file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
HyE.HCCA2.fst
HyE.HCCA2.keygen
val keygen: parent:C.rid{HyperStack.ST.witnessed (region_contains_pred parent)} -> ML (pkey * skey)
val keygen: parent:C.rid{HyperStack.ST.witnessed (region_contains_pred parent)} -> ML (pkey * skey)
let keygen parent = let cca_pk, cca_sk = C.keygen parent in let region = new_region parent in let pkey = PKey #region (C.access_pk_raw cca_pk) cca_pk in pkey, SKey cca_sk pkey
{ "file_name": "examples/crypto/HyE.HCCA2.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 24, "end_line": 46, "start_col": 0, "start_line": 42 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module HyE.HCCA2 open FStar.HyperStack.All open FStar.HyperStack.ST open HyE.Plain open HyE.PlainPKE open Platform.Bytes open FStar.HyperStack module B = Platform.Bytes module P = HyE.Plain module C = HyE.CCA2 module A = HyE.AE module RSA = HyE.RSA (* we idealize first CCA2, then AE *) noeq type pkey = | PKey: #region:C.rid{HyperStack.ST.witnessed (region_contains_pred region)} -> rawpk:RSA.pkey -> cca_pk:C.pkey -> pkey let access_pkraw (pk:pkey) = PKey?.rawpk pk noeq type skey = | SKey: cca_sk:C.skey -> pk:pkey -> skey
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Platform.Bytes.fst.checked", "HyE.RSA.fst.checked", "HyE.PlainPKE.fst.checked", "HyE.Plain.fsti.checked", "HyE.CCA2.fsti.checked", "HyE.AE.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "HyE.HCCA2.fst" }
[ { "abbrev": true, "full_module": "HyE.RSA", "short_module": "RSA" }, { "abbrev": true, "full_module": "HyE.AE", "short_module": "A" }, { "abbrev": true, "full_module": "HyE.CCA2", "short_module": "C" }, { "abbrev": true, "full_module": "HyE.Plain", "short_module": "P" }, { "abbrev": true, "full_module": "Platform.Bytes", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Platform.Bytes", "short_module": null }, { "abbrev": false, "full_module": "HyE.PlainPKE", "short_module": null }, { "abbrev": false, "full_module": "HyE.Plain", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "HyE", "short_module": null }, { "abbrev": false, "full_module": "HyE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
parent: HyE.CCA2.rid{FStar.HyperStack.ST.witnessed (FStar.HyperStack.ST.region_contains_pred parent)} -> FStar.HyperStack.All.ML (HyE.HCCA2.pkey * HyE.HCCA2.skey)
FStar.HyperStack.All.ML
[]
[]
[ "HyE.CCA2.rid", "FStar.HyperStack.ST.witnessed", "FStar.HyperStack.ST.region_contains_pred", "HyE.CCA2.pkey", "HyE.CCA2.skey", "FStar.Pervasives.Native.Mktuple2", "HyE.HCCA2.pkey", "HyE.HCCA2.skey", "HyE.HCCA2.SKey", "HyE.HCCA2.PKey", "HyE.CCA2.access_pk_raw", "FStar.Pervasives.Native.tuple2", "FStar.Monotonic.HyperHeap.rid", "FStar.HyperStack.ST.new_region", "HyE.CCA2.keygen" ]
[]
false
true
false
false
false
let keygen parent =
let cca_pk, cca_sk = C.keygen parent in let region = new_region parent in let pkey = PKey #region (C.access_pk_raw cca_pk) cca_pk in pkey, SKey cca_sk pkey
false
HyE.HCCA2.fst
HyE.HCCA2.encrypt
val encrypt: pkey -> p -> ML c
val encrypt: pkey -> p -> ML c
let encrypt pk t = let region = new_region pk.region in let k = A.keygen region in ((C.encrypt pk.cca_pk k) ,(A.encrypt k t))
{ "file_name": "examples/crypto/HyE.HCCA2.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 44, "end_line": 51, "start_col": 0, "start_line": 48 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module HyE.HCCA2 open FStar.HyperStack.All open FStar.HyperStack.ST open HyE.Plain open HyE.PlainPKE open Platform.Bytes open FStar.HyperStack module B = Platform.Bytes module P = HyE.Plain module C = HyE.CCA2 module A = HyE.AE module RSA = HyE.RSA (* we idealize first CCA2, then AE *) noeq type pkey = | PKey: #region:C.rid{HyperStack.ST.witnessed (region_contains_pred region)} -> rawpk:RSA.pkey -> cca_pk:C.pkey -> pkey let access_pkraw (pk:pkey) = PKey?.rawpk pk noeq type skey = | SKey: cca_sk:C.skey -> pk:pkey -> skey let keygen parent = let cca_pk, cca_sk = C.keygen parent in let region = new_region parent in let pkey = PKey #region (C.access_pk_raw cca_pk) cca_pk in pkey, SKey cca_sk pkey
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Platform.Bytes.fst.checked", "HyE.RSA.fst.checked", "HyE.PlainPKE.fst.checked", "HyE.Plain.fsti.checked", "HyE.CCA2.fsti.checked", "HyE.AE.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "HyE.HCCA2.fst" }
[ { "abbrev": true, "full_module": "HyE.RSA", "short_module": "RSA" }, { "abbrev": true, "full_module": "HyE.AE", "short_module": "A" }, { "abbrev": true, "full_module": "HyE.CCA2", "short_module": "C" }, { "abbrev": true, "full_module": "HyE.Plain", "short_module": "P" }, { "abbrev": true, "full_module": "Platform.Bytes", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Platform.Bytes", "short_module": null }, { "abbrev": false, "full_module": "HyE.PlainPKE", "short_module": null }, { "abbrev": false, "full_module": "HyE.Plain", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "HyE", "short_module": null }, { "abbrev": false, "full_module": "HyE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
pk: HyE.HCCA2.pkey -> t: HyE.HCCA2.p -> FStar.HyperStack.All.ML HyE.HCCA2.c
FStar.HyperStack.All.ML
[]
[]
[ "HyE.HCCA2.pkey", "HyE.HCCA2.p", "FStar.Pervasives.Native.Mktuple2", "HyE.CCA2.cipher", "HyE.AE.cipher", "HyE.HCCA2.c", "HyE.AE.encrypt", "HyE.CCA2.encrypt", "HyE.HCCA2.__proj__PKey__item__cca_pk", "HyE.RSA.cipher", "HyE.AE.key", "HyE.AE.keygen", "FStar.Monotonic.HyperHeap.rid", "FStar.HyperStack.ST.new_region", "HyE.HCCA2.__proj__PKey__item__region" ]
[]
false
true
false
false
false
let encrypt pk t =
let region = new_region pk.region in let k = A.keygen region in ((C.encrypt pk.cca_pk k), (A.encrypt k t))
false
GlobalEnv.fst
GlobalEnv.default_probe_fn
val default_probe_fn (g: global_env) : ML (option ident)
val default_probe_fn (g: global_env) : ML (option ident)
let default_probe_fn (g:global_env) : ML (option ident) = if H.length g.ge_probe_fn <> 1 then None else ( match H.fold (fun k v _ -> Some v) g.ge_probe_fn (None #decl) with | Some {d_decl={v=ExternProbe id}} -> Some id | _ -> None )
{ "file_name": "src/3d/GlobalEnv.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 91, "start_col": 0, "start_line": 83 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain as copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module GlobalEnv (* This module implements a pass over the source AST -- checking that all names are properly bound -- well-typed -- computing the size of types -- computing which fields are dependent on others *) open FStar.Mul open FStar.List.Tot open Ast open FStar.All module H = Hashtable /// Computed attributes for a decl: /// -- its size in bytes /// -- whether or not it ends with a variable-length field (suffix) /// -- whether or not its validator may fail /// -- whether the type is an integral type, i.e., can it be decomposed into bitfields type decl_attributes = { may_fail:bool; integral:option integer_type; bit_order: (bit_order: option bitfield_bit_order { Some? bit_order ==> Some? integral }); has_reader:bool; parser_weak_kind:weak_kind; parser_kind_nz:option bool } noeq type macro_signature = { macro_arguments_t: list typ; macro_result_t: typ; macro_defn_t:option expr } let nullary_macro t d = { macro_arguments_t = []; macro_result_t = t; macro_defn_t = d } (* Type-checking environments *) /// global_env ge_h field is a hash (hence `_h`) table that: /// -- maps top-level identifiers to their corresponding declaration /// -- maps type identifiers to decl_attributes /// -- maps macro names to their types /// /// global_env ge_fd field maps a unique numerical identifier to each /// "struct identifier - field (hence `_fd`) name" pair. It is part of /// the global environment so that numerical field identifiers are /// proper to the current module, and not shared across different .3d /// files given on the command line type global_hash_t = H.t ident' (decl & either decl_attributes macro_signature) noeq type global_env = { ge_h: global_hash_t; ge_out_t: H.t ident' decl; //a table for output types declarations ge_extern_t: H.t ident' decl; //a table for extern type declarations ge_extern_fn: H.t ident' decl; //a table for extern function declarations ge_probe_fn: H.t ident' decl; //a table for probe function declarations ge_cfg: option (Config.config & string) }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Hashtable.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.All.fst.checked", "Config.fst.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "GlobalEnv.fst" }
[ { "abbrev": true, "full_module": "Hashtable", "short_module": "H" }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: GlobalEnv.global_env -> FStar.All.ML (FStar.Pervasives.Native.option Ast.ident)
FStar.All.ML
[ "ml" ]
[]
[ "GlobalEnv.global_env", "FStar.Pervasives.Native.None", "Ast.ident", "FStar.Pervasives.Native.option", "Prims.bool", "Ast.range", "Ast.comments", "FStar.Pervasives.Native.Some", "Ast.decl", "Hashtable.fold", "Ast.ident'", "GlobalEnv.__proj__Mkglobal_env__item__ge_probe_fn", "Prims.op_disEquality", "Prims.int", "Hashtable.length" ]
[]
false
true
false
false
false
let default_probe_fn (g: global_env) : ML (option ident) =
if H.length g.ge_probe_fn <> 1 then None else (match H.fold (fun k v _ -> Some v) g.ge_probe_fn (None #decl) with | Some { d_decl = { v = ExternProbe id } } -> Some id | _ -> None)
false
GlobalEnv.fst
GlobalEnv.resolve_probe_fn
val resolve_probe_fn (g: global_env) (id: ident) : ML (option ident)
val resolve_probe_fn (g: global_env) (id: ident) : ML (option ident)
let resolve_probe_fn (g:global_env) (id:ident) : ML (option ident) = match H.try_find g.ge_probe_fn id.v with | Some {d_decl={v=ExternProbe id}} -> Some id | _ -> None
{ "file_name": "src/3d/GlobalEnv.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 15, "end_line": 97, "start_col": 0, "start_line": 93 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain as copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module GlobalEnv (* This module implements a pass over the source AST -- checking that all names are properly bound -- well-typed -- computing the size of types -- computing which fields are dependent on others *) open FStar.Mul open FStar.List.Tot open Ast open FStar.All module H = Hashtable /// Computed attributes for a decl: /// -- its size in bytes /// -- whether or not it ends with a variable-length field (suffix) /// -- whether or not its validator may fail /// -- whether the type is an integral type, i.e., can it be decomposed into bitfields type decl_attributes = { may_fail:bool; integral:option integer_type; bit_order: (bit_order: option bitfield_bit_order { Some? bit_order ==> Some? integral }); has_reader:bool; parser_weak_kind:weak_kind; parser_kind_nz:option bool } noeq type macro_signature = { macro_arguments_t: list typ; macro_result_t: typ; macro_defn_t:option expr } let nullary_macro t d = { macro_arguments_t = []; macro_result_t = t; macro_defn_t = d } (* Type-checking environments *) /// global_env ge_h field is a hash (hence `_h`) table that: /// -- maps top-level identifiers to their corresponding declaration /// -- maps type identifiers to decl_attributes /// -- maps macro names to their types /// /// global_env ge_fd field maps a unique numerical identifier to each /// "struct identifier - field (hence `_fd`) name" pair. It is part of /// the global environment so that numerical field identifiers are /// proper to the current module, and not shared across different .3d /// files given on the command line type global_hash_t = H.t ident' (decl & either decl_attributes macro_signature) noeq type global_env = { ge_h: global_hash_t; ge_out_t: H.t ident' decl; //a table for output types declarations ge_extern_t: H.t ident' decl; //a table for extern type declarations ge_extern_fn: H.t ident' decl; //a table for extern function declarations ge_probe_fn: H.t ident' decl; //a table for probe function declarations ge_cfg: option (Config.config & string) } let default_probe_fn (g:global_env) : ML (option ident) = if H.length g.ge_probe_fn <> 1 then None else ( match H.fold (fun k v _ -> Some v) g.ge_probe_fn (None #decl) with | Some {d_decl={v=ExternProbe id}} -> Some id | _ -> None )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Hashtable.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.All.fst.checked", "Config.fst.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "GlobalEnv.fst" }
[ { "abbrev": true, "full_module": "Hashtable", "short_module": "H" }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: GlobalEnv.global_env -> id: Ast.ident -> FStar.All.ML (FStar.Pervasives.Native.option Ast.ident)
FStar.All.ML
[ "ml" ]
[]
[ "GlobalEnv.global_env", "Ast.ident", "Ast.range", "Ast.comments", "Prims.bool", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.option", "Ast.decl", "FStar.Pervasives.Native.None", "Hashtable.try_find", "Ast.ident'", "GlobalEnv.__proj__Mkglobal_env__item__ge_probe_fn", "Ast.__proj__Mkwith_meta_t__item__v" ]
[]
false
true
false
false
false
let resolve_probe_fn (g: global_env) (id: ident) : ML (option ident) =
match H.try_find g.ge_probe_fn id.v with | Some { d_decl = { v = ExternProbe id } } -> Some id | _ -> None
false
Steel.ST.CancellableSpinLock.fsti
Steel.ST.CancellableSpinLock.maybe_acquired
val maybe_acquired : b: Prims.bool -> c: Steel.ST.CancellableSpinLock.cancellable_lock v -> Steel.Effect.Common.vprop
let maybe_acquired (b:bool) (#v:vprop) (c:cancellable_lock v) = if b then (v `star` can_release c) else emp
{ "file_name": "lib/steel/Steel.ST.CancellableSpinLock.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 47, "end_line": 52, "start_col": 0, "start_line": 51 }
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: Aseem Rastogi *) module Steel.ST.CancellableSpinLock open Steel.ST.Effect /// This module provides a cancellable spinlock Steel library /// /// As with Steel.ST.SpinLock, a cancellable spinlock guards /// a separation logic assertion /// /// However, it allows for the cases when the client is not able /// to maintain the assertion /// /// At that point, the client may just cancel the lock /// The lock type that guards the assertion `v` val cancellable_lock (v:vprop) : Type0 /// A cancellable lock can be created by providing `v` val new_cancellable_lock (v:vprop) : STT (cancellable_lock v) v (fun _ -> emp) /// `can_release` is the permission to release the lock /// /// Acquiring the lock, if it succeeds, provides `v`, the protected assertion /// and `can_release` val can_release (#v:vprop) (c:cancellable_lock v) : vprop
{ "checked_file": "/", "dependencies": [ "Steel.ST.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.CancellableSpinLock.fsti" }
[ { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": false, "full_module": "Steel.ST.SpinLock", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Prims.bool -> c: Steel.ST.CancellableSpinLock.cancellable_lock v -> Steel.Effect.Common.vprop
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Steel.Effect.Common.vprop", "Steel.ST.CancellableSpinLock.cancellable_lock", "Steel.Effect.Common.star", "Steel.ST.CancellableSpinLock.can_release", "Steel.Effect.Common.emp" ]
[]
false
false
false
false
false
let maybe_acquired (b: bool) (#v: vprop) (c: cancellable_lock v) =
if b then (v `star` (can_release c)) else emp
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.lookup_fvar
val lookup_fvar (e: env) (x: fv) : option term
val lookup_fvar (e: env) (x: fv) : option term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 71, "end_line": 126, "start_col": 0, "start_line": 126 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: FStar.Stubs.Reflection.Types.env -> x: FStar.Stubs.Reflection.Types.fv -> FStar.Pervasives.Native.option FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.env", "FStar.Stubs.Reflection.Types.fv", "FStar.Reflection.Typing.lookup_fvar_uinst", "Prims.Nil", "FStar.Stubs.Reflection.Types.universe", "FStar.Pervasives.Native.option", "FStar.Stubs.Reflection.Types.term" ]
[]
false
false
false
true
false
let lookup_fvar (e: env) (x: fv) : option term =
lookup_fvar_uinst e x []
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.pp_name_default
val pp_name_default:pp_name_t
val pp_name_default:pp_name_t
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 65, "end_line": 129, "start_col": 0, "start_line": 129 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Reflection.Typing.pp_name_t
Prims.Tot
[ "total" ]
[]
[ "FStar.Sealed.Inhabited.seal", "Prims.string" ]
[]
false
false
false
true
false
let pp_name_default:pp_name_t =
FStar.Sealed.Inhabited.seal "x"
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.sort_t
val sort_t : Type0
let sort_t = FStar.Sealed.Inhabited.sealed tun
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 46, "end_line": 134, "start_col": 0, "start_line": 134 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Sealed.Inhabited.sealed", "FStar.Stubs.Reflection.Types.term", "FStar.Reflection.Typing.tun" ]
[]
false
false
false
true
true
let sort_t =
FStar.Sealed.Inhabited.sealed tun
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.pp_name_t
val pp_name_t : Type0
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 49, "end_line": 128, "start_col": 0, "start_line": 128 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Sealed.Inhabited.sealed", "Prims.string" ]
[]
false
false
false
true
true
let pp_name_t =
FStar.Sealed.Inhabited.sealed "x"
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.tun
val tun : FStar.Stubs.Reflection.Types.term
let tun = pack_ln Tv_Unknown
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 132, "start_col": 0, "start_line": 132 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_Unknown" ]
[]
false
false
false
true
false
let tun =
pack_ln Tv_Unknown
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.sort_default
val sort_default:sort_t
val sort_default:sort_t
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 59, "end_line": 135, "start_col": 0, "start_line": 135 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Reflection.Typing.sort_t
Prims.Tot
[ "total" ]
[]
[ "FStar.Sealed.Inhabited.seal", "FStar.Stubs.Reflection.Types.term", "FStar.Reflection.Typing.tun" ]
[]
false
false
false
true
false
let sort_default:sort_t =
FStar.Sealed.Inhabited.seal tun
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.map_dec
val map_dec (#a #b: _) (l: list a) (f: (x: a{x << l} -> b)) : Tot (list b) (decreases l)
val map_dec (#a #b: _) (l: list a) (f: (x: a{x << l} -> b)) : Tot (list b) (decreases l)
let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 55, "start_col": 0, "start_line": 48 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list a -> f: (x: a{x << l} -> b) -> Prims.Tot (Prims.list b)
Prims.Tot
[ "total", "" ]
[]
[ "Prims.list", "Prims.precedes", "Prims.Nil", "Prims.Cons", "FStar.Reflection.Typing.map_dec" ]
[ "recursion" ]
false
false
false
false
false
let rec map_dec #a #b (l: list a) (f: (x: a{x << l} -> b)) : Tot (list b) (decreases l) =
match l with | [] -> [] | x :: xs -> f x :: map_dec xs f
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.namedv_uniq
val namedv_uniq (x: namedv) : var
val namedv_uniq (x: namedv) : var
let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 178, "start_col": 0, "start_line": 176 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.Stubs.Reflection.Types.namedv -> FStar.Stubs.Reflection.V2.Data.var
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.namedv", "FStar.Stubs.Reflection.V2.Data.__proj__Mknamedv_view__item__uniq", "FStar.Stubs.Reflection.V2.Builtins.inspect_namedv", "FStar.Stubs.Reflection.V2.Data.var" ]
[]
false
false
false
true
false
let namedv_uniq (x: namedv) : var =
(inspect_namedv x).uniq
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.binder_sort
val binder_sort : b: FStar.Stubs.Reflection.Types.binder -> FStar.Stubs.Reflection.Types.typ
let binder_sort (b:binder) = (inspect_binder b).sort
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 25, "end_line": 181, "start_col": 0, "start_line": 180 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: FStar.Stubs.Reflection.Types.binder -> FStar.Stubs.Reflection.Types.typ
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.binder", "FStar.Stubs.Reflection.V2.Data.__proj__Mkbinder_view__item__sort", "FStar.Stubs.Reflection.V2.Builtins.inspect_binder", "FStar.Stubs.Reflection.Types.typ" ]
[]
false
false
false
true
false
let binder_sort (b: binder) =
(inspect_binder b).sort
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.zip2prop
val zip2prop (#a #b: _) (f: (a -> b -> Type0)) (xs: list a) (ys: list b) : Type0
val zip2prop (#a #b: _) (f: (a -> b -> Type0)) (xs: list a) (ys: list b) : Type0
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 14, "end_line": 61, "start_col": 0, "start_line": 57 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> _: b -> Type0) -> xs: Prims.list a -> ys: Prims.list b -> Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "FStar.Pervasives.Native.Mktuple2", "Prims.l_True", "Prims.l_and", "FStar.Reflection.Typing.zip2prop", "FStar.Pervasives.Native.tuple2", "Prims.l_False" ]
[ "recursion" ]
false
false
false
true
true
let rec zip2prop #a #b (f: (a -> b -> Type0)) (xs: list a) (ys: list b) : Type0 =
match xs, ys with | [], [] -> True | x :: xx, y :: yy -> f x y /\ zip2prop f xx yy | _ -> False
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.bv_index
val bv_index (x: bv) : var
val bv_index (x: bv) : var
let bv_index (x:bv) : var = (inspect_bv x).index
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 24, "end_line": 174, "start_col": 0, "start_line": 172 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.Stubs.Reflection.Types.bv -> FStar.Stubs.Reflection.V2.Data.var
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.bv", "FStar.Stubs.Reflection.V2.Data.__proj__Mkbv_view__item__index", "FStar.Stubs.Reflection.V2.Builtins.inspect_bv", "FStar.Stubs.Reflection.V2.Data.var" ]
[]
false
false
false
true
false
let bv_index (x: bv) : var =
(inspect_bv x).index
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.binder_qual
val binder_qual : b: FStar.Stubs.Reflection.Types.binder -> FStar.Stubs.Reflection.V2.Data.aqualv
let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 184, "start_col": 0, "start_line": 183 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: FStar.Stubs.Reflection.Types.binder -> FStar.Stubs.Reflection.V2.Data.aqualv
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.binder", "FStar.Stubs.Reflection.Types.typ", "FStar.Stubs.Reflection.V2.Data.aqualv", "Prims.list", "FStar.Stubs.Reflection.Types.term", "FStar.Stubs.Reflection.V2.Data.ppname_t", "FStar.Stubs.Reflection.V2.Data.binder_view", "Prims.precedes", "FStar.Stubs.Reflection.V2.Builtins.inspect_binder" ]
[]
false
false
false
true
false
let binder_qual (b: binder) =
let { qual = q } = inspect_binder b in q
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.subst
val subst : Type0
let subst = list subst_elt
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 197, "start_col": 0, "start_line": 197 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "FStar.Reflection.Typing.subst_elt" ]
[]
false
false
false
true
true
let subst =
list subst_elt
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.fold_left_dec
val fold_left_dec (#a #b: _) (acc: a) (l: list b) (f: (a -> x: b{x << l} -> a)) : Tot a (decreases l)
val fold_left_dec (#a #b: _) (acc: a) (l: list b) (f: (a -> x: b{x << l} -> a)) : Tot a (decreases l)
let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 41, "end_line": 46, "start_col": 0, "start_line": 38 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
acc: a -> l: Prims.list b -> f: (_: a -> x: b{x << l} -> a) -> Prims.Tot a
Prims.Tot
[ "total", "" ]
[]
[ "Prims.list", "Prims.precedes", "FStar.Reflection.Typing.fold_left_dec" ]
[ "recursion" ]
false
false
false
false
false
let rec fold_left_dec #a #b (acc: a) (l: list b) (f: (a -> x: b{x << l} -> a)) : Tot a (decreases l) =
match l with | [] -> acc | x :: xs -> fold_left_dec (f acc x) xs f
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.maybe_uniq_of_term
val maybe_uniq_of_term : x: FStar.Stubs.Reflection.Types.term -> FStar.Pervasives.Native.option FStar.Stubs.Reflection.V2.Data.var
let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 13, "end_line": 206, "start_col": 0, "start_line": 203 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.Stubs.Reflection.Types.term -> FStar.Pervasives.Native.option FStar.Stubs.Reflection.V2.Data.var
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.term", "FStar.Stubs.Reflection.V2.Builtins.inspect_ln", "FStar.Stubs.Reflection.Types.namedv", "FStar.Pervasives.Native.Some", "FStar.Stubs.Reflection.V2.Data.var", "FStar.Reflection.Typing.namedv_uniq", "FStar.Stubs.Reflection.V2.Data.term_view", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option" ]
[]
false
false
false
true
false
let maybe_uniq_of_term (x: term) =
match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.shift_subst
val shift_subst : x: Prims.list FStar.Reflection.Typing.subst_elt -> Prims.list FStar.Reflection.Typing.subst_elt
let shift_subst = shift_subst_n 1
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 201, "start_col": 0, "start_line": 201 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.list FStar.Reflection.Typing.subst_elt -> Prims.list FStar.Reflection.Typing.subst_elt
Prims.Tot
[ "total" ]
[]
[ "FStar.Reflection.Typing.shift_subst_n" ]
[]
false
false
false
true
false
let shift_subst =
shift_subst_n 1
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.shift_subst_n
val shift_subst_n : n: Prims.nat -> x: Prims.list FStar.Reflection.Typing.subst_elt -> Prims.list FStar.Reflection.Typing.subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 199, "start_col": 0, "start_line": 199 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> x: Prims.list FStar.Reflection.Typing.subst_elt -> Prims.list FStar.Reflection.Typing.subst_elt
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "FStar.List.Tot.Base.map", "FStar.Reflection.Typing.subst_elt", "FStar.Reflection.Typing.shift_subst_elt", "Prims.list" ]
[]
false
false
false
true
false
let shift_subst_n (n: nat) =
L.map (shift_subst_elt n)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.var_as_bv
val var_as_bv : v: Prims.nat -> FStar.Stubs.Reflection.Types.bv
let var_as_bv (v:nat) = pack_bv (make_bv v)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 270, "start_col": 0, "start_line": 270 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Prims.nat -> FStar.Stubs.Reflection.Types.bv
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "FStar.Stubs.Reflection.V2.Builtins.pack_bv", "FStar.Reflection.Typing.make_bv", "FStar.Stubs.Reflection.Types.bv" ]
[]
false
false
false
true
false
let var_as_bv (v: nat) =
pack_bv (make_bv v)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.mk_total
val mk_total : t: FStar.Stubs.Reflection.Types.typ -> FStar.Stubs.Reflection.Types.comp
let mk_total t = pack_comp (C_Total t)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 295, "start_col": 0, "start_line": 295 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: FStar.Stubs.Reflection.Types.typ -> FStar.Stubs.Reflection.Types.comp
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.typ", "FStar.Stubs.Reflection.V2.Builtins.pack_comp", "FStar.Stubs.Reflection.V2.Data.C_Total", "FStar.Stubs.Reflection.Types.comp" ]
[]
false
false
false
true
false
let mk_total t =
pack_comp (C_Total t)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.var_as_term
val var_as_term : v: FStar.Stubs.Reflection.V2.Data.var -> FStar.Stubs.Reflection.Types.term
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 60, "end_line": 291, "start_col": 0, "start_line": 291 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: FStar.Stubs.Reflection.V2.Data.var -> FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.V2.Data.var", "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_Var", "FStar.Reflection.Typing.var_as_namedv", "FStar.Stubs.Reflection.Types.term" ]
[]
false
false
false
true
false
let var_as_term (v: var) =
pack_ln (Tv_Var (var_as_namedv v))
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.binder_of_t_q
val binder_of_t_q : t: FStar.Stubs.Reflection.Types.term -> q: FStar.Stubs.Reflection.V2.Data.aqualv -> FStar.Stubs.Reflection.Types.binder
let binder_of_t_q t q = mk_binder pp_name_default t q
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 293, "start_col": 0, "start_line": 293 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: FStar.Stubs.Reflection.Types.term -> q: FStar.Stubs.Reflection.V2.Data.aqualv -> FStar.Stubs.Reflection.Types.binder
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.term", "FStar.Stubs.Reflection.V2.Data.aqualv", "FStar.Reflection.Typing.mk_binder", "FStar.Reflection.Typing.pp_name_default", "FStar.Stubs.Reflection.Types.binder" ]
[]
false
false
false
true
false
let binder_of_t_q t q =
mk_binder pp_name_default t q
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.mk_ghost
val mk_ghost : t: FStar.Stubs.Reflection.Types.typ -> FStar.Stubs.Reflection.Types.comp
let mk_ghost t = pack_comp (C_GTotal t)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 296, "start_col": 0, "start_line": 296 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: FStar.Stubs.Reflection.Types.typ -> FStar.Stubs.Reflection.Types.comp
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.typ", "FStar.Stubs.Reflection.V2.Builtins.pack_comp", "FStar.Stubs.Reflection.V2.Data.C_GTotal", "FStar.Stubs.Reflection.Types.comp" ]
[]
false
false
false
true
false
let mk_ghost t =
pack_comp (C_GTotal t)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.open_with_var
val open_with_var (x: var) (i: nat) : subst
val open_with_var (x: var) (i: nat) : subst
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 67, "end_line": 307, "start_col": 0, "start_line": 307 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt =
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.Stubs.Reflection.V2.Data.var -> i: Prims.nat -> FStar.Reflection.Typing.subst
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.V2.Data.var", "Prims.nat", "Prims.Cons", "FStar.Reflection.Typing.subst_elt", "FStar.Reflection.Typing.open_with_var_elt", "Prims.Nil", "FStar.Reflection.Typing.subst" ]
[]
false
false
false
true
false
let open_with_var (x: var) (i: nat) : subst =
[open_with_var_elt x i]
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.mk_let
val mk_let : ppname: FStar.Reflection.Typing.pp_name_t -> e1: FStar.Stubs.Reflection.Types.term -> t1: FStar.Stubs.Reflection.Types.term -> e2: FStar.Stubs.Reflection.Types.term -> FStar.Stubs.Reflection.Types.term
let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 66, "end_line": 303, "start_col": 0, "start_line": 302 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ppname: FStar.Reflection.Typing.pp_name_t -> e1: FStar.Stubs.Reflection.Types.term -> t1: FStar.Stubs.Reflection.Types.term -> e2: FStar.Stubs.Reflection.Types.term -> FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "FStar.Reflection.Typing.pp_name_t", "FStar.Stubs.Reflection.Types.term", "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_Let", "Prims.Nil", "FStar.Reflection.Typing.mk_simple_binder" ]
[]
false
false
false
true
false
let mk_let ppname (e1: R.term) (t1: R.term) (e2: R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.extend_env
val extend_env (e: env) (x: var) (ty: term) : env
val extend_env (e: env) (x: var) (ty: term) : env
let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; })
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 4, "end_line": 157, "start_col": 0, "start_line": 152 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty}
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: FStar.Stubs.Reflection.Types.env -> x: FStar.Stubs.Reflection.V2.Data.var -> ty: FStar.Stubs.Reflection.Types.term -> FStar.Stubs.Reflection.Types.env
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.env", "FStar.Stubs.Reflection.V2.Data.var", "FStar.Stubs.Reflection.Types.term", "FStar.Reflection.V2.Derived.push_binding", "FStar.Stubs.Reflection.V2.Data.Mkbinding", "FStar.Reflection.Typing.seal_pp_name" ]
[]
false
false
false
true
false
let extend_env (e: env) (x: var) (ty: term) : env =
R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty })
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.mk_simple_binder
val mk_simple_binder (pp_name: pp_name_t) (ty: term) : simple_binder
val mk_simple_binder (pp_name: pp_name_t) (ty: term) : simple_binder
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty}
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 20, "end_line": 150, "start_col": 0, "start_line": 145 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty}
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
pp_name: FStar.Reflection.Typing.pp_name_t -> ty: FStar.Stubs.Reflection.Types.term -> FStar.Stubs.Reflection.V2.Data.simple_binder
Prims.Tot
[ "total" ]
[]
[ "FStar.Reflection.Typing.pp_name_t", "FStar.Stubs.Reflection.Types.term", "FStar.Stubs.Reflection.V2.Builtins.pack_binder", "FStar.Stubs.Reflection.V2.Data.Mkbinder_view", "FStar.Stubs.Reflection.V2.Data.Q_Explicit", "Prims.Nil", "FStar.Stubs.Reflection.V2.Data.simple_binder" ]
[]
false
false
false
true
false
let mk_simple_binder (pp_name: pp_name_t) (ty: term) : simple_binder =
pack_binder ({ ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty })
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.open_with_var_elt
val open_with_var_elt (x: var) (i: nat) : subst_elt
val open_with_var_elt (x: var) (i: nat) : subst_elt
let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x)))
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 306, "start_col": 0, "start_line": 305 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.Stubs.Reflection.V2.Data.var -> i: Prims.nat -> FStar.Reflection.Typing.subst_elt
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.V2.Data.var", "Prims.nat", "FStar.Reflection.Typing.DT", "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_Var", "FStar.Reflection.Typing.var_as_namedv", "FStar.Reflection.Typing.subst_elt" ]
[]
false
false
false
true
false
let open_with_var_elt (x: var) (i: nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.mk_binder
val mk_binder (pp_name: pp_name_t) (ty: term) (q: aqualv) : binder
val mk_binder (pp_name: pp_name_t) (ty: term) (q: aqualv) : binder
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty}
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 20, "end_line": 143, "start_col": 0, "start_line": 138 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
pp_name: FStar.Reflection.Typing.pp_name_t -> ty: FStar.Stubs.Reflection.Types.term -> q: FStar.Stubs.Reflection.V2.Data.aqualv -> FStar.Stubs.Reflection.Types.binder
Prims.Tot
[ "total" ]
[]
[ "FStar.Reflection.Typing.pp_name_t", "FStar.Stubs.Reflection.Types.term", "FStar.Stubs.Reflection.V2.Data.aqualv", "FStar.Stubs.Reflection.V2.Builtins.pack_binder", "FStar.Stubs.Reflection.V2.Data.Mkbinder_view", "Prims.Nil", "FStar.Stubs.Reflection.Types.binder" ]
[]
false
false
false
true
false
let mk_binder (pp_name: pp_name_t) (ty: term) (q: aqualv) : binder =
pack_binder ({ ppname = pp_name; qual = q; attrs = []; sort = ty })
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.shift_subst_elt
val shift_subst_elt : n: Prims.nat -> _: FStar.Reflection.Typing.subst_elt -> FStar.Reflection.Typing.subst_elt
let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 195, "start_col": 0, "start_line": 192 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> _: FStar.Reflection.Typing.subst_elt -> FStar.Reflection.Typing.subst_elt
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "FStar.Reflection.Typing.subst_elt", "FStar.Stubs.Reflection.Types.term", "FStar.Reflection.Typing.DT", "Prims.op_Addition", "FStar.Stubs.Reflection.V2.Data.var", "FStar.Reflection.Typing.NT", "FStar.Reflection.Typing.ND" ]
[]
false
false
false
true
false
let shift_subst_elt (n: nat) =
function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.constant_as_term
val constant_as_term : v: FStar.Stubs.Reflection.V2.Data.vconst -> FStar.Stubs.Reflection.Types.term
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 54, "end_line": 530, "start_col": 0, "start_line": 530 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: FStar.Stubs.Reflection.V2.Data.vconst -> FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.V2.Data.vconst", "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_Const", "FStar.Stubs.Reflection.Types.term" ]
[]
false
false
false
true
false
let constant_as_term (v: vconst) =
pack_ln (Tv_Const v)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.find_matching_subst_elt_bv
val find_matching_subst_elt_bv (s: subst) (bv: bv) : option subst_elt
val find_matching_subst_elt_bv (s: subst) (bv: bv) : option subst_elt
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 45, "end_line": 215, "start_col": 0, "start_line": 208 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Reflection.Typing.subst -> bv: FStar.Stubs.Reflection.Types.bv -> FStar.Pervasives.Native.option FStar.Reflection.Typing.subst_elt
Prims.Tot
[ "total" ]
[]
[ "FStar.Reflection.Typing.subst", "FStar.Stubs.Reflection.Types.bv", "FStar.Pervasives.Native.None", "FStar.Reflection.Typing.subst_elt", "Prims.nat", "FStar.Stubs.Reflection.Types.term", "Prims.list", "Prims.op_Equality", "FStar.Reflection.Typing.bv_index", "FStar.Pervasives.Native.Some", "FStar.Reflection.Typing.DT", "Prims.bool", "FStar.Reflection.Typing.find_matching_subst_elt_bv", "FStar.Pervasives.Native.option" ]
[ "recursion" ]
false
false
false
true
false
let rec find_matching_subst_elt_bv (s: subst) (bv: bv) : option subst_elt =
match s with | [] -> None | DT j t :: ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _ :: ss -> find_matching_subst_elt_bv ss bv
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.subst_var
val subst_var (v: namedv) (s: subst) : term
val subst_var (v: namedv) (s: subst) : term
let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 256, "start_col": 0, "start_line": 242 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: FStar.Stubs.Reflection.Types.namedv -> s: FStar.Reflection.Typing.subst -> FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.namedv", "FStar.Reflection.Typing.subst", "FStar.Reflection.Typing.find_matching_subst_elt_var", "FStar.Stubs.Reflection.V2.Data.var", "FStar.Stubs.Reflection.Types.term", "FStar.Reflection.Typing.maybe_uniq_of_term", "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_Var", "FStar.Stubs.Reflection.V2.Builtins.pack_namedv", "FStar.Stubs.Reflection.V2.Data.Mknamedv_view", "FStar.Stubs.Reflection.V2.Data.__proj__Mknamedv_view__item__sort", "FStar.Stubs.Reflection.V2.Data.__proj__Mknamedv_view__item__ppname", "FStar.Stubs.Reflection.V2.Data.namedv_view", "Prims.precedes", "FStar.Stubs.Reflection.V2.Builtins.inspect_namedv", "Prims.nat", "FStar.Stubs.Reflection.V2.Data.Tv_BVar", "FStar.Stubs.Reflection.Types.bv", "FStar.Stubs.Reflection.V2.Builtins.pack_bv", "FStar.Stubs.Reflection.V2.Data.Mkbv_view", "FStar.Pervasives.Native.option", "FStar.Reflection.Typing.subst_elt" ]
[]
false
false
false
true
false
let subst_var (v: namedv) (s: subst) : term =
match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv ({ inspect_namedv v with uniq = k })))) | Some (ND _ i) -> let bv = pack_bv ({ sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i }) in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.unit_fv
val unit_fv : FStar.Stubs.Reflection.Types.fv
let unit_fv = pack_fv unit_lid
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 532, "start_col": 0, "start_line": 532 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Stubs.Reflection.Types.fv
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.V2.Builtins.pack_fv", "FStar.Reflection.Const.unit_lid" ]
[]
false
false
false
true
false
let unit_fv =
pack_fv unit_lid
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.var_as_namedv
val var_as_namedv (v: nat) : namedv
val var_as_namedv (v: nat) : namedv
let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; }
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 289, "start_col": 0, "start_line": 284 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Prims.nat -> FStar.Stubs.Reflection.Types.namedv
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "FStar.Stubs.Reflection.V2.Builtins.pack_namedv", "FStar.Stubs.Reflection.V2.Data.Mknamedv_view", "FStar.Reflection.Typing.sort_default", "FStar.Reflection.Typing.pp_name_default", "FStar.Stubs.Reflection.Types.namedv" ]
[]
false
false
false
true
false
let var_as_namedv (v: nat) : namedv =
pack_namedv ({ uniq = v; sort = sort_default; ppname = pp_name_default })
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.unit_ty
val unit_ty : FStar.Stubs.Reflection.Types.term
let unit_ty = pack_ln (Tv_FVar unit_fv)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 533, "start_col": 0, "start_line": 533 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_FVar", "FStar.Reflection.Typing.unit_fv" ]
[]
false
false
false
true
false
let unit_ty =
pack_ln (Tv_FVar unit_fv)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.make_namedv_with_name
val make_namedv_with_name (s: pp_name_t) (n: nat) : namedv_view
val make_namedv_with_name (s: pp_name_t) (n: nat) : namedv_view
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; }
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 1, "end_line": 282, "start_col": 0, "start_line": 278 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Reflection.Typing.pp_name_t -> n: Prims.nat -> FStar.Stubs.Reflection.V2.Data.namedv_view
Prims.Tot
[ "total" ]
[]
[ "FStar.Reflection.Typing.pp_name_t", "Prims.nat", "FStar.Stubs.Reflection.V2.Data.Mknamedv_view", "FStar.Reflection.Typing.sort_default", "FStar.Stubs.Reflection.V2.Data.namedv_view" ]
[]
false
false
false
true
false
let make_namedv_with_name (s: pp_name_t) (n: nat) : namedv_view =
{ ppname = s; uniq = n; sort = sort_default }
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.make_bv
val make_bv (n: nat) : bv_view
val make_bv (n: nat) : bv_view
let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; }
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 1, "end_line": 262, "start_col": 0, "start_line": 258 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> FStar.Stubs.Reflection.V2.Data.bv_view
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "FStar.Stubs.Reflection.V2.Data.Mkbv_view", "FStar.Reflection.Typing.sort_default", "FStar.Reflection.Typing.pp_name_default", "FStar.Stubs.Reflection.V2.Data.bv_view" ]
[]
false
false
false
true
false
let make_bv (n: nat) : bv_view =
{ ppname = pp_name_default; index = n; sort = sort_default }
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.unit_exp
val unit_exp : FStar.Stubs.Reflection.Types.term
let unit_exp = constant_as_term C_Unit
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 531, "start_col": 0, "start_line": 531 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "FStar.Reflection.Typing.constant_as_term", "FStar.Stubs.Reflection.V2.Data.C_Unit" ]
[]
false
false
false
true
false
let unit_exp =
constant_as_term C_Unit
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.u_zero
val u_zero : FStar.Stubs.Reflection.Types.universe
let u_zero = pack_universe Uv_Zero
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 537, "start_col": 0, "start_line": 537 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Stubs.Reflection.Types.universe
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.V2.Builtins.pack_universe", "FStar.Stubs.Reflection.V2.Data.Uv_Zero" ]
[]
false
false
false
true
false
let u_zero =
pack_universe Uv_Zero
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.make_namedv
val make_namedv (n: nat) : namedv_view
val make_namedv (n: nat) : namedv_view
let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; }
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 1, "end_line": 276, "start_col": 0, "start_line": 272 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> FStar.Stubs.Reflection.V2.Data.namedv_view
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "FStar.Stubs.Reflection.V2.Data.Mknamedv_view", "FStar.Reflection.Typing.sort_default", "FStar.Reflection.Typing.pp_name_default", "FStar.Stubs.Reflection.V2.Data.namedv_view" ]
[]
false
false
false
true
false
let make_namedv (n: nat) : namedv_view =
{ ppname = pp_name_default; uniq = n; sort = sort_default }
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.u_max
val u_max : u1: FStar.Stubs.Reflection.Types.universe -> u2: FStar.Stubs.Reflection.Types.universe -> FStar.Stubs.Reflection.Types.universe
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 49, "end_line": 538, "start_col": 0, "start_line": 538 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
u1: FStar.Stubs.Reflection.Types.universe -> u2: FStar.Stubs.Reflection.Types.universe -> FStar.Stubs.Reflection.Types.universe
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.universe", "FStar.Stubs.Reflection.V2.Builtins.pack_universe", "FStar.Stubs.Reflection.V2.Data.Uv_Max", "Prims.Cons", "Prims.Nil" ]
[]
false
false
false
true
false
let u_max u1 u2 =
pack_universe (Uv_Max [u1; u2])
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.bool_ty
val bool_ty : FStar.Stubs.Reflection.Types.term
let bool_ty = pack_ln (Tv_FVar bool_fv)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 535, "start_col": 0, "start_line": 535 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_FVar", "FStar.Reflection.Typing.bool_fv" ]
[]
false
false
false
true
false
let bool_ty =
pack_ln (Tv_FVar bool_fv)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.make_bv_with_name
val make_bv_with_name (s: pp_name_t) (n: nat) : bv_view
val make_bv_with_name (s: pp_name_t) (n: nat) : bv_view
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; }
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 1, "end_line": 267, "start_col": 0, "start_line": 263 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Reflection.Typing.pp_name_t -> n: Prims.nat -> FStar.Stubs.Reflection.V2.Data.bv_view
Prims.Tot
[ "total" ]
[]
[ "FStar.Reflection.Typing.pp_name_t", "Prims.nat", "FStar.Stubs.Reflection.V2.Data.Mkbv_view", "FStar.Reflection.Typing.sort_default", "FStar.Stubs.Reflection.V2.Data.bv_view" ]
[]
false
false
false
true
false
let make_bv_with_name (s: pp_name_t) (n: nat) : bv_view =
{ ppname = s; index = n; sort = sort_default }
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.bool_fv
val bool_fv : FStar.Stubs.Reflection.Types.fv
let bool_fv = pack_fv bool_lid
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 534, "start_col": 0, "start_line": 534 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Stubs.Reflection.Types.fv
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.V2.Builtins.pack_fv", "FStar.Reflection.Const.bool_lid" ]
[]
false
false
false
true
false
let bool_fv =
pack_fv bool_lid
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.find_matching_subst_elt_var
val find_matching_subst_elt_var (s: subst) (v: namedv) : option subst_elt
val find_matching_subst_elt_var (s: subst) (v: namedv) : option subst_elt
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 49, "end_line": 240, "start_col": 0, "start_line": 232 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Reflection.Typing.subst -> v: FStar.Stubs.Reflection.Types.namedv -> FStar.Pervasives.Native.option FStar.Reflection.Typing.subst_elt
Prims.Tot
[ "total" ]
[]
[ "FStar.Reflection.Typing.subst", "FStar.Stubs.Reflection.Types.namedv", "FStar.Pervasives.Native.None", "FStar.Reflection.Typing.subst_elt", "FStar.Stubs.Reflection.V2.Data.var", "FStar.Stubs.Reflection.Types.term", "Prims.list", "Prims.op_Equality", "FStar.Reflection.Typing.namedv_uniq", "FStar.Pervasives.Native.Some", "FStar.List.Tot.Base.hd", "Prims.bool", "FStar.Reflection.Typing.find_matching_subst_elt_var", "FStar.Pervasives.Native.option", "Prims.nat" ]
[ "recursion" ]
false
false
false
true
false
let rec find_matching_subst_elt_var (s: subst) (v: namedv) : option subst_elt =
match s with | [] -> None | NT y _ :: rest | ND y _ :: rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _ :: rest -> find_matching_subst_elt_var rest v
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.u_succ
val u_succ : u297: FStar.Stubs.Reflection.Types.universe -> FStar.Stubs.Reflection.Types.universe
let u_succ u = pack_universe (Uv_Succ u)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 539, "start_col": 0, "start_line": 539 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
u297: FStar.Stubs.Reflection.Types.universe -> FStar.Stubs.Reflection.Types.universe
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.universe", "FStar.Stubs.Reflection.V2.Builtins.pack_universe", "FStar.Stubs.Reflection.V2.Data.Uv_Succ" ]
[]
false
false
false
true
false
let u_succ u =
pack_universe (Uv_Succ u)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.tm_type
val tm_type : u299: FStar.Stubs.Reflection.Types.universe -> FStar.Stubs.Reflection.Types.term
let tm_type u = pack_ln (Tv_Type u)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 540, "start_col": 0, "start_line": 540 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
u299: FStar.Stubs.Reflection.Types.universe -> FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.universe", "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_Type", "FStar.Stubs.Reflection.Types.term" ]
[]
false
false
false
true
false
let tm_type u =
pack_ln (Tv_Type u)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.subst_db
val subst_db (bv: bv) (s: subst) : term
val subst_db (bv: bv) (s: subst) : term
let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 230, "start_col": 0, "start_line": 217 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
bv: FStar.Stubs.Reflection.Types.bv -> s: FStar.Reflection.Typing.subst -> FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.bv", "FStar.Reflection.Typing.subst", "FStar.Reflection.Typing.find_matching_subst_elt_bv", "Prims.nat", "FStar.Stubs.Reflection.Types.term", "FStar.Reflection.Typing.maybe_uniq_of_term", "FStar.Stubs.Reflection.V2.Data.var", "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_Var", "FStar.Stubs.Reflection.Types.namedv", "FStar.Stubs.Reflection.V2.Builtins.pack_namedv", "FStar.Stubs.Reflection.V2.Data.Mknamedv_view", "FStar.Stubs.Reflection.V2.Data.__proj__Mkbv_view__item__sort", "FStar.Stubs.Reflection.V2.Builtins.inspect_bv", "FStar.Stubs.Reflection.V2.Data.__proj__Mkbv_view__item__ppname", "FStar.Pervasives.Native.option", "FStar.Reflection.Typing.subst_elt", "FStar.Stubs.Reflection.V2.Data.Tv_BVar" ]
[]
false
false
false
true
false
let subst_db (bv: bv) (s: subst) : term =
match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> let v:namedv = pack_namedv ({ sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k }) in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.eqtype_lid
val eqtype_lid:R.name
val eqtype_lid:R.name
let eqtype_lid : R.name = ["Prims"; "eqtype"]
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 45, "end_line": 544, "start_col": 0, "start_line": 544 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Stubs.Reflection.Types.name
Prims.Tot
[ "total" ]
[]
[ "Prims.Cons", "Prims.string", "Prims.Nil" ]
[]
false
false
false
true
false
let eqtype_lid:R.name =
["Prims"; "eqtype"]
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.tm_prop
val tm_prop : FStar.Stubs.Reflection.Types.term
let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 543, "start_col": 0, "start_line": 541 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_FVar", "FStar.Stubs.Reflection.Types.fv", "FStar.Stubs.Reflection.V2.Builtins.pack_fv", "FStar.Reflection.Const.prop_qn" ]
[]
false
false
false
true
false
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.b2t_lid
val b2t_lid:R.name
val b2t_lid:R.name
let b2t_lid : R.name = ["Prims"; "b2t"]
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 557, "start_col": 0, "start_line": 557 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Stubs.Reflection.Types.name
Prims.Tot
[ "total" ]
[]
[ "Prims.Cons", "Prims.string", "Prims.Nil" ]
[]
false
false
false
true
false
let b2t_lid:R.name =
["Prims"; "b2t"]
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.true_bool
val true_bool : FStar.Stubs.Reflection.Types.term
let true_bool = pack_ln (Tv_Const C_True)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 41, "end_line": 546, "start_col": 0, "start_line": 546 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_Const", "FStar.Stubs.Reflection.V2.Data.C_True" ]
[]
false
false
false
true
false
let true_bool =
pack_ln (Tv_Const C_True)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.false_bool
val false_bool : FStar.Stubs.Reflection.Types.term
let false_bool = pack_ln (Tv_Const C_False)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 547, "start_col": 0, "start_line": 547 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_Const", "FStar.Stubs.Reflection.V2.Data.C_False" ]
[]
false
false
false
true
false
let false_bool =
pack_ln (Tv_Const C_False)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.eq2
val eq2 (u: universe) (t v0 v1: term) : term
val eq2 (u: universe) (t v0 v1: term) : term
let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 6, "end_line": 555, "start_col": 0, "start_line": 548 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
u307: FStar.Stubs.Reflection.Types.universe -> t: FStar.Stubs.Reflection.Types.term -> v0: FStar.Stubs.Reflection.Types.term -> v1: FStar.Stubs.Reflection.Types.term -> FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.universe", "FStar.Stubs.Reflection.Types.term", "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_App", "FStar.Pervasives.Native.Mktuple2", "FStar.Stubs.Reflection.V2.Data.aqualv", "FStar.Stubs.Reflection.V2.Data.Q_Explicit", "FStar.Stubs.Reflection.V2.Data.Q_Implicit", "FStar.Stubs.Reflection.V2.Data.Tv_UInst", "Prims.Cons", "Prims.Nil", "FStar.Stubs.Reflection.Types.fv", "FStar.Stubs.Reflection.V2.Builtins.pack_fv", "FStar.Reflection.Const.eq2_qn" ]
[]
false
false
false
true
false
let eq2 (u: universe) (t v0 v1: term) : term =
let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.b2t_fv
val b2t_fv:R.fv
val b2t_fv:R.fv
let b2t_fv : R.fv = R.pack_fv b2t_lid
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 558, "start_col": 0, "start_line": 558 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Stubs.Reflection.Types.fv
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.V2.Builtins.pack_fv", "FStar.Reflection.Typing.b2t_lid" ]
[]
false
false
false
true
false
let b2t_fv:R.fv =
R.pack_fv b2t_lid
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.binder_offset_patterns
val binder_offset_patterns (ps: list (pattern & bool)) : nat
val binder_offset_patterns (ps: list (pattern & bool)) : nat
let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 330, "start_col": 0, "start_line": 312 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ps: Prims.list (FStar.Stubs.Reflection.V2.Data.pattern * Prims.bool) -> Prims.nat
Prims.Tot
[ "total" ]
[ "binder_offset_patterns", "binder_offset_pattern" ]
[ "Prims.list", "FStar.Pervasives.Native.tuple2", "FStar.Stubs.Reflection.V2.Data.pattern", "Prims.bool", "Prims.op_Addition", "Prims.nat", "FStar.Reflection.Typing.binder_offset_patterns", "FStar.Reflection.Typing.binder_offset_pattern" ]
[ "mutual recursion" ]
false
false
false
true
false
let rec binder_offset_patterns (ps: list (pattern & bool)) : nat =
match ps with | [] -> 0 | (p, b) :: ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.binder_offset_pattern
val binder_offset_pattern (p: pattern) : nat
val binder_offset_pattern (p: pattern) : nat
let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 330, "start_col": 0, "start_line": 312 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: FStar.Stubs.Reflection.V2.Data.pattern -> Prims.nat
Prims.Tot
[ "total" ]
[ "binder_offset_patterns", "binder_offset_pattern" ]
[ "FStar.Stubs.Reflection.V2.Data.pattern", "FStar.Stubs.Reflection.V2.Data.vconst", "FStar.Pervasives.Native.option", "FStar.Stubs.Reflection.Types.term", "FStar.Sealed.sealed", "FStar.Stubs.Reflection.V2.Data.ppname_t", "FStar.Stubs.Reflection.Types.fv", "FStar.Stubs.Reflection.V2.Data.universes", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.bool", "FStar.Reflection.Typing.binder_offset_patterns", "Prims.nat" ]
[ "mutual recursion" ]
false
false
false
true
false
let rec binder_offset_pattern (p: pattern) : nat =
match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.ln
val ln : t: FStar.Stubs.Reflection.Types.term -> Prims.bool
let ln (t:term) = ln' t (-1)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 857, "start_col": 0, "start_line": 857 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: FStar.Stubs.Reflection.Types.term -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.term", "FStar.Reflection.Typing.ln'", "Prims.op_Minus", "Prims.bool" ]
[]
false
false
false
true
false
let ln (t: term) =
ln' t (- 1)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.open_comp_typ
val open_comp_typ : c: FStar.Reflection.Typing.comp_typ -> x: FStar.Stubs.Reflection.V2.Data.var -> FStar.Stubs.TypeChecker.Core.tot_or_ghost * FStar.Stubs.Reflection.Types.term
let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 22, "end_line": 1001, "start_col": 0, "start_line": 1000 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: FStar.Reflection.Typing.comp_typ -> x: FStar.Stubs.Reflection.V2.Data.var -> FStar.Stubs.TypeChecker.Core.tot_or_ghost * FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "FStar.Reflection.Typing.comp_typ", "FStar.Stubs.Reflection.V2.Data.var", "FStar.Reflection.Typing.open_comp_typ'", "FStar.Pervasives.Native.tuple2", "FStar.Stubs.TypeChecker.Core.tot_or_ghost", "FStar.Stubs.Reflection.Types.term" ]
[]
false
false
false
true
false
let open_comp_typ (c: comp_typ) (x: var) =
open_comp_typ' c x 0
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.mk_if
val mk_if (scrutinee then_ else_: R.term) : R.term
val mk_if (scrutinee then_ else_: R.term) : R.term
let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)])
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 67, "end_line": 985, "start_col": 0, "start_line": 983 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
scrutinee: FStar.Stubs.Reflection.Types.term -> then_: FStar.Stubs.Reflection.Types.term -> else_: FStar.Stubs.Reflection.Types.term -> FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.term", "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_Match", "FStar.Pervasives.Native.None", "FStar.Stubs.Reflection.Types.match_returns_ascription", "Prims.Cons", "FStar.Stubs.Reflection.V2.Data.branch", "FStar.Pervasives.Native.Mktuple2", "FStar.Stubs.Reflection.V2.Data.pattern", "FStar.Stubs.Reflection.V2.Data.Pat_Constant", "FStar.Stubs.Reflection.V2.Data.C_True", "FStar.Stubs.Reflection.V2.Data.C_False", "Prims.Nil" ]
[]
false
false
false
true
false
let mk_if (scrutinee then_ else_: R.term) : R.term =
pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)])
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.freevars_comp_typ
val freevars_comp_typ : c: FStar.Reflection.Typing.comp_typ -> FStar.Set.set FStar.Stubs.Reflection.V2.Data.var
let freevars_comp_typ (c:comp_typ) = freevars (snd c)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 1003, "start_col": 0, "start_line": 1003 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: FStar.Reflection.Typing.comp_typ -> FStar.Set.set FStar.Stubs.Reflection.V2.Data.var
Prims.Tot
[ "total" ]
[]
[ "FStar.Reflection.Typing.comp_typ", "FStar.Reflection.Typing.freevars", "FStar.Pervasives.Native.snd", "FStar.Stubs.TypeChecker.Core.tot_or_ghost", "FStar.Stubs.Reflection.Types.typ", "FStar.Set.set", "FStar.Stubs.Reflection.V2.Data.var" ]
[]
false
false
false
true
false
let freevars_comp_typ (c: comp_typ) =
freevars (snd c)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.ln_comp
val ln_comp : c: FStar.Stubs.Reflection.Types.comp -> Prims.bool
let ln_comp (c:comp) = ln'_comp c (-1)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 858, "start_col": 0, "start_line": 858 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: FStar.Stubs.Reflection.Types.comp -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.comp", "FStar.Reflection.Typing.ln'_comp", "Prims.op_Minus", "Prims.bool" ]
[]
false
false
false
true
false
let ln_comp (c: comp) =
ln'_comp c (- 1)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.close_comp_typ
val close_comp_typ : c: FStar.Reflection.Typing.comp_typ -> x: FStar.Stubs.Reflection.V2.Data.var -> FStar.Stubs.TypeChecker.Core.tot_or_ghost * FStar.Stubs.Reflection.Types.term
let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 23, "end_line": 995, "start_col": 0, "start_line": 994 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: FStar.Reflection.Typing.comp_typ -> x: FStar.Stubs.Reflection.V2.Data.var -> FStar.Stubs.TypeChecker.Core.tot_or_ghost * FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "FStar.Reflection.Typing.comp_typ", "FStar.Stubs.Reflection.V2.Data.var", "FStar.Reflection.Typing.close_comp_typ'", "FStar.Pervasives.Native.tuple2", "FStar.Stubs.TypeChecker.Core.tot_or_ghost", "FStar.Stubs.Reflection.Types.term" ]
[]
false
false
false
true
false
let close_comp_typ (c: comp_typ) (x: var) =
close_comp_typ' c x 0
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.close_comp_typ'
val close_comp_typ' : c: FStar.Reflection.Typing.comp_typ -> x: FStar.Stubs.Reflection.V2.Data.var -> i: Prims.nat -> FStar.Stubs.TypeChecker.Core.tot_or_ghost * FStar.Stubs.Reflection.Types.term
let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ]
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 992, "start_col": 0, "start_line": 991 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: FStar.Reflection.Typing.comp_typ -> x: FStar.Stubs.Reflection.V2.Data.var -> i: Prims.nat -> FStar.Stubs.TypeChecker.Core.tot_or_ghost * FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "FStar.Reflection.Typing.comp_typ", "FStar.Stubs.Reflection.V2.Data.var", "Prims.nat", "FStar.Pervasives.Native.Mktuple2", "FStar.Stubs.TypeChecker.Core.tot_or_ghost", "FStar.Stubs.Reflection.Types.term", "FStar.Pervasives.Native.fst", "FStar.Stubs.Reflection.Types.typ", "FStar.Reflection.Typing.subst_term", "FStar.Pervasives.Native.snd", "Prims.Cons", "FStar.Reflection.Typing.subst_elt", "FStar.Reflection.Typing.ND", "Prims.Nil", "FStar.Pervasives.Native.tuple2" ]
[]
false
false
false
true
false
let close_comp_typ' (c: comp_typ) (x: var) (i: nat) =
fst c, subst_term (snd c) [ND x i]
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.open_comp_typ'
val open_comp_typ' : c: FStar.Reflection.Typing.comp_typ -> x: FStar.Stubs.Reflection.V2.Data.var -> i: Prims.nat -> FStar.Stubs.TypeChecker.Core.tot_or_ghost * FStar.Stubs.Reflection.Types.term
let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 47, "end_line": 998, "start_col": 0, "start_line": 997 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: FStar.Reflection.Typing.comp_typ -> x: FStar.Stubs.Reflection.V2.Data.var -> i: Prims.nat -> FStar.Stubs.TypeChecker.Core.tot_or_ghost * FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "FStar.Reflection.Typing.comp_typ", "FStar.Stubs.Reflection.V2.Data.var", "Prims.nat", "FStar.Pervasives.Native.Mktuple2", "FStar.Stubs.TypeChecker.Core.tot_or_ghost", "FStar.Stubs.Reflection.Types.term", "FStar.Pervasives.Native.fst", "FStar.Stubs.Reflection.Types.typ", "FStar.Reflection.Typing.subst_term", "FStar.Pervasives.Native.snd", "FStar.Reflection.Typing.open_with_var", "FStar.Pervasives.Native.tuple2" ]
[]
false
false
false
true
false
let open_comp_typ' (c: comp_typ) (x: var) (i: nat) =
fst c, subst_term (snd c) (open_with_var x i)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.binding
val binding : Type0
let binding = var & term
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 24, "end_line": 1017, "start_col": 0, "start_line": 1017 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.Native.tuple2", "FStar.Stubs.Reflection.V2.Data.var", "FStar.Stubs.Reflection.Types.term" ]
[]
false
false
false
true
true
let binding =
var & term
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.bindings
val bindings : Type0
let bindings = list binding
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 1018, "start_col": 0, "start_line": 1018 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "FStar.Reflection.Typing.binding" ]
[]
false
false
false
true
true
let bindings =
list binding
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.b2t_ty
val b2t_ty:R.term
val b2t_ty:R.term
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 114, "end_line": 559, "start_col": 0, "start_line": 559 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_Arrow", "FStar.Reflection.Typing.mk_binder", "FStar.Sealed.seal", "Prims.string", "FStar.Reflection.Typing.bool_ty", "FStar.Stubs.Reflection.V2.Data.Q_Explicit", "FStar.Reflection.Typing.mk_total", "FStar.Reflection.Typing.tm_type", "FStar.Reflection.Typing.u_zero" ]
[]
false
false
false
true
false
let b2t_ty:R.term =
R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.rename_bindings
val rename_bindings : bs: Prims.list (_ * FStar.Stubs.Reflection.Types.term) -> x: FStar.Stubs.Reflection.V2.Data.var -> y: FStar.Stubs.Reflection.V2.Data.var -> Prims.list (_ * FStar.Stubs.Reflection.Types.term)
let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 84, "end_line": 1019, "start_col": 0, "start_line": 1019 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
bs: Prims.list (_ * FStar.Stubs.Reflection.Types.term) -> x: FStar.Stubs.Reflection.V2.Data.var -> y: FStar.Stubs.Reflection.V2.Data.var -> Prims.list (_ * FStar.Stubs.Reflection.Types.term)
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "FStar.Pervasives.Native.tuple2", "FStar.Stubs.Reflection.Types.term", "FStar.Stubs.Reflection.V2.Data.var", "FStar.List.Tot.Base.map", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.Typing.rename" ]
[]
false
false
false
true
false
let rename_bindings bs x y =
FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.is_non_informative_fv
val is_non_informative_fv (f: fv) : bool
val is_non_informative_fv (f: fv) : bool
let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 1036, "start_col": 0, "start_line": 1035 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: FStar.Stubs.Reflection.Types.fv -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.fv", "FStar.Reflection.Typing.is_non_informative_name", "FStar.Stubs.Reflection.V2.Builtins.inspect_fv", "Prims.bool" ]
[]
false
false
false
true
false
let is_non_informative_fv (f: fv) : bool =
is_non_informative_name (inspect_fv f)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.subst_binder
val subst_binder (b: binder) (ss: subst) : Tot (b': binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
val subst_binder (b: binder) (ss: subst) : Tot (b': binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 21, "end_line": 496, "start_col": 0, "start_line": 332 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: FStar.Stubs.Reflection.Types.binder -> ss: FStar.Reflection.Typing.subst -> Prims.Tot (b': FStar.Stubs.Reflection.Types.binder { FStar.Stubs.Reflection.V2.Data.binder_is_simple b ==> FStar.Stubs.Reflection.V2.Data.binder_is_simple b' })
Prims.Tot
[ "total", "" ]
[ "subst_term", "subst_binder", "subst_comp", "subst_terms", "subst_args", "subst_patterns", "subst_pattern", "subst_branch", "subst_branches", "subst_match_returns" ]
[ "FStar.Stubs.Reflection.Types.binder", "FStar.Reflection.Typing.subst", "FStar.Stubs.Reflection.V2.Builtins.pack_binder", "FStar.Stubs.Reflection.V2.Data.Mkbinder_view", "FStar.Reflection.Typing.subst_term", "FStar.Stubs.Reflection.V2.Data.__proj__Mkbinder_view__item__sort", "FStar.Stubs.Reflection.V2.Data.__proj__Mkbinder_view__item__qual", "FStar.Reflection.Typing.subst_terms", "FStar.Stubs.Reflection.V2.Data.__proj__Mkbinder_view__item__attrs", "FStar.Stubs.Reflection.V2.Data.__proj__Mkbinder_view__item__ppname", "FStar.Stubs.Reflection.V2.Data.binder_view", "Prims.precedes", "FStar.Stubs.Reflection.V2.Builtins.inspect_binder", "Prims.l_imp", "Prims.b2t", "FStar.Stubs.Reflection.V2.Data.binder_is_simple" ]
[ "mutual recursion" ]
false
false
false
false
false
let rec subst_binder (b: binder) (ss: subst) : Tot (b': binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) =
let bndr = inspect_binder b in pack_binder ({ ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss })
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.close_term_bs
val close_term_bs (bs: list binding) (t: term) : term
val close_term_bs (bs: list binding) (t: term) : term
let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 1048, "start_col": 0, "start_line": 1047 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
bs: Prims.list FStar.Reflection.Typing.binding -> t: FStar.Stubs.Reflection.Types.term -> FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "FStar.Reflection.Typing.binding", "FStar.Stubs.Reflection.Types.term", "FStar.Reflection.Typing.close_term_vs", "FStar.List.Tot.Base.map", "FStar.Stubs.Reflection.V2.Data.var", "FStar.Pervasives.Native.fst" ]
[]
false
false
false
true
false
let close_term_bs (bs: list binding) (t: term) : term =
close_term_vs (List.Tot.map fst bs) t
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.close_term_vs
val close_term_vs (vs: list var) (t: term) : term
val close_term_vs (vs: list var) (t: term) : term
let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 24, "end_line": 1045, "start_col": 0, "start_line": 1044 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vs: Prims.list FStar.Stubs.Reflection.V2.Data.var -> t: FStar.Stubs.Reflection.Types.term -> FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "FStar.Stubs.Reflection.V2.Data.var", "FStar.Stubs.Reflection.Types.term", "FStar.Reflection.Typing.__close_term_vs" ]
[]
false
false
false
true
false
let close_term_vs (vs: list var) (t: term) : term =
__close_term_vs 0 vs t
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.refl_bindings_to_bindings
val refl_bindings_to_bindings (bs: list R.binding) : list binding
val refl_bindings_to_bindings (bs: list R.binding) : list binding
let refl_bindings_to_bindings (bs : list R.binding) : list binding = L.map (fun b -> b.uniq, b.sort) bs
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 1054, "start_col": 0, "start_line": 1053 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t let bindings_to_refl_bindings (bs : list binding) : list R.binding = L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
bs: Prims.list FStar.Stubs.Reflection.V2.Data.binding -> Prims.list FStar.Reflection.Typing.binding
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "FStar.Stubs.Reflection.V2.Data.binding", "FStar.List.Tot.Base.map", "FStar.Pervasives.Native.tuple2", "Prims.nat", "FStar.Stubs.Reflection.Types.typ", "FStar.Pervasives.Native.Mktuple2", "FStar.Stubs.Reflection.V2.Data.__proj__Mkbinding__item__uniq", "FStar.Stubs.Reflection.V2.Data.__proj__Mkbinding__item__sort", "FStar.Reflection.Typing.binding" ]
[]
false
false
false
true
false
let refl_bindings_to_bindings (bs: list R.binding) : list binding =
L.map (fun b -> b.uniq, b.sort) bs
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.mk_comp
val mk_comp (c: comp_typ) : R.comp
val mk_comp (c: comp_typ) : R.comp
let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 1008, "start_col": 0, "start_line": 1005 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: FStar.Reflection.Typing.comp_typ -> FStar.Stubs.Reflection.Types.comp
Prims.Tot
[ "total" ]
[]
[ "FStar.Reflection.Typing.comp_typ", "FStar.Pervasives.Native.fst", "FStar.Stubs.TypeChecker.Core.tot_or_ghost", "FStar.Stubs.Reflection.Types.typ", "FStar.Reflection.Typing.mk_total", "FStar.Pervasives.Native.snd", "FStar.Reflection.Typing.mk_ghost", "FStar.Stubs.Reflection.Types.comp" ]
[]
false
false
false
true
false
let mk_comp (c: comp_typ) : R.comp =
match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.subst_term
val subst_term (t: term) (ss: subst) : Tot term (decreases t)
val subst_term (t: term) (ss: subst) : Tot term (decreases t)
let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 21, "end_line": 496, "start_col": 0, "start_line": 332 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: FStar.Stubs.Reflection.Types.term -> ss: FStar.Reflection.Typing.subst -> Prims.Tot FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total", "" ]
[ "subst_term", "subst_binder", "subst_comp", "subst_terms", "subst_args", "subst_patterns", "subst_pattern", "subst_branch", "subst_branches", "subst_match_returns" ]
[ "FStar.Stubs.Reflection.Types.term", "FStar.Reflection.Typing.subst", "FStar.Stubs.Reflection.V2.Builtins.inspect_ln", "FStar.Stubs.Reflection.Types.fv", "FStar.Stubs.Reflection.V2.Data.universes", "FStar.Stubs.Reflection.Types.universe", "FStar.Stubs.Reflection.V2.Data.vconst", "FStar.Stubs.Reflection.Types.namedv", "FStar.Reflection.Typing.subst_var", "FStar.Stubs.Reflection.Types.bv", "FStar.Reflection.Typing.subst_db", "FStar.Stubs.Reflection.V2.Data.argv", "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_App", "FStar.Reflection.Typing.subst_term", "FStar.Pervasives.Native.Mktuple2", "FStar.Stubs.Reflection.V2.Data.aqualv", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "FStar.Stubs.Reflection.Types.binder", "FStar.Stubs.Reflection.V2.Data.Tv_Abs", "FStar.Reflection.Typing.shift_subst", "Prims.l_imp", "Prims.b2t", "FStar.Stubs.Reflection.V2.Data.binder_is_simple", "FStar.Reflection.Typing.subst_binder", "FStar.Stubs.Reflection.Types.comp", "FStar.Stubs.Reflection.V2.Data.Tv_Arrow", "FStar.Reflection.Typing.subst_comp", "FStar.Stubs.Reflection.V2.Data.simple_binder", "FStar.Stubs.Reflection.V2.Data.Tv_Refine", "Prims.nat", "FStar.Stubs.Reflection.Types.ctx_uvar_and_subst", "FStar.Stubs.Reflection.V2.Data.Tv_Uvar", "FStar.Reflection.Typing.subst_ctx_uvar_and_subst", "Prims.bool", "Prims.list", "FStar.Stubs.Reflection.V2.Data.Tv_Let", "FStar.Reflection.Typing.subst_terms", "FStar.Pervasives.Native.option", "FStar.Stubs.Reflection.Types.match_returns_ascription", "FStar.Stubs.Reflection.V2.Data.branch", "FStar.Stubs.Reflection.V2.Data.Tv_Match", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.Some", "FStar.Reflection.Typing.subst_match_returns", "FStar.Reflection.Typing.subst_branches", "FStar.Stubs.Reflection.V2.Data.Tv_AscribedT", "FStar.Stubs.Reflection.V2.Data.Tv_AscribedC" ]
[ "mutual recursion" ]
false
false
false
true
false
let rec subst_term (t: term) (ss: subst) : Tot term (decreases t) =
match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.apply_term_ctxt
val apply_term_ctxt (e: term_ctxt) (t: term) : Tot term (decreases e)
val apply_term_ctxt (e: term_ctxt) (t: term) : Tot term (decreases e)
let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q))
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 71, "end_line": 902, "start_col": 0, "start_line": 898 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: FStar.Reflection.Typing.term_ctxt -> t: FStar.Stubs.Reflection.Types.term -> Prims.Tot FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total", "" ]
[]
[ "FStar.Reflection.Typing.term_ctxt", "FStar.Stubs.Reflection.Types.term", "FStar.Stubs.Reflection.V2.Data.argv", "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_App", "FStar.Reflection.Typing.apply_term_ctxt", "FStar.Stubs.Reflection.V2.Data.aqualv", "FStar.Pervasives.Native.Mktuple2" ]
[ "recursion" ]
false
false
false
true
false
let rec apply_term_ctxt (e: term_ctxt) (t: term) : Tot term (decreases e) =
match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q))
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.subst_args
val subst_args (ts: list argv) (ss: subst) : Tot (list argv) (decreases ts)
val subst_args (ts: list argv) (ss: subst) : Tot (list argv) (decreases ts)
let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 21, "end_line": 496, "start_col": 0, "start_line": 332 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ts: Prims.list FStar.Stubs.Reflection.V2.Data.argv -> ss: FStar.Reflection.Typing.subst -> Prims.Tot (Prims.list FStar.Stubs.Reflection.V2.Data.argv)
Prims.Tot
[ "total", "" ]
[ "subst_term", "subst_binder", "subst_comp", "subst_terms", "subst_args", "subst_patterns", "subst_pattern", "subst_branch", "subst_branches", "subst_match_returns" ]
[ "Prims.list", "FStar.Stubs.Reflection.V2.Data.argv", "FStar.Reflection.Typing.subst", "Prims.Nil", "FStar.Stubs.Reflection.Types.term", "FStar.Stubs.Reflection.V2.Data.aqualv", "Prims.Cons", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.Typing.subst_term", "FStar.Reflection.Typing.subst_args" ]
[ "mutual recursion" ]
false
false
false
true
false
let rec subst_args (ts: list argv) (ss: subst) : Tot (list argv) (decreases ts) =
match ts with | [] -> [] | (t, q) :: ts -> (subst_term t ss, q) :: subst_args ts ss
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.subst_comp
val subst_comp (c: comp) (ss: subst) : Tot comp (decreases c)
val subst_comp (c: comp) (ss: subst) : Tot comp (decreases c)
let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 21, "end_line": 496, "start_col": 0, "start_line": 332 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: FStar.Stubs.Reflection.Types.comp -> ss: FStar.Reflection.Typing.subst -> Prims.Tot FStar.Stubs.Reflection.Types.comp
Prims.Tot
[ "total", "" ]
[ "subst_term", "subst_binder", "subst_comp", "subst_terms", "subst_args", "subst_patterns", "subst_pattern", "subst_branch", "subst_branches", "subst_match_returns" ]
[ "FStar.Stubs.Reflection.Types.comp", "FStar.Reflection.Typing.subst", "FStar.Stubs.Reflection.V2.Builtins.inspect_comp", "FStar.Stubs.Reflection.Types.typ", "FStar.Stubs.Reflection.V2.Builtins.pack_comp", "FStar.Stubs.Reflection.V2.Data.C_Total", "FStar.Reflection.Typing.subst_term", "FStar.Stubs.Reflection.V2.Data.C_GTotal", "FStar.Stubs.Reflection.Types.term", "FStar.Stubs.Reflection.V2.Data.C_Lemma", "FStar.Stubs.Reflection.V2.Data.universes", "FStar.Stubs.Reflection.Types.name", "Prims.list", "FStar.Stubs.Reflection.V2.Data.argv", "FStar.Stubs.Reflection.V2.Data.C_Eff", "FStar.Reflection.Typing.subst_args", "FStar.Reflection.Typing.subst_terms" ]
[ "mutual recursion" ]
false
false
false
true
false
let rec subst_comp (c: comp) (ss: subst) : Tot comp (decreases c) =
match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss))
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.subst_pattern
val subst_pattern (p: pattern) (ss: subst) : Tot pattern (decreases p)
val subst_pattern (p: pattern) (ss: subst) : Tot pattern (decreases p)
let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 21, "end_line": 496, "start_col": 0, "start_line": 332 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: FStar.Stubs.Reflection.V2.Data.pattern -> ss: FStar.Reflection.Typing.subst -> Prims.Tot FStar.Stubs.Reflection.V2.Data.pattern
Prims.Tot
[ "total", "" ]
[ "subst_term", "subst_binder", "subst_comp", "subst_terms", "subst_args", "subst_patterns", "subst_pattern", "subst_branch", "subst_branches", "subst_match_returns" ]
[ "FStar.Stubs.Reflection.V2.Data.pattern", "FStar.Reflection.Typing.subst", "FStar.Stubs.Reflection.V2.Data.vconst", "FStar.Stubs.Reflection.Types.fv", "FStar.Pervasives.Native.option", "FStar.Stubs.Reflection.V2.Data.universes", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.bool", "FStar.Stubs.Reflection.V2.Data.Pat_Cons", "FStar.Reflection.Typing.subst_patterns", "FStar.Sealed.sealed", "FStar.Stubs.Reflection.Types.term", "FStar.Stubs.Reflection.V2.Data.ppname_t", "FStar.Stubs.Reflection.V2.Data.Pat_Var", "FStar.Stubs.Reflection.V2.Data.Pat_Dot_Term", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.Some", "FStar.Reflection.Typing.subst_term" ]
[ "mutual recursion" ]
false
false
false
true
false
let rec subst_pattern (p: pattern) (ss: subst) : Tot pattern (decreases p) =
match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss))
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.bindings_ok_for_branch_N
val bindings_ok_for_branch_N : g: FStar.Stubs.Reflection.Types.env -> bss: Prims.list (Prims.list FStar.Stubs.Reflection.V2.Data.binding) -> brs: Prims.list FStar.Stubs.Reflection.V2.Data.branch -> Type0
let bindings_ok_for_branch_N (g:env) (bss : list (list R.binding)) (brs : list branch) = zip2prop (bindings_ok_for_branch g) bss brs
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 45, "end_line": 1112, "start_col": 0, "start_line": 1111 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t let bindings_to_refl_bindings (bs : list binding) : list R.binding = L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs let refl_bindings_to_bindings (bs : list R.binding) : list binding = L.map (fun b -> b.uniq, b.sort) bs [@@ no_auto_projectors] noeq type non_informative : env -> term -> Type0 = | Non_informative_type: g:env -> u:universe -> non_informative g (pack_ln (Tv_Type u)) | Non_informative_fv: g:env -> x:fv{is_non_informative_fv x} -> non_informative g (pack_ln (Tv_FVar x)) | Non_informative_uinst: g:env -> x:fv{is_non_informative_fv x} -> us:list universe -> non_informative g (pack_ln (Tv_UInst x us)) | Non_informative_app: g:env -> t:term -> arg:argv -> non_informative g t -> non_informative g (pack_ln (Tv_App t arg)) | Non_informative_total_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g t1 -> non_informative g (mk_arrow_ct t0 q (T.E_Total, t1)) | Non_informative_ghost_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1)) | Non_informative_token: g:env -> t:typ -> squash (T.non_informative_token g t) -> non_informative g t val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0 val bindings_ok_pat_constant : g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c)) let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 = bindings_ok_for_pat g bs (fst br)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: FStar.Stubs.Reflection.Types.env -> bss: Prims.list (Prims.list FStar.Stubs.Reflection.V2.Data.binding) -> brs: Prims.list FStar.Stubs.Reflection.V2.Data.branch -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.env", "Prims.list", "FStar.Stubs.Reflection.V2.Data.binding", "FStar.Stubs.Reflection.V2.Data.branch", "FStar.Reflection.Typing.zip2prop", "FStar.Reflection.Typing.bindings_ok_for_branch" ]
[]
false
false
false
true
true
let bindings_ok_for_branch_N (g: env) (bss: list (list R.binding)) (brs: list branch) =
zip2prop (bindings_ok_for_branch g) bss brs
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.bindings_ok_for_branch
val bindings_ok_for_branch (g: env) (bs: list R.binding) (br: branch) : Type0
val bindings_ok_for_branch (g: env) (bs: list R.binding) (br: branch) : Type0
let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 = bindings_ok_for_pat g bs (fst br)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 1109, "start_col": 0, "start_line": 1108 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t let bindings_to_refl_bindings (bs : list binding) : list R.binding = L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs let refl_bindings_to_bindings (bs : list R.binding) : list binding = L.map (fun b -> b.uniq, b.sort) bs [@@ no_auto_projectors] noeq type non_informative : env -> term -> Type0 = | Non_informative_type: g:env -> u:universe -> non_informative g (pack_ln (Tv_Type u)) | Non_informative_fv: g:env -> x:fv{is_non_informative_fv x} -> non_informative g (pack_ln (Tv_FVar x)) | Non_informative_uinst: g:env -> x:fv{is_non_informative_fv x} -> us:list universe -> non_informative g (pack_ln (Tv_UInst x us)) | Non_informative_app: g:env -> t:term -> arg:argv -> non_informative g t -> non_informative g (pack_ln (Tv_App t arg)) | Non_informative_total_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g t1 -> non_informative g (mk_arrow_ct t0 q (T.E_Total, t1)) | Non_informative_ghost_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1)) | Non_informative_token: g:env -> t:typ -> squash (T.non_informative_token g t) -> non_informative g t val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0 val bindings_ok_pat_constant : g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: FStar.Stubs.Reflection.Types.env -> bs: Prims.list FStar.Stubs.Reflection.V2.Data.binding -> br: FStar.Stubs.Reflection.V2.Data.branch -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.env", "Prims.list", "FStar.Stubs.Reflection.V2.Data.binding", "FStar.Stubs.Reflection.V2.Data.branch", "FStar.Reflection.Typing.bindings_ok_for_pat", "FStar.Pervasives.Native.fst", "FStar.Stubs.Reflection.V2.Data.pattern", "FStar.Stubs.Reflection.Types.term" ]
[]
false
false
false
true
true
let bindings_ok_for_branch (g: env) (bs: list R.binding) (br: branch) : Type0 =
bindings_ok_for_pat g bs (fst br)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.subst_terms
val subst_terms (ts: list term) (ss: subst) : Tot (ts': list term {Nil? ts ==> Nil? ts'}) (decreases ts)
val subst_terms (ts: list term) (ss: subst) : Tot (ts': list term {Nil? ts ==> Nil? ts'}) (decreases ts)
let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 21, "end_line": 496, "start_col": 0, "start_line": 332 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ts: Prims.list FStar.Stubs.Reflection.Types.term -> ss: FStar.Reflection.Typing.subst -> Prims.Tot (ts': Prims.list FStar.Stubs.Reflection.Types.term {Nil? ts ==> Nil? ts'})
Prims.Tot
[ "total", "" ]
[ "subst_term", "subst_binder", "subst_comp", "subst_terms", "subst_args", "subst_patterns", "subst_pattern", "subst_branch", "subst_branches", "subst_match_returns" ]
[ "Prims.list", "FStar.Stubs.Reflection.Types.term", "FStar.Reflection.Typing.subst", "Prims.Nil", "Prims.Cons", "FStar.Reflection.Typing.subst_term", "FStar.Reflection.Typing.subst_terms", "Prims.l_imp", "Prims.b2t", "Prims.uu___is_Nil" ]
[ "mutual recursion" ]
false
false
false
false
false
let rec subst_terms (ts: list term) (ss: subst) : Tot (ts': list term {Nil? ts ==> Nil? ts'}) (decreases ts) =
match ts with | [] -> [] | t :: ts -> subst_term t ss :: subst_terms ts ss
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.subst_branch
val subst_branch (br: branch) (ss: subst) : Tot branch (decreases br)
val subst_branch (br: branch) (ss: subst) : Tot branch (decreases br)
let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 21, "end_line": 496, "start_col": 0, "start_line": 332 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
br: FStar.Stubs.Reflection.V2.Data.branch -> ss: FStar.Reflection.Typing.subst -> Prims.Tot FStar.Stubs.Reflection.V2.Data.branch
Prims.Tot
[ "total", "" ]
[ "subst_term", "subst_binder", "subst_comp", "subst_terms", "subst_args", "subst_patterns", "subst_pattern", "subst_branch", "subst_branches", "subst_match_returns" ]
[ "FStar.Stubs.Reflection.V2.Data.branch", "FStar.Reflection.Typing.subst", "FStar.Stubs.Reflection.V2.Data.pattern", "FStar.Stubs.Reflection.Types.term", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.Typing.subst_term", "FStar.Reflection.Typing.shift_subst_n", "Prims.nat", "FStar.Reflection.Typing.binder_offset_pattern", "FStar.Reflection.Typing.subst_pattern" ]
[ "mutual recursion" ]
false
false
false
true
false
let rec subst_branch (br: branch) (ss: subst) : Tot branch (decreases br) =
let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.binding_to_namedv
val binding_to_namedv (b: R.binding) : Tot namedv
val binding_to_namedv (b: R.binding) : Tot namedv
let binding_to_namedv (b:R.binding) : Tot namedv = pack_namedv { RD.uniq = b.uniq; RD.sort = seal b.sort; RD.ppname = b.ppname; }
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 1119, "start_col": 0, "start_line": 1114 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t let bindings_to_refl_bindings (bs : list binding) : list R.binding = L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs let refl_bindings_to_bindings (bs : list R.binding) : list binding = L.map (fun b -> b.uniq, b.sort) bs [@@ no_auto_projectors] noeq type non_informative : env -> term -> Type0 = | Non_informative_type: g:env -> u:universe -> non_informative g (pack_ln (Tv_Type u)) | Non_informative_fv: g:env -> x:fv{is_non_informative_fv x} -> non_informative g (pack_ln (Tv_FVar x)) | Non_informative_uinst: g:env -> x:fv{is_non_informative_fv x} -> us:list universe -> non_informative g (pack_ln (Tv_UInst x us)) | Non_informative_app: g:env -> t:term -> arg:argv -> non_informative g t -> non_informative g (pack_ln (Tv_App t arg)) | Non_informative_total_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g t1 -> non_informative g (mk_arrow_ct t0 q (T.E_Total, t1)) | Non_informative_ghost_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1)) | Non_informative_token: g:env -> t:typ -> squash (T.non_informative_token g t) -> non_informative g t val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0 val bindings_ok_pat_constant : g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c)) let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 = bindings_ok_for_pat g bs (fst br) let bindings_ok_for_branch_N (g:env) (bss : list (list R.binding)) (brs : list branch) = zip2prop (bindings_ok_for_branch g) bss brs
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: FStar.Stubs.Reflection.V2.Data.binding -> FStar.Stubs.Reflection.Types.namedv
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.V2.Data.binding", "FStar.Stubs.Reflection.V2.Builtins.pack_namedv", "FStar.Stubs.Reflection.V2.Data.Mknamedv_view", "FStar.Stubs.Reflection.V2.Data.__proj__Mkbinding__item__uniq", "FStar.Sealed.seal", "FStar.Stubs.Reflection.Types.typ", "FStar.Stubs.Reflection.V2.Data.__proj__Mkbinding__item__sort", "FStar.Stubs.Reflection.V2.Data.__proj__Mkbinding__item__ppname", "FStar.Stubs.Reflection.Types.namedv" ]
[]
false
false
false
true
false
let binding_to_namedv (b: R.binding) : Tot namedv =
pack_namedv ({ RD.uniq = b.uniq; RD.sort = seal b.sort; RD.ppname = b.ppname })
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.subst_patterns
val subst_patterns (ps: list (pattern & bool)) (ss: subst) : Tot (list (pattern & bool)) (decreases ps)
val subst_patterns (ps: list (pattern & bool)) (ss: subst) : Tot (list (pattern & bool)) (decreases ps)
let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 21, "end_line": 496, "start_col": 0, "start_line": 332 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ps: Prims.list (FStar.Stubs.Reflection.V2.Data.pattern * Prims.bool) -> ss: FStar.Reflection.Typing.subst -> Prims.Tot (Prims.list (FStar.Stubs.Reflection.V2.Data.pattern * Prims.bool))
Prims.Tot
[ "total", "" ]
[ "subst_term", "subst_binder", "subst_comp", "subst_terms", "subst_args", "subst_patterns", "subst_pattern", "subst_branch", "subst_branches", "subst_match_returns" ]
[ "Prims.list", "FStar.Pervasives.Native.tuple2", "FStar.Stubs.Reflection.V2.Data.pattern", "Prims.bool", "FStar.Reflection.Typing.subst", "Prims.Cons", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.Typing.subst_patterns", "FStar.Reflection.Typing.shift_subst_n", "FStar.Reflection.Typing.subst_pattern", "Prims.nat", "FStar.Reflection.Typing.binder_offset_pattern" ]
[ "mutual recursion" ]
false
false
false
true
false
let rec subst_patterns (ps: list (pattern & bool)) (ss: subst) : Tot (list (pattern & bool)) (decreases ps) =
match ps with | [] -> ps | (p, b) :: ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p, b) :: ps
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.subst_branches
val subst_branches (brs: list branch) (ss: subst) : Tot (list branch) (decreases brs)
val subst_branches (brs: list branch) (ss: subst) : Tot (list branch) (decreases brs)
let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 21, "end_line": 496, "start_col": 0, "start_line": 332 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
brs: Prims.list FStar.Stubs.Reflection.V2.Data.branch -> ss: FStar.Reflection.Typing.subst -> Prims.Tot (Prims.list FStar.Stubs.Reflection.V2.Data.branch)
Prims.Tot
[ "total", "" ]
[ "subst_term", "subst_binder", "subst_comp", "subst_terms", "subst_args", "subst_patterns", "subst_pattern", "subst_branch", "subst_branches", "subst_match_returns" ]
[ "Prims.list", "FStar.Stubs.Reflection.V2.Data.branch", "FStar.Reflection.Typing.subst", "Prims.Nil", "Prims.Cons", "FStar.Reflection.Typing.subst_branch", "FStar.Reflection.Typing.subst_branches" ]
[ "mutual recursion" ]
false
false
false
true
false
let rec subst_branches (brs: list branch) (ss: subst) : Tot (list branch) (decreases brs) =
match brs with | [] -> [] | br :: brs -> subst_branch br ss :: subst_branches brs ss
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.subst_match_returns
val subst_match_returns (m: match_returns_ascription) (ss: subst) : Tot match_returns_ascription (decreases m)
val subst_match_returns (m: match_returns_ascription) (ss: subst) : Tot match_returns_ascription (decreases m)
let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 21, "end_line": 496, "start_col": 0, "start_line": 332 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: FStar.Stubs.Reflection.Types.match_returns_ascription -> ss: FStar.Reflection.Typing.subst -> Prims.Tot FStar.Stubs.Reflection.Types.match_returns_ascription
Prims.Tot
[ "total", "" ]
[ "subst_term", "subst_binder", "subst_comp", "subst_terms", "subst_args", "subst_patterns", "subst_pattern", "subst_branch", "subst_branches", "subst_match_returns" ]
[ "FStar.Stubs.Reflection.Types.match_returns_ascription", "FStar.Reflection.Typing.subst", "FStar.Stubs.Reflection.Types.binder", "FStar.Pervasives.either", "FStar.Stubs.Reflection.Types.term", "FStar.Stubs.Reflection.Types.comp", "FStar.Pervasives.Native.option", "Prims.bool", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.tuple3", "FStar.Pervasives.Native.Mktuple3", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.Some", "FStar.Reflection.Typing.subst_term", "FStar.Reflection.Typing.shift_subst", "FStar.Pervasives.Inl", "FStar.Pervasives.Inr", "FStar.Reflection.Typing.subst_comp", "Prims.l_imp", "Prims.b2t", "FStar.Stubs.Reflection.V2.Data.binder_is_simple", "FStar.Reflection.Typing.subst_binder" ]
[ "mutual recursion" ]
false
false
false
true
false
let rec subst_match_returns (m: match_returns_ascription) (ss: subst) : Tot match_returns_ascription (decreases m) =
let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.simplify_umax
val simplify_umax (#g: R.env) (#t: R.term) (#u: R.universe) (d: typing g t (T.E_Total, tm_type (u_max u u))) : typing g t (T.E_Total, tm_type u)
val simplify_umax (#g: R.env) (#t: R.term) (#u: R.universe) (d: typing g t (T.E_Total, tm_type (u_max u u))) : typing g t (T.E_Total, tm_type u)
let simplify_umax (#g:R.env) (#t:R.term) (#u:R.universe) (d:typing g t (T.E_Total, tm_type (u_max u u))) : typing g t (T.E_Total, tm_type u) = let ue : univ_eq (u_max u u) u = UN_MaxLeq u u (UNLEQ_Refl u) in let du : related g (tm_type (u_max u u)) R_Eq (tm_type u) = Rel_univ g (u_max u u) u ue in let du : related g (tm_type (u_max u u)) R_Sub (tm_type u) = Rel_equiv _ _ _ _ du in T_Sub _ _ _ _ d (Relc_typ _ _ _ T.E_Total _ du)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 52, "end_line": 1524, "start_col": 0, "start_line": 1513 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t let bindings_to_refl_bindings (bs : list binding) : list R.binding = L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs let refl_bindings_to_bindings (bs : list R.binding) : list binding = L.map (fun b -> b.uniq, b.sort) bs [@@ no_auto_projectors] noeq type non_informative : env -> term -> Type0 = | Non_informative_type: g:env -> u:universe -> non_informative g (pack_ln (Tv_Type u)) | Non_informative_fv: g:env -> x:fv{is_non_informative_fv x} -> non_informative g (pack_ln (Tv_FVar x)) | Non_informative_uinst: g:env -> x:fv{is_non_informative_fv x} -> us:list universe -> non_informative g (pack_ln (Tv_UInst x us)) | Non_informative_app: g:env -> t:term -> arg:argv -> non_informative g t -> non_informative g (pack_ln (Tv_App t arg)) | Non_informative_total_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g t1 -> non_informative g (mk_arrow_ct t0 q (T.E_Total, t1)) | Non_informative_ghost_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1)) | Non_informative_token: g:env -> t:typ -> squash (T.non_informative_token g t) -> non_informative g t val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0 val bindings_ok_pat_constant : g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c)) let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 = bindings_ok_for_pat g bs (fst br) let bindings_ok_for_branch_N (g:env) (bss : list (list R.binding)) (brs : list branch) = zip2prop (bindings_ok_for_branch g) bss brs let binding_to_namedv (b:R.binding) : Tot namedv = pack_namedv { RD.uniq = b.uniq; RD.sort = seal b.sort; RD.ppname = b.ppname; } (* Elaborates the p pattern into a term, using the bs bindings for the pattern variables. The resulting term is properly scoped only on an environment which contains all of bs. See for instance the branch_typing judg. Returns an option, since this can fail if e.g. there are not enough bindings, and returns the list of unused binders as well, which should be empty if the list of binding was indeed ok. *) let rec elaborate_pat (p : pattern) (bs : list R.binding) : Tot (option (term & list R.binding)) (decreases p) = match p, bs with | Pat_Constant c, _ -> Some (pack_ln (Tv_Const c), bs) | Pat_Cons fv univs subpats, bs -> let head = pack_ln (Tv_FVar fv) in fold_left_dec (Some (head, bs)) subpats (fun st pi -> let (p,i) = pi in match st with | None -> None | Some (head, bs) -> match elaborate_pat p bs with | None -> None | Some (t, bs') -> Some (pack_ln (Tv_App head (t, (if i then Q_Implicit else Q_Explicit))), bs')) | Pat_Var _ _, b::bs -> Some (pack_ln (Tv_Var (binding_to_namedv b)), bs) | Pat_Dot_Term (Some t), _ -> Some (t, bs) | Pat_Dot_Term None, _ -> None | _ -> None [@@ no_auto_projectors] noeq type typing : env -> term -> comp_typ -> Type0 = | T_Token : g:env -> e:term -> c:comp_typ -> squash (T.typing_token g e c) -> typing g e c | T_Var : g:env -> x:namedv { Some? (lookup_bvar g (namedv_uniq x)) } -> typing g (pack_ln (Tv_Var x)) (T.E_Total, Some?.v (lookup_bvar g (namedv_uniq x))) | T_FVar : g:env -> x:fv { Some? (lookup_fvar g x) } -> typing g (pack_ln (Tv_FVar x)) (T.E_Total, Some?.v (lookup_fvar g x)) | T_UInst : g:env -> x:fv -> us:list universe { Some? (lookup_fvar_uinst g x us) } -> typing g (pack_ln (Tv_UInst x us)) (T.E_Total, Some?.v (lookup_fvar_uinst g x us)) | T_Const: g:env -> v:vconst -> t:term -> constant_typing v t -> typing g (constant_as_term v) (T.E_Total, t) | T_Abs : g:env -> x:var { None? (lookup_bvar g x) } -> ty:term -> body:term { ~(x `Set.mem` freevars body) } -> body_c:comp_typ -> u:universe -> pp_name:pp_name_t -> q:aqualv -> ty_eff:T.tot_or_ghost -> typing g ty (ty_eff, tm_type u) -> typing (extend_env g x ty) (open_term body x) body_c -> typing g (pack_ln (Tv_Abs (mk_binder pp_name ty q) body)) (T.E_Total, pack_ln (Tv_Arrow (mk_binder pp_name ty q) (mk_comp (close_comp_typ body_c x)))) | T_App : g:env -> e1:term -> e2:term -> x:binder -> t:term -> eff:T.tot_or_ghost -> typing g e1 (eff, pack_ln (Tv_Arrow x (mk_comp (eff, t)))) -> typing g e2 (eff, binder_sort x) -> typing g (pack_ln (Tv_App e1 (e2, binder_qual x))) (eff, open_with t e2) | T_Let: g:env -> x:var { None? (lookup_bvar g x) } -> e1:term -> t1:typ -> e2:term -> t2:typ -> eff:T.tot_or_ghost -> pp_name:pp_name_t -> typing g e1 (eff, t1) -> typing (extend_env g x t1) (open_term e2 x) (eff, t2) -> typing g (mk_let pp_name e1 t1 e2) (eff, open_with (close_term t2 x) e1) | T_Arrow: g:env -> x:var { None? (lookup_bvar g x) } -> t1:term -> t2:term { ~(x `Set.mem` freevars t2) } -> u1:universe -> u2:universe -> pp_name:pp_name_t -> q:aqualv -> eff:T.tot_or_ghost -> t1_eff:T.tot_or_ghost -> t2_eff:T.tot_or_ghost -> typing g t1 (t1_eff, tm_type u1) -> typing (extend_env g x t1) (open_term t2 x) (t2_eff, tm_type u2) -> typing g (pack_ln (Tv_Arrow (mk_binder pp_name t1 q) (mk_comp (eff, t2)))) (T.E_Total, tm_type (u_max u1 u2)) | T_Refine: g:env -> x:var { None? (lookup_bvar g x) } -> t:term -> e:term { ~(x `Set.mem` freevars e) } -> u1:universe -> u2:universe -> t_eff:T.tot_or_ghost -> e_eff:T.tot_or_ghost -> typing g t (t_eff, tm_type u1) -> typing (extend_env g x t) (open_term e x) (e_eff, tm_type u2) -> typing g (pack_ln (Tv_Refine (mk_simple_binder pp_name_default t) e)) (T.E_Total, tm_type u1) | T_PropIrrelevance: g:env -> e:term -> t:term -> e_eff:T.tot_or_ghost -> t_eff:T.tot_or_ghost -> typing g e (e_eff, t) -> typing g t (t_eff, tm_prop) -> typing g (`()) (T.E_Total, t) | T_Sub: g:env -> e:term -> c:comp_typ -> c':comp_typ -> typing g e c -> sub_comp g c c' -> typing g e c' | T_If: g:env -> scrutinee:term -> then_:term -> else_:term -> ty:term -> u_ty:universe -> hyp:var { None? (lookup_bvar g hyp) /\ ~(hyp `Set.mem` (freevars then_ `Set.union` freevars else_)) } -> eff:T.tot_or_ghost -> ty_eff:T.tot_or_ghost -> typing g scrutinee (eff, bool_ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee true_bool)) then_ (eff, ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee false_bool)) else_ (eff, ty) -> typing g ty (ty_eff, tm_type u_ty) -> //typedness of ty cannot rely on hyp typing g (mk_if scrutinee then_ else_) (eff, ty) | T_Match: g:env -> sc_u : universe -> sc_ty : typ -> sc : term -> ty_eff:T.tot_or_ghost -> typing g sc_ty (ty_eff, tm_type sc_u) -> eff:T.tot_or_ghost -> typing g sc (eff, sc_ty) -> branches:list branch -> ty:comp_typ -> bnds:list (list R.binding) -> complet : match_is_complete g sc sc_ty (List.Tot.map fst branches) bnds -> // complete patterns branches_typing g sc_u sc_ty sc ty branches bnds -> // each branch has proper type typing g (pack_ln (Tv_Match sc None branches)) ty and related : env -> term -> relation -> term -> Type0 = | Rel_refl: g:env -> t:term -> rel:relation -> related g t rel t | Rel_sym: g:env -> t0:term -> t1:term -> related g t0 R_Eq t1 -> related g t1 R_Eq t0 | Rel_trans: g:env -> t0:term -> t1:term -> t2:term -> rel:relation -> related g t0 rel t1 -> related g t1 rel t2 -> related g t0 rel t2 | Rel_univ: g:env -> u:universe -> v:universe -> univ_eq u v -> related g (tm_type u) R_Eq (tm_type v) | Rel_beta: g:env -> t:typ -> q:aqualv -> e:term { ln' e 0 } -> arg:term { ln arg } -> related g (R.pack_ln (R.Tv_App (mk_abs t q e) (arg, q))) R_Eq (subst_term e [ DT 0 arg ]) | Rel_eq_token: g:env -> t0:term -> t1:term -> squash (T.equiv_token g t0 t1) -> related g t0 R_Eq t1 | Rel_subtyping_token: g:env -> t0:term -> t1:term -> squash (T.subtyping_token g t0 t1) -> related g t0 R_Sub t1 | Rel_equiv: g:env -> t0:term -> t1:term -> rel:relation -> related g t0 R_Eq t1 -> related g t0 rel t1 | Rel_arrow: g:env -> t1:term -> t2:term -> q:aqualv -> c1:comp_typ -> c2:comp_typ -> rel:relation -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars_comp_typ c1 `Set.union` freevars_comp_typ c2)) } -> related g t2 rel t1 -> related_comp (extend_env g x t2) (open_comp_typ c1 x) rel (open_comp_typ c2 x) -> related g (mk_arrow_ct t1 q c1) rel (mk_arrow_ct t2 q c2) | Rel_abs: g:env -> t1:term -> t2:term -> q:aqualv -> e1:term -> e2:term -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars e1 `Set.union` freevars e2)) } -> related g t1 R_Eq t2 -> related (extend_env g x t1) (subst_term e1 (open_with_var x 0)) R_Eq (subst_term e2 (open_with_var x 0)) -> related g (mk_abs t1 q e1) R_Eq (mk_abs t2 q e2) | Rel_ctxt: g:env -> t0:term -> t1:term -> ctxt:term_ctxt -> related g t0 R_Eq t1 -> related g (apply_term_ctxt ctxt t0) R_Eq (apply_term_ctxt ctxt t1) and related_comp : env -> comp_typ -> relation -> comp_typ -> Type0 = | Relc_typ: g:env -> t0:term -> t1:term -> eff:T.tot_or_ghost -> rel:relation -> related g t0 rel t1 -> related_comp g (eff, t0) rel (eff, t1) | Relc_total_ghost: g:env -> t:term -> related_comp g (T.E_Total, t) R_Sub (T.E_Ghost, t) | Relc_ghost_total: g:env -> t:term -> non_informative g t -> related_comp g (T.E_Ghost, t) R_Sub (T.E_Total, t) and branches_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (brs:list branch) -> (bnds : list (list R.binding)) -> Type0 = (* This judgement only enforces that branch_typing holds for every element of brs and its respective bnds (which must have the same length). *) | BT_Nil : branches_typing g sc_u sc_ty sc rty [] [] | BT_S : br : branch -> bnds : list R.binding -> pf : branch_typing g sc_u sc_ty sc rty br bnds -> rest_br : list branch -> rest_bnds : list (list R.binding) -> rest : branches_typing g sc_u sc_ty sc rty rest_br rest_bnds -> branches_typing g sc_u sc_ty sc rty (br :: rest_br) (bnds :: rest_bnds) and branch_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (br : branch) -> (bnds : list R.binding) -> Type0 = | BO : pat : pattern -> bnds : list R.binding{bindings_ok_for_pat g bnds pat} -> hyp_var:var{None? (lookup_bvar (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var)} -> body:term -> _ : squash (Some? (elaborate_pat pat bnds)) -> typing (extend_env (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var (eq2 sc_u sc_ty sc (fst (Some?.v (elaborate_pat pat bnds)))) ) body rty -> branch_typing g sc_u sc_ty sc rty (pat, close_term_bs (refl_bindings_to_bindings bnds) body) bnds and match_is_complete : env -> term -> typ -> list pattern -> list (list R.binding) -> Type0 = | MC_Tok : env:_ -> sc:_ -> ty:_ -> pats:_ -> bnds:_ -> squash (T.match_complete_token env sc ty pats bnds) -> match_is_complete env sc ty pats bnds and sub_typing (g:env) (t1 t2:term) = related g t1 R_Sub t2 and sub_comp (g:env) (c1 c2:comp_typ) = related_comp g c1 R_Sub c2 and equiv (g:env) (t1 t2:term) = related g t1 R_Eq t2 type tot_typing (g:env) (e:term) (t:term) = typing g e (T.E_Total, t) type ghost_typing (g:env) (e:term) (t:term) = typing g e (T.E_Ghost, t) val subtyping_token_renaming (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (y:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) y) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1) : T.subtyping_token (extend_env_l g (rename_bindings bs1 x y@(y,t)::bs0)) (rename t0 x y) (rename t1 x y) val subtyping_token_weakening (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@bs0)) t0 t1) : T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
d: FStar.Reflection.Typing.typing g t (FStar.Stubs.TypeChecker.Core.E_Total, FStar.Reflection.Typing.tm_type (FStar.Reflection.Typing.u_max u2359 u2359)) -> FStar.Reflection.Typing.typing g t (FStar.Stubs.TypeChecker.Core.E_Total, FStar.Reflection.Typing.tm_type u2359)
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.env", "FStar.Stubs.Reflection.Types.term", "FStar.Stubs.Reflection.Types.universe", "FStar.Reflection.Typing.typing", "FStar.Pervasives.Native.Mktuple2", "FStar.Stubs.TypeChecker.Core.tot_or_ghost", "FStar.Stubs.Reflection.Types.typ", "FStar.Stubs.TypeChecker.Core.E_Total", "FStar.Reflection.Typing.tm_type", "FStar.Reflection.Typing.u_max", "FStar.Reflection.Typing.T_Sub", "FStar.Reflection.Typing.Relc_typ", "FStar.Reflection.Typing.R_Sub", "FStar.Reflection.Typing.related", "FStar.Reflection.Typing.Rel_equiv", "FStar.Reflection.Typing.R_Eq", "FStar.Reflection.Typing.Rel_univ", "FStar.Reflection.Typing.univ_eq", "FStar.Reflection.Typing.UN_MaxLeq", "FStar.Reflection.Typing.UNLEQ_Refl" ]
[]
false
false
false
false
false
let simplify_umax (#g: R.env) (#t: R.term) (#u: R.universe) (d: typing g t (T.E_Total, tm_type (u_max u u))) : typing g t (T.E_Total, tm_type u) =
let ue:univ_eq (u_max u u) u = UN_MaxLeq u u (UNLEQ_Refl u) in let du:related g (tm_type (u_max u u)) R_Eq (tm_type u) = Rel_univ g (u_max u u) u ue in let du:related g (tm_type (u_max u u)) R_Sub (tm_type u) = Rel_equiv _ _ _ _ du in T_Sub _ _ _ _ d (Relc_typ _ _ _ T.E_Total _ du)
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.__close_term_vs
val __close_term_vs (i: nat) (vs: list var) (t: term) : Tot term (decreases vs)
val __close_term_vs (i: nat) (vs: list var) (t: term) : Tot term (decreases vs)
let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i]
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 52, "end_line": 1042, "start_col": 0, "start_line": 1038 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: Prims.nat -> vs: Prims.list FStar.Stubs.Reflection.V2.Data.var -> t: FStar.Stubs.Reflection.Types.term -> Prims.Tot FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total", "" ]
[]
[ "Prims.nat", "Prims.list", "FStar.Stubs.Reflection.V2.Data.var", "FStar.Stubs.Reflection.Types.term", "FStar.Reflection.Typing.subst_term", "FStar.Reflection.Typing.__close_term_vs", "Prims.op_Addition", "Prims.Cons", "FStar.Reflection.Typing.subst_elt", "FStar.Reflection.Typing.ND", "Prims.Nil" ]
[ "recursion" ]
false
false
false
true
false
let rec __close_term_vs (i: nat) (vs: list var) (t: term) : Tot term (decreases vs) =
match vs with | [] -> t | v :: vs -> subst_term (__close_term_vs (i + 1) vs t) [ND v i]
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.fstar_env_fvs
val fstar_env_fvs : g: FStar.Stubs.Reflection.Types.env -> Prims.logical
let fstar_env_fvs (g:R.env) = lookup_fvar g unit_fv == Some (tm_type u_zero) /\ lookup_fvar g bool_fv == Some (tm_type u_zero) /\ lookup_fvar g b2t_fv == Some b2t_ty
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 1741, "start_col": 0, "start_line": 1738 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t let bindings_to_refl_bindings (bs : list binding) : list R.binding = L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs let refl_bindings_to_bindings (bs : list R.binding) : list binding = L.map (fun b -> b.uniq, b.sort) bs [@@ no_auto_projectors] noeq type non_informative : env -> term -> Type0 = | Non_informative_type: g:env -> u:universe -> non_informative g (pack_ln (Tv_Type u)) | Non_informative_fv: g:env -> x:fv{is_non_informative_fv x} -> non_informative g (pack_ln (Tv_FVar x)) | Non_informative_uinst: g:env -> x:fv{is_non_informative_fv x} -> us:list universe -> non_informative g (pack_ln (Tv_UInst x us)) | Non_informative_app: g:env -> t:term -> arg:argv -> non_informative g t -> non_informative g (pack_ln (Tv_App t arg)) | Non_informative_total_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g t1 -> non_informative g (mk_arrow_ct t0 q (T.E_Total, t1)) | Non_informative_ghost_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1)) | Non_informative_token: g:env -> t:typ -> squash (T.non_informative_token g t) -> non_informative g t val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0 val bindings_ok_pat_constant : g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c)) let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 = bindings_ok_for_pat g bs (fst br) let bindings_ok_for_branch_N (g:env) (bss : list (list R.binding)) (brs : list branch) = zip2prop (bindings_ok_for_branch g) bss brs let binding_to_namedv (b:R.binding) : Tot namedv = pack_namedv { RD.uniq = b.uniq; RD.sort = seal b.sort; RD.ppname = b.ppname; } (* Elaborates the p pattern into a term, using the bs bindings for the pattern variables. The resulting term is properly scoped only on an environment which contains all of bs. See for instance the branch_typing judg. Returns an option, since this can fail if e.g. there are not enough bindings, and returns the list of unused binders as well, which should be empty if the list of binding was indeed ok. *) let rec elaborate_pat (p : pattern) (bs : list R.binding) : Tot (option (term & list R.binding)) (decreases p) = match p, bs with | Pat_Constant c, _ -> Some (pack_ln (Tv_Const c), bs) | Pat_Cons fv univs subpats, bs -> let head = pack_ln (Tv_FVar fv) in fold_left_dec (Some (head, bs)) subpats (fun st pi -> let (p,i) = pi in match st with | None -> None | Some (head, bs) -> match elaborate_pat p bs with | None -> None | Some (t, bs') -> Some (pack_ln (Tv_App head (t, (if i then Q_Implicit else Q_Explicit))), bs')) | Pat_Var _ _, b::bs -> Some (pack_ln (Tv_Var (binding_to_namedv b)), bs) | Pat_Dot_Term (Some t), _ -> Some (t, bs) | Pat_Dot_Term None, _ -> None | _ -> None [@@ no_auto_projectors] noeq type typing : env -> term -> comp_typ -> Type0 = | T_Token : g:env -> e:term -> c:comp_typ -> squash (T.typing_token g e c) -> typing g e c | T_Var : g:env -> x:namedv { Some? (lookup_bvar g (namedv_uniq x)) } -> typing g (pack_ln (Tv_Var x)) (T.E_Total, Some?.v (lookup_bvar g (namedv_uniq x))) | T_FVar : g:env -> x:fv { Some? (lookup_fvar g x) } -> typing g (pack_ln (Tv_FVar x)) (T.E_Total, Some?.v (lookup_fvar g x)) | T_UInst : g:env -> x:fv -> us:list universe { Some? (lookup_fvar_uinst g x us) } -> typing g (pack_ln (Tv_UInst x us)) (T.E_Total, Some?.v (lookup_fvar_uinst g x us)) | T_Const: g:env -> v:vconst -> t:term -> constant_typing v t -> typing g (constant_as_term v) (T.E_Total, t) | T_Abs : g:env -> x:var { None? (lookup_bvar g x) } -> ty:term -> body:term { ~(x `Set.mem` freevars body) } -> body_c:comp_typ -> u:universe -> pp_name:pp_name_t -> q:aqualv -> ty_eff:T.tot_or_ghost -> typing g ty (ty_eff, tm_type u) -> typing (extend_env g x ty) (open_term body x) body_c -> typing g (pack_ln (Tv_Abs (mk_binder pp_name ty q) body)) (T.E_Total, pack_ln (Tv_Arrow (mk_binder pp_name ty q) (mk_comp (close_comp_typ body_c x)))) | T_App : g:env -> e1:term -> e2:term -> x:binder -> t:term -> eff:T.tot_or_ghost -> typing g e1 (eff, pack_ln (Tv_Arrow x (mk_comp (eff, t)))) -> typing g e2 (eff, binder_sort x) -> typing g (pack_ln (Tv_App e1 (e2, binder_qual x))) (eff, open_with t e2) | T_Let: g:env -> x:var { None? (lookup_bvar g x) } -> e1:term -> t1:typ -> e2:term -> t2:typ -> eff:T.tot_or_ghost -> pp_name:pp_name_t -> typing g e1 (eff, t1) -> typing (extend_env g x t1) (open_term e2 x) (eff, t2) -> typing g (mk_let pp_name e1 t1 e2) (eff, open_with (close_term t2 x) e1) | T_Arrow: g:env -> x:var { None? (lookup_bvar g x) } -> t1:term -> t2:term { ~(x `Set.mem` freevars t2) } -> u1:universe -> u2:universe -> pp_name:pp_name_t -> q:aqualv -> eff:T.tot_or_ghost -> t1_eff:T.tot_or_ghost -> t2_eff:T.tot_or_ghost -> typing g t1 (t1_eff, tm_type u1) -> typing (extend_env g x t1) (open_term t2 x) (t2_eff, tm_type u2) -> typing g (pack_ln (Tv_Arrow (mk_binder pp_name t1 q) (mk_comp (eff, t2)))) (T.E_Total, tm_type (u_max u1 u2)) | T_Refine: g:env -> x:var { None? (lookup_bvar g x) } -> t:term -> e:term { ~(x `Set.mem` freevars e) } -> u1:universe -> u2:universe -> t_eff:T.tot_or_ghost -> e_eff:T.tot_or_ghost -> typing g t (t_eff, tm_type u1) -> typing (extend_env g x t) (open_term e x) (e_eff, tm_type u2) -> typing g (pack_ln (Tv_Refine (mk_simple_binder pp_name_default t) e)) (T.E_Total, tm_type u1) | T_PropIrrelevance: g:env -> e:term -> t:term -> e_eff:T.tot_or_ghost -> t_eff:T.tot_or_ghost -> typing g e (e_eff, t) -> typing g t (t_eff, tm_prop) -> typing g (`()) (T.E_Total, t) | T_Sub: g:env -> e:term -> c:comp_typ -> c':comp_typ -> typing g e c -> sub_comp g c c' -> typing g e c' | T_If: g:env -> scrutinee:term -> then_:term -> else_:term -> ty:term -> u_ty:universe -> hyp:var { None? (lookup_bvar g hyp) /\ ~(hyp `Set.mem` (freevars then_ `Set.union` freevars else_)) } -> eff:T.tot_or_ghost -> ty_eff:T.tot_or_ghost -> typing g scrutinee (eff, bool_ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee true_bool)) then_ (eff, ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee false_bool)) else_ (eff, ty) -> typing g ty (ty_eff, tm_type u_ty) -> //typedness of ty cannot rely on hyp typing g (mk_if scrutinee then_ else_) (eff, ty) | T_Match: g:env -> sc_u : universe -> sc_ty : typ -> sc : term -> ty_eff:T.tot_or_ghost -> typing g sc_ty (ty_eff, tm_type sc_u) -> eff:T.tot_or_ghost -> typing g sc (eff, sc_ty) -> branches:list branch -> ty:comp_typ -> bnds:list (list R.binding) -> complet : match_is_complete g sc sc_ty (List.Tot.map fst branches) bnds -> // complete patterns branches_typing g sc_u sc_ty sc ty branches bnds -> // each branch has proper type typing g (pack_ln (Tv_Match sc None branches)) ty and related : env -> term -> relation -> term -> Type0 = | Rel_refl: g:env -> t:term -> rel:relation -> related g t rel t | Rel_sym: g:env -> t0:term -> t1:term -> related g t0 R_Eq t1 -> related g t1 R_Eq t0 | Rel_trans: g:env -> t0:term -> t1:term -> t2:term -> rel:relation -> related g t0 rel t1 -> related g t1 rel t2 -> related g t0 rel t2 | Rel_univ: g:env -> u:universe -> v:universe -> univ_eq u v -> related g (tm_type u) R_Eq (tm_type v) | Rel_beta: g:env -> t:typ -> q:aqualv -> e:term { ln' e 0 } -> arg:term { ln arg } -> related g (R.pack_ln (R.Tv_App (mk_abs t q e) (arg, q))) R_Eq (subst_term e [ DT 0 arg ]) | Rel_eq_token: g:env -> t0:term -> t1:term -> squash (T.equiv_token g t0 t1) -> related g t0 R_Eq t1 | Rel_subtyping_token: g:env -> t0:term -> t1:term -> squash (T.subtyping_token g t0 t1) -> related g t0 R_Sub t1 | Rel_equiv: g:env -> t0:term -> t1:term -> rel:relation -> related g t0 R_Eq t1 -> related g t0 rel t1 | Rel_arrow: g:env -> t1:term -> t2:term -> q:aqualv -> c1:comp_typ -> c2:comp_typ -> rel:relation -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars_comp_typ c1 `Set.union` freevars_comp_typ c2)) } -> related g t2 rel t1 -> related_comp (extend_env g x t2) (open_comp_typ c1 x) rel (open_comp_typ c2 x) -> related g (mk_arrow_ct t1 q c1) rel (mk_arrow_ct t2 q c2) | Rel_abs: g:env -> t1:term -> t2:term -> q:aqualv -> e1:term -> e2:term -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars e1 `Set.union` freevars e2)) } -> related g t1 R_Eq t2 -> related (extend_env g x t1) (subst_term e1 (open_with_var x 0)) R_Eq (subst_term e2 (open_with_var x 0)) -> related g (mk_abs t1 q e1) R_Eq (mk_abs t2 q e2) | Rel_ctxt: g:env -> t0:term -> t1:term -> ctxt:term_ctxt -> related g t0 R_Eq t1 -> related g (apply_term_ctxt ctxt t0) R_Eq (apply_term_ctxt ctxt t1) and related_comp : env -> comp_typ -> relation -> comp_typ -> Type0 = | Relc_typ: g:env -> t0:term -> t1:term -> eff:T.tot_or_ghost -> rel:relation -> related g t0 rel t1 -> related_comp g (eff, t0) rel (eff, t1) | Relc_total_ghost: g:env -> t:term -> related_comp g (T.E_Total, t) R_Sub (T.E_Ghost, t) | Relc_ghost_total: g:env -> t:term -> non_informative g t -> related_comp g (T.E_Ghost, t) R_Sub (T.E_Total, t) and branches_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (brs:list branch) -> (bnds : list (list R.binding)) -> Type0 = (* This judgement only enforces that branch_typing holds for every element of brs and its respective bnds (which must have the same length). *) | BT_Nil : branches_typing g sc_u sc_ty sc rty [] [] | BT_S : br : branch -> bnds : list R.binding -> pf : branch_typing g sc_u sc_ty sc rty br bnds -> rest_br : list branch -> rest_bnds : list (list R.binding) -> rest : branches_typing g sc_u sc_ty sc rty rest_br rest_bnds -> branches_typing g sc_u sc_ty sc rty (br :: rest_br) (bnds :: rest_bnds) and branch_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (br : branch) -> (bnds : list R.binding) -> Type0 = | BO : pat : pattern -> bnds : list R.binding{bindings_ok_for_pat g bnds pat} -> hyp_var:var{None? (lookup_bvar (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var)} -> body:term -> _ : squash (Some? (elaborate_pat pat bnds)) -> typing (extend_env (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var (eq2 sc_u sc_ty sc (fst (Some?.v (elaborate_pat pat bnds)))) ) body rty -> branch_typing g sc_u sc_ty sc rty (pat, close_term_bs (refl_bindings_to_bindings bnds) body) bnds and match_is_complete : env -> term -> typ -> list pattern -> list (list R.binding) -> Type0 = | MC_Tok : env:_ -> sc:_ -> ty:_ -> pats:_ -> bnds:_ -> squash (T.match_complete_token env sc ty pats bnds) -> match_is_complete env sc ty pats bnds and sub_typing (g:env) (t1 t2:term) = related g t1 R_Sub t2 and sub_comp (g:env) (c1 c2:comp_typ) = related_comp g c1 R_Sub c2 and equiv (g:env) (t1 t2:term) = related g t1 R_Eq t2 type tot_typing (g:env) (e:term) (t:term) = typing g e (T.E_Total, t) type ghost_typing (g:env) (e:term) (t:term) = typing g e (T.E_Ghost, t) val subtyping_token_renaming (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (y:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) y) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1) : T.subtyping_token (extend_env_l g (rename_bindings bs1 x y@(y,t)::bs0)) (rename t0 x y) (rename t1 x y) val subtyping_token_weakening (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@bs0)) t0 t1) : T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1 let simplify_umax (#g:R.env) (#t:R.term) (#u:R.universe) (d:typing g t (T.E_Total, tm_type (u_max u u))) : typing g t (T.E_Total, tm_type u) = let ue : univ_eq (u_max u u) u = UN_MaxLeq u u (UNLEQ_Refl u) in let du : related g (tm_type (u_max u u)) R_Eq (tm_type u) = Rel_univ g (u_max u u) u ue in let du : related g (tm_type (u_max u u)) R_Sub (tm_type u) = Rel_equiv _ _ _ _ du in T_Sub _ _ _ _ d (Relc_typ _ _ _ T.E_Total _ du) val well_typed_terms_are_ln (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c) : Lemma (ensures ln e /\ ln (snd c)) val type_correctness (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c) : GTot (u:R.universe & typing g (snd c) (T.E_Total, tm_type u)) val binder_offset_pattern_invariant (p:pattern) (ss:subst) : Lemma (binder_offset_pattern p == binder_offset_pattern (subst_pattern p ss)) val binder_offset_patterns_invariant (p:list (pattern & bool)) (ss:subst) : Lemma (binder_offset_patterns p == binder_offset_patterns (subst_patterns p ss)) val open_close_inverse' (i:nat) (t:term { ln' t (i - 1) }) (x:var) : Lemma (ensures subst_term (subst_term t [ ND x i ]) (open_with_var x i) == t) val open_close_inverse'_binder (i:nat) (b:binder { ln'_binder b (i - 1) }) (x:var) : Lemma (ensures subst_binder (subst_binder b [ ND x i ]) (open_with_var x i) == b) val open_close_inverse'_terms (i:nat) (ts:list term { ln'_terms ts (i - 1) }) (x:var) : Lemma (ensures subst_terms (subst_terms ts [ ND x i ]) (open_with_var x i) == ts) val open_close_inverse'_comp (i:nat) (c:comp { ln'_comp c (i - 1) }) (x:var) : Lemma (ensures subst_comp (subst_comp c [ ND x i ]) (open_with_var x i) == c) val open_close_inverse'_args (i:nat) (ts:list argv { ln'_args ts (i - 1) }) (x:var) : Lemma (ensures subst_args (subst_args ts [ ND x i ]) (open_with_var x i) == ts) val open_close_inverse'_patterns (i:nat) (ps:list (pattern & bool) { ln'_patterns ps (i - 1) }) (x:var) : Lemma (ensures subst_patterns (subst_patterns ps [ ND x i ]) (open_with_var x i) == ps) val open_close_inverse'_pattern (i:nat) (p:pattern{ln'_pattern p (i - 1)}) (x:var) : Lemma (ensures subst_pattern (subst_pattern p [ ND x i ]) (open_with_var x i) == p) val open_close_inverse'_branch (i:nat) (br:branch{ln'_branch br (i - 1)}) (x:var) : Lemma (ensures subst_branch (subst_branch br [ ND x i ]) (open_with_var x i) == br) val open_close_inverse'_branches (i:nat) (brs:list branch { ln'_branches brs (i - 1) }) (x:var) : Lemma (ensures subst_branches (subst_branches brs [ ND x i ]) (open_with_var x i) == brs) val open_close_inverse'_match_returns (i:nat) (m:match_returns_ascription { ln'_match_returns m (i - 1) }) (x:var) : Lemma (ensures subst_match_returns (subst_match_returns m [ ND x i ]) (open_with_var x i) == m) val open_close_inverse (e:R.term { ln e }) (x:var) : Lemma (open_term (close_term e x) x == e) val close_open_inverse' (i:nat) (t:term) (x:var { ~(x `Set.mem` freevars t) }) : Lemma (ensures subst_term (subst_term t (open_with_var x i)) [ ND x i ] == t) val close_open_inverse'_comp (i:nat) (c:comp) (x:var{ ~(x `Set.mem` freevars_comp c) }) : Lemma (ensures subst_comp (subst_comp c (open_with_var x i)) [ ND x i ] == c) val close_open_inverse'_args (i:nat) (args:list argv) (x:var{ ~(x `Set.mem` freevars_args args) }) : Lemma (ensures subst_args (subst_args args (open_with_var x i)) [ ND x i] == args) val close_open_inverse'_binder (i:nat) (b:binder) (x:var{ ~(x `Set.mem` freevars_binder b) }) : Lemma (ensures subst_binder (subst_binder b (open_with_var x i)) [ ND x i ] == b) val close_open_inverse'_terms (i:nat) (ts:list term) (x:var{ ~(x `Set.mem` freevars_terms ts) }) : Lemma (ensures subst_terms (subst_terms ts (open_with_var x i)) [ ND x i ] == ts) val close_open_inverse'_branches (i:nat) (brs:list branch) (x:var{ ~(x `Set.mem` freevars_branches brs) }) : Lemma (ensures subst_branches (subst_branches brs (open_with_var x i)) [ ND x i ] == brs) val close_open_inverse'_branch (i:nat) (br:branch) (x:var{ ~(x `Set.mem` freevars_branch br) }) : Lemma (ensures subst_branch (subst_branch br (open_with_var x i)) [ ND x i ] == br) val close_open_inverse'_pattern (i:nat) (p:pattern) (x:var{ ~(x `Set.mem` freevars_pattern p) }) : Lemma (ensures subst_pattern (subst_pattern p (open_with_var x i)) [ ND x i ] == p) val close_open_inverse'_patterns (i:nat) (ps:list (pattern & bool)) (x:var {~ (x `Set.mem` freevars_patterns ps) }) : Lemma (ensures subst_patterns (subst_patterns ps (open_with_var x i)) [ ND x i ] == ps) val close_open_inverse'_match_returns (i:nat) (m:match_returns_ascription) (x:var{ ~(x `Set.mem` freevars_match_returns m) }) : Lemma (ensures subst_match_returns (subst_match_returns m (open_with_var x i)) [ ND x i ] == m) val close_open_inverse (e:R.term) (x:var {~ (x `Set.mem` freevars e) }) : Lemma (close_term (open_term e x) x == e) // // fst has corresponding lemmas for other syntax classes // val close_with_not_free_var (t:R.term) (x:var) (i:nat) : Lemma (requires ~ (Set.mem x (freevars t))) (ensures subst_term t [ ND x i ] == t) // this also requires x to be not in freevars e1 `Set.union` freevars e2 val equiv_arrow (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv) (x:var { None? (lookup_bvar g x) }) (eq:equiv (extend_env g x ty) (subst_term e1 (open_with_var x 0)) (subst_term e2 (open_with_var x 0))) : equiv g (mk_arrow ty q e1) (mk_arrow ty q e2) // the proof for this requires e1 and e2 to be ln val equiv_abs_close (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv) (x:var{None? (lookup_bvar g x)}) (eq:equiv (extend_env g x ty) e1 e2) : equiv g (mk_abs ty q (subst_term e1 [ ND x 0 ])) (mk_abs ty q (subst_term e2 [ ND x 0 ])) val open_with_gt_ln (e:term) (i:nat) (t:term) (j:nat) : Lemma (requires ln' e i /\ i < j) (ensures subst_term e [ DT j t ] == e) [SMTPat (ln' e i); SMTPat (subst_term e [ DT j t ])] // // Type of the top-level tactic that would splice-in the definitions //
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: FStar.Stubs.Reflection.Types.env -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.env", "Prims.l_and", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.Stubs.Reflection.Types.term", "FStar.Reflection.Typing.lookup_fvar", "FStar.Reflection.Typing.unit_fv", "FStar.Pervasives.Native.Some", "FStar.Reflection.Typing.tm_type", "FStar.Reflection.Typing.u_zero", "FStar.Reflection.Typing.bool_fv", "FStar.Reflection.Typing.b2t_fv", "FStar.Reflection.Typing.b2t_ty", "Prims.logical" ]
[]
false
false
false
true
true
let fstar_env_fvs (g: R.env) =
lookup_fvar g unit_fv == Some (tm_type u_zero) /\ lookup_fvar g bool_fv == Some (tm_type u_zero) /\ lookup_fvar g b2t_fv == Some b2t_ty
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.extend_env_l
val extend_env_l (g: env) (bs: bindings) : env
val extend_env_l (g: env) (bs: bindings) : env
let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 1025, "start_col": 0, "start_line": 1021 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: FStar.Stubs.Reflection.Types.env -> bs: FStar.Reflection.Typing.bindings -> FStar.Stubs.Reflection.Types.env
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.env", "FStar.Reflection.Typing.bindings", "FStar.Stubs.Reflection.V2.Data.var", "FStar.Stubs.Reflection.Types.term", "Prims.list", "FStar.Reflection.Typing.binding", "FStar.Reflection.Typing.extend_env", "FStar.Reflection.Typing.extend_env_l" ]
[ "recursion" ]
false
false
false
true
false
let rec extend_env_l (g: env) (bs: bindings) : env =
match bs with | [] -> g | (x, t) :: bs -> extend_env (extend_env_l g bs) x t
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.is_non_informative_name
val is_non_informative_name (l: name) : bool
val is_non_informative_name (l: name) : bool
let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"]
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 1033, "start_col": 0, "start_line": 1030 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: FStar.Stubs.Reflection.Types.name -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.name", "Prims.op_BarBar", "Prims.op_Equality", "Prims.list", "Prims.string", "FStar.Reflection.Const.unit_lid", "FStar.Reflection.Const.squash_qn", "Prims.Cons", "Prims.Nil", "Prims.bool" ]
[]
false
false
false
true
false
let is_non_informative_name (l: name) : bool =
l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"]
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.sigelt_for
val sigelt_for : g: FStar.Stubs.Reflection.Types.env -> Type0
let sigelt_for (g:env) = tup:(bool & sigelt & option blob) { let (checked, se, _) = tup in checked ==> sigelt_typing g se }
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 1801, "start_col": 0, "start_line": 1796 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t let bindings_to_refl_bindings (bs : list binding) : list R.binding = L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs let refl_bindings_to_bindings (bs : list R.binding) : list binding = L.map (fun b -> b.uniq, b.sort) bs [@@ no_auto_projectors] noeq type non_informative : env -> term -> Type0 = | Non_informative_type: g:env -> u:universe -> non_informative g (pack_ln (Tv_Type u)) | Non_informative_fv: g:env -> x:fv{is_non_informative_fv x} -> non_informative g (pack_ln (Tv_FVar x)) | Non_informative_uinst: g:env -> x:fv{is_non_informative_fv x} -> us:list universe -> non_informative g (pack_ln (Tv_UInst x us)) | Non_informative_app: g:env -> t:term -> arg:argv -> non_informative g t -> non_informative g (pack_ln (Tv_App t arg)) | Non_informative_total_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g t1 -> non_informative g (mk_arrow_ct t0 q (T.E_Total, t1)) | Non_informative_ghost_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1)) | Non_informative_token: g:env -> t:typ -> squash (T.non_informative_token g t) -> non_informative g t val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0 val bindings_ok_pat_constant : g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c)) let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 = bindings_ok_for_pat g bs (fst br) let bindings_ok_for_branch_N (g:env) (bss : list (list R.binding)) (brs : list branch) = zip2prop (bindings_ok_for_branch g) bss brs let binding_to_namedv (b:R.binding) : Tot namedv = pack_namedv { RD.uniq = b.uniq; RD.sort = seal b.sort; RD.ppname = b.ppname; } (* Elaborates the p pattern into a term, using the bs bindings for the pattern variables. The resulting term is properly scoped only on an environment which contains all of bs. See for instance the branch_typing judg. Returns an option, since this can fail if e.g. there are not enough bindings, and returns the list of unused binders as well, which should be empty if the list of binding was indeed ok. *) let rec elaborate_pat (p : pattern) (bs : list R.binding) : Tot (option (term & list R.binding)) (decreases p) = match p, bs with | Pat_Constant c, _ -> Some (pack_ln (Tv_Const c), bs) | Pat_Cons fv univs subpats, bs -> let head = pack_ln (Tv_FVar fv) in fold_left_dec (Some (head, bs)) subpats (fun st pi -> let (p,i) = pi in match st with | None -> None | Some (head, bs) -> match elaborate_pat p bs with | None -> None | Some (t, bs') -> Some (pack_ln (Tv_App head (t, (if i then Q_Implicit else Q_Explicit))), bs')) | Pat_Var _ _, b::bs -> Some (pack_ln (Tv_Var (binding_to_namedv b)), bs) | Pat_Dot_Term (Some t), _ -> Some (t, bs) | Pat_Dot_Term None, _ -> None | _ -> None [@@ no_auto_projectors] noeq type typing : env -> term -> comp_typ -> Type0 = | T_Token : g:env -> e:term -> c:comp_typ -> squash (T.typing_token g e c) -> typing g e c | T_Var : g:env -> x:namedv { Some? (lookup_bvar g (namedv_uniq x)) } -> typing g (pack_ln (Tv_Var x)) (T.E_Total, Some?.v (lookup_bvar g (namedv_uniq x))) | T_FVar : g:env -> x:fv { Some? (lookup_fvar g x) } -> typing g (pack_ln (Tv_FVar x)) (T.E_Total, Some?.v (lookup_fvar g x)) | T_UInst : g:env -> x:fv -> us:list universe { Some? (lookup_fvar_uinst g x us) } -> typing g (pack_ln (Tv_UInst x us)) (T.E_Total, Some?.v (lookup_fvar_uinst g x us)) | T_Const: g:env -> v:vconst -> t:term -> constant_typing v t -> typing g (constant_as_term v) (T.E_Total, t) | T_Abs : g:env -> x:var { None? (lookup_bvar g x) } -> ty:term -> body:term { ~(x `Set.mem` freevars body) } -> body_c:comp_typ -> u:universe -> pp_name:pp_name_t -> q:aqualv -> ty_eff:T.tot_or_ghost -> typing g ty (ty_eff, tm_type u) -> typing (extend_env g x ty) (open_term body x) body_c -> typing g (pack_ln (Tv_Abs (mk_binder pp_name ty q) body)) (T.E_Total, pack_ln (Tv_Arrow (mk_binder pp_name ty q) (mk_comp (close_comp_typ body_c x)))) | T_App : g:env -> e1:term -> e2:term -> x:binder -> t:term -> eff:T.tot_or_ghost -> typing g e1 (eff, pack_ln (Tv_Arrow x (mk_comp (eff, t)))) -> typing g e2 (eff, binder_sort x) -> typing g (pack_ln (Tv_App e1 (e2, binder_qual x))) (eff, open_with t e2) | T_Let: g:env -> x:var { None? (lookup_bvar g x) } -> e1:term -> t1:typ -> e2:term -> t2:typ -> eff:T.tot_or_ghost -> pp_name:pp_name_t -> typing g e1 (eff, t1) -> typing (extend_env g x t1) (open_term e2 x) (eff, t2) -> typing g (mk_let pp_name e1 t1 e2) (eff, open_with (close_term t2 x) e1) | T_Arrow: g:env -> x:var { None? (lookup_bvar g x) } -> t1:term -> t2:term { ~(x `Set.mem` freevars t2) } -> u1:universe -> u2:universe -> pp_name:pp_name_t -> q:aqualv -> eff:T.tot_or_ghost -> t1_eff:T.tot_or_ghost -> t2_eff:T.tot_or_ghost -> typing g t1 (t1_eff, tm_type u1) -> typing (extend_env g x t1) (open_term t2 x) (t2_eff, tm_type u2) -> typing g (pack_ln (Tv_Arrow (mk_binder pp_name t1 q) (mk_comp (eff, t2)))) (T.E_Total, tm_type (u_max u1 u2)) | T_Refine: g:env -> x:var { None? (lookup_bvar g x) } -> t:term -> e:term { ~(x `Set.mem` freevars e) } -> u1:universe -> u2:universe -> t_eff:T.tot_or_ghost -> e_eff:T.tot_or_ghost -> typing g t (t_eff, tm_type u1) -> typing (extend_env g x t) (open_term e x) (e_eff, tm_type u2) -> typing g (pack_ln (Tv_Refine (mk_simple_binder pp_name_default t) e)) (T.E_Total, tm_type u1) | T_PropIrrelevance: g:env -> e:term -> t:term -> e_eff:T.tot_or_ghost -> t_eff:T.tot_or_ghost -> typing g e (e_eff, t) -> typing g t (t_eff, tm_prop) -> typing g (`()) (T.E_Total, t) | T_Sub: g:env -> e:term -> c:comp_typ -> c':comp_typ -> typing g e c -> sub_comp g c c' -> typing g e c' | T_If: g:env -> scrutinee:term -> then_:term -> else_:term -> ty:term -> u_ty:universe -> hyp:var { None? (lookup_bvar g hyp) /\ ~(hyp `Set.mem` (freevars then_ `Set.union` freevars else_)) } -> eff:T.tot_or_ghost -> ty_eff:T.tot_or_ghost -> typing g scrutinee (eff, bool_ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee true_bool)) then_ (eff, ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee false_bool)) else_ (eff, ty) -> typing g ty (ty_eff, tm_type u_ty) -> //typedness of ty cannot rely on hyp typing g (mk_if scrutinee then_ else_) (eff, ty) | T_Match: g:env -> sc_u : universe -> sc_ty : typ -> sc : term -> ty_eff:T.tot_or_ghost -> typing g sc_ty (ty_eff, tm_type sc_u) -> eff:T.tot_or_ghost -> typing g sc (eff, sc_ty) -> branches:list branch -> ty:comp_typ -> bnds:list (list R.binding) -> complet : match_is_complete g sc sc_ty (List.Tot.map fst branches) bnds -> // complete patterns branches_typing g sc_u sc_ty sc ty branches bnds -> // each branch has proper type typing g (pack_ln (Tv_Match sc None branches)) ty and related : env -> term -> relation -> term -> Type0 = | Rel_refl: g:env -> t:term -> rel:relation -> related g t rel t | Rel_sym: g:env -> t0:term -> t1:term -> related g t0 R_Eq t1 -> related g t1 R_Eq t0 | Rel_trans: g:env -> t0:term -> t1:term -> t2:term -> rel:relation -> related g t0 rel t1 -> related g t1 rel t2 -> related g t0 rel t2 | Rel_univ: g:env -> u:universe -> v:universe -> univ_eq u v -> related g (tm_type u) R_Eq (tm_type v) | Rel_beta: g:env -> t:typ -> q:aqualv -> e:term { ln' e 0 } -> arg:term { ln arg } -> related g (R.pack_ln (R.Tv_App (mk_abs t q e) (arg, q))) R_Eq (subst_term e [ DT 0 arg ]) | Rel_eq_token: g:env -> t0:term -> t1:term -> squash (T.equiv_token g t0 t1) -> related g t0 R_Eq t1 | Rel_subtyping_token: g:env -> t0:term -> t1:term -> squash (T.subtyping_token g t0 t1) -> related g t0 R_Sub t1 | Rel_equiv: g:env -> t0:term -> t1:term -> rel:relation -> related g t0 R_Eq t1 -> related g t0 rel t1 | Rel_arrow: g:env -> t1:term -> t2:term -> q:aqualv -> c1:comp_typ -> c2:comp_typ -> rel:relation -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars_comp_typ c1 `Set.union` freevars_comp_typ c2)) } -> related g t2 rel t1 -> related_comp (extend_env g x t2) (open_comp_typ c1 x) rel (open_comp_typ c2 x) -> related g (mk_arrow_ct t1 q c1) rel (mk_arrow_ct t2 q c2) | Rel_abs: g:env -> t1:term -> t2:term -> q:aqualv -> e1:term -> e2:term -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars e1 `Set.union` freevars e2)) } -> related g t1 R_Eq t2 -> related (extend_env g x t1) (subst_term e1 (open_with_var x 0)) R_Eq (subst_term e2 (open_with_var x 0)) -> related g (mk_abs t1 q e1) R_Eq (mk_abs t2 q e2) | Rel_ctxt: g:env -> t0:term -> t1:term -> ctxt:term_ctxt -> related g t0 R_Eq t1 -> related g (apply_term_ctxt ctxt t0) R_Eq (apply_term_ctxt ctxt t1) and related_comp : env -> comp_typ -> relation -> comp_typ -> Type0 = | Relc_typ: g:env -> t0:term -> t1:term -> eff:T.tot_or_ghost -> rel:relation -> related g t0 rel t1 -> related_comp g (eff, t0) rel (eff, t1) | Relc_total_ghost: g:env -> t:term -> related_comp g (T.E_Total, t) R_Sub (T.E_Ghost, t) | Relc_ghost_total: g:env -> t:term -> non_informative g t -> related_comp g (T.E_Ghost, t) R_Sub (T.E_Total, t) and branches_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (brs:list branch) -> (bnds : list (list R.binding)) -> Type0 = (* This judgement only enforces that branch_typing holds for every element of brs and its respective bnds (which must have the same length). *) | BT_Nil : branches_typing g sc_u sc_ty sc rty [] [] | BT_S : br : branch -> bnds : list R.binding -> pf : branch_typing g sc_u sc_ty sc rty br bnds -> rest_br : list branch -> rest_bnds : list (list R.binding) -> rest : branches_typing g sc_u sc_ty sc rty rest_br rest_bnds -> branches_typing g sc_u sc_ty sc rty (br :: rest_br) (bnds :: rest_bnds) and branch_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (br : branch) -> (bnds : list R.binding) -> Type0 = | BO : pat : pattern -> bnds : list R.binding{bindings_ok_for_pat g bnds pat} -> hyp_var:var{None? (lookup_bvar (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var)} -> body:term -> _ : squash (Some? (elaborate_pat pat bnds)) -> typing (extend_env (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var (eq2 sc_u sc_ty sc (fst (Some?.v (elaborate_pat pat bnds)))) ) body rty -> branch_typing g sc_u sc_ty sc rty (pat, close_term_bs (refl_bindings_to_bindings bnds) body) bnds and match_is_complete : env -> term -> typ -> list pattern -> list (list R.binding) -> Type0 = | MC_Tok : env:_ -> sc:_ -> ty:_ -> pats:_ -> bnds:_ -> squash (T.match_complete_token env sc ty pats bnds) -> match_is_complete env sc ty pats bnds and sub_typing (g:env) (t1 t2:term) = related g t1 R_Sub t2 and sub_comp (g:env) (c1 c2:comp_typ) = related_comp g c1 R_Sub c2 and equiv (g:env) (t1 t2:term) = related g t1 R_Eq t2 type tot_typing (g:env) (e:term) (t:term) = typing g e (T.E_Total, t) type ghost_typing (g:env) (e:term) (t:term) = typing g e (T.E_Ghost, t) val subtyping_token_renaming (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (y:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) y) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1) : T.subtyping_token (extend_env_l g (rename_bindings bs1 x y@(y,t)::bs0)) (rename t0 x y) (rename t1 x y) val subtyping_token_weakening (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@bs0)) t0 t1) : T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1 let simplify_umax (#g:R.env) (#t:R.term) (#u:R.universe) (d:typing g t (T.E_Total, tm_type (u_max u u))) : typing g t (T.E_Total, tm_type u) = let ue : univ_eq (u_max u u) u = UN_MaxLeq u u (UNLEQ_Refl u) in let du : related g (tm_type (u_max u u)) R_Eq (tm_type u) = Rel_univ g (u_max u u) u ue in let du : related g (tm_type (u_max u u)) R_Sub (tm_type u) = Rel_equiv _ _ _ _ du in T_Sub _ _ _ _ d (Relc_typ _ _ _ T.E_Total _ du) val well_typed_terms_are_ln (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c) : Lemma (ensures ln e /\ ln (snd c)) val type_correctness (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c) : GTot (u:R.universe & typing g (snd c) (T.E_Total, tm_type u)) val binder_offset_pattern_invariant (p:pattern) (ss:subst) : Lemma (binder_offset_pattern p == binder_offset_pattern (subst_pattern p ss)) val binder_offset_patterns_invariant (p:list (pattern & bool)) (ss:subst) : Lemma (binder_offset_patterns p == binder_offset_patterns (subst_patterns p ss)) val open_close_inverse' (i:nat) (t:term { ln' t (i - 1) }) (x:var) : Lemma (ensures subst_term (subst_term t [ ND x i ]) (open_with_var x i) == t) val open_close_inverse'_binder (i:nat) (b:binder { ln'_binder b (i - 1) }) (x:var) : Lemma (ensures subst_binder (subst_binder b [ ND x i ]) (open_with_var x i) == b) val open_close_inverse'_terms (i:nat) (ts:list term { ln'_terms ts (i - 1) }) (x:var) : Lemma (ensures subst_terms (subst_terms ts [ ND x i ]) (open_with_var x i) == ts) val open_close_inverse'_comp (i:nat) (c:comp { ln'_comp c (i - 1) }) (x:var) : Lemma (ensures subst_comp (subst_comp c [ ND x i ]) (open_with_var x i) == c) val open_close_inverse'_args (i:nat) (ts:list argv { ln'_args ts (i - 1) }) (x:var) : Lemma (ensures subst_args (subst_args ts [ ND x i ]) (open_with_var x i) == ts) val open_close_inverse'_patterns (i:nat) (ps:list (pattern & bool) { ln'_patterns ps (i - 1) }) (x:var) : Lemma (ensures subst_patterns (subst_patterns ps [ ND x i ]) (open_with_var x i) == ps) val open_close_inverse'_pattern (i:nat) (p:pattern{ln'_pattern p (i - 1)}) (x:var) : Lemma (ensures subst_pattern (subst_pattern p [ ND x i ]) (open_with_var x i) == p) val open_close_inverse'_branch (i:nat) (br:branch{ln'_branch br (i - 1)}) (x:var) : Lemma (ensures subst_branch (subst_branch br [ ND x i ]) (open_with_var x i) == br) val open_close_inverse'_branches (i:nat) (brs:list branch { ln'_branches brs (i - 1) }) (x:var) : Lemma (ensures subst_branches (subst_branches brs [ ND x i ]) (open_with_var x i) == brs) val open_close_inverse'_match_returns (i:nat) (m:match_returns_ascription { ln'_match_returns m (i - 1) }) (x:var) : Lemma (ensures subst_match_returns (subst_match_returns m [ ND x i ]) (open_with_var x i) == m) val open_close_inverse (e:R.term { ln e }) (x:var) : Lemma (open_term (close_term e x) x == e) val close_open_inverse' (i:nat) (t:term) (x:var { ~(x `Set.mem` freevars t) }) : Lemma (ensures subst_term (subst_term t (open_with_var x i)) [ ND x i ] == t) val close_open_inverse'_comp (i:nat) (c:comp) (x:var{ ~(x `Set.mem` freevars_comp c) }) : Lemma (ensures subst_comp (subst_comp c (open_with_var x i)) [ ND x i ] == c) val close_open_inverse'_args (i:nat) (args:list argv) (x:var{ ~(x `Set.mem` freevars_args args) }) : Lemma (ensures subst_args (subst_args args (open_with_var x i)) [ ND x i] == args) val close_open_inverse'_binder (i:nat) (b:binder) (x:var{ ~(x `Set.mem` freevars_binder b) }) : Lemma (ensures subst_binder (subst_binder b (open_with_var x i)) [ ND x i ] == b) val close_open_inverse'_terms (i:nat) (ts:list term) (x:var{ ~(x `Set.mem` freevars_terms ts) }) : Lemma (ensures subst_terms (subst_terms ts (open_with_var x i)) [ ND x i ] == ts) val close_open_inverse'_branches (i:nat) (brs:list branch) (x:var{ ~(x `Set.mem` freevars_branches brs) }) : Lemma (ensures subst_branches (subst_branches brs (open_with_var x i)) [ ND x i ] == brs) val close_open_inverse'_branch (i:nat) (br:branch) (x:var{ ~(x `Set.mem` freevars_branch br) }) : Lemma (ensures subst_branch (subst_branch br (open_with_var x i)) [ ND x i ] == br) val close_open_inverse'_pattern (i:nat) (p:pattern) (x:var{ ~(x `Set.mem` freevars_pattern p) }) : Lemma (ensures subst_pattern (subst_pattern p (open_with_var x i)) [ ND x i ] == p) val close_open_inverse'_patterns (i:nat) (ps:list (pattern & bool)) (x:var {~ (x `Set.mem` freevars_patterns ps) }) : Lemma (ensures subst_patterns (subst_patterns ps (open_with_var x i)) [ ND x i ] == ps) val close_open_inverse'_match_returns (i:nat) (m:match_returns_ascription) (x:var{ ~(x `Set.mem` freevars_match_returns m) }) : Lemma (ensures subst_match_returns (subst_match_returns m (open_with_var x i)) [ ND x i ] == m) val close_open_inverse (e:R.term) (x:var {~ (x `Set.mem` freevars e) }) : Lemma (close_term (open_term e x) x == e) // // fst has corresponding lemmas for other syntax classes // val close_with_not_free_var (t:R.term) (x:var) (i:nat) : Lemma (requires ~ (Set.mem x (freevars t))) (ensures subst_term t [ ND x i ] == t) // this also requires x to be not in freevars e1 `Set.union` freevars e2 val equiv_arrow (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv) (x:var { None? (lookup_bvar g x) }) (eq:equiv (extend_env g x ty) (subst_term e1 (open_with_var x 0)) (subst_term e2 (open_with_var x 0))) : equiv g (mk_arrow ty q e1) (mk_arrow ty q e2) // the proof for this requires e1 and e2 to be ln val equiv_abs_close (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv) (x:var{None? (lookup_bvar g x)}) (eq:equiv (extend_env g x ty) e1 e2) : equiv g (mk_abs ty q (subst_term e1 [ ND x 0 ])) (mk_abs ty q (subst_term e2 [ ND x 0 ])) val open_with_gt_ln (e:term) (i:nat) (t:term) (j:nat) : Lemma (requires ln' e i /\ i < j) (ensures subst_term e [ DT j t ] == e) [SMTPat (ln' e i); SMTPat (subst_term e [ DT j t ])] // // Type of the top-level tactic that would splice-in the definitions // let fstar_env_fvs (g:R.env) = lookup_fvar g unit_fv == Some (tm_type u_zero) /\ lookup_fvar g bool_fv == Some (tm_type u_zero) /\ lookup_fvar g b2t_fv == Some b2t_ty type fstar_env = g:R.env{fstar_env_fvs g} type fstar_top_env = g:fstar_env { forall x. None? (lookup_bvar g x ) } // // This doesn't allow for universe polymorphic definitions // // May be we can change it to: // // g:fstar_top_env -> T.tac ((us, e, t):(univ_names & term & typ){typing (push g us) e t}) // noeq type sigelt_typing : env -> sigelt -> Type0 = | ST_Let : g : env -> fv : R.fv -> ty : R.typ -> tm : R.term -> squash (typing g tm (T.E_Total, ty)) -> sigelt_typing g (pack_sigelt (Sg_Let false [pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = tm })])) | ST_Let_Opaque : g : env -> fv : R.fv -> ty : R.typ -> (* no tm: only a proof of existence *) squash (exists (tm:R.term). typing g tm (T.E_Total, ty)) -> sigelt_typing g (pack_sigelt (Sg_Let false [pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = (`_) })])) (** * The type of the top-level tactic that would splice-in the definitions. * It returns a list of well typed definitions, via the judgment above. * * Each definition can have a 'blob' attached with a given name. * The blob can be used later, e.g., during extraction, and passed back to the * extension to perform additional processing. *) (* * It returns either: * - Some tm, blob, typ, with a proof that `typing g tm typ` * - None, blob, typ), with a proof that `exists tm. typing g tm typ` * The blob itself is optional and can store some additional metadata that * constructed by the tactic. If present, it will be stored in the * sigmeta_extension_data field of the enclosing sigelt. * *) let blob = string & R.term (* If checked is true, this sigelt is properly typed for the environment. If not,
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: FStar.Stubs.Reflection.Types.env -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.env", "FStar.Pervasives.Native.tuple3", "Prims.bool", "FStar.Stubs.Reflection.Types.sigelt", "FStar.Pervasives.Native.option", "FStar.Reflection.Typing.blob", "Prims.l_imp", "Prims.b2t", "FStar.Reflection.Typing.sigelt_typing" ]
[]
false
false
false
true
true
let sigelt_for (g: env) =
tup: (bool & sigelt & option blob) { let checked, se, _ = tup in checked ==> sigelt_typing g se }
false
FStar.Reflection.Typing.fsti
FStar.Reflection.Typing.dsl_tac_result_t
val dsl_tac_result_t : g: FStar.Stubs.Reflection.Types.env -> Type0
let dsl_tac_result_t (g:env) = list (sigelt_for g)
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 1803, "start_col": 0, "start_line": 1803 }
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Stubs.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t let bindings_to_refl_bindings (bs : list binding) : list R.binding = L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs let refl_bindings_to_bindings (bs : list R.binding) : list binding = L.map (fun b -> b.uniq, b.sort) bs [@@ no_auto_projectors] noeq type non_informative : env -> term -> Type0 = | Non_informative_type: g:env -> u:universe -> non_informative g (pack_ln (Tv_Type u)) | Non_informative_fv: g:env -> x:fv{is_non_informative_fv x} -> non_informative g (pack_ln (Tv_FVar x)) | Non_informative_uinst: g:env -> x:fv{is_non_informative_fv x} -> us:list universe -> non_informative g (pack_ln (Tv_UInst x us)) | Non_informative_app: g:env -> t:term -> arg:argv -> non_informative g t -> non_informative g (pack_ln (Tv_App t arg)) | Non_informative_total_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g t1 -> non_informative g (mk_arrow_ct t0 q (T.E_Total, t1)) | Non_informative_ghost_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1)) | Non_informative_token: g:env -> t:typ -> squash (T.non_informative_token g t) -> non_informative g t val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0 val bindings_ok_pat_constant : g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c)) let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 = bindings_ok_for_pat g bs (fst br) let bindings_ok_for_branch_N (g:env) (bss : list (list R.binding)) (brs : list branch) = zip2prop (bindings_ok_for_branch g) bss brs let binding_to_namedv (b:R.binding) : Tot namedv = pack_namedv { RD.uniq = b.uniq; RD.sort = seal b.sort; RD.ppname = b.ppname; } (* Elaborates the p pattern into a term, using the bs bindings for the pattern variables. The resulting term is properly scoped only on an environment which contains all of bs. See for instance the branch_typing judg. Returns an option, since this can fail if e.g. there are not enough bindings, and returns the list of unused binders as well, which should be empty if the list of binding was indeed ok. *) let rec elaborate_pat (p : pattern) (bs : list R.binding) : Tot (option (term & list R.binding)) (decreases p) = match p, bs with | Pat_Constant c, _ -> Some (pack_ln (Tv_Const c), bs) | Pat_Cons fv univs subpats, bs -> let head = pack_ln (Tv_FVar fv) in fold_left_dec (Some (head, bs)) subpats (fun st pi -> let (p,i) = pi in match st with | None -> None | Some (head, bs) -> match elaborate_pat p bs with | None -> None | Some (t, bs') -> Some (pack_ln (Tv_App head (t, (if i then Q_Implicit else Q_Explicit))), bs')) | Pat_Var _ _, b::bs -> Some (pack_ln (Tv_Var (binding_to_namedv b)), bs) | Pat_Dot_Term (Some t), _ -> Some (t, bs) | Pat_Dot_Term None, _ -> None | _ -> None [@@ no_auto_projectors] noeq type typing : env -> term -> comp_typ -> Type0 = | T_Token : g:env -> e:term -> c:comp_typ -> squash (T.typing_token g e c) -> typing g e c | T_Var : g:env -> x:namedv { Some? (lookup_bvar g (namedv_uniq x)) } -> typing g (pack_ln (Tv_Var x)) (T.E_Total, Some?.v (lookup_bvar g (namedv_uniq x))) | T_FVar : g:env -> x:fv { Some? (lookup_fvar g x) } -> typing g (pack_ln (Tv_FVar x)) (T.E_Total, Some?.v (lookup_fvar g x)) | T_UInst : g:env -> x:fv -> us:list universe { Some? (lookup_fvar_uinst g x us) } -> typing g (pack_ln (Tv_UInst x us)) (T.E_Total, Some?.v (lookup_fvar_uinst g x us)) | T_Const: g:env -> v:vconst -> t:term -> constant_typing v t -> typing g (constant_as_term v) (T.E_Total, t) | T_Abs : g:env -> x:var { None? (lookup_bvar g x) } -> ty:term -> body:term { ~(x `Set.mem` freevars body) } -> body_c:comp_typ -> u:universe -> pp_name:pp_name_t -> q:aqualv -> ty_eff:T.tot_or_ghost -> typing g ty (ty_eff, tm_type u) -> typing (extend_env g x ty) (open_term body x) body_c -> typing g (pack_ln (Tv_Abs (mk_binder pp_name ty q) body)) (T.E_Total, pack_ln (Tv_Arrow (mk_binder pp_name ty q) (mk_comp (close_comp_typ body_c x)))) | T_App : g:env -> e1:term -> e2:term -> x:binder -> t:term -> eff:T.tot_or_ghost -> typing g e1 (eff, pack_ln (Tv_Arrow x (mk_comp (eff, t)))) -> typing g e2 (eff, binder_sort x) -> typing g (pack_ln (Tv_App e1 (e2, binder_qual x))) (eff, open_with t e2) | T_Let: g:env -> x:var { None? (lookup_bvar g x) } -> e1:term -> t1:typ -> e2:term -> t2:typ -> eff:T.tot_or_ghost -> pp_name:pp_name_t -> typing g e1 (eff, t1) -> typing (extend_env g x t1) (open_term e2 x) (eff, t2) -> typing g (mk_let pp_name e1 t1 e2) (eff, open_with (close_term t2 x) e1) | T_Arrow: g:env -> x:var { None? (lookup_bvar g x) } -> t1:term -> t2:term { ~(x `Set.mem` freevars t2) } -> u1:universe -> u2:universe -> pp_name:pp_name_t -> q:aqualv -> eff:T.tot_or_ghost -> t1_eff:T.tot_or_ghost -> t2_eff:T.tot_or_ghost -> typing g t1 (t1_eff, tm_type u1) -> typing (extend_env g x t1) (open_term t2 x) (t2_eff, tm_type u2) -> typing g (pack_ln (Tv_Arrow (mk_binder pp_name t1 q) (mk_comp (eff, t2)))) (T.E_Total, tm_type (u_max u1 u2)) | T_Refine: g:env -> x:var { None? (lookup_bvar g x) } -> t:term -> e:term { ~(x `Set.mem` freevars e) } -> u1:universe -> u2:universe -> t_eff:T.tot_or_ghost -> e_eff:T.tot_or_ghost -> typing g t (t_eff, tm_type u1) -> typing (extend_env g x t) (open_term e x) (e_eff, tm_type u2) -> typing g (pack_ln (Tv_Refine (mk_simple_binder pp_name_default t) e)) (T.E_Total, tm_type u1) | T_PropIrrelevance: g:env -> e:term -> t:term -> e_eff:T.tot_or_ghost -> t_eff:T.tot_or_ghost -> typing g e (e_eff, t) -> typing g t (t_eff, tm_prop) -> typing g (`()) (T.E_Total, t) | T_Sub: g:env -> e:term -> c:comp_typ -> c':comp_typ -> typing g e c -> sub_comp g c c' -> typing g e c' | T_If: g:env -> scrutinee:term -> then_:term -> else_:term -> ty:term -> u_ty:universe -> hyp:var { None? (lookup_bvar g hyp) /\ ~(hyp `Set.mem` (freevars then_ `Set.union` freevars else_)) } -> eff:T.tot_or_ghost -> ty_eff:T.tot_or_ghost -> typing g scrutinee (eff, bool_ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee true_bool)) then_ (eff, ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee false_bool)) else_ (eff, ty) -> typing g ty (ty_eff, tm_type u_ty) -> //typedness of ty cannot rely on hyp typing g (mk_if scrutinee then_ else_) (eff, ty) | T_Match: g:env -> sc_u : universe -> sc_ty : typ -> sc : term -> ty_eff:T.tot_or_ghost -> typing g sc_ty (ty_eff, tm_type sc_u) -> eff:T.tot_or_ghost -> typing g sc (eff, sc_ty) -> branches:list branch -> ty:comp_typ -> bnds:list (list R.binding) -> complet : match_is_complete g sc sc_ty (List.Tot.map fst branches) bnds -> // complete patterns branches_typing g sc_u sc_ty sc ty branches bnds -> // each branch has proper type typing g (pack_ln (Tv_Match sc None branches)) ty and related : env -> term -> relation -> term -> Type0 = | Rel_refl: g:env -> t:term -> rel:relation -> related g t rel t | Rel_sym: g:env -> t0:term -> t1:term -> related g t0 R_Eq t1 -> related g t1 R_Eq t0 | Rel_trans: g:env -> t0:term -> t1:term -> t2:term -> rel:relation -> related g t0 rel t1 -> related g t1 rel t2 -> related g t0 rel t2 | Rel_univ: g:env -> u:universe -> v:universe -> univ_eq u v -> related g (tm_type u) R_Eq (tm_type v) | Rel_beta: g:env -> t:typ -> q:aqualv -> e:term { ln' e 0 } -> arg:term { ln arg } -> related g (R.pack_ln (R.Tv_App (mk_abs t q e) (arg, q))) R_Eq (subst_term e [ DT 0 arg ]) | Rel_eq_token: g:env -> t0:term -> t1:term -> squash (T.equiv_token g t0 t1) -> related g t0 R_Eq t1 | Rel_subtyping_token: g:env -> t0:term -> t1:term -> squash (T.subtyping_token g t0 t1) -> related g t0 R_Sub t1 | Rel_equiv: g:env -> t0:term -> t1:term -> rel:relation -> related g t0 R_Eq t1 -> related g t0 rel t1 | Rel_arrow: g:env -> t1:term -> t2:term -> q:aqualv -> c1:comp_typ -> c2:comp_typ -> rel:relation -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars_comp_typ c1 `Set.union` freevars_comp_typ c2)) } -> related g t2 rel t1 -> related_comp (extend_env g x t2) (open_comp_typ c1 x) rel (open_comp_typ c2 x) -> related g (mk_arrow_ct t1 q c1) rel (mk_arrow_ct t2 q c2) | Rel_abs: g:env -> t1:term -> t2:term -> q:aqualv -> e1:term -> e2:term -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars e1 `Set.union` freevars e2)) } -> related g t1 R_Eq t2 -> related (extend_env g x t1) (subst_term e1 (open_with_var x 0)) R_Eq (subst_term e2 (open_with_var x 0)) -> related g (mk_abs t1 q e1) R_Eq (mk_abs t2 q e2) | Rel_ctxt: g:env -> t0:term -> t1:term -> ctxt:term_ctxt -> related g t0 R_Eq t1 -> related g (apply_term_ctxt ctxt t0) R_Eq (apply_term_ctxt ctxt t1) and related_comp : env -> comp_typ -> relation -> comp_typ -> Type0 = | Relc_typ: g:env -> t0:term -> t1:term -> eff:T.tot_or_ghost -> rel:relation -> related g t0 rel t1 -> related_comp g (eff, t0) rel (eff, t1) | Relc_total_ghost: g:env -> t:term -> related_comp g (T.E_Total, t) R_Sub (T.E_Ghost, t) | Relc_ghost_total: g:env -> t:term -> non_informative g t -> related_comp g (T.E_Ghost, t) R_Sub (T.E_Total, t) and branches_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (brs:list branch) -> (bnds : list (list R.binding)) -> Type0 = (* This judgement only enforces that branch_typing holds for every element of brs and its respective bnds (which must have the same length). *) | BT_Nil : branches_typing g sc_u sc_ty sc rty [] [] | BT_S : br : branch -> bnds : list R.binding -> pf : branch_typing g sc_u sc_ty sc rty br bnds -> rest_br : list branch -> rest_bnds : list (list R.binding) -> rest : branches_typing g sc_u sc_ty sc rty rest_br rest_bnds -> branches_typing g sc_u sc_ty sc rty (br :: rest_br) (bnds :: rest_bnds) and branch_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (br : branch) -> (bnds : list R.binding) -> Type0 = | BO : pat : pattern -> bnds : list R.binding{bindings_ok_for_pat g bnds pat} -> hyp_var:var{None? (lookup_bvar (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var)} -> body:term -> _ : squash (Some? (elaborate_pat pat bnds)) -> typing (extend_env (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var (eq2 sc_u sc_ty sc (fst (Some?.v (elaborate_pat pat bnds)))) ) body rty -> branch_typing g sc_u sc_ty sc rty (pat, close_term_bs (refl_bindings_to_bindings bnds) body) bnds and match_is_complete : env -> term -> typ -> list pattern -> list (list R.binding) -> Type0 = | MC_Tok : env:_ -> sc:_ -> ty:_ -> pats:_ -> bnds:_ -> squash (T.match_complete_token env sc ty pats bnds) -> match_is_complete env sc ty pats bnds and sub_typing (g:env) (t1 t2:term) = related g t1 R_Sub t2 and sub_comp (g:env) (c1 c2:comp_typ) = related_comp g c1 R_Sub c2 and equiv (g:env) (t1 t2:term) = related g t1 R_Eq t2 type tot_typing (g:env) (e:term) (t:term) = typing g e (T.E_Total, t) type ghost_typing (g:env) (e:term) (t:term) = typing g e (T.E_Ghost, t) val subtyping_token_renaming (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (y:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) y) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1) : T.subtyping_token (extend_env_l g (rename_bindings bs1 x y@(y,t)::bs0)) (rename t0 x y) (rename t1 x y) val subtyping_token_weakening (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@bs0)) t0 t1) : T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1 let simplify_umax (#g:R.env) (#t:R.term) (#u:R.universe) (d:typing g t (T.E_Total, tm_type (u_max u u))) : typing g t (T.E_Total, tm_type u) = let ue : univ_eq (u_max u u) u = UN_MaxLeq u u (UNLEQ_Refl u) in let du : related g (tm_type (u_max u u)) R_Eq (tm_type u) = Rel_univ g (u_max u u) u ue in let du : related g (tm_type (u_max u u)) R_Sub (tm_type u) = Rel_equiv _ _ _ _ du in T_Sub _ _ _ _ d (Relc_typ _ _ _ T.E_Total _ du) val well_typed_terms_are_ln (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c) : Lemma (ensures ln e /\ ln (snd c)) val type_correctness (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c) : GTot (u:R.universe & typing g (snd c) (T.E_Total, tm_type u)) val binder_offset_pattern_invariant (p:pattern) (ss:subst) : Lemma (binder_offset_pattern p == binder_offset_pattern (subst_pattern p ss)) val binder_offset_patterns_invariant (p:list (pattern & bool)) (ss:subst) : Lemma (binder_offset_patterns p == binder_offset_patterns (subst_patterns p ss)) val open_close_inverse' (i:nat) (t:term { ln' t (i - 1) }) (x:var) : Lemma (ensures subst_term (subst_term t [ ND x i ]) (open_with_var x i) == t) val open_close_inverse'_binder (i:nat) (b:binder { ln'_binder b (i - 1) }) (x:var) : Lemma (ensures subst_binder (subst_binder b [ ND x i ]) (open_with_var x i) == b) val open_close_inverse'_terms (i:nat) (ts:list term { ln'_terms ts (i - 1) }) (x:var) : Lemma (ensures subst_terms (subst_terms ts [ ND x i ]) (open_with_var x i) == ts) val open_close_inverse'_comp (i:nat) (c:comp { ln'_comp c (i - 1) }) (x:var) : Lemma (ensures subst_comp (subst_comp c [ ND x i ]) (open_with_var x i) == c) val open_close_inverse'_args (i:nat) (ts:list argv { ln'_args ts (i - 1) }) (x:var) : Lemma (ensures subst_args (subst_args ts [ ND x i ]) (open_with_var x i) == ts) val open_close_inverse'_patterns (i:nat) (ps:list (pattern & bool) { ln'_patterns ps (i - 1) }) (x:var) : Lemma (ensures subst_patterns (subst_patterns ps [ ND x i ]) (open_with_var x i) == ps) val open_close_inverse'_pattern (i:nat) (p:pattern{ln'_pattern p (i - 1)}) (x:var) : Lemma (ensures subst_pattern (subst_pattern p [ ND x i ]) (open_with_var x i) == p) val open_close_inverse'_branch (i:nat) (br:branch{ln'_branch br (i - 1)}) (x:var) : Lemma (ensures subst_branch (subst_branch br [ ND x i ]) (open_with_var x i) == br) val open_close_inverse'_branches (i:nat) (brs:list branch { ln'_branches brs (i - 1) }) (x:var) : Lemma (ensures subst_branches (subst_branches brs [ ND x i ]) (open_with_var x i) == brs) val open_close_inverse'_match_returns (i:nat) (m:match_returns_ascription { ln'_match_returns m (i - 1) }) (x:var) : Lemma (ensures subst_match_returns (subst_match_returns m [ ND x i ]) (open_with_var x i) == m) val open_close_inverse (e:R.term { ln e }) (x:var) : Lemma (open_term (close_term e x) x == e) val close_open_inverse' (i:nat) (t:term) (x:var { ~(x `Set.mem` freevars t) }) : Lemma (ensures subst_term (subst_term t (open_with_var x i)) [ ND x i ] == t) val close_open_inverse'_comp (i:nat) (c:comp) (x:var{ ~(x `Set.mem` freevars_comp c) }) : Lemma (ensures subst_comp (subst_comp c (open_with_var x i)) [ ND x i ] == c) val close_open_inverse'_args (i:nat) (args:list argv) (x:var{ ~(x `Set.mem` freevars_args args) }) : Lemma (ensures subst_args (subst_args args (open_with_var x i)) [ ND x i] == args) val close_open_inverse'_binder (i:nat) (b:binder) (x:var{ ~(x `Set.mem` freevars_binder b) }) : Lemma (ensures subst_binder (subst_binder b (open_with_var x i)) [ ND x i ] == b) val close_open_inverse'_terms (i:nat) (ts:list term) (x:var{ ~(x `Set.mem` freevars_terms ts) }) : Lemma (ensures subst_terms (subst_terms ts (open_with_var x i)) [ ND x i ] == ts) val close_open_inverse'_branches (i:nat) (brs:list branch) (x:var{ ~(x `Set.mem` freevars_branches brs) }) : Lemma (ensures subst_branches (subst_branches brs (open_with_var x i)) [ ND x i ] == brs) val close_open_inverse'_branch (i:nat) (br:branch) (x:var{ ~(x `Set.mem` freevars_branch br) }) : Lemma (ensures subst_branch (subst_branch br (open_with_var x i)) [ ND x i ] == br) val close_open_inverse'_pattern (i:nat) (p:pattern) (x:var{ ~(x `Set.mem` freevars_pattern p) }) : Lemma (ensures subst_pattern (subst_pattern p (open_with_var x i)) [ ND x i ] == p) val close_open_inverse'_patterns (i:nat) (ps:list (pattern & bool)) (x:var {~ (x `Set.mem` freevars_patterns ps) }) : Lemma (ensures subst_patterns (subst_patterns ps (open_with_var x i)) [ ND x i ] == ps) val close_open_inverse'_match_returns (i:nat) (m:match_returns_ascription) (x:var{ ~(x `Set.mem` freevars_match_returns m) }) : Lemma (ensures subst_match_returns (subst_match_returns m (open_with_var x i)) [ ND x i ] == m) val close_open_inverse (e:R.term) (x:var {~ (x `Set.mem` freevars e) }) : Lemma (close_term (open_term e x) x == e) // // fst has corresponding lemmas for other syntax classes // val close_with_not_free_var (t:R.term) (x:var) (i:nat) : Lemma (requires ~ (Set.mem x (freevars t))) (ensures subst_term t [ ND x i ] == t) // this also requires x to be not in freevars e1 `Set.union` freevars e2 val equiv_arrow (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv) (x:var { None? (lookup_bvar g x) }) (eq:equiv (extend_env g x ty) (subst_term e1 (open_with_var x 0)) (subst_term e2 (open_with_var x 0))) : equiv g (mk_arrow ty q e1) (mk_arrow ty q e2) // the proof for this requires e1 and e2 to be ln val equiv_abs_close (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv) (x:var{None? (lookup_bvar g x)}) (eq:equiv (extend_env g x ty) e1 e2) : equiv g (mk_abs ty q (subst_term e1 [ ND x 0 ])) (mk_abs ty q (subst_term e2 [ ND x 0 ])) val open_with_gt_ln (e:term) (i:nat) (t:term) (j:nat) : Lemma (requires ln' e i /\ i < j) (ensures subst_term e [ DT j t ] == e) [SMTPat (ln' e i); SMTPat (subst_term e [ DT j t ])] // // Type of the top-level tactic that would splice-in the definitions // let fstar_env_fvs (g:R.env) = lookup_fvar g unit_fv == Some (tm_type u_zero) /\ lookup_fvar g bool_fv == Some (tm_type u_zero) /\ lookup_fvar g b2t_fv == Some b2t_ty type fstar_env = g:R.env{fstar_env_fvs g} type fstar_top_env = g:fstar_env { forall x. None? (lookup_bvar g x ) } // // This doesn't allow for universe polymorphic definitions // // May be we can change it to: // // g:fstar_top_env -> T.tac ((us, e, t):(univ_names & term & typ){typing (push g us) e t}) // noeq type sigelt_typing : env -> sigelt -> Type0 = | ST_Let : g : env -> fv : R.fv -> ty : R.typ -> tm : R.term -> squash (typing g tm (T.E_Total, ty)) -> sigelt_typing g (pack_sigelt (Sg_Let false [pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = tm })])) | ST_Let_Opaque : g : env -> fv : R.fv -> ty : R.typ -> (* no tm: only a proof of existence *) squash (exists (tm:R.term). typing g tm (T.E_Total, ty)) -> sigelt_typing g (pack_sigelt (Sg_Let false [pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = (`_) })])) (** * The type of the top-level tactic that would splice-in the definitions. * It returns a list of well typed definitions, via the judgment above. * * Each definition can have a 'blob' attached with a given name. * The blob can be used later, e.g., during extraction, and passed back to the * extension to perform additional processing. *) (* * It returns either: * - Some tm, blob, typ, with a proof that `typing g tm typ` * - None, blob, typ), with a proof that `exists tm. typing g tm typ` * The blob itself is optional and can store some additional metadata that * constructed by the tactic. If present, it will be stored in the * sigmeta_extension_data field of the enclosing sigelt. * *) let blob = string & R.term (* If checked is true, this sigelt is properly typed for the environment. If not, we don't know and let F* re-typecheck the sigelt. *) let sigelt_for (g:env) = tup:(bool & sigelt & option blob) { let (checked, se, _) = tup in checked ==> sigelt_typing g se }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Reflection.V2.Data.fsti.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ { "abbrev": true, "full_module": "FStar.Stubs.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: FStar.Stubs.Reflection.Types.env -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.env", "Prims.list", "FStar.Reflection.Typing.sigelt_for" ]
[]
false
false
false
true
true
let dsl_tac_result_t (g: env) =
list (sigelt_for g)
false