|
--- |
|
size_categories: |
|
- 100B<n<1T |
|
--- |
|
# Spectro-polarimetric Dataset |
|
|
|
We provide a spectro-polarimetric dataset. This dataset consists of full-Stokes images for both hyperspectral and trichromatic scenes. Hyperspectral dataset has 311 scenes and trichromatic dataset has 2022 scenes. |
|
|
|
For more details, see our paper on [<u>**Spectral and Polarization Vision: Spectro-polarimetric Real-world Dataset**</u>](https://arxiv.org/abs/2311.17396). |
|
|
|
## π¦ Contents |
|
- [**File Hierarchy** ](#πΎ-file-hierarchy) |
|
- [**Trichromatic Data Overview** ](#π·-trichromatic-data-overview) |
|
- [**Hyperspectral Data Overview** ](#π·-hyperspectral-data-overview) |
|
- [**Labeling Information** ](#ποΈ-labeling-information) |
|
- [**Citation** ](#π-citation) |
|
- [**Contact** ](#π«-contact) |
|
|
|
## πΎ File Hierarchy |
|
- ### **π trichromatic/**: Trichromatic polarimetric dataset |
|
- **π original/**: Data processed from captured raw files |
|
- **π 0000.npy ~** |
|
- **π denoised/**: Data processed from denoised raw files |
|
- **π 0000.npy ~** |
|
- **π mask/**: Masks for the scenes |
|
- **π 0000.png ~** |
|
- **π labeling_trichromatic.csv**: Labeling each scene |
|
- ### **π hyperspectral/**: Hyperspectral polarimetric dataset |
|
- **π original/**: Data processed from captured raw files |
|
- **π 0000.npy ~** |
|
- **π denoised/**: Data processed from denoised raw files |
|
- **π 0000.npy ~** |
|
- **π mask/**: Mask fors the scenes |
|
- **π 0000.png ~** |
|
- **π labeling_hyperspectral.csv**: Labeling each scene |
|
- ### **π README.md** |
|
|
|
|
|
## π· Trichromatic Data Overview |
|
|
|
+ **original & denoised:** |
|
- Format: Stokes numpy files `(1900, 2100, 4, 3)` |
|
- Dimensions: |
|
- **R:** Spatial dimension |
|
- **C:** Spatial dimension |
|
- **s:** Stokes axis (*s0, s1, s2, s3*) |
|
- **c:** Spectral axis (R G B) |
|
|
|
+ **mask:** |
|
- Binary mask images `(1900, 2100)` |
|
- Dimensions: |
|
- **R:** Spatial dimension |
|
- **C:** Spatial dimension |
|
|
|
|
|
## π· Hyperspectral Data Overview |
|
|
|
+ **original & denoised:** |
|
- Format: Stokes numpy files `(512, 612, 4, 21)` |
|
- Dimensions: |
|
- **R:** Spatial dimension |
|
- **C:** Spatial dimension |
|
- **s:** Stokes axis (*s0, s1, s2, s3*) |
|
- **c:** Spectral axis (`450nm ~ 650nm` at `10nm` intervals) |
|
|
|
+ **mask:** |
|
- Binary mask images `(512, 612)` |
|
- Dimensions: |
|
- **R:** Spatial dimension |
|
- **C:** Spatial dimension |
|
|
|
|
|
## ποΈ Labeling Information |
|
- **SceneNum:** Indices of scenes (`0 ~ 310` for hyperspectral, `0 ~ 2021` for trichromatic) |
|
- **Content:** Type of content (scene, object) |
|
- **Timezone:** Scene environment (indoor, day, night) |
|
- **Illumination:** Illumination condition (white, yellow, sunny, cloudy) |
|
|
|
## π Citation |
|
```bibtex |
|
@InProceedings{Jeon_2024_CVPR, |
|
author = {Jeon, Yujin and Choi, Eunsue and Kim, Youngchan and Moon, Yunseong and Omer, Khalid and Heide, Felix and Baek, Seung-Hwan}, |
|
title = {Spectral and Polarization Vision: Spectro-polarimetric Real-world Dataset}, |
|
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, |
|
month = {June}, |
|
year = {2024}, |
|
pages = {22098-22108} |
|
} |
|
``` |
|
|
|
## π« Contact |
|
If you have any questions, please contact |
|
+ Yujin Jeon: [email protected] |
|
+ Eunsue Choi: [email protected] |
|
+ Seung-hwan Baek: [email protected] |