_gripper_indices = [9, 10] # Gripper actuated joints else: right_arm_joint_indices = [0, 1, 2, 4, 5, 6, 7, 8, 9, 10] right_end_effector = 26 # Used to get the pose of the end effector right_gripper_indices = [25, 23] # Gripper actuated joints else: right_arm_joint_indices = [] right_end_effector = -1 right_gripper_indices = [0, 1] super(Sawyer, self).__init__(controllable_joints, right_arm_joint_indices, right_end_effector, right_gripper_indices) def init(self, directory, id, np_random, fixed_base=False, use_suction=True): self.body = p.loadURDF(os.path.join(directory, 'sawyer', 'sawyer_mobile.urdf'), useFixedBase=fixed_base, basePosition=[-1, -1, 0.5], flags=p.URDF_USE_SELF_COLLISION, physicsClientId=id) for i in range(p.getNumJoints(self.body, physicsClientId=id)): print(p.getJointInfo(self.body, i, physicsClientId=id)) link_name = p.getJointInfo(self.body, i, physicsClientId=id)[12].decode('utf-8') print("link_name: ", link_name) all_joint_num = p.getNumJoints(self.body) all_joint_idx = list(range(all_joint_num)) joint_idx = [j for j in all_joint_idx if self._is_not_fixed(j)] self.right_arm_joint_indices = joint_idx self.controllable_joint_indices = self.right_arm_joint_indices print("joint_idx: ", joint_idx) super(Sawyer, self).init(self.body, id, np_random) # Path: manipulation/utils.py def parse_config(config, use_bard=True, obj_id=None, use_gpt_size=True, use_vhacd=True): urdf_paths = [] urdf_sizes = [] urdf_locations = [] urdf_names = [] urdf_types = [] urdf_on_tables = [] urdf_movables = [] use_table = False articulated_joint_angles = {} spatial_relationships = [] distractor_config_path = None for obj in config: print(obj) if "use_table" in obj.keys(): use_table = obj['use_table'] if "set_joint_angle_object_name" in obj.keys(): new_obj = copy.deepcopy(obj) new_obj.pop('set_joint_angle_object_name') articulated_joint_angles[obj['set_joint_angle_object_name']] = new_obj if "spatial_relationships" in obj.keys(): spatial_relationships = obj['spatial_relationships'] if 'task_name' in obj.keys() or 'task_description' in obj.keys(): continue if "distractor_config_path" in obj.keys(): distractor_config_path = obj['distractor_config_path'] if "type" not in obj.keys(): continue if obj['type'] == 'mesh': if 'uid' not in obj.keys(): continue if obj_id is None: uid = obj['uid'][np.random.randint(len(obj['uid']))] else: uid = obj['uid'][obj_id] urdf_file_path = osp.join("objaverse_utils/data/obj", "{}".format(uid), "material.urdf") if not os.path.exists(urdf_file_path): down_load_single_object(name=obj['lang'], uids=[uid]) new_urdf_file_path = urdf_file_path.replace("material.urdf", "material_non_vhacd.urdf") new_urdf_lines = [] with open(urdf_file_path, 'r') as f: urdf_lines = f.readlines() for line in urdf_lines: if 'vhacd' in line: new_line = line.replace("_vhacd", "") new_urdf_lines.append(new_line) else: new_urdf_lines.append(line) with open(new_urdf_file_path, 'w') as f: f.writelines(new_urdf_lines) urdf_file_path = new_urdf_file_path print("object {} choosing uid {} urdf_path {}".format(obj['lang'], uid, urdf_file_path)) urdf_paths.append(urdf_file_path) urdf_types.append('mesh') urdf_movables.append(True) # all mesh objects are movable elif obj['type'] == 'urdf': try: category = obj['lang'] possible_obj_path = partnet_mobility_dict[category] except: category = obj['name'] if category == 'Computer display': category = 'Display' possible_obj_path = partnet_mobility_dict[category] if 'reward_asset_path' not in obj.keys(): obj_path = np.random.choice(possible_obj_path) if category == 'Toaster': obj_path = str(103486) if category == 'Microwave': obj_path = str(7310) if category == "Oven": obj_path = str(101808) if category == 'Refrigerator': obj_path = str(10638) else: obj_path = obj['reward_asset_path'] urdf_file_path = osp.join("data/dataset", obj_path, "mobility.urdf") if use_vhacd: new_urdf_file_path = urdf_file_path.replace("mobility.urdf", "mobility_vhacd.urdf") if not osp.exists(new_urdf_file_path): new_urdf_file_path = preprocess_urdf(urdf_file_path) urdf_paths.append(new_urdf_file_path) else: urdf_paths.append(urdf_file_path) urdf_types.append('urdf') urdf_movables.append(obj.get('movable', False)) # by default, urdf objects are not movable, unless specified urdf_sizes.append(obj['size']) urdf_locations.append(parse_center(obj['center'])) urdf_names.append(obj['name']) urdf_on_tables.append(obj.get('on_table', False)) return urdf_paths, urdf_sizes, urdf_locations, urdf_names, urdf_types, urdf_on_tables, use_table, \ articulated_joint_angles, spatial_relationships, distractor_config_path, urdf_movables # Path: manipulation/utils.py def load_env(env, load_path=None, state=None): if load_path is not None: with open(load_path, 'rb') as f: state = pickle.load(f) ### set env to stored object position and orientation for obj_name, obj_id in env.urdf_ids.items(): p.resetBasePositionAndOrientation(obj_id, state['object_base_position'][obj_name], state['object_base_orientation'][obj_name], physicsClientId=env.id) ### set env to stored object joint angles for obj_name, obj_id in env.urdf_ids.items(): num_links = p.getNumJoints(obj_id, physicsClientId=env.id) for link_idx in range(0, num_links): joint_angle = state['object_joint_angle_dicts'][obj_name][link_idx] p.resetJointState(obj_id, link_idx, joint_angle, physicsClientId=env.id) ### recover suction env.activated = state['activated'] if state['activated']: env.suction_obj_id = state['suction_object_id'] env.suction_contact_link = state['suction_contact_link'] env.suction_to_obj_pose = state['suction_to_obj_pose'] env.create_suction_constraint(env.suction_obj_id, env.suction_contact_link, env.suction_to_obj_pose) if "urdf_paths" in state: env.urdf_paths = state["urdf_paths"] if "object_sizes" in state: env.simulator_sizes = state["object_sizes"] if "robot_name" in state: env.robot_name = state["robot_name"] if "table_path" in state and env.use_table: env.table_path = state["table_path"] return state # Path: manipulation/utils.py def download_and_parse_objavarse_obj_from_yaml_config(config_path, candidate_num=10, vhacd=True): config = None while config is None: with open(config_path, 'r') as file: config = yaml.safe_load(file) task_name = None task_description = None for obj in config: if 'task_name' in obj.keys(): task_name = obj['task_name'] task_description = obj['task_description'] break for obj in config: if 'type' in obj.keys() and obj['type'] == 'mesh' and 'uid' not in obj.keys(): print("{} trying to download object: {} {}".format("=" * 20, obj['lang'], "=" * 20)) success = down_load_single_object(obj["lang"], candidate_num=candidate_num, vhacd=vhacd, task_name=task_name, task_description=task_description) if not success: print("failed to find suitable object to download {} quit building this task".format(obj["lang"])) return False obj['uid'] = text_to_uid_dict[obj["lang"]] obj['all_uid'] = text_to_uid_dict[obj["lang"] + "_all"] with open(config_path, 'w') as f: yaml.dump(config, f, indent=4) return True # Path: manipulation/gpt_reward_api.py def get_joint_id_from_name(simulator, object_name, joint_name): object_id = simulator.urdf_ids[object_name] num_joints = p.getNumJoints(object_id, physicsClientId=simulator.id) joint_index = None for i in range(num_joints): joint_info = p.getJointInfo(object_id, i, physicsClientId=simulator.id) if joint_info[1].decode("utf-8") == joint_name: joint_index = i break return joint_index # Path: manipulation/gpt_reward_api.py def get_link_id_from_name(simulator, object_name, link_name): object_id = simulator.urdf_ids[object_name] num_joints = p.getNumJoints(object_id, physicsClientId=simulator.id) joint_index = None for i in range(num_joints): joint_info = p.getJointInfo(object_id, i, physicsClientId=simulator.id) if joint_info[12].decode("utf-8") == link_name: joint_index = i break return joint_index # Path: manipulation/sim.py import numpy as np import pybullet as p import gym import pickle import yaml import os.path as osp from gym.utils import seeding from gym import spaces from collections import defaultdict from scipy.spatial.transform import Rotation as R from manipulation.panda import Panda from manipulation.ur5 import UR5 from manipulation.sawyer import Sawyer from manipulation.utils import parse_config, load_env, download_and_parse_objavarse_obj_from_yaml_config from manipulation.gpt_reward_api import get_joint_id_from_name, get_link_id_from_name from manipulation.table_utils import table_paths, table_scales, table_poses, table_bbox_scale_down_factors if 'delta-axis-angle' in self.rotation_mode: dtheta = np.linalg.norm(delta_rotation) if dtheta > 0: delta_rotation = delta_rotation / dtheta dtheta = dtheta * self.max_rotation_angle / np.sqrt(3) delta_rotation_matrix = R.from_rotvec(delta_rotation * dtheta).as_matrix() else: delta_rotation_matrix = np.eye(3) current_matrix = np.array(p.getMatrixFromQuaternion(orient)).reshape(3, 3) if self.rotation_mode == 'delta-axis-angle-local': new_rotation = current_matrix @ delta_rotation_matrix elif self.rotation_mode == 'delta-axis-angle-global': new_rotation = delta_rotation_matrix @ current_matrix orient = R.from_matrix(new_rotation).as_quat() elif self.rotation_mode == 'delta-euler-angle': euler_angle = delta_rotation / np.sqrt(3) * self.max_rotation_angle delta_quaternion = p.getQuaternionFromEuler(euler_angle) orient = delta_quaternion * orient return orient def activate_suction(self): if not self.activated: # assume the suction is attached to the right end effector suction_id = self.suction_id points = p.getContactPoints(bodyA=self.robot.body, linkIndexA=suction_id, physicsClientId=self.id) if points: # Handle contact between suction with a rigid object. contact_object_id_link_cnts = defaultdict(int) for point in points: obj_id, contact_link, contact_position_on_obj = point[2], point[4], point[6] if obj_id == self.urdf_ids['plane'] or obj_id == self.robot.body: pass else: contact_object_id_link_cnts[(obj_id, contact_link)] += 1 if len(contact_object_id_link_cnts) > 0: # find the object that has the most contact points obj_id, contact_link = max(contact_object_id_link_cnts.items(), key=lambda x: x[1])[0] # print("contact with object: ", obj_id, contact_link) body_pose = p.getLinkState(self.robot.body, suction_id, physicsClientId=self.id) if contact_link >= 0: obj_link_pose = p.getLinkState(obj_id, contact_link, physicsClientId=self.id) else: obj_link_pose = p.getBasePositionAndOrientation(obj_id, physicsClientId=self.id) world_to_body = p.invertTransform(body_pose[0], body_pose[1]) obj_to_body = p.multiplyTransforms(world_to_body[0], world_to_body[1], obj_link_pose[0], obj_link_pose[1]) suction_to_obj = p.invertTransform(obj_to_body[0], obj_to_body[1]) self.create_suction_constraint(obj_id, contact_link, suction_to_obj) self.activated = True self.suction_obj_id = obj_id self.suction_contact_link = contact_link self.suction_to_obj_pose = suction_to_obj def create_suction_constraint(self, suction_obj_id, suction_contact_link, suction_to_obj_pose): suction_id = self.suction_id self.contact_constraint = p.createConstraint( parentBodyUniqueId=self.robot.body, parentLinkIndex=suction_id, childBodyUniqueId=suction_obj_id, childLinkIndex=suction_contact_link, jointType=p.JOINT_FIXED, jointAxis=(0, 0, 0), parentFramePosition=(0, 0, 0), parentFrameOrientation=(0, 0, 0), childFramePosition=suction_to_obj_pose[0], childFrameOrientation=suction_to_obj_pose[1], physicsClientId=self.id) p.changeConstraint(self.contact_constraint, maxForce=5000, physicsClientId=self.id) def deactivate_suction(self): self.activated = False if self.contact_constraint is not None: p.removeConstraint(self.contact_constraint, physicsClientId=self.id) self.contact_constraint = None def step(self, action): self.time_step += 1 self.take_step(action) obs = self._get_obs() # to handle some stupid typing error in early prompts try: reward, success = self._compute_reward() except: reward, success = self.compute_reward() self.success = success done = self.time_step == self.horizon info = self._get_info() return obs, reward, done, info def _get_info(self): return {} def _get_obs(self): ### For RL policy learning, observation space includes: # 1. object positions and orientations (6 * num_objects) # 2. object min and max bounding box (6 * num_objects) # 3. articulated object joint angles (num_objects * num_joints) # 4. articulated object link position and orientation (num_objects * num_joints * 6) # 5. robot base position (xy) # 6. robot end-effector position and orientation (6) # 7. gripper suction activated/deactivate or gripper joint angle (if not using suction gripper) (1) obs = np.zeros(self.base_observation_space.shape[0]) cnt = 0 for name, id in self.urdf_ids.items(): if name == 'plane' or name == 'robot': continue
if self.is_distractor[name]:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: KoeAI/LLVC # Path: minimal_rvc/models.py class SynthesizerTrnMs256NSFSid(nn.Module): def __init__( self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, spk_embed_dim, gin_channels, emb_channels, sr, **kwargs ): super().__init__() if type(sr) == type("strr"): sr = sr2sr[sr] self.spec_channels = spec_channels self.inter_channels = inter_channels self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.resblock = resblock self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_dilation_sizes = resblock_dilation_sizes self.upsample_rates = upsample_rates self.upsample_initial_channel = upsample_initial_channel self.upsample_kernel_sizes = upsample_kernel_sizes self.segment_size = segment_size self.gin_channels = gin_channels self.emb_channels = emb_channels self.sr = sr # self.hop_length = hop_length# self.spk_embed_dim = spk_embed_dim self.enc_p = TextEncoder( inter_channels, hidden_channels, filter_channels, emb_channels, n_heads, n_layers, kernel_size, p_dropout, ) self.dec = GeneratorNSF( inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels, sr=sr, is_half=kwargs["is_half"], ) self.enc_q = PosteriorEncoder( spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels, ) self.flow = ResidualCouplingBlock( inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels ) self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) print( "gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim, "emb_channels:", emb_channels, ) def remove_weight_norm(self): self.dec.remove_weight_norm() self.flow.remove_weight_norm() self.enc_q.remove_weight_norm() def forward( self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds ): # 这里ds是id,[bs,1] # print(1,pitch.shape)#[bs,t] g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) z_p = self.flow(z, y_mask, g=g) z_slice, ids_slice = commons.rand_slice_segments( z, y_lengths, self.segment_size ) # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length) pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size) # print(-2,pitchf.shape,z_slice.shape) o = self.dec(z_slice, pitchf, g=g) return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None): g = self.emb_g(sid).unsqueeze(-1) m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask z = self.flow(z_p, x_mask, g=g, reverse=True) o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g) return o, x_mask, (z, z_p, m_p, logs_p) # Path: minimal_rvc/rmvpe.py class RMVPE: def __init__(self, model_path, is_half, device=None): self.resample_kernel = {} self.resample_kernel = {} self.is_half = is_half if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" self.device = device self.mel_extractor = MelSpectrogram( is_half, 128, 16000, 1024, 160, None, 30, 8000 ).to(device) if "privateuseone" in str(device): import onnxruntime as ort ort_session = ort.InferenceSession( "rmvpe.onnx", providers=["DmlExecutionProvider"] ) self.model = ort_session else: model = E2E(4, 1, (2, 2)) ckpt = torch.load(model_path, map_location="cpu") model.load_state_dict(ckpt) model.eval() if is_half == True: model = model.half() self.model = model self.model = self.model.to(device) cents_mapping = 20 * np.arange(360) + 1997.3794084376191 self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368 def mel2hidden(self, mel): with torch.no_grad(): n_frames = mel.shape[-1] mel = F.pad( mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect" ) if "privateuseone" in str(self.device): onnx_input_name = self.model.get_inputs()[0].name onnx_outputs_names = self.model.get_outputs()[0].name hidden = self.model.run( [onnx_outputs_names], input_feed={onnx_input_name: mel.cpu().numpy()}, )[0] else: hidden = self.model(mel) return hidden[:, :n_frames] def decode(self, hidden, thred=0.03): cents_pred = self.to_local_average_cents(hidden, thred=thred) f0 = 10 * (2 ** (cents_pred / 1200)) f0[f0 == 10] = 0 # f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred]) return f0 def infer_from_audio(self, audio, thred=0.03): # torch.cuda.synchronize() t0 = ttime() mel = self.mel_extractor( torch.from_numpy(audio).float().to(self.device).unsqueeze(0), center=True ) # print(123123123,mel.device.type) # torch.cuda.synchronize() t1 = ttime() hidden = self.mel2hidden(mel) # torch.cuda.synchronize() t2 = ttime() # print(234234,hidden.device.type) if "privateuseone" not in str(self.device): hidden = hidden.squeeze(0).cpu().numpy() else: hidden = hidden[0] if self.is_half == True: hidden = hidden.astype("float32") f0 = self.decode(hidden, thred=thred) # torch.cuda.synchronize() t3 = ttime() # print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0)) return f0 def to_local_average_cents(self, salience, thred=0.05): # t0 = ttime() center = np.argmax(salience, axis=1) # 帧长#index salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368 # t1 = ttime() center += 4 todo_salience = [] todo_cents_mapping = [] starts = center - 4 ends = center + 5 for idx in range(salience.shape[0]): todo_salience.append(salience[:, starts[idx] : ends[idx]][idx]) todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]]) # t2 = ttime() todo_salience = np.array(todo_salience) # 帧长,9 todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9 product_sum = np.sum(todo_salience * todo_cents_mapping, 1) weight_sum = np.sum(todo_salience, 1) # 帧长 devided = product_sum / weight_sum # 帧长 # t3 = ttime() maxx = np.max(salience, axis=1) # 帧长 devided[maxx <= thred] = 0 # t4 = ttime() # print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) return devided # Path: minimal_rvc/pipeline.py import os import traceback import faiss import numpy as np import pyworld import scipy.signal as signal import torch import torch.nn.functional as F import torchcrepe from typing import * from fairseq.models.hubert import HubertModel from torch import Tensor from .models import SynthesizerTrnMs256NSFSid from .rmvpe import RMVPE ): feats = torch.from_numpy(audio) if self.is_half: feats = feats.half() else: feats = feats.float() if feats.dim() == 2: # double channels feats = feats.mean(-1) assert feats.dim() == 1, feats.dim() feats = feats.view(1, -1) padding_mask = torch.BoolTensor( feats.shape).to(self.device).fill_(False) half_support = ( self.device.type == "cuda" and torch.cuda.get_device_capability(self.device)[0] >= 5.3 ) is_feats_dim_768 = net_g.emb_channels == 768 if isinstance(model, tuple): feats = model[0]( feats.squeeze(0).squeeze(0).to(self.device), return_tensors="pt", sampling_rate=16000, ) if self.is_half: feats = feats.input_values.to(self.device).half() else: feats = feats.input_values.to(self.device) with torch.no_grad(): if is_feats_dim_768: feats = model[1](feats).last_hidden_state else: feats = model[1](feats).extract_features else: inputs = { "source": feats.half().to(self.device) if half_support else feats.to(self.device), "padding_mask": padding_mask.to(self.device), "output_layer": embedding_output_layer, } if not half_support: model = model.float() inputs["source"] = inputs["source"].float() with torch.no_grad(): logits = model.extract_features(**inputs) if is_feats_dim_768: feats = logits[0] else: feats = model.final_proj(logits[0]) if ( isinstance(index, type(None)) == False and isinstance(big_npy, type(None)) == False and index_rate != 0 ): npy = feats[0].cpu().numpy() if self.is_half: npy = npy.astype("float32") score, ix = index.search(npy, k=8) weight = np.square(1 / score) weight /= weight.sum(axis=1, keepdims=True) npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1) if self.is_half: npy = npy.astype("float16") feats = ( torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate + (1 - index_rate) * feats ) feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) p_len = audio.shape[0] // self.window if feats.shape[1] < p_len: p_len = feats.shape[1] if pitch != None and pitchf != None: pitch = pitch[:, :p_len] pitchf = pitchf[:, :p_len] p_len = torch.tensor([p_len], device=self.device).long() with torch.no_grad(): if pitch != None and pitchf != None: audio1 = ( (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768) .data.cpu() .float() .numpy() .astype(np.int16) ) else: audio1 = ( (net_g.infer(feats, p_len, sid)[0][0, 0] * 32768) .data.cpu() .float() .numpy() .astype(np.int16) ) del feats, p_len, padding_mask if torch.cuda.is_available(): torch.cuda.empty_cache() return audio1 def __call__( self, model: HubertModel, embedding_output_layer: int, net_g: SynthesizerTrnMs256NSFSid, sid: int, audio: np.ndarray, transpose: int, f0_method: str, file_index: str, index_rate: float, if_f0: bool,
f0_relative: bool,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: aurelio-labs/semantic-router # Path: semantic_router/encoders/base.py class BaseEncoder(BaseModel): name: str score_threshold: float type: str = Field(default="base") class Config: arbitrary_types_allowed = True def __call__(self, docs: List[str]) -> List[List[float]]: raise NotImplementedError("Subclasses must implement this method") # Path: semantic_router/encoders/bm25.py class BM25Encoder(BaseEncoder): model: Optional[Any] = None idx_mapping: Optional[Dict[int, int]] = None type: str = "sparse" def __init__( self, name: str = "bm25", score_threshold: float = 0.82, use_default_params: bool = True, ): super().__init__(name=name, score_threshold=score_threshold) try: from pinecone_text.sparse import BM25Encoder as encoder except ImportError: raise ImportError( "Please install pinecone-text to use BM25Encoder. " "You can install it with: `pip install 'semantic-router[hybrid]'`" ) self.model = encoder() if use_default_params: logger.info("Downloading and initializing default sBM25 model parameters.") self.model = encoder.default() self._set_idx_mapping() def _set_idx_mapping(self): params = self.model.get_params() doc_freq = params["doc_freq"] if isinstance(doc_freq, dict): indices = doc_freq["indices"] self.idx_mapping = {int(idx): i for i, idx in enumerate(indices)} else: raise TypeError("Expected a dictionary for 'doc_freq'") def __call__(self, docs: List[str]) -> List[List[float]]: if self.model is None or self.idx_mapping is None: raise ValueError("Model or index mapping is not initialized.") if len(docs) == 1: sparse_dicts = self.model.encode_queries(docs) elif len(docs) > 1: sparse_dicts = self.model.encode_documents(docs) else: raise ValueError("No documents to encode.") embeds = [[0.0] * len(self.idx_mapping)] * len(docs) for i, output in enumerate(sparse_dicts): indices = output["indices"] values = output["values"] for idx, val in zip(indices, values): if idx in self.idx_mapping: position = self.idx_mapping[idx] embeds[i][position] = val return embeds def fit(self, docs: List[str]): if self.model is None: raise ValueError("Model is not initialized.") self.model.fit(docs) self._set_idx_mapping() # Path: semantic_router/encoders/cohere.py class CohereEncoder(BaseEncoder): client: Optional[cohere.Client] = None type: str = "cohere" def __init__( self, name: Optional[str] = None, cohere_api_key: Optional[str] = None, score_threshold: float = 0.3, ): if name is None: name = os.getenv("COHERE_MODEL_NAME", "embed-english-v3.0") super().__init__(name=name, score_threshold=score_threshold) cohere_api_key = cohere_api_key or os.getenv("COHERE_API_KEY") if cohere_api_key is None: raise ValueError("Cohere API key cannot be 'None'.") try: self.client = cohere.Client(cohere_api_key) except Exception as e: raise ValueError( f"Cohere API client failed to initialize. Error: {e}" ) from e def __call__(self, docs: List[str]) -> List[List[float]]: if self.client is None: raise ValueError("Cohere client is not initialized.") try: embeds = self.client.embed(docs, input_type="search_query", model=self.name) return embeds.embeddings except Exception as e: raise ValueError(f"Cohere API call failed. Error: {e}") from e # Path: semantic_router/encoders/openai.py class OpenAIEncoder(BaseEncoder): client: Optional[openai.Client] type: str = "openai" def __init__( self, name: Optional[str] = None, openai_api_key: Optional[str] = None, score_threshold: float = 0.82, ): if name is None: name = os.getenv("OPENAI_MODEL_NAME", "text-embedding-ada-002") super().__init__(name=name, score_threshold=score_threshold) api_key = openai_api_key or os.getenv("OPENAI_API_KEY") if api_key is None: raise ValueError("OpenAI API key cannot be 'None'.") try: self.client = openai.Client(api_key=api_key) except Exception as e: raise ValueError( f"OpenAI API client failed to initialize. Error: {e}" ) from e def __call__(self, docs: List[str]) -> List[List[float]]: if self.client is None: raise ValueError("OpenAI client is not initialized.") embeds = None error_message = "" # Exponential backoff for j in range(3): try: embeds = self.client.embeddings.create(input=docs, model=self.name) if embeds.data: break except OpenAIError as e: sleep(2**j) error_message = str(e) logger.warning(f"Retrying in {2**j} seconds...") except Exception as e: logger.error(f"OpenAI API call failed. Error: {error_message}") raise ValueError(f"OpenAI API call failed. Error: {e}") from e if ( not embeds or not isinstance(embeds, CreateEmbeddingResponse) or not embeds.data ): raise ValueError(f"No embeddings returned. Error: {error_message}") embeddings = [embeds_obj.embedding for embeds_obj in embeds.data] return embeddings # Path: semantic_router/encoders/tfidf.py class TfidfEncoder(BaseEncoder): idf: ndarray = np.array([]) word_index: Dict = {} def __init__(self, name: str = "tfidf", score_threshold: float = 0.82): # TODO default score_threshold not thoroughly tested, should optimize super().__init__(name=name, score_threshold=score_threshold) self.word_index = {} self.idf = np.array([]) def __call__(self, docs: list[str]) -> list[list[float]]: if len(self.word_index) == 0 or self.idf.size == 0: raise ValueError("Vectorizer is not initialized.") if len(docs) == 0: raise ValueError("No documents to encode.") docs = [self._preprocess(doc) for doc in docs] tf = self._compute_tf(docs) tfidf = tf * self.idf return tfidf.tolist() def fit(self, routes: list[Route]): docs = [] for route in routes: for doc in route.utterances: docs.append(self._preprocess(doc)) self.word_index = self._build_word_index(docs) self.idf = self._compute_idf(docs) def _build_word_index(self, docs: list[str]) -> dict: words = set() for doc in docs: for word in doc.split(): words.add(word) word_index = {word: i for i, word in enumerate(words)} return word_index def _compute_tf(self, docs: list[str]) -> np.ndarray: if len(self.word_index) == 0: raise ValueError("Word index is not initialized.") tf = np.zeros((len(docs), len(self.word_index))) for i, doc in enumerate(docs): word_counts = Counter(doc.split()) for word, count in word_counts.items(): if word in self.word_index: tf[i, self.word_index[word]] = count # L2 normalization tf = tf / norm(tf, axis=1, keepdims=True) return tf def _compute_idf(self, docs: list[str]) -> np.ndarray: if len(self.word_index) == 0: raise ValueError("Word index is not initialized.") idf = np.zeros(len(self.word_index)) for doc in docs: words = set(doc.split()) for word in words: if word in self.word_index: idf[self.word_index[word]] += 1 idf = np.log(len(docs) / (idf + 1)) return idf def _preprocess(self, doc: str) -> str: lowercased_doc = doc.lower() no_punctuation_doc = lowercased_doc.translate( str.maketrans("", "", string.punctuation) ) return no_punctuation_doc # Path: semantic_router/encoders/zure.py class AzureOpenAIEncoder(BaseEncoder): client: Optional[openai.AzureOpenAI] = None type: str = "azure" api_key: Optional[str] = None deployment_name: Optional[str] = None azure_endpoint: Optional[str] = None api_version: Optional[str] = None model: Optional[str] = None def __init__( self, api_key: Optional[str] = None, deployment_name: Optional[str] = None, azure_endpoint: Optional[str] = None, api_version: Optional[str] = None, model: Optional[str] = None, score_threshold: float = 0.82, ): name = deployment_name if name is None: name = os.getenv("AZURE_OPENAI_DEPLOYMENT_NAME", "text-embedding-ada-002") super().__init__(name=name, score_threshold=score_threshold) self.api_key = api_key self.deployment_name = deployment_name self.azure_endpoint = azure_endpoint self.api_version = api_version self.model = model if self.api_key is None: self.api_key = os.getenv("AZURE_OPENAI_API_KEY") if self.api_key is None: raise ValueError("No Azure OpenAI API key provided.") if self.deployment_name is None: self.deployment_name = os.getenv( "AZURE_OPENAI_DEPLOYMENT_NAME", "text-embedding-ada-002" ) # deployment_name may still be None, but it is optional in the API if self.azure_endpoint is None: self.azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT") if self.azure_endpoint is None: raise ValueError("No Azure OpenAI endpoint provided.") if self.api_version is None: self.api_version = os.getenv("AZURE_OPENAI_API_VERSION") if self.api_version is None: raise ValueError("No Azure OpenAI API version provided.") if self.model is None: self.model = os.getenv("AZURE_OPENAI_MODEL") if self.model is None: raise ValueError("No Azure OpenAI model provided.") assert ( self.api_key is not None and self.azure_endpoint is not None and self.api_version is not None and self.model is not None ) try: self.client = openai.AzureOpenAI( azure_deployment=str(deployment_name) if deployment_name else None, api_key=str(api_key), azure_endpoint=str(azure_endpoint), api_version=str(api_version), # _strict_response_validation=True, ) except Exception as e: raise ValueError( f"OpenAI API client failed to initialize. Error: {e}" ) from e def __call__(self, docs: List[str]) -> List[List[float]]: if self.client is None: raise ValueError("OpenAI client is not initialized.") embeds = None error_message = "" # Exponential backoff for j in range(3): try: embeds = self.client.embeddings.create( input=docs, model=str(self.model) ) if embeds.data: break except OpenAIError as e: # print full traceback import traceback traceback.print_exc() sleep(2**j) error_message = str(e) logger.warning(f"Retrying in {2**j} seconds...") except Exception as e: logger.error(f"Azure OpenAI API call failed. Error: {error_message}") raise ValueError(f"Azure OpenAI API call failed. Error: {e}") from e if ( not embeds or not isinstance(embeds, CreateEmbeddingResponse) or not embeds.data ): raise ValueError(f"No embeddings returned. Error: {error_message}") embeddings = [embeds_obj.embedding for embeds_obj in embeds.data] return embeddings # Path: semantic_router/hybrid_layer.py class HybridRouteLayer: index = None sparse_index = None categories = None score_threshold: float def __init__( self, encoder: BaseEncoder, sparse_encoder: Optional[BM25Encoder] = None, routes: List[Route] = [], alpha: float = 0.3, ): self.encoder = encoder self.score_threshold = self.encoder.score_threshold if sparse_encoder is None: logger.warning("No sparse_encoder provided. Using default BM25Encoder.") self.sparse_encoder = BM25Encoder() else: self.sparse_encoder = sparse_encoder self.alpha = alpha self.routes = routes if isinstance(self.sparse_encoder, TfidfEncoder) and hasattr( self.sparse_encoder, "fit" ): self.sparse_encoder.fit(routes) # if routes list has been passed, we initialize index now if routes: # initialize index now # for route in tqdm(routes): # self._add_route(route=route) self._add_routes(routes) def __call__(self, text: str) -> Optional[str]: results = self._query(text) top_class, top_class_scores = self._semantic_classify(results) passed = self._pass_threshold(top_class_scores, self.score_threshold) if passed: return top_class else: return None def add(self, route: Route): self._add_route(route=route) def _add_route(self, route: Route): self.routes += [route] self.update_dense_embeddings_index(route.utterances) if isinstance(self.sparse_encoder, TfidfEncoder) and hasattr( self.sparse_encoder, "fit" ): self.sparse_encoder.fit(self.routes) # re-build index self.sparse_index = None all_utterances = [ utterance for route in self.routes for utterance in route.utterances ] self.update_sparse_embeddings_index(all_utterances) else: self.update_sparse_embeddings_index(route.utterances) # create route array if self.categories is None: self.categories = np.array([route.name] * len(route.utterances)) else: str_arr = np.array([route.name] * len(route.utterances)) self.categories = np.concatenate([self.categories, str_arr]) self.routes.append(route) def _add_routes(self, routes: List[Route]): # create embeddings for all routes logger.info("Creating embeddings for all routes...") all_utterances = [ utterance for route in routes for utterance in route.utterances ] self.update_dense_embeddings_index(all_utterances) self.update_sparse_embeddings_index(all_utterances) # create route array route_names = [route.name for route in routes for _ in route.utterances] route_array = np.array(route_names) self.categories = ( np.concatenate([self.categories, route_array]) if self.categories is not None else route_array ) def update_dense_embeddings_index(self, utterances: list): dense_embeds = np.array(self.encoder(utterances)) # create utterance array (the dense index) self.index = ( np.concatenate([self.index, dense_embeds]) if self.index is not None else dense_embeds ) def update_sparse_embeddings_index(self, utterances: list): sparse_embeds = np.array(self.sparse_encoder(utterances)) # create sparse utterance array self.sparse_index = ( np.concatenate([self.sparse_index, sparse_embeds]) if self.sparse_index is not None else sparse_embeds ) def _query(self, text: str, top_k: int = 5): """Given some text, encodes and searches the index vector space to retrieve the top_k most similar records. """ # create dense query vector xq_d = np.array(self.encoder([text])) xq_d = np.squeeze(xq_d) # Reduce to 1d array. # create sparse query vector xq_s = np.array(self.sparse_encoder([text])) xq_s = np.squeeze(xq_s) # convex scaling xq_d, xq_s = self._convex_scaling(xq_d, xq_s) if self.index is not None and self.sparse_index is not None: # calculate dense vec similarity index_norm = norm(self.index, axis=1) xq_d_norm = norm(xq_d.T) sim_d = np.dot(self.index, xq_d.T) / (index_norm * xq_d_norm) # calculate sparse vec similarity sparse_norm = norm(self.sparse_index, axis=1) xq_s_norm = norm(xq_s.T) sim_s = np.dot(self.sparse_index, xq_s.T) / (sparse_norm * xq_s_norm) total_sim = sim_d + sim_s # get indices of top_k records top_k = min(top_k, total_sim.shape[0]) idx = np.argpartition(total_sim, -top_k)[-top_k:] scores = total_sim[idx] # get the utterance categories (route names) routes = self.categories[idx] if self.categories is not None else [] return [{"route": d, "score": s.item()} for d, s in zip(routes, scores)] else: logger.warning("No index found. Please add routes to the layer.") return [] def _convex_scaling(self, dense: np.ndarray, sparse: np.ndarray): # scale sparse and dense vecs dense = np.array(dense) * self.alpha sparse = np.array(sparse) * (1 - self.alpha) return dense, sparse def _semantic_classify(self, query_results: List[Dict]) -> Tuple[str, List[float]]: scores_by_class: Dict[str, List[float]] = {} for result in query_results: score = result["score"] route = result["route"] if route in scores_by_class: scores_by_class[route].append(score) else: scores_by_class[route] = [score] # Calculate total score for each class total_scores = {route: sum(scores) for route, scores in scores_by_class.items()} top_class = max(total_scores, key=lambda x: total_scores[x], default=None) # Return the top class and its associated scores if top_class is not None: return str(top_class), scores_by_class.get(top_class, []) else: logger.warning("No classification found for semantic classifier.") return "", [] def _pass_threshold(self, scores: List[float], threshold: float) -> bool: if scores: return max(scores) > threshold else: return False # Path: semantic_router/route.py class Route(BaseModel): name: str utterances: List[str] description: Optional[str] = None function_schema: Optional[Dict[str, Any]] = None llm: Optional[BaseLLM] = None def __call__(self, query: str) -> RouteChoice: if self.function_schema: if not self.llm: raise ValueError( "LLM is required for dynamic routes. Please ensure the `llm` " "attribute is set." ) # if a function schema is provided we generate the inputs extracted_inputs = self.llm.extract_function_inputs( query=query, function_schema=self.function_schema ) func_call = extracted_inputs else: # otherwise we just pass None for the call func_call = None return RouteChoice(name=self.name, function_call=func_call) def to_dict(self) -> Dict[str, Any]: return self.dict() @classmethod def from_dict(cls, data: Dict[str, Any]): return cls(**data) @classmethod def from_dynamic_route(cls, llm: BaseLLM, entity: Union[BaseModel, Callable]): """ Generate a dynamic Route object from a function or Pydantic model using LLM """ schema = function_call.get_schema(item=entity) dynamic_route = cls._generate_dynamic_route(llm=llm, function_schema=schema) dynamic_route.function_schema = schema return dynamic_route @classmethod def _parse_route_config(cls, config: str) -> str: # Regular expression to match content inside <config></config> config_pattern = r"<config>(.*?)</config>" match = re.search(config_pattern, config, re.DOTALL) if match: config_content = match.group(1).strip() # Get the matched content return config_content else: raise ValueError("No <config></config> tags found in the output.") @classmethod def _generate_dynamic_route(cls, llm: BaseLLM, function_schema: Dict[str, Any]): logger.info("Generating dynamic route...") prompt = f""" You are tasked to generate a JSON configuration based on the provided function schema. Please follow the template below, no other tokens allowed: <config> {{ "name": "<function_name>", "utterances": [ "<example_utterance_1>", "<example_utterance_2>", "<example_utterance_3>", "<example_utterance_4>", "<example_utterance_5>"] }} </config> Only include the "name" and "utterances" keys in your answer. The "name" should match the function name and the "utterances" should comprise a list of 5 example phrases that could be used to invoke the function. Use real values instead of placeholders. Input schema: {function_schema} """ llm_input = [Message(role="user", content=prompt)] output = llm(llm_input) if not output: raise Exception("No output generated for dynamic route") route_config = cls._parse_route_config(config=output) logger.info(f"Generated route config:\n{route_config}") if is_valid(route_config): route_config_dict = json.loads(route_config) route_config_dict["llm"] = llm return Route.from_dict(route_config_dict) raise Exception("No config generated") # Path: tests/unit/test_hybrid_layer.py import pytest from semantic_router.encoders import ( AzureOpenAIEncoder, BaseEncoder, BM25Encoder, CohereEncoder, OpenAIEncoder, TfidfEncoder, ) from semantic_router.hybrid_layer import HybridRouteLayer from semantic_router.route import Route def mock_encoder_call(utterances): # Define a mapping of utterances to return values mock_responses = { "Hello": [0.1, 0.2, 0.3], "Hi": [0.4, 0.5, 0.6], "Goodbye": [0.7, 0.8, 0.9], "Bye": [1.0, 1.1, 1.2], "Au revoir": [1.3, 1.4, 1.5], } return [mock_responses.get(u, [0, 0, 0]) for u in utterances] @pytest.fixture def base_encoder(mocker): mock_base_encoder = BaseEncoder(name="test-encoder", score_threshold=0.5) mocker.patch.object(BaseEncoder, "__call__", return_value=[[0.1, 0.2, 0.3]]) return mock_base_encoder @pytest.fixture def cohere_encoder(mocker): mocker.patch.object(CohereEncoder, "__call__", side_effect=mock_encoder_call) return CohereEncoder(name="test-cohere-encoder", cohere_api_key="test_api_key") @pytest.fixture def openai_encoder(mocker): mocker.patch.object(OpenAIEncoder, "__call__", side_effect=mock_encoder_call) return OpenAIEncoder(name="test-openai-encoder", openai_api_key="test_api_key") @pytest.fixture def azure_encoder(mocker): mocker.patch.object(AzureOpenAIEncoder, "__call__", side_effect=mock_encoder_call) return AzureOpenAIEncoder( deployment_name="test-deployment", azure_endpoint="test_endpoint", api_key="test_api_key", api_version="test_version", model="test_model", ) def bm25_encoder(mocker): mocker.patch.object(BM25Encoder, "__call__", side_effect=mock_encoder_call) return BM25Encoder(name="test-bm25-encoder") @pytest.fixture def tfidf_encoder(mocker): mocker.patch.object(TfidfEncoder, "__call__", side_effect=mock_encoder_call) return TfidfEncoder(name="test-tfidf-encoder") @pytest.fixture def routes(): return [ Route(name="Route 1", utterances=["Hello", "Hi"]), Route(name="Route 2", utterances=["Goodbye", "Bye", "Au revoir"]), ] sparse_encoder = BM25Encoder(use_default_params=False) sparse_encoder.fit(["The quick brown fox", "jumps over the lazy dog", "Hello, world!"]) class TestHybridRouteLayer: def test_initialization(self, openai_encoder, routes): route_layer = HybridRouteLayer( encoder=openai_encoder, sparse_encoder=sparse_encoder, routes=routes ) assert route_layer.index is not None and route_layer.categories is not None assert openai_encoder.score_threshold == 0.82 assert route_layer.score_threshold == 0.82 assert len(route_layer.index) == 5 assert len(set(route_layer.categories)) == 2 def test_initialization_different_encoders(self, cohere_encoder, openai_encoder): route_layer_cohere = HybridRouteLayer( encoder=cohere_encoder, sparse_encoder=sparse_encoder ) assert route_layer_cohere.score_threshold == 0.3 route_layer_openai = HybridRouteLayer( encoder=openai_encoder, sparse_encoder=sparse_encoder ) assert route_layer_openai.score_threshold == 0.82 def test_add_route(self, openai_encoder): route_layer = HybridRouteLayer( encoder=openai_encoder, sparse_encoder=sparse_encoder ) route = Route(name="Route 3", utterances=["Yes", "No"]) route_layer._add_routes([route]) assert route_layer.index is not None and route_layer.categories is not None
assert len(route_layer.index) == 2
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: baaivision/JudgeLM # Path: judgelm/conversation.py class SeparatorStyle(IntEnum): """Separator styles.""" ADD_COLON_SINGLE = auto() ADD_COLON_TWO = auto() ADD_COLON_SPACE_SINGLE = auto() NO_COLON_SINGLE = auto() NO_COLON_TWO = auto() ADD_NEW_LINE_SINGLE = auto() LLAMA2 = auto() CHATGLM = auto() CHATML = auto() CHATINTERN = auto() DOLLY = auto() RWKV = auto() PHOENIX = auto() ROBIN = auto() # Path: judgelm/constants.py LOGDIR = os.getenv("LOGDIR", ".") # Path: judgelm/constants.py WORKER_API_TIMEOUT = int(os.getenv("JUDGELM_WORKER_API_TIMEOUT", 100)) # Path: judgelm/constants.py class ErrorCode(IntEnum): """ https://platform.openai.com/docs/guides/error-codes/api-errors """ VALIDATION_TYPE_ERROR = 40001 INVALID_AUTH_KEY = 40101 INCORRECT_AUTH_KEY = 40102 NO_PERMISSION = 40103 INVALID_MODEL = 40301 PARAM_OUT_OF_RANGE = 40302 CONTEXT_OVERFLOW = 40303 RATE_LIMIT = 42901 QUOTA_EXCEEDED = 42902 ENGINE_OVERLOADED = 42903 INTERNAL_ERROR = 50001 CUDA_OUT_OF_MEMORY = 50002 GRADIO_REQUEST_ERROR = 50003 GRADIO_STREAM_UNKNOWN_ERROR = 50004 CONTROLLER_NO_WORKER = 50005 CONTROLLER_WORKER_TIMEOUT = 50006 # Path: judgelm/constants.py MODERATION_MSG = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE FIX YOUR INPUT AND TRY AGAIN." # Path: judgelm/constants.py CONVERSATION_LIMIT_MSG = "YOU HAVE REACHED THE CONVERSATION LENGTH LIMIT. PLEASE CLEAR HISTORY AND START A NEW CONVERSATION." # Path: judgelm/constants.py SERVER_ERROR_MSG = ( "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**" ) # Path: judgelm/constants.py INACTIVE_MSG = "THIS SESSION HAS BEEN INACTIVE FOR TOO LONG. PLEASE REFRESH THIS PAGE." # Path: judgelm/constants.py INPUT_CHAR_LEN_LIMIT = int(os.getenv("JUDGELM_INPUT_CHAR_LEN_LIMIT", 2560)) # Path: judgelm/constants.py CONVERSATION_TURN_LIMIT = 50 # Path: judgelm/constants.py SESSION_EXPIRATION_TIME = 3600 # Path: judgelm/model/model_adapter.py def get_conversation_template(model_path: str) -> Conversation: """Get the default conversation template.""" adapter = get_model_adapter(model_path) return adapter.get_default_conv_template(model_path) # Path: judgelm/model/model_registry.py def register_model_info( full_names: List[str], simple_name: str, link: str, description: str ): def get_model_info(name: str) -> ModelInfo: # Path: judgelm/serve/api_provider.py def anthropic_api_stream_iter(model_name, prompt, temperature, top_p, max_new_tokens): import anthropic c = anthropic.Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"]) # Make requests gen_params = { "model": model_name, "prompt": prompt, "temperature": temperature, "top_p": top_p, } logger.info(f"==== request ====\n{gen_params}") res = c.completions.create( prompt=prompt, stop_sequences=[anthropic.HUMAN_PROMPT], max_tokens_to_sample=max_new_tokens, temperature=temperature, top_p=top_p, model=model_name, stream=True, ) text = "" for chunk in res: text += chunk.completion data = { "text": text, "error_code": 0, } yield data # Path: judgelm/serve/api_provider.py def openai_api_stream_iter(model_name, messages, temperature, top_p, max_new_tokens): import openai # Make requests gen_params = { "model": model_name, "prompt": messages, "temperature": temperature, "top_p": top_p, } logger.info(f"==== request ====\n{gen_params}") res = openai.ChatCompletion.create( model=model_name, messages=messages, temperature=temperature, stream=True ) text = "" for chunk in res: text += chunk["choices"][0]["delta"].get("content", "") data = { "text": text, "error_code": 0, } yield data # Path: judgelm/serve/api_provider.py def palm_api_stream_iter(chat, message, temperature, top_p, max_new_tokens): parameters = { "temperature": temperature, "top_p": top_p, "max_output_tokens": max_new_tokens, } gen_params = { "model": "palm-2", "prompt": message, } gen_params.update(parameters) logger.info(f"==== request ====\n{gen_params}") response = chat.send_message(message, **parameters) content = response.text pos = 0 while pos < len(content): # This is a fancy way to simulate token generation latency combined # with a Poisson process. pos += random.randint(10, 20) time.sleep(random.expovariate(50)) data = { "text": content[:pos], "error_code": 0, } yield data # Path: judgelm/serve/api_provider.py def init_palm_chat(model_name): import vertexai # pip3 install google-cloud-aiplatform from vertexai.preview.language_models import ChatModel project_id = os.environ["GCP_PROJECT_ID"] location = "us-central1" vertexai.init(project=project_id, location=location) chat_model = ChatModel.from_pretrained(model_name) chat = chat_model.start_chat(examples=[]) return chat # Path: judgelm/utils.py def extract_jsonl(file_path): def save_jsonl(data_list, file_path): def build_logger(logger_name, logger_filename): def __init__(self, logger, log_level=logging.INFO): def __getattr__(self, attr): def write(self, buf): def flush(self): def disable_torch_init(): def get_gpu_memory(max_gpus=None): def violates_moderation(text): def clean_flant5_ckpt(ckpt_path): def pretty_print_semaphore(semaphore): def iter_over_async( async_gen: AsyncGenerator, event_loop: AbstractEventLoop ) -> Generator: async def get_next(): def detect_language(text: str) -> str: def parse_gradio_auth_creds(filename: str): def is_partial_stop(output: str, stop_str: str): def _make_r_io_base(f, mode: str): def jload(f, mode="r"): def jlload(f, mode='r'): def run_cmd(cmd: str): def is_sentence_complete(output: str): def get_context_length(config): class StreamToLogger(object): SEQUENCE_LENGTH_KEYS = [ "max_sequence_length", "seq_length", "max_position_embeddings", "max_seq_len", "model_max_length", ] # Path: judgelm/serve/gradio_web_server_v2.py import argparse import datetime import json import os import random import time import uuid import gradio as gr import requests from collections import defaultdict from judgelm.conversation import SeparatorStyle from judgelm.constants import ( LOGDIR, WORKER_API_TIMEOUT, ErrorCode, MODERATION_MSG, CONVERSATION_LIMIT_MSG, SERVER_ERROR_MSG, INACTIVE_MSG, INPUT_CHAR_LEN_LIMIT, CONVERSATION_TURN_LIMIT, SESSION_EXPIRATION_TIME, ) from judgelm.model.model_adapter import get_conversation_template from judgelm.model.model_registry import model_info from judgelm.serve.api_provider import ( anthropic_api_stream_iter, openai_api_stream_iter, palm_api_stream_iter, init_palm_chat, ) from judgelm.utils import ( build_logger, violates_moderation, get_window_url_params_js, parse_gradio_auth_creds, ) repetition_penalty = 1.2 else: repetition_penalty = 1.0 stream_iter = model_worker_stream_iter( conv, model_name, worker_addr, prompt, temperature, repetition_penalty, top_p, max_new_tokens, ) conv.update_last_message("▌") yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 6 try: for data in stream_iter: if data["error_code"] == 0: output = data["text"].strip() if "vicuna" in model_name: output = post_process_code(output) conv.update_last_message(output + "▌") yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 6 else: output = data["text"] + f"\n\n(error_code: {data['error_code']})" conv.update_last_message(output) yield (state, state.to_gradio_chatbot()) + ( disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, disable_btn, ) return time.sleep(0.015) except requests.exceptions.RequestException as e: conv.update_last_message( f"{SERVER_ERROR_MSG}\n\n" f"(error_code: {ErrorCode.GRADIO_REQUEST_ERROR}, {e})" ) yield (state, state.to_gradio_chatbot()) + ( disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, disable_btn, ) return except Exception as e: conv.update_last_message( f"{SERVER_ERROR_MSG}\n\n" f"(error_code: {ErrorCode.GRADIO_STREAM_UNKNOWN_ERROR}, {e})" ) yield (state, state.to_gradio_chatbot()) + ( disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, disable_btn, ) return # Delete "▌" conv.update_last_message(conv.messages[-1][-1][:-1]) yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 6 finish_tstamp = time.time() logger.info(f"{output}") with open(get_conv_log_filename(), "a") as fout: data = { "tstamp": round(finish_tstamp, 4), "type": "chat", "model": model_name, "gen_params": { "temperature": temperature, "top_p": top_p, "max_new_tokens": max_new_tokens, }, "start": round(start_tstamp, 4), "finish": round(finish_tstamp, 4), "state": state.dict(), "ip": request.client.host, } fout.write(json.dumps(data) + "\n") def add_answer(answer_num): return_list = [] for i in range(int(answer_num)+1): return_list.append(gr.update(visible=True)) for i in range(int(answer_num)+1, 10): return_list.append(gr.update(visible=False)) return (gr.update(visible=True), ) * int(answer_num) + (gr.update(visible=True, value=""), ) + ("", ) * (9-int(answer_num)) + (answer_num+1, enable_btn) def reduce_answer(answer_num): if int(answer_num) - 1 == 2: return (gr.update(visible=True), ) * int(answer_num-1) + (gr.update(visible=False, value=""), ) + ("", ) * (10-int(answer_num)) + (answer_num-1, disable_btn) else: return (gr.update(visible=True), ) * int(answer_num-1) + (gr.update(visible=False, value=""), ) + ("", ) * (10-int(answer_num)) + (answer_num-1, enable_btn) block_css = """ h1 { text-align: center; } #notice_markdown { font-size: 104% } #notice_markdown th { display: none; } #notice_markdown td {
padding-top: 6px;
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: EulerSearch/embedding_studio # Path: embedding_studio/core/config.py class Settings(BaseSettings): API_V1_STR: str = "/api/v1" SECRET_KEY: str = secrets.token_urlsafe(32) ACCESS_TOKEN_EXPIRE_MINUTES: int = 60 * 24 * 8 BACKEND_CORS_ORIGINS: List[AnyHttpUrl] = [] FINETUNING_MONGO_HOST: str = os.getenv("FINETUNING_MONGO_HOST", "mongo") FINETUNING_MONGO_PORT: int = os.getenv("FINETUNING_MONGO_PORT", 27017) FINETUNING_MONGO_DB_NAME: str = os.getenv( "FINETUNING_MONGO_DB_NAME", "embedding_studio" ) FINETUNING_MONGO_USERNAME: str = os.getenv( "FINETUNING_MONGO_USERNAME", "root" ) FINETUNING_MONGO_PASSWORD: str = os.getenv( "FINETUNING_MONGO_PASSWORD", "mongopassword" ) FINETUNING_MONGO_URL: str = ( f"mongodb://{FINETUNING_MONGO_USERNAME}:{FINETUNING_MONGO_PASSWORD}@" f"{FINETUNING_MONGO_HOST}:{FINETUNING_MONGO_PORT}" ) CLICKSTREAM_MONGO_HOST: str = os.getenv("CLICKSTREAM_MONGO_HOST", "mongo") CLICKSTREAM_MONGO_PORT: int = os.getenv("CLICKSTREAM_MONGO_PORT", 27017) CLICKSTREAM_MONGO_DB_NAME: str = os.getenv( "CLICKSTREAM_MONGO_DB_NAME", "embedding_studio" ) CLICKSTREAM_MONGO_USERNAME: str = os.getenv( "CLICKSTREAM_MONGO_USERNAME", "root" ) CLICKSTREAM_MONGO_PASSWORD: str = os.getenv( "CLICKSTREAM_MONGO_PASSWORD", "mongopassword" ) CLICKSTREAM_MONGO_URL: str = ( f"mongodb://{CLICKSTREAM_MONGO_USERNAME}:{CLICKSTREAM_MONGO_PASSWORD}@" f"{CLICKSTREAM_MONGO_HOST}:{CLICKSTREAM_MONGO_PORT}" ) REDIS_HOST: str = os.getenv("REDIS_HOST", "localhost") REDIS_PORT: int = os.getenv("REDIS_PORT", 6379) REDIS_PASSWORD: str = os.getenv("REDIS_PASSWORD", "redispassword") REDIS_URL: str = f"redis://{REDIS_HOST}:{REDIS_PORT}/0" MINIO_HOST: str = os.getenv("MINIO_HOST", "localhost") MINIO_PORT: int = os.getenv("MINIO_PORT", 9000) MINIO_ROOT_USER: str = os.getenv("MINIO_ROOT_USER", "root") MINIO_ROOT_PASSWORD: str = os.getenv( "MINIO_ROOT_PASSWORD", "miniopassword" ) MINIO_DEFAULT_BUCKETS: str = os.getenv( "MINIO_DEFAULT_BUCKETS", "embeddingstudio" ) MINIO_ACCESS_KEY: str = os.getenv( "MINIO_ACCESS_KEY", "mtGNiEvoTL6C0EXAMPLE" ) MINIO_SECRET_KEY: str = os.getenv( "MINIO_SECRET_KEY", "HY5JserXAaWmphNyCpQPEXAMPLEKEYEXAMPLEKEY" ) MYSQL_HOST: str = os.getenv("MYSQL_HOST", "localhost") MYSQL_PORT: int = os.getenv("MYSQL_PORT", 3306) MYSQL_DATABASE: str = os.getenv("MYSQL_DATABASE", "mlflow") MYSQL_USER: str = os.getenv("MYSQL_USER", "mlflow_user") MYSQL_PASSWORD: str = os.getenv("MYSQL_PASSWORD", "Baxp3O5rUvpIxiD77BfZ") MYSQL_ROOT_PASSWORD: str = os.getenv( "MYSQL_ROOT_PASSWORD", "PrK5qmPTDsm2IYKvHVG8" ) MLFLOW_HOST: str = os.getenv("MLFLOW_HOST", "localhost") MLFLOW_PORT: int = os.getenv("MLFLOW_PORT", 5001) MLFLOW_TRACKING_URI: str = f"http://{MLFLOW_HOST}:{MLFLOW_PORT}" ES_PLUGINS_PATH: str = os.getenv("ES_PLUGINS_PATH", "plugins") FINE_TUNING_WORKER_MAX_RETRIES: int = os.getenv( "FINE_TUNING_WORKER_MAX_RETRIES", 3 ) FINE_TUNING_WORKER_TIME_LIMIT: int = os.getenv( "FINE_TUNING_WORKER_TIME_LIMIT", 18000000 ) DEFAULT_MAX_ATTEMPTS: int = os.getenv("DEFAULT_MAX_ATTEMPTS", 3) DEFAULT_WAIT_TIME_SECONDS: float = os.getenv( "DEFAULT_WAIT_TIME_SECONDS", 3.0 ) S3_READ_CREDENTIALS_ATTEMPTS: int = os.getenv( "S3_READ_CREDENTIALS_ATTEMPTS", DEFAULT_MAX_ATTEMPTS ) S3_READ_WAIT_TIME_SECONDS: float = os.getenv( "S3_READ_WAIT_TIME_SECONDS", DEFAULT_WAIT_TIME_SECONDS ) S3_DOWNLOAD_DATA_ATTEMPTS: int = os.getenv( "S3_DOWNLOAD_DATA_ATTEMPTS", DEFAULT_MAX_ATTEMPTS ) S3_DOWNLOAD_DATA_WAIT_TIME_SECONDS: float = os.getenv( "S3_DOWNLOAD_DATA_WAIT_TIME_SECONDS", DEFAULT_WAIT_TIME_SECONDS ) MLFLOW_LOG_METRIC_ATTEMPTS: int = os.getenv( "MLFLOW_LOG_METRIC_ATTEMPTS", DEFAULT_MAX_ATTEMPTS ) MLFLOW_LOG_METRIC_WAIT_TIME_SECONDS: float = os.getenv( "MLFLOW_LOG_METRIC_WAIT_TIME_SECONDS", DEFAULT_WAIT_TIME_SECONDS ) MLFLOW_LOG_PARAM_ATTEMPTS: int = os.getenv( "MLFLOW_LOG_PARAM_ATTEMPTS", DEFAULT_MAX_ATTEMPTS ) MLFLOW_LOG_PARAM_WAIT_TIME_SECONDS: float = os.getenv( "MLFLOW_LOG_PARAM_WAIT_TIME_SECONDS", DEFAULT_WAIT_TIME_SECONDS ) MLFLOW_LOG_MODEL_ATTEMPTS: int = os.getenv( "MLFLOW_LOG_MODEL_ATTEMPTS", DEFAULT_MAX_ATTEMPTS ) MLFLOW_LOG_MODEL_WAIT_TIME_SECONDS: float = os.getenv( "MLFLOW_LOG_MODEL_WAIT_TIME_SECONDS", DEFAULT_WAIT_TIME_SECONDS ) MLFLOW_LOAD_MODEL_ATTEMPTS: int = os.getenv( "MLFLOW_LOAD_MODEL_ATTEMPTS", DEFAULT_MAX_ATTEMPTS ) MLFLOW_LOAD_MODEL_WAIT_TIME_SECONDS: float = os.getenv( "MLFLOW_LOAD_MODEL_WAIT_TIME_SECONDS", DEFAULT_WAIT_TIME_SECONDS ) MLFLOW_DELETE_MODEL_ATTEMPTS: int = os.getenv( "MLFLOW_DELETE_MODEL_ATTEMPTS", DEFAULT_MAX_ATTEMPTS ) MLFLOW_DELETE_MODEL_WAIT_TIME_SECONDS: float = os.getenv( "MLFLOW_DELETE_MODEL_WAIT_TIME_SECONDS", DEFAULT_WAIT_TIME_SECONDS ) MLFLOW_SEARCH_RUNS_ATTEMPTS: int = os.getenv( "MLFLOW_SEARCH_RUNS_ATTEMPTS", DEFAULT_MAX_ATTEMPTS ) MLFLOW_SEARCH_RUNS_WAIT_TIME_SECONDS: float = os.getenv( "MLFLOW_SEARCH_RUNS_WAIT_TIME_SECONDS", DEFAULT_WAIT_TIME_SECONDS ) MLFLOW_END_RUN_ATTEMPTS: int = os.getenv( "MLFLOW_END_RUN_ATTEMPTS", DEFAULT_MAX_ATTEMPTS ) MLFLOW_END_RUN_WAIT_TIME_SECONDS: float = os.getenv( "MLFLOW_END_RUN_WAIT_TIME_SECONDS", DEFAULT_WAIT_TIME_SECONDS ) MLFLOW_GET_RUN_ATTEMPTS: int = os.getenv( "MLFLOW_GET_RUN_ATTEMPTS", DEFAULT_MAX_ATTEMPTS ) MLFLOW_GET_RUN_WAIT_TIME_SECONDS: float = os.getenv( "MLFLOW_GET_RUN_WAIT_TIME_SECONDS", DEFAULT_WAIT_TIME_SECONDS ) MLFLOW_SEARCH_EXPERIMENTS_ATTEMPTS: int = os.getenv( "MLFLOW_SEARCH_EXPERIMENTS_ATTEMPTS", DEFAULT_MAX_ATTEMPTS ) MLFLOW_SEARCH_EXPERIMENTS_WAIT_TIME_SECONDS: float = os.getenv( "MLFLOW_SEARCH_EXPERIMENTS_WAIT_TIME_SECONDS", DEFAULT_WAIT_TIME_SECONDS, ) MLFLOW_DELETE_EXPERIMENT_ATTEMPTS: int = os.getenv( "MLFLOW_DELETE_EXPERIMENT_ATTEMPTS", DEFAULT_MAX_ATTEMPTS ) MLFLOW_DELETE_EXPERIMENT_WAIT_TIME_SECONDS: float = os.getenv( "MLFLOW_DELETE_EXPERIMENT_WAIT_TIME_SECONDS", DEFAULT_WAIT_TIME_SECONDS ) MLFLOW_CREATE_EXPERIMENT_ATTEMPTS: int = os.getenv( "MLFLOW_CREATE_EXPERIMENT_ATTEMPTS", DEFAULT_MAX_ATTEMPTS ) MLFLOW_CREATE_EXPERIMENT_WAIT_TIME_SECONDS: float = os.getenv( "MLFLOW_CREATE_EXPERIMENT_WAIT_TIME_SECONDS", DEFAULT_WAIT_TIME_SECONDS ) MLFLOW_GET_EXPERIMENT_ATTEMPTS: int = os.getenv( "MLFLOW_GET_EXPERIMENT_ATTEMPTS", DEFAULT_MAX_ATTEMPTS ) MLFLOW_GET_EXPERIMENT_WAIT_TIME_SECONDS: float = os.getenv( "MLFLOW_GET_EXPERIMENT_WAIT_TIME_SECONDS", DEFAULT_WAIT_TIME_SECONDS ) CLICKSTREAM_TIME_MAX_DELTA_MINUS_SEC: int = os.getenv( "CLICKSTREAM_TIME_MAX_DELTA_MINUS_SEC", 12 * 60 * 60 ) CLICKSTREAM_TIME_MAX_DELTA_PLUS_SEC: int = os.getenv( "CLICKSTREAM_TIME_MAX_DELTA_PLUS_SEC", 5 * 60 ) # Path: embedding_studio/embeddings/models/interface.py class EmbeddingsModelInterface(pl.LightningModule): def __init__(self, same_query_and_items: bool = False): """In search we have two entities, which could be multi domain: query and search result (item). This is the interface we used in fine-tuning procedure. :param same_query_and_items: are query and items models acutally the same model (default: False) """ super(EmbeddingsModelInterface, self).__init__() self.same_query_and_items = same_query_and_items @abstractmethod def get_query_model_params(self) -> Iterator[Parameter]: pass @abstractmethod def get_items_model_params(self) -> Iterator[Parameter]: pass @abstractmethod def fix_query_model(self, num_fixed_layers: int): """One of fine-tuning hyperparams is num of fixed layers at a query model :param num_fixed_layers: how many layers to fix """ @abstractmethod def unfix_query_model(self): """Unfix all layers of a query model.""" @abstractmethod def fix_item_model(self, num_fixed_layers: int): """One of fine-tuning hyperparams is num of fixed layers at an item model :param num_fixed_layers: how many layers to fix """ @abstractmethod def unfix_item_model(self): """Unfix all layers of an item model.""" @abstractmethod def forward_query(self, query: Any) -> FloatTensor: pass @abstractmethod def forward_items(self, items: List[Any]) -> FloatTensor: pass # Path: embedding_studio/utils/mlflow_utils.py def get_experiment_id_by_name(experiment_name: str) -> str: """ Given an experiment name, this function returns the experiment ID. """ experiment = mlflow.get_experiment_by_name(experiment_name) return experiment.experiment_id if experiment else None # Path: embedding_studio/utils/mlflow_utils.py def get_run_id_by_name(experiment_id: str, run_name: str) -> str: """ Given an experiment ID and run name, this function returns the run ID associated with that run name within the specified experiment. """ runs = mlflow.search_runs(experiment_ids=[experiment_id]) if runs.shape[0] == 0: return None # Filter runs by the given run name matching_runs = runs[runs.get("tags.mlflow.runName") == run_name] # Return run_id if found, else return None return matching_runs.iloc[0]["run_id"] if not matching_runs.empty else None # Path: embedding_studio/workers/fine_tuning/experiments/finetuning_iteration.py EXPERIMENT_PREFIX = "iteration" # Path: embedding_studio/workers/fine_tuning/experiments/finetuning_iteration.py class FineTuningIteration(BaseModel): """Fine tuning iteration. :param batch_id: session batch id :param plugin_name: name of tuned embedding (default: "") """ batch_id: str = "" plugin_name: str = "" class Config: arbitrary_types_allowed = True def __str__(self) -> str: return ( f"{EXPERIMENT_PREFIX} / {self.plugin_name} / " + f"{self.batch_id}" ) # Path: embedding_studio/workers/fine_tuning/experiments/finetuning_params.py class FineTuningParams(BaseModel): """Params of fine-tuning procedure :param num_fixed_layers: number of fixed embeddings layers :param query_lr: learning rate of query model optimizer :param items_lr: learning rate of items model optimizer :param query_weight_decay: weight decay of query model optimizer :param items_weight_decay: weight decay of items model optimizer :param margin: margin from MarginRankingLoss :param not_irrelevant_only: use only not irrelevant sessions :param negative_downsampling: ratio of negative samples to be used :param min_abs_difference_threshold: filter out soft pairs abs(neg_dist - pos_dist) < small value (default: 0.0) :param max_abs_difference_threshold: filter out hard pairs abs(neg_dist - pos_dist) > huge value (default: 1.0) :param examples_order: order of passing examples to a trainer (default: None) """ num_fixed_layers: int query_lr: float items_lr: float query_weight_decay: float items_weight_decay: float margin: float not_irrelevant_only: bool negative_downsampling: float min_abs_difference_threshold: float = 0.0 max_abs_difference_threshold: float = 1.0 examples_order: List[ExamplesType] = [ExamplesType.all_examples] class Config: arbitrary_types_allowed = True @validator("examples_order", pre=True, always=True) def validate_examples_order(cls, value): if isinstance(value, str): value = list(map(int, value.split(","))) elif isinstance(value, tuple): value = list(value) return [ExamplesType(v) for v in value] @validator("items_lr", "query_lr", pre=True, always=True) def validate_positive_float(cls, value): if not (isinstance(value, float) and value > 0): raise ValueError(f"{value} must be a positive float") return value @validator( "items_weight_decay", "query_weight_decay", pre=True, always=True ) def validate_non_negative_float(cls, value): if not (isinstance(value, float) and value >= 0): raise ValueError(f"{value} must be a non-negative float") return value @validator("margin", pre=True, always=True) def validate_non_negative_float_margin(cls, value): if not (isinstance(value, float) and value >= 0): raise ValueError(f"{value} must be a non-negative float") return value @validator("num_fixed_layers", pre=True, always=True) def validate_non_negative_int(cls, value): if not (isinstance(value, int) and value >= 0): raise ValueError(f"{value} must be a non-negative integer") return value @root_validator(skip_on_failure=True) def validate_example_order(cls, values): examples_order = values.get("examples_order") if examples_order: if isinstance(examples_order, str): examples_order = list(map(int, examples_order.split(","))) elif isinstance(examples_order, tuple): examples_order = list(examples_order) values["examples_order"] = [ ExamplesType(v) for v in examples_order ] return values @property def id(self) -> str: # Convert the value to bytes (assuming it's a string) value_bytes: bytes = str(self).encode("utf-8") # Create a hash object hash_object = hashlib.sha256() # Update the hash object with the value hash_object.update(value_bytes) # Get the hexadecimal representation of the hash unique_id: str = hash_object.hexdigest() return unique_id def __str__(self) -> str: vals: List[str] = [] for key, value in sorted(dict(self).items()): value = ( ",".join(map(str, value)) if isinstance(value, list) else value ) vals.append(f"{key}: {value}") return " / ".join(vals) # Path: embedding_studio/workers/fine_tuning/experiments/metrics_accumulator.py class MetricsAccumulator: def __init__( self, name: str, calc_mean: bool = False, calc_sliding: bool = False, calc_min: bool = False, calc_max: bool = False, window_size: int = 10, ): """Accumulator of metric values + calculator of aggregations like mean, max, min, sliding_mean. :param name: metric name (metrics with other name will be ignored) :param calc_mean: should accumulator calculate mean value (default: False) :param calc_sliding: should accumulator calculate sliding mean value (default: False) :param calc_min: should accumulator calculate min value (default: False) :param calc_max: should accumulator calculate max value (default: False) :param window_size: size of sliding window (default: 10) """ if not isinstance(name, str) or len(name) == 0: raise ValueError("MetricsAccumulator's name should not be empty") self._name = name if not isinstance(calc_mean, bool): raise ValueError("calc_mean value should be bool") self._calc_mean = calc_mean if not isinstance(calc_sliding, bool): raise ValueError("calc_sliding value should be bool") self._calc_sliding = calc_sliding if not isinstance(calc_min, bool): raise ValueError("calc_min value should be bool") self._calc_min = calc_min if not isinstance(calc_max, bool): raise ValueError("calc_max value should be bool") self._calc_max = calc_max if not isinstance(window_size, int) or window_size <= 1: raise ValueError( "window_size value should be integer with value more than 1" ) self._window_size = window_size self._values = [] @property def name(self) -> str: return self._name def clear(self): """Clear accumulator""" self._values = [] def accumulate(self, value: MetricValue) -> List[Tuple[str, float]]: """Add metric value to an accumulator. :param value: metric to be accumulated :return: aggregations """ if self.name == value.name: self._values.append(value.value) return self.aggregate() return [] def aggregate(self) -> List[Tuple[str, float]]: """Aggregate accumulated metrics :return: metric aggregations (last, mean, sliding, min, max) """ aggregations: List[Tuple[str, float]] = [] if len(self._values) > 0: aggregations.append((self.name, self._values[-1])) if self._calc_mean: aggregations.append( (f"mean_{self.name}", float(np.mean(self._values))) ) if self._calc_sliding: slide_value = float( np.mean(self._values) if len(self._values) < self._window_size else np.mean(self._values[-self._window_size :]) ) aggregations.append((f"sliding_{self.name}", slide_value)) if self._calc_min: aggregations.append((f"min_{self.name}", np.min(self._values))) if self._calc_max: aggregations.append((f"max_{self.name}", np.max(self._values))) return aggregations # Path: embedding_studio/workers/fine_tuning/experiments/metrics_accumulator.py class MetricValue: def __init__(self, name: str, value: float): if not isinstance(name, str) or len(name) == 0: raise ValueError("MetricValue's name should not be empty") self._name = name if not isinstance(value, float): raise ValueError("MetricValue's value should not be numeric") self._value = value @property def name(self) -> str: return self._name @property def value(self) -> float: return self._value def add_prefix(self, prefix: str): self._name = f"{prefix}_{self._name}" return self # Path: embedding_studio/workers/fine_tuning/utils/config.py class RetryConfig(BaseModel): default_params: RetryParams = RetryParams() _specific_retries: Dict[str, RetryParams] = dict() def __getitem__(self, item: str) -> RetryParams: return self._specific_retries.get(item, self.default_params) def __setitem__(self, key: str, value: RetryParams): self._specific_retries[key] = value # Path: embedding_studio/workers/fine_tuning/utils/config.py class RetryParams(BaseModel): max_attempts: int = 3 wait_time_seconds: int = 3 # Path: embedding_studio/workers/fine_tuning/utils/exceptions.py class MaxAttemptsReachedException(Exception): def __init__(self, attempts: int): super(MaxAttemptsReachedException, self).__init__( f"Reached maximum number of attempts: {attempts}" ) # Path: embedding_studio/workers/fine_tuning/utils/retry.py def retry_method(name: str = None): def decorator(func): """Decorator to run provided class method with attempts""" def wrapper(self, *args, **kwargs): func_name = name if name else func.__name__ retry_params = self.retry_config[func_name] if ( retry_params.max_attempts is None or retry_params.max_attempts <= 1 ): return func(self, *args, **kwargs) attempts = 0 exception = None while attempts < retry_params.max_attempts: try: result = func(self, *args, **kwargs) # If the function succeeds, return the result return result except RequestException as e: if ( hasattr(e, "response") and e.response is not None and 500 <= e.response.status_code < 600 ): logger.error( f"Server Error (5xx): {e.response.status_code}" ) # Handle server error appropriately, e.g., retry, log, or raise a custom exception exception = e else: logger.exception(f"Request Exception: {e}") raise e except Timeout as e: logger.error(f"Timeout: {e}") exception = e except ConnectionError as e: logger.error(f"Connection error: {e}") exception = e except Exception as e: # Handle other request exceptions if ( hasattr(self, "attempt_exception_types") and type(e) in self.attempt_exception_types ) or ( hasattr(self, "is_retryable_error") and self.is_retryable_error(e) ): logger.error( f"Catch exception with type {type(e).__name__} that leads to new attempt" ) exception = e else: raise if exception is not None: logger.info( f"Attempt {attempts + 1} failed with error: {exception}" ) attempts += 1 time.sleep(retry_params.wait_time_seconds) raise MaxAttemptsReachedException( retry_params.max_attempts ) from exception return wrapper return decorator # Path: embedding_studio/workers/fine_tuning/experiments/experiments_tracker.py import logging import os import subprocess import urllib.parse import mlflow import numpy as np import pandas as pd from socket import setdefaulttimeout from typing import Dict, List, Optional, Tuple from mlflow.entities import Experiment from mlflow.exceptions import MlflowException, RestException from embedding_studio.core.config import settings from embedding_studio.embeddings.models.interface import ( EmbeddingsModelInterface, ) from embedding_studio.utils.mlflow_utils import ( get_experiment_id_by_name, get_run_id_by_name, ) from embedding_studio.workers.fine_tuning.experiments.finetuning_iteration import ( EXPERIMENT_PREFIX, FineTuningIteration, ) from embedding_studio.workers.fine_tuning.experiments.finetuning_params import ( FineTuningParams, ) from embedding_studio.workers.fine_tuning.experiments.metrics_accumulator import ( MetricsAccumulator, MetricValue, ) from embedding_studio.workers.fine_tuning.utils.config import ( RetryConfig, RetryParams, ) from embedding_studio.workers.fine_tuning.utils.exceptions import ( MaxAttemptsReachedException, ) from embedding_studio.workers.fine_tuning.utils.retry import retry_method INITIAL_EXPERIMENT_NAME: str = f"{EXPERIMENT_PREFIX} / initial" INITIAL_RUN_NAME: str = "initial_model" DEFAULT_TIMEOUT: int = 120000 MODEL_ARTIFACT_PATH = "model/data/model.pth" # MLFlow upload models using urllib3, if model is heavy enough provided default timeout is not enough # That's why increase it here. TODO: check from time to time whether this issue is resolved by MLFlow setdefaulttimeout(DEFAULT_TIMEOUT) logger = logging.getLogger(__name__) def _get_base_requirements(): try: logger.info("Generate requirements with poetry") # Run the poetry export command result = subprocess.run( [ "poetry", "export", f"--directory={os.path.dirname(__file__)}", "--with", "ml", "-f", "requirements.txt", "--without-hashes", ], capture_output=True, text=True, check=True, ) # Get the requirements from the standard output requirements = result.stdout.strip().split("\n") return requirements except subprocess.CalledProcessError as e:
print(f"Error running poetry export: {e}")
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: innnky/ar-vits # Path: module/commons.py def init_weights(m, mean=0.0, std=0.01): def get_padding(kernel_size, dilation=1): def convert_pad_shape(pad_shape): def intersperse(lst, item): def kl_divergence(m_p, logs_p, m_q, logs_q): def rand_gumbel(shape): def rand_gumbel_like(x): def slice_segments(x, ids_str, segment_size=4): def rand_slice_segments(x, x_lengths=None, segment_size=4): def get_timing_signal_1d( length, channels, min_timescale=1.0, max_timescale=1.0e4): def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4): def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1): def subsequent_mask(length): def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): def convert_pad_shape(pad_shape): def shift_1d(x): def sequence_mask(length, max_length=None): def generate_path(duration, mask): def clip_grad_value_(parameters, clip_value, norm_type=2): def squeeze(x, x_mask=None, n_sqz=2): def unsqueeze(x, x_mask=None, n_sqz=2): # Path: module/modules.py LRELU_SLOPE = 0.1 class LayerNorm(nn.Module): class ConvReluNorm(nn.Module): class DDSConv(nn.Module): class WN(torch.nn.Module): class ResBlock1(torch.nn.Module): class ResBlock2(torch.nn.Module): class Log(nn.Module): class Flip(nn.Module): class ElementwiseAffine(nn.Module): class ResidualCouplingLayer(nn.Module): class ConvFlow(nn.Module): class LinearNorm(nn.Module): class Mish(nn.Module): class Conv1dGLU(nn.Module): class ConvNorm(nn.Module): class MultiHeadAttention(nn.Module): class ScaledDotProductAttention(nn.Module): class MelStyleEncoder(nn.Module): class MelStyleEncoderVAE(nn.Module): class ActNorm(nn.Module): class InvConvNear(nn.Module): def __init__(self, channels, eps=1e-5): def forward(self, x): def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout): def forward(self, x, x_mask): def __init__(self, channels, kernel_size, n_layers, p_dropout=0.): def forward(self, x, x_mask, g=None): def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0): def forward(self, x, x_mask, g=None, **kwargs): def remove_weight_norm(self): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): def forward(self, x, x_mask=None): def remove_weight_norm(self): def __init__(self, channels, kernel_size=3, dilation=(1, 3)): def forward(self, x, x_mask=None): def remove_weight_norm(self): def forward(self, x, x_mask, reverse=False, **kwargs): def forward(self, x, *args, reverse=False, **kwargs): def __init__(self, channels): def forward(self, x, x_mask, reverse=False, **kwargs): def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=0, gin_channels=0, mean_only=False): def forward(self, x, x_mask, g=None, reverse=False): def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0): def forward(self, x, x_mask, g=None, reverse=False): def __init__(self, in_channels, out_channels, bias=True, spectral_norm=False, ): def forward(self, input): def __init__(self): def forward(self, x): def __init__(self, in_channels, out_channels, kernel_size, dropout): def forward(self, x): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, dilation=1, bias=True, spectral_norm=False, ): def forward(self, input): def __init__(self, n_head, d_model, d_k, d_v, dropout=0., spectral_norm=False): def forward(self, x, mask=None): def __init__(self, temperature, dropout): def forward(self, q, k, v, mask=None): def __init__(self, n_mel_channels=80, style_hidden=128, style_vector_dim=256, style_kernel_size=5, style_head=2, dropout=0.1): def temporal_avg_pool(self, x, mask=None): def forward(self, x, mask=None): def __init__(self, spec_channels, z_latent_dim, emb_dim): def reparameterize(self, mu, logvar): def forward(self, inputs, mask=None): def infer(self, inputs=None, random_sample=False, manual_latent=None): def __init__(self, channels, ddi=False, **kwargs): def forward(self, x, x_mask=None, g=None, reverse=False, **kwargs): def store_inverse(self): def set_ddi(self, ddi): def initialize(self, x, x_mask): def __init__(self, channels, n_split=4, no_jacobian=False, **kwargs): def forward(self, x, x_mask=None, g=None, reverse=False, **kwargs): def store_inverse(self): # Path: module/attentions.py class Encoder(nn.Module): class Decoder(nn.Module): class MultiHeadAttention(nn.Module): class FFN(nn.Module): class Depthwise_Separable_Conv1D(nn.Module): class Depthwise_Separable_TransposeConv1D(nn.Module): class FFT(nn.Module): class TransformerCouplingLayer(nn.Module): def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4,isflow=False, **kwargs): def forward(self, x, x_mask, g=None): def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs): def forward(self, x, x_mask, h, h_mask): def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False): def forward(self, x, c, attn_mask=None): def attention(self, query, key, value, mask=None): def _matmul_with_relative_values(self, x, y): def _matmul_with_relative_keys(self, x, y): def _get_relative_embeddings(self, relative_embeddings, length): def _relative_position_to_absolute_position(self, x): def _absolute_position_to_relative_position(self, x): def _attention_bias_proximal(self, length): def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False): def forward(self, x, x_mask): def _causal_padding(self, x): def _same_padding(self, x): def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, bias=True, padding_mode='zeros', # TODO: refine this type device=None, dtype=None ): def forward(self, input): def weight_norm(self): def remove_weight_norm(self): def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, bias=True, dilation=1, padding_mode='zeros', # TODO: refine this type device=None, dtype=None ): def forward(self, input): def weight_norm(self): def remove_weight_norm(self): def weight_norm_modules(module, name='weight', dim=0): def remove_weight_norm_modules(module, name='weight'): def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, isflow = False, **kwargs): def forward(self, x, x_mask, g = None): def __init__(self, channels, hidden_channels, kernel_size, n_layers, n_heads, p_dropout=0, filter_channels=0, mean_only=False, wn_sharing_parameter=None, gin_channels = 0 ): def forward(self, x, x_mask, g=None, reverse=False): # Path: module/commons.py def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) # Path: module/commons.py def get_padding(kernel_size, dilation=1): return int((kernel_size*dilation - dilation)/2) # Path: module/mrte_model.py class MRTE(nn.Module): def __init__(self, content_enc_channels=192, hidden_size=512, out_channels=192, kernel_size=5, n_heads=4, ge_layer = 2 ): super(MRTE, self).__init__() self.cross_attention = MultiHeadAttention(hidden_size,hidden_size,n_heads) self.c_pre = nn.Conv1d(content_enc_channels,hidden_size, 1) self.text_pre = nn.Conv1d(content_enc_channels,hidden_size, 1) self.c_post = nn.Conv1d(hidden_size,out_channels, 1) def forward(self, ssl_enc, ssl_mask, text, text_mask, ge, test=None): attn_mask = text_mask.unsqueeze(2) * ssl_mask.unsqueeze(-1) ssl_enc = self.c_pre(ssl_enc * ssl_mask) text_enc = self.text_pre(text * text_mask) if test != None: if test == 0: x = self.cross_attention(ssl_enc * ssl_mask, text_enc * text_mask, attn_mask) + ssl_enc + ge elif test == 1: x = ssl_enc + ge elif test ==2: x = self.cross_attention(ssl_enc*0 * ssl_mask, text_enc * text_mask, attn_mask) + ge else: raise ValueError("test should be 0,1,2") else: x = self.cross_attention(ssl_enc * ssl_mask, text_enc * text_mask, attn_mask) + ssl_enc + ge x = self.c_post(x * ssl_mask) return x # Path: module/quantize.py class ResidualVectorQuantizer(nn.Module): """Residual Vector Quantizer. Args: dimension (int): Dimension of the codebooks. n_q (int): Number of residual vector quantizers used. bins (int): Codebook size. decay (float): Decay for exponential moving average over the codebooks. kmeans_init (bool): Whether to use kmeans to initialize the codebooks. kmeans_iters (int): Number of iterations used for kmeans initialization. threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes that have an exponential moving average cluster size less than the specified threshold with randomly selected vector from the current batch. """ def __init__( self, dimension: int = 256, n_q: int = 8, bins: int = 1024, decay: float = 0.99, kmeans_init: bool = True, kmeans_iters: int = 50, threshold_ema_dead_code: int = 2, ): super().__init__() self.n_q = n_q self.dimension = dimension self.bins = bins self.decay = decay self.kmeans_init = kmeans_init self.kmeans_iters = kmeans_iters self.threshold_ema_dead_code = threshold_ema_dead_code self.vq = ResidualVectorQuantization( dim=self.dimension, codebook_size=self.bins, num_quantizers=self.n_q, decay=self.decay, kmeans_init=self.kmeans_init, kmeans_iters=self.kmeans_iters, threshold_ema_dead_code=self.threshold_ema_dead_code, ) def forward(self, x: torch.Tensor, n_q: tp.Optional[int] = None, layers: tp.Optional[list] = None) -> QuantizedResult: """Residual vector quantization on the given input tensor. Args: x (torch.Tensor): Input tensor. n_q (int): Number of quantizer used to quantize. Default: All quantizers. layers (list): Layer that need to return quantized. Defalt: None. Returns: QuantizedResult: The quantized (or approximately quantized) representation with the associated numbert quantizers and layer quantized required to return. """ n_q = n_q if n_q else self.n_q if layers and max(layers) >= n_q: raise ValueError(f'Last layer index in layers: A {max(layers)}. Number of quantizers in RVQ: B {self.n_q}. A must less than B.') quantized, codes, commit_loss, quantized_list = self.vq(x, n_q=n_q, layers=layers) return quantized, codes, torch.mean(commit_loss), quantized_list def encode(self, x: torch.Tensor, n_q: tp.Optional[int] = None, st: tp.Optional[int] = None) -> torch.Tensor: """Encode a given input tensor with the specified sample rate at the given bandwidth. The RVQ encode method sets the appropriate number of quantizer to use and returns indices for each quantizer. Args: x (torch.Tensor): Input tensor. n_q (int): Number of quantizer used to quantize. Default: All quantizers. st (int): Start to encode input from which layers. Default: 0. """ n_q = n_q if n_q else self.n_q st = st or 0 codes = self.vq.encode(x, n_q=n_q, st=st) return codes def decode(self, codes: torch.Tensor, st: int = 0) -> torch.Tensor: """Decode the given codes to the quantized representation. Args: codes (torch.Tensor): Input indices for each quantizer. st (int): Start to decode input codes from which layers. Default: 0. """ quantized = self.vq.decode(codes, st=st) return quantized # Path: text/symbols.py # Path: module/models.py import copy import math import torch from torch import nn from torch.nn import functional as F from module import commons from module import modules from module import attentions from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm from module.commons import init_weights, get_padding from module.mrte_model import MRTE from module.quantize import ResidualVectorQuantizer from text import symbols from torch.cuda.amp import autocast hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.pre = nn.Conv1d(in_channels, hidden_channels, 1) self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels) self.proj = nn.Conv1d(hidden_channels, out_channels, 1) self.norm = modules.LayerNorm(out_channels) def forward(self, x, x_lengths, g=None): x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) x = self.pre(x) * x_mask x = self.enc(x, x_mask, g=g) out = self.proj(x) * x_mask out = self.norm(out) return out class Generator(torch.nn.Module): def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0): super(Generator, self).__init__() self.num_kernels = len(resblock_kernel_sizes) self.num_upsamples = len(upsample_rates) self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3) resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2 self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): self.ups.append(weight_norm( ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)), k, u, padding=(k - u) // 2))) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = upsample_initial_channel // (2 ** (i + 1)) for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): self.resblocks.append(resblock(ch, k, d)) self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) self.ups.apply(init_weights) if gin_channels != 0: self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) def forward(self, x, g=None): x = self.conv_pre(x) if g is not None: x = x + self.cond(g) for i in range(self.num_upsamples): x = F.leaky_relu(x, modules.LRELU_SLOPE) x = self.ups[i](x) xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i * self.num_kernels + j](x) else: xs += self.resblocks[i * self.num_kernels + j](x) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.conv_post(x) x = torch.tanh(x) return x def remove_weight_norm(self): print('Removing weight norm...') for l in self.ups: remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() class DiscriminatorP(torch.nn.Module): def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): super(DiscriminatorP, self).__init__() self.period = period self.use_spectral_norm = use_spectral_norm norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList([ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))), ]) self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) def forward(self, x): fmap = [] # 1d to 2d b, c, t = x.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect") t = t + n_pad x = x.view(b, c, t // self.period, self.period) for l in self.convs: x = l(x) x = F.leaky_relu(x, modules.LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap
class DiscriminatorS(torch.nn.Module):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: nv-tlabs/vid2player3d # Path: vid2player/utils/konia_transform.py @torch.jit.script def quaternion_to_angle_axis( quaternion: torch.Tensor, eps: float = 1.0e-6, order: QuaternionCoeffOrder = QuaternionCoeffOrder.WXYZ ) -> torch.Tensor: """Convert quaternion vector to angle axis of rotation. The quaternion should be in (x, y, z, w) or (w, x, y, z) format. Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h Args: quaternion: tensor with quaternions. order: quaternion coefficient order. Note: 'xyzw' will be deprecated in favor of 'wxyz'. Return: tensor with angle axis of rotation. Shape: - Input: :math:`(*, 4)` where `*` means, any number of dimensions - Output: :math:`(*, 3)` Example: >>> quaternion = torch.rand(2, 4) # Nx4 >>> angle_axis = quaternion_to_angle_axis(quaternion) # Nx3 """ if not quaternion.shape[-1] == 4: raise ValueError(f"Input must be a tensor of shape Nx4 or 4. Got {quaternion.shape}") if not torch.jit.is_scripting(): if order.name not in QuaternionCoeffOrder.__members__.keys(): raise ValueError(f"order must be one of {QuaternionCoeffOrder.__members__.keys()}") if order == QuaternionCoeffOrder.XYZW: warnings.warn( "`XYZW` quaternion coefficient order is deprecated and" " will be removed after > 0.6. " "Please use `QuaternionCoeffOrder.WXYZ` instead." ) # unpack input and compute conversion q1: torch.Tensor = torch.tensor([]) q2: torch.Tensor = torch.tensor([]) q3: torch.Tensor = torch.tensor([]) cos_theta: torch.Tensor = torch.tensor([]) if order == QuaternionCoeffOrder.XYZW: q1 = quaternion[..., 0] q2 = quaternion[..., 1] q3 = quaternion[..., 2] cos_theta = quaternion[..., 3] else: cos_theta = quaternion[..., 0] q1 = quaternion[..., 1] q2 = quaternion[..., 2] q3 = quaternion[..., 3] sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 sin_theta: torch.Tensor = torch.sqrt((sin_squared_theta).clamp_min(eps)) two_theta: torch.Tensor = 2.0 * torch.where( cos_theta < 0.0, torch_safe_atan2(-sin_theta, -cos_theta), torch_safe_atan2(sin_theta, cos_theta) ) k_pos: torch.Tensor = safe_zero_division(two_theta, sin_theta, eps) k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] angle_axis[..., 0] += q1 * k angle_axis[..., 1] += q2 * k angle_axis[..., 2] += q3 * k return angle_axis # Path: vid2player/utils/konia_transform.py @torch.jit.script def angle_axis_to_quaternion( angle_axis: torch.Tensor, eps: float = 1.0e-6, order: QuaternionCoeffOrder = QuaternionCoeffOrder.WXYZ ) -> torch.Tensor: r"""Convert an angle axis to a quaternion. The quaternion vector has components in (x, y, z, w) or (w, x, y, z) format. Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h Args: angle_axis: tensor with angle axis. order: quaternion coefficient order. Note: 'xyzw' will be deprecated in favor of 'wxyz'. Return: tensor with quaternion. Shape: - Input: :math:`(*, 3)` where `*` means, any number of dimensions - Output: :math:`(*, 4)` Example: >>> angle_axis = torch.rand(2, 3) # Nx3 >>> quaternion = angle_axis_to_quaternion(angle_axis, order=QuaternionCoeffOrder.WXYZ) # Nx4 """ if not angle_axis.shape[-1] == 3: raise ValueError(f"Input must be a tensor of shape Nx3 or 3. Got {angle_axis.shape}") if not torch.jit.is_scripting(): if order.name not in QuaternionCoeffOrder.__members__.keys(): raise ValueError(f"order must be one of {QuaternionCoeffOrder.__members__.keys()}") if order == QuaternionCoeffOrder.XYZW: warnings.warn( "`XYZW` quaternion coefficient order is deprecated and" " will be removed after > 0.6. " "Please use `QuaternionCoeffOrder.WXYZ` instead." ) # unpack input and compute conversion a0: torch.Tensor = angle_axis[..., 0:1] a1: torch.Tensor = angle_axis[..., 1:2] a2: torch.Tensor = angle_axis[..., 2:3] theta_squared: torch.Tensor = a0 * a0 + a1 * a1 + a2 * a2 theta: torch.Tensor = torch.sqrt((theta_squared).clamp_min(eps)) half_theta: torch.Tensor = theta * 0.5 mask: torch.Tensor = theta_squared > 0.0 ones: torch.Tensor = torch.ones_like(half_theta) k_neg: torch.Tensor = 0.5 * ones k_pos: torch.Tensor = safe_zero_division(torch.sin(half_theta), theta, eps) k: torch.Tensor = torch.where(mask, k_pos, k_neg) w: torch.Tensor = torch.where(mask, torch.cos(half_theta), ones) quaternion: torch.Tensor = torch.zeros( size=angle_axis.shape[:-1] + (4,), dtype=angle_axis.dtype, device=angle_axis.device ) if order == QuaternionCoeffOrder.XYZW: quaternion[..., 0:1] = a0 * k quaternion[..., 1:2] = a1 * k quaternion[..., 2:3] = a2 * k quaternion[..., 3:4] = w else: quaternion[..., 1:2] = a0 * k quaternion[..., 2:3] = a1 * k quaternion[..., 3:4] = a2 * k quaternion[..., 0:1] = w return quaternion # Path: vid2player/utils/konia_transform.py @torch.jit.script def quaternion_to_rotation_matrix( quaternion: torch.Tensor, order: QuaternionCoeffOrder = QuaternionCoeffOrder.WXYZ ) -> torch.Tensor: r"""Converts a quaternion to a rotation matrix. The quaternion should be in (x, y, z, w) or (w, x, y, z) format. Args: quaternion: a tensor containing a quaternion to be converted. The tensor can be of shape :math:`(*, 4)`. order: quaternion coefficient order. Note: 'xyzw' will be deprecated in favor of 'wxyz'. Return: the rotation matrix of shape :math:`(*, 3, 3)`. Example: >>> quaternion = torch.tensor((0., 0., 0., 1.)) >>> quaternion_to_rotation_matrix(quaternion, order=QuaternionCoeffOrder.WXYZ) tensor([[-1., 0., 0.], [ 0., -1., 0.], [ 0., 0., 1.]]) """ if not isinstance(quaternion, torch.Tensor): raise TypeError(f"Input type is not a torch.Tensor. Got {type(quaternion)}") if not quaternion.shape[-1] == 4: raise ValueError(f"Input must be a tensor of shape (*, 4). Got {quaternion.shape}") if not torch.jit.is_scripting(): if order.name not in QuaternionCoeffOrder.__members__.keys(): raise ValueError(f"order must be one of {QuaternionCoeffOrder.__members__.keys()}") if order == QuaternionCoeffOrder.XYZW: warnings.warn( "`XYZW` quaternion coefficient order is deprecated and" " will be removed after > 0.6. " "Please use `QuaternionCoeffOrder.WXYZ` instead." ) # normalize the input quaternion quaternion_norm: torch.Tensor = normalize_quaternion(quaternion) # unpack the normalized quaternion components if order == QuaternionCoeffOrder.XYZW: x, y, z, w = quaternion_norm[..., 0], quaternion_norm[..., 1], quaternion_norm[..., 2], quaternion_norm[..., 3] else: w, x, y, z = quaternion_norm[..., 0], quaternion_norm[..., 1], quaternion_norm[..., 2], quaternion_norm[..., 3] # compute the actual conversion tx: torch.Tensor = 2.0 * x ty: torch.Tensor = 2.0 * y tz: torch.Tensor = 2.0 * z twx: torch.Tensor = tx * w twy: torch.Tensor = ty * w twz: torch.Tensor = tz * w txx: torch.Tensor = tx * x txy: torch.Tensor = ty * x txz: torch.Tensor = tz * x tyy: torch.Tensor = ty * y tyz: torch.Tensor = tz * y tzz: torch.Tensor = tz * z one: torch.Tensor = torch.tensor(1.0) matrix: torch.Tensor = torch.stack( ( one - (tyy + tzz), txy - twz, txz + twy, txy + twz, one - (txx + tzz), tyz - twx, txz - twy, tyz + twx, one - (txx + tyy), ), dim=-1, ).view(quaternion.shape[:-1] + (3, 3)) # if len(quaternion.shape) == 1: # matrix = torch.squeeze(matrix, dim=0) return matrix # Path: vid2player/utils/konia_transform.py @torch.jit.script def rotation_matrix_to_quaternion( rotation_matrix: torch.Tensor, eps: float = 1.0e-6, order: QuaternionCoeffOrder = QuaternionCoeffOrder.WXYZ ) -> torch.Tensor: r"""Convert 3x3 rotation matrix to 4d quaternion vector. The quaternion vector has components in (w, x, y, z) or (x, y, z, w) format. .. note:: The (x, y, z, w) order is going to be deprecated in favor of efficiency. Args: rotation_matrix: the rotation matrix to convert. eps: small value to avoid zero division. order: quaternion coefficient order. Note: 'xyzw' will be deprecated in favor of 'wxyz'. Return: the rotation in quaternion. Shape: - Input: :math:`(*, 3, 3)` - Output: :math:`(*, 4)` Example: >>> input = torch.rand(4, 3, 3) # Nx3x3 >>> output = rotation_matrix_to_quaternion(input, eps=torch.finfo(input.dtype).eps, ... order=QuaternionCoeffOrder.WXYZ) # Nx4 """ if not isinstance(rotation_matrix, torch.Tensor): raise TypeError(f"Input type is not a torch.Tensor. Got {type(rotation_matrix)}") if not rotation_matrix.shape[-2:] == (3, 3): raise ValueError(f"Input size must be a (*, 3, 3) tensor. Got {rotation_matrix.shape}") if not torch.jit.is_scripting(): if order.name not in QuaternionCoeffOrder.__members__.keys(): raise ValueError(f"order must be one of {QuaternionCoeffOrder.__members__.keys()}") if order == QuaternionCoeffOrder.XYZW: warnings.warn( "`XYZW` quaternion coefficient order is deprecated and" " will be removed after > 0.6. " "Please use `QuaternionCoeffOrder.WXYZ` instead." ) m00, m01, m02 = rotation_matrix[..., 0, 0], rotation_matrix[..., 0, 1], rotation_matrix[..., 0, 2] m10, m11, m12 = rotation_matrix[..., 1, 0], rotation_matrix[..., 1, 1], rotation_matrix[..., 1, 2] m20, m21, m22 = rotation_matrix[..., 2, 0], rotation_matrix[..., 2, 1], rotation_matrix[..., 2, 2] trace: torch.Tensor = m00 + m11 + m22 sq = torch.sqrt((trace + 1.0).clamp_min(eps)) * 2.0 # sq = 4 * qw. qw = 0.25 * sq qx = safe_zero_division(m21 - m12, sq) qy = safe_zero_division(m02 - m20, sq) qz = safe_zero_division(m10 - m01, sq) if order == QuaternionCoeffOrder.XYZW: trace_positive_cond = torch.stack((qx, qy, qz, qw), dim=-1) trace_positive_cond = torch.stack((qw, qx, qy, qz), dim=-1) sq = torch.sqrt((1.0 + m00 - m11 - m22).clamp_min(eps)) * 2.0 # sq = 4 * qx. qw = safe_zero_division(m21 - m12, sq) qx = 0.25 * sq qy = safe_zero_division(m01 + m10, sq) qz = safe_zero_division(m02 + m20, sq) if order == QuaternionCoeffOrder.XYZW: cond_1 = torch.stack((qx, qy, qz, qw), dim=-1) cond_1 = torch.stack((qw, qx, qy, qz), dim=-1) sq = torch.sqrt((1.0 + m11 - m00 - m22).clamp_min(eps)) * 2.0 # sq = 4 * qy. qw = safe_zero_division(m02 - m20, sq) qx = safe_zero_division(m01 + m10, sq) qy = 0.25 * sq qz = safe_zero_division(m12 + m21, sq) if order == QuaternionCoeffOrder.XYZW: cond_2 = torch.stack((qx, qy, qz, qw), dim=-1) cond_2 = torch.stack((qw, qx, qy, qz), dim=-1) sq = torch.sqrt((1.0 + m22 - m00 - m11).clamp_min(eps)) * 2.0 # sq = 4 * qz. qw = safe_zero_division(m10 - m01, sq) qx = safe_zero_division(m02 + m20, sq) qy = safe_zero_division(m12 + m21, sq) qz = 0.25 * sq if order == QuaternionCoeffOrder.XYZW: cond_3 = torch.stack((qx, qy, qz, qw), dim=-1) cond_3 = torch.stack((qw, qx, qy, qz), dim=-1) where_2 = torch.where((m11 > m22).unsqueeze(-1), cond_2, cond_3) where_1 = torch.where(((m00 > m11) & (m00 > m22)).unsqueeze(-1), cond_1, where_2) quaternion: torch.Tensor = torch.where((trace > 0.0).unsqueeze(-1), trace_positive_cond, where_1) return quaternion # Path: vid2player/utils/konia_transform.py @torch.jit.script def rotation_matrix_to_angle_axis(rotation_matrix: torch.Tensor) -> torch.Tensor: r"""Convert 3x3 rotation matrix to Rodrigues vector. Args: rotation_matrix: rotation matrix. Returns: Rodrigues vector transformation. Shape: - Input: :math:`(N, 3, 3)` - Output: :math:`(N, 3)` Example: >>> input = torch.rand(2, 3, 3) # Nx3x3 >>> output = rotation_matrix_to_angle_axis(input) # Nx3 """ if not isinstance(rotation_matrix, torch.Tensor): raise TypeError(f"Input type is not a torch.Tensor. Got {type(rotation_matrix)}") if not rotation_matrix.shape[-2:] == (3, 3): raise ValueError(f"Input size must be a (*, 3, 3) tensor. Got {rotation_matrix.shape}") quaternion: torch.Tensor = rotation_matrix_to_quaternion(rotation_matrix, order=QuaternionCoeffOrder.WXYZ) return quaternion_to_angle_axis(quaternion, order=QuaternionCoeffOrder.WXYZ) # Path: vid2player/utils/konia_transform.py @torch.jit.script def angle_axis_to_rotation_matrix(angle_axis: torch.Tensor) -> torch.Tensor: r"""Convert 3d vector of axis-angle rotation to 3x3 rotation matrix. Args: angle_axis: tensor of 3d vector of axis-angle rotations. Returns: tensor of 3x3 rotation matrices. Shape: - Input: :math:`(N, 3)` - Output: :math:`(N, 3, 3)` Example: >>> input = torch.rand(1, 3) # Nx3 >>> output = angle_axis_to_rotation_matrix(input) # Nx3x3 """ if not isinstance(angle_axis, torch.Tensor): raise TypeError("Input type is not a torch.Tensor. Got {}".format(type(angle_axis))) if not angle_axis.shape[-1] == 3: raise ValueError("Input size must be a (*, 3) tensor. Got {}".format(angle_axis.shape)) orig_shape = angle_axis.shape angle_axis = angle_axis.reshape(-1, 3) # stolen from ceres/rotation.h _angle_axis = torch.unsqueeze(angle_axis, dim=1) theta2 = torch.matmul(_angle_axis, _angle_axis.transpose(1, 2)) theta2 = torch.squeeze(theta2, dim=1) # compute rotation matrices rotation_matrix_normal = _compute_rotation_matrix(angle_axis, theta2) rotation_matrix_taylor = _compute_rotation_matrix_taylor(angle_axis) # create mask to handle both cases eps = 1e-6 mask = (theta2 > eps).view(-1, 1, 1).to(theta2.device) mask_pos = (mask).type_as(theta2) mask_neg = (mask == torch.tensor(False)).type_as(theta2) # noqa # create output pose matrix batch_size = angle_axis.shape[0] rotation_matrix = torch.eye(3).to(angle_axis.device).type_as(angle_axis) rotation_matrix = rotation_matrix.view(1, 3, 3).repeat(batch_size, 1, 1) # fill output matrix with masked values rotation_matrix[..., :3, :3] = mask_pos * rotation_matrix_normal + mask_neg * rotation_matrix_taylor rotation_matrix = rotation_matrix.view(orig_shape[:-1] + (3, 3)) return rotation_matrix # Nx3x3 # Path: vid2player/utils/torch_transform.py import numpy as np import torch from .konia_transform import quaternion_to_angle_axis, angle_axis_to_quaternion, quaternion_to_rotation_matrix, rotation_matrix_to_quaternion, rotation_matrix_to_angle_axis, angle_axis_to_rotation_matrix def normalize(x, eps: float = 1e-9): return x / x.norm(p=2, dim=-1).clamp(min=eps, max=None).unsqueeze(-1) @torch.jit.script def quat_mul(a, b): assert a.shape == b.shape shape = a.shape a = a.reshape(-1, 4) b = b.reshape(-1, 4) w1, x1, y1, z1 = a[:, 0], a[:, 1], a[:, 2], a[:, 3] w2, x2, y2, z2 = b[:, 0], b[:, 1], b[:, 2], b[:, 3] ww = (z1 + x1) * (x2 + y2) yy = (w1 - y1) * (w2 + z2) zz = (w1 + y1) * (w2 - z2) xx = ww + yy + zz
qq = 0.5 * (xx + (z1 - x1) * (x2 - y2))
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: vLAR-group/RayDF # Path: config.py def config_parser(): parser = configargparse.ArgumentParser() parser.add_argument('--config', is_config_file=True, help='config file path') parser.add_argument("--eval_only", action='store_true', help='only evaluation with pretrained model') # parameterization options parser.add_argument("--radius", type=float, default=1.5, help='radius of sphere for distance field') # training options parser.add_argument("--N_rand", type=int, default=8192, help='batch size') parser.add_argument("--N_iters", type=int, default=100000, help='number of epochs') parser.add_argument("--lrate", type=float, default=1e-4, help='learning rate') # classifier options parser.add_argument("--dist_thres", type=float, default=1e-2, help='threshold to determine if the query point is occluded for the sampled view') parser.add_argument("--vis_thres", type=float, default=0.5, help='threshold for binary classification') parser.add_argument("--netdepth_cls", type=int, default=8, help='layers in visibilit classifier') parser.add_argument("--netwidth_cls", type=int, default=512, help='channels per layer') parser.add_argument("--ext_layer_cls", type=int, default=1, help='number of layers to extract individual features') parser.add_argument("--pos_weight", type=float, default=1., help='positive weight for cross-entropy loss') # multiview optimization options parser.add_argument("--N_views", type=int, default=20, help='the number of reference views per ray') parser.add_argument("--w_rgb", type=float, default=1., help='weight of rgb loss') parser.add_argument("--ckpt_path_cls", type=str, default=None, help='checkpoint path of classifier to reload') # ray-surface distance network parser.add_argument("--netdepth", type=int, default=13, help='layers in network') parser.add_argument("--netwidth", type=int, default=1024, help='channels per layer') parser.add_argument("--rgb_layer", type=int, default=0, help='if true, network predicts radiance') parser.add_argument("--denoise", action='store_true', help='if true, compute gradients to remove outliers') parser.add_argument("--grad_normal", action='store_true', help='if true, use gradients to compute surface normal') parser.add_argument("--grad_clip", type=float, default=-1, help='maximum clip value for grad norm') parser.add_argument("--outlier_thres", type=float, default=10., help='threshold to select outliers for minimizing the surface gradient') # dataset options parser.add_argument("--datadir", type=str, default='./datasets', help='input data directory') parser.add_argument("--dataset", type=str, required=True, help='the name of dataset for train/eval') parser.add_argument("--scene", type=str, required=True, help='the name of scene for train/eval') parser.add_argument("--trainskip", type=int, default=1, help='will load 1/N images from test/val sets') parser.add_argument("--testskip", type=int, default=8, help='will load 1/N images from test/val sets') parser.add_argument("--voxel_sz", type=float, default=0.005, help='size of voxel for tsdf integration') parser.add_argument("--cd_sample", type=int, default=30000, help='the number of sampling points to compute chamfer-distance') parser.add_argument("--continuous", action='store_true', help='output continuous distance maps') # logging/saving options parser.add_argument("--logdir", type=str, default='./logs', help='where to store ckpts and logs') parser.add_argument("--expname", type=str, default='', help='experiment name') parser.add_argument("--i_print", type=int, default=100, help='frequency of console printout and metric loggin') parser.add_argument("--i_img", type=int, default=5000, help='frequency of image logging') parser.add_argument("--i_weights", type=int, default=10000, help='frequency of weight ckpt saving') return parser # Path: utils/log.py EPS = 1e-8 def to_distmap(x, m=None, white_bkgd=True, min=None, max=None): def to_normalmap(x, m=None, white_bkgd=True): def to_colormap(x): def save_config(args): # Path: utils/math.py def convert_d(d, scene_info, out='dist'): H, W, focal = scene_info['H'], scene_info['W'], scene_info['focal'] i, j = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy') L = np.sqrt(np.power(j - H / 2., 2) + np.power(i - W / 2., 2) + focal ** 2) fl = focal / L if out == 'dist': return d / fl elif out == 'dep': return d * fl else: raise NotImplementedError # Path: utils/dataloader.py class Dataloader: def __init__(self, args, device): self.args = args self.device = device self.N_rand = args.N_rand i_split, self.all_dists, self.all_images, masks, self.cam_poses, self.scene_info = \ dataloder_func[args.dataset](args.datadir, args.trainskip, args.testskip) # restore scene info self.scene_info['sphere_radius'] = args.radius self.i_train, self.i_test = i_split print('TRAIN views are', self.i_train) print('TEST views are', self.i_test) # compute rays all_rays = [] for i, pose in enumerate(self.cam_poses): rays_o, rays_d = get_rays_np(self.scene_info, pose) # (H, W, 3), (H, W, 3), (H, W, 1) ray = np.concatenate([rays_o, rays_d], -1) all_rays.append(ray) all_rays = np.stack(all_rays, axis=0) self.rays, self.dists, self.masks, self.imgs = {}, {}, {}, {} for mode, split in zip(['train', 'test'], [self.i_train, self.i_test]): self.rays[mode] = np.reshape(all_rays[split], [-1, 6]) self.dists[mode] = np.reshape(self.all_dists[split], [-1, 1]) self.masks[mode] = np.reshape(masks[split], [-1, 1]) if args.rgb_layer > 0: self.imgs[mode] = np.reshape(self.all_images[split], [-1, 3]) # extract foreground rays for train/eval self.rays[mode+'_fg'] = self.rays[mode][self.masks[mode][:, 0]==1] self.dists[mode+'_fg'] = self.dists[mode][self.masks[mode][:, 0]==1] self.masks[mode+'_fg'] = self.masks[mode][self.masks[mode][:, 0]==1] if args.rgb_layer > 0: self.imgs[mode+'_fg'] = self.imgs[mode][self.masks[mode][:, 0]==1] def __call__(self, inds, mode): batch_rays = torch.Tensor(self.rays[mode][inds]).to(self.device) dists = torch.Tensor(self.dists[mode][inds]).to(self.device) masks = torch.Tensor(self.masks[mode][inds]).to(self.device) targ_dict = {'dist': dists, 'mask': masks} if self.args.rgb_layer > 0: images = torch.Tensor(self.imgs[mode][inds]).to(self.device) targ_dict['image'] = images return batch_rays, targ_dict # Path: utils/ray.py def get_ray_param(ray_fn, rays): samples, hit_info = ray_fn(rays) return samples, hit_info['t0'].detach(), hit_info['ray_dir'] # Path: net_multiview/network.py def create_net(args, scene_info, device): ray_fn, input_ch = get_rayparam_func(scene_info) # initialise classifier and load ckpt model_cls = DualVisClassifier(D=args.netdepth_cls, W=args.netwidth_cls, input_ch=input_ch, ext_layer=args.ext_layer_cls).to(device) if not args.eval_only: print('Reloading vis classifier from', args.ckpt_path_cls) cls_ckpt = torch.load(args.ckpt_path_cls) model_cls.load_state_dict(cls_ckpt['network_fn']) # initialise distance network for multiview optimization model = RaySurfDNet(D=args.netdepth, W=args.netwidth, input_ch=input_ch, rgb_layer=args.rgb_layer).to(device) optimizer = torch.optim.Adam(params=model.parameters(), lr=args.lrate, betas=(0.9, 0.999), capturable=True) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.N_iters, eta_min=args.lrate*0.01) ############# Load checkpoints ############# ckpts = [os.path.join(args.logdir, args.expname, f) for f in sorted(os.listdir( os.path.join(args.logdir, args.expname))) if 'tar' in f] print('Found ckpts', ckpts) start = 0 if len(ckpts) > 0: ckpt_path = ckpts[-1] print('Loading ckpt from:', ckpt_path) ckpt = torch.load(ckpt_path) start = ckpt['global_step'] model.load_state_dict(ckpt['network_fn']) optimizer.load_state_dict(ckpt['optimizer']) optimizer.param_groups[0]['capturable'] = True scheduler.load_state_dict(ckpt['scheduler']) scheduler.last_epoch = ckpt['global_step'] return ray_fn, start, model, model_cls, optimizer, scheduler # Path: net_multiview/sampler.py def get_multiview_rays(args, query_rays, query_gts): # define the query surface points wcoords = query_rays[..., :3] + query_gts['dist'] * query_rays[..., 3:] # sample points on a unit sphere to construct vectors x = 2. * torch.rand([wcoords.shape[0], args.N_views]) - 1. y = 2. * torch.rand([wcoords.shape[0], args.N_views]) - 1. z = 2. * torch.rand([wcoords.shape[0], args.N_views]) - 1. mv_dirs = torch.stack([x, y, z], dim=-1).to(wcoords.device) mv_dirs = mv_dirs / (torch.linalg.norm(mv_dirs, dim=-1, keepdim=True) + EPS) rays_d = -mv_dirs # generate new rays dist = args.radius * 2. rays_o = wcoords[:, None] - dist * rays_d mv_rays = torch.concat([rays_o, rays_d], dim=-1) # (B, N_views, 6) target_dict = {'dist': torch.ones_like(rays_d[..., :1]) * dist} if args.rgb_layer > 0: target_dict['image'] = torch.tile(query_gts['image'][:, None], (1, args.N_views, 1)) mv_rays_flat = mv_rays.reshape(-1, 6) for k in target_dict: target_dict[k] = target_dict[k].reshape(-1, target_dict[k].shape[-1]) return mv_rays_flat, target_dict # Path: utils/math.py def get_surface_gradient(t, raydirs): dt = gradient(t, raydirs) return torch.norm(dt, dim=-1, keepdim=True) # Path: utils/math.py def get_surface_normal(t, raydirs): dt = gradient(t, raydirs) dtdtheta, dtdphi = dt[..., :1], dt[..., 1:] sin_theta, cos_theta = torch.sin(raydirs[..., :1]), torch.cos(raydirs[..., :1]) sin_phi, cos_phi = torch.sin(raydirs[..., 1:]), torch.cos(raydirs[..., 1:]) dtheta = torch.cat([(dtdtheta * sin_theta + t * cos_theta) * cos_phi, (dtdtheta * sin_theta + t * cos_theta) * sin_phi, dtdtheta * cos_theta - t * sin_theta], dim=-1) dphi = torch.cat([(dtdphi * cos_phi - t * sin_phi) * sin_theta, (dtdphi * sin_phi + t * cos_phi) * sin_theta, dtdphi * cos_theta], dim=-1) normal = torch.cross(dphi, dtheta) normal = normal / (torch.linalg.norm(normal+EPS, dim=-1, keepdim=True)+EPS) return normal # Path: run_mv.py import os import torch import numpy as np import imageio import trimesh import open3d as o3d import wandb from tqdm import trange from config import config_parser from open3d import pipelines from wandb import AlertLevel from utils import log from utils.math import convert_d from utils.dataloader import Dataloader from utils.ray import get_ray_param from net_multiview.network import create_net from net_multiview.sampler import get_multiview_rays from utils.math import get_surface_gradient, get_surface_normal from torchmetrics.functional import peak_signal_noise_ratio as PSNR from torchmetrics.functional import structural_similarity_index_measure as SSIM from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity from chamfer_distance import ChamferDistance device = torch.device("cuda" if torch.cuda.is_available() else "cpu") torch.backends.cudnn.benchmark = True np.random.seed(0) LPIPS = LearnedPerceptualImagePatchSimilarity(net_type='alex').to(device) CD = ChamferDistance().to(device) def train(args): # Load dataset dataloader = Dataloader(args, device) # Create rayparam function and network ray_fn, global_step, model, model_cls, optimizer, scheduler = create_net(args, dataloader.scene_info, device) # Create experiment logger wandb.init(project="RayDF-RaySurfDNet") wandb.run.name = args.expname wandb.watch(model, log="all") start = global_step train_num = len(dataloader.dists['train_fg']) inds = np.random.permutation(train_num) step_batch = train_num // args.N_rand for i in trange(start, args.N_iters): optimizer.zero_grad() j = i % step_batch ep = i // step_batch # re-random train indices after one epoch if j == 0 and i != start: inds = np.random.permutation(train_num) # =================== Query Rays ======================== # Random rays from all images train_i = inds[j * args.N_rand: (j+1) * args.N_rand] # load query rays batch_rays, target_dict = dataloader(inds=train_i, mode='train_fg') batch_inputs, d0, _ = get_ray_param(ray_fn, batch_rays) # normalize query gt distance and query surface point target_dict['dist_norm'] = (target_dict['dist'] - d0) / (args.radius * 2.) batch_pts = batch_rays[..., :3] + target_dict['dist'] * batch_rays[..., 3:] for c in range(batch_pts.shape[-1]): batch_pts[..., c] -= dataloader.scene_info['sphere_center'][c] target_dict['pts_norm'] = batch_pts / dataloader.scene_info['sphere_radius'] # ================= Multiview Rays ===================== # Sample multiview rays and get their ray parameters mv_rays, mv_targets = get_multiview_rays(args, query_rays=batch_rays, query_gts=target_dict) mv_inputs, mv_d0, _ = get_ray_param(ray_fn, mv_rays) mv_targets['dist_norm'] = (mv_targets['dist'] - mv_d0) / (args.radius * 2.) # Compute visibility with torch.no_grad(): cls_inputs = [torch.tile(batch_inputs[:, None], (1, args.N_views, 1)).reshape(-1, batch_inputs.shape[-1]), mv_inputs, torch.tile(target_dict['pts_norm'][:, None], (1, args.N_views, 1)).reshape(-1, 3)] vis = model_cls(cls_inputs) mv_targets['vis_score'] = torch.sigmoid(vis).reshape(args.N_rand, args.N_views) reweigh = 0.5 mv_targets['vis_score'] = mv_targets['vis_score'] ** reweigh / (mv_targets['vis_score'] ** reweigh + (1. - mv_targets['vis_score']) ** reweigh) # Multiview forward mv_batch_inputs = torch.cat([batch_inputs, mv_inputs], dim=0) mv_outputs = model(mv_batch_inputs) # ================= Optimization ===================== loss_d_query = torch.abs(mv_outputs['dist'][:args.N_rand] - target_dict['dist_norm'])[:, 0]
loss_d_mv = torch.abs(mv_outputs['dist'][args.N_rand:] - mv_targets['dist_norm']).reshape(args.N_rand, args.N_views)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: snap-stanford/relbench # Path: relbench/data/task.py class TaskType(Enum): r"""The type of the task. Attributes: REGRESSION: Regression task. MULTICLASS_CLASSIFICATION: Multi-class classification task. BINARY_CLASSIFICATION: Binary classification task. """ REGRESSION = "regression" BINARY_CLASSIFICATION = "binary_classification" # Path: relbench/datasets/fake.py class FakeDataset(Dataset): name = "rel-fake" def __init__( self, num_products: int = 30, num_customers: int = 100, num_reviews: int = 500 ): db = self.make_db(num_products, num_customers, num_reviews) db.reindex_pkeys_and_fkeys() val_timestamp = db.min_timestamp + 0.8 * (db.max_timestamp - db.min_timestamp) test_timestamp = db.min_timestamp + 0.9 * (db.max_timestamp - db.min_timestamp) super().__init__( db=db, val_timestamp=val_timestamp, test_timestamp=test_timestamp, task_cls_list=[ChurnTask, LTVTask], ) def make_db(self, num_products, num_customers, num_reviews) -> Database: product_df = pd.DataFrame( { "product_id": [f"product_id_{i}" for i in range(num_products)], "category": [None, [], ["toy", "health"]] * (num_products // 3), "title": [_generate_random_string(5, 15) for _ in range(num_products)], "price": np.random.rand(num_products) * 10, } ) customer_df = pd.DataFrame( { "customer_id": [f"customer_id_{i}" for i in range(num_customers)], "age": np.random.randint(10, 50, size=(num_customers,)), "gender": ["male", "female"] * (num_customers // 2), } ) # Add some dangling foreign keys: review_df = pd.DataFrame( { "customer_id": [ f"customer_id_{random.randint(0, num_customers+5)}" for _ in range(num_reviews) ], "product_id": [ f"product_id_{random.randint(0, num_products-1)}" for _ in range(num_reviews) ], "review_time": pd.to_datetime(10 * np.arange(num_reviews), unit="D"), "rating": np.random.randint(1, 6, size=(num_reviews,)), } ) return Database( table_dict={ "product": Table( df=product_df, fkey_col_to_pkey_table={}, pkey_col="product_id", ), "customer": Table( df=customer_df, fkey_col_to_pkey_table={}, pkey_col="customer_id", ), "review": Table( df=review_df, fkey_col_to_pkey_table={ "customer_id": "customer", "product_id": "product", }, time_col="review_time", ), } ) # Path: relbench/external/graph.py def get_stype_proposal(db: Database) -> Dict[str, Dict[str, Any]]: r"""Propose stype for columns of a set of tables in the given database. Args: db (Database): : The database object containing a set of tables. Returns: Dict[str, Dict[str, Any]]: A dictionary mapping table name into :obj:`col_to_stype` (mapping column names into inferred stypes). """ inferred_col_to_stype_dict = {} for table_name, table in db.table_dict.items(): inferred_col_to_stype = infer_df_stype(table.df) # Remove pkey, fkey columns since they will not be used as input # feature. if table.pkey_col is not None: inferred_col_to_stype.pop(table.pkey_col) for fkey in table.fkey_col_to_pkey_table.keys(): inferred_col_to_stype.pop(fkey) inferred_col_to_stype_dict[table_name] = inferred_col_to_stype return inferred_col_to_stype_dict # Path: relbench/external/graph.py def get_train_table_input( table: Table, task: Task, ) -> TrainTableInput: nodes = torch.from_numpy(table.df[task.entity_col].astype(int).values) time: Optional[Tensor] = None if table.time_col is not None: time = to_unix_time(table.df[table.time_col]) target: Optional[Tensor] = None transform: Optional[AttachTargetTransform] = None if task.target_col in table.df: target_type = float if task.task_type == "multiclass_classification": target_type = int target = torch.from_numpy(table.df[task.target_col].values.astype(target_type)) transform = AttachTargetTransform(task.entity_table, target) return TrainTableInput( nodes=(task.entity_table, nodes), time=time, target=target, transform=transform, ) # Path: relbench/external/graph.py def make_pkey_fkey_graph( db: Database, col_to_stype_dict: Dict[str, Dict[str, stype]], text_embedder_cfg: Optional[TextEmbedderConfig] = None, cache_dir: Optional[str] = None, ) -> HeteroData: r"""Given a :class:`Database` object, construct a heterogeneous graph with primary-foreign key relationships, together with the column stats of each table. Args: db (Database): A database object containing a set of tables. col_to_stype_dict (Dict[str, Dict[str, stype]]): Column to stype for each table. cache_dir (str, optional): A directory for storing materialized tensor frames. If specified, we will either cache the file or use the cached file. If not specified, we will not use cached file and re-process everything from scrach without saving the cache. Returns: HeteroData: The heterogeneous :class:`PyG` object with :class:`TensorFrame` feature. """ data = HeteroData() if cache_dir is not None: os.makedirs(cache_dir, exist_ok=True) for table_name, table in db.table_dict.items(): # Materialize the tables into tensor frames: df = table.df # Ensure that pkey is consecutive. if table.pkey_col is not None: assert (df[table.pkey_col].values == np.arange(len(df))).all() col_to_stype = col_to_stype_dict[table_name] if len(col_to_stype) == 0: # Add constant feature in case df is empty: col_to_stype = {"__const__": stype.numerical} df = pd.DataFrame({"__const__": np.ones(len(table.df))}) path = ( None if cache_dir is None else os.path.join(cache_dir, f"{table_name}.pt") ) dataset = Dataset( df=df, col_to_stype=col_to_stype, col_to_text_embedder_cfg=text_embedder_cfg, ).materialize(path=path) data[table_name].tf = dataset.tensor_frame data[table_name].col_stats = dataset.col_stats # Add time attribute: if table.time_col is not None: data[table_name].time = to_unix_time(table.df[table.time_col]) # Add edges: for fkey_name, pkey_table_name in table.fkey_col_to_pkey_table.items(): pkey_index = df[fkey_name] # Filter out dangling foreign keys mask = ~pkey_index.isna() fkey_index = torch.arange(len(pkey_index)) # Filter dangling foreign keys: pkey_index = torch.from_numpy(pkey_index[mask].astype(int).values) fkey_index = fkey_index[torch.from_numpy(mask.values)] # Ensure no dangling fkeys assert (pkey_index < len(db.table_dict[pkey_table_name])).all() # fkey -> pkey edges edge_index = torch.stack([fkey_index, pkey_index], dim=0) edge_type = (table_name, f"f2p_{fkey_name}", pkey_table_name) data[edge_type].edge_index = sort_edge_index(edge_index) # pkey -> fkey edges edge_index = torch.stack([pkey_index, fkey_index], dim=0) edge_type = (pkey_table_name, f"p2f_{fkey_name}", table_name) data[edge_type].edge_index = sort_edge_index(edge_index) data.validate() return data # Path: relbench/external/nn.py class HeteroEncoder(torch.nn.Module): r"""HeteroEncoder based on PyTorch Frame. Args: channels (int): The output channels for each node type. node_to_col_names_dict (Dict[NodeType, Dict[torch_frame.stype, List[str]]]): A dictionary mapping from node type to column names dictionary compatible to PyTorch Frame. torch_frame_model_cls: Model class for PyTorch Frame. The class object takes :class:`TensorFrame` object as input and outputs :obj:`channels`-dimensional embeddings. Default to :class:`torch_frame.nn.ResNet`. torch_frame_model_kwargs (Dict[str, Any]): Keyword arguments for :class:`torch_frame_model_cls` class. Default keyword argument is set specific for :class:`torch_frame.nn.ResNet`. Expect it to be changed for different :class:`torch_frame_model_cls`. default_stype_encoder_cls_kwargs (Dict[torch_frame.stype, Any]): A dictionary mapping from :obj:`torch_frame.stype` object into a tuple specifying :class:`torch_frame.nn.StypeEncoder` class and its keyword arguments :obj:`kwargs`. """ def __init__( self, channels: int, node_to_col_names_dict: Dict[NodeType, Dict[torch_frame.stype, List[str]]], node_to_col_stats: Dict[NodeType, Dict[str, Dict[StatType, Any]]], torch_frame_model_cls=ResNet, torch_frame_model_kwargs: Dict[str, Any] = { "channels": 128, "num_layers": 4, }, default_stype_encoder_cls_kwargs: Dict[torch_frame.stype, Any] = { torch_frame.categorical: (torch_frame.nn.EmbeddingEncoder, {}), torch_frame.numerical: (torch_frame.nn.LinearEncoder, {}), torch_frame.multicategorical: ( torch_frame.nn.MultiCategoricalEmbeddingEncoder, {}, ), torch_frame.embedding: (torch_frame.nn.LinearEmbeddingEncoder, {}), torch_frame.timestamp: (torch_frame.nn.TimestampEncoder, {}), }, ): super().__init__() self.encoders = torch.nn.ModuleDict() for node_type in node_to_col_names_dict.keys(): stype_encoder_dict = { stype: default_stype_encoder_cls_kwargs[stype][0]( **default_stype_encoder_cls_kwargs[stype][1] ) for stype in node_to_col_names_dict[node_type].keys() } torch_frame_model = torch_frame_model_cls( **torch_frame_model_kwargs, out_channels=channels, col_stats=node_to_col_stats[node_type], col_names_dict=node_to_col_names_dict[node_type], stype_encoder_dict=stype_encoder_dict, ) self.encoders[node_type] = torch_frame_model def reset_parameters(self): for encoder in self.encoders.values(): encoder.reset_parameters() def forward( self, tf_dict: Dict[NodeType, torch_frame.TensorFrame], ) -> Dict[NodeType, Tensor]: x_dict = { node_type: self.encoders[node_type](tf) for node_type, tf in tf_dict.items() } return x_dict # Path: relbench/external/nn.py class HeteroGraphSAGE(torch.nn.Module): def __init__( self, node_types: List[NodeType], edge_types: List[EdgeType], channels: int, aggr: str = "mean", num_layers: int = 2, ): super().__init__() self.convs = torch.nn.ModuleList() for _ in range(num_layers): conv = HeteroConv( { edge_type: SAGEConv((channels, channels), channels, aggr=aggr) for edge_type in edge_types }, aggr="sum", ) self.convs.append(conv) self.norms = torch.nn.ModuleList() for _ in range(num_layers): norm_dict = torch.nn.ModuleDict() for node_type in node_types: norm_dict[node_type] = LayerNorm(channels, mode="node") self.norms.append(norm_dict) def reset_parameters(self): for conv in self.convs: conv.reset_parameters() for norm_dict in self.norms: for norm in norm_dict.values(): norm.reset_parameters() def forward( self, x_dict: Dict[NodeType, Tensor], edge_index_dict: Dict[NodeType, Tensor], num_sampled_nodes_dict: Optional[Dict[NodeType, List[int]]] = None, num_sampled_edges_dict: Optional[Dict[EdgeType, List[int]]] = None, ) -> Dict[NodeType, Tensor]: for i, (conv, norm_dict) in enumerate(zip(self.convs, self.norms)): # Trim graph and features to only hold required data per layer: if num_sampled_nodes_dict is not None: assert num_sampled_edges_dict is not None x_dict, edge_index_dict, _ = trim_to_layer( layer=i, num_sampled_nodes_per_hop=num_sampled_nodes_dict, num_sampled_edges_per_hop=num_sampled_edges_dict, x=x_dict, edge_index=edge_index_dict, ) x_dict = conv(x_dict, edge_index_dict) x_dict = {key: norm_dict[key](x) for key, x in x_dict.items()} x_dict = {key: x.relu() for key, x in x_dict.items()} return x_dict # Path: test/external/test_nn.py from typing import Dict from torch_frame.config.text_embedder import TextEmbedderConfig from torch_frame.testing.text_embedder import HashTextEmbedder from torch_geometric.loader import NeighborLoader from torch_geometric.nn import MLP from relbench.data.task import TaskType from relbench.datasets import FakeDataset from relbench.external.graph import ( get_stype_proposal, get_train_table_input, make_pkey_fkey_graph, ) from relbench.external.nn import HeteroEncoder, HeteroGraphSAGE import torch import torch.nn.functional as F def test_train_fake_product_dataset(tmp_path): dataset = FakeDataset() data = make_pkey_fkey_graph( dataset.db, get_stype_proposal(dataset.db), text_embedder_cfg=TextEmbedderConfig( text_embedder=HashTextEmbedder(8), batch_size=None ), cache_dir=tmp_path, ) node_to_col_names_dict = { # TODO Expose as method in `HeteroData`.
node_type: data[node_type].tf.col_names_dict for node_type in data.node_types
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: masked-spacetime-hashing/msth # Path: nerfstudio/data/utils/nerfstudio_collate.py def nerfstudio_collate( batch, extra_mappings: Union[Dict[type, Callable], None] = None ): # pylint: disable=too-many-return-statements r""" This is the default pytorch collate function, but with support for nerfstudio types. All documentation below is copied straight over from pytorch's default_collate function, python version 3.8.13, pytorch version '1.12.1+cu113'. Custom nerfstudio types are accounted for at the end, and extra mappings can be passed in to handle custom types. These mappings are from types: callable (types being like int or float or the return value of type(3.), etc). The only code before we parse for custom types that was changed from default pytorch was the addition of the extra_mappings argument, a find and replace operation from default_collate to nerfstudio_collate, and the addition of the nerfstudio_collate_err_msg_format variable. Function that takes in a batch of data and puts the elements within the batch into a tensor with an additional outer dimension - batch size. The exact output type can be a :class:`torch.Tensor`, a `Sequence` of :class:`torch.Tensor`, a Collection of :class:`torch.Tensor`, or left unchanged, depending on the input type. This is used as the default function for collation when `batch_size` or `batch_sampler` is defined in :class:`~torch.utils.data.DataLoader`. Here is the general input type (based on the type of the element within the batch) to output type mapping: * :class:`torch.Tensor` -> :class:`torch.Tensor` (with an added outer dimension batch size) * NumPy Arrays -> :class:`torch.Tensor` * `float` -> :class:`torch.Tensor` * `int` -> :class:`torch.Tensor` * `str` -> `str` (unchanged) * `bytes` -> `bytes` (unchanged) * `Mapping[K, V_i]` -> `Mapping[K, nerfstudio_collate([V_1, V_2, ...])]` * `NamedTuple[V1_i, V2_i, ...]` -> `NamedTuple[nerfstudio_collate([V1_1, V1_2, ...]), nerfstudio_collate([V2_1, V2_2, ...]), ...]` * `Sequence[V1_i, V2_i, ...]` -> `Sequence[nerfstudio_collate([V1_1, V1_2, ...]), nerfstudio_collate([V2_1, V2_2, ...]), ...]` Args: batch: a single batch to be collated Examples: >>> # Example with a batch of `int`s: >>> nerfstudio_collate([0, 1, 2, 3]) tensor([0, 1, 2, 3]) >>> # Example with a batch of `str`s: >>> nerfstudio_collate(['a', 'b', 'c']) ['a', 'b', 'c'] >>> # Example with `Map` inside the batch: >>> nerfstudio_collate([{'A': 0, 'B': 1}, {'A': 100, 'B': 100}]) {'A': tensor([ 0, 100]), 'B': tensor([ 1, 100])} >>> # Example with `NamedTuple` inside the batch: >>> Point = namedtuple('Point', ['x', 'y']) >>> nerfstudio_collate([Point(0, 0), Point(1, 1)]) Point(x=tensor([0, 1]), y=tensor([0, 1])) >>> # Example with `Tuple` inside the batch: >>> nerfstudio_collate([(0, 1), (2, 3)]) [tensor([0, 2]), tensor([1, 3])] >>> # Example with `List` inside the batch: >>> nerfstudio_collate([[0, 1], [2, 3]]) [tensor([0, 2]), tensor([1, 3])] """ if extra_mappings is None: extra_mappings = {} elem = batch[0] elem_type = type(elem) if isinstance(elem, torch.Tensor): # pylint: disable=no-else-return out = None if torch.utils.data.get_worker_info() is not None: # If we're in a background process, concatenate directly into a # shared memory tensor to avoid an extra copy numel = sum(x.numel() for x in batch) storage = elem.storage()._new_shared(numel, device=elem.device) # pylint: disable=protected-access out = elem.new(storage).resize_(len(batch), *list(elem.size())) return torch.stack(batch, 0, out=out) elif elem_type.__module__ == "numpy" and elem_type.__name__ != "str_" and elem_type.__name__ != "string_": # pylint: disable=no-else-return, consider-using-in if elem_type.__name__ == "ndarray" or elem_type.__name__ == "memmap": # array of string classes and object if np_str_obj_array_pattern.search(elem.dtype.str) is not None: raise TypeError(NERFSTUDIO_COLLATE_ERR_MSG_FORMAT.format(elem.dtype)) return nerfstudio_collate([torch.as_tensor(b) for b in batch], extra_mappings=extra_mappings) elif elem.shape == (): # scalars return torch.as_tensor(batch) elif isinstance(elem, float): return torch.tensor(batch, dtype=torch.float64) elif isinstance(elem, int): return torch.tensor(batch) elif isinstance(elem, string_classes): return batch elif isinstance(elem, collections.abc.Mapping): try: return elem_type( {key: nerfstudio_collate([d[key] for d in batch], extra_mappings=extra_mappings) for key in elem} ) except TypeError: # The mapping type may not support `__init__(iterable)`. return {key: nerfstudio_collate([d[key] for d in batch], extra_mappings=extra_mappings) for key in elem} elif isinstance(elem, tuple) and hasattr(elem, "_fields"): # namedtuple return elem_type(*(nerfstudio_collate(samples, extra_mappings=extra_mappings) for samples in zip(*batch))) elif isinstance(elem, collections.abc.Sequence): # check to make sure that the elements in batch have consistent size it = iter(batch) elem_size = len(next(it)) if not all(len(elem) == elem_size for elem in it): raise RuntimeError("each element in list of batch should be of equal size") transposed = list(zip(*batch)) # It may be accessed twice, so we use a list. if isinstance(elem, tuple): return [ nerfstudio_collate(samples, extra_mappings=extra_mappings) for samples in transposed ] # Backwards compatibility. else: try: return elem_type([nerfstudio_collate(samples, extra_mappings=extra_mappings) for samples in transposed]) except TypeError: # The sequence type may not support `__init__(iterable)` (e.g., `range`). return [nerfstudio_collate(samples, extra_mappings=extra_mappings) for samples in transposed] # NerfStudio types supported below elif isinstance(elem, Cameras): # If a camera, just concatenate along the batch dimension. In the future, this may change to stacking assert all((isinstance(cam, Cameras) for cam in batch)) assert all((cam.distortion_params is None for cam in batch)) or all( (cam.distortion_params is not None for cam in batch) ), "All cameras must have distortion parameters or none of them should have distortion parameters.\ Generalized batching will be supported in the future." # If no batch dimension exists, then we need to stack everything and create a batch dimension on 0th dim if elem.shape == (): op = torch.stack # If batch dimension exists, then we need to concatenate along the 0th dimension else: op = torch.cat return Cameras( op([cameras.camera_to_worlds for cameras in batch], dim=0), op([cameras.fx for cameras in batch], dim=0), op([cameras.fy for cameras in batch], dim=0), op([cameras.cx for cameras in batch], dim=0), op([cameras.cy for cameras in batch], dim=0), height=op([cameras.height for cameras in batch], dim=0), width=op([cameras.width for cameras in batch], dim=0), distortion_params=op( [ cameras.distortion_params if cameras.distortion_params is not None else torch.zeros_like(cameras.distortion_params) for cameras in batch ], dim=0, ), camera_type=op([cameras.camera_type for cameras in batch], dim=0), times=torch.stack( [cameras.times if cameras.times is not None else -torch.ones_like(cameras.times) for cameras in batch], dim=0, ), ) for type_key in extra_mappings: if isinstance(elem, type_key): return extra_mappings[type_key](batch) raise TypeError(NERFSTUDIO_COLLATE_ERR_MSG_FORMAT.format(elem_type)) # Path: nerfstudio/utils/misc.py def get_dict_to_torch(stuff: Any, device: Union[torch.device, str] = "cpu", exclude: Optional[List[str]] = None): """Set everything in the dict to the specified torch device. Args: stuff: things to convert to torch device: machine to put the "stuff" on exclude: list of keys to skip over transferring to device """ if isinstance(stuff, dict): for k, v in stuff.items(): if exclude and k in exclude: stuff[k] = v else: stuff[k] = get_dict_to_torch(v, device) return stuff if isinstance(stuff, torch.Tensor): return stuff.to(device) return stuff # Path: MSTH/dataparser.py class VideoDataParserOutputs: data_dir: Path video_filenames: List[Path] start_frame: int num_frames: int """Dataparser outputs for the which will be used by the DataManager for creating RayBundle and RayGT objects.""" """Filenames for the images.""" cameras: Cameras """Camera object storing collection of camera information in dataset.""" alpha_color: Optional[TensorType[3]] = None """Color of dataset background.""" scene_box: SceneBox = SceneBox() """Scene box of dataset. Used to bound the scene or provide the scene scale depending on model.""" mask_filenames: Optional[List[Path]] = None """Filenames for any masks that are required""" metadata: Dict[str, Any] = to_immutable_dict({}) """Dictionary of any metadata that be required for the given experiment. Will be processed by the InputDataset to create any additional tensors that may be required. """ dataparser_transform: TensorType[3, 4] = torch.eye(4)[:3, :] """Transform applied by the dataparser.""" dataparser_scale: float = 1.0 """Scale applied by the dataparser.""" def as_dict(self) -> dict: """Returns the dataclass as a dictionary.""" return vars(self) def save_dataparser_transform(self, path: Path): """Save dataparser transform to json file. Some dataparsers will apply a transform to the poses, this method allows the transform to be saved so that it can be used in other applications. Args: path: path to save transform to """ data = { "transform": self.dataparser_transform.tolist(), "scale": float(self.dataparser_scale), } if not path.parent.exists(): path.parent.mkdir(parents=True) with open(path, "w", encoding="UTF-8") as file: json.dump(data, file, indent=4) # Path: MSTH/utils.py class Timer: recorder = defaultdict(list) def __init__(self, des="", verbose=True, record=False) -> None: self.des = des self.verbose = verbose self.record = record def __enter__(self): return self self.start = time.time() self.start_cuda = torch.cuda.Event(enable_timing=True) self.end_cuda = torch.cuda.Event(enable_timing=True) self.start_cuda.record() return self def __exit__(self, *args): return self.end = time.time() self.end_cuda.record() self.interval = self.end - self.start if self.verbose: torch.cuda.synchronize() print(f"[cudasync]{self.des} consuming {self.start_cuda.elapsed_time(self.end_cuda)/1000.:.8f}") print(f"{self.des} consuming {self.interval:.8f}") if self.record: Timer.recorder[self.des].append(self.interval) @staticmethod def show_recorder(): pprint(Timer.recorder) # Path: MSTH/ibrnet/feature_extractor.py class ResUNet(nn.Module): def __init__(self, encoder='resnet34', coarse_out_ch=32, fine_out_ch=32, norm_layer=None, coarse_only=False ): super(ResUNet, self).__init__() assert encoder in ['resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'], "Incorrect encoder type" if encoder in ['resnet18', 'resnet34']: filters = [64, 128, 256, 512] else: filters = [256, 512, 1024, 2048] self.coarse_only = coarse_only if self.coarse_only: fine_out_ch = 0 self.coarse_out_ch = coarse_out_ch self.fine_out_ch = fine_out_ch out_ch = coarse_out_ch + fine_out_ch # original layers = [3, 4, 6, 3] if norm_layer is None: # norm_layer = nn.BatchNorm2d norm_layer = nn.InstanceNorm2d self._norm_layer = norm_layer self.dilation = 1 block = BasicBlock replace_stride_with_dilation = [False, False, False] self.inplanes = 64 self.groups = 1 self.base_width = 64 self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False, padding_mode='reflect') self.bn1 = norm_layer(self.inplanes, track_running_stats=False, affine=True) self.relu = nn.ReLU(inplace=True) self.layer1 = self._make_layer(block, 64, layers[0], stride=2) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) # decoder self.upconv3 = upconv(filters[2], 128, 3, 2) self.iconv3 = conv(filters[1] + 128, 128, 3, 1) self.upconv2 = upconv(128, 64, 3, 2) self.iconv2 = conv(filters[0] + 64, out_ch, 3, 1) # fine-level conv self.out_conv = nn.Conv2d(out_ch, out_ch, 1, 1) self.upsample = nn.Upsample(scale_factor=4) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion, track_running_stats=False, affine=True), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def skipconnect(self, x1, x2): diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad(x1, (diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2)) # for padding issues, see # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd x = torch.cat([x2, x1], dim=1) return x def forward(self, x): self.upsample = nn.Upsample(size=x.shape[1:3]) x = x.moveaxis(-1, 1) x = self.relu(self.bn1(self.conv1(x))) x1 = self.layer1(x) x2 = self.layer2(x1) x3 = self.layer3(x2) x = self.upconv3(x3) x = self.skipconnect(x2, x) x = self.iconv3(x) x = self.upconv2(x) x = self.skipconnect(x1, x) x = self.iconv2(x) x_out = self.out_conv(x) if self.coarse_only: x_coarse = x_out x_fine = None else: x_coarse = x_out[:, :self.coarse_out_ch, :] x_fine = x_out[:, -self.fine_out_ch:, :] x_coarse = self.upsample(x_coarse) x_coarse = x_coarse.moveaxis(1, -1) if x_fine is not None: x_fine = self.upsample(x_fine) x_fine = x_fine.moveaxis(1, -1) return x_coarse, x_fine @classmethod def load_from_pretrained(cls, ckpt_path, map_location="cpu"): res_u_net = cls() res_u_net.load_state_dict(torch.load(ckpt_path, map_location=map_location)["feature_net"]) return res_u_net # Path: MSTH/dataset.py import gc import concurrent import concurrent.futures import os import cv2 import numpy as np import numpy.typing as npt import torch from copy import deepcopy from time import time from typing import Dict, Union from tqdm import tqdm, trange from scipy.ndimage import gaussian_filter from torch.utils.data import Dataset from torch.utils.data.dataloader import DataLoader from torchtyping import TensorType from nerfstudio.data.utils.nerfstudio_collate import nerfstudio_collate from nerfstudio.utils.misc import get_dict_to_torch from MSTH.dataparser import VideoDataParserOutputs from MSTH.utils import Timer from MSTH.ibrnet.feature_extractor import ResUNet from pathlib import Path from rich.console import Console CONSOLE = Console(width=120) def get_mask_single_image(mask): threshold = 0.05 mask = gaussian_filter(mask, sigma=5) return torch.where(torch.from_numpy(mask) > threshold, 1.0, 0.0) def extend_mask(mask, radius=5): mask = gaussian_filter(mask, sigma=5, radius=[radius, radius]) mask[np.where(mask > 0.0)] = 1.0 # print("shit") return torch.from_numpy(mask) class VideoDataset(Dataset): def __init__( self, dataparser_outputs: VideoDataParserOutputs, scale_factor: float = 1.0, mask_extend_radius: int = 5, next_n_frames: int = 1, ) -> None: super().__init__() self._dataparser_outputs = dataparser_outputs self.scale_factor = scale_factor self.scene_box = deepcopy(dataparser_outputs.scene_box) self.metadata = deepcopy(dataparser_outputs.metadata) self.cameras = deepcopy(dataparser_outputs.cameras) self.cameras.rescale_output_resolution(scaling_factor=scale_factor) self.vcs = [] # TODO: maybe add h and w to dataparseroutputs ? self.h = self.cameras.height[0][0].item() assert isinstance(self.h, int), "support only all the inputs share same size" self.w = self.cameras.width[0][0].item() self._prepare_video_captures() self.next_n_frames = next_n_frames if next_n_frames > 1:
self.load_first_n_frames()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: sehyunkwon/ICTC # Path: step1/llava/model/llava_arch.py class LlavaMetaModel: def __init__(self, config): super(LlavaMetaModel, self).__init__(config) if hasattr(config, "mm_vision_tower"): self.vision_tower = build_vision_tower(config, delay_load=True) self.mm_projector = nn.Linear(config.mm_hidden_size, config.hidden_size) def get_vision_tower(self): vision_tower = getattr(self, 'vision_tower', None) if type(vision_tower) is list: vision_tower = vision_tower[0] return vision_tower def initialize_vision_modules(self, model_args, fsdp=None): vision_tower = model_args.vision_tower mm_vision_select_layer = model_args.mm_vision_select_layer mm_vision_select_feature = model_args.mm_vision_select_feature pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter self.config.mm_vision_tower = vision_tower vision_tower = build_vision_tower(model_args) if fsdp is not None and len(fsdp) > 0: self.vision_tower = [vision_tower] else: self.vision_tower = vision_tower self.config.use_mm_proj = True self.config.mm_hidden_size = vision_tower.hidden_size self.config.mm_vision_select_layer = mm_vision_select_layer self.config.mm_vision_select_feature = mm_vision_select_feature if not hasattr(self, 'mm_projector'): self.mm_projector = nn.Linear(self.config.mm_hidden_size, self.config.hidden_size) if pretrain_mm_mlp_adapter is not None: mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') def get_w(weights, keyword): return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) # Path: step1/llava/model/llava_arch.py class LlavaMetaForCausalLM(ABC): @abstractmethod def get_model(self): pass def get_vision_tower(self): return self.get_model().get_vision_tower() def encode_images(self, images): image_features = self.get_model().get_vision_tower()(images) image_features = self.get_model().mm_projector(image_features) return image_features def prepare_inputs_labels_for_multimodal( self, input_ids, attention_mask, past_key_values, labels, images ): vision_tower = self.get_vision_tower() if vision_tower is None or images is None or input_ids.shape[1] == 1: if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1: attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device) return input_ids, attention_mask, past_key_values, None, labels if type(images) is list or images.ndim == 5: concat_images = torch.cat([image for image in images], dim=0) image_features = self.encode_images(concat_images) split_sizes = [image.shape[0] for image in images] image_features = torch.split(image_features, split_sizes, dim=0) image_features = [x.flatten(0, 1) for x in image_features] else: image_features = self.encode_images(images) new_input_embeds = [] new_labels = [] if labels is not None else None cur_image_idx = 0 for batch_idx, cur_input_ids in enumerate(input_ids): if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0: # multimodal LLM, but the current sample is not multimodal cur_input_embeds = self.get_model().embed_tokens(cur_input_ids) cur_input_embeds = cur_input_embeds + (0. * self.get_model().mm_projector(vision_tower.dummy_feature)).sum() new_input_embeds.append(cur_input_embeds) if labels is not None: new_labels.append(labels[batch_idx]) cur_image_idx += 1 continue image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] cur_new_input_embeds = [] if labels is not None: cur_labels = labels[batch_idx] cur_new_labels = [] assert cur_labels.shape == cur_input_ids.shape while image_token_indices.numel() > 0: cur_image_features = image_features[cur_image_idx] image_token_start = image_token_indices[0] if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start-1]).detach()) cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start-1:image_token_start])) cur_new_input_embeds.append(cur_image_features) cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start+1:image_token_start+2])) if labels is not None: cur_new_labels.append(cur_labels[:image_token_start]) cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) cur_new_labels.append(cur_labels[image_token_start:image_token_start+1]) cur_labels = cur_labels[image_token_start+2:] else: cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start])) cur_new_input_embeds.append(cur_image_features) if labels is not None: cur_new_labels.append(cur_labels[:image_token_start]) cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) cur_labels = cur_labels[image_token_start+1:] cur_image_idx += 1 if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): cur_input_ids = cur_input_ids[image_token_start+2:] else: cur_input_ids = cur_input_ids[image_token_start+1:] image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] if cur_input_ids.numel() > 0: if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach()) else: cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) if labels is not None: cur_new_labels.append(cur_labels) cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) new_input_embeds.append(cur_new_input_embeds) if labels is not None: cur_new_labels = torch.cat(cur_new_labels, dim=0) new_labels.append(cur_new_labels) if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): max_len = max(x.shape[0] for x in new_input_embeds) new_input_embeds_align = [] for cur_new_embed in new_input_embeds: cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) new_input_embeds_align.append(cur_new_embed) new_input_embeds = torch.stack(new_input_embeds_align, dim=0) if labels is not None: new_labels_align = [] _new_labels = new_labels for cur_new_label in new_labels: cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0) new_labels_align.append(cur_new_label) new_labels = torch.stack(new_labels_align, dim=0) if attention_mask is not None: new_attention_mask = [] for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels): new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device) new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device) cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) new_attention_mask.append(cur_new_attention_mask) attention_mask = torch.stack(new_attention_mask, dim=0) assert attention_mask.shape == new_labels.shape else: new_input_embeds = torch.stack(new_input_embeds, dim=0) if labels is not None: new_labels = torch.stack(new_labels, dim=0) if attention_mask is not None: new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device) attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) assert attention_mask.shape == new_input_embeds.shape[:2] return None, attention_mask, past_key_values, new_input_embeds, new_labels def initialize_vision_tokenizer(self, model_args, tokenizer): if model_args.mm_use_im_patch_token: tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) self.resize_token_embeddings(len(tokenizer)) if model_args.mm_use_im_start_end: num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) self.resize_token_embeddings(len(tokenizer)) if num_new_tokens > 0: input_embeddings = self.get_input_embeddings().weight.data output_embeddings = self.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg if model_args.tune_mm_mlp_adapter: for p in self.get_input_embeddings().parameters(): p.requires_grad = True for p in self.get_output_embeddings().parameters(): p.requires_grad = False if model_args.pretrain_mm_mlp_adapter: mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] assert num_new_tokens == 2 if input_embeddings.shape == embed_tokens_weight.shape: input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] elif embed_tokens_weight.shape[0] == num_new_tokens: input_embeddings[-num_new_tokens:] = embed_tokens_weight else: raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") elif model_args.mm_use_im_patch_token: if model_args.tune_mm_mlp_adapter: for p in self.get_input_embeddings().parameters(): p.requires_grad = False for p in self.get_output_embeddings().parameters(): p.requires_grad = False # Path: step1/llava/model/language_model/llava_llama.py from typing import List, Optional, Tuple, Union from torch.nn import CrossEntropyLoss from transformers import AutoConfig, AutoModelForCausalLM, \ LlamaConfig, LlamaModel, LlamaForCausalLM from transformers.modeling_outputs import CausalLMOutputWithPast from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM import torch import torch.nn as nn # Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class LlavaConfig(LlamaConfig): model_type = "llava" class LlavaLlamaModel(LlavaMetaModel, LlamaModel): config_class = LlavaConfig def __init__(self, config: LlamaConfig): super(LlavaLlamaModel, self).__init__(config) class LlavaLlamaForCausalLM(LlamaForCausalLM, LlavaMetaForCausalLM): config_class = LlavaConfig def __init__(self, config): super(LlamaForCausalLM, self).__init__(config) self.model = LlavaLlamaModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_model(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model/pipeline parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict:
output = (logits,) + outputs[1:]
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: phineas-pta/comfy-trt-test # Path: comfy_trt/exporter.py def export_onnx(onnx_path: str, modelobj: UNetModel, profile: ProfileSettings, opset: int = 17, disable_optimizations: bool = False): logging.info("Exporting to ONNX...") inputs = modelobj.get_sample_input(profile.bs_opt * 2, profile.h_opt // 8, profile.w_opt // 8, profile.t_opt) if not os.path.exists(onnx_path): _export_onnx( modelobj.unet, inputs, onnx_path, opset, modelobj.get_input_names(), modelobj.get_output_names(), modelobj.get_dynamic_axes(), modelobj.optimize if not disable_optimizations else None, ) # Path: comfy_trt/exporter.py def export_trt(trt_path: str, onnx_path: str, timing_cache: str, profile: dict, use_fp16: bool) -> int: engine = Engine(trt_path) s = time.time() ret = engine.build(onnx_path, use_fp16, enable_refit=True, timing_cache=timing_cache, input_profile=[profile]) e = time.time() logging.info(f"Time taken to build: {e-s}s") return ret # Path: comfy_trt/model_helper.py class UNetModel: def __init__(self, unet, version: str, unet_dim: int, embedding_dim: int, text_minlen: int = 77) -> None: super().__init__() self.unet = unet self.is_xl = version in ["SDXL", "SDXLRefiner", "SSD1B", "Segmind_Vega"] self.text_minlen = text_minlen self.embedding_dim = embedding_dim match version: case "SDXL" | "SSD1B" | "Segmind_Vega": self.num_xl_classes = 2816 case "SDXLRefiner": self.num_xl_classes = 2560 case _: self.num_xl_classes = 0 self.emb_chn = 1280 self.in_channels = unet_dim self.dyn_axes = { "sample": {0: "2B", 2: "H", 3: "W"}, "encoder_hidden_states": {0: "2B", 1: "77N"}, "timesteps": {0: "2B"}, "latent": {0: "2B", 2: "H", 3: "W"}, "y": {0: "2B"}, } def get_input_names(self) -> list[str]: names = ["sample", "timesteps", "encoder_hidden_states"] if self.is_xl: names.append("y") return names def get_output_names(self) -> list[str]: return ["latent"] def get_dynamic_axes(self) -> dict: io_names = self.get_input_names() + self.get_output_names() return {name: self.dyn_axes[name] for name in io_names} def get_sample_input( self, batch_size: int, latent_height: int, latent_width: int, text_len: int, device: str = "cuda", dtype: torch.dtype = torch.float32, ) -> tuple[torch.Tensor]: return ( torch.randn(batch_size, self.in_channels, latent_height, latent_width, dtype=dtype, device=device), torch.randn(batch_size, dtype=dtype, device=device), torch.randn(batch_size, text_len, self.embedding_dim, dtype=dtype, device=device), torch.randn(batch_size, self.num_xl_classes, dtype=dtype, device=device) if self.is_xl else None, ) def get_input_profile(self, profile: ProfileSettings) -> dict: min_batch, opt_batch, max_batch = profile.get_batch_dim() ( min_latent_height, latent_height, max_latent_height, min_latent_width, latent_width, max_latent_width, ) = profile.get_latent_dim() shape_dict = { "sample": [ (min_batch, self.in_channels, min_latent_height, min_latent_width), (opt_batch, self.in_channels, latent_height, latent_width), (max_batch, self.in_channels, max_latent_height, max_latent_width), ], "timesteps": [(min_batch,), (opt_batch,), (max_batch,)], "encoder_hidden_states": [ (min_batch, profile.t_min, self.embedding_dim), (opt_batch, profile.t_opt, self.embedding_dim), (max_batch, profile.t_max, self.embedding_dim), ], } if self.is_xl: shape_dict["y"] = [ (min_batch, self.num_xl_classes), (opt_batch, self.num_xl_classes), (max_batch, self.num_xl_classes), ] return shape_dict # Helper utility for weights map def export_weights_map(self, onnx_opt_path: str, weights_map_path: dict): onnx_opt_dir = onnx_opt_path state_dict = self.unet.state_dict() onnx_opt_model = onnx.load(onnx_opt_path) # Create initializer data hashes def init_hash_map(onnx_opt_model): initializer_hash_mapping = {} for initializer in onnx_opt_model.graph.initializer: initializer_data = onnx.numpy_helper.to_array(initializer, base_dir=onnx_opt_dir).astype(np.float16) initializer_hash = hash(initializer_data.data.tobytes()) initializer_hash_mapping[initializer.name] = (initializer_hash, initializer_data.shape) return initializer_hash_mapping initializer_hash_mapping = init_hash_map(onnx_opt_model) weights_name_mapping, weights_shape_mapping = {}, {} # set to keep track of initializers already added to the name_mapping dict initializers_mapped = set() for wt_name, wt in state_dict.items(): # get weight hash wt = wt.cpu().detach().numpy().astype(np.float16) wt_hash = hash(wt.data.tobytes()) wt_t_hash = hash(np.transpose(wt).data.tobytes()) for initializer_name, (initializer_hash, initializer_shape) in initializer_hash_mapping.items(): # Due to constant folding, some weights are transposed during export # To account for the transpose op, we compare the initializer hash to the hash for the weight and its transpose if wt_hash == initializer_hash or wt_t_hash == initializer_hash: # The assert below ensures there is a 1:1 mapping between PyTorch and ONNX weight names. # It can be removed in cases where 1:many mapping is found and name_mapping[wt_name] = list() assert initializer_name not in initializers_mapped weights_name_mapping[wt_name] = initializer_name initializers_mapped.add(initializer_name) is_transpose = wt_hash != initializer_hash weights_shape_mapping[wt_name] = (initializer_shape, is_transpose) # Sanity check: Were any weights not matched if wt_name not in weights_name_mapping: print(f"[I] PyTorch weight {wt_name} not matched with any ONNX initializer") print(f"[I] UNet: {len(weights_name_mapping.keys())} PyTorch weights were matched with ONNX initializers") assert weights_name_mapping.keys() == weights_shape_mapping.keys() with open(weights_map_path, "w") as fp: json.dump([weights_name_mapping, weights_shape_mapping], fp, indent="\t") @staticmethod def optimize(name, onnx_graph, verbose=False): opt = Optimizer(onnx_graph, verbose=verbose) opt.info(f"{name}: original") opt.cleanup() opt.info(f"{name}: cleanup") opt.fold_constants() opt.info(f"{name}: fold constants") opt.infer_shapes() opt.info(f"{name}: shape inference") onnx_opt_graph = opt.cleanup(return_onnx=True) opt.info(f"{name}: finished") return onnx_opt_graph # Path: comfy_trt/model_manager.py BASE_PATH = os.path.dirname(os.path.realpath(__file__)) ONNX_MODEL_DIR = os.path.join(BASE_PATH, "Unet-onnx") TRT_MODEL_DIR = os.path.join(BASE_PATH, "Unet-trt") MODEL_FILE = os.path.join(TRT_MODEL_DIR, "model.json") def get_cc() -> tuple[int]: def __init__(self, model_file: str = MODEL_FILE): def get_onnx_path(model_name: str) -> tuple[str]: def get_trt_path(self, model_name: str, profile: dict, static_shape: bool) -> tuple[str]: def get_weights_map_path(self, model_name: str): def update(self) -> None: def add_entry( self, model_name: str, profile: dict, static_shapes: bool, fp32: bool, baseline_model: str, prediction_type: str, inpaint: bool, refit: bool, unet_hidden_dim: int, lora: bool ) -> None: def add_lora_entry( self, base_model: str, lora_name: str, trt_lora_path: str, fp32: bool, baseline_model: str, prediction_type: str, inpaint: bool, unet_hidden_dim: int ) -> None: def write_json(self) -> None: def read_json(self, encode_config: bool = True) -> dict: def available_models(self) -> dict: def available_loras(self): def get_timing_cache(self) -> str: def get_valid_models_from_dict(self, base_model: str, feed_dict: dict) -> tuple[list[bool], list[float]]: def get_valid_models(self, base_model: str, width: int, height: int, batch_size: int, max_embedding: int) -> tuple[list[bool], list[float]]: class ModelManager: # Path: comfy_trt/datastructures.py class ProfileSettings: bs_min: int # batch size bs_opt: int bs_max: int h_min: int # height h_opt: int h_max: int w_min: int # width w_opt: int w_max: int t_min: int # token count t_opt: int t_max: int static_shapes: bool = False def __str__(self) -> str: return "\n\t- ".join([ "[I] size & shape parameters:", f"batch size: min={self.bs_min}, opt={self.bs_opt}, max={self.bs_max}", f"height: min={self.h_min}, opt={self.h_opt}, max={self.h_max}", f"width: min={self.w_min}, opt={self.w_opt}, max={self.w_max}", f"token count: min={self.t_min}, opt={self.t_opt}, max={self.t_max}", ]) def out(self) -> tuple[int]: return ( self.bs_min, self.bs_opt, self.bs_max, self.h_min, self.h_opt, self.h_max, self.w_min, self.w_opt, self.w_max, self.t_min, self.t_opt, self.t_max, ) def token_to_dim(self) -> None: self.t_min = (self.t_min // 75) * 77 self.t_opt = (self.t_opt // 75) * 77 self.t_max = (self.t_max // 75) * 77 if self.static_shapes: self.t_min = self.t_max = self.t_opt self.bs_min = self.bs_max = self.bs_opt self.h_min = self.h_max = self.h_opt self.w_min = self.w_max = self.w_opt self.static_shapes = True def get_latent_dim(self) -> tuple[int]: return ( self.h_min // 8, self.h_opt // 8, self.h_max // 8, self.w_min // 8, self.w_opt // 8, self.w_max // 8, ) def get_batch_dim(self) -> tuple[int]: is_static_batch = self.bs_min == self.bs_max == self.bs_opt if self.t_max <= 77: return (self.bs_min * 2, self.bs_opt * 2, self.bs_max * 2) elif self.t_max > 77 and is_static_batch: return (self.bs_opt, self.bs_opt, self.bs_opt) elif self.t_max > 77 and not is_static_batch: if self.t_opt > 77: return (self.bs_min, self.bs_opt, self.bs_max * 2) else: return (self.bs_min, self.bs_opt * 2, self.bs_max * 2) else: raise Exception("Uncovered case in get_batch_dim") # Path: convert_unet.py import argparse import sys import os.path import gc import torch from comfy_trt.exporter import export_onnx, export_trt from comfy_trt.model_helper import UNetModel from comfy_trt.model_manager import modelmanager, cc_major from comfy_trt.datastructures import ProfileSettings from comfy.utils import load_torch_file, calculate_parameters from comfy.supported_models import models as LIST_MODELS from comfy.model_detection import detect_unet_config from comfy.model_management import unet_dtype as get_unet_dtype # -*- coding: utf-8 -*- # modified from https://github.com/NVIDIA/Stable-Diffusion-WebUI-TensorRT/blob/main/ui_trt.py # CHANGE: remove lora, make script as CLI command # STATUS: ok i guess sys.path.append(os.path.join("..", "..")) def parseArgs(): parser = argparse.ArgumentParser(description="test: convert Stable Diffusion checkpoint to TensorRT engine") parser.add_argument("--ckpt_path", required=True) parser.add_argument("--output_name", help=".onnx & .trt file name, default to ckpt file name") parser.add_argument("--batch_min", type=int, default=1, help="default 1") parser.add_argument("--batch_opt", type=int, default=1, help="default 1") parser.add_argument("--batch_max", type=int, default=1, help="limit 16") parser.add_argument("--height_min", type=int, help="default 768 if sdxl else 512, limit 256") parser.add_argument("--height_opt", type=int, help="default 1024 if sdxl else 512") parser.add_argument("--height_max", type=int, help="default 1024 if sdxl else 768, limit 4096") parser.add_argument("--width_min", type=int, help="default 768 if sdxl else 512, limit 256") parser.add_argument("--width_opt", type=int, help="default 768 if sdxl else 512") parser.add_argument("--width_max", type=int, help="default 1024 if sdxl else 768, limit 4096") parser.add_argument("--token_count_min", type=int, default=75, help="default 75, cannot go lower") parser.add_argument("--token_count_opt", type=int, default=75, help="default 75") parser.add_argument("--token_count_max", type=int, default=150, help="default 150, limit 750")
parser.add_argument("--force_export", action="store_true")
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: hydrogram/hydrogram # Path: hydrogram/utils.py async def ainput(prompt: str = "", *, hide: bool = False): def get_input_media_from_file_id( file_id: str, expected_file_type: FileType = None, ttl_seconds: Optional[int] = None ) -> Union["raw.types.InputMediaPhoto", "raw.types.InputMediaDocument"]: async def parse_messages( client, messages: "raw.types.messages.Messages", replies: int = 1 ) -> list["types.Message"]: def parse_deleted_messages(client, update) -> list["types.Message"]: def pack_inline_message_id(msg_id: "raw.base.InputBotInlineMessageID"): def unpack_inline_message_id(inline_message_id: str) -> "raw.base.InputBotInlineMessageID": def get_raw_peer_id(peer: raw.base.Peer) -> Optional[int]: def get_peer_id(peer: raw.base.Peer) -> int: def get_peer_type(peer_id: int) -> str: def get_channel_id(peer_id: int) -> int: def btoi(b: bytes) -> int: def itob(i: int) -> bytes: def sha256(data: bytes) -> bytes: def xor(a: bytes, b: bytes) -> bytes: def compute_password_hash( algo: raw.types.PasswordKdfAlgoSHA256SHA256PBKDF2HMACSHA512iter100000SHA256ModPow, password: str, ) -> bytes: def compute_password_check( r: raw.types.account.Password, password: str ) -> raw.types.InputCheckPasswordSRP: async def parse_text_entities( client: "hydrogram.Client", text: str, parse_mode: enums.ParseMode, entities: list["types.MessageEntity"], ) -> dict[str, Union[str, list[raw.base.MessageEntity]]]: def zero_datetime() -> datetime: def timestamp_to_datetime(ts: Optional[int]) -> Optional[datetime]: def datetime_to_timestamp(dt: Optional[datetime]) -> Optional[int]: def get_reply_head_fm( message_thread_id: int, reply_to_message_id: int ) -> raw.types.InputReplyToMessage: MIN_CHANNEL_ID = -1002147483647 MAX_CHANNEL_ID = -1000000000000 MIN_CHAT_ID = -2147483647 MAX_USER_ID_OLD = 2147483647 MAX_USER_ID = 999999999999 B = btoi(B_bytes) A = pow(g, a, p) S = pow(g_b, a_ux, p) # Path: hydrogram/handlers/callback_query_handler.py class CallbackQueryHandler(Handler): """The CallbackQuery handler class. Used to handle callback queries coming from inline buttons. It is intended to be used with :meth:`~hydrogram.Client.add_handler` For a nicer way to register this handler, have a look at the :meth:`~hydrogram.Client.on_callback_query` decorator. Parameters: callback (``Callable``): Pass a function that will be called when a new CallbackQuery arrives. It takes *(client, callback_query)* as positional arguments (look at the section below for a detailed description). filters (:obj:`Filters`): Pass one or more filters to allow only a subset of callback queries to be passed in your callback function. Other parameters: client (:obj:`~hydrogram.Client`): The Client itself, useful when you want to call other API methods inside the message handler. callback_query (:obj:`~hydrogram.types.CallbackQuery`): The received callback query. """ def __init__(self, callback: Callable, filters=None): self.original_callback = callback super().__init__(self.resolve_future_or_callback, filters) def compose_data_identifier(self, query: CallbackQuery) -> Identifier: """ Composes an Identifier object from a CallbackQuery object. Parameters: query (:obj:`~hydrogram.types.CallbackQuery`): The CallbackQuery object to compose of. Returns: :obj:`~hydrogram.types.Identifier`: An Identifier object. """ from_user = query.from_user from_user_id = from_user.id if from_user else None from_user_username = from_user.username if from_user else None chat_id = None message_id = None if query.message: message_id = getattr(query.message, "id", getattr(query.message, "message_id", None)) if query.message.chat: chat_id = [query.message.chat.id, query.message.chat.username] return Identifier( message_id=message_id, chat_id=chat_id, from_user_id=[from_user_id, from_user_username], inline_message_id=query.inline_message_id, ) async def check_if_has_matching_listener( self, client: "hydrogram.Client", query: CallbackQuery ) -> tuple[bool, Optional[Listener]]: """ Checks if the CallbackQuery object has a matching listener. Parameters: client (:obj:`~hydrogram.Client`): The Client object to check with. query (:obj:`~hydrogram.types.CallbackQuery`): The CallbackQuery object to check with. Returns: A tuple of whether the CallbackQuery object has a matching listener and its filters does match with the CallbackQuery and the matching listener; """ data = self.compose_data_identifier(query) listener = client.get_listener_matching_with_data(data, ListenerTypes.CALLBACK_QUERY) listener_does_match = False if listener: filters = listener.filters if callable(filters): if iscoroutinefunction(filters.__call__): listener_does_match = await filters(client, query) else: listener_does_match = await client.loop.run_in_executor( None, filters, client, query ) else: listener_does_match = True return listener_does_match, listener async def check(self, client: "hydrogram.Client", query: CallbackQuery) -> bool: """ Checks if the CallbackQuery object has a matching listener or handler. Parameters: client (:obj:`~hydrogram.Client`): The Client object to check with. query (:obj:`~hydrogram.types.CallbackQuery`): The CallbackQuery object to check with. Returns: ``bool``: A boolean indicating whether the CallbackQuery object has a matching listener or the handler filter matches. """ listener_does_match, listener = await self.check_if_has_matching_listener(client, query) if callable(self.filters): if iscoroutinefunction(self.filters.__call__): handler_does_match = await self.filters(client, query) else: handler_does_match = await client.loop.run_in_executor( None, self.filters, client, query ) else: handler_does_match = True data = self.compose_data_identifier(query) if PyromodConfig.unallowed_click_alert: # matches with the current query but from any user permissive_identifier = Identifier( chat_id=data.chat_id, message_id=data.message_id, inline_message_id=data.inline_message_id, from_user_id=None, ) matches = permissive_identifier.matches(data) if ( listener and (matches and not listener_does_match) and listener.unallowed_click_alert ): alert = ( listener.unallowed_click_alert if isinstance(listener.unallowed_click_alert, str) else PyromodConfig.unallowed_click_alert_text ) await query.answer(alert) return False # let handler get the chance to handle if listener # exists but its filters doesn't match return listener_does_match or handler_does_match async def resolve_future_or_callback( self, client: "hydrogram.Client", query: CallbackQuery, *args ) -> None: """ Resolves the future or calls the callback of the listener. Will call the original handler if no listener. Parameters: client (:obj:`~hydrogram.Client`): The Client object to resolve or call with. query (:obj:`~hydrogram.types.CallbackQuery`): The CallbackQuery object to resolve or call with. args: The arguments to call the callback with. Returns: ``None`` """ listener_does_match, listener = await self.check_if_has_matching_listener(client, query) if listener and listener_does_match: client.remove_listener(listener) if listener.future and not listener.future.done(): listener.future.set_result(query) raise hydrogram.StopPropagation if listener.callback: if iscoroutinefunction(listener.callback): await listener.callback(client, query, *args) else: listener.callback(client, query, *args) raise hydrogram.StopPropagation raise ValueError("Listener must have either a future or a callback") await self.original_callback(client, query, *args) # Path: hydrogram/handlers/chat_join_request_handler.py class ChatJoinRequestHandler(Handler): """The ChatJoinRequest handler class. Used to handle join chat requests. It is intended to be used with :meth:`~hydrogram.Client.add_handler`. For a nicer way to register this handler, have a look at the :meth:`~hydrogram.Client.on_chat_join_request` decorator. Parameters: callback (``Callable``): Pass a function that will be called when a new ChatJoinRequest event arrives. It takes *(client, chat_join_request)* as positional arguments (look at the section below for a detailed description). filters (:obj:`Filters`): Pass one or more filters to allow only a subset of updates to be passed in your callback function. Other parameters: client (:obj:`~hydrogram.Client`): The Client itself, useful when you want to call other API methods inside the handler. chat_join_request (:obj:`~hydrogram.types.ChatJoinRequest`): The received chat join request. """ def __init__(self, callback: Callable, filters=None): super().__init__(callback, filters) # Path: hydrogram/handlers/chat_member_updated_handler.py class ChatMemberUpdatedHandler(Handler): """The ChatMemberUpdated handler class. Used to handle changes in the status of a chat member. It is intended to be used with :meth:`~hydrogram.Client.add_handler`. For a nicer way to register this handler, have a look at the :meth:`~hydrogram.Client.on_chat_member_updated` decorator. Parameters: callback (``Callable``): Pass a function that will be called when a new ChatMemberUpdated event arrives. It takes *(client, chat_member_updated)* as positional arguments (look at the section below for a detailed description). filters (:obj:`Filters`): Pass one or more filters to allow only a subset of updates to be passed in your callback function. Other parameters: client (:obj:`~hydrogram.Client`): The Client itself, useful when you want to call other API methods inside the handler. chat_member_updated (:obj:`~hydrogram.types.ChatMemberUpdated`): The received chat member update. """ def __init__(self, callback: Callable, filters=None): super().__init__(callback, filters) # Path: hydrogram/handlers/chosen_inline_result_handler.py class ChosenInlineResultHandler(Handler): """The ChosenInlineResultHandler handler class. Used to handle chosen inline results coming from inline queries. It is intended to be used with :meth:`~hydrogram.Client.add_handler` For a nicer way to register this handler, have a look at the :meth:`~hydrogram.Client.on_chosen_inline_result` decorator. Parameters: callback (``Callable``): Pass a function that will be called when a new chosen inline result arrives. It takes *(client, chosen_inline_result)* as positional arguments (look at the section below for a detailed description). filters (:obj:`Filters`): Pass one or more filters to allow only a subset of chosen inline results to be passed in your callback function. Other parameters: client (:obj:`~hydrogram.Client`): The Client itself, useful when you want to call other API methods inside the message handler. chosen_inline_result (:obj:`~hydrogram.types.ChosenInlineResult`): The received chosen inline result. """ def __init__(self, callback: Callable, filters=None): super().__init__(callback, filters) # Path: hydrogram/handlers/deleted_messages_handler.py class DeletedMessagesHandler(Handler): """The deleted messages handler class. Used to handle deleted messages coming from any chat (private, group, channel). It is intended to be used with :meth:`~hydrogram.Client.add_handler` For a nicer way to register this handler, have a look at the :meth:`~hydrogram.Client.on_deleted_messages` decorator. Parameters: callback (``Callable``): Pass a function that will be called when one or more messages have been deleted. It takes *(client, messages)* as positional arguments (look at the section below for a detailed description). filters (:obj:`Filters`): Pass one or more filters to allow only a subset of messages to be passed in your callback function. Other parameters: client (:obj:`~hydrogram.Client`): The Client itself, useful when you want to call other API methods inside the message handler. messages (List of :obj:`~hydrogram.types.Message`): The deleted messages, as list. """ def __init__(self, callback: Callable, filters: Filter = None): super().__init__(callback, filters) async def check(self, client: "hydrogram.Client", messages: list[Message]): # Every message should be checked, if at least one matches the filter True is returned # otherwise, or if the list is empty, False is returned for message in messages: if await super().check(client, message): return True return False # Path: hydrogram/handlers/edited_message_handler.py class EditedMessageHandler(Handler): """The EditedMessage handler class. Used to handle edited messages. It is intended to be used with :meth:`~hydrogram.Client.add_handler` For a nicer way to register this handler, have a look at the :meth:`~hydrogram.Client.on_edited_message` decorator. Parameters: callback (``Callable``): Pass a function that will be called when a new edited message arrives. It takes *(client, message)* as positional arguments (look at the section below for a detailed description). filters (:obj:`Filters`): Pass one or more filters to allow only a subset of messages to be passed in your callback function. Other parameters: client (:obj:`~hydrogram.Client`): The Client itself, useful when you want to call other API methods inside the message handler. edited_message (:obj:`~hydrogram.types.Message`): The received edited message. """ def __init__(self, callback: Callable, filters=None): super().__init__(callback, filters) # Path: hydrogram/handlers/inline_query_handler.py class InlineQueryHandler(Handler): """The InlineQuery handler class. Used to handle inline queries. It is intended to be used with :meth:`~hydrogram.Client.add_handler` For a nicer way to register this handler, have a look at the :meth:`~hydrogram.Client.on_inline_query` decorator. Parameters: callback (``Callable``): Pass a function that will be called when a new InlineQuery arrives. It takes *(client, inline_query)* as positional arguments (look at the section below for a detailed description). filters (:obj:`Filters`): Pass one or more filters to allow only a subset of inline queries to be passed in your callback function. Other parameters: client (:obj:`~hydrogram.Client`): The Client itself, useful when you want to call other API methods inside the inline query handler. inline_query (:obj:`~hydrogram.types.InlineQuery`): The received inline query. """ def __init__(self, callback: Callable, filters=None): super().__init__(callback, filters) # Path: hydrogram/handlers/message_handler.py class MessageHandler(Handler): """The Message handler class. Used to handle new messages. It is intended to be used with :meth:`~hydrogram.Client.add_handler` For a nicer way to register this handler, have a look at the :meth:`~hydrogram.Client.on_message` decorator. Parameters: callback (``Callable``): Pass a function that will be called when a new Message arrives. It takes *(client, message)* as positional arguments (look at the section below for a detailed description). filters (:obj:`Filters`): Pass one or more filters to allow only a subset of messages to be passed in your callback function. Other parameters: client (:obj:`~hydrogram.Client`): The Client itself, useful when you want to call other API methods inside the message handler. message (:obj:`~hydrogram.types.Message`): The received message. """ def __init__(self, callback: Callable, filters=None): self.original_callback = callback super().__init__(self.resolve_future_or_callback, filters) async def check_if_has_matching_listener( self, client: "hydrogram.Client", message: Message ) -> tuple[bool, Optional[Listener]]: """ Checks if the message has a matching listener. Parameters: client (:obj:`~hydrogram.Client`): The Client object to check with. message (:obj:`~hydrogram.types.Message`): The Message object to check with. Returns: ``tuple``: A tuple of two elements, the first one is whether the message has a matching listener or not, the second one is the matching listener if exists. """ from_user = message.from_user from_user_id = from_user.id if from_user else None from_user_username = from_user.username if from_user else None message_id = getattr(message, "id", getattr(message, "message_id", None)) data = Identifier( message_id=message_id, chat_id=[message.chat.id, message.chat.username], from_user_id=[from_user_id, from_user_username], ) listener = client.get_listener_matching_with_data(data, ListenerTypes.MESSAGE) listener_does_match = False if listener: filters = listener.filters if callable(filters): if iscoroutinefunction(filters.__call__): listener_does_match = await filters(client, message) else: listener_does_match = await client.loop.run_in_executor( None, filters, client, message ) else: listener_does_match = True return listener_does_match, listener async def check(self, client: "hydrogram.Client", message: Message) -> bool: """ Checks if the message has a matching listener or handler and its filters does match with the Message. Parameters: client (:obj:`~hydrogram.Client`): The Client object to check with. message (:obj:`~hydrogram.types.Message`): The Message object to check with. Returns: ``bool``: Whether the message has a matching listener or handler and its filters does match with the Message. """ listener_does_match = (await self.check_if_has_matching_listener(client, message))[0] if callable(self.filters): if iscoroutinefunction(self.filters.__call__): handler_does_match = await self.filters(client, message) else: handler_does_match = await client.loop.run_in_executor( None, self.filters, client, message ) else: handler_does_match = True # let handler get the chance to handle if listener # exists but its filters doesn't match return listener_does_match or handler_does_match async def resolve_future_or_callback( self, client: "hydrogram.Client", message: Message, *args ): """ Resolves the future or calls the callback of the listener if the message has a matching listener. Parameters: client (:obj:`~hydrogram.Client`): The Client object to resolve or call with. message (:obj:`~hydrogram.types.Message`): The Message object to resolve or call with. args (``tuple``): Arguments to call the callback with. """ listener_does_match, listener = await self.check_if_has_matching_listener(client, message) if listener and listener_does_match: client.remove_listener(listener) if listener.future and not listener.future.done(): listener.future.set_result(message) raise hydrogram.StopPropagation if listener.callback: if iscoroutinefunction(listener.callback): await listener.callback(client, message, *args) else: listener.callback(client, message, *args) raise hydrogram.StopPropagation raise ValueError("Listener must have either a future or a callback") await self.original_callback(client, message, *args) # Path: hydrogram/handlers/poll_handler.py class PollHandler(Handler): """The Poll handler class. Used to handle polls updates. It is intended to be used with :meth:`~hydrogram.Client.add_handler` For a nicer way to register this handler, have a look at the :meth:`~hydrogram.Client.on_poll` decorator. Parameters: callback (``Callable``): Pass a function that will be called when a new poll update arrives. It takes *(client, poll)* as positional arguments (look at the section below for a detailed description). filters (:obj:`Filters`): Pass one or more filters to allow only a subset of polls to be passed in your callback function. Other parameters: client (:obj:`~hydrogram.Client`): The Client itself, useful when you want to call other API methods inside the poll handler. poll (:obj:`~hydrogram.types.Poll`): The received poll. """ def __init__(self, callback: Callable, filters=None): super().__init__(callback, filters) # Path: hydrogram/handlers/raw_update_handler.py class RawUpdateHandler(Handler): """The Raw Update handler class. Used to handle raw updates. It is intended to be used with :meth:`~hydrogram.Client.add_handler` For a nicer way to register this handler, have a look at the :meth:`~hydrogram.Client.on_raw_update` decorator. Parameters: callback (``Callable``): A function that will be called when a new update is received from the server. It takes *(client, update, users, chats)* as positional arguments (look at the section below for a detailed description). Other Parameters: client (:obj:`~hydrogram.Client`): The Client itself, useful when you want to call other API methods inside the update handler. update (``Update``): The received update, which can be one of the many single Updates listed in the :obj:`~hydrogram.raw.base.Update` base type. users (``dict``): Dictionary of all :obj:`~hydrogram.types.User` mentioned in the update. You can access extra info about the user (such as *first_name*, *last_name*, etc...) by using the IDs you find in the *update* argument (e.g.: *users[1768841572]*). chats (``dict``): Dictionary of all :obj:`~hydrogram.types.Chat` and :obj:`~hydrogram.raw.types.Channel` mentioned in the update. You can access extra info about the chat (such as *title*, *participants_count*, etc...) by using the IDs you find in the *update* argument (e.g.: *chats[1701277281]*). Note: The following Empty or Forbidden types may exist inside the *users* and *chats* dictionaries. They mean you have been blocked by the user or banned from the group/channel. - :obj:`~hydrogram.raw.types.UserEmpty` - :obj:`~hydrogram.raw.types.ChatEmpty` - :obj:`~hydrogram.raw.types.ChatForbidden` - :obj:`~hydrogram.raw.types.ChannelForbidden` """ def __init__(self, callback: Callable): super().__init__(callback) # Path: hydrogram/handlers/user_status_handler.py class UserStatusHandler(Handler): """The UserStatus handler class. Used to handle user status updates (user going online or offline). It is intended to be used with :meth:`~hydrogram.Client.add_handler`. For a nicer way to register this handler, have a look at the :meth:`~hydrogram.Client.on_user_status` decorator. Parameters: callback (``Callable``): Pass a function that will be called when a new user status update arrives. It takes *(client, user)* as positional arguments (look at the section below for a detailed description). filters (:obj:`Filters`): Pass one or more filters to allow only a subset of users to be passed in your callback function. Other parameters: client (:obj:`~hydrogram.Client`): The Client itself, useful when you want to call other API methods inside the user status handler. user (:obj:`~hydrogram.types.User`): The user containing the updated status. """ def __init__(self, callback: Callable, filters=None): super().__init__(callback, filters) # Path: hydrogram/dispatcher.py import asyncio import inspect import logging import hydrogram from collections import OrderedDict from hydrogram import utils from hydrogram.handlers import ( CallbackQueryHandler, ChatJoinRequestHandler, ChatMemberUpdatedHandler, ChosenInlineResultHandler, DeletedMessagesHandler, EditedMessageHandler, InlineQueryHandler, MessageHandler, PollHandler, RawUpdateHandler, UserStatusHandler, ) from hydrogram.raw.types import ( UpdateBotCallbackQuery, UpdateBotChatInviteRequester, UpdateBotInlineQuery, UpdateBotInlineSend, UpdateChannelParticipant, UpdateChatParticipant, UpdateDeleteChannelMessages, UpdateDeleteMessages, UpdateEditChannelMessage, UpdateEditMessage, UpdateInlineBotCallbackQuery, UpdateMessagePoll, UpdateNewChannelMessage, UpdateNewMessage, UpdateNewScheduledMessage, UpdateUserStatus, ) # Hydrogram - Telegram MTProto API Client Library for Python # Copyright (C) 2017-2023 Dan <https://github.com/delivrance> # Copyright (C) 2023-present Hydrogram <https://hydrogram.org> # # This file is part of Hydrogram. # # Hydrogram is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Hydrogram is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Hydrogram. If not, see <http://www.gnu.org/licenses/>. log = logging.getLogger(__name__) class Dispatcher: NEW_MESSAGE_UPDATES = ( UpdateNewMessage, UpdateNewChannelMessage, UpdateNewScheduledMessage, ) EDIT_MESSAGE_UPDATES = (UpdateEditMessage, UpdateEditChannelMessage) DELETE_MESSAGES_UPDATES = (UpdateDeleteMessages, UpdateDeleteChannelMessages) CALLBACK_QUERY_UPDATES = (UpdateBotCallbackQuery, UpdateInlineBotCallbackQuery) CHAT_MEMBER_UPDATES = (UpdateChatParticipant, UpdateChannelParticipant) USER_STATUS_UPDATES = (UpdateUserStatus,) BOT_INLINE_QUERY_UPDATES = (UpdateBotInlineQuery,) POLL_UPDATES = (UpdateMessagePoll,) CHOSEN_INLINE_RESULT_UPDATES = (UpdateBotInlineSend,)
CHAT_JOIN_REQUEST_UPDATES = (UpdateBotChatInviteRequester,)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: iwatake2222/rotop # Path: src/rotop/data_container.py class DataContainer: MAX_ROW_CSV = 600 MAX_NUM_HISTORY = 100 def __init__(self, write_csv=False): now = datetime.datetime.now() if write_csv: self.csv_dir_name = now.strftime('./rotop_%Y%m%d_%H%M%S') os.mkdir(self.csv_dir_name) else: self.csv_dir_name = None self.csv_index = 0 self.df_cpu = pd.DataFrame() self.df_mem = pd.DataFrame() self.df_cpu_history = pd.DataFrame() self.df_mem_history = pd.DataFrame() def run(self, top_runner: TopRunner, lines: list[str], num_process: int): if top_runner.col_range_command and top_runner.col_range_command[0] > 0: df_cpu_current, df_mem_current = self.create_df_from_top(top_runner, lines, num_process) self.df_cpu = pd.concat([self.df_cpu, df_cpu_current], axis=0) self.df_mem = pd.concat([self.df_mem, df_mem_current], axis=0) self.df_cpu_history = pd.concat([self.df_cpu_history, df_cpu_current], axis=0, ignore_index=True) self.df_mem_history = pd.concat([self.df_mem_history, df_mem_current], axis=0, ignore_index=True) if self.csv_dir_name: self.df_cpu.to_csv(os.path.join(self.csv_dir_name, f'cpu_{self.csv_index:03d}.csv'), index=False) self.df_mem.to_csv(os.path.join(self.csv_dir_name, f'mem_{self.csv_index:03d}.csv'), index=False) if len(self.df_cpu) >= self.MAX_ROW_CSV: self.df_cpu = pd.DataFrame() self.df_mem = pd.DataFrame() self.csv_index += 1 if len(self.df_cpu_history) >= self.MAX_NUM_HISTORY: self.df_cpu_history = self.df_cpu_history[1:] self.df_mem_history = self.df_mem_history[1:] self.df_cpu_history = self.sort_df_in_column(self.df_cpu_history) self.df_mem_history = self.sort_df_in_column(self.df_mem_history) return self.df_cpu_history, self.df_mem_history def reset_history(self): self.df_cpu_history = pd.DataFrame() self.df_mem_history = pd.DataFrame() @staticmethod def sort_df_in_column(df: pd.DataFrame): df = df.sort_values(by=len(df)-1, axis=1, ascending=False) return df @staticmethod def create_df_from_top(top_runner: TopRunner, lines: list[str], num_process: int): # now = datetime.datetime.now() now = int(time.time()) for i, line in enumerate(lines): if 'PID' in line: lines = lines[i + 1:] break process_list = [] cpu_list = [] mem_list = [] for i, line in enumerate(lines): if i >= num_process: break pid = line[top_runner.col_range_pid[0]:top_runner.col_range_pid[1]].strip() command = line[top_runner.col_range_command[0]:].strip() process_name = str(f'{command} ({pid})') process_list.append(process_name) cpu = float(line[top_runner.col_range_CPU[0]:top_runner.col_range_CPU[1]].strip()) cpu_list.append(cpu) mem = float(line[top_runner.col_range_MEM[0]:top_runner.col_range_MEM[1]].strip()) mem_list.append(mem) df_cpu_current = pd.DataFrame([[now] + cpu_list], columns=['datetime'] + process_list) df_mem_current = pd.DataFrame([[now] + mem_list], columns=['datetime'] + process_list) return df_cpu_current, df_mem_current # Path: src/rotop/top_runner.py class TopRunner: def __init__(self, interval, filter): self.child = pexpect.spawn(f'top -cb -d {interval} -o %CPU -w 512') self.filter_re = self.create_filter_re(filter) self.ros_re = self.create_filter_re('--ros-arg|/opt/ros') self.col_range_list_to_display = None self.col_range_pid = None self.col_range_CPU = None self.col_range_MEM = None self.col_range_command = None self.next_after = '' def __del__(self): signal.signal(signal.SIGINT, signal.SIG_IGN) # ignore ctrl-c while closing self.child.close() def run(self, max_num_process, show_all=False, only_ros=False): # get the result string of top command self.child.expect(r'top - .*load average:') before = self.child.before previous_after = self.next_after self.next_after = self.child.after if before == '' or previous_after == '' or self.next_after == '': return None, None top_str = (previous_after + before).decode('utf-8') orgial_lines = top_str.splitlines() result_lines = [] result_show_all_lines = [] row_process_info = 0 # System Information for line in orgial_lines: result_lines.append(line) result_show_all_lines.append(line) if 'PID' in line: break # get layout information from process header line row_process_info = len(result_lines) process_header_org = result_lines[-1] self.analyze_cols(process_header_org, show_all) process_header = '' for range in self.col_range_list_to_display: process_header += process_header_org[range[0]:range[1]] result_lines[-1] = process_header # Process Information for line in orgial_lines[row_process_info:]: if self.col_range_command and self.col_range_command[0] > 0 and len(line) > self.col_range_command[0]: process_info_org = line[:self.col_range_command[0]] process_info = '' for range in self.col_range_list_to_display: process_info += process_info_org[range[0]:range[1]] command_str = line[self.col_range_command[0]:] if not self.filter_re.match(command_str): continue if only_ros and not self.ros_re.match(command_str): continue command_str = self.parse_command_str(command_str) line = process_info + command_str show_all_line = process_info_org + command_str result_lines.append(line) result_show_all_lines.append(show_all_line) if len(result_lines) >= row_process_info + max_num_process: break return result_lines, result_show_all_lines def analyze_cols(self, process_header: str, show_all: bool): if self.col_range_command is None or self.col_range_command[0] == -1: self.col_range_list_to_display = self.get_col_range_list_to_display(process_header, show_all) self.col_range_pid = TopRunner.get_col_range_PID(process_header) self.col_range_CPU = TopRunner.get_col_range_CPU(process_header) self.col_range_MEM = TopRunner.get_col_range_MEM(process_header) self.col_range_command = TopRunner.get_col_range_command(process_header) return @staticmethod def create_filter_re(filter_str): if '.*' not in filter_str: filter_str = '.*' + filter_str + '.*' filter_re = re.compile(filter_str) return filter_re @staticmethod def get_row_start_list(lines: list[str])->list[int]: row_list = [] for i, line in enumerate(lines): if 'top' in line and 'load average' in line: row_list.append(i) return row_list @staticmethod def get_col_range_command(process_info_header_line: str): start_col = process_info_header_line.find('COMMAND') end_col = len(process_info_header_line) - 1 return (start_col, end_col) @staticmethod def get_col_range_PID(process_info_header_line: str): start_col = 0 end_col = process_info_header_line.find('PID') + len('PID') return (start_col, end_col) @staticmethod def get_col_range_CPU(process_info_header_line: str): start_col = process_info_header_line.find('SHR S') + len('SHR S') end_col = process_info_header_line.find('%CPU') + len('%CPU') return (start_col, end_col) @staticmethod def get_col_range_MEM(process_info_header_line: str): start_col = process_info_header_line.find('%CPU') + len('%CPU') end_col = process_info_header_line.find('%MEM') + len('%MEM') return (start_col, end_col) @staticmethod def get_col_range_list_to_display(process_info_header_line: str, show_all=False): range_list = [] if show_all: range_list.append((0, len(process_info_header_line))) else: start_col = 0 end_col = process_info_header_line.find('PID') + len('PID') range_list.append((start_col, end_col)) start_col = process_info_header_line.find('NI') + len('NI') end_col = process_info_header_line.find('%MEM') + len('%MEM') range_list.append((start_col, end_col)) start_col = process_info_header_line.find('COMMAND') - 1 end_col = len(process_info_header_line) range_list.append((start_col, end_col)) return range_list @staticmethod def parse_component_container_command(command): cmd = command.split()[0].split('/')[-1] idx_node = command.find('__node') if idx_node > 0: node = command[idx_node:].split()[0].split('=')[-1] cmd = node idx_ns = command.find('__ns') if idx_ns > 0: ns = command[idx_ns:].split()[0].split('=')[-1] # cmd = cmd + ', ' + node + ', ' + ns cmd += ', ' + ns return cmd @staticmethod def parse_python_command(command): cmd_list = command.split() cmd = cmd_list[0].split('/')[-1] if len(cmd_list) > 1: if cmd_list[1][0] == '-': python_file = cmd_list[-1] else: python_file = cmd_list[1] python_file = python_file.split('/')[-1] ros2_option = '' if 'ros2' == python_file: ros2_option = ' '.join(cmd_list[2:5]) cmd = cmd + ' ' + python_file + ' ' + ros2_option return cmd @staticmethod def parse_command_str(command): param_for_ros2 = ['__node', '__ns'] if '[' == command[0]: # kernel process command = command elif any(item in command for item in param_for_ros2): command = TopRunner.parse_component_container_command(command) elif 'python' in command: command = TopRunner.parse_python_command(command) else: # normal process command = command.split()[0].split('/')[-1] return command # Path: src/rotop/utility.py def create_logger(name, level: int=logging.DEBUG, log_filename: str=None) -> logging.Logger: handler_format = logging.Formatter('[%(asctime)s][%(levelname)-7s][%(filename)s:%(lineno)s] %(message)s') # stream_handler = logging .StreamHandler() # stream_handler.setLevel(level) # stream_handler.setFormatter(handler_format) logger = logging.getLogger(name) logger.propagate = False logger.setLevel(level) # logger.addHandler(stream_handler) # if log_filename: # file_handler = logging.FileHandler(log_filename) # file_handler.setLevel(level) # file_handler.setFormatter(handler_format) # logger.addHandler(file_handler) return logger # Path: src/rotop/gui_main.py import pandas as pd import threading import time import dearpygui.dearpygui as dpg from .data_container import DataContainer from .top_runner import TopRunner from .utility import create_logger time.sleep(0.1) dpg.render_dearpygui_frame() dpg.destroy_context() def get_plot_title(self): return 'CPU [%]' if self.plot_is_cpu else 'MEM [%]' def cb_button_cpumem(self, sender, app_data, user_data): self.plot_is_cpu = not self.plot_is_cpu dpg.set_item_label(self.dpg_plot_id, self.get_plot_title()) def cb_button_reset(self, sender, app_data, user_data): global g_reset_history_df g_reset_history_df = True self.color_dict = {} self.theme_dict = {} def cb_button_pause(self, sender, app_data, user_data): self.pause = not self.pause def cb_resize(self, sender, app_data): window_width = app_data[2] window_height = app_data[3] dpg.set_item_width(self.dpg_window_id, window_width) dpg.set_item_height(self.dpg_window_id, window_height) dpg.set_item_width(self.dpg_plot_id, window_width) dpg.set_item_height(self.dpg_plot_id, window_height / 2) def update_gui(self, result_lines:list[str], df_cpu_history:pd.DataFrame, df_mem_history:pd.DataFrame): if self.pause: return if self.dpg_plot_axis_y_id: dpg.delete_item(self.dpg_plot_axis_y_id) self.dpg_plot_axis_y_id = dpg.add_plot_axis(dpg.mvYAxis, label=self.get_plot_title(), lock_min=True, parent=self.dpg_plot_id) df = df_cpu_history if self.plot_is_cpu else df_mem_history col_x = df.columns[0] cols_y = df.columns[1:] x = df[col_x].to_list() for col_y in cols_y: y = df[col_y].to_list() line_series = dpg.add_line_series(x, y, label=col_y[:min(40, len(col_y))].ljust(40), parent=self.dpg_plot_axis_y_id) theme = self.get_theme(col_y) dpg.bind_item_theme(line_series, theme) if self.plot_is_cpu: dpg.add_line_series([x[0]], [110], label='', parent=self.dpg_plot_axis_y_id) # dummy for ymax>=100 dpg.add_plot_legend(parent=self.dpg_plot_id, outside=True, location=dpg.mvPlot_Location_NorthEast) dpg.fit_axis_data(self.dpg_plot_axis_x_id) dpg.fit_axis_data(self.dpg_plot_axis_y_id) dpg.set_value(self.dpg_text, '\n'.join(result_lines)) def get_color(self, process_name)->tuple[int]: # return (0, 0, 0) if process_name in self.color_dict: return self.color_dict[process_name] else: color = COLOR_MAP[len(self.color_dict)%len(COLOR_MAP)] self.color_dict[process_name] = color return color def get_theme(self, process_name): if process_name in self.theme_dict: return self.theme_dict[process_name] else: with dpg.theme() as theme: with dpg.theme_component(dpg.mvLineSeries): dpg.add_theme_color(dpg.mvPlotCol_Line, self.get_color(process_name), category=dpg.mvThemeCat_Plots) self.theme_dict[process_name] = theme return theme def gui_loop(view: GuiView): view.start_dpg() def gui_main(args): global g_reset_history_df top_runner = TopRunner(args.interval, args.filter) data_container = DataContainer(args.csv) view = GuiView() gui_thread = threading.Thread(target=gui_loop, args=(view,)) gui_thread.start() try: while True: if g_reset_history_df: data_container.reset_history() g_reset_history_df = False result_lines, result_show_all_lines = top_runner.run(args.num_process, True, args.only_ros) if result_show_all_lines is None: time.sleep(0.1) continue df_cpu_history, df_mem_history = data_container.run(top_runner, result_show_all_lines, args.num_process) df_cpu_history = df_cpu_history.iloc[:, :min(args.num_process, len(df_cpu_history.columns))] df_mem_history = df_mem_history.iloc[:, :min(args.num_process, len(df_mem_history.columns))] if gui_thread.is_alive(): view.update_gui(result_lines, df_cpu_history, df_mem_history) else: break except KeyboardInterrupt: pass view.exit()
gui_thread.join()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: chenruduan/OAReactDiff # Path: oa_reactdiff/trainer/pl_trainer.py class DDPMModule(LightningModule): def __init__( self, model_config: Dict, optimizer_config: Dict, training_config: Dict, node_nfs: List[int] = [9] * 3, edge_nf: int = 4, condition_nf: int = 3, fragment_names: List[str] = ["inorg_node", "org_edge", "org_node"], pos_dim: int = 3, update_pocket_coords: bool = True, condition_time: bool = True, edge_cutoff: Optional[float] = None, norm_values: Tuple = (1.0, 1.0, 1.0), norm_biases: Tuple = (0.0, 0.0, 0.0), noise_schedule: str = "polynomial_2", timesteps: int = 1000, precision: float = 1e-5, loss_type: str = "l2", pos_only: bool = False, process_type: Optional[str] = None, model: nn.Module = None, enforce_same_encoding: Optional[List] = None, scales: List[float] = [1.0, 1.0, 1.0], eval_epochs: int = 20, source: Optional[Dict] = None, fixed_idx: Optional[List] = None, ) -> None: super().__init__() egnn_dynamics = EGNNDynamics( model_config=model_config, node_nfs=node_nfs, edge_nf=edge_nf, condition_nf=condition_nf, fragment_names=fragment_names, pos_dim=pos_dim, update_pocket_coords=update_pocket_coords, condition_time=condition_time, edge_cutoff=edge_cutoff, model=model, enforce_same_encoding=enforce_same_encoding, source=source, ) normalizer = Normalizer( norm_values=norm_values, norm_biases=norm_biases, pos_dim=pos_dim, ) gamma_module = PredefinedNoiseSchedule( noise_schedule=noise_schedule, timesteps=timesteps, precision=precision, ) schedule = DiffSchedule(gamma_module=gamma_module, norm_values=norm_values) self.ddpm = EnVariationalDiffusion( dynamics=egnn_dynamics, schdule=schedule, normalizer=normalizer, size_histogram=None, loss_type=loss_type, pos_only=pos_only, fixed_idx=fixed_idx, ) self.model_config = model_config self.optimizer_config = optimizer_config self.training_config = training_config self.loss_type = loss_type self.n_fragments = len(fragment_names) self.remove_h = training_config["remove_h"] self.pos_only = pos_only self.process_type = process_type or "QM9" self.scales = scales sampling_gamma_module = PredefinedNoiseSchedule( noise_schedule="polynomial_2", timesteps=150, precision=precision, ) self.sampling_schedule = DiffSchedule( gamma_module=sampling_gamma_module, norm_values=norm_values, ) self.eval_epochs = eval_epochs self.clip_grad = training_config["clip_grad"] if self.clip_grad: self.gradnorm_queue = utils.Queue() self.gradnorm_queue.add(3000) self.save_hyperparameters() def configure_optimizers(self): optimizer = torch.optim.AdamW(self.ddpm.parameters(), **self.optimizer_config) if not self.training_config["lr_schedule_type"] is None: scheduler_func = LR_SCHEDULER[self.training_config["lr_schedule_type"]] scheduler = scheduler_func( optimizer=optimizer, **self.training_config["lr_schedule_config"] ) return [optimizer], [scheduler] else: return optimizer def setup(self, stage: Optional[str] = None): func = PROCESS_FUNC[self.process_type] ft = FILE_TYPE[self.process_type] if stage == "fit": self.train_dataset = func( Path(self.training_config["datadir"], f"train_addprop{ft}"), **self.training_config, ) self.training_config["reflection"] = False # Turn off reflection in val. self.val_dataset = func( Path(self.training_config["datadir"], f"valid_addprop{ft}"), **self.training_config, ) elif stage == "test": self.test_dataset = func( Path(self.training_config["datadir"], f"test{ft}"), **self.training_config, ) else: raise NotImplementedError def train_dataloader(self) -> DataLoader: return DataLoader( self.train_dataset, self.training_config["bz"], shuffle=True, num_workers=self.training_config["num_workers"], collate_fn=self.train_dataset.collate_fn, ) def val_dataloader(self) -> DataLoader: return DataLoader( self.val_dataset, self.training_config["bz"], shuffle=False, num_workers=self.training_config["num_workers"], collate_fn=self.val_dataset.collate_fn, ) def test_dataloader(self) -> DataLoader: return DataLoader( self.test_dataset, self.training_config["bz"], shuffle=False, num_workers=self.training_config["num_workers"], collate_fn=self.test_dataset.collate_fn, ) def compute_loss(self, batch): representations, conditions = batch loss_terms = self.ddpm.forward( representations, conditions, ) info = {} if not self.pos_only: denoms = [ (self.ddpm.pos_dim + self.ddpm.node_nfs[ii]) * representations[ii]["size"] for ii in range(self.n_fragments) ] else: denoms = [ self.ddpm.pos_dim * representations[ii]["size"] for ii in range(self.n_fragments) ] error_t_normalized = [ loss_terms["error_t"][ii] / denoms[ii] * self.scales[ii] for ii in range(self.n_fragments) ] if self.loss_type == "l2" and self.training: # normalize loss_t loss_t = torch.stack(error_t_normalized, dim=0).sum(dim=0) # normalize loss_0 loss_0_x = [ loss_terms["loss_0_x"][ii] * self.scales[ii] / (self.ddpm.pos_dim * representations[ii]["size"]) for ii in range(self.n_fragments) ] loss_0_x = torch.stack(loss_0_x, dim=0).sum(dim=0) loss_0_cat = torch.stack(loss_terms["loss_0_cat"], dim=0).sum(dim=0) loss_0_charge = torch.stack(loss_terms["loss_0_charge"], dim=0).sum(dim=0) loss_0 = loss_0_x + loss_0_cat + loss_0_charge # VLB objective or evaluation step else: # Note: SNR_weight should be negative error_t = [ -self.ddpm.T * 0.5 * loss_terms["SNR_weight"] * _error_t for _error_t in loss_terms["error_t"] ] loss_t = torch.stack(error_t, dim=0).sum(dim=0) loss_0_x = torch.stack(loss_terms["loss_0_x"], dim=0).sum(dim=0) loss_0_cat = torch.stack(loss_terms["loss_0_cat"], dim=0).sum(dim=0) loss_0_charge = torch.stack(loss_terms["loss_0_charge"], dim=0).sum(dim=0) loss_0 = ( loss_0_x + loss_0_cat + loss_0_charge + loss_terms["neg_log_constants"] ) nll = loss_t + loss_0 + loss_terms["kl_prior"] # nll = loss_t for ii in range(self.n_fragments): info[f"error_t_{ii}"] = error_t_normalized[ii].mean().item() / ( self.scales[ii] + 1e-4 ) info[f"unorm_error_t_{ii}"] = loss_terms["error_t"][ii].mean().item() # Correct for normalization on x. if not (self.loss_type == "l2" and self.training): nll = nll - loss_terms["delta_log_px"] # Transform conditional nll into joint nll # Note: # loss = -log p(x,h|N) and log p(x,h,N) = log p(x,h|N) + log p(N) # Therefore, log p(x,h|N) = -loss + log p(N) # => loss_new = -log p(x,h,N) = loss - log p(N) nll = nll - loss_terms["log_pN"] return nll, info def eval_inplaint_batch( self, batch: List, resamplings: int = 5, jump_length: int = 5, frag_fixed: List = [0, 2], ): sampling_ddpm = copy.deepcopy(self.ddpm) sampling_ddpm.schedule = self.sampling_schedule sampling_ddpm.T = self.sampling_schedule.gamma_module.timesteps sampling_ddpm.eval() representations, conditions = batch xh_fixed = [ torch.cat( [repre[feature_type] for feature_type in FEATURE_MAPPING], dim=1, ) for repre in representations ] n_samples = representations[0]["size"].size(0) fragments_nodes = [repre["size"] for repre in representations] with torch.no_grad(): out_samples, _ = sampling_ddpm.inpaint( n_samples=n_samples, fragments_nodes=fragments_nodes, conditions=conditions, return_frames=1, resamplings=resamplings, jump_length=jump_length, timesteps=None, xh_fixed=xh_fixed, frag_fixed=frag_fixed, ) rmsds = batch_rmsd( fragments_nodes, out_samples[0], xh_fixed, idx=1, threshold=0.5, ) return np.mean(rmsds), np.median(rmsds) def training_step(self, batch, batch_idx): nll, info = self.compute_loss(batch) loss = nll.mean(0) self.log("train-totloss", loss, rank_zero_only=True) for k, v in info.items(): self.log(f"train-{k}", v, rank_zero_only=True) if (self.current_epoch + 1) % self.eval_epochs == 0 and batch_idx == 0: if self.trainer.is_global_zero: print( "evaluation on samping for training batch...", batch[1].shape, batch_idx, ) rmsd_mean, rmsd_median = self.eval_inplaint_batch(batch) info["rmsd"], info["rmsd-median"] = rmsd_mean, rmsd_median else: info["rmsd"], info["rmsd-median"] = np.nan, np.nan info["loss"] = loss return info def _shared_eval(self, batch, batch_idx, prefix, *args): nll, info = self.compute_loss(batch) loss = nll.mean(0) info["totloss"] = loss.item() if (self.current_epoch + 1) % self.eval_epochs == 0 and batch_idx == 0: if self.trainer.is_global_zero: print( "evaluation on samping for validation batch...", batch[1].shape, batch_idx, ) info["rmsd"], info["rmsd-median"] = self.eval_inplaint_batch(batch) else: info["rmsd"], info["rmsd-median"] = np.nan, np.nan info_prefix = {} for k, v in info.items(): info_prefix[f"{prefix}-{k}"] = v return info_prefix def validation_step(self, batch, batch_idx, *args): return self._shared_eval(batch, batch_idx, "val", *args) def test_step(self, batch, batch_idx, *args): return self._shared_eval(batch, batch_idx, "test", *args) def validation_epoch_end(self, val_step_outputs): val_epoch_metrics = average_over_batch_metrics(val_step_outputs) if self.trainer.is_global_zero: pretty_print(self.current_epoch, val_epoch_metrics, prefix="val") val_epoch_metrics.update({"epoch": self.current_epoch}) for k, v in val_epoch_metrics.items(): self.log(k, v, sync_dist=True) def training_epoch_end(self, outputs) -> None: epoch_metrics = average_over_batch_metrics( outputs, allowed=["rmsd", "rmsd-median"] ) self.log("train-rmsd", epoch_metrics["rmsd"], sync_dist=True) self.log("train-rmsd-median", epoch_metrics["rmsd-median"], sync_dist=True) def configure_gradient_clipping( self, optimizer, optimizer_idx, gradient_clip_val, gradient_clip_algorithm ): if not self.clip_grad: return # Allow gradient norm to be 150% + 1.5 * stdev of the recent history. max_grad_norm = 1.5 * self.gradnorm_queue.mean() + 3 * self.gradnorm_queue.std() # Get current grad_norm params = [p for g in optimizer.param_groups for p in g["params"]] grad_norm = utils.get_grad_norm(params) # Lightning will handle the gradient clipping self.clip_gradients( optimizer, gradient_clip_val=max_grad_norm, gradient_clip_algorithm="norm" ) if float(grad_norm) > max_grad_norm: self.gradnorm_queue.add(float(max_grad_norm)) else: self.gradnorm_queue.add(float(grad_norm)) if float(grad_norm) > max_grad_norm: print( f"Clipped gradient with value {grad_norm:.1f} " f"while allowed {max_grad_norm:.1f}" ) # Path: oa_reactdiff/dataset/transition1x.py class ProcessedTS1x(BaseDataset): def __init__( self, npz_path, center=True, pad_fragments=0, device="cpu", zero_charge=False, remove_h=False, single_frag_only=True, swapping_react_prod=False, append_frag=False, reflection=False, use_by_ind=False, only_ts=False, confidence_model=False, position_key="positions", ediff=None, **kwargs, ): super().__init__( npz_path=npz_path, center=center, device=device, zero_charge=zero_charge, remove_h=remove_h, ) if confidence_model: use_by_ind = False if remove_h: print("remove_h is ignored because it is not reasonble for TS.") if single_frag_only: single_frag_inds = np.where( np.array(self.raw_dataset["single_fragment"]) == 1 )[0] else: single_frag_inds = np.array(range(len(self.raw_dataset["single_fragment"]))) if use_by_ind: use_inds = self.raw_dataset["use_ind"] else: use_inds = range(len(self.raw_dataset["single_fragment"])) single_frag_inds = list(set(single_frag_inds).intersection(set(use_inds))) data_duplicated = copy.deepcopy(self.raw_dataset) for k, mapped_k in FRAG_MAPPING.items(): for v, val in data_duplicated[k].items(): self.raw_dataset[k][v] = [val[ii] for ii in single_frag_inds] if swapping_react_prod: mapped_val = data_duplicated[mapped_k][v] self.raw_dataset[k][v] += [ mapped_val[ii] for ii in single_frag_inds ] if reflection: for k, mapped_k in FRAG_MAPPING.items(): for v, val in self.raw_dataset[k].items(): if v in ["wB97x_6-31G(d).forces", position_key]: self.raw_dataset[k][v] += [reflect_z(_val) for _val in val] else: self.raw_dataset[k][v] += val self.reactant = self.raw_dataset["reactant"] self.transition_state = self.raw_dataset["transition_state"] self.product = self.raw_dataset["product"] self.n_fragments = pad_fragments + 3 self.device = torch.device(device) n_samples = len(self.reactant["charges"]) self.n_samples = len(self.reactant["charges"]) self.data = {} repeat = 2 if swapping_react_prod else 1 if confidence_model: self.data["target"] = torch.tensor( self.raw_dataset["target"] * repeat ).unsqueeze(1) self.data["rmsd"] = torch.tensor( self.raw_dataset["rmsd"] * repeat ).unsqueeze(1) if ediff is not None: self.data["ediff"] = torch.tensor( self.raw_dataset[ediff]["ediff"] * repeat ).unsqueeze(1) if not only_ts: if not append_frag: self.process_molecules( "reactant", n_samples, idx=0, position_key=position_key ) self.process_molecules("transition_state", n_samples, idx=1) self.process_molecules( "product", n_samples, idx=2, position_key=position_key ) else: self.process_molecules( "reactant", n_samples, idx=0, append_charge=0, position_key=position_key, ) self.process_molecules( "transition_state", n_samples, idx=1, append_charge=1 ) self.process_molecules( "product", n_samples, idx=2, append_charge=0, position_key=position_key, ) for idx in range(pad_fragments): self.patch_dummy_molecules(idx + 3) else: if not append_frag: self.process_molecules("transition_state", n_samples, idx=0) else: self.process_molecules( "transition_state", n_samples, idx=0, append_charge=1 ) # for idx in range(2): # self.patch_dummy_molecules(idx + 1) self.data["condition"] = [ torch.zeros( size=(1, 1), dtype=torch.int64, device=self.device, ) for _ in range(self.n_samples) ] # Path: oa_reactdiff/analyze/rmsd.py def batch_rmsd( fragments_nodes: List[Tensor], out_samples: List[Tensor], xh: List[Tensor], idx: int = 1, threshold=0.5, ): rmsds = [] out_samples_use = out_samples[idx] xh_use = xh[idx] nodes = fragments_nodes[idx].long().cpu().numpy() start_ind, end_ind = 0, 0 for jj, natoms in enumerate(nodes): end_ind += natoms mol1 = xh2pmg(out_samples_use[start_ind:end_ind]) mol2 = xh2pmg(xh_use[start_ind:end_ind]) try: rmsd = pymatgen_rmsd(mol1, mol2, ignore_chirality=True, threshold=threshold) except: rmsd = 1.0 rmsds.append(min(rmsd, 1.0)) start_ind = end_ind return rmsds # Path: oa_reactdiff/evaluate/utils.py def set_new_schedule( ddpm_trainer: DDPMModule, timesteps: int = 250, device: torch.device = torch.device("cuda"), noise_schedule: str = "polynomial_2", ) -> DDPMModule: precision: float = 1e-5 gamma_module = PredefinedNoiseSchedule( noise_schedule=noise_schedule, timesteps=timesteps, precision=precision, ) schedule = DiffSchedule( gamma_module=gamma_module, norm_values=ddpm_trainer.ddpm.norm_values ) ddpm_trainer.ddpm.schedule = schedule ddpm_trainer.ddpm.T = timesteps return ddpm_trainer.to(device) # Path: oa_reactdiff/evaluate/utils.py def inplaint_batch( batch: List, ddpm_trainer: DDPMModule, resamplings: int = 1, jump_length: int = 1, frag_fixed: List = [0, 2], ): representations, conditions = batch xh_fixed = [ torch.cat( [repre[feature_type] for feature_type in FEATURE_MAPPING], dim=1, ) for repre in representations ] n_samples = representations[0]["size"].size(0) fragments_nodes = [repre["size"] for repre in representations] out_samples, _ = ddpm_trainer.ddpm.inpaint( n_samples=n_samples, fragments_nodes=fragments_nodes, conditions=conditions, return_frames=1, resamplings=resamplings, jump_length=jump_length, timesteps=None, xh_fixed=xh_fixed, frag_fixed=frag_fixed, ) return out_samples[0], xh_fixed, fragments_nodes # Path: oa_reactdiff/evaluate/utils.py def samples_to_pos_charge(out_samples, fragments_nodes): x_r = torch.tensor_split( out_samples[0], torch.cumsum(fragments_nodes[0], dim=0).to("cpu")[:-1] ) x_ts = torch.tensor_split( out_samples[1], torch.cumsum(fragments_nodes[0], dim=0).to("cpu")[:-1] ) x_p = torch.tensor_split( out_samples[2], torch.cumsum(fragments_nodes[0], dim=0).to("cpu")[:-1] ) pos = { "reactant": [_x[:, :3].cpu().numpy() for _x in x_r], "transition_state": [_x[:, :3].cpu().numpy() for _x in x_ts], "product": [_x[:, :3].cpu().numpy() for _x in x_p], } z = [_x[:, -1].long().cpu().numpy() for _x in x_r] natoms = [f.cpu().item() for f in fragments_nodes[0]] return pos, z, natoms # Path: oa_reactdiff/evaluate/generate_confidence_sample.py from typing import List from uuid import uuid4 from torch.utils.data import DataLoader from oa_reactdiff.trainer.pl_trainer import DDPMModule from oa_reactdiff.dataset.transition1x import ProcessedTS1x from oa_reactdiff.analyze.rmsd import batch_rmsd from oa_reactdiff.evaluate.utils import ( set_new_schedule, inplaint_batch, samples_to_pos_charge, ) import time import os import numpy as np import torch import pickle import argparse "--single_frag_only", dest="single_frag_only", default=0, type=int, help="single_frag_only", ) parser.add_argument( "--model", dest="model", default="leftnet_2074", type=str, help="model" ) parser.add_argument("--power", dest="power", default="2", type=str, help="power") parser.add_argument( "--position_key", dest="position_key", default="positions", type=str, help="position_key", ) args = parser.parse_args() print("args: ", args) config = dict( model=args.model, dataset=args.dataset, partition=args.partition, timesteps=args.timesteps, bz=args.bz, resamplings=args.resamplings, jump_length=args.jump_length, repeats=args.repeats, max_batch=-1, shuffle=True, single_frag_only=args.single_frag_only, noise_schedule="polynomial_" + args.power, position_key=args.position_key, ) print("loading ddpm trainer...") device = torch.device("cuda") tspath = "/home/ubuntu/efs/TSDiffusion/oa_reactdiff/trainer/ckpt/TSDiffusion-TS1x-All" checkpoints = { "leftnet_2074": f"{tspath}/leftnet-8-70b75beeaac1/ddpm-epoch=2074-val-totloss=531.18.ckpt", "egnn": f"{tspath}/egnn-1-7d0e388fa0fd/ddpm-epoch=759-val-totloss=616.42.ckpt", "leftnet_wo_oa": f"{tspath}/leftnet-10-da396de30744_wo_oa/ddpm-epoch=149-val-totloss=600.87.ckpt", "leftnet_wo_oa_aligned": f"{tspath}/leftnet-10-d13a2c2bace6_wo_oa_align/ddpm-epoch=779-val-totloss=747.10.ckpt", "leftnet_wo_oa_aligned_early": f"{tspath}/leftnet-10-d13a2c2bace6_wo_oa_align/ddpm-epoch=719-val-totloss=680.64.ckpt", } ddpm_trainer = DDPMModule.load_from_checkpoint( checkpoint_path=checkpoints[config["model"]], map_location=device, ) ddpm_trainer = set_new_schedule( ddpm_trainer, timesteps=config["timesteps"], noise_schedule=config["noise_schedule"] ) print("loading dataset...") dataset = ProcessedTS1x( npz_path=f"../data/{args.dataset}/{args.partition}.pkl", center=True, pad_fragments=0, device="cuda", zero_charge=False, remove_h=False, single_frag_only=config["single_frag_only"], swapping_react_prod=False, use_by_ind=True, position_key=config["position_key"], ) print("# of points:", len(dataset)) loader = DataLoader( dataset, batch_size=config["bz"], shuffle=config["shuffle"], num_workers=0, collate_fn=dataset.collate_fn, ) print("evaluating...") speices = ["reactant", "transition_state", "product"] keys = ["num_atoms", "charges", "position"] for num_repeat in range(config["repeats"]): print("num_repeat: ", num_repeat) _rmsds, _genEs = [], [] filename = assemble_filename(config) data = {} for s in speices: data[s] = {} for k in keys: data[s][k] = [] for s in ["target", "rmsd"]: data[s] = [] for ii, batch in enumerate(loader): print("batch_idx: ", ii) time_start = time.time() if ii == config["max_batch"]: break # TS gen out_samples, xh_fixed, fragments_nodes = inplaint_batch( batch, ddpm_trainer, resamplings=config["resamplings"], jump_length=config["jump_length"], frag_fixed=[0, 2], ) pos, z, natoms = samples_to_pos_charge(out_samples, fragments_nodes) _rmsds = batch_rmsd( fragments_nodes, out_samples, xh_fixed, idx=1, threshold=0.5, ) for s in speices: data[s]["position"] += pos[s] data[s]["charges"] += z data[s]["num_atoms"] += natoms
data["rmsd"] += _rmsds
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: lewandofskee/DiAD # Path: mvtecad_dataloader.py class MVTecDataset(Dataset): def __init__(self,type, root): self.data = [] if type == 'train': with open('./training/MVTec-AD/train.json', 'rt') as f: for line in f: self.data.append(json.loads(line)) else: with open('./training/MVTec-AD/test.json', 'rt') as f: for line in f: self.data.append(json.loads(line)) self.label_to_idx = {'bottle': '0', 'cable': '1', 'capsule': '2', 'carpet': '3', 'grid': '4', 'hazelnut': '5', 'leather': '6', 'metal_nut': '7', 'pill': '8', 'screw': '9', 'tile': '10', 'toothbrush': '11', 'transistor': '12', 'wood': '13', 'zipper': '14'} self.image_size = (256, 256) self.root = root def __len__(self): return len(self.data) def __getitem__(self, idx): item = self.data[idx] source_filename = item['filename'] target_filename = item['filename'] label = item["label"] if item.get("maskname", None): mask = cv2.imread( self.root + item['maskname'], cv2.IMREAD_GRAYSCALE) else: if label == 0: # good mask = np.zeros(self.image_size).astype(np.uint8) elif label == 1: # defective mask = (np.ones(self.image_size)).astype(np.uint8) else: raise ValueError("Labels must be [None, 0, 1]!") prompt = "" source = cv2.imread(self.root + source_filename) target = cv2.imread(self.root + target_filename) source = cv2.cvtColor(source, 4) target = cv2.cvtColor(target, 4) source = Image.fromarray(source, "RGB") target = Image.fromarray(target, "RGB") mask = Image.fromarray(mask, "L") # transform_fn = transforms.Resize(256, Image.BILINEAR) transform_fn = transforms.Resize(self.image_size) source = transform_fn(source) target = transform_fn(target) mask = transform_fn(mask) source = transforms.ToTensor()(source) target = transforms.ToTensor()(target) mask = transforms.ToTensor()(mask) normalize_fn = transforms.Normalize(mean=mean_train, std=std_train) source = normalize_fn(source) target = normalize_fn(target) clsname = item["clsname"] image_idx = self.label_to_idx[clsname] return dict(jpg=target, txt=prompt, hint=source, mask=mask, filename=source_filename, clsname=clsname, label=int(image_idx)) # Path: sgn/model.py def create_model(config_path): config = OmegaConf.load(config_path) model = instantiate_from_config(config.model).cpu() print(f'Loaded model config from [{config_path}]') return model # Path: sgn/model.py def load_state_dict(ckpt_path, location='cpu'): _, extension = os.path.splitext(ckpt_path) if extension.lower() == ".safetensors": import safetensors.torch state_dict = safetensors.torch.load_file(ckpt_path, device=location) else: state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location))) state_dict = get_state_dict(state_dict) print(f'Loaded state_dict from [{ckpt_path}]') return state_dict # Path: utils/eval_helper.py def dump(save_dir, outputs): filenames = outputs["filename"] batch_size = len(filenames) preds = outputs["pred"].cpu().numpy() # B x 1 x H x W masks = outputs["mask"].cpu().numpy() # B x 1 x H x W # heights = outputs["height"].cpu().numpy() # widths = outputs["width"].cpu().numpy() clsnames = outputs["clsname"] for i in range(batch_size): file_dir, filename = os.path.split(filenames[i]) _, subname = os.path.split(file_dir) filename = "{}_{}_{}".format(clsnames[i], subname, filename) filename, _ = os.path.splitext(filename) save_file = os.path.join(save_dir, filename + ".npz") np.savez( save_file, filename=filenames[i], pred=preds[i], mask=masks[i], # height=heights[i], # width=widths[i], clsname=clsnames[i], ) # Path: utils/eval_helper.py def log_metrics(ret_metrics, config): logger = logging.getLogger("global_logger") clsnames = set([k.rsplit("_", 2)[0] for k in ret_metrics.keys()]) clsnames = list(clsnames - set(["mean"])) + ["mean"] # auc if config.get("auc", None): auc_keys = [k for k in ret_metrics.keys() if "auc" in k] evalnames = list(set([k.rsplit("_", 2)[1] for k in auc_keys])) record = Report(["clsname"] + evalnames) for clsname in clsnames: clsvalues = [ ret_metrics["{}_{}_auc".format(clsname, evalname)] for evalname in evalnames ] record.add_one_record([clsname] + clsvalues) logger.info(f"\n{record}") # Path: utils/eval_helper.py def merge_together(save_dir): npz_file_list = glob.glob(os.path.join(save_dir, "*.npz")) fileinfos = [] preds = [] masks = [] for npz_file in npz_file_list: npz = np.load(npz_file) fileinfos.append( { "filename": str(npz["filename"]), # "height": npz["height"], # "width": npz["width"], "clsname": str(npz["clsname"]), } ) preds.append(npz["pred"]) masks.append(npz["mask"]) preds = np.concatenate(np.asarray(preds), axis=0) # N x H x W masks = np.concatenate(np.asarray(masks), axis=0) # N x H x W return fileinfos, preds, masks # Path: utils/eval_helper.py def performances(fileinfos, preds, masks, config): ret_metrics = {} clsnames = set([fileinfo["clsname"] for fileinfo in fileinfos]) for clsname in clsnames: preds_cls = [] masks_cls = [] file_cls = [] for fileinfo, pred, mask in zip(fileinfos, preds, masks): if fileinfo["clsname"] == clsname: preds_cls.append(pred[None, ...]) masks_cls.append(mask[None, ...]) file_cls.append(fileinfo['filename']) preds_cls = np.concatenate(np.asarray(preds_cls), axis=0) # N x H x W masks_cls = np.concatenate(np.asarray(masks_cls), axis=0) # N x H x W data_meta = EvalDataMeta(preds_cls, masks_cls, file_cls) # auc if config.get("auc", None): for metric in config["auc"]: evalname = metric["name"] kwargs = metric.get("kwargs", {}) eval_method = eval_lookup_table[evalname](data_meta, **kwargs) auc = eval_method.eval_auc() ret_metrics["{}_{}_auc".format(clsname, evalname)] = auc if config.get("auc", None): for metric in config["auc"]: evalname = metric["name"] evalvalues = [ ret_metrics["{}_{}_auc".format(clsname, evalname)] for clsname in clsnames ] mean_auc = np.mean(np.array(evalvalues)) ret_metrics["{}_{}_auc".format("mean", evalname)] = mean_auc return ret_metrics # Path: utils/util.py def cal_anomaly_map(fs_list, ft_list, out_size=224, amap_mode='mul'): if amap_mode == 'mul': anomaly_map = np.ones([out_size, out_size]) else: anomaly_map = np.zeros([out_size, out_size]) a_map_list = [] for i in range(len(ft_list)): fs = fs_list[i] ft = ft_list[i] #fs_norm = F.normalize(fs, p=2) #ft_norm = F.normalize(ft, p=2) a_map = 1 - F.cosine_similarity(fs, ft) a_map = torch.unsqueeze(a_map, dim=1) a_map = F.interpolate(a_map, size=out_size, mode='bilinear', align_corners=True) a_map = a_map[0, 0, :, :].to('cpu').detach().numpy() a_map_list.append(a_map) if amap_mode == 'mul': anomaly_map *= a_map else: anomaly_map += a_map return anomaly_map, a_map_list # Path: utils/util.py def log_local(images, filenames): pixel_mean = [0.485, 0.456, 0.406] pixel_std = [0.229, 0.224, 0.225] pixel_mean = torch.tensor(pixel_mean).cuda().unsqueeze(1).unsqueeze(1) # 3 x 1 x 1 pixel_std = torch.tensor(pixel_std).cuda().unsqueeze(1).unsqueeze(1) root = os.path.join('log_image/') name = filenames[-7:-4] for k in images: image = (images[k].squeeze() * pixel_std + pixel_mean) * 255 image = image.permute(1, 2, 0).to('cpu').numpy() filename = "{}-{}.jpg".format(name, k) path = os.path.join(root, filenames[:-7],filename) os.makedirs(os.path.split(path)[0], exist_ok=True) # Image.fromarray(image).save(path) image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) cv2.imwrite(path, image) # Path: utils/util.py def create_logger(name, log_file, level=logging.INFO): log = logging.getLogger(name) formatter = logging.Formatter( "[%(asctime)s][%(filename)15s][line:%(lineno)4d][%(levelname)8s] %(message)s" ) fh = logging.FileHandler(log_file) fh.setFormatter(formatter) sh = logging.StreamHandler() sh.setFormatter(formatter) log.setLevel(level) log.addHandler(fh) log.addHandler(sh) return log # Path: utils/util.py def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.backends.cudnn.deterministirc = True torch.backends.cudnn.benchmark = False # Path: visa_dataloader.py class VisaDataset(Dataset): def __init__(self,type, root): self.data = [] with open('./training/VisA/visa.csv', 'rt') as f: render = csv.reader(f, delimiter=',') header = next(render) for row in render: if row[1] == type: data_dict = {'object':row[0],'split':row[1],'label':row[2],'image':row[3],'mask':row[4]} self.data.append(data_dict) self.label_to_idx = {'candle': '0', 'capsules': '1', 'cashew': '2', 'chewinggum': '3', 'fryum': '4', 'macaroni1': '5', 'macaroni2': '6', 'pcb1': '7', 'pcb2': '8', 'pcb3': '9', 'pcb4': '10', 'pipe_fryum': '11',} self.image_size = (256,256) self.root = root def __len__(self): return len(self.data) def __getitem__(self, idx): item = self.data[idx] source_filename = item['image'] target_filename = item['image'] prompt = "" if item.get("mask", None): mask = cv2.imread( self.root + item['mask'], cv2.IMREAD_GRAYSCALE) else: if item['label'] == 'normal': # good mask = np.zeros(self.image_size).astype(np.uint8) elif item['label'] == 'anomaly': # defective mask = (np.ones(self.image_size)).astype(np.uint8) else: raise ValueError("Labels must be [None, 0, 1]!") source = cv2.imread(self.root + source_filename) target = cv2.imread(self.root + target_filename) source = cv2.cvtColor(source, 4) target = cv2.cvtColor(target, 4) source = Image.fromarray(source, "RGB") target = Image.fromarray(target, "RGB") mask = Image.fromarray(mask, "L") transform_fn = transforms.Resize(self.image_size) source = transform_fn(source) target = transform_fn(target) mask = transform_fn(mask) source = transforms.ToTensor()(source) target = transforms.ToTensor()(target) mask = transforms.ToTensor()(mask) normalize_fn = transforms.Normalize(mean=mean_train, std=std_train) source = normalize_fn(source) target = normalize_fn(target) clsname = item["object"] image_idx = self.label_to_idx[clsname] return dict(jpg=target, txt=prompt, hint=source, mask=mask, filename=source_filename, clsname=clsname, label=int(image_idx)) # Path: test.py import random import torchmetrics import pytorch_lightning as pl import torch import os import argparse import torchvision import numpy as np import logging import timm import cv2 from share import * from PIL import Image from torch.utils.data import DataLoader from mvtecad_dataloader import MVTecDataset from sgn.model import create_model, load_state_dict from utils.eval_helper import dump, log_metrics, merge_together, performances from torch.nn import functional as F from scipy.ndimage import gaussian_filter from utils.util import cal_anomaly_map, log_local, create_logger, setup_seed from visa_dataloader import VisaDataset parser = argparse.ArgumentParser(description="DiAD") parser.add_argument("--resume_path", default='./models/output.ckpt') args = parser.parse_args() # Configs resume_path = args.resume_path batch_size = 1 logger_freq = 300 learning_rate = 1e-5 only_mid_control = True evl_dir = "npz_result" logger = create_logger("global_logger", "log/") # First use cpu to load models. Pytorch Lightning will automatically move it to GPUs. model = create_model('models/diad.yaml').cpu() model.load_state_dict(load_state_dict(resume_path, location='cpu'), strict=False)
model.learning_rate = learning_rate
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: nv-tlabs/trace # Path: tbsim/utils/geometry_utils.py def transform_points_tensor( points: torch.Tensor, transf_matrix: torch.Tensor ) -> torch.Tensor: """ Transform a set of 2D/3D points using the given transformation matrix. Assumes row major ordering of the input points. The transform function has 3 modes: - points (N, F), transf_matrix (F+1, F+1) all points are transformed using the matrix and the output points have shape (N, F). - points (B, N, F), transf_matrix (F+1, F+1) all sequences of points are transformed using the same matrix and the output points have shape (B, N, F). transf_matrix is broadcasted. - points (B, N, F), transf_matrix (B, F+1, F+1) each sequence of points is transformed using its own matrix and the output points have shape (B, N, F). Note this function assumes points.shape[-1] == matrix.shape[-1] - 1, which means that last rows in the matrices do not influence the final results. For 2D points only the first 2x3 parts of the matrices will be used. :param points: Input points of shape (N, F) or (B, N, F) with F = 2 or 3 depending on input points are 2D or 3D points. :param transf_matrix: Transformation matrix of shape (F+1, F+1) or (B, F+1, F+1) with F = 2 or 3. :return: Transformed points of shape (N, F) or (B, N, F) depending on the dimensions of the input points. """ points_log = f" received points with shape {points.shape} " matrix_log = f" received matrices with shape {transf_matrix.shape} " assert points.ndim in [2, 3], f"points should have ndim in [2,3],{points_log}" assert transf_matrix.ndim in [ 2, 3, ], f"matrix should have ndim in [2,3],{matrix_log}" assert ( points.ndim >= transf_matrix.ndim ), f"points ndim should be >= than matrix,{points_log},{matrix_log}" points_feat = points.shape[-1] assert points_feat in [2, 3], f"last points dimension must be 2 or 3,{points_log}" assert ( transf_matrix.shape[-1] == transf_matrix.shape[-2] ), f"matrix should be a square matrix,{matrix_log}" matrix_feat = transf_matrix.shape[-1] assert matrix_feat in [3, 4], f"last matrix dimension must be 3 or 4,{matrix_log}" assert ( points_feat == matrix_feat - 1 ), f"points last dim should be one less than matrix,{points_log},{matrix_log}" def _transform(points: torch.Tensor, transf_matrix: torch.Tensor) -> torch.Tensor: num_dims = transf_matrix.shape[-1] - 1 transf_matrix = torch.permute(transf_matrix, (0, 2, 1)) return ( points @ transf_matrix[:, :num_dims, :num_dims] + transf_matrix[:, -1:, :num_dims] ) if points.ndim == transf_matrix.ndim == 2: points = torch.unsqueeze(points, 0) transf_matrix = torch.unsqueeze(transf_matrix, 0) return _transform(points, transf_matrix)[0] elif points.ndim == transf_matrix.ndim == 3: return _transform(points, transf_matrix) elif points.ndim == 3 and transf_matrix.ndim == 2: transf_matrix = torch.unsqueeze(transf_matrix, 0) return _transform(points, transf_matrix) else: raise NotImplementedError(f"unsupported case!{points_log},{matrix_log}") # Path: tbsim/utils/geometry_utils.py def transform_yaw(yaw, tf_mat): ''' - yaw : (B) - tf_mat : (B, 3, 3) matrix to transform yaw by ''' yaw = yaw[:,None] hvec = torch.cat([torch.cos(yaw), torch.sin(yaw)], dim=-1) # B x 2 rot_mat = tf_mat[:,:2,:2].clone() # B x 2 x 2 # rot part of mat may have scaling too # print(rot_mat) rot_mat[:,:,0] = rot_mat[:,:,0] / torch.norm(rot_mat[:,:,0], dim=-1, keepdim=True) rot_mat[:,:,1] = rot_mat[:,:,1] / torch.norm(rot_mat[:,:,1], dim=-1, keepdim=True) # print(rot_mat) rot_hvec = torch.matmul(rot_mat, hvec.unsqueeze(-1))[:,:,0] # B x 2 # rot_hvec = rot_hvec / torch.norm(rot_hvec, dim=-1, keepdim=True) # print(rot_hvec) tf_yaw = torch.atan2(rot_hvec[:,1], rot_hvec[:,0]) # rot part of mat may have scaling too return tf_yaw # Path: tbsim/utils/geometry_utils.py def detect_collision( ego_pos: np.ndarray, ego_yaw: np.ndarray, ego_extent: np.ndarray, other_pos: np.ndarray, other_yaw: np.ndarray, other_extent: np.ndarray, ): """ Computes whether a collision occured between ego and any another agent. Also computes the type of collision: rear, front, or side. For this, we compute the intersection of ego's four sides with a target agent and measure the length of this intersection. A collision is classified into a class, if the corresponding length is maximal, i.e. a front collision exhibits the longest intersection with egos front edge. .. note:: please note that this funciton will stop upon finding the first colision, so it won't return all collisions but only the first one found. :param ego_pos: predicted centroid :param ego_yaw: predicted yaw :param ego_extent: predicted extent :param other_pos: target agents :return: None if not collision was found, and a tuple with the collision type and the agent track_id """ ego_bbox = _get_bounding_box(centroid=ego_pos, yaw=ego_yaw, extent=ego_extent) for i in range(other_pos.shape[0]): agent_bbox = _get_bounding_box(other_pos[i], other_yaw[i], other_extent[i]) if ego_bbox.intersects(agent_bbox): front_side, rear_side, left_side, right_side = _get_sides(ego_bbox) intersection_length_per_side = np.asarray( [ agent_bbox.intersection(front_side).length, agent_bbox.intersection(rear_side).length, agent_bbox.intersection(left_side).length, agent_bbox.intersection(right_side).length, ] ) argmax_side = np.argmax(intersection_length_per_side) # Remap here is needed because there are two sides that are # mapped to the same collision type CollisionType.SIDE max_collision_types = max(CollisionType).value remap_argmax = min(argmax_side, max_collision_types) collision_type = CollisionType(remap_argmax) return collision_type, i return None # Path: tbsim/utils/geometry_utils.py def batch_nd_transform_points_np(points, Mat): ndim = Mat.shape[-1] - 1 batch = list(range(Mat.ndim-2))+[Mat.ndim-1]+[Mat.ndim-2] Mat = np.transpose(Mat,batch) if points.ndim==Mat.ndim-1: return (points[...,np.newaxis,:] @ Mat[..., :ndim, :ndim]).squeeze(-2) + Mat[ ..., -1:, :ndim ].squeeze(-2) elif points.ndim==Mat.ndim: return ((points[...,np.newaxis,:] @ Mat[...,np.newaxis, :ndim, :ndim]) + Mat[ ...,np.newaxis, -1:, :ndim]).squeeze(-2) else: raise Exception("wrong shape") # Path: tbsim/envs/env_metrics.py class EnvMetrics(abc.ABC): def __init__(self): self._df = None self._scene_ts = defaultdict(lambda:0) self.reset() @abc.abstractmethod def reset(self): pass @abc.abstractmethod def add_step(self, state_info: Dict, all_scene_index: np.ndarray): pass @abc.abstractmethod def get_episode_metrics(self) -> Dict[str, np.ndarray]: pass def get_multi_episode_metrics(self) -> Dict[str, np.ndarray]: pass def multi_episode_reset(self): pass def __len__(self): return max(self._scene_ts.values()) if len(self._scene_ts)>0 else 0 # Path: tbsim/utils/batch_utils.py def batch_utils(): return trajdataBatchUtils() # Path: tbsim/utils/trajdata_utils.py def get_raster_pix2m(): return 1.0 / BATCH_RASTER_CFG["pixel_size"] # Path: tbsim/utils/guidance_metrics.py from collections import defaultdict from tbsim.utils.geometry_utils import transform_points_tensor, transform_yaw, detect_collision, batch_nd_transform_points_np from tbsim.envs.env_metrics import EnvMetrics from tbsim.utils.batch_utils import batch_utils from tbsim.utils.trajdata_utils import get_raster_pix2m import torch import numpy as np import tbsim.utils.tensor_utils as TensorUtils import tbsim.utils.metrics as Metrics tgt_pos = all_pos[np.arange(all_pos.shape[0]),self.times] met = np.mean(np.linalg.norm(tgt_pos - self.locs, axis=-1)) all_scene_met = np.ones((self.num_scenes))*np.nan all_scene_met[self.scene_idx] = met return all_scene_met class GlobalConstraintGuidance(GuidanceMetric): """ How well constraint (waypoints at specific time) are met. """ def reset(self): if 'locs' in self.params and 'times' in self.params: # true hard constraint self.locs = np.array(self.params['locs']) self.times = np.array(self.params['times']) elif 'target_pos' in self.params and 'target_time' in self.params: # guidance version self.locs = np.array(self.params['target_pos']) self.times = np.array(self.params['target_time']) else: raise NotImplementedError() # NOTE: assumes add_step will be called for initial state before model prediction as well self.times = self.times + 1 self._per_step = [] def compute_per_step(self, state_info: dict, all_scene_index: np.ndarray): ''' stores all given positions for needed agents ''' # which agent indices belong to each scene (list of np arrays with agent inds) local_scene_index = torch.unique_consecutive(torch.tensor(state_info["scene_index"]), return_inverse=True)[1].numpy() scene_mask = local_scene_index == self.scene_idx pos_cur_scene = state_info["centroid"][scene_mask] if self.agents is not None: pos_cur_scene = pos_cur_scene[self.agents] return pos_cur_scene def add_step(self, state_info: dict, all_scene_index: np.ndarray): step_pos = self.compute_per_step(state_info, all_scene_index) self._per_step.append(step_pos) def get_episode_metrics(self): ''' finally see if were met at desired step''' all_pos = np.stack(self._per_step, axis=1) # [num_agents, num_steps, 2] tgt_pos = all_pos[np.arange(all_pos.shape[0]),self.times] met = np.mean(np.linalg.norm(tgt_pos - self.locs, axis=-1)) all_scene_met = np.ones((self.num_scenes))*np.nan all_scene_met[self.scene_idx] = met return all_scene_met class MapCollisionGuidance(GuidanceMetric): """Compute the fraction of the time that the agent is in undrivable regions""" def reset(self): self._per_step = [] def compute_per_step(self, state_info: dict, all_scene_index: np.ndarray): # CHANGE: set ignore_if_unspecified to deal with a string type on scene_index obs = TensorUtils.to_tensor(state_info, ignore_if_unspecified=True) drivable_region = batch_utils().get_drivable_region_map(obs["image"]) # print(obs["centroid"]) # print(obs["raster_from_world"]) centroid_raster = transform_points_tensor(obs["centroid"][:, None], obs["raster_from_world"])[:, 0] cur_yaw = transform_yaw(obs["yaw"], obs["raster_from_world"])[:,None] # have to use raster tf mat because the raster may not be up to date with the agent (i.e. the raster may be from an older frame) # cur_yaw = transform_yaw(obs["yaw"], obs["agent_from_world"])[:,None] # agent frame is same as raster, just scaled extent = obs["extent"][:,:2] # TODO: this is super hacky and assumes trajdata is being used. # should really just transform corners in world frame then convert to raster. extent = get_raster_pix2m()*extent # convert to raster frame # filter for specified scene and agents only local_scene_index = torch.unique_consecutive(torch.tensor(state_info["scene_index"]), return_inverse=True)[1].numpy() scene_mask = local_scene_index == self.scene_idx drivable_region = drivable_region[scene_mask] centroid_raster = centroid_raster[scene_mask] cur_yaw = cur_yaw[scene_mask] extent = extent[scene_mask] if self.agents is not None: drivable_region = drivable_region[self.agents] centroid_raster = centroid_raster[self.agents] cur_yaw = cur_yaw[self.agents] extent = extent[self.agents] off_road = Metrics.batch_detect_off_road_boxes(centroid_raster, cur_yaw, extent, drivable_region) # print(off_road) off_road = TensorUtils.to_numpy(off_road) return off_road def add_step(self, state_info: dict, all_scene_index: np.ndarray): met = self.compute_per_step(state_info, all_scene_index) self._per_step.append(met) def get_episode_metrics(self): met_all_steps = np.stack(self._per_step, axis=1) # fraction of frames colliding # print(np.sum(met_all_steps, axis=1)) met_guide_scene = np.sum(met_all_steps, axis=1) / float(met_all_steps.shape[1]) met_guide_scene = np.mean(met_guide_scene) all_scene_met = np.ones((self.num_scenes))*np.nan all_scene_met[self.scene_idx] = met_guide_scene return all_scene_met class MapCollisionGuidanceDisk(GuidanceMetric): """Compute the fraction of the time that the agent is in undrivable regions. each agent is approximated by a single disk""" def reset(self): self._per_step = [] def compute_per_step(self, state_info: dict, all_scene_index: np.ndarray): # CHANGE: set ignore_if_unspecified to deal with a string type on scene_index obs = TensorUtils.to_tensor(state_info, ignore_if_unspecified=True) drivable_region = batch_utils().get_drivable_region_map(obs["image"]) # print(obs["centroid"]) # print(obs["raster_from_world"]) centroid_raster = transform_points_tensor(obs["centroid"][:, None], obs["raster_from_world"])[:, 0] cur_yaw = transform_yaw(obs["yaw"], obs["raster_from_world"])[:,None] # have to use raster tf mat because the raster may not be up to date with the agent (i.e. the raster may be from an older frame) # cur_yaw = transform_yaw(obs["yaw"], obs["agent_from_world"])[:,None] # agent frame is same as raster, just scaled extent = obs["extent"][:,:2] extent = get_raster_pix2m()*extent # convert to raster frame # filter for specified scene and agents only
local_scene_index = torch.unique_consecutive(torch.tensor(state_info["scene_index"]), return_inverse=True)[1].numpy()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: AetherBlack/abuseACL # Path: abuseACL/structures/Credentials.py class Credentials: def __init__(self, username: str, password: str, domain: str, ntlmhash: str, aesKey: str, doKerberos: bool) -> None: self.username = username self.password = password self.domain = domain self.ntlmhash = ntlmhash self.aesKey = aesKey self.doKerberos = doKerberos def getAuthenticationSecret(self) -> str: return self.password or self.ntlmhash # Path: abuseACL/structures/Target.py class Target: tlsv1_2: bool = None tlsv1: bool = None def __init__(self, remote: str, port: int) -> None: self.remote = remote self.port = port def use_tls(self) -> bool: return self.tlsv1_2 or self.tlsv1 # Path: abuseACL/core/abuseACL.py class abuseACL: def __init__(self, ldap: LDAP, logger: Logger, extends: bool) -> None: self.ldap = ldap self.logger = logger self.extends = extends self.users = self.ldap.getAllUsers() self.groups = self.ldap.getAllGroups() self.computers = self.ldap.getAllComputers() self.certificatesTemplates = self.ldap.getAllCertificatesTemplates() self.gpos = self.ldap.getAllGPOs() self.ous = self.ldap.getAllOUs() self.gMSAs = self.ldap.getAllgMSAs() self.allObjects = self.users + self.groups + self.computers + \ self.certificatesTemplates + self.gpos + self.ous + self.gMSAs if self.extends: self.adminSDHolder = self.ldap.getAdminSDHolder() self.schema = self.ldap.getSchema() self.allObjects += self.adminSDHolder + self.schema def isObjectTypeGUIDRestricted(self, ace) -> RIGHTS_GUID: isDangerous = self.isObjectTypeGUIDDangerous(ace) # Restricted but has a dangerous objectTypeGUID if isDangerous: return isDangerous else: # Not restricted if "ObjectTypeLen" not in ace["Ace"].fields: return RIGHTS_GUID.ALL return False def isObjectTypeGUIDDangerous(self, ace) -> RIGHTS_GUID: # Check if the field exists if "ObjectTypeLen" in ace["Ace"].fields: # Check the length if ace["Ace"]["ObjectTypeLen"]: objectTypeGUID = bin_to_string(ace["Ace"]["ObjectType"]).lower() # Check if the right is dangerous for right in RIGHTS_GUID: if right.value == objectTypeGUID: return right return False def printVuln(self, entry: ADObject, ace, perm: ACCESS_MASK, principalName: str, principalSid: str, right: RIGHTS_GUID) -> None: self.logger.vuln(f"Result for {entry.sAMAccountName} ({entry.distinguishedName})") self.logger.vuln(f" ACE Type : {ace['Ace'].__class__.__name__}") self.logger.vuln(f" Access mask : {perm.name}") self.logger.vuln(f" Principal (SID) : {principalName} ({principalSid})") if right: # Right and GUID self.logger.vuln(f" Object type (GUID) : {right.name} ({right.value})") def abuse(self, principalName: str) -> None: """ crossDomain possible check with another forest. Check if the user is the owner of another user, group, computer, certificateTemplate, gpo Check if the user have dangerous write on another user, (group, Self the user can add itself to the group), computer, certificateTemplate, gpo """ haveVulnerability = False principalName = principalName.lower() principalSid = ADUser.getUserSid(self.users, principalName) if principalSid is None: principalSid = ADGroup.getGroupSid(self.groups, principalName) if principalSid is None: principalSid = ADComputer.getComputerSid(self.computers, principalName) if principalSid is None: principalSid = ADgMSA.getgMSASid(self.gMSAs, principalName) if principalSid is None: self.logger.error(f"Can't find principal with name {principalName}") exit(1) self.logger.debug(f"SID of the principal: {principalSid}") for entry in self.allObjects: entry: ADObject # Name of the Object without AD objectName = entry.__class__.__name__[2:] securityDescriptor = entry.nTSecurityDescriptor if principalSid == securityDescriptor["OwnerSid"].formatCanonical(): haveVulnerability = True self.logger.vuln(f"{principalName} is the owner of {entry.sAMAccountName}") # ACE in ACL for ace in securityDescriptor["Dacl"].aces: # Only check ALLOW if ace["Ace"].ACE_TYPE in [ACCESS_ALLOWED_ACE.ACE_TYPE, ACCESS_ALLOWED_OBJECT_ACE.ACE_TYPE]: # Only check concerned user if principalSid != ace["Ace"]["Sid"].formatCanonical(): continue # Don't need to check if already full rights if ace["Ace"]["Mask"].hasPriv(ACCESS_MASK.FULL_CONTROL.value): haveVulnerability = True self.printVuln(entry, ace, ACCESS_MASK.FULL_CONTROL, principalName, principalSid, False) continue for perm in ACCESS_MASK: # Check if permission in current ACE if not (ace["Ace"]["Mask"].hasPriv(perm.value)): continue vuln = f"{principalName} can do {perm.name} on {entry.sAMAccountName}" right = False # Edit one of the object's attributes. The attribute is referenced by an "ObjectType GUID". if perm.name == ACCESS_MASK.WRITE_PROPERTIES.name: right = self.isObjectTypeGUIDDangerous(ace) if right: vuln = f"{principalName} can do {perm.name}:{right} on {entry.sAMAccountName}" else: # Debug, in case it is useful, (No vulnerability) self.logger.debug(vuln) vuln = "" # Perform "Extended rights". "AllExtendedRights" refers to that permission being unrestricted. This right can be restricted by specifying the extended right in the "ObjectType GUID". elif perm.name == ACCESS_MASK.ALL_EXTENDED_RIGHTS.name: right = self.isObjectTypeGUIDRestricted(ace) if right: vuln = f"{principalName} can do {perm.name}:{right} on {entry.sAMAccountName}" else: # Debug, in case it is useful, (No vulnerability) self.logger.debug(vuln) vuln = "" if len(vuln): haveVulnerability = True self.printVuln(entry, ace, perm, principalName, principalSid, right) # In case no vulnerability were found for the principal if not haveVulnerability: self.logger.error(f"Nothing found for principal {principalName}") # Path: abuseACL/core/Logger.py class Logger: def __init__(self, debug: bool, timestamp: bool) -> None: self.__debug = debug self.__timestamp = timestamp def __toStdout(self, color: str, title: str, msg: str) -> None: timestamp = str() if self.__timestamp: timestamp = time.strftime("[%Y/%m/%d %H:%M:%S] ") print("%s%s[%s] %s%s" % (color, timestamp, title, msg, Style.RESET_ALL)) def debug(self, msg: str) -> None: if self.__debug: self.__toStdout(Fore.BLUE, "i", msg) def error(self, msg: str) -> None: self.__toStdout(Fore.RED, "!", msg) def vuln(self, msg: str) -> None: self.__toStdout(Fore.GREEN, "*", msg) # Path: abuseACL/network/LDAP.py class LDAP: users = list() groups = list() computers = list() certificatesTemplates = list() gpos = list() ous = list() adminSDHolder = list() schema = list() gMSA = list() def __init__(self, forest: str, target: Target, credentials: Credentials, logger: Logger) -> None: self.target = target self.credentials = credentials self.logger = logger self.__getPort() self.__checkAuthentication() def __getPort(self) -> None: if self.target.port: return self.target.port, self.target.tlsv1_2 = self.__tryLDAPS(tls.PROTOCOL_TLSv1_2, self.target.port) if self.target.tlsv1_2 is None: self.target.port, self.target.tlsv1 = self.__tryLDAPS(tls.PROTOCOL_TLSv1, self.target.port) if self.target.tlsv1 is None: self.target.port = self.__tryLDAP(self.target.port) if self.target.port is None: self.logger.error(f"Impossible to communicate with the target {self.target.remote} !") exit(1) def __checkAuthentication(self) -> None: self.logger.debug("Trying to connect to %s:%d" % (self.target.remote, self.target.port)) self.__Authentication() try: self.getNamingContexts() except IndexError: self.logger.error("Invalid credentials !") exit(1) self.logger.debug("Authentication success !") def __Authentication(self) -> ldap3.Connection: user = "%s\\%s" % (self.credentials.domain, self.credentials.username) ldapTls = None if self.target.tlsv1_2: ldapTls = ldap3.Tls(validate=tls.CERT_NONE, version=tls.PROTOCOL_TLSv1_2, ciphers='ALL:@SECLEVEL=0') elif self.target.tlsv1: ldapTls = ldap3.Tls(validate=tls.CERT_NONE, version=tls.PROTOCOL_TLSv1, ciphers='ALL:@SECLEVEL=0') ldapServer = ldap3.Server(self.target.remote, use_ssl=self.target.use_tls(), port=self.target.port, get_info=ldap3.ALL, tls=ldapTls) if self.credentials.doKerberos: ldapConn = ldap3.Connection(ldapServer) ldapConn = self.kerberosAuthentication(ldapConn) else: ldapConn = ldap3.Connection(ldapServer, user=user, password=self.credentials.getAuthenticationSecret(), authentication=ldap3.NTLM) ldapConn.bind() if ldapConn.result["description"] == "invalidCredentials": self.logger.error("Invalid credentials !") exit(1) return ldapConn def __tryLDAPS(self, proto: tls._SSLMethod, port: int) -> int: port = port or 636 ldapTls = ldap3.Tls(validate=tls.CERT_NONE, version=proto, ciphers="ALL:@SECLEVEL=0") ldapServer = ldap3.Server(self.target.remote, use_ssl=True, port=port, get_info=ldap3.ALL, tls=ldapTls) ldapConn = ldap3.Connection(ldapServer) try: ldapConn.bind() except ldap3.core.exceptions.LDAPSocketOpenError: return None, None except ldap3.core.exceptions.LDAPSocketReceiveError: pass return port, True def __tryLDAP(self, port: int) -> int: self.logger.debug("LDAPS failed, trying with LDAP.") port = port or 389 ldapServer = ldap3.Server(self.target.remote, use_ssl=False, port=port, get_info=ldap3.ALL) ldapConn = ldap3.Connection(ldapServer) try: ldapConn.bind() except ldap3.core.exceptions.LDAPSocketOpenError: return None except ldap3.core.exceptions.LDAPSocketReceiveError: return port return port def kerberosAuthentication(self, ldapConn: ldap3.Connection) -> None: blob = Kerberos.kerberosLogin(self.target.remote, self.credentials.username, self.credentials.password, self.credentials.domain, self.credentials.ntlmhash, self.credentials.aesKey, kdcHost=self.target.remote) request = ldap3.operation.bind.bind_operation(ldapConn.version, ldap3.SASL, self.credentials.username, None, "GSS-SPNEGO", blob.getData()) # Done with the Kerberos saga, now let's get into LDAP # try to open connection if closed if ldapConn.closed: ldapConn.open(read_server_info=False) ldapConn.sasl_in_progress = True response = ldapConn.post_send_single_response(ldapConn.send('bindRequest', request, None)) ldapConn.sasl_in_progress = False if response[0]['result'] != 0: raise Exception(response) ldapConn.bound = True return ldapConn def search(self, dn: str, filter: str, scope: str, attributes: list = ["*"]) -> list: ldapConn = self.__Authentication() ldapConn.search( search_base=dn, search_filter=filter, search_scope=scope, attributes=attributes, # Controls to get nTSecurityDescriptor from standard user # OWNER_SECURITY_INFORMATION + GROUP_SECURITY_INFORMATION + DACL_SECURITY_INFORMATION controls=[("1.2.840.113556.1.4.801", True, "%c%c%c%c%c" % (48, 3, 2, 1, 7), )] ) return ldapConn.response def __createArrayOfObject(self, response: list, obj: object) -> list: array = list() for entry in response: # Not a response object if entry["type"] != "searchResEntry": continue array.append( obj(**entry["raw_attributes"]) ) return array def getNamingContexts(self) -> list: response = self.search( "", "(objectClass=*)", ldap3.BASE, ["namingContexts"] ) self.namingContexts = response[0]["attributes"]["namingContexts"] self.defaultNamingContext = self.namingContexts[0] self.configurationNamingContext = self.namingContexts[1] self.schemaNamingContext = self.namingContexts[2] self.domainDnsZonesNamingContext = self.namingContexts[3] self.forestDnsZonesNamingContext = self.namingContexts[4] def getAllUsers(self) -> List[ADUser]: if len(self.users): return self.users response = self.search( self.defaultNamingContext, "(sAMAccountType=%d)" % (sAMAccountType.SAM_NORMAL_USER_ACCOUNT), ldap3.SUBTREE, ["DistinguishedName", "name", "userPrincipalName", "sAMAccountName", "objectSid", "ntSecurityDescriptor", "userAccountControl"] ) self.users = self.__createArrayOfObject(response, ADUser) return self.users def getAllGroups(self) -> List[ADGroup]: if len(self.groups): return self.groups response = self.search( self.defaultNamingContext, "(|(sAMAccountType=%d)(sAMAccountType=%d)(sAMAccountType=%d)(sAMAccountType=%d))" % ( sAMAccountType.SAM_GROUP_OBJECT, sAMAccountType.SAM_NON_SECURITY_GROUP_OBJECT, sAMAccountType.SAM_ALIAS_OBJECT, sAMAccountType.SAM_NON_SECURITY_ALIAS_OBJECT ), ldap3.SUBTREE, ["DistinguishedName", "name", "sAMAccountName", "objectSid", "ntSecurityDescriptor"] ) self.groups = self.__createArrayOfObject(response, ADGroup) return self.groups def getAllComputers(self) -> List[ADComputer]: if len(self.computers): return self.computers response = self.search( self.defaultNamingContext, "(sAMAccountType=%d)" % (sAMAccountType.SAM_MACHINE_ACCOUNT), ldap3.SUBTREE, ["DistinguishedName", "name", "sAMAccountName", "objectSid", "ntSecurityDescriptor", "userAccountControl"] ) self.computers = self.__createArrayOfObject(response, ADComputer) return self.computers def getAllCertificatesTemplates(self) -> List[ADCertificateTemplate]: if len(self.certificatesTemplates): return self.certificatesTemplates response = self.search( f"CN=Certificate Templates,CN=Public Key Services,CN=Services,{self.configurationNamingContext}", "(objectClass=pkiCertificateTemplate)", ldap3.SUBTREE, ["DistinguishedName", "name", "ntSecurityDescriptor"] ) self.certificatesTemplates = self.__createArrayOfObject(response, ADCertificateTemplate) return self.certificatesTemplates def getAllGPOs(self) -> List[ADGPO]: if len(self.gpos): return self.gpos response = self.search( f"CN=Policies,CN=System,{self.defaultNamingContext}", "(objectClass=groupPolicyContainer)", ldap3.SUBTREE, ["DistinguishedName", "displayName", "gPCFileSysPath", "ntSecurityDescriptor"] ) self.gpos = self.__createArrayOfObject(response, ADGPO) return self.gpos def getAllOUs(self) -> List[ADGPO]: if len(self.ous): return self.ous response = self.search( self.defaultNamingContext, "(objectClass=organizationalUnit)", ldap3.SUBTREE, ["DistinguishedName", "name", "ntSecurityDescriptor"] ) self.ous = self.__createArrayOfObject(response, ADOU) return self.ous def getAdminSDHolder(self) -> List[ADAdminSDHolder]: if len(self.adminSDHolder): return self.adminSDHolder response = self.search( f"CN=AdminSDHolder,CN=System,{self.defaultNamingContext}", "(cn=AdminSDHolder)", ldap3.BASE, ["DistinguishedName", "name", "ntSecurityDescriptor"] ) self.adminSDHolder = self.__createArrayOfObject(response, ADAdminSDHolder) return self.adminSDHolder def getSchema(self) -> List[ADSchema]: if len(self.schema): return self.schema # Subtree in case it's not inherant response = self.search( f"CN=Schema,{self.configurationNamingContext}", "(objectClass=*)", ldap3.SUBTREE, ["DistinguishedName", "name", "ntSecurityDescriptor"] ) self.schema = self.__createArrayOfObject(response, ADSchema) return self.schema def getAllgMSAs(self) -> List[ADgMSA]: if len(self.gMSA): return self.gMSA response = self.search( self.defaultNamingContext, "(objectClass=msDS-GroupManagedServiceAccount)", ldap3.SUBTREE, ["DistinguishedName", "sAMAccountName", "objectSid", "ntSecurityDescriptor"] ) self.gMSA = self.__createArrayOfObject(response, ADgMSA) return self.gMSA # Path: abuseACL.py # Path: abuseACL/__main__.py from impacket.examples import utils from getpass import getpass from abuseACL.structures.Credentials import Credentials from abuseACL.structures.Target import Target from abuseACL.core.abuseACL import abuseACL from abuseACL.core.Logger import Logger from abuseACL.network.LDAP import LDAP from abuseACL import __banner__ import argparse import sys import os class Arguments: debug: bool ts: bool no_pass: bool hashes: str doKerberos: bool aesKey: bool dc_ip: str port: int domain: str username: str password: str remote_name: str principal: str principalsfile: str forest: str extends: bool def __init__(self) -> None: self.__parser = argparse.ArgumentParser(add_help=True, description="Automatic Windows vulnerable ACEs/ACLs listing") self.__parser.add_argument("-debug", default=False, action="store_true", help="Turn DEBUG output ON. (Default: False)") self.__parser.add_argument("-ts", action="store_true", help="Adds timestamp to every logging output") # Credentials credentials = self.__parser.add_argument_group("Credentials") credentials.add_argument("-no-pass", action="store_true", help="Don't ask for password (useful for -k or when using proxychains)") credentials.add_argument("-hashes", action="store", metavar="[LMHASH]:NTHASH", help="NT/LM hashes. LM hash can be empty.") credentials.add_argument("-k", action="store_true", help="Use Kerberos authentication. Grabs credentials from ccache file (KRB5CCNAME) based on target parameters. If valid credentials cannot be found, it will use the ones specified in the command line") credentials.add_argument("-aesKey", action="store", metavar="hex key", help="AES key to use for Kerberos Authentication (128 or 256 bits)") # Connection connection = self.__parser.add_argument_group("Connection") connection.add_argument("-dc-ip", action="store", metavar="ip address", help="IP Address of the domain controller. If omitted it will use the domain part (FQDN) specified in the target parameter") connection.add_argument("-port", type=int, action="store", help="Port of the domain controller. If omitted it will try to authenticate in LDAPS and then in LDAP.") # User filters = self.__parser.add_argument_group("Filters") filters.add_argument("-principal", action="store", help="Find vulnerable ACE for a specific User/Computer/Group") filters.add_argument("-principalsfile", action="store", help="File with multiple User/Computer/Group") filters.add_argument("-forest", action="store", help="Forest to use if different from dc. Not implemented yet.") # LDAP ldap = self.__parser.add_argument_group("LDAP") ldap.add_argument("-extends", action="store_true", help="Check adminSDHolder and Schema.") self.__parser.add_argument("target", action="store", help="[[domain/]username[:password]@]<targetName or address>") def parseArgs(self) -> None:
if len(sys.argv) == 1:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: gydpku/PPTC # Path: src/ppt_executor.py SLIDE_HEIGHT = 6858000 SLIDE_WIDTH = 9144000 CENTER_TOP = 3429000 CENTER_LEFT = 4572000 SHAPE_HEIGHT = 900000 SHAPE_WIDTH = 900000 TABLE_HEIGHT = 370000 # per line CONTENT_HEIGHT = 4351338 CONTENT_WIDTH = 7886700 CONTENT_LEFT = 628650 CONTENT_TOP = 1825625 TITLE_HEIGHT = 1325563 TITLE_WIDTH = 7886700 TITLE_LEFT = 628650 TITLE_TOP = 365126 MARGIN = 600000 CORNER_LEFT = 0 + MARGIN CORNER_TOP = 0 + MARGIN CORNER_RIGHT = SLIDE_WIDTH - MARGIN CORNER_BOTTOM = SLIDE_HEIGHT - MARGIN SHAPE_LEFT = CENTER_LEFT - SHAPE_WIDTH / 2 SHAPE_TOP = CENTER_TOP - SHAPE_HEIGHT / 2 PIC_LEFT = CONTENT_LEFT PIC_TOP = CONTENT_TOP PIC_PATH = "./PPTC/"+"test/pics" def check_api_in_list(line, api_list): def API_executor(lines, test=False,args=None): def set_ppt(ppt_path): def set_current_slide(idx): def get_ppt(): def save_ppt(ppt_path): def get_current_page_id(): def create_slide(): def move_to_next_slide(): def move_to_previous_slide(): def move_to_slide(idx): def set_background_color(color): def choose_title(): def choose_content(): def choose_textbox(idx=0): def choose_picture(idx=0): def choose_chart(): def choose_shape(shape_name): def choose_table(): def choose_table_cell(row_id, column_id): def insert_text(text): def insert_bullet_point(text): def insert_note(note): def insert_textbox(): def delete_text(): def set_font_size(size): def set_font_color(color): def set_font_bold(): def set_font_italic(): def set_font_underline(): def set_font_style(font_name): def set_line_space(line_space_level=0): def text_align_left(): def text_align_center(): def text_align_right(): def insert_rectangle(): def insert_right_arrow(): def insert_rounded_rectangle(): def insert_triangle(): def insert_callout(): def insert_cloud(): def insert_star(): def insert_circle(): def insert_picture(picture_name): def set_width(width): def set_height(height): def rotate_element(angle): def set_fill_color(color): def align_top_right_corner(): def align_top_left_corner(): def align_bottom_right_corner(): def align_bottom_left_corner(): def align_slide_left(): def align_slide_right(): def align_slide_top(): def align_slide_bottom(): def align_slide_center(): def set_left(left): def set_top(top): def insert_table(row_num, col_num): def insert_table_row(row_data): def insert_line_chart(data,series=None): def insert_bar_chart(data,series=None): def insert_pie_chart(data,series=None): def set_chart_title(title): # Path: src/ppt_reader.py SCALE = 1000 def get_fill_color(shape): def __init__(self, shape): def text_info(self): def space_info(self): def size_info(self): def style_info(self): def discription(self): def __repr__(self): def __init__(self, shape, id=None): def style_info(self): def discription(self): def __init__(self, shape): def text_info(self): def discription(self): def __init__(self, shape): def text_info(self): def style_info(self): def discription(self): def __init__(self, shape, id=None): def text_info(self): def style_info(self): def discription(self): def __init__(self, shape): def text_info(self): def style_info(self): def __init__(self, shape): def text_info(self): def style_info(self): def hasshape(shape_str, shape_list): def get_content(need_text,need_style,need_position,need_title,need_content,need_picture,need_table,need_chart,need_textbox,need_shape): def get_content_by_instructions(ppt_path, instruction, args, ppt): def eval_get_contents(need_text=True, need_style=True, need_position=True, need_shape_list=None, ppt=None): class BasicShape: class Picture(BasicShape): class Table(BasicShape): class Chart(BasicShape): class Textbox(BasicShape): class Placeholder(BasicShape): class AutoShape(BasicShape): # Path: src/openai_api.py def completions_with_backoff(**kwargs): def chat_with_backoff(**kwargs): def embeddings_with_backoff(**kwargs): def query_azure_openai(query, model = "vicuna-13b-v1.5-16k",id=None): def truncate_text_with_token_count (text, max_tokens): def rewrite(prompt): # Path: src/prompt_factor.py def get_instruction_to_API_code_prompt(selected_API, ppt_content, chat_history, instruction, ask_less_question=False, current_page=1): def get_instruction_to_API_code_prompt2(selected_API, ppt_content, chat_history, instruction, ask_less_question=False, current_page=1): # Path: src/dataset.py def load_data(path, dataset, args): def load_data_json(path, dataset): # Path: src/api_selection.py K = None K = args.api_topk def get_topk(scores, k=10): def get_embedding(text): def get_api_embedding(args): def select_api(query, k=10): def get_selected_apis(instruction, args): def get_all_apis(args): def prepare_embedding(args): # Path: src/utils.py def write_list(lst, filename): def read_list(filename): def write_lines(lst, path): def read_lines(path): def makedir(path): def merge_list(lst): def get_picture_name(labels): def get_picture_name_list(args): def parse_api(codes): def prepare_exp_name(args): def get_tokens(text): def calc_api_cost(path): def check_token(model, prompt): def get_token(text, trunc_num, model): def checkpoint(mode,args,idx,step): def sorted_list(path): def parse_train_json(path): def parse_test_json(path): # Path: src/modeling.py class PPT_assistant(object): def __init__(self, args=None): def planner(self, instruction): def api_selector(self, instruction): def content_selector(self, ppt_path, instruction, args, ppt): def api_executor(self, apis, test=False): def load_chat_history(self, instructions, labels): def load_ppt(self, path): def chat(self, user_instruction, ppt_path=None, verbose=False): # Path: src/evaluate.py def calc_token_cost(path): def calc_acc(label_path, pred_path, instruction, additional_restrictions=[]): def check_eval(args): def get_error_case(args): def eval(args): # Path: src/content_selection.py def select_information_type(query,args): def select_shape_type(query,args): def parse_answer(answer): # Path: main.py from src import ppt_executor, ppt_reader, openai_api, prompt_factor, dataset, api_selection, utils, modeling, evaluate, content_selection from tqdm import tqdm import argparse import os import jsonlines if args.tf and os.path.exists(args.user_path+f'PPT_Pred_File/{set_name}/{args.exp_name}_{sess_id}_{turn_id}.pptx'): print('Exists!') continue if args.sess and os.path.exists(args.user_path+f'PPT_Pred_File/{set_name}/{args.exp_name}_{sess_id}_{len(session)-1}.pptx'): print('Exists!') continue turn_id, instruction, label_api, base_ppt_path, label_ppt_path, api_lack_base_ppt_path, api_lack_label_ppt_path = turn if turn_id == 0 and args.sess: if args.api_lack: ppt_assistant.load_ppt(args.user_path+api_lack_base_ppt_path) label_file = api_lack_label_ppt_path else: ppt_assistant.load_ppt(args.user_path+base_ppt_path) label_file = label_ppt_path splitted_instruction = instruction.split("##")[0] if args.tf: if args.api_lack: ppt_assistant.load_ppt(args.user_path+api_lack_base_ppt_path) label_file = api_lack_label_ppt_path else: ppt_assistant.load_ppt(args.user_path+base_ppt_path) label_file = label_ppt_path ppt_assistant.load_chat_history([x[0] for x in chat_history],[x[1].strip(';').split(';') for x in chat_history]) prompt, reply = ppt_assistant.chat(splitted_instruction, ppt_path=args.user_path+base_ppt_path, verbose=False) apis = utils.parse_api(reply) ppt_assistant.api_executor(apis,test=True) ppt_executor.save_ppt(args.user_path+f'PPT_Pred_File/{set_name}/{args.exp_name}_{sess_id}_{turn_id}.pptx') utils.write_lines([prompt],args.user_path+f'PPT_Prompt_File/{set_name}/{args.exp_name}_{sess_id}_{turn_id}.txt') #import pdb #pdb.set_trace() with jsonlines.open(args.user_path+f"PPT_test_output/{set_name}/{args.exp_name}_session_{sess_id}.json", mode='a') as writer: data={'Turn':turn_id,'User instruction':instruction,'Feasible API sequence':label_api,'Reply':reply,'Pred API sequence':apis,'Pred File':f'PPT_Pred_File/{set_name}/{args.exp_name}_{sess_id}_{turn_id}.pptx','Label File':label_file,'Prompt File':f'PPT_Prompt_File/{set_name}/{args.exp_name}_{sess_id}_{turn_id}.txt'} writer.write(data) chat_history.append([splitted_instruction, label_api]) elif args.sess: prompt, reply = ppt_assistant.chat(instruction, ppt_path=None, verbose=False) apis = utils.parse_api(reply) ppt_assistant.api_executor(apis,test=True) ppt_executor.save_ppt(args.user_path+f'PPT_Pred_File/{set_name}/{args.exp_name}_{sess_id}_{turn_id}.pptx') utils.write_lines([prompt],args.user_path+f'PPT_Prompt_File/{set_name}/{args.exp_name}_{sess_id}_{turn_id}.txt') with jsonlines.open(args.user_path+f"PPT_test_output/{set_name}/{args.exp_name}_session_{sess_id}.json", mode='a') as writer: data={'Turn':turn_id,'User instruction':instruction,'Feasible API sequence':label_api,'Reply':reply,'Pred API sequence':apis,'Pred File':f'PPT_Pred_File/{set_name}/{args.exp_name}_{sess_id}_{turn_id}.pptx','Label File':label_file,'Prompt File':f'PPT_Prompt_File/{set_name}/{args.exp_name}_{sess_id}_{turn_id}.txt'} writer.write(data) def test_planning(ppt_assistant): instructions, labels = dataset.load_data(args.data_path, args.dataset) f = open(f'test_system/planning_{args.dataset}.txt','a+') for idx, dialogue in tqdm(enumerate(instructions)): for step, instruction in enumerate(dialogue): instruction = instruction.split("##")[0] try: planned = ppt_assistant.planner(instruction) f.write(f'{idx}/{step}\n') f.write(instruction+'\n') f.write(str(planned)+'\n\n') f.flush() except: pass def test_api_selection(ppt_assistant): instructions, labels = dataset.load_data(args.data_path, args.dataset) f = open(f'test_system/api_selection_{args.api_topk}_{args.dataset}.txt','a+') cnt = 0 for idx, dialogue in tqdm(enumerate(instructions)): for step, instruction in enumerate(dialogue): label_apis = labels[idx][step] instruction = instruction.split("##")[0] # instructions = ppt_assistant.planner(instruction) # selected_apis = [] # for ins in instructions: # selected_apis.extend(ppt_assistant.api_selector(ins)) selected_apis = ppt_assistant.api_selector(instruction) selected_apis = [x.name for x in selected_apis] for xx in label_apis: if ('align_slide' in xx.split('(')[0]) or (xx.split('(')[0] in ['set_left','set_right','set_top','set_bottom']) or ('corner' in xx.split('(')[0]): continue if not xx.split('(')[0] in selected_apis: f.write(f'{idx}/{step}\n') f.write(instruction+'\n') f.write(xx.split('(')[0]+'\n') f.write(str(selected_apis)+'\n\n') f.flush() cnt += 1 print(cnt) def test_content_selection(ppt_assistant): instructions, labels = dataset.load_data(args.data_path, args.dataset) f = open(f'test_system/content_selection_{args.dataset}.txt','a+') for idx, dialogue in tqdm(enumerate(instructions)): for step, instruction in enumerate(dialogue): instruction = instruction.split("##")[0] prompt = prompt_factor.PPT_content_selection_prompt.format(instruction) reply = openai_api.query_azure_openai(prompt, model='turbo') f.write(f'{idx}/{step}\n') f.write(instruction+'\n') f.write(reply+'\n\n') if __name__ == "__main__": parser = argparse.ArgumentParser() # PPT assistant parser.add_argument("--data_path", default="test", type=str, help="The data path to load the instructions") parser.add_argument("--dataset", default="short", type=str, help="short/long") parser.add_argument("--model_id", default="None", type=str, help="short/long") parser.add_argument("--user_path", default='./PPTC/', type=str, help="the user storage file path ") parser.add_argument("--save_path", default="test_pptx_data", type=str, help="the path to save the intermediate ppts.") # mode parser.add_argument("--prepare", default=False, action='store_true', help='whether to prepare the data for the model')
parser.add_argument("--eval", default=False, action='store_true',
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: nv-tlabs/pacer # Path: pacer/utils/flags.py class Flags(object): def __init__(self, items): # Path: poselib/poselib/core/rotation3d.py @torch.jit.script def quat_inverse(x): """ The inverse of the rotation """ return quat_conjugate(x) # Path: poselib/poselib/core/rotation3d.py @torch.jit.script def quat_mul(a, b): """ quaternion multiplication """ x1, y1, z1, w1 = a[..., 0], a[..., 1], a[..., 2], a[..., 3] x2, y2, z2, w2 = b[..., 0], b[..., 1], b[..., 2], b[..., 3] w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2 x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2 y = w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2 z = w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2 return torch.stack([x, y, z, w], dim=-1) # Path: pacer/utils/draw_utils.py def agt_color(aidx): return matplotlib.colors.to_rgb(plt.rcParams['axes.prop_cycle'].by_key()['color'][aidx % 10]) # Path: pacer/env/tasks/humanoid.py @torch.jit.script def compute_humanoid_observations_smpl_max(body_pos, body_rot, body_vel, body_ang_vel, smpl_params, limb_weight_params, local_root_obs, root_height_obs, upright, has_smpl_params, has_limb_weight_params): # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, bool, bool, bool, bool, bool) -> Tensor root_pos = body_pos[:, 0, :] root_rot = body_rot[:, 0, :] root_h = root_pos[:, 2:3] if not upright: root_rot = remove_base_rot(root_rot) heading_rot_inv = torch_utils.calc_heading_quat_inv(root_rot) if (not root_height_obs): root_h_obs = torch.zeros_like(root_h) else: root_h_obs = root_h heading_rot_inv_expand = heading_rot_inv.unsqueeze(-2) heading_rot_inv_expand = heading_rot_inv_expand.repeat((1, body_pos.shape[1], 1)) flat_heading_rot_inv = heading_rot_inv_expand.reshape(heading_rot_inv_expand.shape[0] * heading_rot_inv_expand.shape[1],heading_rot_inv_expand.shape[2]) root_pos_expand = root_pos.unsqueeze(-2) local_body_pos = body_pos - root_pos_expand flat_local_body_pos = local_body_pos.reshape(local_body_pos.shape[0] * local_body_pos.shape[1],local_body_pos.shape[2]) flat_local_body_pos = torch_utils.my_quat_rotate(flat_heading_rot_inv, flat_local_body_pos) local_body_pos = flat_local_body_pos.reshape(local_body_pos.shape[0],local_body_pos.shape[1] * local_body_pos.shape[2]) local_body_pos = local_body_pos[..., 3:] # remove root pos flat_body_rot = body_rot.reshape(body_rot.shape[0] * body_rot.shape[1], body_rot.shape[2]) flat_local_body_rot = quat_mul(flat_heading_rot_inv, flat_body_rot) flat_local_body_rot_obs = torch_utils.quat_to_tan_norm(flat_local_body_rot) local_body_rot_obs = flat_local_body_rot_obs.reshape( body_rot.shape[0], body_rot.shape[1] * flat_local_body_rot_obs.shape[1]) if not (local_root_obs): ##### ZL Here: it should be "not local_root_obs". If local, it shouldn't be overriden root_rot_obs = torch_utils.quat_to_tan_norm(root_rot) local_body_rot_obs[..., 0:6] = root_rot_obs flat_body_vel = body_vel.reshape(body_vel.shape[0] * body_vel.shape[1], body_vel.shape[2]) flat_local_body_vel = torch_utils.my_quat_rotate(flat_heading_rot_inv, flat_body_vel) local_body_vel = flat_local_body_vel.reshape( body_vel.shape[0], body_vel.shape[1] * body_vel.shape[2]) flat_body_ang_vel = body_ang_vel.reshape( body_ang_vel.shape[0] * body_ang_vel.shape[1], body_ang_vel.shape[2]) flat_local_body_ang_vel = torch_utils.my_quat_rotate( flat_heading_rot_inv, flat_body_ang_vel) local_body_ang_vel = flat_local_body_ang_vel.reshape( body_ang_vel.shape[0], body_ang_vel.shape[1] * body_ang_vel.shape[2]) obs_list = [] if root_height_obs: obs_list.append(root_h_obs) obs_list += [ local_body_pos, local_body_rot_obs, local_body_vel, local_body_ang_vel ] if has_smpl_params: obs_list.append(smpl_params[:, :-6]) if has_limb_weight_params: obs_list.append(limb_weight_params) obs = torch.cat(obs_list, dim=-1) return obs # Path: pacer/env/tasks/humanoid.py @torch.jit.script def compute_humanoid_observations_smpl(root_pos, root_rot, root_vel, root_ang_vel, dof_pos, dof_vel, key_body_pos, dof_obs_size, dof_offsets, smpl_params, local_root_obs, root_height_obs, upright, has_smpl_params): # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, int, List[int], Tensor, bool, bool,bool, bool) -> Tensor root_h = root_pos[:, 2:3] if not upright: root_rot = remove_base_rot(root_rot) heading_rot_inv = torch_utils.calc_heading_quat_inv(root_rot) if (local_root_obs): root_rot_obs = quat_mul(heading_rot_inv, root_rot) else: root_rot_obs = root_rot root_rot_obs = torch_utils.quat_to_tan_norm(root_rot_obs) if (not root_height_obs): root_h_obs = torch.zeros_like(root_h) else: root_h_obs = root_h local_root_vel = torch_utils.my_quat_rotate(heading_rot_inv, root_vel) local_root_ang_vel = torch_utils.my_quat_rotate(heading_rot_inv, root_ang_vel) root_pos_expand = root_pos.unsqueeze(-2) local_key_body_pos = key_body_pos - root_pos_expand heading_rot_expand = heading_rot_inv.unsqueeze(-2) heading_rot_expand = heading_rot_expand.repeat( (1, local_key_body_pos.shape[1], 1)) flat_end_pos = local_key_body_pos.view( local_key_body_pos.shape[0] * local_key_body_pos.shape[1], local_key_body_pos.shape[2]) flat_heading_rot = heading_rot_expand.view( heading_rot_expand.shape[0] * heading_rot_expand.shape[1], heading_rot_expand.shape[2]) local_end_pos = torch_utils.my_quat_rotate(flat_heading_rot, flat_end_pos) flat_local_key_pos = local_end_pos.view( local_key_body_pos.shape[0], local_key_body_pos.shape[1] * local_key_body_pos.shape[2]) dof_obs = dof_to_obs(dof_pos, dof_obs_size, dof_offsets) obs_list = [] if root_height_obs: obs_list.append(root_h_obs) obs_list += [ root_rot_obs, local_root_vel, local_root_ang_vel, dof_obs, dof_vel, flat_local_key_pos, ] if has_smpl_params: obs_list.append(smpl_params) obs = torch.cat(obs_list, dim=-1) return obs # Path: pacer/env/tasks/humanoid.py @torch.jit.script def compute_humanoid_observations_max(body_pos, body_rot, body_vel, body_ang_vel, local_root_obs, root_height_obs): # type: (Tensor, Tensor, Tensor, Tensor, bool, bool) -> Tensor root_pos = body_pos[:, 0, :] root_rot = body_rot[:, 0, :] root_h = root_pos[:, 2:3] heading_rot = torch_utils.calc_heading_quat_inv(root_rot) if (not root_height_obs): root_h_obs = torch.zeros_like(root_h) else: root_h_obs = root_h heading_rot_expand = heading_rot.unsqueeze(-2) heading_rot_expand = heading_rot_expand.repeat((1, body_pos.shape[1], 1)) flat_heading_rot = heading_rot_expand.reshape( heading_rot_expand.shape[0] * heading_rot_expand.shape[1], heading_rot_expand.shape[2]) root_pos_expand = root_pos.unsqueeze(-2) local_body_pos = body_pos - root_pos_expand flat_local_body_pos = local_body_pos.reshape( local_body_pos.shape[0] * local_body_pos.shape[1], local_body_pos.shape[2]) flat_local_body_pos = torch_utils.my_quat_rotate(flat_heading_rot, flat_local_body_pos) local_body_pos = flat_local_body_pos.reshape( local_body_pos.shape[0], local_body_pos.shape[1] * local_body_pos.shape[2]) local_body_pos = local_body_pos[..., 3:] # remove root pos flat_body_rot = body_rot.reshape(body_rot.shape[0] * body_rot.shape[1], body_rot.shape[2]) flat_local_body_rot = quat_mul(flat_heading_rot, flat_body_rot) flat_local_body_rot_obs = torch_utils.quat_to_tan_norm(flat_local_body_rot) local_body_rot_obs = flat_local_body_rot_obs.reshape( body_rot.shape[0], body_rot.shape[1] * flat_local_body_rot_obs.shape[1]) if (local_root_obs): # This is wrong. print("this is wrong!!!") print("this is wrong!!!") print("this is wrong!!!") root_rot_obs = torch_utils.quat_to_tan_norm(root_rot) local_body_rot_obs[..., 0:6] = root_rot_obs flat_body_vel = body_vel.reshape(body_vel.shape[0] * body_vel.shape[1], body_vel.shape[2]) flat_local_body_vel = torch_utils.my_quat_rotate(flat_heading_rot, flat_body_vel) local_body_vel = flat_local_body_vel.reshape( body_vel.shape[0], body_vel.shape[1] * body_vel.shape[2]) flat_body_ang_vel = body_ang_vel.reshape( body_ang_vel.shape[0] * body_ang_vel.shape[1], body_ang_vel.shape[2]) flat_local_body_ang_vel = torch_utils.my_quat_rotate( flat_heading_rot, flat_body_ang_vel) local_body_ang_vel = flat_local_body_ang_vel.reshape( body_ang_vel.shape[0], body_ang_vel.shape[1] * body_ang_vel.shape[2]) obs = torch.cat((root_h_obs, local_body_pos, local_body_rot_obs, local_body_vel, local_body_ang_vel), dim=-1) return obs # Path: pacer/env/tasks/humanoid.py @torch.jit.script def compute_humanoid_observations(root_pos, root_rot, root_vel, root_ang_vel, dof_pos, dof_vel, key_body_pos, local_root_obs, root_height_obs, dof_obs_size, dof_offsets): # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, bool, bool, int, List[int]) -> Tensor root_h = root_pos[:, 2:3] heading_rot = torch_utils.calc_heading_quat_inv(root_rot) if (local_root_obs): root_rot_obs = quat_mul(heading_rot, root_rot) else: root_rot_obs = root_rot root_rot_obs = torch_utils.quat_to_tan_norm(root_rot_obs) if (not root_height_obs): root_h_obs = torch.zeros_like(root_h) else: root_h_obs = root_h local_root_vel = torch_utils.my_quat_rotate(heading_rot, root_vel) local_root_ang_vel = torch_utils.my_quat_rotate(heading_rot, root_ang_vel) root_pos_expand = root_pos.unsqueeze(-2) local_key_body_pos = key_body_pos - root_pos_expand heading_rot_expand = heading_rot.unsqueeze(-2) heading_rot_expand = heading_rot_expand.repeat( (1, local_key_body_pos.shape[1], 1)) flat_end_pos = local_key_body_pos.view( local_key_body_pos.shape[0] * local_key_body_pos.shape[1], local_key_body_pos.shape[2]) flat_heading_rot = heading_rot_expand.view( heading_rot_expand.shape[0] * heading_rot_expand.shape[1], heading_rot_expand.shape[2]) local_end_pos = torch_utils.my_quat_rotate(flat_heading_rot, flat_end_pos) flat_local_key_pos = local_end_pos.view( local_key_body_pos.shape[0], local_key_body_pos.shape[1] * local_key_body_pos.shape[2]) dof_obs = dof_to_obs(dof_pos, dof_obs_size, dof_offsets) obs = torch.cat((root_h_obs, root_rot_obs, local_root_vel, local_root_ang_vel, dof_obs, dof_vel, flat_local_key_pos), dim=-1) return obs # Path: pacer/env/tasks/humanoid.py ENABLE_MAX_COORD_OBS = True # Path: pacer/env/tasks/humanoid_pedestrain_terrain.py from shutil import ExecError from isaacgym import gymapi from isaacgym.torch_utils import * from env.tasks.humanoid import dof_to_obs from env.tasks.humanoid_amp import HumanoidAMP, remove_base_rot from pacer.utils.flags import flags from utils import torch_utils from isaacgym import gymtorch from poselib.poselib.core.rotation3d import quat_inverse, quat_mul from tqdm import tqdm from scipy.spatial.transform import Rotation as sRot from typing import OrderedDict from pacer.utils.draw_utils import agt_color from pacer.env.tasks.humanoid import compute_humanoid_observations_smpl_max, compute_humanoid_observations_smpl,\ compute_humanoid_observations_max, compute_humanoid_observations,\ ENABLE_MAX_COORD_OBS from isaacgym.terrain_utils import * from pacer.utils.draw_utils import * import torch import numpy as np import env.tasks.humanoid_traj as humanoid_traj import joblib import matplotlib.pyplot as plt # group obs B, D = normal_task_obs.shape traj_samples_dim = 20 obs_acc = [] normal_task_obs = normal_task_obs.clone() traj_samples = normal_task_obs[:, :traj_samples_dim].view(B, 10, 2) traj_samples[..., 1] *= -1 obs_acc.append(traj_samples.view(B, -1)) if self.terrain_obs: if self.velocity_map: height_samples = normal_task_obs[..., traj_samples_dim: traj_samples_dim + self.num_height_points * 3] height_samples = height_samples.view(B, int(np.sqrt(self.num_height_points)), int(np.sqrt(self.num_height_points)), 3) height_samples[..., 0].flip(2) height_samples = height_samples.flip(2) obs_acc.append(height_samples.view(B, -1)) else: height_samples = normal_task_obs[..., traj_samples_dim: traj_samples_dim + self.num_height_points].view(B, int(np.sqrt(self.num_height_points)), int(np.sqrt(self.num_height_points))) height_samples = height_samples.flip(2) obs_acc.append(height_samples.view(B, -1)) obs = torch.cat(obs_acc, dim=1) if self._divide_group and self._group_obs: group_obs = normal_task_obs[..., traj_samples_dim + self.num_height_points: ].view(B, -1, 3) group_obs[..., 1] *= -1 obs_acc.append(group_obs.view(B, -1)) obs = torch.cat(obs_acc, dim=1) del obs_acc return obs def _reset_task(self, env_ids): # super()._reset_task(env_ids) # Commented out to disable traj resetting if not flags.server_mode: root_pos = self._humanoid_root_states[env_ids, 0:3] self._traj_gen.reset(env_ids, root_pos) return def _sample_ref_state(self, env_ids, vel_min=1, vel_range=0.5): num_envs = env_ids.shape[0] motion_ids = self._motion_lib.sample_motions(num_envs) if (self._state_init == HumanoidAMP.StateInit.Random or self._state_init == HumanoidAMP.StateInit.Hybrid): motion_times = self._sample_time(motion_ids) elif (self._state_init == HumanoidAMP.StateInit.Start): motion_times = torch.zeros(num_envs, device=self.device) else: assert ( False ), "Unsupported state initialization strategy: {:s}".format( str(self._state_init)) if self.smpl_humanoid: curr_gender_betas = self.humanoid_betas[env_ids] root_pos, root_rot, dof_pos, root_vel, root_ang_vel, dof_vel, key_pos, rb_pos, rb_rot, body_vel, body_ang_vel = self._get_fixed_smpl_state_from_motionlib( motion_ids, motion_times, curr_gender_betas) else: root_pos, root_rot, dof_pos, root_vel, root_ang_vel, dof_vel, key_pos = self._motion_lib.get_motion_state( motion_ids, motion_times) rb_pos, rb_rot = None, None if flags.random_heading: random_rot = np.zeros([num_envs, 3]) random_rot[:, 2] = np.pi * (2 * np.random.random([num_envs]) - 1.0) random_heading_quat = torch.from_numpy(sRot.from_euler("xyz", random_rot).as_quat()).float().to(self.device) random_heading_quat_repeat = random_heading_quat[:, None].repeat(1, 24, 1) root_rot = quat_mul(random_heading_quat, root_rot).clone() rb_pos = quat_apply(random_heading_quat_repeat, rb_pos - root_pos[:, None, :]).clone() key_pos = quat_apply(random_heading_quat_repeat[:, :4, :], (key_pos - root_pos[:, None, :])).clone() rb_rot = quat_mul(random_heading_quat_repeat, rb_rot).clone() root_ang_vel = quat_apply(random_heading_quat, root_ang_vel).clone() curr_heading = torch_utils.calc_heading_quat(root_rot) root_vel[:, 0] = torch.rand([num_envs]) * vel_range + vel_min root_vel = quat_apply(curr_heading, root_vel).clone() return motion_ids, motion_times, root_pos, root_rot, dof_pos, root_vel, root_ang_vel, dof_vel, key_pos, rb_pos, rb_rot def _reset_ref_state_init(self, env_ids): num_envs = env_ids.shape[0] motion_ids, motion_times, root_pos, root_rot, dof_pos, root_vel, root_ang_vel, dof_vel, key_pos, rb_pos, rb_rot = self._sample_ref_state(env_ids) ## Randomrized location setting new_root_xy = self.terrain.sample_valid_locations(self.num_envs, env_ids) # joblib.dump(self.terrain.sample_valid_locations(100000, torch.arange(100000)).detach().cpu(), "new_root_xy.pkl") # import ipdb; ipdb.set_trace() if flags.fixed: # new_root_xy[:, 0], new_root_xy[:, 1] = 0 , 0 # new_root_xy[:, 0], new_root_xy[:, 1] = 134.8434 + env_ids , -28.9593 # new_root_xy[:, 0], new_root_xy[:, 1] = 30 + env_ids * 4, 240 new_root_xy[:, 0], new_root_xy[:, 1] = 10 + env_ids * 3, 10 # new_root_xy[:, 0], new_root_xy[:, 1] = 95 + env_ids * 5, 307 # new_root_xy[:, 0], new_root_xy[:, 1] = 27, 1 + env_ids * 2 # x_grid, y_grid = torch.meshgrid(torch.arange(64), torch.arange(64)) # new_root_xy[:, 0], new_root_xy[:, 1] = x_grid.flatten()[env_ids] * 2, y_grid.flatten()[env_ids] * 2 # if env_ids[0] == 0: # new_root_xy[0, 0], new_root_xy[0, 1] = 34 , -81 if flags.server_mode: new_traj = self._traj_gen.input_new_trajs(env_ids) new_root_xy[:, 0], new_root_xy[:, 1] = new_traj[:, 0, 0], new_traj[:, 0, 1] diff_xy = new_root_xy - root_pos[:, 0:2] root_pos[:, 0:2] = new_root_xy root_states = torch.cat([root_pos, root_rot], dim=1) center_height = self.get_center_heights(root_states, env_ids=env_ids).mean(dim=-1) root_pos[:, 2] += center_height key_pos[..., 0:2] += diff_xy[:, None, :] key_pos[..., 2] += center_height[:, None]
rb_pos[..., 0:2] += diff_xy[:, None, :]
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Improbable-AI/dexenv # Path: dexenv/engine/base_engine.py class BaseEngine: agent: Any runner: Any cfg: DictConfig def __post_init__(self): self.cur_step = 0 self._best_eval_ret = -np.inf self._best_train_ret = -np.inf self._best_eval_success_rate = -np.inf self._best_train_success_rate = -np.inf self._eval_is_best = False self._train_is_best = False self.smooth_eval_return = None self.smooth_train_return = None self.smooth_tau = self.cfg.alg.smooth_eval_tau self.optim_stime = None wandb_cfg = OmegaConf.to_container(self.cfg, resolve=True, throw_on_missing=True) if self.cfg.test or self.cfg.resume: if self.cfg.resume_id is None: raise ValueError('Please specify the run ID to be resumed!') run_id = self.cfg.resume_id.split(':')[0] if '/' in run_id and not self.cfg.resume_to_diff_id: run_id_split = run_id.split('/') run_id = run_id_split[-1] self.cfg.logging.wandb.project = run_id_split[-2] if self.cfg.resume_to_diff_id: run_id = get_hydra_run_dir().name if self.cfg.resume: wandb_cfg['hostname'] = platform.node() self.wandb_runs = wandb.init(**self.cfg.logging.wandb, resume='allow', id=run_id, config=wandb_cfg if self.cfg.resume else None, ) else: wandb_cfg['hostname'] = platform.node() wandb_kwargs = self.cfg.logging.wandb wandb_tags = wandb_kwargs.get('tags', None) if wandb_tags is not None and isinstance(wandb_tags, str): wandb_kwargs['tags'] = [wandb_tags] self.wandb_runs = wandb.init(**wandb_kwargs, config=wandb_cfg, # id=wandb_id, name=wandb_id, # settings=wandb.Settings(start_method="thread"), ) logger.warning(f'Wandb run dir:{self.wandb_runs.dir}') logger.warning(f' Project name:{self.wandb_runs.project_name()}') if (self.cfg.test or self.cfg.resume) and not self.cfg.test_pretrain: self.cur_step = self.agent.load_model(eval=self.cfg.test and self.cfg.test_eval_best, pretrain_model=self.cfg.alg.pretrain_model) if self.cfg.resume_to_diff_id: self.cur_step = 0 else: if self.cfg.alg.pretrain_model is not None: self.agent.load_model(pretrain_model=self.cfg.alg.pretrain_model) def train(self, **kwargs): raise NotImplementedError def rollout_once(self, *args, **kwargs): t0 = time.perf_counter() self.agent.eval_mode() traj = self.runner(**kwargs) t1 = time.perf_counter() elapsed_time = t1 - t0 return traj, elapsed_time def do_eval(self, det=False, sto=False): eval_log_info = dict() det = det or self.cfg.alg.det_eval sto = sto or self.cfg.alg.sto_eval if det: det_log_info, _ = self.eval(eval_num=self.cfg.test_num, sample=False, smooth=True) det_log_info = {f'det/{k}': v for k, v in det_log_info.items()} eval_log_info.update(det_log_info) if sto: sto_log_info, _ = self.eval(eval_num=self.cfg.test_num, sample=True, smooth=False) sto_log_info = {f'sto/{k}': v for k, v in sto_log_info.items()} eval_log_info.update(sto_log_info) if len(eval_log_info) > 0: wandb.log(eval_log_info, step=self.cur_step) if self._eval_is_best and self.cfg.save_eval_ckpt: self.agent.save_model(is_best=True, step=self.cur_step, eval=True, wandb_run=self.wandb_runs) @torch.no_grad() def eval(self, render=False, eval_num=1, sleep_time=0, sample=True, no_tqdm=None): t0 = time.perf_counter() time_steps = [] rets = [] lst_step_infos = [] successes = [] check_dist = None dists = [] if no_tqdm is not None: disable_tqdm = bool(no_tqdm) else: disable_tqdm = not self.cfg.test for idx in tqdm(range(eval_num), disable=disable_tqdm): traj, _ = self.rollout_once(time_steps=self.cfg.alg.eval_rollout_steps, return_on_done=False, sample=self.cfg.alg.sample_action and sample, render=render, sleep_time=sleep_time, evaluation=True) done_indices = traj.done_indices if hasattr(traj, 'raw_rewards'): rewards = traj.raw_rewards else: rewards = traj.rewards infos = traj.infos for eid in range(len(done_indices)): done_ids = done_indices[eid] start_id = 0 for ejd in range(len(done_ids)): end_id = done_ids[ejd] + 1 ret = np.sum(torch_to_np(rewards[start_id:end_id, eid])) start_id = end_id rets.append(ret) lst_step_infos.append(get_element_from_traj_infos(infos=infos, key=None, i=end_id - 1, j=eid)) episode_steps = traj.episode_steps time_steps.extend(episode_steps) successes.extend(get_element_from_traj_infos_row_ids(infos=infos, key='success', row_ids=done_indices)) raw_traj_info = {'return': rets, 'lst_step_info': lst_step_infos} if isinstance(time_steps[0], list): raw_traj_info['episode_length'] = np.concatenate(time_steps) else: raw_traj_info['episode_length'] = np.asarray(time_steps) if check_dist: raw_traj_info['abs_dist'] = np.concatenate(dists) log_info = dict() for key, val in raw_traj_info.items(): if 'info' in key: continue val_stats = get_list_stats(val) for sk, sv in val_stats.items(): log_info['eval/' + key + '/' + sk] = sv if len(successes) > 0: log_info['eval/success'] = np.mean(successes) t1 = time.perf_counter() elapsed_time = t1 - t0 log_info['eval/eval_time'] = elapsed_time return log_info def get_train_log(self, optim_infos, traj=None): log_info = dict() vector_keys = set() scalar_keys = set() for oinf in optim_infos: for key in oinf.keys(): if 'vec_' in key: vector_keys.add(key) else: scalar_keys.add(key) for key in scalar_keys: log_info[key] = np.mean([inf[key] for inf in optim_infos if key in inf]) for key in vector_keys: k_stats = get_list_stats([inf[key] for inf in optim_infos if key in inf]) for sk, sv in k_stats.items(): log_info[f'{key}/' + sk] = sv if traj is not None: actions_stats = get_list_stats(torch_to_np(traj.actions)) for sk, sv in actions_stats.items(): log_info['rollout_action/' + sk] = sv log_info['rollout_steps_per_iter'] = traj.total_steps ep_returns_stats = get_list_stats(self.runner.train_ep_return) for sk, sv in ep_returns_stats.items(): log_info['episode_return/' + sk] = sv ep_len_stats = get_list_stats(self.runner.train_ep_len) for sk, sv in ep_len_stats.items(): log_info['episode_length/' + sk] = sv if len(self.runner.train_success) > 0: log_info['episode_success'] = np.mean(self.runner.train_success) if 'episode_return/mean' in log_info: self.smooth_train_return = smooth_value(log_info['episode_return/mean'], self.smooth_train_return, self.smooth_tau) log_info['smooth_return/mean'] = self.smooth_train_return if self.cfg.save_best_on_success and len(self.runner.train_success) > 0: self._train_is_best, self._best_train_success_rate = self._check_ckpt_is_best( log_info['episode_success'], best_history_val=self._best_train_success_rate, bigger_is_better=True ) else: self._train_is_best, self._best_train_ret = self._check_ckpt_is_best(self.smooth_train_return, best_history_val=self._best_train_ret, bigger_is_better=True) ex_info = traj[0].info if isinstance(ex_info, Sequence): traj_info_keys = ex_info[0].keys() else: # dict traj_info_keys = traj[0].info.keys() reward_keys = [x for x in traj_info_keys if 'reward' in x] if len(reward_keys) > 0: traj_infos = traj.infos for rkey in reward_keys: rlist = aggregate_traj_info(traj_infos, rkey) rlist_stats = get_list_stats(rlist) for rk, rv in rlist_stats.items(): log_info[f'{rkey}/{rk}'] = rv log_info['rollout_steps'] = self.cur_step train_log_info = dict() for key, val in log_info.items(): train_log_info['train/' + key] = val return train_log_info def get_dataloader(self, dataset, batch_size): subset = SubsetRandomSampler(range(len(dataset))) batch_sampler = BatchSampler(subset, batch_size=batch_size, drop_last=False, ) inds = list(batch_sampler) dataloader = [] for ind in inds: sub_data = dict() if isinstance(dataset, DictDataset): for keys in dataset.data.keys(): sub_data[keys] = dataset.data[keys][ind] elif isinstance(dataset, TrajDatasetSplitByDone): for keys in dataset.data.keys(): if keys == 'time_steps': sub_data[keys] = torch.tensor(dataset.data[keys])[ind] else: sub_data[keys] = dataset.data[keys][ind] dataloader.append(sub_data) return dataloader def _check_ckpt_is_best(self, cur_val, best_history_val, bigger_is_better=True): is_best = cur_val > best_history_val if bigger_is_better else cur_val < best_history_val if is_best: best_history_val = cur_val return is_best, best_history_val def _get_batch_size(self, dataset): if hasattr(self.cfg.alg, 'num_batches') and self.cfg.alg.num_batches is not None: batch_size = max(1, int(len(dataset) / self.cfg.alg.num_batches)) else: batch_size = self.cfg.alg.batch_size return batch_size # Path: dexenv/utils/common.py def get_list_stats(data): if len(data) < 1: return dict() if isinstance(data, torch.Tensor): data = data.cpu().numpy() min_data = np.amin(data) max_data = np.amax(data) mean_data = np.mean(data) median_data = np.median(data) stats = dict( min=min_data, max=max_data, mean=mean_data, median=median_data ) return stats # Path: dexenv/utils/common.py def smooth_value(current_value, past_value, tau): if past_value is None: return current_value else: return past_value * tau + current_value * (1 - tau) # Path: dexenv/utils/common.py def stack_data(data, torch_to_numpy=False, dim=0): if isinstance(data[0], dict): out = dict() for key in data[0].keys(): out[key] = stack_data([x[key] for x in data], dim=dim) return out if check_torch_tensor(data): try: ret = torch.stack(data, dim=dim) if torch_to_numpy: ret = ret.cpu().numpy() except: # if data is a list of arrays that do not have same shapes (such as point cloud) ret = data else: try: ret = np.stack(data, axis=dim) except: ret = data return ret # Path: dexenv/utils/common.py def stat_for_traj_data(traj_data, dones, op='min'): """ traj_data: T x #of envs """ op = getattr(np, op) stats = [] for i in range(dones.shape[1]): stat = [] di = dones[:, i] if not np.any(di): stat.append(op(traj_data[:, i])) else: done_idx = np.where(di)[0] t = 0 for idx in done_idx: stat.append(op(traj_data[t: idx + 1, i])) t = idx + 1 stats.append(stat) return np.concatenate(stats) # Path: dexenv/utils/dataset.py class DictDataset(Dataset): def __init__(self, **kwargs): self.data = kwargs self.length = next(iter(self.data.values())).shape[0] def __len__(self): return self.length def __getitem__(self, idx): sample = dict() for key, val in self.data.items(): sample[key] = val[idx] return sample # Path: dexenv/utils/info_util.py def aggregate_traj_info(infos, key, single_info=False): if single_info: infos = [infos] if isinstance(infos[0], Sequence): out = [] for info in infos: time_out = [] for env_info in info: time_out.append(env_info[key]) out.append(np.stack(time_out)) out = stack_data(out) elif isinstance(infos[0], dict): out = [] for info in infos: tensor = info[key] out.append(tensor) out = stack_data(out) else: raise NotImplementedError if single_info: out = out.squeeze(0) return out # Path: dexenv/utils/info_util.py def get_element_from_traj_infos(infos, key, i, j): if isinstance(infos[0], Sequence): if key is None: return infos[i][j] else: return infos[i][j][key] elif isinstance(infos[0], dict): if key is None: keys = infos[i].keys() out = dict() for key in keys: try: out[key] = infos[i][key][j] except: continue return out else: return infos[i][key][j] else: raise NotImplementedError # Path: dexenv/utils/info_util.py def get_element_from_traj_infos_row_ids(infos, key, row_ids): if isinstance(infos[0], Sequence): out = [] for col_id in range(len(row_ids)): for row_id in row_ids[col_id]: if key in infos[row_id][col_id]: out.append(torch_to_np(infos[row_id][col_id][key])) return out elif isinstance(infos[0], dict): out = [] for col_id in range(len(row_ids)): for row_id in row_ids[col_id]: if key in infos[row_id]: out.append(torch_to_np(infos[row_id][key][col_id])) return out else: raise NotImplementedError # Path: dexenv/utils/info_util.py def info_has_key(infos, key, single_info=False): if not single_info: infos = infos[0] if isinstance(infos, Sequence): return key in infos[0] elif isinstance(infos, dict): return key in infos else: raise NotImplementedError # Path: dexenv/utils/torch_utils.py def swap_axes(data, axes): if isinstance(data, torch.Tensor): return torch.transpose(data, *axes) else: return np.swapaxes(data, *axes) # Path: dexenv/utils/torch_utils.py def torch_to_np(tensor): if isinstance(tensor, np.ndarray): return tensor else: return tensor.cpu().detach().numpy() # Path: dexenv/engine/rnn_engine.py import numpy as np import time import torch from dataclasses import dataclass from itertools import count from tqdm import tqdm from dexenv.engine.base_engine import BaseEngine from dexenv.utils.common import get_list_stats from dexenv.utils.common import smooth_value from dexenv.utils.common import stack_data from dexenv.utils.common import stat_for_traj_data from dexenv.utils.dataset import DictDataset from dexenv.utils.info_util import aggregate_traj_info from dexenv.utils.info_util import get_element_from_traj_infos from dexenv.utils.info_util import get_element_from_traj_infos_row_ids from dexenv.utils.info_util import info_has_key from dexenv.utils.torch_utils import swap_axes from dexenv.utils.torch_utils import torch_to_np def extract_traj_data_rnn(cfg, states, data, act_dim=9): states_ori = states if cfg.vision.pred_rot_dist: if cfg.task.env.robot == 'dclaw_4f': quat_diff = states[..., 41:45] else: raise NotImplementedError rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[..., 0:3], p=2, dim=-1), max=1.0)) data['rot_dist'] = rot_dist if cfg.vision.act_in: states = states_ori prev_actions = states[..., -act_dim:] data['prev_actions'] = prev_actions @dataclass class RNNEngine(BaseEngine): act_dim: int = 12 def train(self): for iter_t in count(): if iter_t % self.cfg.logging.eval_interval == 0 and self.cfg.alg.run_eval: self.do_eval() traj, rollout_time = self.rollout_once(sample=True, get_last_val=False, reset_first=True, time_steps=self.cfg.alg.train_rollout_steps) optim_infos = self.train_once(traj) if iter_t % self.cfg.logging.log_interval == 0: t1 = time.perf_counter() train_log_info = self.get_train_log(optim_infos, traj) train_log_info['train/optim_time'] = t1 - self.optim_stime train_log_info['train/rollout_time'] = rollout_time if self.cur_step > self.cfg.alg.max_steps: break if iter_t % self.cfg.logging.ckpt_interval == 0:
self.agent.save_model(is_best=self._train_is_best,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: ai-safety-foundation/sparse_autoencoder # Path: sparse_autoencoder/autoencoder/components/linear_encoder.py class LinearEncoder(Module): r"""Linear encoder layer. Linear encoder layer (essentially `nn.Linear`, with a ReLU activation function). Designed to be used as the encoder in a sparse autoencoder (excluding any outer tied bias). $$ \begin{align*} m &= \text{learned features dimension} \\ n &= \text{input and output dimension} \\ b &= \text{batch items dimension} \\ \overline{\mathbf{x}} \in \mathbb{R}^{b \times n} &= \text{input after tied bias} \\ W_e \in \mathbb{R}^{m \times n} &= \text{weight matrix} \\ b_e \in \mathbb{R}^{m} &= \text{bias vector} \\ f &= \text{ReLU}(\overline{\mathbf{x}} W_e^T + b_e) = \text{LinearEncoder output} \end{align*} $$ """ _learnt_features: int """Number of learnt features (inputs to this layer).""" _input_features: int """Number of input features from the source model.""" _n_components: int | None weight: Float[ Parameter, Axis.names(Axis.COMPONENT_OPTIONAL, Axis.LEARNT_FEATURE, Axis.INPUT_OUTPUT_FEATURE), ] """Weight parameter. Each row in the weights matrix acts as a dictionary vector, representing a single basis element in the learned activation space. """ bias: Float[Parameter, Axis.names(Axis.COMPONENT_OPTIONAL, Axis.LEARNT_FEATURE)] """Bias parameter.""" @property def reset_optimizer_parameter_details(self) -> list[ResetOptimizerParameterDetails]: """Reset optimizer parameter details. Details of the parameters that should be reset in the optimizer, when resetting dictionary vectors. Returns: List of tuples of the form `(parameter, axis)`, where `parameter` is the parameter to reset (e.g. encoder.weight), and `axis` is the axis of the parameter to reset. """ return [ ResetOptimizerParameterDetails(parameter=self.weight, axis=-2), ResetOptimizerParameterDetails(parameter=self.bias, axis=-1), ] activation_function: ReLU """Activation function.""" @validate_call def __init__( self, input_features: PositiveInt, learnt_features: PositiveInt, n_components: PositiveInt | None, ): """Initialize the linear encoder layer. Args: input_features: Number of input features to the autoencoder. learnt_features: Number of learnt features in the autoencoder. n_components: Number of source model components the SAE is trained on. """ super().__init__() self._learnt_features = learnt_features self._input_features = input_features self._n_components = n_components self.weight = Parameter( torch.empty( shape_with_optional_dimensions(n_components, learnt_features, input_features), ) ) self.bias = Parameter( torch.zeros(shape_with_optional_dimensions(n_components, learnt_features)) ) self.activation_function = ReLU() self.reset_parameters() def reset_parameters(self) -> None: """Initialize or reset the parameters.""" # Assumes we are using ReLU activation function (for e.g. leaky ReLU, the `a` parameter and # `nonlinerity` must be changed. init.kaiming_uniform_(self.weight, nonlinearity="relu") # Bias (approach from nn.Linear) fan_in = self.weight.size(1) bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 init.uniform_(self.bias, -bound, bound) def forward( self, x: Float[ Tensor, Axis.names(Axis.BATCH, Axis.COMPONENT_OPTIONAL, Axis.INPUT_OUTPUT_FEATURE) ], ) -> Float[Tensor, Axis.names(Axis.BATCH, Axis.COMPONENT_OPTIONAL, Axis.LEARNT_FEATURE)]: """Forward pass. Args: x: Input tensor. Returns: Output of the forward pass. """ z = ( einops.einsum( x, self.weight, f"{Axis.BATCH} ... {Axis.INPUT_OUTPUT_FEATURE}, \ ... {Axis.LEARNT_FEATURE} {Axis.INPUT_OUTPUT_FEATURE} \ -> {Axis.BATCH} ... {Axis.LEARNT_FEATURE}", ) + self.bias ) return self.activation_function(z) @final def update_dictionary_vectors( self, dictionary_vector_indices: Int64[Tensor, Axis.names(Axis.LEARNT_FEATURE_IDX)], updated_dictionary_weights: Float[ Tensor, Axis.names(Axis.LEARNT_FEATURE_IDX, Axis.INPUT_OUTPUT_FEATURE) ], component_idx: int | None = None, ) -> None: """Update encoder dictionary vectors. Updates the dictionary vectors (columns in the weight matrix) with the given values. Args: dictionary_vector_indices: Indices of the dictionary vectors to update. updated_dictionary_weights: Updated weights for just these dictionary vectors. component_idx: Component index to update. Raises: ValueError: If there are multiple components and `component_idx` is not specified. """ if dictionary_vector_indices.numel() == 0: return with torch.no_grad(): if component_idx is None: if self._n_components is not None: error_message = "component_idx must be specified when n_components is not None" raise ValueError(error_message) self.weight[dictionary_vector_indices] = updated_dictionary_weights else: self.weight[component_idx, dictionary_vector_indices] = updated_dictionary_weights @final def update_bias( self, update_parameter_indices: Int64[ Tensor, Axis.names(Axis.COMPONENT_OPTIONAL, Axis.LEARNT_FEATURE_IDX) ], updated_bias_features: Float[ Tensor, Axis.names(Axis.COMPONENT_OPTIONAL, Axis.LEARNT_FEATURE_IDX) ], component_idx: int | None = None, ) -> None: """Update encoder bias. Args: update_parameter_indices: Indices of the bias features to update. updated_bias_features: Updated bias features for just these indices. component_idx: Component index to update. Raises: ValueError: If there are multiple components and `component_idx` is not specified. """ if update_parameter_indices.numel() == 0: return with torch.no_grad(): if component_idx is None: if self._n_components is not None: error_message = "component_idx must be specified when n_components is not None" raise ValueError(error_message) self.bias[update_parameter_indices] = updated_bias_features else: self.bias[component_idx, update_parameter_indices] = updated_bias_features def extra_repr(self) -> str: """String extra representation of the module.""" return ( f"input_features={self._input_features}, " f"learnt_features={self._learnt_features}, " f"n_components={self._n_components}" ) # Path: sparse_autoencoder/autoencoder/components/tied_bias.py class TiedBias(Module): """Tied Bias Layer. The tied pre-encoder bias is a learned bias term that is subtracted from the input before encoding, and added back after decoding. The bias parameter must be initialised in the parent module, and then passed to this layer. https://transformer-circuits.pub/2023/monosemantic-features/index.html#appendix-autoencoder-bias """ _bias_position: TiedBiasPosition _bias_reference: Float[ Parameter, Axis.names(Axis.COMPONENT_OPTIONAL, Axis.INPUT_OUTPUT_FEATURE) ] @property def bias( self, ) -> Float[Parameter, Axis.names(Axis.COMPONENT_OPTIONAL, Axis.INPUT_OUTPUT_FEATURE)]: """Bias.""" return self._bias_reference def __init__( self, bias_reference: Float[ Parameter, Axis.names(Axis.COMPONENT_OPTIONAL, Axis.INPUT_OUTPUT_FEATURE) ], position: TiedBiasPosition, ) -> None: """Initialize the bias layer. Args: bias_reference: Tied bias parameter (initialised in the parent module), used for both the pre-encoder and post-encoder bias. The original paper initialised this using the geometric median of the dataset. position: Whether this is the pre-encoder or post-encoder bias. """ super().__init__() self._bias_reference = bias_reference # Support string literals as well as enums self._bias_position = position def forward( self, x: Float[ Tensor, Axis.names(Axis.BATCH, Axis.COMPONENT_OPTIONAL, Axis.INPUT_OUTPUT_FEATURE) ], ) -> Float[Tensor, Axis.names(Axis.BATCH, Axis.COMPONENT_OPTIONAL, Axis.INPUT_OUTPUT_FEATURE)]: """Forward Pass. Args: x: Input tensor. Returns: Output of the forward pass. """ # If this is the pre-encoder bias, we subtract the bias from the input. if self._bias_position == TiedBiasPosition.PRE_ENCODER: return x - self.bias # If it's the post-encoder bias, we add the bias to the input. return x + self.bias def extra_repr(self) -> str: """String extra representation of the module.""" return f"position={self._bias_position.value}" # Path: sparse_autoencoder/autoencoder/components/tied_bias.py class TiedBiasPosition(str, Enum): """Tied Bias Position.""" PRE_ENCODER = "pre_encoder" POST_DECODER = "post_decoder" # Path: sparse_autoencoder/autoencoder/components/unit_norm_decoder.py class UnitNormDecoder(Module): r"""Constrained unit norm linear decoder layer. Linear layer decoder, where the dictionary vectors (columns of the weight matrix) are constrained to have unit norm. This is done by removing the gradient information parallel to the dictionary vectors before applying the gradient step, using a backward hook. It also requires `constrain_weights_unit_norm` to be called after each gradient step, to prevent drift of the dictionary vectors away from unit norm (as optimisers such as Adam don't strictly follow the gradient, but instead follow a modified gradient that includes momentum). $$ \begin{align*} m &= \text{learned features dimension} \\ n &= \text{input and output dimension} \\ b &= \text{batch items dimension} \\ f \in \mathbb{R}^{b \times m} &= \text{encoder output} \\ W_d \in \mathbb{R}^{n \times m} &= \text{weight matrix} \\ z \in \mathbb{R}^{b \times m} &= f W_d^T = \text{UnitNormDecoder output (pre-tied bias)} \end{align*} $$ Motivation: Normalisation of the columns (dictionary features) prevents the model from reducing the sparsity loss term by increasing the size of the feature vectors in $W_d$. Note that the *Towards Monosemanticity: Decomposing Language Models With Dictionary Learning* paper found that removing the gradient information parallel to the dictionary vectors before applying the gradient step, rather than resetting the dictionary vectors to unit norm after each gradient step, results in a small but real reduction in total loss](https://transformer-circuits.pub/2023/monosemantic-features/index.html#appendix-autoencoder-optimization). """ _learnt_features: int """Number of learnt features (inputs to this layer).""" _decoded_features: int """Number of decoded features (outputs from this layer).""" _n_components: int | None weight: Float[ Parameter, Axis.names(Axis.COMPONENT_OPTIONAL, Axis.INPUT_OUTPUT_FEATURE, Axis.LEARNT_FEATURE), ] """Weight parameter. Each column in the weights matrix acts as a dictionary vector, representing a single basis element in the learned activation space. """ @property def reset_optimizer_parameter_details(self) -> list[ResetOptimizerParameterDetails]: """Reset optimizer parameter details. Details of the parameters that should be reset in the optimizer, when resetting dictionary vectors. Returns: List of tuples of the form `(parameter, axis)`, where `parameter` is the parameter to reset (e.g. encoder.weight), and `axis` is the axis of the parameter to reset. """ return [ResetOptimizerParameterDetails(parameter=self.weight, axis=-1)] @validate_call def __init__( self, learnt_features: PositiveInt, decoded_features: PositiveInt, n_components: PositiveInt | None, *, enable_gradient_hook: bool = True, ) -> None: """Initialize the constrained unit norm linear layer. Args: learnt_features: Number of learnt features in the autoencoder. decoded_features: Number of decoded (output) features in the autoencoder. n_components: Number of source model components the SAE is trained on. enable_gradient_hook: Enable the gradient backwards hook (modify the gradient before applying the gradient step, to maintain unit norm of the dictionary vectors). """ super().__init__() self._learnt_features = learnt_features self._decoded_features = decoded_features self._n_components = n_components # Create the linear layer as per the standard PyTorch linear layer self.weight = Parameter( torch.empty( shape_with_optional_dimensions(n_components, decoded_features, learnt_features), ) ) self.reset_parameters() # Register backward hook to remove any gradient information parallel to the dictionary # vectors (columns of the weight matrix) before applying the gradient step. if enable_gradient_hook: self.weight.register_hook(self._weight_backward_hook) def update_dictionary_vectors( self, dictionary_vector_indices: Int64[ Tensor, Axis.names(Axis.COMPONENT_OPTIONAL, Axis.LEARNT_FEATURE_IDX) ], updated_weights: Float[ Tensor, Axis.names(Axis.COMPONENT_OPTIONAL, Axis.INPUT_OUTPUT_FEATURE, Axis.LEARNT_FEATURE_IDX), ], component_idx: int | None = None, ) -> None: """Update decoder dictionary vectors. Updates the dictionary vectors (rows in the weight matrix) with the given values. Typically this is used when resampling neurons (dictionary vectors) that have died. Args: dictionary_vector_indices: Indices of the dictionary vectors to update. updated_weights: Updated weights for just these dictionary vectors. component_idx: Component index to update. Raises: ValueError: If `component_idx` is not specified when `n_components` is not None. """ if dictionary_vector_indices.numel() == 0: return with torch.no_grad(): if component_idx is None: if self._n_components is not None: error_message = "component_idx must be specified when n_components is not None" raise ValueError(error_message) self.weight[:, dictionary_vector_indices] = updated_weights else: self.weight[component_idx, :, dictionary_vector_indices] = updated_weights def constrain_weights_unit_norm(self) -> None: """Constrain the weights to have unit norm. Warning: Note this must be called after each gradient step. This is because optimisers such as Adam don't strictly follow the gradient, but instead follow a modified gradient that includes momentum. This means that the gradient step can change the norm of the dictionary vectors, even when the hook `_weight_backward_hook` is applied. Note this can't be applied directly in the backward hook, as it would interfere with a variety of use cases (e.g. gradient accumulation across mini-batches, concurrency issues with asynchronous operations, etc). Example: >>> import torch >>> layer = UnitNormDecoder(3, 3, None) >>> layer.weight.data = torch.ones((3, 3)) * 10 >>> layer.constrain_weights_unit_norm() >>> column_norms = torch.sqrt(torch.sum(layer.weight ** 2, dim=0)) >>> column_norms.round(decimals=3).tolist() [1.0, 1.0, 1.0] """ with torch.no_grad(): torch.nn.functional.normalize(self.weight, dim=-2, out=self.weight) def reset_parameters(self) -> None: """Initialize or reset the parameters. Example: >>> import torch >>> # Create a layer with 4 columns (learnt features) and 3 rows (decoded features) >>> layer = UnitNormDecoder(learnt_features=4, decoded_features=3, n_components=None) >>> layer.reset_parameters() >>> # Get the norm across the rows (by summing across the columns) >>> column_norms = torch.sum(layer.weight ** 2, dim=0) >>> column_norms.round(decimals=3).tolist() [1.0, 1.0, 1.0, 1.0] """ # Initialize the weights with a normal distribution. Note we don't use e.g. kaiming # normalisation here, since we immediately scale the weights to have unit norm (so the # initial standard deviation doesn't matter). Note also that `init.normal_` is in place. self.weight: Float[ Parameter, Axis.names(Axis.COMPONENT_OPTIONAL, Axis.LEARNT_FEATURE, Axis.INPUT_OUTPUT_FEATURE), ] = init.normal_(self.weight, mean=0, std=1) # type: ignore # Scale so that each row has unit norm self.constrain_weights_unit_norm() def _weight_backward_hook( self, grad: Float[ Tensor, Axis.names(Axis.COMPONENT_OPTIONAL, Axis.LEARNT_FEATURE, Axis.INPUT_OUTPUT_FEATURE), ], ) -> Float[ Tensor, Axis.names(Axis.COMPONENT_OPTIONAL, Axis.LEARNT_FEATURE, Axis.INPUT_OUTPUT_FEATURE) ]: r"""Unit norm backward hook. By subtracting the projection of the gradient onto the dictionary vectors, we remove the component of the gradient that is parallel to the dictionary vectors and just keep the component that is orthogonal to the dictionary vectors (i.e. moving around the hypersphere). The result is that the backward pass does not change the norm of the dictionary vectors. $$ \begin{align*} W_d &\in \mathbb{R}^{n \times m} = \text{Decoder weight matrix} \\ g &\in \mathbb{R}^{n \times m} = \text{Gradient w.r.t. } W_d \text{ from the backward pass} \\ W_{d, \text{norm}} &= \frac{W_d}{\|W_d\|} = \text{Normalized decoder weight matrix (over columns)} \\ g_{\parallel} &\in \mathbb{R}^{n \times m} = \text{Component of } g \text{ parallel to } W_{d, \text{norm}} \\ g_{\perp} &\in \mathbb{R}^{n \times m} = \text{Component of } g \text{ orthogonal to } W_{d, \text{norm}} \\ g_{\parallel} &= W_{d, \text{norm}} \cdot (W_{d, \text{norm}}^\top \cdot g) \\ g_{\perp} &= g - g_{\parallel} = \text{Adjusted gradient with parallel component removed} \\ \end{align*} $$ Args: grad: Gradient with respect to the weights. Returns: Gradient with respect to the weights, with the component parallel to the dictionary vectors removed. """ # Project the gradients onto the dictionary vectors. Intuitively the dictionary vectors can # be thought of as vectors that end on the circumference of a hypersphere. The projection of # the gradient onto the dictionary vectors is the component of the gradient that is parallel # to the dictionary vectors, i.e. the component that moves to or from the center of the # hypersphere. normalized_weight: Float[ Tensor, Axis.names(Axis.COMPONENT_OPTIONAL, Axis.LEARNT_FEATURE, Axis.INPUT_OUTPUT_FEATURE), ] = self.weight / torch.norm(self.weight, dim=-2, keepdim=True) scalar_projections = einops.einsum( grad, normalized_weight, f"... {Axis.LEARNT_FEATURE} {Axis.INPUT_OUTPUT_FEATURE}, \ ... {Axis.LEARNT_FEATURE} {Axis.INPUT_OUTPUT_FEATURE} \ -> ... {Axis.INPUT_OUTPUT_FEATURE}", ) projection = einops.einsum( scalar_projections, normalized_weight, f"... {Axis.INPUT_OUTPUT_FEATURE}, \ ... {Axis.LEARNT_FEATURE} {Axis.INPUT_OUTPUT_FEATURE} \ -> ... {Axis.LEARNT_FEATURE} {Axis.INPUT_OUTPUT_FEATURE}", ) # Subtracting the parallel component from the gradient leaves only the component that is # orthogonal to the dictionary vectors, i.e. the component that moves around the surface of # the hypersphere. return grad - projection def forward( self, x: Float[Tensor, Axis.names(Axis.BATCH, Axis.COMPONENT_OPTIONAL, Axis.LEARNT_FEATURE)] ) -> Float[Tensor, Axis.names(Axis.BATCH, Axis.COMPONENT_OPTIONAL, Axis.INPUT_OUTPUT_FEATURE)]: """Forward pass. Args: x: Input tensor. Returns: Output of the forward pass. """ return einops.einsum( x, self.weight, f"{Axis.BATCH} ... {Axis.LEARNT_FEATURE}, \ ... {Axis.INPUT_OUTPUT_FEATURE} {Axis.LEARNT_FEATURE} \ -> {Axis.BATCH} ... {Axis.INPUT_OUTPUT_FEATURE}", ) def extra_repr(self) -> str: """String extra representation of the module.""" return ( f"learnt_features={self._learnt_features}, " f"decoded_features={self._decoded_features}, " f"n_components={self._n_components}" ) # Path: sparse_autoencoder/autoencoder/types.py class ResetOptimizerParameterDetails(NamedTuple): """Reset Optimizer Parameter Details. Details of a parameter that should be reset in the optimizer, when resetting it's corresponding dictionary vectors. """ parameter: Parameter """Parameter to reset.""" axis: int """Axis of the parameter to reset.""" # Path: sparse_autoencoder/tensor_types.py class Axis(LowercaseStrEnum): """Tensor axis names. Used to annotate tensor types. Example: When used directly it prints a string: >>> print(Axis.INPUT_OUTPUT_FEATURE) input_output_feature The primary use is to annotate tensor types: >>> from jaxtyping import Float >>> from torch import Tensor >>> from typing import TypeAlias >>> batch: TypeAlias = Float[Tensor, Axis.names(Axis.BATCH, Axis.INPUT_OUTPUT_FEATURE)] >>> print(batch) <class 'jaxtyping.Float[Tensor, 'batch input_output_feature']'> You can also join multiple axis together to represent the dimensions of a tensor: >>> print(Axis.names(Axis.BATCH, Axis.INPUT_OUTPUT_FEATURE)) batch input_output_feature """ # Component idx COMPONENT = auto() """Component index.""" COMPONENT_OPTIONAL = "*component" """Optional component index.""" # Batches SOURCE_DATA_BATCH = auto() """Batch of prompts used to generate source model activations.""" BATCH = auto() """Batch of items that the SAE is being trained on.""" STORE_BATCH = auto() """Batch of items to be written to the store.""" ITEMS = auto() """Arbitrary number of items.""" # Features INPUT_OUTPUT_FEATURE = auto() """Input or output feature (e.g. feature in activation vector from source model).""" LEARNT_FEATURE = auto() """Learn feature (e.g. feature in learnt activation vector).""" DEAD_FEATURE = auto() """Dead feature.""" ALIVE_FEATURE = auto() """Alive feature.""" # Feature indices INPUT_OUTPUT_FEATURE_IDX = auto() """Input or output feature index.""" LEARNT_FEATURE_IDX = auto() """Learn feature index.""" # Other POSITION = auto() """Token position.""" SINGLE_ITEM = "" """Single item axis.""" ANY = "..." """Any number of axis.""" @staticmethod def names(*axis: "Axis") -> str: """Join multiple axis together, to represent the dimensions of a tensor. Example: >>> print(Axis.names(Axis.BATCH, Axis.INPUT_OUTPUT_FEATURE)) batch input_output_feature Args: *axis: Axis to join. Returns: Joined axis string. """ return " ".join(a.value for a in axis) # Path: sparse_autoencoder/utils/tensor_shape.py def shape_with_optional_dimensions(*shape: int | None) -> tuple[int, ...]: """Create a shape from a tuple of optional dimensions. Motivation: By default PyTorch tensor shapes will error if you set an axis to `None`. This allows you to set that size and then the resulting output simply removes that axis. Examples: >>> shape_with_optional_dimensions(1, 2, 3) (1, 2, 3) >>> shape_with_optional_dimensions(1, None, 3) (1, 3) >>> shape_with_optional_dimensions(1, None, None) (1,) >>> shape_with_optional_dimensions(None, None, None) () Args: *shape: Axis sizes, with `None` representing an optional axis. Returns: Axis sizes. """ return tuple(dimension for dimension in shape if dimension is not None) # Path: sparse_autoencoder/autoencoder/model.py from pathlib import Path from tempfile import gettempdir from typing import NamedTuple from huggingface_hub import HfApi, hf_hub_download from jaxtyping import Float from pydantic import ( BaseModel, DirectoryPath, NonNegativeInt, PositiveInt, validate_call, ) from torch import Tensor from torch.nn import Module, Parameter from torch.serialization import FILE_LIKE from sparse_autoencoder.autoencoder.components.linear_encoder import LinearEncoder from sparse_autoencoder.autoencoder.components.tied_bias import TiedBias, TiedBiasPosition from sparse_autoencoder.autoencoder.components.unit_norm_decoder import UnitNormDecoder from sparse_autoencoder.autoencoder.types import ResetOptimizerParameterDetails from sparse_autoencoder.tensor_types import Axis from sparse_autoencoder.utils.tensor_shape import shape_with_optional_dimensions import torch import wandb """The Sparse Autoencoder Model.""" class SparseAutoencoderConfig(BaseModel, frozen=True): """SAE model config.""" n_input_features: PositiveInt """Number of input features. E.g. `d_mlp` if training on MLP activations from TransformerLens). """ n_learned_features: PositiveInt """Number of learned features. The initial paper experimented with 1 to 256 times the number of input features, and primarily used a multiple of 8."""
n_components: PositiveInt | None = None
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: LeapLabTHU/FamO2O # Path: jax_cql/JaxCQL/sac.py class SAC(object): @staticmethod def get_default_config(updates=None): config = ConfigDict() config.discount = 0.99 config.alpha_multiplier = 1.0 config.use_automatic_entropy_tuning = True config.backup_entropy = False config.target_entropy = 0.0 config.policy_lr = 3e-4 config.qf_lr = 3e-4 config.optimizer_type = 'adam' config.soft_target_update_rate = 5e-3 if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config def __init__(self, config, policy, qf): self.config = self.get_default_config(config) self.policy = policy self.qf = qf self.observation_dim = policy.observation_dim self.action_dim = policy.action_dim self._train_states = {} optimizer_class = { 'adam': optax.adam, 'sgd': optax.sgd, }[self.config.optimizer_type] policy_params = self.policy.init( next_rng(self.policy.rng_keys()), jnp.zeros((10, self.observation_dim)) ) self._train_states['policy'] = TrainState.create( params=policy_params, tx=optimizer_class(self.config.policy_lr), apply_fn=None ) qf1_params = self.qf.init( next_rng(self.qf.rng_keys()), jnp.zeros((10, self.observation_dim)), jnp.zeros((10, self.action_dim)) ) self._train_states['qf1'] = TrainState.create( params=qf1_params, tx=optimizer_class(self.config.qf_lr), apply_fn=None, ) qf2_params = self.qf.init( next_rng(self.qf.rng_keys()), jnp.zeros((10, self.observation_dim)), jnp.zeros((10, self.action_dim)) ) self._train_states['qf2'] = TrainState.create( params=qf2_params, tx=optimizer_class(self.config.qf_lr), apply_fn=None, ) self._target_qf_params = deepcopy({'qf1': qf1_params, 'qf2': qf2_params}) model_keys = ['policy', 'qf1', 'qf2'] if self.config.use_automatic_entropy_tuning: self.log_alpha = Scalar(0.0) self._train_states['log_alpha'] = TrainState.create( params=self.log_alpha.init(next_rng()), tx=optimizer_class(self.config.policy_lr), apply_fn=None ) model_keys.append('log_alpha') self._model_keys = tuple(model_keys) self._total_steps = 0 def train(self, batch): self._total_steps += 1 self._train_states, self._target_qf_params, metrics = self._train_step( self._train_states, self._target_qf_params, next_rng(), batch ) return metrics @partial(jax.jit, static_argnames='self') def _train_step(self, train_states, target_qf_params, rng, batch): rng_generator = JaxRNG(rng) def loss_fn(train_params, rng): observations = batch['observations'] actions = batch['actions'] rewards = batch['rewards'] next_observations = batch['next_observations'] dones = batch['dones'] loss_collection = {} @wrap_function_with_rng(rng_generator()) def forward_policy(rng, *args, **kwargs): return self.policy.apply( *args, **kwargs, rngs=JaxRNG(rng)(self.policy.rng_keys()) ) @wrap_function_with_rng(rng_generator()) def forward_qf(rng, *args, **kwargs): return self.qf.apply( *args, **kwargs, rngs=JaxRNG(rng)(self.qf.rng_keys()) ) new_actions, log_pi = forward_policy(train_params['policy'], observations) if self.config.use_automatic_entropy_tuning: alpha_loss = -self.log_alpha.apply(train_params['log_alpha']) * (log_pi + self.config.target_entropy).mean() loss_collection['log_alpha'] = alpha_loss alpha = jnp.exp(self.log_alpha.apply(train_params['log_alpha'])) * self.config.alpha_multiplier else: alpha_loss = 0.0 alpha = self.config.alpha_multiplier """ Policy loss """ q_new_actions = jnp.minimum( forward_qf(train_params['qf1'], observations, new_actions), forward_qf(train_params['qf2'], observations, new_actions), ) policy_loss = (alpha*log_pi - q_new_actions).mean() loss_collection['policy'] = policy_loss """ Q function loss """ q1_pred = forward_qf(train_params['qf1'], observations, actions) q2_pred = forward_qf(train_params['qf2'], observations, actions) new_next_actions, next_log_pi = forward_policy(train_params['policy'], next_observations) target_q_values = jnp.minimum( forward_qf(target_qf_params['qf1'], next_observations, new_next_actions), forward_qf(target_qf_params['qf2'], next_observations, new_next_actions), ) if self.config.backup_entropy: target_q_values = target_q_values - alpha * next_log_pi q_target = jax.lax.stop_gradient( rewards + (1. - dones) * self.config.discount * target_q_values ) qf1_loss = mse_loss(q1_pred, q_target) qf2_loss = mse_loss(q2_pred, q_target) loss_collection['qf1'] = qf1_loss loss_collection['qf2'] = qf2_loss return tuple(loss_collection[key] for key in self.model_keys), locals() train_params = {key: train_states[key].params for key in self.model_keys} (_, aux_values), grads = value_and_multi_grad(loss_fn, len(self.model_keys), has_aux=True)(train_params, rng) new_train_states = { key: train_states[key].apply_gradients(grads=grads[i][key]) for i, key in enumerate(self.model_keys) } new_target_qf_params = {} new_target_qf_params['qf1'] = update_target_network( new_train_states['qf1'].params, target_qf_params['qf1'], self.config.soft_target_update_rate ) new_target_qf_params['qf2'] = update_target_network( new_train_states['qf2'].params, target_qf_params['qf2'], self.config.soft_target_update_rate ) metrics = collect_jax_metrics( aux_values, ['log_pi', 'policy_loss', 'qf1_loss', 'qf2_loss', 'alpha_loss', 'alpha', 'q1_pred', 'q2_pred', 'target_q_values'] ) return new_train_states, new_target_qf_params, metrics @property def model_keys(self): return self._model_keys @property def train_states(self): return self._train_states @property def train_params(self): return {key: self.train_states[key].params for key in self.model_keys} @property def total_steps(self): return self._total_steps # Path: jax_cql/JaxCQL/replay_buffer.py class ReplayBuffer(object): def __init__(self, max_size, reward_scale, reward_bias, data=None): self._max_size = max_size self._next_idx = 0 self._size = 0 self._initialized = False self._total_steps = 0 self.reward_scale = reward_scale self.reward_bias = reward_bias if data is not None: if self._max_size < data['observations'].shape[0]: self._max_size = data['observations'].shape[0] self.add_batch(data) def __len__(self): return self._size def clear(self): self._size = 0 self._next_idx = 0 self._total_steps = 0 def _init_storage(self, observation_dim, action_dim): self._observation_dim = observation_dim self._action_dim = action_dim self._observations = np.zeros((self._max_size, observation_dim), dtype=np.float32) self._next_observations = np.zeros((self._max_size, observation_dim), dtype=np.float32) self._actions = np.zeros((self._max_size, action_dim), dtype=np.float32) self._rewards = np.zeros(self._max_size, dtype=np.float32) self._dones = np.zeros(self._max_size, dtype=np.float32) self._next_idx = 0 self._size = 0 self._initialized = True def add_sample(self, observation, action, reward, next_observation, done): if not self._initialized: self._init_storage(observation.size, action.size) # newly add reward = self.reward_scale * reward + self.reward_bias self._observations[self._next_idx, :] = np.array(observation, dtype=np.float32) self._next_observations[self._next_idx, :] = np.array(next_observation, dtype=np.float32) self._actions[self._next_idx, :] = np.array(action, dtype=np.float32) self._rewards[self._next_idx] = reward self._dones[self._next_idx] = float(done) if self._size < self._max_size: self._size += 1 self._next_idx = (self._next_idx + 1) % self._max_size self._total_steps += 1 def add_traj(self, observations, actions, rewards, next_observations, dones): for o, a, r, no, d in zip(observations, actions, rewards, next_observations, dones): self.add_sample(o, a, r, no, d) def add_batch(self, batch): self.add_traj( batch['observations'], batch['actions'], batch['rewards'], batch['next_observations'], batch['dones'] ) def sample(self, batch_size): indices = np.random.randint(len(self), size=batch_size) return self.select(indices) def select(self, indices): return dict( observations=self._observations[indices, ...], actions=self._actions[indices, ...], rewards=self._rewards[indices, ...], next_observations=self._next_observations[indices, ...], dones=self._dones[indices, ...], ) def generator(self, batch_size, n_batchs=None): i = 0 while n_batchs is None or i < n_batchs: yield self.sample(batch_size) i += 1 @property def total_steps(self): return self._total_steps @property def data(self): return dict( observations=self._observations[:self._size, ...], actions=self._actions[:self._size, ...], rewards=self._rewards[:self._size, ...], next_observations=self._next_observations[:self._size, ...], dones=self._dones[:self._size, ...] ) # Path: jax_cql/JaxCQL/jax_utils.py @jax.jit def batch_to_jax(batch): return jax.tree_util.tree_map(jax.device_put, batch) # Path: jax_cql/JaxCQL/model.py class TanhGaussianPolicy(nn.Module): observation_dim: int action_dim: int arch: str = '256-256' orthogonal_init: bool = False log_std_multiplier: float = 1.0 log_std_offset: float = -1.0 def setup(self): self.base_network = FullyConnectedNetwork( output_dim=2 * self.action_dim, arch=self.arch, orthogonal_init=self.orthogonal_init ) self.log_std_multiplier_module = Scalar(self.log_std_multiplier) self.log_std_offset_module = Scalar(self.log_std_offset) def log_prob(self, observations, actions): if actions.ndim == 3: observations = extend_and_repeat(observations, 1, actions.shape[1]) base_network_output = self.base_network(observations) mean, log_std = jnp.split(base_network_output, 2, axis=-1) log_std = self.log_std_multiplier_module() * log_std + self.log_std_offset_module() log_std = jnp.clip(log_std, -20.0, 2.0) action_distribution = distrax.Transformed( distrax.MultivariateNormalDiag(mean, jnp.exp(log_std)), distrax.Block(distrax.Tanh(), ndims=1) ) return action_distribution.log_prob(actions) def __call__(self, observations, deterministic=False, repeat=None): if repeat is not None: observations = extend_and_repeat(observations, 1, repeat) base_network_output = self.base_network(observations) mean, log_std = jnp.split(base_network_output, 2, axis=-1) log_std = self.log_std_multiplier_module() * log_std + self.log_std_offset_module() log_std = jnp.clip(log_std, -20.0, 2.0) action_distribution = distrax.Transformed( distrax.MultivariateNormalDiag(mean, jnp.exp(log_std)), distrax.Block(distrax.Tanh(), ndims=1) ) if deterministic: samples = jnp.tanh(mean) log_prob = action_distribution.log_prob(samples) else: samples, log_prob = action_distribution.sample_and_log_prob(seed=self.make_rng('noise')) return samples, log_prob @nn.nowrap def rng_keys(self): return ('params', 'noise') # Path: jax_cql/JaxCQL/model.py class FullyConnectedQFunction(nn.Module): observation_dim: int action_dim: int arch: str = '256-256' orthogonal_init: bool = False @nn.compact @multiple_action_q_function def __call__(self, observations, actions): x = jnp.concatenate([observations, actions], axis=-1) x = FullyConnectedNetwork(output_dim=1, arch=self.arch, orthogonal_init=self.orthogonal_init)(x) return jnp.squeeze(x, -1) @nn.nowrap def rng_keys(self): return ('params',) # Path: jax_cql/JaxCQL/model.py class SamplerPolicy(object): def __init__(self, policy, params): self.policy = policy self.params = params def update_params(self, params): self.params = params return self @partial(jax.jit, static_argnames=('self', 'deterministic')) def act(self, params, rng, observations, deterministic): return self.policy.apply(params, observations, deterministic, repeat=None, rngs=JaxRNG(rng)(self.policy.rng_keys()), ) def __call__(self, observations, deterministic=False): actions, _ = self.act(self.params, next_rng(), observations, deterministic=deterministic) assert jnp.all(jnp.isfinite(actions)) return jax.device_get(actions) # Path: jax_cql/JaxCQL/sampler.py class StepSampler(object): def __init__(self, env, max_traj_length=1000): self.max_traj_length = max_traj_length self._env = env self._traj_steps = 0 self._current_observation = self.env.reset() def sample(self, policy, n_steps, deterministic=False, replay_buffer=None): observations = [] actions = [] rewards = [] next_observations = [] dones = [] for _ in range(n_steps): self._traj_steps += 1 observation = self._current_observation action = policy(observation.reshape(1, -1), deterministic=deterministic).reshape(-1) next_observation, reward, done, _ = self.env.step(action) observations.append(observation) actions.append(action) rewards.append(reward) dones.append(done) next_observations.append(next_observation) if replay_buffer is not None: replay_buffer.add_sample( observation, action, reward, next_observation, done ) self._current_observation = next_observation if done or self._traj_steps >= self.max_traj_length: self._traj_steps = 0 self._current_observation = self.env.reset() return dict( observations=np.array(observations, dtype=np.float32), actions=np.array(actions, dtype=np.float32), rewards=np.array(rewards, dtype=np.float32), next_observations=np.array(next_observations, dtype=np.float32), dones=np.array(dones, dtype=np.float32), ) @property def env(self): return self._env # Path: jax_cql/JaxCQL/sampler.py class TrajSampler(object): def __init__(self, env, max_traj_length=1000): self.max_traj_length = max_traj_length self._env = env def sample(self, policy, n_trajs, deterministic=False, replay_buffer=None): trajs = [] for _ in range(n_trajs): observations = [] actions = [] rewards = [] next_observations = [] dones = [] observation = self.env.reset() for _ in range(self.max_traj_length): action = policy(observation.reshape(1, -1), deterministic=deterministic).reshape(-1) next_observation, reward, done, _ = self.env.step(action) observations.append(observation) actions.append(action) rewards.append(reward) dones.append(done) next_observations.append(next_observation) if replay_buffer is not None: replay_buffer.add_sample( observation, action, reward, next_observation, done ) observation = next_observation if done: break trajs.append(dict( observations=np.array(observations, dtype=np.float32), actions=np.array(actions, dtype=np.float32), rewards=np.array(rewards, dtype=np.float32), next_observations=np.array(next_observations, dtype=np.float32), dones=np.array(dones, dtype=np.float32), )) return trajs @property def env(self): return self._env # Path: jax_cql/JaxCQL/utils.py class Timer(object): def __init__(self): self._time = None def __enter__(self): self._start_time = time.time() return self def __exit__(self, exc_type, exc_value, exc_tb): self._time = time.time() - self._start_time def __call__(self): return self._time # Path: jax_cql/JaxCQL/utils.py def define_flags_with_default(**kwargs): for key, val in kwargs.items(): if isinstance(val, ConfigDict): config_flags.DEFINE_config_dict(key, val) elif isinstance(val, bool): # Note that True and False are instances of int. absl.flags.DEFINE_bool(key, val, 'automatically defined flag') elif isinstance(val, int): absl.flags.DEFINE_integer(key, val, 'automatically defined flag') elif isinstance(val, float): absl.flags.DEFINE_float(key, val, 'automatically defined flag') elif isinstance(val, str): absl.flags.DEFINE_string(key, val, 'automatically defined flag') else: raise ValueError('Incorrect value type') return kwargs # Path: jax_cql/JaxCQL/utils.py def set_random_seed(seed): np.random.seed(seed) random.seed(seed) init_rng(seed) # Path: jax_cql/JaxCQL/utils.py def print_flags(flags, flags_def): logging.info( 'Running training with hyperparameters: \n{}'.format( pprint.pformat( ['{}: {}'.format(key, val) for key, val in get_user_flags(flags, flags_def).items()] ) ) ) # Path: jax_cql/JaxCQL/utils.py def get_user_flags(flags, flags_def): output = {} for key in flags_def: val = getattr(flags, key) if isinstance(val, ConfigDict): output.update(flatten_config_dict(val, prefix=key)) else: output[key] = val return output # Path: jax_cql/JaxCQL/utils.py def prefix_metrics(metrics, prefix): return { '{}/{}'.format(prefix, key): value for key, value in metrics.items() } # Path: jax_cql/JaxCQL/utils.py class WandBLogger(object): @staticmethod def get_default_config(updates=None): config = ConfigDict() config.online = False config.prefix = 'FamilyJaxCQL' config.project = 'sac' config.output_dir = '/tmp/FamilyJaxCQL' config.random_delay = 0.0 config.experiment_id = config_dict.placeholder(str) config.anonymous = config_dict.placeholder(str) config.notes = config_dict.placeholder(str) if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config def __init__(self, config, variant): self.config = self.get_default_config(config) if self.config.experiment_id is None: self.config.experiment_id = uuid.uuid4().hex if self.config.prefix != '': self.config.project = '{}--{}'.format(self.config.prefix, self.config.project) if self.config.output_dir == '': self.config.output_dir = tempfile.mkdtemp() else: self.config.output_dir = os.path.join(self.config.output_dir, self.config.experiment_id) os.makedirs(self.config.output_dir, exist_ok=True) self._variant = copy(variant) if 'hostname' not in self._variant: self._variant['hostname'] = gethostname() if self.config.random_delay > 0: time.sleep(np.random.uniform(0, self.config.random_delay)) self.run = wandb.init( reinit=True, config=self._variant, project=self.config.project, dir=self.config.output_dir, id=self.config.experiment_id, anonymous=self.config.anonymous, notes=self.config.notes, settings=wandb.Settings( start_method="thread", _disable_stats=True, ), mode='online' if self.config.online else 'offline', ) def log(self, *args, **kwargs): self.run.log(*args, **kwargs) def save_pickle(self, obj, filename): with open(os.path.join(self.config.output_dir, filename), 'wb') as fout: pickle.dump(obj, fout) @property def experiment_id(self): return self.config.experiment_id @property def variant(self): return self.config.variant @property def output_dir(self): return self.config.output_dir # Path: jax_cql/JaxCQL/sac_main.py import os import time import uuid import numpy as np import pprint import gym import jax import jax.numpy as jnp import flax import absl.app import absl.flags from copy import deepcopy from .sac import SAC from .replay_buffer import ReplayBuffer from .jax_utils import batch_to_jax from .model import TanhGaussianPolicy, FullyConnectedQFunction, SamplerPolicy from .sampler import StepSampler, TrajSampler from .utils import ( Timer, define_flags_with_default, set_random_seed, print_flags, get_user_flags, prefix_metrics, WandBLogger ) from viskit.logging import logger, setup_logger FLAGS_DEF = define_flags_with_default( env='HalfCheetah-v2', max_traj_length=1000, replay_buffer_size=1000000, seed=42, save_model=False, policy_arch='256-256', qf_arch='256-256', orthogonal_init=False, policy_log_std_multiplier=1.0, policy_log_std_offset=-1.0, n_epochs=2000, n_env_steps_per_epoch=1000, n_train_step_per_epoch=1000, eval_period=10, eval_n_trajs=5, batch_size=256, sac=SAC.get_default_config(), logging=WandBLogger.get_default_config(), ) def main(argv):
FLAGS = absl.flags.FLAGS
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: DAMO-NLP-SG/CLEX # Path: CLEX/phi2/configuration_phi2_clex.py class CLEXPhiConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Phi [microsoft/phi-1](https://huggingface.co/microsoft/phi-1). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 51200): Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`PhiModel`]. hidden_size (`int`, *optional*, defaults to 2048): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 8192): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. resid_pdrop (`float`, *optional*, defaults to 0.0): Dropout probability for mlp outputs. embd_pdrop (`int`, *optional*, defaults to 0.0): The dropout ratio for the embeddings. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio after computing the attention scores. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048 tokens. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. partial_rotary_factor (`float`, *optional*, defaults to 0.5): Percentage of the query and keys which will have rotary embedding. qk_layernorm (`bool`, *optional*, defaults to `False`): Whether or not to normalize the Queries and Keys after projecting the hidden states. bos_token_id (`int`, *optional*, defaults to 1): Denotes beginning of sequences token id. eos_token_id (`int`, *optional*, defaults to 2): Denotes end of sequences token id. Example: ```python >>> from transformers import PhiModel, PhiConfig >>> # Initializing a Phi-1 style configuration >>> configuration = PhiConfig.from_pretrained("microsoft/phi-1") >>> # Initializing a model from the configuration >>> model = PhiModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "phi" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=51200, hidden_size=2048, intermediate_size=8192, num_hidden_layers=24, num_attention_heads=32, num_key_value_heads=None, resid_pdrop=0.0, embd_pdrop=0.0, attention_dropout=0.0, hidden_act="gelu_new", max_position_embeddings=2048, initializer_range=0.02, layer_norm_eps=1e-5, use_cache=True, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, partial_rotary_factor=0.5, qk_layernorm=False, bos_token_id=1, eos_token_id=2, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attention_dropout = attention_dropout self.hidden_act = hidden_act self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.partial_rotary_factor = partial_rotary_factor self.qk_layernorm = qk_layernorm self._rope_scaling_validation() super().__init__( bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation def _rope_scaling_validation(self): """ Validate the `rope_scaling` configuration. """ if self.rope_scaling is None: return # if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: # raise ValueError( # "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " # f"got {self.rope_scaling}" # ) rope_scaling_type = self.rope_scaling.get("type", None) rope_scaling_max_factor = self.rope_scaling.get("max_factor", None) rope_scaling_param_factor = self.rope_scaling.get("param_factor", None) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic", "clex"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) # Path: CLEX/clex_layer.py class LlamaCLEXScalingRotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, rope_scaling=None, base=1000000, device=None) -> None: super().__init__() self.max_t = rope_scaling["max_factor"] self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq) self.proj_func = ODELinear(dim, rope_scaling["param_factor"], rope_scaling["act"]) self.rope_cached = None self.max_t_cached = 0 self.freq_cached = None self.time_dt = rope_scaling["time_dt"] self.ode_args = { "method": "rk4", "options": {"step_size": self.time_dt}, } def sample_random_times(self, max_t, device): return torch.randint(1, max_t, (1,), dtype = torch.long, device=device) def get_random_position_ids(self, n=2048, max=8192): positions = torch.randperm(max)[:n].sort().values return positions def get_continuous_freq(self, time_grid, ex_positions, device): solution = odeint( self.proj_func, torch.log(self.inv_freq.to(device, dtype=torch.float32)), time_grid, **self.ode_args ) if time_grid.size(0) == 2: scale_inv_freq = torch.exp(solution[1]) freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq) else: scale_inv_freq = torch.exp(solution) return scale_inv_freq embed = torch.cat((freqs,freqs), dim=-1) return embed def forward(self, input_embeds, seq_len, do_train=False): device = self.proj_func.ode_up_proj.device dtype = input_embeds.dtype scale_factor = seq_len // self.max_position_embeddings if do_train: t_val = self.sample_random_times(self.max_t+1, device)[0] if scale_factor < 1.0: scale_factor = 1 sampled_position_ids = self.get_random_position_ids(n=seq_len-2, max=seq_len*t_val-2).float() ex_positions = torch.cat([ torch.tensor([0]), (sampled_position_ids + 1) / scale_factor, torch.tensor([seq_len*t_val//scale_factor-1])] ).to(device, dtype=torch.float32) else: t_val = scale_factor if seq_len%self.max_position_embeddings == 0.0 else scale_factor + 1 t_val = t_val if t_val <= self.max_t else self.max_t ex_positions = torch.arange(0, self.max_position_embeddings * t_val, dtype=torch.float32).to(device) if t_val == 1.0: scale_inv_freq = self.inv_freq.to(device) freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq) embed = torch.cat((freqs,freqs), dim=-1) cos, sin = embed.cos(), embed.sin() elif do_train: time_grid = torch.tensor([1.0, t_val]).float().to(device) embed = self.get_continuous_freq(time_grid, ex_positions, device) cos, sin = embed.cos(), embed.sin() else: if self.freq_cached is None: time_grid = torch.arange(1.0, self.max_t+1.0, dtype=torch.float32).to(device) self.freq_cached = self.get_continuous_freq(time_grid, ex_positions, device) if t_val != self.max_t_cached: scale_inv_freq = self.freq_cached[int(t_val-1.0)] freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq) embed = torch.cat((freqs,freqs), dim=-1) self.rope_cached = torch.cat((embed.cos()[None, :, :], embed.sin()[None, :, :]), dim=0) self.max_t_cached = t_val cos, sin = self.rope_cached return torch.cat( (cos[None, :seq_len].to(dtype=dtype), sin[None, :seq_len].to(dtype=dtype)), dim=0 ) # Path: CLEX/phi2/modeling_phi2_clex.py import math import torch import torch.nn.functional as F import torch.utils.checkpoint from typing import List, Optional, Tuple, Union from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.activations import ACT2FN from transformers.cache_utils import Cache, DynamicCache from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from transformers.modeling_utils import PreTrainedModel from transformers.utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from .configuration_phi2_clex import CLEXPhiConfig from ..clex_layer import LlamaCLEXScalingRotaryEmbedding from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa next_cache = None if use_cache: next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class PhiForCausalLM(PhiPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi,bias=False->bias=True def __init__(self, config): super().__init__(config) self.model = PhiModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings def get_input_embeddings(self): return self.model.embed_tokens # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings def set_input_embeddings(self, value): self.model.embed_tokens = value # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings def get_output_embeddings(self): return self.lm_head # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder def set_decoder(self, decoder): self.model = decoder # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, PhiForCausalLM >>> model = PhiForCausalLM.from_pretrained("microsoft/phi-1") >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1") >>> prompt = "This is an example script ." >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] 'This is an example script .\n\n\n\nfrom typing import List\n\ndef find_most_common_letter(words: List[str' ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens
loss_fct = CrossEntropyLoss()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: RenShuhuai-Andy/TESTA # Path: models/timesformer/models/features.py class FeatureListNet(FeatureDictNet): """ Feature extractor with list return See docstring for FeatureDictNet above, this class exists only to appease Torchscript typing constraints. In eager Python we could have returned List[Tensor] vs Dict[id, Tensor] based on a member bool. """ def __init__( self, model, out_indices=(0, 1, 2, 3, 4), out_map=None, feature_concat=False, flatten_sequential=False): super(FeatureListNet, self).__init__( model, out_indices=out_indices, out_map=out_map, feature_concat=feature_concat, flatten_sequential=flatten_sequential) def forward(self, x) -> (List[torch.Tensor]): return list(self._collect(x).values()) # Path: models/timesformer/models/features.py class FeatureDictNet(nn.ModuleDict): """ Feature extractor with OrderedDict return Wrap a model and extract features as specified by the out indices, the network is partially re-built from contained modules. There is a strong assumption that the modules have been registered into the model in the same order as they are used. There should be no reuse of the same nn.Module more than once, including trivial modules like `self.relu = nn.ReLU`. Only submodules that are directly assigned to the model class (`model.feature1`) or at most one Sequential container deep (`model.features.1`, with flatten_sequent=True) can be captured. All Sequential containers that are directly assigned to the original model will have their modules assigned to this module with the name `model.features.1` being changed to `model.features_1` Arguments: model (nn.Module): model from which we will extract the features out_indices (tuple[int]): model output indices to extract features for out_map (sequence): list or tuple specifying desired return id for each out index, otherwise str(index) is used feature_concat (bool): whether to concatenate intermediate features that are lists or tuples vs select element [0] flatten_sequential (bool): whether to flatten sequential modules assigned to model """ def __init__( self, model, out_indices=(0, 1, 2, 3, 4), out_map=None, feature_concat=False, flatten_sequential=False): super(FeatureDictNet, self).__init__() self.feature_info = _get_feature_info(model, out_indices) self.concat = feature_concat self.return_layers = {} return_layers = _get_return_layers(self.feature_info, out_map) modules = _module_list(model, flatten_sequential=flatten_sequential) remaining = set(return_layers.keys()) layers = OrderedDict() for new_name, old_name, module in modules: layers[new_name] = module if old_name in remaining: # return id has to be consistently str type for torchscript self.return_layers[new_name] = str(return_layers[old_name]) remaining.remove(old_name) if not remaining: break assert not remaining and len(self.return_layers) == len(return_layers), \ f'Return layers ({remaining}) are not present in model' self.update(layers) def _collect(self, x) -> (Dict[str, torch.Tensor]): out = OrderedDict() for name, module in self.items(): x = module(x) if name in self.return_layers: out_id = self.return_layers[name] if isinstance(x, (tuple, list)): # If model tap is a tuple or list, concat or select first element # FIXME this may need to be more generic / flexible for some nets out[out_id] = torch.cat(x, 1) if self.concat else x[0] else: out[out_id] = x return out def forward(self, x) -> Dict[str, torch.Tensor]: return self._collect(x) # Path: models/timesformer/models/features.py class FeatureHookNet(nn.ModuleDict): """ FeatureHookNet Wrap a model and extract features specified by the out indices using forward/forward-pre hooks. If `no_rewrite` is True, features are extracted via hooks without modifying the underlying network in any way. If `no_rewrite` is False, the model will be re-written as in the FeatureList/FeatureDict case by folding first to second (Sequential only) level modules into this one. FIXME this does not currently work with Torchscript, see FeatureHooks class """ def __init__( self, model, out_indices=(0, 1, 2, 3, 4), out_map=None, out_as_dict=False, no_rewrite=False, feature_concat=False, flatten_sequential=False, default_hook_type='forward'): super(FeatureHookNet, self).__init__() assert not torch.jit.is_scripting() self.feature_info = _get_feature_info(model, out_indices) self.out_as_dict = out_as_dict layers = OrderedDict() hooks = [] if no_rewrite: assert not flatten_sequential if hasattr(model, 'reset_classifier'): # make sure classifier is removed? model.reset_classifier(0) layers['body'] = model hooks.extend(self.feature_info.get_dicts()) else: modules = _module_list(model, flatten_sequential=flatten_sequential) remaining = {f['module']: f['hook_type'] if 'hook_type' in f else default_hook_type for f in self.feature_info.get_dicts()} for new_name, old_name, module in modules: layers[new_name] = module for fn, fm in module.named_modules(prefix=old_name): if fn in remaining: hooks.append(dict(module=fn, hook_type=remaining[fn])) del remaining[fn] if not remaining: break assert not remaining, f'Return layers ({remaining}) are not present in model' self.update(layers) self.hooks = FeatureHooks(hooks, model.named_modules(), out_map=out_map) def forward(self, x): for name, module in self.items(): x = module(x) out = self.hooks.get_output(x.device) return out if self.out_as_dict else list(out.values()) # Path: models/timesformer/models/conv2d_same.py class Conv2dSame(nn.Conv2d): """ Tensorflow like 'SAME' convolution wrapper for 2D convolutions """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): super(Conv2dSame, self).__init__( in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias) def forward(self, x): return conv2d_same(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) # Path: models/timesformer/models/linear.py class Linear(nn.Linear): def forward(self, input: torch.Tensor) -> torch.Tensor: if torch.jit.is_scripting(): bias = self.bias.to(dtype=input.dtype) if self.bias is not None else None return F.linear(input, self.weight.to(dtype=input.dtype), bias=bias) else: return F.linear(input, self.weight, self.bias) # Path: models/timesformer/models/helpers.py import logging import os import math import torch import torch.nn as nn import torch.utils.model_zoo as model_zoo import torch.nn.functional as F from collections import OrderedDict from copy import deepcopy from typing import Callable from models.timesformer.models.features import FeatureListNet, FeatureDictNet, FeatureHookNet from models.timesformer.models.conv2d_same import Conv2dSame from models.timesformer.models.linear import Linear conv1_name = cfg['first_conv'] _logger.info('Converting first conv (%s) pretrained weights from 3 to 1 channel' % conv1_name) conv1_weight = state_dict[conv1_name + '.weight'] conv1_type = conv1_weight.dtype conv1_weight = conv1_weight.float() O, I, J, K = conv1_weight.shape if I > 3: assert conv1_weight.shape[1] % 3 == 0 # For models with space2depth stems conv1_weight = conv1_weight.reshape(O, I // 3, 3, J, K) conv1_weight = conv1_weight.sum(dim=2, keepdim=False) else: conv1_weight = conv1_weight.sum(dim=1, keepdim=True) conv1_weight = conv1_weight.to(conv1_type) state_dict[conv1_name + '.weight'] = conv1_weight elif in_chans != 3: conv1_name = cfg['first_conv'] conv1_weight = state_dict[conv1_name + '.weight'] conv1_type = conv1_weight.dtype conv1_weight = conv1_weight.float() O, I, J, K = conv1_weight.shape if I != 3: _logger.warning('Deleting first conv (%s) from pretrained weights.' % conv1_name) del state_dict[conv1_name + '.weight'] strict = False else: _logger.info('Repeating first conv (%s) weights in channel dim.' % conv1_name) repeat = int(math.ceil(in_chans / 3)) conv1_weight = conv1_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :] conv1_weight *= (3 / float(in_chans)) conv1_weight = conv1_weight.to(conv1_type) state_dict[conv1_name + '.weight'] = conv1_weight classifier_name = cfg['classifier'] if num_classes == 1000 and cfg['num_classes'] == 1001: # special case for imagenet trained models with extra background class in pretrained weights classifier_weight = state_dict[classifier_name + '.weight'] state_dict[classifier_name + '.weight'] = classifier_weight[1:] classifier_bias = state_dict[classifier_name + '.bias'] state_dict[classifier_name + '.bias'] = classifier_bias[1:] elif num_classes != state_dict[classifier_name + '.weight'].size(0): #print('Removing the last fully connected layer due to dimensions mismatch ('+str(num_classes)+ ' != '+str(state_dict[classifier_name + '.weight'].size(0))+').', flush=True) # completely discard fully connected for all other differences between pretrained and created model del state_dict[classifier_name + '.weight'] del state_dict[classifier_name + '.bias'] strict = False ## Resizing the positional embeddings in case they don't match if num_patches + 1 != state_dict['pos_embed'].size(1): pos_embed = state_dict['pos_embed'] cls_pos_embed = pos_embed[0,0,:].unsqueeze(0).unsqueeze(1) other_pos_embed = pos_embed[0,1:,:].unsqueeze(0).transpose(1, 2) new_pos_embed = F.interpolate(other_pos_embed, size=(num_patches), mode='nearest') new_pos_embed = new_pos_embed.transpose(1, 2) new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1) state_dict['pos_embed'] = new_pos_embed ## Resizing time embeddings in case they don't match if 'time_embed' in state_dict and num_frames != state_dict['time_embed'].size(1): time_embed = state_dict['time_embed'].transpose(1, 2) new_time_embed = F.interpolate(time_embed, size=(num_frames), mode='nearest') state_dict['time_embed'] = new_time_embed.transpose(1, 2) ## Initializing temporal attention if attention_type == 'divided_space_time': new_state_dict = state_dict.copy() for key in state_dict: if 'blocks' in key and 'attn' in key: new_key = key.replace('attn','temporal_attn') if not new_key in state_dict: new_state_dict[new_key] = state_dict[key] else: new_state_dict[new_key] = state_dict[new_key] if 'blocks' in key and 'norm1' in key: new_key = key.replace('norm1','temporal_norm1') if not new_key in state_dict: new_state_dict[new_key] = state_dict[key] else: new_state_dict[new_key] = state_dict[new_key] state_dict = new_state_dict ## Loading the weights model.load_state_dict(state_dict, strict=False) def extract_layer(model, layer): layer = layer.split('.') module = model if hasattr(model, 'module') and layer[0] != 'module': module = model.module if not hasattr(model, 'module') and layer[0] == 'module': layer = layer[1:] for l in layer: if hasattr(module, l): if not l.isdigit(): module = getattr(module, l) else: module = module[int(l)] else: return module return module def set_layer(model, layer, val): layer = layer.split('.') module = model if hasattr(model, 'module') and layer[0] != 'module': module = model.module lst_index = 0 module2 = module for l in layer: if hasattr(module2, l): if not l.isdigit(): module2 = getattr(module2, l) else: module2 = module2[int(l)] lst_index += 1 lst_index -= 1
for l in layer[:lst_index]:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: microsoft/MathOctopus # Path: utils/data/data_utils.py def create_prompt_dataset(local_rank, data_path, data_split, output_path, train_phase, seed, tokenizer, max_seq_len, end_of_conversation_token="<|endoftext|>", sft_only_data_path=[], reload=True): """ Creates the prompt dataset """ os.makedirs(output_path, exist_ok=True) fname = "_".join(data_path) sft_cache_key = "_".join(sft_only_data_path) tokenizer_name = tokenizer.init_kwargs["name_or_path"].replace("/", "_") fname = f"{fname}_split{data_split}_phase{train_phase}_seed{seed}_tokenizer{tokenizer_name}_seqlen{max_seq_len}_sft{sft_cache_key}" fname = "_".join(fname.split("/")) fname = hashlib.sha256(fname.encode()).hexdigest( ) # hash the file name to avoid too long file name train_fname = f"{output_path}/traindata_{fname}.pt" eval_fname = f"{output_path}/evaldata_{fname}.pt" cache_found = os.path.isfile(train_fname) and os.path.isfile(eval_fname) buf_create_cache = torch.ByteTensor([not cache_found]).cuda() torch.distributed.all_reduce(buf_create_cache) if local_rank <= 0 and (buf_create_cache.item() != 0 or reload): if len(data_path) == 1: # Single dataset. train_dataset, eval_dataset = create_dataset( local_rank, data_path[0], data_split, output_path, train_phase, seed, tokenizer, end_of_conversation_token, max_seq_len) else: # Blending datasets. train_datasets = [] eval_datasets = [] train_size = 0 eval_size = 0 for d_path in data_path: train_dataset, eval_dataset = create_dataset( local_rank, d_path, data_split, output_path, train_phase, seed, tokenizer, end_of_conversation_token, max_seq_len) train_datasets.append(train_dataset) eval_datasets.append(eval_dataset) train_size += len(train_dataset) eval_size += len(eval_dataset) train_dataset = ConcatDataset(train_datasets) shuffle_idx = get_shuffle_idx(seed, train_size) train_dataset = Subset(train_dataset, shuffle_idx.tolist()) eval_dataset = ConcatDataset(eval_datasets) shuffle_idx = get_shuffle_idx(seed, eval_size) eval_dataset = Subset(eval_dataset, shuffle_idx.tolist()) # Append the SFT-only dataset if it exists, and current phase is 1(SFT). if train_phase == 1 and sft_only_data_path: sft_train_datasets = [] sft_eval_datasets = [] sft_train_size = 0 sft_eval_size = 0 for sft_path in sft_only_data_path: sft_train_dataset, sft_eval_dataset = create_dataset( local_rank, sft_path, "10,0,0", output_path, train_phase, seed, tokenizer, end_of_conversation_token, max_seq_len, ) sft_train_datasets.append(sft_train_dataset) sft_eval_datasets.append(sft_eval_dataset) sft_train_size += len(sft_train_dataset) sft_eval_size += len(sft_eval_dataset) if sft_train_datasets: # Check if sft_train_datasets is not empty sft_train_dataset = ConcatDataset(sft_train_datasets) train_dataset = ConcatDataset( [train_dataset, sft_train_dataset]) shuffle_idx = get_shuffle_idx(seed, len(train_dataset)) train_dataset = Subset(train_dataset, shuffle_idx.tolist()) if sft_eval_datasets: # Check if sft_eval_datasets is not empty sft_eval_dataset = ConcatDataset(sft_eval_datasets) eval_dataset = ConcatDataset([eval_dataset, sft_eval_dataset]) shuffle_idx = get_shuffle_idx(seed, len(eval_dataset)) eval_dataset = Subset(eval_dataset, shuffle_idx.tolist()) torch.save(train_dataset, train_fname) torch.save(eval_dataset, eval_fname) torch.distributed.barrier() return torch.load(train_fname), torch.load(eval_fname) # Path: utils/utils.py def print_rank_0(msg, rank=0): if rank <= 0: print(msg) # Path: utils/utils.py def to_device(batch, device): output = {} for k, v in batch.items(): try: output[k] = v.to(device) except: output[k] = v return output # Path: utils/utils.py def save_hf_format(model, tokenizer, args, sub_folder=""): # used to save huggingface format, so we can use it for hf.from_pretrained model_to_save = model.module if hasattr(model, 'module') else model CONFIG_NAME = "config.json" WEIGHTS_NAME = "pytorch_model.bin" output_dir = os.path.join(args.output_dir, sub_folder) os.makedirs(output_dir, exist_ok=True) output_model_file = os.path.join(output_dir, WEIGHTS_NAME) output_config_file = os.path.join(output_dir, CONFIG_NAME) save_dict = model_to_save.state_dict() for key in list(save_dict.keys()): if "lora" in key: del save_dict[key] torch.save(save_dict, output_model_file) model_to_save.config.to_json_file(output_config_file) tokenizer.save_vocabulary(output_dir) # Path: utils/utils.py def set_random_seed(seed): if seed is not None: set_seed(seed) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # Path: utils/utils.py def get_all_reduce_mean(tensor): torch.distributed.all_reduce(tensor, op=torch.distributed.ReduceOp.SUM) tensor = tensor / torch.distributed.get_world_size() return tensor # Path: utils/utils.py def get_optimizer_grouped_parameters(model, weight_decay, no_decay_name_list=[ "bias", "LayerNorm.weight" ]): optimizer_grouped_parameters = [ { "params": [ p for n, p in model.named_parameters() if (not any(nd in n for nd in no_decay_name_list) and p.requires_grad) ], "weight_decay": weight_decay, }, { "params": [ p for n, p in model.named_parameters() if (any(nd in n for nd in no_decay_name_list) and p.requires_grad) ], "weight_decay": 0.0, }, ] return optimizer_grouped_parameters # Path: utils/utils.py def save_zero_three_model(model_ema, tokenizer, global_rank, save_dir, zero_stage=0): zero_stage_3 = (zero_stage == 3) os.makedirs(save_dir, exist_ok=True) WEIGHTS_NAME = "pytorch_model.bin" CONFIG_NAME = 'config.json' output_model_file = os.path.join(save_dir, WEIGHTS_NAME) output_config_file = os.path.join(save_dir, CONFIG_NAME) model_to_save = model_ema.module if hasattr(model_ema, 'module') else model_ema if not zero_stage_3: if global_rank == 0: torch.save(model_to_save.state_dict(), output_model_file) else: output_state_dict = {} for k, v in model_to_save.named_parameters(): if hasattr(v, 'ds_id'): with deepspeed.zero.GatheredParameters(_z3_params_to_fetch([v ]), enabled=zero_stage_3): v_p = v.data.cpu() else: v_p = v.cpu() if global_rank == 0 and "lora" not in k: output_state_dict[k] = v_p if global_rank == 0: torch.save(output_state_dict, output_model_file) model_to_save.config.to_json_file(output_config_file) tokenizer.save_pretrained(save_dir) del output_state_dict # Path: utils/utils.py def load_hf_tokenizer(model_name_or_path, fast_tokenizer=True): # if os.path.exists(model_name_or_path): # # Locally tokenizer loading has some issue, so we need to force download # model_json = os.path.join(model_name_or_path, "config.json") # if os.path.exists(model_json): # model_json_file = json.load(open(model_json)) # model_name = model_json_file["_name_or_path"] # # tokenizer = AutoTokenizer.from_pretrained(model_name, # # fast_tokenizer=True) # tokenizer = LlamaTokenizer.from_pretrained(model_name, # padding_side = 'left', # fast_tokenizer=True) # print('i am loading here') # else: tokenizer = LlamaTokenizer.from_pretrained(model_name_or_path, padding_side = 'left', fast_tokenizer=True) # tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, # fast_tokenizer=True) return tokenizer # Path: utils/ds_utils.py def get_train_ds_config(offload, stage=2, enable_hybrid_engine=False, inference_tp_size=1, release_inference_cache=False, pin_parameters=True, tp_gather_partition_size=8, max_out_tokens=512): device = "cpu" if offload else "none" zero_opt_dict = { "stage": stage, "offload_param": { "device": device }, "offload_optimizer": { "device": device }, "stage3_param_persistence_threshold": 1e4, "stage3_max_live_parameters": 3e7, "stage3_prefetch_bucket_size": 3e7, "memory_efficient_linear": False } return { "train_batch_size": GLOBAL_BATCH_SIZE, "train_micro_batch_size_per_gpu": MICRO_BATCH_SIZE, "steps_per_print": 10, "zero_optimization": zero_opt_dict, "bf16": { "enabled": True, "loss_scale_window": 50, "min_loss_scale": 1e-10, }, "gradient_clipping": 1.0, "prescale_gradients": False, "wall_clock_breakdown": False, "hybrid_engine": { "enabled": enable_hybrid_engine, "max_out_tokens": max_out_tokens, "inference_tp_size": inference_tp_size, "release_inference_cache": release_inference_cache, "pin_parameters": pin_parameters, "tp_gather_partition_size": tp_gather_partition_size, } } # Path: utils/module/lora.py def convert_linear_layer_to_lora(model, part_module_name, lora_dim=0, lora_scaling=1, lora_droppout=0): repalce_name = [] for name, module in model.named_modules(): if isinstance(module, nn.Linear) and part_module_name in name: repalce_name.append(name) for name in repalce_name: module = recursive_getattr(model, name) tmp = LinearLayer_LoRA( module.weight, lora_dim, lora_scaling, lora_droppout, module.bias).to(module.weight.device).to(module.weight.dtype) recursive_setattr(model, name, tmp) return model # Path: utils/module/lora.py def convert_lora_to_linear_layer(model): repalce_name = [] for name, module in model.named_modules(): if isinstance(module, LinearLayer_LoRA): repalce_name.append(name) for name in repalce_name: module = recursive_getattr(model, name) zero_stage_3 = hasattr(module.weight, 'ds_id') with deepspeed.zero.GatheredParameters(_z3_params_to_fetch([ module.weight, module.bias, module.lora_left_weight, module.lora_right_weight ]), modifier_rank=0, enabled=zero_stage_3): module.fuse_lora_weight() return model # Path: utils/module/lora.py def only_optimize_lora_parameters(model): # turn off the gradient of all the parameters except the LoRA parameters for name, param in model.named_parameters(): if "lora_right_weight" in name or "lora_left_weight" in name: param.requires_grad = True else: param.requires_grad = False return model # Path: utils/model/model_utils.py def create_hf_model(model_class, model_name_or_path, tokenizer, ds_config=None, rlhf_training=False, disable_dropout=False, bf16 = True): model_config = AutoConfig.from_pretrained(model_name_or_path) if disable_dropout: model_config.dropout = 0.0 # Note: dschf is defined in function scope to avoid global effects # https://huggingface.co/docs/transformers/main_classes/deepspeed#nontrainer-deepspeed-integration if ds_config is not None and ds_config["zero_optimization"]["stage"] == 3: dschf = HfDeepSpeedConfig(ds_config) else: dschf = None if rlhf_training: # the weight loading is handled by create critic model model = model_class.from_config(model_config) else: if not bf16: model = model_class.from_pretrained( model_name_or_path, from_tf=bool(".ckpt" in model_name_or_path), config=model_config) else: model = model_class.from_pretrained( model_name_or_path, from_tf=bool(".ckpt" in model_name_or_path), config=model_config, torch_dtype=torch.bfloat16) model.config.end_token_id = tokenizer.eos_token_id model.config.pad_token_id = model.config.eos_token_id # model.resize_token_embeddings(len(tokenizer)) model.resize_token_embeddings(int( 8 * math.ceil(len(tokenizer) / 8.0))) # make the vocab size multiple of 8 return model # Path: step1_supervised_finetuning/main.py import argparse import os import math import sys import torch import transformers import deepspeed from torch.utils import tensorboard from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler from typing import Optional, Dict, Sequence from transformers import ( AutoModelForCausalLM, SchedulerType, default_data_collator, get_scheduler, LlamaTokenizer ) from deepspeed.accelerator import get_accelerator from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam from utils.data.data_utils import create_prompt_dataset from utils.utils import print_rank_0, to_device, save_hf_format, set_random_seed, get_all_reduce_mean, get_optimizer_grouped_parameters, save_zero_three_model, load_hf_tokenizer from utils.ds_utils import get_train_ds_config from utils.module.lora import convert_linear_layer_to_lora, convert_lora_to_linear_layer, only_optimize_lora_parameters from utils.model.model_utils import create_hf_model #!/usr/bin/env python # Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team # import matplotlib.pyplot as plt sys.path.append( os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) def parse_args(): parser = argparse.ArgumentParser( description=
"Finetune a transformers model on a causal language modeling task")
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: OATML-Markslab/ProteinNPT # Path: utils/esm/modules.py class AxialTransformerLayer(nn.Module): """Implements an Axial MSA Transformer block.""" def __init__( self, embedding_dim: int = 768, ffn_embedding_dim: int = 3072, num_attention_heads: int = 8, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, max_tokens_per_msa: int = 2**14, deactivate_col_attention: bool = False, tranception_attention: bool = False, num_targets: int = 1, ) -> None: super().__init__() # Initialize parameters self.embedding_dim = embedding_dim self.dropout_prob = dropout self.deactivate_col_attention = deactivate_col_attention row_self_attention = RowSelfAttention( embedding_dim, num_attention_heads, dropout=dropout, max_tokens_per_msa=max_tokens_per_msa, tranception_attention=tranception_attention, num_targets=num_targets, ) if not self.deactivate_col_attention: column_self_attention = ColumnSelfAttention( embedding_dim, num_attention_heads, dropout=dropout, max_tokens_per_msa=max_tokens_per_msa, ) else: print("No column attention in the underlying axial transformer module") feed_forward_layer = FeedForwardNetwork( embedding_dim, ffn_embedding_dim, activation_dropout=activation_dropout, max_tokens_per_msa=max_tokens_per_msa, ) self.row_self_attention = self.build_residual(row_self_attention) if not self.deactivate_col_attention: self.column_self_attention = self.build_residual(column_self_attention) self.feed_forward_layer = self.build_residual(feed_forward_layer) def build_residual(self, layer: nn.Module): return NormalizedResidualBlock( layer, self.embedding_dim, self.dropout_prob, ) def forward( self, x: torch.Tensor, self_attn_mask: Optional[torch.Tensor] = None, self_attn_padding_mask: Optional[torch.Tensor] = None, need_head_weights: bool = False, ): """ LayerNorm is applied either before or after the self-attention/ffn modules similar to the original Transformer implementation. """ x, row_attn = self.row_self_attention( x, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask, ) if not self.deactivate_col_attention: x, column_attn = self.column_self_attention( x, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask, ) else: column_attn = None x = self.feed_forward_layer(x) if need_head_weights: return x, column_attn, row_attn else: return x # Path: utils/esm/modules.py class LearnedPositionalEmbedding(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. Padding ids are ignored by either offsetting based on padding_idx or by setting padding_idx to None and ensuring that the appropriate position ids are passed to the forward function. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int): if padding_idx is not None: num_embeddings_ = num_embeddings + padding_idx + 1 else: num_embeddings_ = num_embeddings super().__init__(num_embeddings_, embedding_dim, padding_idx) self.max_positions = num_embeddings def forward(self, input: torch.Tensor): """Input is expected to be of size [bsz x seqlen].""" if input.size(1) > self.max_positions: raise ValueError( f"Sequence length {input.size(1)} above maximum " f" sequence length of {self.max_positions}" ) mask = input.ne(self.padding_idx).int() positions = (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + self.padding_idx return F.embedding( positions, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) # Path: utils/esm/modules.py class RobertaLMHead(nn.Module): """Head for masked language modeling.""" def __init__(self, embed_dim, output_dim, weight): super().__init__() self.dense = nn.Linear(embed_dim, embed_dim) self.layer_norm = ESM1bLayerNorm(embed_dim) self.weight = weight self.bias = nn.Parameter(torch.zeros(output_dim)) def forward(self, features): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = F.linear(x, self.weight) + self.bias return x # Path: utils/esm/modules.py class ESM1bLayerNorm(_FusedLayerNorm): @torch.jit.unused def forward(self, x): if not x.is_cuda: return super().forward(x) else: with torch.cuda.device(x.device): return super().forward(x) # Path: utils/esm/axial_attention.py class RowSelfAttention(nn.Module): """Compute self-attention over rows of a 2D input.""" def __init__( self, embed_dim, num_heads, dropout=0.0, max_tokens_per_msa: int = 2 ** 16, tranception_attention: bool = False, num_targets: int = 1, ): super().__init__() self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.scaling = self.head_dim ** -0.5 self.max_tokens_per_msa = max_tokens_per_msa self.attn_shape = "hnij" self.k_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.out_proj = nn.Linear(embed_dim, embed_dim) self.dropout_module = nn.Dropout(dropout) self.tranception_attention = tranception_attention self.num_targets = num_targets if self.tranception_attention: assert self.num_heads%4==0, "Invalid number of heads. Tranception requires the number of heads to be a multiple of 4." self.num_heads_per_kernel_size = self.num_heads // 4 self.query_depthwiseconv = nn.ModuleDict() self.key_depthwiseconv = nn.ModuleDict() self.value_depthwiseconv = nn.ModuleDict() for kernel_idx, kernel in enumerate([3,5,7]): self.query_depthwiseconv[str(kernel_idx)] = SpatialDepthWiseConvolution(self.head_dim,kernel,self.num_targets) self.key_depthwiseconv[str(kernel_idx)] = SpatialDepthWiseConvolution(self.head_dim,kernel,self.num_targets) self.value_depthwiseconv[str(kernel_idx)] = SpatialDepthWiseConvolution(self.head_dim,kernel,self.num_targets) def align_scaling(self, q): num_rows = q.size(0) return self.scaling / math.sqrt(num_rows) def _batched_forward( self, x, self_attn_mask=None, self_attn_padding_mask=None, ): num_rows, num_cols, batch_size, embed_dim = x.size() max_rows = max(1, self.max_tokens_per_msa // num_cols) attns = 0 scaling = self.align_scaling(x) for start in range(0, num_rows, max_rows): attn_weights = self.compute_attention_weights( x[start : start + max_rows], scaling, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask[:, start : start + max_rows] if self_attn_padding_mask is not None else None, ) attns += attn_weights attn_probs = attns.softmax(-1) attn_probs = self.dropout_module(attn_probs) outputs = [] for start in range(0, num_rows, max_rows): output = self.compute_attention_update(x[start : start + max_rows], attn_probs) outputs.append(output) output = torch.cat(outputs, 0) return output, attn_probs def compute_attention_weights( self, x, scaling: float, self_attn_mask=None, self_attn_padding_mask=None, ): num_rows, num_cols, batch_size, embed_dim = x.size() q = self.q_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim) k = self.k_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim) q *= scaling if self_attn_padding_mask is not None: # Zero out any padded aligned positions - this is important since # we take a sum across the alignment axis. q *= 1 - self_attn_padding_mask.permute(1, 2, 0).unsqueeze(3).unsqueeze(4).to(q) if self.tranception_attention: # We do not do anything on the first self.num_heads_per_kernel_size heads (kernel =1) query_list=[q[:,:,:,:self.num_heads_per_kernel_size,:]] key_list=[k[:,:,:,:self.num_heads_per_kernel_size,:]] for kernel_idx in range(3): query_list.append(self.query_depthwiseconv[str(kernel_idx)](q[:,:,:,(kernel_idx+1)*self.num_heads_per_kernel_size:(kernel_idx+2)*self.num_heads_per_kernel_size,:])) key_list.append(self.key_depthwiseconv[str(kernel_idx)](k[:,:,:,(kernel_idx+1)*self.num_heads_per_kernel_size:(kernel_idx+2)*self.num_heads_per_kernel_size,:])) q=torch.cat(query_list, dim=1) k=torch.cat(key_list, dim=1) attn_weights = torch.einsum(f"rinhd,rjnhd->{self.attn_shape}", q, k) if self_attn_mask is not None: raise NotImplementedError # Mask Size: [B x R x C], Weights Size: [H x B x C x C] if self_attn_padding_mask is not None: attn_weights = attn_weights.masked_fill( self_attn_padding_mask[:, 0].unsqueeze(0).unsqueeze(2), -10000, ) return attn_weights def compute_attention_update( self, x, attn_probs, ): num_rows, num_cols, batch_size, embed_dim = x.size() v = self.v_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim) if self.tranception_attention: value_list=[v[:,:,:,:self.num_heads_per_kernel_size,:]] for kernel_idx in range(3): value_list.append(self.value_depthwiseconv[str(kernel_idx)](v[:,:,:,(kernel_idx+1)*self.num_heads_per_kernel_size:(kernel_idx+2)*self.num_heads_per_kernel_size,:])) v=torch.cat(value_list, dim=1) context = torch.einsum(f"{self.attn_shape},rjnhd->rinhd", attn_probs, v) context = context.contiguous().view(num_rows, num_cols, batch_size, embed_dim) output = self.out_proj(context) return output def forward( self, x, self_attn_mask=None, self_attn_padding_mask=None, ): num_rows, num_cols, batch_size, embed_dim = x.size() if (num_rows * num_cols > self.max_tokens_per_msa) and not torch.is_grad_enabled(): return self._batched_forward(x, self_attn_mask, self_attn_padding_mask) else: scaling = self.align_scaling(x) attn_weights = self.compute_attention_weights( x, scaling, self_attn_mask, self_attn_padding_mask ) attn_probs = attn_weights.softmax(-1) attn_probs = self.dropout_module(attn_probs) output = self.compute_attention_update(x, attn_probs) return output, attn_probs # Path: utils/esm/axial_attention.py class ColumnSelfAttention(nn.Module): """Compute self-attention over columns of a 2D input.""" def __init__( self, embed_dim, num_heads, dropout=0.0, max_tokens_per_msa: int = 2 ** 16, ): super().__init__() self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.scaling = self.head_dim ** -0.5 self.max_tokens_per_msa = max_tokens_per_msa self.k_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.out_proj = nn.Linear(embed_dim, embed_dim) self.dropout_module = nn.Dropout(dropout) def _batched_forward( self, x, self_attn_mask=None, self_attn_padding_mask=None, ): num_rows, num_cols, batch_size, embed_dim = x.size() max_cols = max(1, self.max_tokens_per_msa // num_rows) outputs = [] attns = [] for start in range(0, num_cols, max_cols): output, attn = self( x[:, start : start + max_cols], self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask[:, :, start : start + max_cols] if self_attn_padding_mask is not None else None, ) outputs.append(output) attns.append(attn) output = torch.cat(outputs, 1) attns = torch.cat(attns, 1) return output, attns def compute_attention_update( self, x, self_attn_mask=None, self_attn_padding_mask=None, ): num_rows, num_cols, batch_size, embed_dim = x.size() if num_rows == 1: # if there is only 1 position, this is equivalent and doesn't break with padding attn_probs = torch.ones( self.num_heads, num_cols, batch_size, num_rows, num_rows, device=x.device, dtype=x.dtype, ) output = self.out_proj(self.v_proj(x)) else: q = self.q_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim) k = self.k_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim) v = self.v_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim) q *= self.scaling attn_weights = torch.einsum("icnhd,jcnhd->hcnij", q, k) if self_attn_mask is not None: raise NotImplementedError if self_attn_padding_mask is not None: attn_weights = attn_weights.masked_fill( self_attn_padding_mask.permute(2, 0, 1).unsqueeze(0).unsqueeze(3), -10000, ) attn_probs = attn_weights.softmax(-1) attn_probs = self.dropout_module(attn_probs) context = torch.einsum("hcnij,jcnhd->icnhd", attn_probs, v) context = context.contiguous().view(num_rows, num_cols, batch_size, embed_dim) output = self.out_proj(context) return output, attn_probs def forward( self, x, self_attn_mask=None, self_attn_padding_mask=None, ): num_rows, num_cols, batch_size, embed_dim = x.size() # if False and num_rows * num_cols > 2 ** 14 and not torch.is_grad_enabled(): if (num_rows * num_cols) > self.max_tokens_per_msa and not torch.is_grad_enabled(): return self._batched_forward( x, self_attn_mask, self_attn_padding_mask, ) else: return self.compute_attention_update(x, self_attn_mask, self_attn_padding_mask) # Path: proteinnpt/model.py import sys,os import json import torch import torch.nn as nn import utils from collections import defaultdict from torch.optim import AdamW from torch.nn import CrossEntropyLoss, MSELoss from transformers import ConvBertConfig, ConvBertLayer from utils.esm.modules import ( AxialTransformerLayer, LearnedPositionalEmbedding, RobertaLMHead, ESM1bLayerNorm, ) from utils.esm.axial_attention import RowSelfAttention, ColumnSelfAttention class ProteinNPTModel(nn.Module): def __init__(self, args, alphabet): super().__init__() self.args = args self.alphabet = alphabet self.alphabet_size = len(alphabet) self.padding_idx = alphabet.padding_idx self.mask_idx = alphabet.mask_idx self.cls_idx = alphabet.cls_idx self.eos_idx = alphabet.eos_idx self.prepend_bos = alphabet.prepend_bos self.append_eos = alphabet.append_eos self.target_names_input = self.args.target_config.keys() self.target_names = [x for x in self.args.target_config.keys() if self.args.target_config[x]["in_NPT_loss"]] self.num_targets_input = len(self.target_names_input) #Includes all targets, incl. zero-shot fitness predictions self.num_targets = len(self.target_names) #Number of actual targets we want to predict self.MSA_sample_sequences = None self.training_sample_sequences_indices = None self.device = None self.optimizer = None self.model_type = args.model_type self.PNPT_ensemble_test_num_seeds = -1 self.PNPT_no_reconstruction_error = False self.deactivate_col_attention = False self.tranception_attention = False assert self.args.embed_dim % self.args.attention_heads ==0, "Embedding size {} needs to be a multiple of number of heads {}".format(self.args.embed_dim, self.args.attention_heads) if self.args.aa_embeddings in ["MSA_Transformer","ESM1v"]: model, _ = utils.esm.pretrained.load_model_and_alphabet(args.embedding_model_location) self.aa_embedding = model self.aa_embedding_dim = self.aa_embedding.embed_tokens.weight.shape[-1] elif self.args.aa_embeddings == "Tranception": self.aa_embedding_dim = 1280 config = json.load(open(args.embedding_model_location+os.sep+'config.json')) config = utils.tranception.config.TranceptionConfig(**config) config.tokenizer = self.alphabet config.inference_time_retrieval_type = None config.retrieval_aggregation_mode = None self.aa_embedding = utils.tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(pretrained_model_name_or_path=args.embedding_model_location,config=config) elif self.args.aa_embeddings == "Linear_embedding": self.aa_embedding = nn.Embedding( self.alphabet_size, self.args.embed_dim, padding_idx=self.padding_idx ) self.aa_positions_embedding = LearnedPositionalEmbedding( self.args.max_positions, self.args.embed_dim, self.padding_idx, ) self.aa_embedding_dim = self.args.embed_dim if self.aa_embedding_dim != self.args.embed_dim: #Need to project internally self.token_embedding_projection = nn.Linear( self.aa_embedding_dim, self.args.embed_dim ) self.token_embedding_expansion = nn.Linear( self.args.embed_dim, self.aa_embedding_dim ) self.target_embedding = nn.ModuleDict( { target_name: nn.Linear( self.args.target_config[target_name]["dim"] + 1, #Need to add one as we append the mask flag to each input target self.args.embed_dim ) if self.args.target_config[target_name]["type"]=="continuous" else nn.Embedding( self.args.target_config[target_name]["dim"], self.args.embed_dim ) for target_name in self.target_names_input } ) self.dropout_module = nn.Dropout(self.args.dropout) self.layers = nn.ModuleList( [ AxialTransformerLayer( self.args.embed_dim, self.args.ffn_embed_dim, self.args.attention_heads, self.args.dropout, self.args.attention_dropout, self.args.activation_dropout, getattr(self.args, "max_tokens_per_msa", self.args.max_tokens_per_msa), self.deactivate_col_attention, self.tranception_attention, self.num_targets_input, ) for _ in range(self.args.num_protein_npt_layers) ] ) self.emb_layer_norm_before = ESM1bLayerNorm(self.args.embed_dim) self.emb_layer_norm_after = ESM1bLayerNorm(self.args.embed_dim) if self.args.aa_embeddings in ["MSA_Transformer","ESM1v"]:
weight = self.aa_embedding.embed_tokens.weight
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: CVHub520/yolov5_obb # Path: DOTA_devkit/DOTA2JSON.py def generate_json_labels(src_path, out_path, trainval=True): """Generate .json labels which is similar to coco format Args: src_path: dataset path containing images and labelTxt folders. out_path: output json file path trainval: trainval or test? """ img_path = os.path.join(src_path, 'images') label_path = os.path.join(src_path, 'labelTxt') img_lists = os.listdir(img_path) data_dict = [] with open(out_path, 'w') as f: for id, img in enumerate(img_lists): img_info = {} img_name = osp.splitext(img)[0] label = os.path.join(label_path, img_name+'.txt') img = Image.open(osp.join(img_path, img)) img_info['filename'] = img_name+'.png' img_info['height'] = img.height img_info['width'] = img.width img_info['id'] = id if(trainval == True): if(os.path.exists(label) == False): print('Label:'+img_name+'.txt'+' Not Exist') else: bboxes, labels, bboxes_ignore, labels_ignore = parse_ann_info( img_path, label_path, img_name) ann = {} ann['bboxes'] = bboxes ann['labels'] = labels ann['bboxes_ignore'] = bboxes_ignore ann['labels_ignore'] = labels_ignore img_info['annotations'] = ann data_dict.append(img_info) json.dump(data_dict, f) # Path: DOTA_devkit/ImgSplit_multi_process.py class splitbase(): def __init__(self, basepath, outpath, code='utf-8', gap=512, subsize=1024, thresh=0.7, choosebestpoint=True, ext='.png', padding=True, num_process=8 ): """ :param basepath: base path for dota data :param outpath: output base path for dota data, the basepath and outputpath have the similar subdirectory, 'images' and 'labelTxt' :param code: encodeing format of txt file :param gap: overlap between two patches :param subsize: subsize of patch :param thresh: the thresh determine whether to keep the instance if the instance is cut down in the process of split :param choosebestpoint: used to choose the first point for the :param ext: ext for the image format :param padding: if to padding the images so that all the images have the same size """ self.basepath = basepath self.outpath = outpath self.code = code self.gap = gap self.subsize = subsize self.slide = self.subsize - self.gap self.thresh = thresh self.imagepath = os.path.join(self.basepath, 'images') self.labelpath = os.path.join(self.basepath, 'labelTxt') self.outimagepath = os.path.join(self.outpath, 'images') self.outlabelpath = os.path.join(self.outpath, 'labelTxt') self.choosebestpoint = choosebestpoint self.ext = ext self.padding = padding self.num_process = num_process self.pool = Pool(num_process) print('padding:', padding) # pdb.set_trace() if not os.path.isdir(self.outpath): os.mkdir(self.outpath) if not os.path.isdir(self.outimagepath): # pdb.set_trace() os.mkdir(self.outimagepath) if not os.path.isdir(self.outlabelpath): os.mkdir(self.outlabelpath) # pdb.set_trace() # point: (x, y), rec: (xmin, ymin, xmax, ymax) # def __del__(self): # self.f_sub.close() # grid --> (x, y) position of grids def polyorig2sub(self, left, up, poly): polyInsub = np.zeros(len(poly)) for i in range(int(len(poly)/2)): polyInsub[i * 2] = int(poly[i * 2] - left) polyInsub[i * 2 + 1] = int(poly[i * 2 + 1] - up) return polyInsub def calchalf_iou(self, poly1, poly2): """ It is not the iou on usual, the iou is the value of intersection over poly1 """ inter_poly = poly1.intersection(poly2) inter_area = inter_poly.area poly1_area = poly1.area half_iou = inter_area / poly1_area return inter_poly, half_iou def saveimagepatches(self, img, subimgname, left, up): subimg = copy.deepcopy( img[up: (up + self.subsize), left: (left + self.subsize)]) outdir = os.path.join(self.outimagepath, subimgname + self.ext) h, w, c = np.shape(subimg) if (self.padding): outimg = np.zeros((self.subsize, self.subsize, 3)) outimg[0:h, 0:w, :] = subimg cv2.imwrite(outdir, outimg) else: cv2.imwrite(outdir, subimg) def GetPoly4FromPoly5(self, poly): distances = [cal_line_length((poly[i * 2], poly[i * 2 + 1]), (poly[( i + 1) * 2], poly[(i + 1) * 2 + 1])) for i in range(int(len(poly)/2 - 1))] distances.append(cal_line_length( (poly[0], poly[1]), (poly[8], poly[9]))) pos = np.array(distances).argsort()[0] count = 0 outpoly = [] while count < 5: #print('count:', count) if (count == pos): outpoly.append( (poly[count * 2] + poly[(count * 2 + 2) % 10])/2) outpoly.append( (poly[(count * 2 + 1) % 10] + poly[(count * 2 + 3) % 10])/2) count = count + 1 elif (count == (pos + 1) % 5): count = count + 1 continue else: outpoly.append(poly[count * 2]) outpoly.append(poly[count * 2 + 1]) count = count + 1 return outpoly def savepatches(self, resizeimg, objects, subimgname, left, up, right, down): outdir = os.path.join(self.outlabelpath, subimgname + '.txt') mask_poly = [] imgpoly = shgeo.Polygon([(left, up), (right, up), (right, down), (left, down)]) with codecs.open(outdir, 'w', self.code) as f_out: for obj in objects: gtpoly = shgeo.Polygon([(obj['poly'][0], obj['poly'][1]), (obj['poly'][2], obj['poly'][3]), (obj['poly'][4], obj['poly'][5]), (obj['poly'][6], obj['poly'][7])]) if (gtpoly.area <= 0): continue inter_poly, half_iou = self.calchalf_iou(gtpoly, imgpoly) # print('writing...') if (half_iou == 1): polyInsub = self.polyorig2sub(left, up, obj['poly']) outline = ' '.join(list(map(str, polyInsub))) outline = outline + ' ' + \ obj['name'] + ' ' + str(obj['difficult']) f_out.write(outline + '\n') elif (half_iou > 0): # elif (half_iou > self.thresh): # print('<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<') inter_poly = shgeo.polygon.orient(inter_poly, sign=1) out_poly = list(inter_poly.exterior.coords)[0: -1] if len(out_poly) < 4: continue out_poly2 = [] for i in range(len(out_poly)): out_poly2.append(out_poly[i][0]) out_poly2.append(out_poly[i][1]) if (len(out_poly) == 5): # print('==========================') out_poly2 = self.GetPoly4FromPoly5(out_poly2) elif (len(out_poly) > 5): """ if the cut instance is a polygon with points more than 5, we do not handle it currently """ continue if (self.choosebestpoint): out_poly2 = choose_best_pointorder_fit_another( out_poly2, obj['poly']) polyInsub = self.polyorig2sub(left, up, out_poly2) for index, item in enumerate(polyInsub): if (item <= 1): polyInsub[index] = 1 elif (item >= self.subsize): polyInsub[index] = self.subsize outline = ' '.join(list(map(str, polyInsub))) if (half_iou > self.thresh): outline = outline + ' ' + \ obj['name'] + ' ' + str(obj['difficult']) else: # if the left part is too small, label as '2' outline = outline + ' ' + obj['name'] + ' ' + '2' f_out.write(outline + '\n') # else: # mask_poly.append(inter_poly) self.saveimagepatches(resizeimg, subimgname, left, up) def SplitSingle(self, name, rate, extent): """ split a single image and ground truth :param name: image name :param rate: the resize scale for the image :param extent: the image format :return: """ img = cv2.imread(os.path.join(self.imagepath, name + extent)) if np.shape(img) == (): return fullname = os.path.join(self.labelpath, name + '.txt') objects = util.parse_dota_poly2(fullname) for obj in objects: obj['poly'] = list(map(lambda x: rate*x, obj['poly'])) #obj['poly'] = list(map(lambda x: ([2 * y for y in x]), obj['poly'])) if (rate != 1): resizeimg = cv2.resize( img, None, fx=rate, fy=rate, interpolation=cv2.INTER_CUBIC) else: resizeimg = img outbasename = name + '__' + str(rate) + '__' weight = np.shape(resizeimg)[1] height = np.shape(resizeimg)[0] left, up = 0, 0 while (left < weight): if (left + self.subsize >= weight): left = max(weight - self.subsize, 0) up = 0 while (up < height): if (up + self.subsize >= height): up = max(height - self.subsize, 0) right = min(left + self.subsize, weight - 1) down = min(up + self.subsize, height - 1) subimgname = outbasename + str(left) + '___' + str(up) # self.f_sub.write(name + ' ' + subimgname + ' ' + str(left) + ' ' + str(up) + '\n') self.savepatches(resizeimg, objects, subimgname, left, up, right, down) if (up + self.subsize >= height): break else: up = up + self.slide if (left + self.subsize >= weight): break else: left = left + self.slide def splitdata(self, rate): """ :param rate: resize rate before cut """ imagelist = GetFileFromThisRootDir(self.imagepath) imagenames = [util.custombasename(x) for x in imagelist if ( util.custombasename(x) != 'Thumbs')] if self.num_process == 1: for name in imagenames: self.SplitSingle(name, rate, self.ext) else: # worker = partial(self.SplitSingle, rate=rate, extent=self.ext) worker = partial(split_single_warp, split_base=self, rate=rate, extent=self.ext) self.pool.map(worker, imagenames) def __getstate__(self): self_dict = self.__dict__.copy() del self_dict['pool'] return self_dict def __setstate__(self, state): self.__dict__.update(state) # Path: DOTA_devkit/SplitOnlyImage_multi_process.py class splitbase(): def __init__(self, srcpath, dstpath, gap=100, subsize=1024, ext='.png', padding=True, num_process=32): self.srcpath = srcpath self.outpath = dstpath self.gap = gap self.subsize = subsize self.slide = self.subsize - self.gap self.srcpath = srcpath self.dstpath = dstpath self.ext = ext self.padding = padding self.pool = Pool(num_process) if not os.path.isdir(self.outpath): os.mkdir(self.outpath) def saveimagepatches(self, img, subimgname, left, up, ext='.png'): subimg = copy.deepcopy( img[up: (up + self.subsize), left: (left + self.subsize)]) outdir = os.path.join(self.dstpath, subimgname + ext) h, w, c = np.shape(subimg) if (self.padding): outimg = np.zeros((self.subsize, self.subsize, 3)) outimg[0:h, 0:w, :] = subimg cv2.imwrite(outdir, outimg) else: cv2.imwrite(outdir, subimg) def SplitSingle(self, name, rate, extent): img = cv2.imread(os.path.join(self.srcpath, name + extent)) assert np.shape(img) != () if (rate != 1): resizeimg = cv2.resize( img, None, fx=rate, fy=rate, interpolation=cv2.INTER_CUBIC) else: resizeimg = img outbasename = name + '__' + str(rate) + '__' weight = np.shape(resizeimg)[1] height = np.shape(resizeimg)[0] # if (max(weight, height) < self.subsize/2): # return left, up = 0, 0 while (left < weight): if (left + self.subsize >= weight): left = max(weight - self.subsize, 0) up = 0 while (up < height): if (up + self.subsize >= height): up = max(height - self.subsize, 0) subimgname = outbasename + str(left) + '___' + str(up) self.saveimagepatches(resizeimg, subimgname, left, up) if (up + self.subsize >= height): break else: up = up + self.slide if (left + self.subsize >= weight): break else: left = left + self.slide def splitdata(self, rate): imagelist = util.GetFileFromThisRootDir(self.srcpath) imagenames = [util.custombasename(x) for x in imagelist if ( util.custombasename(x) != 'Thumbs')] # worker = partial(self.SplitSingle, rate=rate, extent=self.ext) worker = partial(split_single_warp, split_base=self, rate=rate, extent=self.ext) self.pool.map(worker, imagenames) # # for name in imagenames: # self.SplitSingle(name, rate, self.ext) def __getstate__(self): self_dict = self.__dict__.copy() del self_dict['pool'] return self_dict def __setstate__(self, state): self.__dict__.update(state) # Path: DOTA_devkit/prepare_dota1_ms.py import os import os.path as osp from DOTA_devkit.DOTA2JSON import generate_json_labels from DOTA_devkit.DOTA2COCO_poly import DOTA2COCOTrain, DOTA2COCOTest, wordname_15 from DOTA_devkit.ImgSplit_multi_process import splitbase as splitbase_trainval from DOTA_devkit.SplitOnlyImage_multi_process import \ splitbase as splitbase_test def mkdir_if_not_exists(path): if not osp.exists(path): os.mkdir(path)
def prepare_multi_scale_data(src_path, dst_path, gap=200, subsize=1024, scales=[0.5, 1.0, 1.5], num_process=32):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: hyw-dev/AFI-ForwardDeduplicate # Path: models/gmflow/backbone.py class CNNEncoder(nn.Module): def __init__(self, output_dim=128, norm_layer=nn.InstanceNorm2d, num_output_scales=1, **kwargs, ): super(CNNEncoder, self).__init__() self.num_branch = num_output_scales feature_dims = [64, 96, 128] self.conv1 = nn.Conv2d(3, feature_dims[0], kernel_size=7, stride=2, padding=3, bias=False) # 1/2 self.norm1 = norm_layer(feature_dims[0]) self.relu1 = nn.ReLU(inplace=True) self.in_planes = feature_dims[0] self.layer1 = self._make_layer(feature_dims[0], stride=1, norm_layer=norm_layer) # 1/2 self.layer2 = self._make_layer(feature_dims[1], stride=2, norm_layer=norm_layer) # 1/4 # highest resolution 1/4 or 1/8 stride = 2 if num_output_scales == 1 else 1 self.layer3 = self._make_layer(feature_dims[2], stride=stride, norm_layer=norm_layer, ) # 1/4 or 1/8 self.conv2 = nn.Conv2d(feature_dims[2], output_dim, 1, 1, 0) if self.num_branch > 1: if self.num_branch == 4: strides = (1, 2, 4, 8) elif self.num_branch == 3: strides = (1, 2, 4) elif self.num_branch == 2: strides = (1, 2) else: raise ValueError self.trident_conv = MultiScaleTridentConv(output_dim, output_dim, kernel_size=3, strides=strides, paddings=1, num_branch=self.num_branch, ) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): if m.weight is not None: nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0) def _make_layer(self, dim, stride=1, dilation=1, norm_layer=nn.InstanceNorm2d): layer1 = ResidualBlock(self.in_planes, dim, norm_layer=norm_layer, stride=stride, dilation=dilation) layer2 = ResidualBlock(dim, dim, norm_layer=norm_layer, stride=1, dilation=dilation) layers = (layer1, layer2) self.in_planes = dim return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.norm1(x) x = self.relu1(x) x = self.layer1(x) # 1/2 x = self.layer2(x) # 1/4 x = self.layer3(x) # 1/8 or 1/4 x = self.conv2(x) if self.num_branch > 1: out = self.trident_conv([x] * self.num_branch) # high to low res else: out = [x] return out # Path: models/gmflow/transformer.py class FeatureTransformer(nn.Module): def __init__(self, num_layers=6, d_model=128, nhead=1, attention_type='swin', ffn_dim_expansion=4, **kwargs, ): super(FeatureTransformer, self).__init__() self.attention_type = attention_type self.d_model = d_model self.nhead = nhead self.layers = nn.ModuleList([ TransformerBlock(d_model=d_model, nhead=nhead, attention_type=attention_type, ffn_dim_expansion=ffn_dim_expansion, with_shift=True if attention_type == 'swin' and i % 2 == 1 else False, ) for i in range(num_layers)]) for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def forward(self, feature0, feature1, attn_num_splits=None, **kwargs, ): b, c, h, w = feature0.shape assert self.d_model == c feature0 = feature0.flatten(-2).permute(0, 2, 1) # [B, H*W, C] feature1 = feature1.flatten(-2).permute(0, 2, 1) # [B, H*W, C] if self.attention_type == 'swin' and attn_num_splits > 1: # global and refine use different number of splits window_size_h = h // attn_num_splits window_size_w = w // attn_num_splits # compute attn mask once shifted_window_attn_mask = generate_shift_window_attn_mask( input_resolution=(h, w), window_size_h=window_size_h, window_size_w=window_size_w, shift_size_h=window_size_h // 2, shift_size_w=window_size_w // 2, device=feature0.device, ) # [K*K, H/K*W/K, H/K*W/K] else: shifted_window_attn_mask = None # concat feature0 and feature1 in batch dimension to compute in parallel concat0 = torch.cat((feature0, feature1), dim=0) # [2B, H*W, C] concat1 = torch.cat((feature1, feature0), dim=0) # [2B, H*W, C] for layer in self.layers: concat0 = layer(concat0, concat1, height=h, width=w, shifted_window_attn_mask=shifted_window_attn_mask, attn_num_splits=attn_num_splits, ) # update feature1 concat1 = torch.cat(concat0.chunk(chunks=2, dim=0)[::-1], dim=0) feature0, feature1 = concat0.chunk(chunks=2, dim=0) # [B, H*W, C] # reshape back feature0 = feature0.view(b, h, w, c).permute(0, 3, 1, 2).contiguous() # [B, C, H, W] feature1 = feature1.view(b, h, w, c).permute(0, 3, 1, 2).contiguous() # [B, C, H, W] return feature0, feature1 # Path: models/gmflow/transformer.py class FeatureFlowAttention(nn.Module): """ flow propagation with self-attention on feature query: feature0, key: feature0, value: flow """ def __init__(self, in_channels, **kwargs, ): super(FeatureFlowAttention, self).__init__() self.q_proj = nn.Linear(in_channels, in_channels) self.k_proj = nn.Linear(in_channels, in_channels) for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def forward(self, feature0, flow, local_window_attn=False, local_window_radius=1, **kwargs, ): # q, k: feature [B, C, H, W], v: flow [B, 2, H, W] if local_window_attn: return self.forward_local_window_attn(feature0, flow, local_window_radius=local_window_radius) b, c, h, w = feature0.size() query = feature0.view(b, c, h * w).permute(0, 2, 1) # [B, H*W, C] # a note: the ``correct'' implementation should be: # ``query = self.q_proj(query), key = self.k_proj(query)'' # this problem is observed while cleaning up the code # however, this doesn't affect the performance since the projection is a linear operation, # thus the two projection matrices for key can be merged # so I just leave it as is in order to not re-train all models :) query = self.q_proj(query) # [B, H*W, C] key = self.k_proj(query) # [B, H*W, C] value = flow.view(b, flow.size(1), h * w).permute(0, 2, 1) # [B, H*W, 2] scores = torch.matmul(query, key.permute(0, 2, 1)) / (c ** 0.5) # [B, H*W, H*W] prob = torch.softmax(scores, dim=-1) out = torch.matmul(prob, value) # [B, H*W, 2] out = out.view(b, h, w, value.size(-1)).permute(0, 3, 1, 2) # [B, 2, H, W] return out def forward_local_window_attn(self, feature0, flow, local_window_radius=1, ): # assert flow.size(1) == 2 assert local_window_radius > 0 b, c, h, w = feature0.size() feature0_reshape = self.q_proj(feature0.view(b, c, -1).permute(0, 2, 1) ).reshape(b * h * w, 1, c) # [B*H*W, 1, C] kernel_size = 2 * local_window_radius + 1 feature0_proj = self.k_proj(feature0.view(b, c, -1).permute(0, 2, 1)).permute(0, 2, 1).reshape(b, c, h, w) feature0_window = F.unfold(feature0_proj, kernel_size=kernel_size, padding=local_window_radius) # [B, C*(2R+1)^2), H*W] feature0_window = feature0_window.view(b, c, kernel_size ** 2, h, w).permute( 0, 3, 4, 1, 2).reshape(b * h * w, c, kernel_size ** 2) # [B*H*W, C, (2R+1)^2] flow_window = F.unfold(flow, kernel_size=kernel_size, padding=local_window_radius) # [B, 2*(2R+1)^2), H*W] flow_window = flow_window.view(b, 2, kernel_size ** 2, h, w).permute( 0, 3, 4, 2, 1).reshape(b * h * w, kernel_size ** 2, 2) # [B*H*W, (2R+1)^2, 2] scores = torch.matmul(feature0_reshape, feature0_window) / (c ** 0.5) # [B*H*W, 1, (2R+1)^2] prob = torch.softmax(scores, dim=-1) out = torch.matmul(prob, flow_window).view(b, h, w, 2).permute(0, 3, 1, 2).contiguous() # [B, 2, H, W] return out # Path: models/gmflow/matching.py def global_correlation_softmax(feature0, feature1, pred_bidir_flow=False, ): # global correlation b, c, h, w = feature0.shape feature0 = feature0.view(b, c, -1).permute(0, 2, 1) # [B, H*W, C] feature1 = feature1.view(b, c, -1) # [B, C, H*W] correlation = torch.matmul(feature0, feature1).view(b, h, w, h, w) / (c ** 0.5) # [B, H, W, H, W] # flow from softmax init_grid = coords_grid(b, h, w, device=correlation.device, dtype=feature0.dtype) # [B, 2, H, W] grid = init_grid.view(b, 2, -1).permute(0, 2, 1) # [B, H*W, 2] correlation = correlation.view(b, h * w, h * w) # [B, H*W, H*W] if pred_bidir_flow: correlation = torch.cat((correlation, correlation.permute(0, 2, 1)), dim=0) # [2*B, H*W, H*W] init_grid = init_grid.repeat(2, 1, 1, 1) # [2*B, 2, H, W] grid = grid.repeat(2, 1, 1) # [2*B, H*W, 2] b = b * 2 prob = F.softmax(correlation, dim=-1) # [B, H*W, H*W] correspondence = torch.matmul(prob, grid).view(b, h, w, 2).permute(0, 3, 1, 2) # [B, 2, H, W] # when predicting bidirectional flow, flow is the concatenation of forward flow and backward flow flow = correspondence - init_grid return flow, prob # Path: models/gmflow/matching.py def local_correlation_softmax(feature0, feature1, local_radius, padding_mode='zeros', ): b, c, h, w = feature0.size() coords_init = coords_grid(b, h, w, device=feature0.device, dtype=feature0.dtype) # [B, 2, H, W] coords = coords_init.view(b, 2, -1).permute(0, 2, 1) # [B, H*W, 2] local_h = 2 * local_radius + 1 local_w = 2 * local_radius + 1 window_grid = generate_window_grid(-local_radius, local_radius, -local_radius, local_radius, local_h, local_w, device=feature0.device, dtype=feature0.dtype) # [2R+1, 2R+1, 2] window_grid = window_grid.reshape(-1, 2).repeat(b, 1, 1, 1) # [B, 1, (2R+1)^2, 2] sample_coords = coords.unsqueeze(-2) + window_grid # [B, H*W, (2R+1)^2, 2] sample_coords_softmax = sample_coords # exclude coords that are out of image space valid_x = (sample_coords[:, :, :, 0] >= 0) & (sample_coords[:, :, :, 0] < w) # [B, H*W, (2R+1)^2] valid_y = (sample_coords[:, :, :, 1] >= 0) & (sample_coords[:, :, :, 1] < h) # [B, H*W, (2R+1)^2] valid = valid_x & valid_y # [B, H*W, (2R+1)^2], used to mask out invalid values when softmax # normalize coordinates to [-1, 1] sample_coords_norm = normalize_coords(sample_coords, h, w) # [-1, 1] window_feature = F.grid_sample(feature1.contiguous(), sample_coords_norm.contiguous(), padding_mode=padding_mode, align_corners=True ).permute(0, 2, 1, 3) # [B, H*W, C, (2R+1)^2] feature0_view = feature0.permute(0, 2, 3, 1).view(b, h * w, 1, c) # [B, H*W, 1, C] corr = torch.matmul(feature0_view, window_feature).view(b, h * w, -1) / (c ** 0.5) # [B, H*W, (2R+1)^2] # mask invalid locations corr[~valid] = -1e9 if feature0.dtype == torch.float else -1e4 prob = F.softmax(corr, -1) # [B, H*W, (2R+1)^2] correspondence = torch.matmul(prob.unsqueeze(-2), sample_coords_softmax).squeeze(-2).view( b, h, w, 2).permute(0, 3, 1, 2) # [B, 2, H, W] flow = correspondence - coords_init match_prob = prob return flow, match_prob # Path: models/gmflow/geometry.py def flow_warp(feature, flow, mask=False, padding_mode='zeros'): b, c, h, w = feature.size() assert flow.size(1) == 2 grid = coords_grid(b, h, w, device=flow.device, dtype=flow.dtype) + flow # [B, 2, H, W] return bilinear_sample(feature, grid, padding_mode=padding_mode, return_mask=mask) # Path: models/gmflow/utils.py def normalize_img(img0, img1): # loaded images are in [0, 255] # normalize by ImageNet mean and std global mean, std, is_mean_std_loaded if not is_mean_std_loaded: mean = mean.to(img0) std = std.to(img0) is_mean_std_loaded = True img0 = (img0 - mean) / std img1 = (img1 - mean) / std return img0, img1 # Path: models/gmflow/utils.py def feature_add_position(feature0, feature1, attn_splits, feature_channels): pos_enc = PositionEmbeddingSine(num_pos_feats=feature_channels // 2) if attn_splits > 1: # add position in splited window feature0_splits = split_feature(feature0, num_splits=attn_splits) feature1_splits = split_feature(feature1, num_splits=attn_splits) position = pos_enc(feature0_splits) feature0_splits = feature0_splits + position feature1_splits = feature1_splits + position feature0 = merge_splits(feature0_splits, num_splits=attn_splits) feature1 = merge_splits(feature1_splits, num_splits=attn_splits) else: position = pos_enc(feature0) feature0 = feature0 + position feature1 = feature1 + position return feature0, feature1 # Path: models/gmflow/gmflow.py import torch import torch.nn as nn import torch.nn.functional as F from models.gmflow.backbone import CNNEncoder from models.gmflow.transformer import FeatureTransformer, FeatureFlowAttention from models.gmflow.matching import global_correlation_softmax, local_correlation_softmax from models.gmflow.geometry import flow_warp from models.gmflow.utils import normalize_img, feature_add_position class GMFlow(nn.Module): def __init__(self, num_scales=2, upsample_factor=4, feature_channels=128, attention_type='swin', num_transformer_layers=6, ffn_dim_expansion=4, num_head=1, **kwargs, ): super(GMFlow, self).__init__() self.num_scales = num_scales self.feature_channels = feature_channels
self.upsample_factor = upsample_factor