metadata
size_categories:
- 100B<n<1T
Spectro-polarimetric Dataset
We provide a spectro-polarimetric dataset. This dataset consists of full-Stokes images for both hyperspectral and trichromatic scenes. Hyperspectral dataset has 311 scenes and trichromatic dataset has 2022 scenes.
For more details, see our paper on Spectral and Polarization Vision: Spectro-polarimetric Real-world Dataset.
π¦ Contents
- File Hierarchy
- Trichromatic Data Overview
- Hyperspectral Data Overview
- Labeling Information
- Citation
- Contact
πΎ File Hierarchy
π trichromatic/: Trichromatic polarimetric dataset
- π original/: Data processed from captured raw files
- π 0000.npy ~
- π denoised/: Data processed from denoised raw files
- π 0000.npy ~
- π mask/: Masks for the scenes
- π 0000.png ~
- π labeling_trichromatic.csv: Labeling each scene
- π original/: Data processed from captured raw files
π hyperspectral/: Hyperspectral polarimetric dataset
- π original/: Data processed from captured raw files
- π 0000.npy ~
- π denoised/: Data processed from denoised raw files
- π 0000.npy ~
- π mask/: Mask fors the scenes
- π 0000.png ~
- π labeling_hyperspectral.csv: Labeling each scene
- π original/: Data processed from captured raw files
π README.md
π· Trichromatic Data Overview
original & denoised:
- Format: Stokes numpy files
(1900, 2100, 4, 3)
- Dimensions:
- R: Spatial dimension
- C: Spatial dimension
- s: Stokes axis (s0, s1, s2, s3)
- c: Spectral axis (R G B)
- Format: Stokes numpy files
mask:
- Binary mask images
(1900, 2100)
- Dimensions:
- R: Spatial dimension
- C: Spatial dimension
- Binary mask images
π· Hyperspectral Data Overview
original & denoised:
- Format: Stokes numpy files
(512, 612, 4, 21)
- Dimensions:
- R: Spatial dimension
- C: Spatial dimension
- s: Stokes axis (s0, s1, s2, s3)
- c: Spectral axis (
450nm ~ 650nm
at10nm
intervals)
- Format: Stokes numpy files
mask:
- Binary mask images
(512, 612)
- Dimensions:
- R: Spatial dimension
- C: Spatial dimension
- Binary mask images
ποΈ Labeling Information
- SceneNum: Indices of scenes (
0 ~ 310
for hyperspectral,0 ~ 2021
for trichromatic) - Content: Type of content (scene, object)
- Timezone: Scene environment (indoor, day, night)
- Illumination: Illumination condition (white, yellow, sunny, cloudy)
π Citation
@InProceedings{Jeon_2024_CVPR,
author = {Jeon, Yujin and Choi, Eunsue and Kim, Youngchan and Moon, Yunseong and Omer, Khalid and Heide, Felix and Baek, Seung-Hwan},
title = {Spectral and Polarization Vision: Spectro-polarimetric Real-world Dataset},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2024},
pages = {22098-22108}
}
π« Contact
If you have any questions, please contact
- Yujin Jeon: [email protected]
- Eunsue Choi: [email protected]
- Seung-hwan Baek: [email protected]