id
stringlengths
14
15
text
stringlengths
44
2.47k
source
stringlengths
61
181
4c64720959be-0
langchain.callbacks.mlflow_callback.MlflowCallbackHandler¶ class langchain.callbacks.mlflow_callback.MlflowCallbackHandler(name: Optional[str] = 'langchainrun-%', experiment: Optional[str] = 'langchain', tags: Optional[Dict] = None, tracking_uri: Optional[str] = None)[source]¶ Callback Handler that logs metrics and artifacts to mlflow server. Parameters name (str) – Name of the run. experiment (str) – Name of the experiment. tags (dict) – Tags to be attached for the run. tracking_uri (str) – MLflow tracking server uri. This handler will utilize the associated callback method called and formats the input of each callback function with metadata regarding the state of LLM run, and adds the response to the list of records for both the {method}_records and action. It then logs the response to mlflow server. Initialize callback handler. Attributes always_verbose Whether to call verbose callbacks even if verbose is False. ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([name, experiment, tags, tracking_uri]) Initialize callback handler. flush_tracker([langchain_asset, finish]) get_custom_callback_meta() on_agent_action(action, **kwargs) Run on agent action. on_agent_finish(finish, **kwargs) Run when agent ends running. on_chain_end(outputs, **kwargs) Run when chain ends running. on_chain_error(error, **kwargs) Run when chain errors.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.mlflow_callback.MlflowCallbackHandler.html
4c64720959be-1
on_chain_error(error, **kwargs) Run when chain errors. on_chain_start(serialized, inputs, **kwargs) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Run when LLM errors. on_llm_new_token(token, **kwargs) Run when LLM generates a new token. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Run when agent is ending. on_tool_end(output, **kwargs) Run when tool ends running. on_tool_error(error, **kwargs) Run when tool errors. on_tool_start(serialized, input_str, **kwargs) Run when tool starts running. reset_callback_meta() Reset the callback metadata. __init__(name: Optional[str] = 'langchainrun-%', experiment: Optional[str] = 'langchain', tags: Optional[Dict] = None, tracking_uri: Optional[str] = None) → None[source]¶ Initialize callback handler.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.mlflow_callback.MlflowCallbackHandler.html
4c64720959be-2
Initialize callback handler. flush_tracker(langchain_asset: Any = None, finish: bool = False) → None[source]¶ get_custom_callback_meta() → Dict[str, Any]¶ on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Run on agent action. on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Run when agent ends running. on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain ends running. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when LLM errors. on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Run when LLM generates a new token. on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Run when LLM starts.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.mlflow_callback.MlflowCallbackHandler.html
4c64720959be-3
Run when LLM starts. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, **kwargs: Any) → None[source]¶ Run when agent is ending. on_tool_end(output: str, **kwargs: Any) → None[source]¶ Run when tool ends running. on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when tool errors. on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Run when tool starts running. reset_callback_meta() → None¶ Reset the callback metadata. Examples using MlflowCallbackHandler¶ MLflow
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.mlflow_callback.MlflowCallbackHandler.html
e9d91ad8e008-0
langchain.callbacks.tracers.base.TracerException¶ class langchain.callbacks.tracers.base.TracerException[source]¶ Base class for exceptions in tracers module.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.base.TracerException.html
667db8cbda20-0
langchain.callbacks.mlflow_callback.construct_html_from_prompt_and_generation¶ langchain.callbacks.mlflow_callback.construct_html_from_prompt_and_generation(prompt: str, generation: str) → Any[source]¶ Construct an html element from a prompt and a generation. Parameters prompt (str) – The prompt. generation (str) – The generation. Returns The html string. Return type (str)
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.mlflow_callback.construct_html_from_prompt_and_generation.html
9c850c56949f-0
langchain.callbacks.llmonitor_callback.LLMonitorCallbackHandler¶ class langchain.callbacks.llmonitor_callback.LLMonitorCallbackHandler(app_id: Optional[str] = None, api_url: Optional[str] = None, verbose: bool = False)[source]¶ Initializes the LLMonitorCallbackHandler. #### Parameters: app_id: The app id of the app you want to report to. Defaults to None, which means that LLMONITOR_APP_ID will be used. - api_url: The url of the LLMonitor API. Defaults to None, which means that either LLMONITOR_API_URL environment variable or https://app.llmonitor.com will be used. #### Raises: ValueError: if app_id is not provided either as an argument or as an environment variable. - ConnectionError: if the connection to the API fails. #### Example: ```python from langchain.llms import OpenAI from langchain.callbacks import LLMonitorCallbackHandler llmonitor_callback = LLMonitorCallbackHandler() llm = OpenAI(callbacks=[llmonitor_callback], metadata={“userId”: “user-123”}) llm.predict(“Hello, how are you?”) ``` Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([app_id, api_url, verbose]) on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.llmonitor_callback.LLMonitorCallbackHandler.html
9c850c56949f-1
Run on agent end. on_chain_end(outputs, *, run_id[, parent_run_id]) Run when chain ends running. on_chain_error(error, *, run_id[, parent_run_id]) Run when chain errors. on_chain_start(serialized, inputs, *, run_id) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, *, run_id[, parent_run_id]) Run when LLM ends running. on_llm_error(error, *, run_id[, parent_run_id]) Run when LLM errors. on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token. on_llm_start(serialized, prompts, *, run_id) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text. on_tool_end(output, *, run_id[, ...]) Run when tool ends running. on_tool_error(error, *, run_id[, parent_run_id]) Run when tool errors. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.llmonitor_callback.LLMonitorCallbackHandler.html
9c850c56949f-2
Run when tool starts running. __init__(app_id: Optional[str] = None, api_url: Optional[str] = None, verbose: bool = False) → None[source]¶ on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run on agent action. on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when chain ends running. on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when chain errors. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶ Run when a chat model starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.llmonitor_callback.LLMonitorCallbackHandler.html
9c850c56949f-3
Run when a chat model starts running. on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → None[source]¶ Run when LLM ends running. on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when LLM errors. on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on new LLM token. Only available when streaming is enabled. Parameters token (str) – The new token. chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk, information. (containing content and other) – on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶ Run when LLM starts running. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.llmonitor_callback.LLMonitorCallbackHandler.html
9c850c56949f-4
Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on arbitrary text. on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶ Run when tool ends running. on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when tool errors. on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶ Run when tool starts running. Examples using LLMonitorCallbackHandler¶ LLMonitor
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.llmonitor_callback.LLMonitorCallbackHandler.html
76b47d6c28f0-0
langchain.callbacks.streamlit.mutable_expander.MutableExpander¶ class langchain.callbacks.streamlit.mutable_expander.MutableExpander(parent_container: DeltaGenerator, label: str, expanded: bool)[source]¶ A Streamlit expander that can be renamed and dynamically expanded/collapsed. Create a new MutableExpander. Parameters parent_container – The st.container that the expander will be created inside. The expander transparently deletes and recreates its underlying st.expander instance when its label changes, and it uses parent_container to ensure it recreates this underlying expander in the same location onscreen. label – The expander’s initial label. expanded – The expander’s initial expanded value. Attributes expanded True if the expander was created with expanded=True. label The expander's label string. Methods __init__(parent_container, label, expanded) Create a new MutableExpander. append_copy(other) Append a copy of another MutableExpander's children to this MutableExpander. clear() Remove the container and its contents entirely. exception(exception, *[, index]) Add an Exception element to the container and return its index. markdown(body[, unsafe_allow_html, help, index]) Add a Markdown element to the container and return its index. update(*[, new_label, new_expanded]) Change the expander's label and expanded state __init__(parent_container: DeltaGenerator, label: str, expanded: bool)[source]¶ Create a new MutableExpander. Parameters parent_container – The st.container that the expander will be created inside. The expander transparently deletes and recreates its underlying st.expander instance when its label changes, and it uses parent_container to ensure it recreates this underlying expander in the same location onscreen.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streamlit.mutable_expander.MutableExpander.html
76b47d6c28f0-1
parent_container to ensure it recreates this underlying expander in the same location onscreen. label – The expander’s initial label. expanded – The expander’s initial expanded value. append_copy(other: MutableExpander) → None[source]¶ Append a copy of another MutableExpander’s children to this MutableExpander. clear() → None[source]¶ Remove the container and its contents entirely. A cleared container can’t be reused. exception(exception: BaseException, *, index: Optional[int] = None) → int[source]¶ Add an Exception element to the container and return its index. markdown(body: SupportsStr, unsafe_allow_html: bool = False, *, help: Optional[str] = None, index: Optional[int] = None) → int[source]¶ Add a Markdown element to the container and return its index. update(*, new_label: Optional[str] = None, new_expanded: Optional[bool] = None) → None[source]¶ Change the expander’s label and expanded state
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streamlit.mutable_expander.MutableExpander.html
25ed05b6f284-0
langchain.callbacks.tracers.stdout.try_json_stringify¶ langchain.callbacks.tracers.stdout.try_json_stringify(obj: Any, fallback: str) → str[source]¶ Try to stringify an object to JSON. :param obj: Object to stringify. :param fallback: Fallback string to return if the object cannot be stringified. Returns A JSON string if the object can be stringified, otherwise the fallback string.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.stdout.try_json_stringify.html
c039ed2d2ab3-0
langchain.callbacks.utils.BaseMetadataCallbackHandler¶ class langchain.callbacks.utils.BaseMetadataCallbackHandler[source]¶ This class handles the metadata and associated function states for callbacks. step¶ The current step. Type int starts¶ The number of times the start method has been called. Type int ends¶ The number of times the end method has been called. Type int errors¶ The number of times the error method has been called. Type int text_ctr¶ The number of times the text method has been called. Type int ignore_llm_¶ Whether to ignore llm callbacks. Type bool ignore_chain_¶ Whether to ignore chain callbacks. Type bool ignore_agent_¶ Whether to ignore agent callbacks. Type bool ignore_retriever_¶ Whether to ignore retriever callbacks. Type bool always_verbose_¶ Whether to always be verbose. Type bool chain_starts¶ The number of times the chain start method has been called. Type int chain_ends¶ The number of times the chain end method has been called. Type int llm_starts¶ The number of times the llm start method has been called. Type int llm_ends¶ The number of times the llm end method has been called. Type int llm_streams¶ The number of times the text method has been called. Type int tool_starts¶ The number of times the tool start method has been called. Type int tool_ends¶ The number of times the tool end method has been called. Type int agent_ends¶ The number of times the agent end method has been called. Type int on_llm_start_records¶
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.utils.BaseMetadataCallbackHandler.html
c039ed2d2ab3-1
Type int on_llm_start_records¶ A list of records of the on_llm_start method. Type list on_llm_token_records¶ A list of records of the on_llm_token method. Type list on_llm_end_records¶ A list of records of the on_llm_end method. Type list on_chain_start_records¶ A list of records of the on_chain_start method. Type list on_chain_end_records¶ A list of records of the on_chain_end method. Type list on_tool_start_records¶ A list of records of the on_tool_start method. Type list on_tool_end_records¶ A list of records of the on_tool_end method. Type list on_agent_finish_records¶ A list of records of the on_agent_end method. Type list Attributes always_verbose Whether to call verbose callbacks even if verbose is False. ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_llm Whether to ignore LLM callbacks. Methods __init__() get_custom_callback_meta() reset_callback_meta() Reset the callback metadata. __init__() → None[source]¶ get_custom_callback_meta() → Dict[str, Any][source]¶ reset_callback_meta() → None[source]¶ Reset the callback metadata.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.utils.BaseMetadataCallbackHandler.html
58eb50831e77-0
langchain.callbacks.tracers.schemas.TracerSessionV1¶ class langchain.callbacks.tracers.schemas.TracerSessionV1[source]¶ Bases: TracerSessionV1Base TracerSessionV1 schema. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param extra: Optional[Dict[str, Any]] = None¶ param id: int [Required]¶ param name: Optional[str] = None¶ param start_time: datetime.datetime [Optional]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.TracerSessionV1.html
58eb50831e77-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.TracerSessionV1.html
58eb50831e77-2
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.TracerSessionV1.html
5bf5c5ac8ad5-0
langchain.callbacks.labelstudio_callback.LabelStudioCallbackHandler¶ class langchain.callbacks.labelstudio_callback.LabelStudioCallbackHandler(api_key: Optional[str] = None, url: Optional[str] = None, project_id: Optional[int] = None, project_name: str = 'LangChain-%Y-%m-%d', project_config: Optional[str] = None, mode: Union[str, LabelStudioMode] = LabelStudioMode.PROMPT)[source]¶ Label Studio callback handler. Provides the ability to send predictions to Label Studio for human evaluation, feedback and annotation. Parameters api_key – Label Studio API key url – Label Studio URL project_id – Label Studio project ID project_name – Label Studio project name project_config – Label Studio project config (XML) mode – Label Studio mode (“prompt” or “chat”) Examples >>> from langchain.llms import OpenAI >>> from langchain.callbacks import LabelStudioCallbackHandler >>> handler = LabelStudioCallbackHandler( ... api_key='<your_key_here>', ... url='http://localhost:8080', ... project_name='LangChain-%Y-%m-%d', ... mode='prompt' ... ) >>> llm = OpenAI(callbacks=[handler]) >>> llm.predict('Tell me a story about a dog.') Attributes DEFAULT_PROJECT_NAME ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([api_key, url, project_id, ...]) add_prompts_generations(run_id, generations)
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.labelstudio_callback.LabelStudioCallbackHandler.html
5bf5c5ac8ad5-1
add_prompts_generations(run_id, generations) on_agent_action(action, **kwargs) Do nothing when agent takes a specific action. on_agent_finish(finish, **kwargs) Do nothing on_chain_end(outputs, **kwargs) Run when chain ends running. on_chain_error(error, **kwargs) Do nothing when LLM chain outputs an error. on_chain_start(serialized, inputs, **kwargs) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Save the prompts in memory when an LLM starts. on_llm_end(response, **kwargs) Create a new Label Studio task for each prompt and generation. on_llm_error(error, **kwargs) Do nothing when LLM outputs an error. on_llm_new_token(token, **kwargs) Do nothing when a new token is generated. on_llm_start(serialized, prompts, **kwargs) Save the prompts in memory when an LLM starts. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Do nothing on_tool_end(output[, observation_prefix, ...]) Do nothing when tool ends. on_tool_error(error, **kwargs) Do nothing when tool outputs an error. on_tool_start(serialized, input_str, **kwargs)
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.labelstudio_callback.LabelStudioCallbackHandler.html
5bf5c5ac8ad5-2
on_tool_start(serialized, input_str, **kwargs) Do nothing when tool starts. __init__(api_key: Optional[str] = None, url: Optional[str] = None, project_id: Optional[int] = None, project_name: str = 'LangChain-%Y-%m-%d', project_config: Optional[str] = None, mode: Union[str, LabelStudioMode] = LabelStudioMode.PROMPT)[source]¶ add_prompts_generations(run_id: str, generations: List[List[Generation]]) → None[source]¶ on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Do nothing when agent takes a specific action. on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Do nothing on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain ends running. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing when LLM chain outputs an error. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶ Save the prompts in memory when an LLM starts. on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Create a new Label Studio task for each prompt and generation. on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.labelstudio_callback.LabelStudioCallbackHandler.html
5bf5c5ac8ad5-3
on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing when LLM outputs an error. on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Do nothing when a new token is generated. on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Save the prompts in memory when an LLM starts. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, **kwargs: Any) → None[source]¶ Do nothing on_tool_end(output: str, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶ Do nothing when tool ends. on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing when tool outputs an error.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.labelstudio_callback.LabelStudioCallbackHandler.html
5bf5c5ac8ad5-4
Do nothing when tool outputs an error. on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Do nothing when tool starts. Examples using LabelStudioCallbackHandler¶ Label Studio
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.labelstudio_callback.LabelStudioCallbackHandler.html
839f3f95acdc-0
langchain.callbacks.tracers.log_stream.RunState¶ class langchain.callbacks.tracers.log_stream.RunState[source]¶ id: str¶ ID of the run. streamed_output: List[Any]¶ List of output chunks streamed by Runnable.stream() final_output: Optional[Any]¶ Final output of the run, usually the result of aggregating streamed_output. Only available after the run has finished successfully. logs: list[langchain.callbacks.tracers.log_stream.LogEntry]¶ List of sub-runs contained in this run, if any, in the order they were started. If filters were supplied, this list will contain only the runs that matched the filters.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.log_stream.RunState.html
f1e92607c8a6-0
langchain.callbacks.wandb_callback.construct_html_from_prompt_and_generation¶ langchain.callbacks.wandb_callback.construct_html_from_prompt_and_generation(prompt: str, generation: str) → Any[source]¶ Construct an html element from a prompt and a generation. Parameters prompt (str) – The prompt. generation (str) – The generation. Returns The html element. Return type (wandb.Html)
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.wandb_callback.construct_html_from_prompt_and_generation.html
d13027435e55-0
langchain.callbacks.trubrics_callback.TrubricsCallbackHandler¶ class langchain.callbacks.trubrics_callback.TrubricsCallbackHandler(project: str = 'default', email: Optional[str] = None, password: Optional[str] = None, **kwargs: Any)[source]¶ Callback handler for Trubrics. Parameters project – a trubrics project, default project is “default” email – a trubrics account email, can equally be set in env variables password – a trubrics account password, can equally be set in env variables **kwargs – all other kwargs are parsed and set to trubrics prompt variables, or added to the metadata dict Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([project, email, password]) on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, parent_run_id]) Run when chain ends running. on_chain_error(error, *, run_id[, parent_run_id]) Run when chain errors. on_chain_start(serialized, inputs, *, run_id) Run when chain starts running. on_chat_model_start(serialized, messages, ...) Run when a chat model starts running. on_llm_end(response, run_id, **kwargs) Run when LLM ends running.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.trubrics_callback.TrubricsCallbackHandler.html
d13027435e55-1
Run when LLM ends running. on_llm_error(error, *, run_id[, parent_run_id]) Run when LLM errors. on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text. on_tool_end(output, *, run_id[, parent_run_id]) Run when tool ends running. on_tool_error(error, *, run_id[, parent_run_id]) Run when tool errors. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. __init__(project: str = 'default', email: Optional[str] = None, password: Optional[str] = None, **kwargs: Any) → None[source]¶ on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent action. on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent end.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.trubrics_callback.TrubricsCallbackHandler.html
d13027435e55-2
Run on agent end. on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain ends running. on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain errors. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) → None[source]¶ Run when a chat model starts running. on_llm_end(response: LLMResult, run_id: UUID, **kwargs: Any) → None[source]¶ Run when LLM ends running. on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when LLM errors. on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on new LLM token. Only available when streaming is enabled. Parameters token (str) – The new token. chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk, information. (containing content and other) –
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.trubrics_callback.TrubricsCallbackHandler.html
d13027435e55-3
information. (containing content and other) – on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Run when LLM starts running. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on arbitrary text. on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool ends running. on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool errors.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.trubrics_callback.TrubricsCallbackHandler.html
d13027435e55-4
Run when tool errors. on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when tool starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.trubrics_callback.TrubricsCallbackHandler.html
cc82f13088de-0
langchain.callbacks.utils.import_pandas¶ langchain.callbacks.utils.import_pandas() → Any[source]¶ Import the pandas python package and raise an error if it is not installed.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.utils.import_pandas.html
b946b54ced3d-0
langchain.callbacks.manager.trace_as_chain_group¶ langchain.callbacks.manager.trace_as_chain_group(group_name: str, callback_manager: Optional[CallbackManager] = None, *, inputs: Optional[Dict[str, Any]] = None, project_name: Optional[str] = None, example_id: Optional[Union[str, UUID]] = None, run_id: Optional[UUID] = None, tags: Optional[List[str]] = None) → Generator[CallbackManagerForChainGroup, None, None][source]¶ Get a callback manager for a chain group in a context manager. Useful for grouping different calls together as a single run even if they aren’t composed in a single chain. Parameters group_name (str) – The name of the chain group. callback_manager (CallbackManager, optional) – The callback manager to use. inputs (Dict[str, Any], optional) – The inputs to the chain group. project_name (str, optional) – The name of the project. Defaults to None. example_id (str or UUID, optional) – The ID of the example. Defaults to None. run_id (UUID, optional) – The ID of the run. tags (List[str], optional) – The inheritable tags to apply to all runs. Defaults to None. Returns The callback manager for the chain group. Return type CallbackManagerForChainGroup Example llm_input = "Foo" with trace_as_chain_group("group_name", inputs={"input": llm_input}) as manager: # Use the callback manager for the chain group res = llm.predict(llm_input, callbacks=manager) manager.on_chain_end({"output": res})
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.trace_as_chain_group.html
4d06ac55c3c3-0
langchain.callbacks.manager.RunManager¶ class langchain.callbacks.manager.RunManager(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Sync Run Manager. Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_noop_manager() Return a manager that doesn't perform any operations. on_retry(retry_state, **kwargs) Run on a retry event. on_text(text, **kwargs) Run when text is received.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.RunManager.html
4d06ac55c3c3-1
on_text(text, **kwargs) Run when text is received. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. classmethod get_noop_manager() → BRM¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager on_retry(retry_state: RetryCallState, **kwargs: Any) → None[source]¶ Run on a retry event. on_text(text: str, **kwargs: Any) → Any[source]¶ Run when text is received. Parameters text (str) – The received text. Returns The result of the callback. Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.RunManager.html
439be4610617-0
langchain.callbacks.manager.atrace_as_chain_group¶ langchain.callbacks.manager.atrace_as_chain_group(group_name: str, callback_manager: Optional[AsyncCallbackManager] = None, *, inputs: Optional[Dict[str, Any]] = None, project_name: Optional[str] = None, example_id: Optional[Union[str, UUID]] = None, run_id: Optional[UUID] = None, tags: Optional[List[str]] = None) → AsyncGenerator[AsyncCallbackManagerForChainGroup, None][source]¶ Get an async callback manager for a chain group in a context manager. Useful for grouping different async calls together as a single run even if they aren’t composed in a single chain. Parameters group_name (str) – The name of the chain group. callback_manager (AsyncCallbackManager, optional) – The async callback manager to use, which manages tracing and other callback behavior. project_name (str, optional) – The name of the project. Defaults to None. example_id (str or UUID, optional) – The ID of the example. Defaults to None. run_id (UUID, optional) – The ID of the run. tags (List[str], optional) – The inheritable tags to apply to all runs. Defaults to None. Returns The async callback manager for the chain group. Return type AsyncCallbackManager Example llm_input = "Foo" async with atrace_as_chain_group("group_name", inputs={"input": llm_input}) as manager: # Use the async callback manager for the chain group res = await llm.apredict(llm_input, callbacks=manager) await manager.on_chain_end({"output": res})
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.atrace_as_chain_group.html
1d3675216cc8-0
langchain.callbacks.arize_callback.ArizeCallbackHandler¶ class langchain.callbacks.arize_callback.ArizeCallbackHandler(model_id: Optional[str] = None, model_version: Optional[str] = None, SPACE_KEY: Optional[str] = None, API_KEY: Optional[str] = None)[source]¶ Callback Handler that logs to Arize. Initialize callback handler. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([model_id, model_version, ...]) Initialize callback handler. on_agent_action(action, **kwargs) Do nothing. on_agent_finish(finish, **kwargs) Run on agent end. on_chain_end(outputs, **kwargs) Do nothing. on_chain_error(error, **kwargs) Do nothing. on_chain_start(serialized, inputs, **kwargs) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Do nothing. on_llm_new_token(token, **kwargs) Do nothing. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...])
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.arize_callback.ArizeCallbackHandler.html
1d3675216cc8-1
on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Run on arbitrary text. on_tool_end(output[, observation_prefix, ...]) Run when tool ends running. on_tool_error(error, **kwargs) Run when tool errors. on_tool_start(serialized, input_str, **kwargs) Run when tool starts running. __init__(model_id: Optional[str] = None, model_version: Optional[str] = None, SPACE_KEY: Optional[str] = None, API_KEY: Optional[str] = None) → None[source]¶ Initialize callback handler. on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Do nothing. on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Do nothing. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.arize_callback.ArizeCallbackHandler.html
1d3675216cc8-2
Run when a chat model starts running. on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing. on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Do nothing. on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Run when LLM starts running. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, **kwargs: Any) → None[source]¶ Run on arbitrary text. on_tool_end(output: str, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶ Run when tool ends running.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.arize_callback.ArizeCallbackHandler.html
1d3675216cc8-3
Run when tool ends running. on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when tool errors. on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Run when tool starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.arize_callback.ArizeCallbackHandler.html
761351c38c66-0
langchain.callbacks.manager.AsyncCallbackManagerForChainRun¶ class langchain.callbacks.manager.AsyncCallbackManagerForChainRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Async callback manager for chain run. Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_child([tag]) Get a child callback manager. get_noop_manager() Return a manager that doesn't perform any operations. on_agent_action(action, **kwargs) Run when agent action is received. on_agent_finish(finish, **kwargs) Run when agent finish is received. on_chain_end(outputs, **kwargs) Run when chain ends running. on_chain_error(error, **kwargs) Run when chain errors. on_retry(retry_state, **kwargs) Run on a retry event.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.AsyncCallbackManagerForChainRun.html
761351c38c66-1
on_retry(retry_state, **kwargs) Run on a retry event. on_text(text, **kwargs) Run when text is received. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. get_child(tag: Optional[str] = None) → AsyncCallbackManager¶ Get a child callback manager. Parameters tag (str, optional) – The tag for the child callback manager. Defaults to None. Returns The child callback manager. Return type AsyncCallbackManager classmethod get_noop_manager() → BRM¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager async on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Run when agent action is received. Parameters action (AgentAction) – The agent action. Returns
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.AsyncCallbackManagerForChainRun.html
761351c38c66-2
Parameters action (AgentAction) – The agent action. Returns The result of the callback. Return type Any async on_agent_finish(finish: AgentFinish, **kwargs: Any) → Any[source]¶ Run when agent finish is received. Parameters finish (AgentFinish) – The agent finish. Returns The result of the callback. Return type Any async on_chain_end(outputs: Union[Dict[str, Any], Any], **kwargs: Any) → None[source]¶ Run when chain ends running. Parameters outputs (Union[Dict[str, Any], Any]) – The outputs of the chain. async on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors. Parameters error (Exception or KeyboardInterrupt) – The error. async on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶ Run on a retry event. async on_text(text: str, **kwargs: Any) → Any¶ Run when text is received. Parameters text (str) – The received text. Returns The result of the callback. Return type Any Examples using AsyncCallbackManagerForChainRun¶ Custom chain
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.AsyncCallbackManagerForChainRun.html
d23856c46eed-0
langchain.callbacks.tracers.langchain_v1.LangChainTracerV1¶ class langchain.callbacks.tracers.langchain_v1.LangChainTracerV1(**kwargs: Any)[source]¶ An implementation of the SharedTracer that POSTS to the langchain endpoint. Initialize the LangChain tracer. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__(**kwargs) Initialize the LangChain tracer. load_default_session() Load the default tracing session and set it as the Tracer's session. load_session(session_name) Load a session with the given name from the tracer. on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, inputs]) End a trace for a chain run. on_chain_error(error, *[, inputs]) Handle an error for a chain run. on_chain_start(serialized, inputs, *, run_id) Start a trace for a chain run. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, *, run_id, **kwargs) End a trace for an LLM run. on_llm_error(error, *, run_id, **kwargs) Handle an error for an LLM run.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.langchain_v1.LangChainTracerV1.html
d23856c46eed-1
Handle an error for an LLM run. on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token. on_llm_start(serialized, prompts, *, run_id) Start a trace for an LLM run. on_retriever_end(documents, *, run_id, **kwargs) Run when Retriever ends running. on_retriever_error(error, *, run_id, **kwargs) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id, **kwargs) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text. on_tool_end(output, *, run_id, **kwargs) End a trace for a tool run. on_tool_error(error, *, run_id, **kwargs) Handle an error for a tool run. on_tool_start(serialized, input_str, *, run_id) Start a trace for a tool run. __init__(**kwargs: Any) → None[source]¶ Initialize the LangChain tracer. load_default_session() → Union[TracerSessionV1, TracerSession][source]¶ Load the default tracing session and set it as the Tracer’s session. load_session(session_name: str) → Union[TracerSessionV1, TracerSession][source]¶ Load a session with the given name from the tracer. on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent action.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.langchain_v1.LangChainTracerV1.html
d23856c46eed-2
Run on agent action. on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any) → Run¶ End a trace for a chain run. on_chain_error(error: BaseException, *, inputs: Optional[Dict[str, Any]] = None, run_id: UUID, **kwargs: Any) → Run¶ Handle an error for a chain run. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, run_type: Optional[str] = None, name: Optional[str] = None, **kwargs: Any) → Run¶ Start a trace for a chain run. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, *, run_id: UUID, **kwargs: Any) → Run¶ End a trace for an LLM run. on_llm_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶ Handle an error for an LLM run.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.langchain_v1.LangChainTracerV1.html
d23856c46eed-3
Handle an error for an LLM run. on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Run¶ Run on new LLM token. Only available when streaming is enabled. on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶ Start a trace for an LLM run. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, **kwargs: Any) → Run¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, **kwargs: Any) → Run¶ Run on a retry event. on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on arbitrary text. on_tool_end(output: str, *, run_id: UUID, **kwargs: Any) → Run¶
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.langchain_v1.LangChainTracerV1.html
d23856c46eed-4
End a trace for a tool run. on_tool_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶ Handle an error for a tool run. on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶ Start a trace for a tool run.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.langchain_v1.LangChainTracerV1.html
28615a82690c-0
langchain.callbacks.tracers.schemas.TracerSessionV1Create¶ class langchain.callbacks.tracers.schemas.TracerSessionV1Create[source]¶ Bases: TracerSessionV1Base Create class for TracerSessionV1. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param extra: Optional[Dict[str, Any]] = None¶ param name: Optional[str] = None¶ param start_time: datetime.datetime [Optional]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.TracerSessionV1Create.html
28615a82690c-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.TracerSessionV1Create.html
28615a82690c-2
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.TracerSessionV1Create.html
9e88d38ec872-0
langchain.callbacks.manager.CallbackManagerForLLMRun¶ class langchain.callbacks.manager.CallbackManagerForLLMRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Callback manager for LLM run. Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_noop_manager() Return a manager that doesn't perform any operations. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Run when LLM errors. on_llm_new_token(token, *[, chunk]) Run when LLM generates a new token. on_retry(retry_state, **kwargs) Run on a retry event. on_text(text, **kwargs) Run when text is received.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.CallbackManagerForLLMRun.html
9e88d38ec872-1
on_text(text, **kwargs) Run when text is received. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. classmethod get_noop_manager() → BRM¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. Parameters response (LLMResult) – The LLM result. on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when LLM errors. Parameters error (Exception or KeyboardInterrupt) – The error. on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, **kwargs: Any) → None[source]¶
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.CallbackManagerForLLMRun.html
9e88d38ec872-2
Run when LLM generates a new token. Parameters token (str) – The new token. on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶ Run on a retry event. on_text(text: str, **kwargs: Any) → Any¶ Run when text is received. Parameters text (str) – The received text. Returns The result of the callback. Return type Any Examples using CallbackManagerForLLMRun¶ Custom LLM
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.CallbackManagerForLLMRun.html
c725813e6c0a-0
langchain.callbacks.comet_ml_callback.CometCallbackHandler¶ class langchain.callbacks.comet_ml_callback.CometCallbackHandler(task_type: Optional[str] = 'inference', workspace: Optional[str] = None, project_name: Optional[str] = None, tags: Optional[Sequence] = None, name: Optional[str] = None, visualizations: Optional[List[str]] = None, complexity_metrics: bool = False, custom_metrics: Optional[Callable] = None, stream_logs: bool = True)[source]¶ Callback Handler that logs to Comet. Parameters job_type (str) – The type of comet_ml task such as “inference”, “testing” or “qc” project_name (str) – The comet_ml project name tags (list) – Tags to add to the task task_name (str) – Name of the comet_ml task visualize (bool) – Whether to visualize the run. complexity_metrics (bool) – Whether to log complexity metrics stream_logs (bool) – Whether to stream callback actions to Comet This handler will utilize the associated callback method and formats the input of each callback function with metadata regarding the state of LLM run, and adds the response to the list of records for both the {method}_records and action. It then logs the response to Comet. Initialize callback handler. Attributes always_verbose Whether to call verbose callbacks even if verbose is False. ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([task_type, workspace, ...]) Initialize callback handler.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.comet_ml_callback.CometCallbackHandler.html
c725813e6c0a-1
__init__([task_type, workspace, ...]) Initialize callback handler. flush_tracker([langchain_asset, task_type, ...]) Flush the tracker and setup the session. get_custom_callback_meta() on_agent_action(action, **kwargs) Run on agent action. on_agent_finish(finish, **kwargs) Run when agent ends running. on_chain_end(outputs, **kwargs) Run when chain ends running. on_chain_error(error, **kwargs) Run when chain errors. on_chain_start(serialized, inputs, **kwargs) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Run when LLM errors. on_llm_new_token(token, **kwargs) Run when LLM generates a new token. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Run when agent is ending. on_tool_end(output, **kwargs) Run when tool ends running. on_tool_error(error, **kwargs) Run when tool errors.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.comet_ml_callback.CometCallbackHandler.html
c725813e6c0a-2
on_tool_error(error, **kwargs) Run when tool errors. on_tool_start(serialized, input_str, **kwargs) Run when tool starts running. reset_callback_meta() Reset the callback metadata. __init__(task_type: Optional[str] = 'inference', workspace: Optional[str] = None, project_name: Optional[str] = None, tags: Optional[Sequence] = None, name: Optional[str] = None, visualizations: Optional[List[str]] = None, complexity_metrics: bool = False, custom_metrics: Optional[Callable] = None, stream_logs: bool = True) → None[source]¶ Initialize callback handler. flush_tracker(langchain_asset: Any = None, task_type: Optional[str] = 'inference', workspace: Optional[str] = None, project_name: Optional[str] = 'comet-langchain-demo', tags: Optional[Sequence] = None, name: Optional[str] = None, visualizations: Optional[List[str]] = None, complexity_metrics: bool = False, custom_metrics: Optional[Callable] = None, finish: bool = False, reset: bool = False) → None[source]¶ Flush the tracker and setup the session. Everything after this will be a new table. Parameters name – Name of the performed session so far so it is identifiable langchain_asset – The langchain asset to save. finish – Whether to finish the run. Returns – None get_custom_callback_meta() → Dict[str, Any]¶ on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Run on agent action. on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Run when agent ends running. on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain ends running.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.comet_ml_callback.CometCallbackHandler.html
c725813e6c0a-3
Run when chain ends running. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when LLM errors. on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Run when LLM generates a new token. on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Run when LLM starts. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.comet_ml_callback.CometCallbackHandler.html
c725813e6c0a-4
Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, **kwargs: Any) → None[source]¶ Run when agent is ending. on_tool_end(output: str, **kwargs: Any) → None[source]¶ Run when tool ends running. on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when tool errors. on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Run when tool starts running. reset_callback_meta() → None¶ Reset the callback metadata. Examples using CometCallbackHandler¶ Comet
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.comet_ml_callback.CometCallbackHandler.html
5feba09b3db7-0
langchain.callbacks.utils.load_json¶ langchain.callbacks.utils.load_json(json_path: Union[str, Path]) → str[source]¶ Load json file to a string. Parameters json_path (str) – The path to the json file. Returns The string representation of the json file. Return type (str)
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.utils.load_json.html
83c39e0c5bf7-0
langchain.callbacks.flyte_callback.analyze_text¶ langchain.callbacks.flyte_callback.analyze_text(text: str, nlp: Any = None, textstat: Any = None) → dict[source]¶ Analyze text using textstat and spacy. Parameters text (str) – The text to analyze. nlp (spacy.lang) – The spacy language model to use for visualization. Returns A dictionary containing the complexity metrics and visualizationfiles serialized to HTML string. Return type (dict)
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.flyte_callback.analyze_text.html
b9bc65821bb6-0
langchain.callbacks.wandb_callback.load_json_to_dict¶ langchain.callbacks.wandb_callback.load_json_to_dict(json_path: Union[str, Path]) → dict[source]¶ Load json file to a dictionary. Parameters json_path (str) – The path to the json file. Returns The dictionary representation of the json file. Return type (dict)
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.wandb_callback.load_json_to_dict.html
744b7a868c12-0
langchain.callbacks.tracers.log_stream.LogEntry¶ class langchain.callbacks.tracers.log_stream.LogEntry[source]¶ id: str¶ ID of the sub-run. name: str¶ Name of the object being run. type: str¶ Type of the object being run, eg. prompt, chain, llm, etc. tags: List[str]¶ List of tags for the run. metadata: Dict[str, Any]¶ Key-value pairs of metadata for the run. start_time: str¶ ISO-8601 timestamp of when the run started. streamed_output_str: List[str]¶ List of LLM tokens streamed by this run, if applicable. final_output: Optional[Any]¶ Final output of this run. Only available after the run has finished successfully. end_time: Optional[str]¶ ISO-8601 timestamp of when the run ended. Only available after the run has finished.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.log_stream.LogEntry.html
0d33bd0312fd-0
langchain.callbacks.tracers.schemas.TracerSession¶ class langchain.callbacks.tracers.schemas.TracerSession[source]¶ Bases: TracerSessionBase TracerSessionV1 schema for the V2 API. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param extra: Optional[Dict[str, Any]] = None¶ param id: uuid.UUID [Required]¶ param name: Optional[str] = None¶ param start_time: datetime.datetime [Optional]¶ param tenant_id: uuid.UUID [Required]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.TracerSession.html
0d33bd0312fd-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.TracerSession.html
0d33bd0312fd-2
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.TracerSession.html
1e7567681a53-0
langchain.callbacks.tracers.log_stream.RunLogPatch¶ class langchain.callbacks.tracers.log_stream.RunLogPatch(*ops: Dict[str, Any])[source]¶ Attributes ops List of jsonpatch operations, which describe how to create the run state from an empty dict. Methods __init__(*ops) __init__(*ops: Dict[str, Any]) → None[source]¶
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.log_stream.RunLogPatch.html
6c0b0f59be72-0
langchain.callbacks.streamlit.mutable_expander.ChildRecord¶ class langchain.callbacks.streamlit.mutable_expander.ChildRecord(type: ChildType, kwargs: Dict[str, Any], dg: DeltaGenerator)[source]¶ The child record as a NamedTuple. Create new instance of ChildRecord(type, kwargs, dg) Attributes dg Alias for field number 2 kwargs Alias for field number 1 type Alias for field number 0 Methods __init__() count(value, /) Return number of occurrences of value. index(value[, start, stop]) Return first index of value. __init__()¶ count(value, /)¶ Return number of occurrences of value. index(value, start=0, stop=9223372036854775807, /)¶ Return first index of value. Raises ValueError if the value is not present.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streamlit.mutable_expander.ChildRecord.html
cfea44c36aee-0
langchain.callbacks.manager.BaseRunManager¶ class langchain.callbacks.manager.BaseRunManager(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Base class for run manager (a bound callback manager). Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_noop_manager() Return a manager that doesn't perform any operations. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.BaseRunManager.html
cfea44c36aee-1
Run on arbitrary text. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None[source]¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. classmethod get_noop_manager() → BRM[source]¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on arbitrary text.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.BaseRunManager.html
d9309f57a2fb-0
langchain.callbacks.base.RunManagerMixin¶ class langchain.callbacks.base.RunManagerMixin[source]¶ Mixin for run manager. Methods __init__() on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text. __init__()¶ on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run on a retry event. on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run on arbitrary text.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.base.RunManagerMixin.html
d976559f47fd-0
langchain.callbacks.tracers.stdout.ConsoleCallbackHandler¶ class langchain.callbacks.tracers.stdout.ConsoleCallbackHandler(**kwargs: Any)[source]¶ Tracer that prints to the console. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. name raise_error run_inline Methods __init__(**kwargs) get_breadcrumbs(run) get_parents(run) on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, inputs]) End a trace for a chain run. on_chain_error(error, *[, inputs]) Handle an error for a chain run. on_chain_start(serialized, inputs, *, run_id) Start a trace for a chain run. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, *, run_id, **kwargs) End a trace for an LLM run. on_llm_error(error, *, run_id, **kwargs) Handle an error for an LLM run. on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token. on_llm_start(serialized, prompts, *, run_id) Start a trace for an LLM run. on_retriever_end(documents, *, run_id, **kwargs)
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.stdout.ConsoleCallbackHandler.html
d976559f47fd-1
on_retriever_end(documents, *, run_id, **kwargs) Run when Retriever ends running. on_retriever_error(error, *, run_id, **kwargs) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id, **kwargs) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text. on_tool_end(output, *, run_id, **kwargs) End a trace for a tool run. on_tool_error(error, *, run_id, **kwargs) Handle an error for a tool run. on_tool_start(serialized, input_str, *, run_id) Start a trace for a tool run. __init__(**kwargs: Any) → None[source]¶ get_breadcrumbs(run: Run) → str¶ get_parents(run: Run) → List[Run]¶ on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent action. on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any) → Run¶ End a trace for a chain run.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.stdout.ConsoleCallbackHandler.html
d976559f47fd-2
End a trace for a chain run. on_chain_error(error: BaseException, *, inputs: Optional[Dict[str, Any]] = None, run_id: UUID, **kwargs: Any) → Run¶ Handle an error for a chain run. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, run_type: Optional[str] = None, name: Optional[str] = None, **kwargs: Any) → Run¶ Start a trace for a chain run. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, *, run_id: UUID, **kwargs: Any) → Run¶ End a trace for an LLM run. on_llm_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶ Handle an error for an LLM run. on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Run¶ Run on new LLM token. Only available when streaming is enabled.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.stdout.ConsoleCallbackHandler.html
d976559f47fd-3
Run on new LLM token. Only available when streaming is enabled. on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶ Start a trace for an LLM run. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, **kwargs: Any) → Run¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, **kwargs: Any) → Run¶ Run on a retry event. on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on arbitrary text. on_tool_end(output: str, *, run_id: UUID, **kwargs: Any) → Run¶ End a trace for a tool run. on_tool_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶ Handle an error for a tool run.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.stdout.ConsoleCallbackHandler.html
d976559f47fd-4
Handle an error for a tool run. on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶ Start a trace for a tool run.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.stdout.ConsoleCallbackHandler.html
8938cb6ce0a4-0
langchain.callbacks.manager.AsyncParentRunManager¶ class langchain.callbacks.manager.AsyncParentRunManager(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Async Parent Run Manager. Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_child([tag]) Get a child callback manager. get_noop_manager() Return a manager that doesn't perform any operations. on_retry(retry_state, **kwargs) Run on a retry event. on_text(text, **kwargs) Run when text is received.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.AsyncParentRunManager.html
8938cb6ce0a4-1
on_text(text, **kwargs) Run when text is received. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. get_child(tag: Optional[str] = None) → AsyncCallbackManager[source]¶ Get a child callback manager. Parameters tag (str, optional) – The tag for the child callback manager. Defaults to None. Returns The child callback manager. Return type AsyncCallbackManager classmethod get_noop_manager() → BRM¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager async on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶ Run on a retry event. async on_text(text: str, **kwargs: Any) → Any¶ Run when text is received. Parameters
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.AsyncParentRunManager.html
8938cb6ce0a4-2
Run when text is received. Parameters text (str) – The received text. Returns The result of the callback. Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.AsyncParentRunManager.html
7e8b7e83aa0e-0
langchain.callbacks.base.CallbackManagerMixin¶ class langchain.callbacks.base.CallbackManagerMixin[source]¶ Mixin for callback manager. Methods __init__() on_chain_start(serialized, inputs, *, run_id) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_start(serialized, prompts, *, run_id) Run when LLM starts running. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. __init__()¶ on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶ Run when a chat model starts running. on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶ Run when LLM starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.base.CallbackManagerMixin.html
7e8b7e83aa0e-1
Run when LLM starts running. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶ Run when Retriever starts running. on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶ Run when tool starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.base.CallbackManagerMixin.html
54f446681bce-0
langchain.callbacks.manager.CallbackManager¶ class langchain.callbacks.manager.CallbackManager(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Callback manager that handles callbacks from langchain. Initialize callback manager. Attributes is_async Whether the callback manager is async. Methods __init__(handlers[, inheritable_handlers, ...]) Initialize callback manager. add_handler(handler[, inherit]) Add a handler to the callback manager. add_metadata(metadata[, inherit]) add_tags(tags[, inherit]) configure([inheritable_callbacks, ...]) Configure the callback manager. copy() Copy the callback manager. on_chain_start(serialized, inputs[, run_id]) Run when chain starts running. on_chat_model_start(serialized, messages, ...) Run when LLM starts running. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts running. on_retriever_start(serialized, query[, ...]) Run when retriever starts running. on_tool_start(serialized, input_str[, ...]) Run when tool starts running. remove_handler(handler) Remove a handler from the callback manager. remove_metadata(keys) remove_tags(tags) set_handler(handler[, inherit]) Set handler as the only handler on the callback manager. set_handlers(handlers[, inherit]) Set handlers as the only handlers on the callback manager.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.CallbackManager.html
54f446681bce-1
Set handlers as the only handlers on the callback manager. __init__(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize callback manager. add_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶ Add a handler to the callback manager. add_metadata(metadata: Dict[str, Any], inherit: bool = True) → None¶ add_tags(tags: List[str], inherit: bool = True) → None¶ classmethod configure(inheritable_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, local_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, verbose: bool = False, inheritable_tags: Optional[List[str]] = None, local_tags: Optional[List[str]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None, local_metadata: Optional[Dict[str, Any]] = None) → CallbackManager[source]¶ Configure the callback manager. Parameters inheritable_callbacks (Optional[Callbacks], optional) – The inheritable callbacks. Defaults to None. local_callbacks (Optional[Callbacks], optional) – The local callbacks. Defaults to None. verbose (bool, optional) – Whether to enable verbose mode. Defaults to False. inheritable_tags (Optional[List[str]], optional) – The inheritable tags. Defaults to None. local_tags (Optional[List[str]], optional) – The local tags. Defaults to None. inheritable_metadata (Optional[Dict[str, Any]], optional) – The inheritable
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.CallbackManager.html
54f446681bce-2
inheritable_metadata (Optional[Dict[str, Any]], optional) – The inheritable metadata. Defaults to None. local_metadata (Optional[Dict[str, Any]], optional) – The local metadata. Defaults to None. Returns The configured callback manager. Return type CallbackManager copy() → T¶ Copy the callback manager. on_chain_start(serialized: Dict[str, Any], inputs: Union[Dict[str, Any], Any], run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForChainRun[source]¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – The serialized chain. inputs (Union[Dict[str, Any], Any]) – The inputs to the chain. run_id (UUID, optional) – The ID of the run. Defaults to None. Returns The callback manager for the chain run. Return type CallbackManagerForChainRun on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) → List[CallbackManagerForLLMRun][source]¶ Run when LLM starts running. Parameters serialized (Dict[str, Any]) – The serialized LLM. messages (List[List[BaseMessage]]) – The list of messages. run_id (UUID, optional) – The ID of the run. Defaults to None. Returns A callback manager for eachlist of messages as an LLM run. Return type List[CallbackManagerForLLMRun] on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → List[CallbackManagerForLLMRun][source]¶ Run when LLM starts running. Parameters serialized (Dict[str, Any]) – The serialized LLM.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.CallbackManager.html
54f446681bce-3
Parameters serialized (Dict[str, Any]) – The serialized LLM. prompts (List[str]) – The list of prompts. run_id (UUID, optional) – The ID of the run. Defaults to None. Returns A callback manager for eachprompt as an LLM run. Return type List[CallbackManagerForLLMRun] on_retriever_start(serialized: Dict[str, Any], query: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForRetrieverRun[source]¶ Run when retriever starts running. on_tool_start(serialized: Dict[str, Any], input_str: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForToolRun[source]¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – The serialized tool. input_str (str) – The input to the tool. run_id (UUID, optional) – The ID of the run. Defaults to None. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. Returns The callback manager for the tool run. Return type CallbackManagerForToolRun remove_handler(handler: BaseCallbackHandler) → None¶ Remove a handler from the callback manager. remove_metadata(keys: List[str]) → None¶ remove_tags(tags: List[str]) → None¶ set_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶ Set handler as the only handler on the callback manager. set_handlers(handlers: List[BaseCallbackHandler], inherit: bool = True) → None¶ Set handlers as the only handlers on the callback manager. Examples using CallbackManager¶
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.CallbackManager.html
54f446681bce-4
Set handlers as the only handlers on the callback manager. Examples using CallbackManager¶ Anthropic 🚅 LiteLLM Ollama Llama.cpp Titan Takeoff Run LLMs locally Set env var OPENAI_API_KEY or load from a .env file Use local LLMs WebResearchRetriever
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.CallbackManager.html
145971ac2aeb-0
langchain.callbacks.streamlit.streamlit_callback_handler.ToolRecord¶ class langchain.callbacks.streamlit.streamlit_callback_handler.ToolRecord(name: str, input_str: str)[source]¶ The tool record as a NamedTuple. Create new instance of ToolRecord(name, input_str) Attributes input_str Alias for field number 1 name Alias for field number 0 Methods __init__() count(value, /) Return number of occurrences of value. index(value[, start, stop]) Return first index of value. __init__()¶ count(value, /)¶ Return number of occurrences of value. index(value, start=0, stop=9223372036854775807, /)¶ Return first index of value. Raises ValueError if the value is not present.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streamlit.streamlit_callback_handler.ToolRecord.html
5a6c1e52bc98-0
langchain.callbacks.flyte_callback.import_flytekit¶ langchain.callbacks.flyte_callback.import_flytekit() → Tuple[flytekit, renderer][source]¶ Import flytekit and flytekitplugins-deck-standard.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.flyte_callback.import_flytekit.html
268a825a47ff-0
langchain.callbacks.wandb_callback.analyze_text¶ langchain.callbacks.wandb_callback.analyze_text(text: str, complexity_metrics: bool = True, visualize: bool = True, nlp: Any = None, output_dir: Optional[Union[str, Path]] = None) → dict[source]¶ Analyze text using textstat and spacy. Parameters text (str) – The text to analyze. complexity_metrics (bool) – Whether to compute complexity metrics. visualize (bool) – Whether to visualize the text. nlp (spacy.lang) – The spacy language model to use for visualization. output_dir (str) – The directory to save the visualization files to. Returns A dictionary containing the complexity metrics and visualizationfiles serialized in a wandb.Html element. Return type (dict)
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.wandb_callback.analyze_text.html
207d303408e1-0
langchain.callbacks.wandb_callback.import_wandb¶ langchain.callbacks.wandb_callback.import_wandb() → Any[source]¶ Import the wandb python package and raise an error if it is not installed.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.wandb_callback.import_wandb.html
527d9ab70ed7-0
langchain.callbacks.tracers.schemas.TracerSessionV1Base¶ class langchain.callbacks.tracers.schemas.TracerSessionV1Base[source]¶ Bases: BaseModel Base class for TracerSessionV1. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param extra: Optional[Dict[str, Any]] = None¶ param name: Optional[str] = None¶ param start_time: datetime.datetime [Optional]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.TracerSessionV1Base.html
527d9ab70ed7-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.TracerSessionV1Base.html
527d9ab70ed7-2
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.TracerSessionV1Base.html
a75d79c61852-0
langchain.callbacks.stdout.StdOutCallbackHandler¶ class langchain.callbacks.stdout.StdOutCallbackHandler(color: Optional[str] = None)[source]¶ Callback Handler that prints to std out. Initialize callback handler. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([color]) Initialize callback handler. on_agent_action(action[, color]) Run on agent action. on_agent_finish(finish[, color]) Run on agent end. on_chain_end(outputs, **kwargs) Print out that we finished a chain. on_chain_error(error, **kwargs) Do nothing. on_chain_start(serialized, inputs, **kwargs) Print out that we are entering a chain. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Do nothing. on_llm_error(error, **kwargs) Do nothing. on_llm_new_token(token, **kwargs) Do nothing. on_llm_start(serialized, prompts, **kwargs) Print out the prompts. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.stdout.StdOutCallbackHandler.html
a75d79c61852-1
Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text[, color, end]) Run when agent ends. on_tool_end(output[, color, ...]) If not the final action, print out observation. on_tool_error(error, **kwargs) Do nothing. on_tool_start(serialized, input_str, **kwargs) Do nothing. __init__(color: Optional[str] = None) → None[source]¶ Initialize callback handler. on_agent_action(action: AgentAction, color: Optional[str] = None, **kwargs: Any) → Any[source]¶ Run on agent action. on_agent_finish(finish: AgentFinish, color: Optional[str] = None, **kwargs: Any) → None[source]¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Print out that we finished a chain. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Print out that we are entering a chain. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Do nothing.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.stdout.StdOutCallbackHandler.html
a75d79c61852-2
Do nothing. on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing. on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Do nothing. on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Print out the prompts. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, color: Optional[str] = None, end: str = '', **kwargs: Any) → None[source]¶ Run when agent ends. on_tool_end(output: str, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶ If not the final action, print out observation.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.stdout.StdOutCallbackHandler.html
a75d79c61852-3
If not the final action, print out observation. on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing. on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Do nothing. Examples using StdOutCallbackHandler¶ Argilla Comet Aim Weights & Biases ClearML OpaquePrompts Vector SQL Retriever with MyScale Async API Custom chain
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.stdout.StdOutCallbackHandler.html
ee3ef35b10f0-0
langchain.callbacks.openai_info.standardize_model_name¶ langchain.callbacks.openai_info.standardize_model_name(model_name: str, is_completion: bool = False) → str[source]¶ Standardize the model name to a format that can be used in the OpenAI API. Parameters model_name – Model name to standardize. is_completion – Whether the model is used for completion or not. Defaults to False. Returns Standardized model name.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.standardize_model_name.html
f6c082232197-0
langchain.callbacks.manager.wandb_tracing_enabled¶ langchain.callbacks.manager.wandb_tracing_enabled(session_name: str = 'default') → Generator[None, None, None][source]¶ Get the WandbTracer in a context manager. Parameters session_name (str, optional) – The name of the session. Defaults to “default”. Returns None Example >>> with wandb_tracing_enabled() as session: ... # Use the WandbTracer session Examples using wandb_tracing_enabled¶ WandB Tracing
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.wandb_tracing_enabled.html
6dbd5bb10488-0
langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler¶ class langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler[source]¶ Callback handler that returns an async iterator. Attributes always_verbose ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline queue done Methods __init__() aiter() on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, ...]) Run when chain ends running. on_chain_error(error, *, run_id[, ...]) Run when chain errors. on_chain_start(serialized, inputs, *, run_id) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Run when LLM errors. on_llm_new_token(token, **kwargs) Run on new LLM token. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run on retriever end. on_retriever_error(error, *, run_id[, ...]) Run on retriever error.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html