file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.blob | val blob : Type0 | let blob = string & R.term | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 26,
"end_line": 1793,
"start_col": 0,
"start_line": 1793
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
////////////////////////////////////////////////////////////////////////////////
let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_
let rec ln' (e:term) (n:int)
: Tot bool (decreases e)
= match inspect_ln e with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_Var _ -> true
| Tv_BVar m -> bv_index m <= n
| Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n
| Tv_Abs b body ->
ln'_binder b n &&
ln' body (n + 1)
| Tv_Arrow b c ->
ln'_binder b n &&
ln'_comp c (n + 1)
| Tv_Refine b f ->
ln'_binder b n &&
ln' f (n + 1)
| Tv_Uvar _ _ ->
false
| Tv_Let recf attrs b def body ->
ln'_terms attrs n &&
ln'_binder b n &&
(if recf then ln' def (n + 1) else ln' def n) &&
ln' body (n + 1)
| Tv_Match scr ret brs ->
ln' scr n &&
(match ret with
| None -> true
| Some m -> ln'_match_returns m n) &&
ln'_branches brs n
| Tv_AscribedT e t tac b ->
ln' e n &&
ln' t n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
| Tv_AscribedC e c tac b ->
ln' e n &&
ln'_comp c n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
and ln'_comp (c:comp) (i:int)
: Tot bool (decreases c)
= match inspect_comp c with
| C_Total t
| C_GTotal t -> ln' t i
| C_Lemma pre post pats ->
ln' pre i &&
ln' post i &&
ln' pats i
| C_Eff us eff_name res args decrs ->
ln' res i &&
ln'_args args i &&
ln'_terms decrs i
and ln'_args (ts:list argv) (i:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| (t,q)::ts ->
ln' t i &&
ln'_args ts i
and ln'_binder (b:binder) (n:int)
: Tot bool (decreases b)
= let bndr = inspect_binder b in
ln' bndr.sort n &&
ln'_terms bndr.attrs n
and ln'_terms (ts:list term) (n:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| t::ts -> ln' t n && ln'_terms ts n
and ln'_patterns (ps:list (pattern & bool)) (i:int)
: Tot bool
(decreases ps)
= match ps with
| [] -> true
| (p, b)::ps ->
let b0 = ln'_pattern p i in
let n = binder_offset_pattern p in
let b1 = ln'_patterns ps (i + n) in
b0 && b1
and ln'_pattern (p:pattern) (i:int)
: Tot bool
(decreases p)
= match p with
| Pat_Constant _ -> true
| Pat_Cons head univs subpats ->
ln'_patterns subpats i
| Pat_Var bv s -> true
| Pat_Dot_Term topt ->
(match topt with
| None -> true
| Some t -> ln' t i)
and ln'_branch (br:branch) (i:int)
: Tot bool (decreases br)
= let p, t = br in
let b = ln'_pattern p i in
let j = binder_offset_pattern p in
let b' = ln' t (i + j) in
b&&b'
and ln'_branches (brs:list branch) (i:int)
: Tot bool (decreases brs)
= match brs with
| [] -> true
| br::brs ->
ln'_branch br i &&
ln'_branches brs i
and ln'_match_returns (m:match_returns_ascription) (i:int)
: Tot bool (decreases m)
= let b, (ret, as_, eq) = m in
let b = ln'_binder b i in
let ret =
match ret with
| Inl t -> ln' t (i + 1)
| Inr c -> ln'_comp c (i + 1)
in
let as_ =
match as_ with
| None -> true
| Some t -> ln' t (i + 1)
in
b && ret && as_
let ln (t:term) = ln' t (-1)
let ln_comp (c:comp) = ln'_comp c (-1)
//
// term_ctxt is used to define the equiv relation later,
// basically putting two equiv terms in a hole gives equiv terms
//
// The abs, arrow, refine, and let cases don't seem right here,
// since to prove their equiv, we need to extend gamma for their bodies
//
// If this is useful only for app, then may be we should remove it,
// and add app rules to the equiv relation itself
[@@ no_auto_projectors]
noeq
type term_ctxt =
| Ctxt_hole : term_ctxt
| Ctxt_app_head : term_ctxt -> argv -> term_ctxt
| Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt
// | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt
// | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt
// | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt
// | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt
// | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt
// | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt
// | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt
// | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt
// | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt
// | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt
// and bv_ctxt =
// | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt
// and binder_ctxt =
// | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt
// and comp_ctxt =
// | Ctxt_total : term_ctxt -> comp_ctxt
// | Ctxt_gtotal : term_ctxt -> comp_ctxt
let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) =
match e with
| Ctxt_hole -> t
| Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg)
| Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q))
// | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body)
// | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t))
// | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c)
// | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t))
// | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi)
// | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t))
// | Ctxt_let_sort b attrs bv sort def body ->
// pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body)
// | Ctxt_let_def b attrs bv sort def body ->
// pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body)
// | Ctxt_let_body b attrs bv sort def body ->
// pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t))
// | Ctxt_match_scrutinee sc ret brs ->
// pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs)
// and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) =
// let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in
// pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t}
// and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) =
// match c with
// | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t))
// | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t))
noeq
type constant_typing: vconst -> term -> Type0 =
| CT_Unit: constant_typing C_Unit unit_ty
| CT_True: constant_typing C_True bool_ty
| CT_False: constant_typing C_False bool_ty
[@@ no_auto_projectors]
noeq
type univ_eq : universe -> universe -> Type0 =
| UN_Refl :
u:universe ->
univ_eq u u
| UN_MaxCongL :
u:universe ->
u':universe ->
v:universe ->
univ_eq u u' ->
univ_eq (u_max u v) (u_max u' v)
| UN_MaxCongR :
u:universe ->
v:universe ->
v':universe ->
univ_eq v v' ->
univ_eq (u_max u v) (u_max u v')
| UN_MaxComm:
u:universe ->
v:universe ->
univ_eq (u_max u v) (u_max v u)
| UN_MaxLeq:
u:universe ->
v:universe ->
univ_leq u v ->
univ_eq (u_max u v) v
and univ_leq : universe -> universe -> Type0 =
| UNLEQ_Refl:
u:universe ->
univ_leq u u
| UNLEQ_Succ:
u:universe ->
v:universe ->
univ_leq u v ->
univ_leq u (u_succ v)
| UNLEQ_Max:
u:universe ->
v:universe ->
univ_leq u (u_max u v)
let mk_if (scrutinee then_ else_:R.term) : R.term =
pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_);
(Pat_Constant C_False, else_)])
// effect and type
type comp_typ = T.tot_or_ghost & typ
let close_comp_typ' (c:comp_typ) (x:var) (i:nat) =
fst c, subst_term (snd c) [ ND x i ]
let close_comp_typ (c:comp_typ) (x:var) =
close_comp_typ' c x 0
let open_comp_typ' (c:comp_typ) (x:var) (i:nat) =
fst c, subst_term (snd c) (open_with_var x i)
let open_comp_typ (c:comp_typ) (x:var) =
open_comp_typ' c x 0
let freevars_comp_typ (c:comp_typ) = freevars (snd c)
let mk_comp (c:comp_typ) : R.comp =
match fst c with
| T.E_Total -> mk_total (snd c)
| T.E_Ghost -> mk_ghost (snd c)
let mk_arrow_ct ty qual (c:comp_typ) : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c))
type relation =
| R_Eq
| R_Sub
let binding = var & term
let bindings = list binding
let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs
let rec extend_env_l (g:env) (bs:bindings)
: env
= match bs with
| [] -> g
| (x,t)::bs -> extend_env (extend_env_l g bs) x t
//
// TODO: support for erasable attribute
//
let is_non_informative_name (l:name) : bool =
l = R.unit_lid ||
l = R.squash_qn ||
l = ["FStar"; "Ghost"; "erased"]
let is_non_informative_fv (f:fv) : bool =
is_non_informative_name (inspect_fv f)
let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) =
match vs with
| [] -> t
| v::vs ->
subst_term (__close_term_vs (i+1) vs t) [ND v i]
let close_term_vs (vs : list var) (t : term) : term =
__close_term_vs 0 vs t
let close_term_bs (bs : list binding) (t : term) : term =
close_term_vs (List.Tot.map fst bs) t
let bindings_to_refl_bindings (bs : list binding) : list R.binding =
L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs
let refl_bindings_to_bindings (bs : list R.binding) : list binding =
L.map (fun b -> b.uniq, b.sort) bs
[@@ no_auto_projectors]
noeq
type non_informative : env -> term -> Type0 =
| Non_informative_type:
g:env ->
u:universe ->
non_informative g (pack_ln (Tv_Type u))
| Non_informative_fv:
g:env ->
x:fv{is_non_informative_fv x} ->
non_informative g (pack_ln (Tv_FVar x))
| Non_informative_uinst:
g:env ->
x:fv{is_non_informative_fv x} ->
us:list universe ->
non_informative g (pack_ln (Tv_UInst x us))
| Non_informative_app:
g:env ->
t:term ->
arg:argv ->
non_informative g t ->
non_informative g (pack_ln (Tv_App t arg))
| Non_informative_total_arrow:
g:env ->
t0:term ->
q:aqualv ->
t1:term ->
non_informative g t1 ->
non_informative g (mk_arrow_ct t0 q (T.E_Total, t1))
| Non_informative_ghost_arrow:
g:env ->
t0:term ->
q:aqualv ->
t1:term ->
non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1))
| Non_informative_token:
g:env ->
t:typ ->
squash (T.non_informative_token g t) ->
non_informative g t
val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0
val bindings_ok_pat_constant :
g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c))
let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 =
bindings_ok_for_pat g bs (fst br)
let bindings_ok_for_branch_N (g:env) (bss : list (list R.binding)) (brs : list branch) =
zip2prop (bindings_ok_for_branch g) bss brs
let binding_to_namedv (b:R.binding) : Tot namedv =
pack_namedv {
RD.uniq = b.uniq;
RD.sort = seal b.sort;
RD.ppname = b.ppname;
}
(* Elaborates the p pattern into a term, using the bs bindings for the
pattern variables. The resulting term is properly scoped only on an
environment which contains all of bs. See for instance the branch_typing
judg. Returns an option, since this can fail if e.g. there are not
enough bindings, and returns the list of unused binders as well, which
should be empty if the list of binding was indeed ok. *)
let rec elaborate_pat (p : pattern) (bs : list R.binding) : Tot (option (term & list R.binding)) (decreases p) =
match p, bs with
| Pat_Constant c, _ -> Some (pack_ln (Tv_Const c), bs)
| Pat_Cons fv univs subpats, bs ->
let head = pack_ln (Tv_FVar fv) in
fold_left_dec
(Some (head, bs))
subpats
(fun st pi ->
let (p,i) = pi in
match st with | None -> None | Some (head, bs) ->
match elaborate_pat p bs with | None -> None | Some (t, bs') -> Some (pack_ln (Tv_App head (t, (if i then Q_Implicit else Q_Explicit))), bs'))
| Pat_Var _ _, b::bs ->
Some (pack_ln (Tv_Var (binding_to_namedv b)), bs)
| Pat_Dot_Term (Some t), _ -> Some (t, bs)
| Pat_Dot_Term None, _ -> None
| _ -> None
[@@ no_auto_projectors]
noeq
type typing : env -> term -> comp_typ -> Type0 =
| T_Token :
g:env ->
e:term ->
c:comp_typ ->
squash (T.typing_token g e c) ->
typing g e c
| T_Var :
g:env ->
x:namedv { Some? (lookup_bvar g (namedv_uniq x)) } ->
typing g (pack_ln (Tv_Var x)) (T.E_Total, Some?.v (lookup_bvar g (namedv_uniq x)))
| T_FVar :
g:env ->
x:fv { Some? (lookup_fvar g x) } ->
typing g (pack_ln (Tv_FVar x)) (T.E_Total, Some?.v (lookup_fvar g x))
| T_UInst :
g:env ->
x:fv ->
us:list universe { Some? (lookup_fvar_uinst g x us) } ->
typing g (pack_ln (Tv_UInst x us)) (T.E_Total, Some?.v (lookup_fvar_uinst g x us))
| T_Const:
g:env ->
v:vconst ->
t:term ->
constant_typing v t ->
typing g (constant_as_term v) (T.E_Total, t)
| T_Abs :
g:env ->
x:var { None? (lookup_bvar g x) } ->
ty:term ->
body:term { ~(x `Set.mem` freevars body) } ->
body_c:comp_typ ->
u:universe ->
pp_name:pp_name_t ->
q:aqualv ->
ty_eff:T.tot_or_ghost ->
typing g ty (ty_eff, tm_type u) ->
typing (extend_env g x ty) (open_term body x) body_c ->
typing g (pack_ln (Tv_Abs (mk_binder pp_name ty q) body))
(T.E_Total,
pack_ln (Tv_Arrow (mk_binder pp_name ty q)
(mk_comp (close_comp_typ body_c x))))
| T_App :
g:env ->
e1:term ->
e2:term ->
x:binder ->
t:term ->
eff:T.tot_or_ghost ->
typing g e1 (eff, pack_ln (Tv_Arrow x (mk_comp (eff, t)))) ->
typing g e2 (eff, binder_sort x) ->
typing g (pack_ln (Tv_App e1 (e2, binder_qual x)))
(eff, open_with t e2)
| T_Let:
g:env ->
x:var { None? (lookup_bvar g x) } ->
e1:term ->
t1:typ ->
e2:term ->
t2:typ ->
eff:T.tot_or_ghost ->
pp_name:pp_name_t ->
typing g e1 (eff, t1) ->
typing (extend_env g x t1) (open_term e2 x) (eff, t2) ->
typing g (mk_let pp_name e1 t1 e2) (eff, open_with (close_term t2 x) e1)
| T_Arrow:
g:env ->
x:var { None? (lookup_bvar g x) } ->
t1:term ->
t2:term { ~(x `Set.mem` freevars t2) } ->
u1:universe ->
u2:universe ->
pp_name:pp_name_t ->
q:aqualv ->
eff:T.tot_or_ghost ->
t1_eff:T.tot_or_ghost ->
t2_eff:T.tot_or_ghost ->
typing g t1 (t1_eff, tm_type u1) ->
typing (extend_env g x t1) (open_term t2 x) (t2_eff, tm_type u2) ->
typing g (pack_ln (Tv_Arrow (mk_binder pp_name t1 q) (mk_comp (eff, t2))))
(T.E_Total, tm_type (u_max u1 u2))
| T_Refine:
g:env ->
x:var { None? (lookup_bvar g x) } ->
t:term ->
e:term { ~(x `Set.mem` freevars e) } ->
u1:universe ->
u2:universe ->
t_eff:T.tot_or_ghost ->
e_eff:T.tot_or_ghost ->
typing g t (t_eff, tm_type u1) ->
typing (extend_env g x t) (open_term e x) (e_eff, tm_type u2) ->
typing g (pack_ln (Tv_Refine (mk_simple_binder pp_name_default t) e)) (T.E_Total, tm_type u1)
| T_PropIrrelevance:
g:env ->
e:term ->
t:term ->
e_eff:T.tot_or_ghost ->
t_eff:T.tot_or_ghost ->
typing g e (e_eff, t) ->
typing g t (t_eff, tm_prop) ->
typing g (`()) (T.E_Total, t)
| T_Sub:
g:env ->
e:term ->
c:comp_typ ->
c':comp_typ ->
typing g e c ->
sub_comp g c c' ->
typing g e c'
| T_If:
g:env ->
scrutinee:term ->
then_:term ->
else_:term ->
ty:term ->
u_ty:universe ->
hyp:var { None? (lookup_bvar g hyp) /\ ~(hyp `Set.mem` (freevars then_ `Set.union` freevars else_)) } ->
eff:T.tot_or_ghost ->
ty_eff:T.tot_or_ghost ->
typing g scrutinee (eff, bool_ty) ->
typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee true_bool)) then_ (eff, ty) ->
typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee false_bool)) else_ (eff, ty) ->
typing g ty (ty_eff, tm_type u_ty) -> //typedness of ty cannot rely on hyp
typing g (mk_if scrutinee then_ else_) (eff, ty)
| T_Match:
g:env ->
sc_u : universe ->
sc_ty : typ ->
sc : term ->
ty_eff:T.tot_or_ghost ->
typing g sc_ty (ty_eff, tm_type sc_u) ->
eff:T.tot_or_ghost ->
typing g sc (eff, sc_ty) ->
branches:list branch ->
ty:comp_typ ->
bnds:list (list R.binding) ->
complet : match_is_complete g sc sc_ty (List.Tot.map fst branches) bnds -> // complete patterns
branches_typing g sc_u sc_ty sc ty branches bnds -> // each branch has proper type
typing g (pack_ln (Tv_Match sc None branches)) ty
and related : env -> term -> relation -> term -> Type0 =
| Rel_refl:
g:env ->
t:term ->
rel:relation ->
related g t rel t
| Rel_sym:
g:env ->
t0:term ->
t1:term ->
related g t0 R_Eq t1 ->
related g t1 R_Eq t0
| Rel_trans:
g:env ->
t0:term ->
t1:term ->
t2:term ->
rel:relation ->
related g t0 rel t1 ->
related g t1 rel t2 ->
related g t0 rel t2
| Rel_univ:
g:env ->
u:universe ->
v:universe ->
univ_eq u v ->
related g (tm_type u) R_Eq (tm_type v)
| Rel_beta:
g:env ->
t:typ ->
q:aqualv ->
e:term { ln' e 0 } ->
arg:term { ln arg } ->
related g (R.pack_ln (R.Tv_App (mk_abs t q e) (arg, q)))
R_Eq
(subst_term e [ DT 0 arg ])
| Rel_eq_token:
g:env ->
t0:term ->
t1:term ->
squash (T.equiv_token g t0 t1) ->
related g t0 R_Eq t1
| Rel_subtyping_token:
g:env ->
t0:term ->
t1:term ->
squash (T.subtyping_token g t0 t1) ->
related g t0 R_Sub t1
| Rel_equiv:
g:env ->
t0:term ->
t1:term ->
rel:relation ->
related g t0 R_Eq t1 ->
related g t0 rel t1
| Rel_arrow:
g:env ->
t1:term ->
t2:term ->
q:aqualv ->
c1:comp_typ ->
c2:comp_typ ->
rel:relation ->
x:var{
None? (lookup_bvar g x) /\
~ (x `Set.mem` (freevars_comp_typ c1 `Set.union` freevars_comp_typ c2))
} ->
related g t2 rel t1 ->
related_comp (extend_env g x t2)
(open_comp_typ c1 x)
rel
(open_comp_typ c2 x) ->
related g (mk_arrow_ct t1 q c1) rel (mk_arrow_ct t2 q c2)
| Rel_abs:
g:env ->
t1:term ->
t2:term ->
q:aqualv ->
e1:term ->
e2:term ->
x:var{
None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars e1 `Set.union` freevars e2))
} ->
related g t1 R_Eq t2 ->
related (extend_env g x t1)
(subst_term e1 (open_with_var x 0))
R_Eq
(subst_term e2 (open_with_var x 0)) ->
related g (mk_abs t1 q e1) R_Eq (mk_abs t2 q e2)
| Rel_ctxt:
g:env ->
t0:term ->
t1:term ->
ctxt:term_ctxt ->
related g t0 R_Eq t1 ->
related g (apply_term_ctxt ctxt t0) R_Eq (apply_term_ctxt ctxt t1)
and related_comp : env -> comp_typ -> relation -> comp_typ -> Type0 =
| Relc_typ:
g:env ->
t0:term ->
t1:term ->
eff:T.tot_or_ghost ->
rel:relation ->
related g t0 rel t1 ->
related_comp g (eff, t0) rel (eff, t1)
| Relc_total_ghost:
g:env ->
t:term ->
related_comp g (T.E_Total, t) R_Sub (T.E_Ghost, t)
| Relc_ghost_total:
g:env ->
t:term ->
non_informative g t ->
related_comp g (T.E_Ghost, t) R_Sub (T.E_Total, t)
and branches_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ)
: (brs:list branch) -> (bnds : list (list R.binding)) -> Type0
=
(* This judgement only enforces that branch_typing holds for every
element of brs and its respective bnds (which must have the same
length). *)
| BT_Nil :
branches_typing g sc_u sc_ty sc rty [] []
| BT_S :
br : branch ->
bnds : list R.binding ->
pf : branch_typing g sc_u sc_ty sc rty br bnds ->
rest_br : list branch ->
rest_bnds : list (list R.binding) ->
rest : branches_typing g sc_u sc_ty sc rty rest_br rest_bnds ->
branches_typing g sc_u sc_ty sc rty (br :: rest_br) (bnds :: rest_bnds)
and branch_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ)
: (br : branch) -> (bnds : list R.binding) -> Type0
=
| BO :
pat : pattern ->
bnds : list R.binding{bindings_ok_for_pat g bnds pat} ->
hyp_var:var{None? (lookup_bvar (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var)} ->
body:term ->
_ : squash (Some? (elaborate_pat pat bnds)) ->
typing (extend_env
(extend_env_l g (refl_bindings_to_bindings bnds))
hyp_var (eq2 sc_u sc_ty sc (fst (Some?.v (elaborate_pat pat bnds))))
)
body rty ->
branch_typing g sc_u sc_ty sc rty
(pat, close_term_bs (refl_bindings_to_bindings bnds) body)
bnds
and match_is_complete : env -> term -> typ -> list pattern -> list (list R.binding) -> Type0 =
| MC_Tok :
env:_ ->
sc:_ ->
ty:_ ->
pats:_ ->
bnds:_ ->
squash (T.match_complete_token env sc ty pats bnds) -> match_is_complete env sc ty pats bnds
and sub_typing (g:env) (t1 t2:term) = related g t1 R_Sub t2
and sub_comp (g:env) (c1 c2:comp_typ) = related_comp g c1 R_Sub c2
and equiv (g:env) (t1 t2:term) = related g t1 R_Eq t2
type tot_typing (g:env) (e:term) (t:term) = typing g e (T.E_Total, t)
type ghost_typing (g:env) (e:term) (t:term) = typing g e (T.E_Ghost, t)
val subtyping_token_renaming (g:env)
(bs0:bindings)
(bs1:bindings)
(x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) })
(y:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) y) })
(t:term)
(t0 t1:term)
(d:T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1)
: T.subtyping_token (extend_env_l g (rename_bindings bs1 x y@(y,t)::bs0))
(rename t0 x y)
(rename t1 x y)
val subtyping_token_weakening (g:env)
(bs0:bindings)
(bs1:bindings)
(x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) })
(t:term)
(t0 t1:term)
(d:T.subtyping_token (extend_env_l g (bs1@bs0)) t0 t1)
: T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1
let simplify_umax (#g:R.env) (#t:R.term) (#u:R.universe)
(d:typing g t (T.E_Total, tm_type (u_max u u)))
: typing g t (T.E_Total, tm_type u)
= let ue
: univ_eq (u_max u u) u
= UN_MaxLeq u u (UNLEQ_Refl u)
in
let du : related g (tm_type (u_max u u)) R_Eq (tm_type u)
= Rel_univ g (u_max u u) u ue in
let du : related g (tm_type (u_max u u)) R_Sub (tm_type u)
= Rel_equiv _ _ _ _ du in
T_Sub _ _ _ _ d (Relc_typ _ _ _ T.E_Total _ du)
val well_typed_terms_are_ln (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c)
: Lemma (ensures ln e /\ ln (snd c))
val type_correctness (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c)
: GTot (u:R.universe & typing g (snd c) (T.E_Total, tm_type u))
val binder_offset_pattern_invariant (p:pattern) (ss:subst)
: Lemma (binder_offset_pattern p == binder_offset_pattern (subst_pattern p ss))
val binder_offset_patterns_invariant (p:list (pattern & bool)) (ss:subst)
: Lemma (binder_offset_patterns p == binder_offset_patterns (subst_patterns p ss))
val open_close_inverse' (i:nat) (t:term { ln' t (i - 1) }) (x:var)
: Lemma
(ensures subst_term
(subst_term t [ ND x i ])
(open_with_var x i)
== t)
val open_close_inverse'_binder (i:nat) (b:binder { ln'_binder b (i - 1) }) (x:var)
: Lemma (ensures subst_binder
(subst_binder b [ ND x i ])
(open_with_var x i)
== b)
val open_close_inverse'_terms (i:nat) (ts:list term { ln'_terms ts (i - 1) }) (x:var)
: Lemma (ensures subst_terms
(subst_terms ts [ ND x i ])
(open_with_var x i)
== ts)
val open_close_inverse'_comp (i:nat) (c:comp { ln'_comp c (i - 1) }) (x:var)
: Lemma
(ensures subst_comp
(subst_comp c [ ND x i ])
(open_with_var x i)
== c)
val open_close_inverse'_args (i:nat)
(ts:list argv { ln'_args ts (i - 1) })
(x:var)
: Lemma
(ensures subst_args
(subst_args ts [ ND x i ])
(open_with_var x i)
== ts)
val open_close_inverse'_patterns (i:nat)
(ps:list (pattern & bool) { ln'_patterns ps (i - 1) })
(x:var)
: Lemma
(ensures subst_patterns
(subst_patterns ps [ ND x i ])
(open_with_var x i)
== ps)
val open_close_inverse'_pattern (i:nat) (p:pattern{ln'_pattern p (i - 1)}) (x:var)
: Lemma
(ensures subst_pattern
(subst_pattern p [ ND x i ])
(open_with_var x i)
== p)
val open_close_inverse'_branch (i:nat) (br:branch{ln'_branch br (i - 1)}) (x:var)
: Lemma
(ensures subst_branch
(subst_branch br [ ND x i ])
(open_with_var x i)
== br)
val open_close_inverse'_branches (i:nat)
(brs:list branch { ln'_branches brs (i - 1) })
(x:var)
: Lemma
(ensures subst_branches
(subst_branches brs [ ND x i ])
(open_with_var x i)
== brs)
val open_close_inverse'_match_returns (i:nat)
(m:match_returns_ascription { ln'_match_returns m (i - 1) })
(x:var)
: Lemma
(ensures subst_match_returns
(subst_match_returns m [ ND x i ])
(open_with_var x i)
== m)
val open_close_inverse (e:R.term { ln e }) (x:var)
: Lemma (open_term (close_term e x) x == e)
val close_open_inverse' (i:nat)
(t:term)
(x:var { ~(x `Set.mem` freevars t) })
: Lemma
(ensures subst_term
(subst_term t (open_with_var x i))
[ ND x i ]
== t)
val close_open_inverse'_comp (i:nat)
(c:comp)
(x:var{ ~(x `Set.mem` freevars_comp c) })
: Lemma
(ensures subst_comp
(subst_comp c (open_with_var x i))
[ ND x i ]
== c)
val close_open_inverse'_args (i:nat) (args:list argv) (x:var{ ~(x `Set.mem` freevars_args args) })
: Lemma
(ensures subst_args
(subst_args args (open_with_var x i))
[ ND x i]
== args)
val close_open_inverse'_binder (i:nat) (b:binder) (x:var{ ~(x `Set.mem` freevars_binder b) })
: Lemma
(ensures subst_binder
(subst_binder b (open_with_var x i))
[ ND x i ]
== b)
val close_open_inverse'_terms (i:nat) (ts:list term) (x:var{ ~(x `Set.mem` freevars_terms ts) })
: Lemma
(ensures subst_terms
(subst_terms ts (open_with_var x i))
[ ND x i ]
== ts)
val close_open_inverse'_branches (i:nat) (brs:list branch)
(x:var{ ~(x `Set.mem` freevars_branches brs) })
: Lemma
(ensures subst_branches
(subst_branches brs (open_with_var x i))
[ ND x i ]
== brs)
val close_open_inverse'_branch (i:nat)
(br:branch)
(x:var{ ~(x `Set.mem` freevars_branch br) })
: Lemma
(ensures subst_branch
(subst_branch br (open_with_var x i))
[ ND x i ]
== br)
val close_open_inverse'_pattern (i:nat)
(p:pattern)
(x:var{ ~(x `Set.mem` freevars_pattern p) })
: Lemma
(ensures subst_pattern
(subst_pattern p (open_with_var x i))
[ ND x i ]
== p)
val close_open_inverse'_patterns (i:nat)
(ps:list (pattern & bool))
(x:var {~ (x `Set.mem` freevars_patterns ps) })
: Lemma
(ensures subst_patterns
(subst_patterns ps (open_with_var x i))
[ ND x i ]
== ps)
val close_open_inverse'_match_returns (i:nat) (m:match_returns_ascription)
(x:var{ ~(x `Set.mem` freevars_match_returns m) })
: Lemma
(ensures subst_match_returns
(subst_match_returns m (open_with_var x i))
[ ND x i ]
== m)
val close_open_inverse (e:R.term) (x:var {~ (x `Set.mem` freevars e) })
: Lemma (close_term (open_term e x) x == e)
//
// fst has corresponding lemmas for other syntax classes
//
val close_with_not_free_var (t:R.term) (x:var) (i:nat)
: Lemma
(requires ~ (Set.mem x (freevars t)))
(ensures subst_term t [ ND x i ] == t)
// this also requires x to be not in freevars e1 `Set.union` freevars e2
val equiv_arrow (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv)
(x:var { None? (lookup_bvar g x) })
(eq:equiv (extend_env g x ty)
(subst_term e1 (open_with_var x 0))
(subst_term e2 (open_with_var x 0)))
: equiv g (mk_arrow ty q e1)
(mk_arrow ty q e2)
// the proof for this requires e1 and e2 to be ln
val equiv_abs_close (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv)
(x:var{None? (lookup_bvar g x)})
(eq:equiv (extend_env g x ty) e1 e2)
: equiv g (mk_abs ty q (subst_term e1 [ ND x 0 ]))
(mk_abs ty q (subst_term e2 [ ND x 0 ]))
val open_with_gt_ln (e:term) (i:nat) (t:term) (j:nat)
: Lemma
(requires ln' e i /\ i < j)
(ensures subst_term e [ DT j t ] == e)
[SMTPat (ln' e i); SMTPat (subst_term e [ DT j t ])]
//
// Type of the top-level tactic that would splice-in the definitions
//
let fstar_env_fvs (g:R.env) =
lookup_fvar g unit_fv == Some (tm_type u_zero) /\
lookup_fvar g bool_fv == Some (tm_type u_zero) /\
lookup_fvar g b2t_fv == Some b2t_ty
type fstar_env = g:R.env{fstar_env_fvs g}
type fstar_top_env = g:fstar_env {
forall x. None? (lookup_bvar g x )
}
//
// This doesn't allow for universe polymorphic definitions
//
// May be we can change it to:
//
// g:fstar_top_env -> T.tac ((us, e, t):(univ_names & term & typ){typing (push g us) e t})
//
noeq
type sigelt_typing : env -> sigelt -> Type0 =
| ST_Let :
g : env ->
fv : R.fv ->
ty : R.typ ->
tm : R.term ->
squash (typing g tm (T.E_Total, ty)) ->
sigelt_typing g (pack_sigelt (Sg_Let false [pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = tm })]))
| ST_Let_Opaque :
g : env ->
fv : R.fv ->
ty : R.typ ->
(* no tm: only a proof of existence *)
squash (exists (tm:R.term). typing g tm (T.E_Total, ty)) ->
sigelt_typing g (pack_sigelt (Sg_Let false [pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = (`_) })]))
(**
* The type of the top-level tactic that would splice-in the definitions.
* It returns a list of well typed definitions, via the judgment above.
*
* Each definition can have a 'blob' attached with a given name.
* The blob can be used later, e.g., during extraction, and passed back to the
* extension to perform additional processing.
*)
(*
* It returns either:
* - Some tm, blob, typ, with a proof that `typing g tm typ`
* - None, blob, typ), with a proof that `exists tm. typing g tm typ`
* The blob itself is optional and can store some additional metadata that
* constructed by the tactic. If present, it will be stored in the
* sigmeta_extension_data field of the enclosing sigelt.
* | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.Native.tuple2",
"Prims.string",
"FStar.Stubs.Reflection.Types.term"
] | [] | false | false | false | true | true | let blob =
| string & R.term | false |
|
Hacl.Spec.K256.Field52.Lemmas2.fst | Hacl.Spec.K256.Field52.Lemmas2.normalize5_first_part | val normalize5_first_part : _:
((((Lib.IntTypes.uint64 * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) *
Lib.IntTypes.uint64)
-> Lib.IntTypes.uint64 *
((((Lib.IntTypes.uint64 * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) *
Lib.IntTypes.uint64) | let normalize5_first_part (f0,f1,f2,f3,f4) =
let (t0,t1,t2,t3,t4) = normalize_weak5 (f0,f1,f2,f3,f4) in
let x, (r0,r1,r2,r3,r4) = minus_x_mul_pow2_256 (t0,t1,t2,t3,t4) in
x, (r0,r1,r2,r3,r4) | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 21,
"end_line": 208,
"start_col": 0,
"start_line": 205
} | module Hacl.Spec.K256.Field52.Lemmas2
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
include Hacl.Spec.K256.Field52.Definitions
include Hacl.Spec.K256.Field52
module ML = Hacl.Spec.K256.MathLemmas
module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas
#set-options "--z3rlimit 100 --fuel 0 --ifuel 0"
/// Normalize-weak
val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires felem_fits5 f m)
(ensures
(let x, r = minus_x_mul_pow2_256 f in
let (r0,r1,r2,r3,r4) = r in
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
v x < pow2 16 /\ v x = v t4 / pow2 48 /\
v r4 = v t4 % pow2 48 /\
as_nat5 r == as_nat5 f - v x * pow2 256 /\
felem_fits5 r (m0,m1,m2,m3,1)))
let minus_x_mul_pow2_256_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
let x = t4 >>. 48ul in let t4' = t4 &. mask48 in
LD.lemma_mask48 t4;
let r = (t0,t1,t2,t3,t4') in
calc (==) { // as_nat5 f
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208;
(==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208;
(==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208;
(==) { }
(v x * pow2 48) * pow208 + as_nat5 r;
(==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 }
v x * pow2 256 + as_nat5 r;
};
Math.Lemmas.lemma_div_lt (v t4) 64 48
val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f (m0,m1,m2,m3,1)))
(ensures (let r = carry_round5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let carry_round_after_last_carry_mod_prime5_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in //(m0,m1,m2,m3,1)
let t1' = t1 +. (t0 >>. 52ul) in let t0' = t0 &. mask52 in
LD.lemma_carry52 m1 m0 t1 t0;
assert (felem_fits1 t1' (m1 + 1));
assert (felem_fits1 t0' 1);
assert (v t0' = v t0 % pow2 52);
assert (v t1' = v t1 + v t0 / pow2 52);
let t2' = t2 +. (t1' >>. 52ul) in let t1'' = t1' &. mask52 in
LD.lemma_carry52 m2 (m1 + 1) t2 t1';
assert (felem_fits1 t2' (m2 + 1));
assert (felem_fits1 t1'' 1);
assert (v t1'' = v t1' % pow2 52);
assert (v t2' = v t2 + v t1' / pow2 52);
let t3' = t3 +. (t2' >>. 52ul) in let t2'' = t2' &. mask52 in
LD.lemma_carry52 m3 (m2 + 1) t3 t2';
assert (felem_fits1 t3' (m3 + 1));
assert (felem_fits1 t2'' 1);
assert (v t2'' = v t2' % pow2 52);
assert (v t3' = v t3 + v t2' / pow2 52);
let t4' = t4 +. (t3' >>. 52ul) in let t3'' = t3' &. mask52 in
LD.lemma_carry_last52 m4 (m3 + 1) t4 t3';
assert (felem_fits_last1 t4' (m4 + 1));
assert (felem_fits1 t3'' 1);
assert (v t3'' = v t3' % pow2 52);
assert (v t4' = v t4 + v t3' / pow2 52);
LD.carry_last_small_mod_lemma t4 t3';
ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4);
let r = carry_round5 f in
assert ((t0',t1'',t2'',t3'',t4') == r);
assert (as_nat5 r == as_nat5 f)
val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f m /\ v x < pow2 16))
(ensures
(let r = plus_x_mul_pow2_256_minus_prime x f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let plus_x_mul_pow2_256_minus_prime_lemma m x f =
let (t0,t1,t2,t3,t4) = f in
let (m0,m1,m2,m3,m4) = m in
let t0' = t0 +. x *. u64 0x1000003D1 in
assert (v x < pow2 16);
Math.Lemmas.lemma_mult_lt_right 0x1000003D1 (v x) (pow2 16);
assert_norm (pow2 16 * 0x1000003D1 < max52);
assert (v t0 + v x * 0x1000003D1 < (m0 + 1) * max52);
Math.Lemmas.lemma_mult_le_right max52 (m0 + 1) 4096;
assert_norm (4096 * max52 < pow2 64);
Math.Lemmas.small_mod (v t0 + v x * 0x1000003D1) (pow2 64);
assert (v t0' = v t0 + v x * 0x1000003D1);
assert (felem_fits1 t0' (m0 + 1));
let r = carry_round5 (t0',t1,t2,t3,t4) in
carry_round_after_last_carry_mod_prime5_lemma (m0+1,m1,m2,m3,m4) (t0',t1,t2,t3,t4);
assert (as_nat5 r == as_nat5 (t0',t1,t2,t3,t4));
LD.lemma_pow2_256_minus_prime ();
assert (as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime))
val normalize_weak5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
felem_fits5 f m))
(ensures (let r = normalize_weak5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f - v t4 / pow2 48 * S.prime /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let normalize_weak5_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let x, f1 = minus_x_mul_pow2_256 f in
minus_x_mul_pow2_256_lemma m f;
assert (as_nat5 f1 == as_nat5 f - v x * pow2 256);
assert (felem_fits5 f1 (m0,m1,m2,m3,1));
let f2 = plus_x_mul_pow2_256_minus_prime x f1 in
plus_x_mul_pow2_256_minus_prime_lemma (m0,m1,m2,m3,1) x f1;
assert (as_nat5 f2 == as_nat5 f1 + v x * (pow2 256 - S.prime));
assert (felem_fits5 f2 (1,1,1,1,2));
assert (f2 == normalize_weak5 f);
Math.Lemmas.distributivity_sub_right (v x) (pow2 256) S.prime;
assert (as_nat5 f2 == as_nat5 f - v x * S.prime)
/// Normalize
#push-options "--ifuel 1"
val is_felem_ge_prime5_lemma: f:felem5 -> Lemma
(requires felem_fits5 f (1,1,1,1,1))
(ensures (let is_m = is_felem_ge_prime5 f in
(v is_m = 0 \/ v is_m = ones_v U64) /\
(if v is_m = ones_v U64 then (as_nat5 f >= S.prime) else (as_nat5 f < S.prime))))
let is_felem_ge_prime5_lemma f = ()
#pop-options
// let (f0,f1,f2,f3,f4) = f in
// let m4 = eq_mask f4 mask48 in
// eq_mask_lemma f4 mask48;
// assert (if v f4 = v mask48 then v m4 = ones_v U64 else v m4 = 0);
// let m3 = eq_mask f3 mask52 in
// eq_mask_lemma f3 mask52;
// assert (if v f3 = v mask52 then v m3 = ones_v U64 else v m3 = 0);
// let m2 = eq_mask f2 mask52 in
// eq_mask_lemma f2 mask52;
// assert (if v f2 = v mask52 then v m2 = ones_v U64 else v m2 = 0);
// let m1 = eq_mask f1 mask52 in
// eq_mask_lemma f1 mask52;
// assert (if v f1 = v mask52 then v m1 = ones_v U64 else v m1 = 0);
// let m0 = gte_mask f0 (u64 0xffffefffffc2f) in
// gte_mask_lemma f0 (u64 0xffffefffffc2f);
// assert (if v f0 >= 0xffffefffffc2f then v m0 = ones_v U64 else v m0 = 0);
// let m = m0 &. m1 &. m2 &. m3 &. m4 in ()
// if v m4 = 0 then
// logand_zeros (m0 &. m1 &. m2 &. m3)
// else begin
// logand_ones (m0 &. m1 &. m2 &. m3) end | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.K256.MathLemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.fst.checked",
"Hacl.Spec.K256.Field52.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas",
"short_module": "LD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.MathLemmas",
"short_module": "ML"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
_:
((((Lib.IntTypes.uint64 * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) *
Lib.IntTypes.uint64)
-> Lib.IntTypes.uint64 *
((((Lib.IntTypes.uint64 * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) *
Lib.IntTypes.uint64) | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.Native.tuple5",
"Lib.IntTypes.uint64",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.Mktuple5",
"FStar.Pervasives.Native.tuple2",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Hacl.Spec.K256.Field52.Definitions.felem5",
"Hacl.Spec.K256.Field52.minus_x_mul_pow2_256",
"Hacl.Spec.K256.Field52.normalize_weak5"
] | [] | false | false | false | true | false | let normalize5_first_part (f0, f1, f2, f3, f4) =
| let t0, t1, t2, t3, t4 = normalize_weak5 (f0, f1, f2, f3, f4) in
let x, (r0, r1, r2, r3, r4) = minus_x_mul_pow2_256 (t0, t1, t2, t3, t4) in
x, (r0, r1, r2, r3, r4) | false |
|
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.bindings_to_refl_bindings | val bindings_to_refl_bindings (bs: list binding) : list R.binding | val bindings_to_refl_bindings (bs: list binding) : list R.binding | let bindings_to_refl_bindings (bs : list binding) : list R.binding =
L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 71,
"end_line": 1051,
"start_col": 0,
"start_line": 1050
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
////////////////////////////////////////////////////////////////////////////////
let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_
let rec ln' (e:term) (n:int)
: Tot bool (decreases e)
= match inspect_ln e with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_Var _ -> true
| Tv_BVar m -> bv_index m <= n
| Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n
| Tv_Abs b body ->
ln'_binder b n &&
ln' body (n + 1)
| Tv_Arrow b c ->
ln'_binder b n &&
ln'_comp c (n + 1)
| Tv_Refine b f ->
ln'_binder b n &&
ln' f (n + 1)
| Tv_Uvar _ _ ->
false
| Tv_Let recf attrs b def body ->
ln'_terms attrs n &&
ln'_binder b n &&
(if recf then ln' def (n + 1) else ln' def n) &&
ln' body (n + 1)
| Tv_Match scr ret brs ->
ln' scr n &&
(match ret with
| None -> true
| Some m -> ln'_match_returns m n) &&
ln'_branches brs n
| Tv_AscribedT e t tac b ->
ln' e n &&
ln' t n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
| Tv_AscribedC e c tac b ->
ln' e n &&
ln'_comp c n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
and ln'_comp (c:comp) (i:int)
: Tot bool (decreases c)
= match inspect_comp c with
| C_Total t
| C_GTotal t -> ln' t i
| C_Lemma pre post pats ->
ln' pre i &&
ln' post i &&
ln' pats i
| C_Eff us eff_name res args decrs ->
ln' res i &&
ln'_args args i &&
ln'_terms decrs i
and ln'_args (ts:list argv) (i:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| (t,q)::ts ->
ln' t i &&
ln'_args ts i
and ln'_binder (b:binder) (n:int)
: Tot bool (decreases b)
= let bndr = inspect_binder b in
ln' bndr.sort n &&
ln'_terms bndr.attrs n
and ln'_terms (ts:list term) (n:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| t::ts -> ln' t n && ln'_terms ts n
and ln'_patterns (ps:list (pattern & bool)) (i:int)
: Tot bool
(decreases ps)
= match ps with
| [] -> true
| (p, b)::ps ->
let b0 = ln'_pattern p i in
let n = binder_offset_pattern p in
let b1 = ln'_patterns ps (i + n) in
b0 && b1
and ln'_pattern (p:pattern) (i:int)
: Tot bool
(decreases p)
= match p with
| Pat_Constant _ -> true
| Pat_Cons head univs subpats ->
ln'_patterns subpats i
| Pat_Var bv s -> true
| Pat_Dot_Term topt ->
(match topt with
| None -> true
| Some t -> ln' t i)
and ln'_branch (br:branch) (i:int)
: Tot bool (decreases br)
= let p, t = br in
let b = ln'_pattern p i in
let j = binder_offset_pattern p in
let b' = ln' t (i + j) in
b&&b'
and ln'_branches (brs:list branch) (i:int)
: Tot bool (decreases brs)
= match brs with
| [] -> true
| br::brs ->
ln'_branch br i &&
ln'_branches brs i
and ln'_match_returns (m:match_returns_ascription) (i:int)
: Tot bool (decreases m)
= let b, (ret, as_, eq) = m in
let b = ln'_binder b i in
let ret =
match ret with
| Inl t -> ln' t (i + 1)
| Inr c -> ln'_comp c (i + 1)
in
let as_ =
match as_ with
| None -> true
| Some t -> ln' t (i + 1)
in
b && ret && as_
let ln (t:term) = ln' t (-1)
let ln_comp (c:comp) = ln'_comp c (-1)
//
// term_ctxt is used to define the equiv relation later,
// basically putting two equiv terms in a hole gives equiv terms
//
// The abs, arrow, refine, and let cases don't seem right here,
// since to prove their equiv, we need to extend gamma for their bodies
//
// If this is useful only for app, then may be we should remove it,
// and add app rules to the equiv relation itself
[@@ no_auto_projectors]
noeq
type term_ctxt =
| Ctxt_hole : term_ctxt
| Ctxt_app_head : term_ctxt -> argv -> term_ctxt
| Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt
// | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt
// | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt
// | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt
// | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt
// | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt
// | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt
// | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt
// | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt
// | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt
// | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt
// and bv_ctxt =
// | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt
// and binder_ctxt =
// | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt
// and comp_ctxt =
// | Ctxt_total : term_ctxt -> comp_ctxt
// | Ctxt_gtotal : term_ctxt -> comp_ctxt
let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) =
match e with
| Ctxt_hole -> t
| Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg)
| Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q))
// | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body)
// | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t))
// | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c)
// | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t))
// | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi)
// | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t))
// | Ctxt_let_sort b attrs bv sort def body ->
// pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body)
// | Ctxt_let_def b attrs bv sort def body ->
// pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body)
// | Ctxt_let_body b attrs bv sort def body ->
// pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t))
// | Ctxt_match_scrutinee sc ret brs ->
// pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs)
// and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) =
// let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in
// pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t}
// and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) =
// match c with
// | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t))
// | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t))
noeq
type constant_typing: vconst -> term -> Type0 =
| CT_Unit: constant_typing C_Unit unit_ty
| CT_True: constant_typing C_True bool_ty
| CT_False: constant_typing C_False bool_ty
[@@ no_auto_projectors]
noeq
type univ_eq : universe -> universe -> Type0 =
| UN_Refl :
u:universe ->
univ_eq u u
| UN_MaxCongL :
u:universe ->
u':universe ->
v:universe ->
univ_eq u u' ->
univ_eq (u_max u v) (u_max u' v)
| UN_MaxCongR :
u:universe ->
v:universe ->
v':universe ->
univ_eq v v' ->
univ_eq (u_max u v) (u_max u v')
| UN_MaxComm:
u:universe ->
v:universe ->
univ_eq (u_max u v) (u_max v u)
| UN_MaxLeq:
u:universe ->
v:universe ->
univ_leq u v ->
univ_eq (u_max u v) v
and univ_leq : universe -> universe -> Type0 =
| UNLEQ_Refl:
u:universe ->
univ_leq u u
| UNLEQ_Succ:
u:universe ->
v:universe ->
univ_leq u v ->
univ_leq u (u_succ v)
| UNLEQ_Max:
u:universe ->
v:universe ->
univ_leq u (u_max u v)
let mk_if (scrutinee then_ else_:R.term) : R.term =
pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_);
(Pat_Constant C_False, else_)])
// effect and type
type comp_typ = T.tot_or_ghost & typ
let close_comp_typ' (c:comp_typ) (x:var) (i:nat) =
fst c, subst_term (snd c) [ ND x i ]
let close_comp_typ (c:comp_typ) (x:var) =
close_comp_typ' c x 0
let open_comp_typ' (c:comp_typ) (x:var) (i:nat) =
fst c, subst_term (snd c) (open_with_var x i)
let open_comp_typ (c:comp_typ) (x:var) =
open_comp_typ' c x 0
let freevars_comp_typ (c:comp_typ) = freevars (snd c)
let mk_comp (c:comp_typ) : R.comp =
match fst c with
| T.E_Total -> mk_total (snd c)
| T.E_Ghost -> mk_ghost (snd c)
let mk_arrow_ct ty qual (c:comp_typ) : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c))
type relation =
| R_Eq
| R_Sub
let binding = var & term
let bindings = list binding
let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs
let rec extend_env_l (g:env) (bs:bindings)
: env
= match bs with
| [] -> g
| (x,t)::bs -> extend_env (extend_env_l g bs) x t
//
// TODO: support for erasable attribute
//
let is_non_informative_name (l:name) : bool =
l = R.unit_lid ||
l = R.squash_qn ||
l = ["FStar"; "Ghost"; "erased"]
let is_non_informative_fv (f:fv) : bool =
is_non_informative_name (inspect_fv f)
let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) =
match vs with
| [] -> t
| v::vs ->
subst_term (__close_term_vs (i+1) vs t) [ND v i]
let close_term_vs (vs : list var) (t : term) : term =
__close_term_vs 0 vs t
let close_term_bs (bs : list binding) (t : term) : term =
close_term_vs (List.Tot.map fst bs) t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | bs: Prims.list FStar.Reflection.Typing.binding -> Prims.list FStar.Stubs.Reflection.V2.Data.binding | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"FStar.Reflection.Typing.binding",
"FStar.List.Tot.Base.map",
"FStar.Pervasives.Native.tuple2",
"Prims.nat",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Stubs.Reflection.V2.Data.binding",
"FStar.Stubs.Reflection.V2.Data.Mkbinding",
"FStar.Reflection.Typing.pp_name_default"
] | [] | false | false | false | true | false | let bindings_to_refl_bindings (bs: list binding) : list R.binding =
| L.map (fun (v, ty) -> { uniq = v; sort = ty; ppname = pp_name_default }) bs | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.freevars_binder | val freevars_binder (b: binder) : Tot (Set.set var) (decreases b) | val freevars_binder (b: binder) : Tot (Set.set var) (decreases b) | let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_ | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 705,
"start_col": 0,
"start_line": 567
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
//////////////////////////////////////////////////////////////////////////////// | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Stubs.Reflection.Types.binder
-> Prims.Tot (FStar.Set.set FStar.Stubs.Reflection.V2.Data.var) | Prims.Tot | [
"total",
""
] | [
"freevars",
"freevars_opt",
"freevars_comp",
"freevars_args",
"freevars_terms",
"freevars_binder",
"freevars_pattern",
"freevars_patterns",
"freevars_branch",
"freevars_branches",
"freevars_match_returns"
] | [
"FStar.Stubs.Reflection.Types.binder",
"FStar.Set.union",
"FStar.Stubs.Reflection.V2.Data.var",
"FStar.Reflection.Typing.freevars",
"FStar.Stubs.Reflection.V2.Data.__proj__Mkbinder_view__item__sort",
"FStar.Reflection.Typing.freevars_terms",
"FStar.Stubs.Reflection.V2.Data.__proj__Mkbinder_view__item__attrs",
"FStar.Stubs.Reflection.V2.Data.binder_view",
"Prims.precedes",
"FStar.Stubs.Reflection.V2.Builtins.inspect_binder",
"FStar.Set.set"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec freevars_binder (b: binder) : Tot (Set.set var) (decreases b) =
| let bndr = inspect_binder b in
(freevars bndr.sort) `Set.union` (freevars_terms bndr.attrs) | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.freevars_args | val freevars_args (ts: list argv) : FStar.Set.set var | val freevars_args (ts: list argv) : FStar.Set.set var | let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_ | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 705,
"start_col": 0,
"start_line": 567
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
//////////////////////////////////////////////////////////////////////////////// | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ts: Prims.list FStar.Stubs.Reflection.V2.Data.argv
-> FStar.Set.set FStar.Stubs.Reflection.V2.Data.var | Prims.Tot | [
"total"
] | [
"freevars",
"freevars_opt",
"freevars_comp",
"freevars_args",
"freevars_terms",
"freevars_binder",
"freevars_pattern",
"freevars_patterns",
"freevars_branch",
"freevars_branches",
"freevars_match_returns"
] | [
"Prims.list",
"FStar.Stubs.Reflection.V2.Data.argv",
"FStar.Set.empty",
"FStar.Stubs.Reflection.V2.Data.var",
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Reflection.V2.Data.aqualv",
"FStar.Set.union",
"FStar.Reflection.Typing.freevars",
"FStar.Reflection.Typing.freevars_args",
"FStar.Set.set"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec freevars_args (ts: list argv) : FStar.Set.set var =
| match ts with
| [] -> Set.empty
| (t, q) :: ts -> (freevars t) `Set.union` (freevars_args ts) | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.freevars | val freevars (e: term) : FStar.Set.set var | val freevars (e: term) : FStar.Set.set var | let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_ | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 705,
"start_col": 0,
"start_line": 567
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
//////////////////////////////////////////////////////////////////////////////// | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: FStar.Stubs.Reflection.Types.term -> FStar.Set.set FStar.Stubs.Reflection.V2.Data.var | Prims.Tot | [
"total"
] | [
"freevars",
"freevars_opt",
"freevars_comp",
"freevars_args",
"freevars_terms",
"freevars_binder",
"freevars_pattern",
"freevars_patterns",
"freevars_branch",
"freevars_branches",
"freevars_match_returns"
] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Reflection.V2.Builtins.inspect_ln",
"Prims.nat",
"FStar.Stubs.Reflection.Types.ctx_uvar_and_subst",
"FStar.Set.complement",
"FStar.Stubs.Reflection.V2.Data.var",
"FStar.Set.empty",
"FStar.Stubs.Reflection.Types.fv",
"FStar.Stubs.Reflection.V2.Data.universes",
"FStar.Stubs.Reflection.Types.universe",
"FStar.Stubs.Reflection.V2.Data.vconst",
"FStar.Stubs.Reflection.Types.bv",
"FStar.Stubs.Reflection.Types.namedv",
"FStar.Set.singleton",
"FStar.Reflection.Typing.namedv_uniq",
"FStar.Stubs.Reflection.V2.Data.aqualv",
"FStar.Set.union",
"FStar.Reflection.Typing.freevars",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Reflection.Typing.freevars_binder",
"FStar.Stubs.Reflection.Types.comp",
"FStar.Reflection.Typing.freevars_comp",
"FStar.Stubs.Reflection.V2.Data.simple_binder",
"FStar.Reflection.Typing.binder_sort",
"Prims.bool",
"Prims.list",
"FStar.Reflection.Typing.freevars_terms",
"FStar.Pervasives.Native.option",
"FStar.Stubs.Reflection.Types.match_returns_ascription",
"FStar.Stubs.Reflection.V2.Data.branch",
"FStar.Reflection.Typing.freevars_opt",
"FStar.Reflection.Typing.freevars_match_returns",
"FStar.Reflection.Typing.freevars_branches",
"FStar.Set.set"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec freevars (e: term) : FStar.Set.set var =
| match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2)
| Tv_Abs b body -> Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f -> (freevars (binder_sort b)) `Set.union` (freevars f)
| Tv_Let recf attrs b def body ->
(((freevars_terms attrs) `Set.union` (freevars (binder_sort b))) `Set.union` (freevars def))
`Set.union`
(freevars body)
| Tv_Match scr ret brs ->
((freevars scr) `Set.union` (freevars_opt ret freevars_match_returns))
`Set.union`
(freevars_branches brs)
| Tv_AscribedT e t tac b ->
((freevars e) `Set.union` (freevars t)) `Set.union` (freevars_opt tac freevars)
| Tv_AscribedC e c tac b ->
((freevars e) `Set.union` (freevars_comp c)) `Set.union` (freevars_opt tac freevars) | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.ln'_branches | val ln'_branches (brs: list branch) (i: int) : Tot bool (decreases brs) | val ln'_branches (brs: list branch) (i: int) : Tot bool (decreases brs) | let rec ln' (e:term) (n:int)
: Tot bool (decreases e)
= match inspect_ln e with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_Var _ -> true
| Tv_BVar m -> bv_index m <= n
| Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n
| Tv_Abs b body ->
ln'_binder b n &&
ln' body (n + 1)
| Tv_Arrow b c ->
ln'_binder b n &&
ln'_comp c (n + 1)
| Tv_Refine b f ->
ln'_binder b n &&
ln' f (n + 1)
| Tv_Uvar _ _ ->
false
| Tv_Let recf attrs b def body ->
ln'_terms attrs n &&
ln'_binder b n &&
(if recf then ln' def (n + 1) else ln' def n) &&
ln' body (n + 1)
| Tv_Match scr ret brs ->
ln' scr n &&
(match ret with
| None -> true
| Some m -> ln'_match_returns m n) &&
ln'_branches brs n
| Tv_AscribedT e t tac b ->
ln' e n &&
ln' t n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
| Tv_AscribedC e c tac b ->
ln' e n &&
ln'_comp c n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
and ln'_comp (c:comp) (i:int)
: Tot bool (decreases c)
= match inspect_comp c with
| C_Total t
| C_GTotal t -> ln' t i
| C_Lemma pre post pats ->
ln' pre i &&
ln' post i &&
ln' pats i
| C_Eff us eff_name res args decrs ->
ln' res i &&
ln'_args args i &&
ln'_terms decrs i
and ln'_args (ts:list argv) (i:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| (t,q)::ts ->
ln' t i &&
ln'_args ts i
and ln'_binder (b:binder) (n:int)
: Tot bool (decreases b)
= let bndr = inspect_binder b in
ln' bndr.sort n &&
ln'_terms bndr.attrs n
and ln'_terms (ts:list term) (n:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| t::ts -> ln' t n && ln'_terms ts n
and ln'_patterns (ps:list (pattern & bool)) (i:int)
: Tot bool
(decreases ps)
= match ps with
| [] -> true
| (p, b)::ps ->
let b0 = ln'_pattern p i in
let n = binder_offset_pattern p in
let b1 = ln'_patterns ps (i + n) in
b0 && b1
and ln'_pattern (p:pattern) (i:int)
: Tot bool
(decreases p)
= match p with
| Pat_Constant _ -> true
| Pat_Cons head univs subpats ->
ln'_patterns subpats i
| Pat_Var bv s -> true
| Pat_Dot_Term topt ->
(match topt with
| None -> true
| Some t -> ln' t i)
and ln'_branch (br:branch) (i:int)
: Tot bool (decreases br)
= let p, t = br in
let b = ln'_pattern p i in
let j = binder_offset_pattern p in
let b' = ln' t (i + j) in
b&&b'
and ln'_branches (brs:list branch) (i:int)
: Tot bool (decreases brs)
= match brs with
| [] -> true
| br::brs ->
ln'_branch br i &&
ln'_branches brs i
and ln'_match_returns (m:match_returns_ascription) (i:int)
: Tot bool (decreases m)
= let b, (ret, as_, eq) = m in
let b = ln'_binder b i in
let ret =
match ret with
| Inl t -> ln' t (i + 1)
| Inr c -> ln'_comp c (i + 1)
in
let as_ =
match as_ with
| None -> true
| Some t -> ln' t (i + 1)
in
b && ret && as_ | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 19,
"end_line": 855,
"start_col": 0,
"start_line": 708
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
////////////////////////////////////////////////////////////////////////////////
let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | brs: Prims.list FStar.Stubs.Reflection.V2.Data.branch -> i: Prims.int -> Prims.Tot Prims.bool | Prims.Tot | [
"total",
""
] | [
"ln'",
"ln'_comp",
"ln'_args",
"ln'_binder",
"ln'_terms",
"ln'_patterns",
"ln'_pattern",
"ln'_branch",
"ln'_branches",
"ln'_match_returns"
] | [
"Prims.list",
"FStar.Stubs.Reflection.V2.Data.branch",
"Prims.int",
"Prims.op_AmpAmp",
"FStar.Reflection.Typing.ln'_branch",
"FStar.Reflection.Typing.ln'_branches",
"Prims.bool"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec ln'_branches (brs: list branch) (i: int) : Tot bool (decreases brs) =
| match brs with
| [] -> true
| br :: brs -> ln'_branch br i && ln'_branches brs i | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.elaborate_pat | val elaborate_pat (p: pattern) (bs: list R.binding)
: Tot (option (term & list R.binding)) (decreases p) | val elaborate_pat (p: pattern) (bs: list R.binding)
: Tot (option (term & list R.binding)) (decreases p) | let rec elaborate_pat (p : pattern) (bs : list R.binding) : Tot (option (term & list R.binding)) (decreases p) =
match p, bs with
| Pat_Constant c, _ -> Some (pack_ln (Tv_Const c), bs)
| Pat_Cons fv univs subpats, bs ->
let head = pack_ln (Tv_FVar fv) in
fold_left_dec
(Some (head, bs))
subpats
(fun st pi ->
let (p,i) = pi in
match st with | None -> None | Some (head, bs) ->
match elaborate_pat p bs with | None -> None | Some (t, bs') -> Some (pack_ln (Tv_App head (t, (if i then Q_Implicit else Q_Explicit))), bs'))
| Pat_Var _ _, b::bs ->
Some (pack_ln (Tv_Var (binding_to_namedv b)), bs)
| Pat_Dot_Term (Some t), _ -> Some (t, bs)
| Pat_Dot_Term None, _ -> None
| _ -> None | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 13,
"end_line": 1144,
"start_col": 0,
"start_line": 1127
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
////////////////////////////////////////////////////////////////////////////////
let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_
let rec ln' (e:term) (n:int)
: Tot bool (decreases e)
= match inspect_ln e with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_Var _ -> true
| Tv_BVar m -> bv_index m <= n
| Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n
| Tv_Abs b body ->
ln'_binder b n &&
ln' body (n + 1)
| Tv_Arrow b c ->
ln'_binder b n &&
ln'_comp c (n + 1)
| Tv_Refine b f ->
ln'_binder b n &&
ln' f (n + 1)
| Tv_Uvar _ _ ->
false
| Tv_Let recf attrs b def body ->
ln'_terms attrs n &&
ln'_binder b n &&
(if recf then ln' def (n + 1) else ln' def n) &&
ln' body (n + 1)
| Tv_Match scr ret brs ->
ln' scr n &&
(match ret with
| None -> true
| Some m -> ln'_match_returns m n) &&
ln'_branches brs n
| Tv_AscribedT e t tac b ->
ln' e n &&
ln' t n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
| Tv_AscribedC e c tac b ->
ln' e n &&
ln'_comp c n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
and ln'_comp (c:comp) (i:int)
: Tot bool (decreases c)
= match inspect_comp c with
| C_Total t
| C_GTotal t -> ln' t i
| C_Lemma pre post pats ->
ln' pre i &&
ln' post i &&
ln' pats i
| C_Eff us eff_name res args decrs ->
ln' res i &&
ln'_args args i &&
ln'_terms decrs i
and ln'_args (ts:list argv) (i:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| (t,q)::ts ->
ln' t i &&
ln'_args ts i
and ln'_binder (b:binder) (n:int)
: Tot bool (decreases b)
= let bndr = inspect_binder b in
ln' bndr.sort n &&
ln'_terms bndr.attrs n
and ln'_terms (ts:list term) (n:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| t::ts -> ln' t n && ln'_terms ts n
and ln'_patterns (ps:list (pattern & bool)) (i:int)
: Tot bool
(decreases ps)
= match ps with
| [] -> true
| (p, b)::ps ->
let b0 = ln'_pattern p i in
let n = binder_offset_pattern p in
let b1 = ln'_patterns ps (i + n) in
b0 && b1
and ln'_pattern (p:pattern) (i:int)
: Tot bool
(decreases p)
= match p with
| Pat_Constant _ -> true
| Pat_Cons head univs subpats ->
ln'_patterns subpats i
| Pat_Var bv s -> true
| Pat_Dot_Term topt ->
(match topt with
| None -> true
| Some t -> ln' t i)
and ln'_branch (br:branch) (i:int)
: Tot bool (decreases br)
= let p, t = br in
let b = ln'_pattern p i in
let j = binder_offset_pattern p in
let b' = ln' t (i + j) in
b&&b'
and ln'_branches (brs:list branch) (i:int)
: Tot bool (decreases brs)
= match brs with
| [] -> true
| br::brs ->
ln'_branch br i &&
ln'_branches brs i
and ln'_match_returns (m:match_returns_ascription) (i:int)
: Tot bool (decreases m)
= let b, (ret, as_, eq) = m in
let b = ln'_binder b i in
let ret =
match ret with
| Inl t -> ln' t (i + 1)
| Inr c -> ln'_comp c (i + 1)
in
let as_ =
match as_ with
| None -> true
| Some t -> ln' t (i + 1)
in
b && ret && as_
let ln (t:term) = ln' t (-1)
let ln_comp (c:comp) = ln'_comp c (-1)
//
// term_ctxt is used to define the equiv relation later,
// basically putting two equiv terms in a hole gives equiv terms
//
// The abs, arrow, refine, and let cases don't seem right here,
// since to prove their equiv, we need to extend gamma for their bodies
//
// If this is useful only for app, then may be we should remove it,
// and add app rules to the equiv relation itself
[@@ no_auto_projectors]
noeq
type term_ctxt =
| Ctxt_hole : term_ctxt
| Ctxt_app_head : term_ctxt -> argv -> term_ctxt
| Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt
// | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt
// | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt
// | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt
// | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt
// | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt
// | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt
// | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt
// | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt
// | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt
// | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt
// and bv_ctxt =
// | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt
// and binder_ctxt =
// | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt
// and comp_ctxt =
// | Ctxt_total : term_ctxt -> comp_ctxt
// | Ctxt_gtotal : term_ctxt -> comp_ctxt
let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) =
match e with
| Ctxt_hole -> t
| Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg)
| Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q))
// | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body)
// | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t))
// | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c)
// | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t))
// | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi)
// | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t))
// | Ctxt_let_sort b attrs bv sort def body ->
// pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body)
// | Ctxt_let_def b attrs bv sort def body ->
// pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body)
// | Ctxt_let_body b attrs bv sort def body ->
// pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t))
// | Ctxt_match_scrutinee sc ret brs ->
// pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs)
// and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) =
// let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in
// pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t}
// and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) =
// match c with
// | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t))
// | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t))
noeq
type constant_typing: vconst -> term -> Type0 =
| CT_Unit: constant_typing C_Unit unit_ty
| CT_True: constant_typing C_True bool_ty
| CT_False: constant_typing C_False bool_ty
[@@ no_auto_projectors]
noeq
type univ_eq : universe -> universe -> Type0 =
| UN_Refl :
u:universe ->
univ_eq u u
| UN_MaxCongL :
u:universe ->
u':universe ->
v:universe ->
univ_eq u u' ->
univ_eq (u_max u v) (u_max u' v)
| UN_MaxCongR :
u:universe ->
v:universe ->
v':universe ->
univ_eq v v' ->
univ_eq (u_max u v) (u_max u v')
| UN_MaxComm:
u:universe ->
v:universe ->
univ_eq (u_max u v) (u_max v u)
| UN_MaxLeq:
u:universe ->
v:universe ->
univ_leq u v ->
univ_eq (u_max u v) v
and univ_leq : universe -> universe -> Type0 =
| UNLEQ_Refl:
u:universe ->
univ_leq u u
| UNLEQ_Succ:
u:universe ->
v:universe ->
univ_leq u v ->
univ_leq u (u_succ v)
| UNLEQ_Max:
u:universe ->
v:universe ->
univ_leq u (u_max u v)
let mk_if (scrutinee then_ else_:R.term) : R.term =
pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_);
(Pat_Constant C_False, else_)])
// effect and type
type comp_typ = T.tot_or_ghost & typ
let close_comp_typ' (c:comp_typ) (x:var) (i:nat) =
fst c, subst_term (snd c) [ ND x i ]
let close_comp_typ (c:comp_typ) (x:var) =
close_comp_typ' c x 0
let open_comp_typ' (c:comp_typ) (x:var) (i:nat) =
fst c, subst_term (snd c) (open_with_var x i)
let open_comp_typ (c:comp_typ) (x:var) =
open_comp_typ' c x 0
let freevars_comp_typ (c:comp_typ) = freevars (snd c)
let mk_comp (c:comp_typ) : R.comp =
match fst c with
| T.E_Total -> mk_total (snd c)
| T.E_Ghost -> mk_ghost (snd c)
let mk_arrow_ct ty qual (c:comp_typ) : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c))
type relation =
| R_Eq
| R_Sub
let binding = var & term
let bindings = list binding
let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs
let rec extend_env_l (g:env) (bs:bindings)
: env
= match bs with
| [] -> g
| (x,t)::bs -> extend_env (extend_env_l g bs) x t
//
// TODO: support for erasable attribute
//
let is_non_informative_name (l:name) : bool =
l = R.unit_lid ||
l = R.squash_qn ||
l = ["FStar"; "Ghost"; "erased"]
let is_non_informative_fv (f:fv) : bool =
is_non_informative_name (inspect_fv f)
let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) =
match vs with
| [] -> t
| v::vs ->
subst_term (__close_term_vs (i+1) vs t) [ND v i]
let close_term_vs (vs : list var) (t : term) : term =
__close_term_vs 0 vs t
let close_term_bs (bs : list binding) (t : term) : term =
close_term_vs (List.Tot.map fst bs) t
let bindings_to_refl_bindings (bs : list binding) : list R.binding =
L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs
let refl_bindings_to_bindings (bs : list R.binding) : list binding =
L.map (fun b -> b.uniq, b.sort) bs
[@@ no_auto_projectors]
noeq
type non_informative : env -> term -> Type0 =
| Non_informative_type:
g:env ->
u:universe ->
non_informative g (pack_ln (Tv_Type u))
| Non_informative_fv:
g:env ->
x:fv{is_non_informative_fv x} ->
non_informative g (pack_ln (Tv_FVar x))
| Non_informative_uinst:
g:env ->
x:fv{is_non_informative_fv x} ->
us:list universe ->
non_informative g (pack_ln (Tv_UInst x us))
| Non_informative_app:
g:env ->
t:term ->
arg:argv ->
non_informative g t ->
non_informative g (pack_ln (Tv_App t arg))
| Non_informative_total_arrow:
g:env ->
t0:term ->
q:aqualv ->
t1:term ->
non_informative g t1 ->
non_informative g (mk_arrow_ct t0 q (T.E_Total, t1))
| Non_informative_ghost_arrow:
g:env ->
t0:term ->
q:aqualv ->
t1:term ->
non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1))
| Non_informative_token:
g:env ->
t:typ ->
squash (T.non_informative_token g t) ->
non_informative g t
val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0
val bindings_ok_pat_constant :
g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c))
let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 =
bindings_ok_for_pat g bs (fst br)
let bindings_ok_for_branch_N (g:env) (bss : list (list R.binding)) (brs : list branch) =
zip2prop (bindings_ok_for_branch g) bss brs
let binding_to_namedv (b:R.binding) : Tot namedv =
pack_namedv {
RD.uniq = b.uniq;
RD.sort = seal b.sort;
RD.ppname = b.ppname;
}
(* Elaborates the p pattern into a term, using the bs bindings for the
pattern variables. The resulting term is properly scoped only on an
environment which contains all of bs. See for instance the branch_typing
judg. Returns an option, since this can fail if e.g. there are not
enough bindings, and returns the list of unused binders as well, which | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: FStar.Stubs.Reflection.V2.Data.pattern -> bs: Prims.list FStar.Stubs.Reflection.V2.Data.binding
-> Prims.Tot
(FStar.Pervasives.Native.option (FStar.Stubs.Reflection.Types.term *
Prims.list FStar.Stubs.Reflection.V2.Data.binding)) | Prims.Tot | [
"total",
""
] | [] | [
"FStar.Stubs.Reflection.V2.Data.pattern",
"Prims.list",
"FStar.Stubs.Reflection.V2.Data.binding",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Stubs.Reflection.V2.Data.vconst",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.tuple2",
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Reflection.V2.Builtins.pack_ln",
"FStar.Stubs.Reflection.V2.Data.Tv_Const",
"FStar.Stubs.Reflection.Types.fv",
"FStar.Pervasives.Native.option",
"FStar.Stubs.Reflection.V2.Data.universes",
"Prims.bool",
"FStar.Reflection.Typing.fold_left_dec",
"Prims.precedes",
"FStar.Pervasives.Native.None",
"FStar.Reflection.Typing.elaborate_pat",
"FStar.Stubs.Reflection.V2.Data.Tv_App",
"FStar.Stubs.Reflection.V2.Data.aqualv",
"FStar.Stubs.Reflection.V2.Data.Q_Implicit",
"FStar.Stubs.Reflection.V2.Data.Q_Explicit",
"FStar.Stubs.Reflection.V2.Data.Tv_FVar",
"FStar.Sealed.sealed",
"FStar.Stubs.Reflection.V2.Data.ppname_t",
"FStar.Stubs.Reflection.V2.Data.Tv_Var",
"FStar.Reflection.Typing.binding_to_namedv"
] | [
"recursion"
] | false | false | false | true | false | let rec elaborate_pat (p: pattern) (bs: list R.binding)
: Tot (option (term & list R.binding)) (decreases p) =
| match p, bs with
| Pat_Constant c, _ -> Some (pack_ln (Tv_Const c), bs)
| Pat_Cons fv univs subpats, bs ->
let head = pack_ln (Tv_FVar fv) in
fold_left_dec (Some (head, bs))
subpats
(fun st pi ->
let p, i = pi in
match st with
| None -> None
| Some (head, bs) ->
match elaborate_pat p bs with
| None -> None
| Some (t, bs') ->
Some (pack_ln (Tv_App head (t, (if i then Q_Implicit else Q_Explicit))), bs'))
| Pat_Var _ _, b :: bs -> Some (pack_ln (Tv_Var (binding_to_namedv b)), bs)
| Pat_Dot_Term (Some t), _ -> Some (t, bs)
| Pat_Dot_Term None, _ -> None
| _ -> None | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.freevars_match_returns | val freevars_match_returns (m: match_returns_ascription) : Tot (Set.set var) (decreases m) | val freevars_match_returns (m: match_returns_ascription) : Tot (Set.set var) (decreases m) | let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_ | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 705,
"start_col": 0,
"start_line": 567
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
//////////////////////////////////////////////////////////////////////////////// | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: FStar.Stubs.Reflection.Types.match_returns_ascription
-> Prims.Tot (FStar.Set.set FStar.Stubs.Reflection.V2.Data.var) | Prims.Tot | [
"total",
""
] | [
"freevars",
"freevars_opt",
"freevars_comp",
"freevars_args",
"freevars_terms",
"freevars_binder",
"freevars_pattern",
"freevars_patterns",
"freevars_branch",
"freevars_branches",
"freevars_match_returns"
] | [
"FStar.Stubs.Reflection.Types.match_returns_ascription",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Pervasives.either",
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Reflection.Types.comp",
"FStar.Pervasives.Native.option",
"Prims.bool",
"FStar.Set.union",
"FStar.Stubs.Reflection.V2.Data.var",
"FStar.Set.set",
"FStar.Reflection.Typing.freevars_opt",
"FStar.Reflection.Typing.freevars",
"FStar.Reflection.Typing.freevars_comp",
"FStar.Reflection.Typing.freevars_binder"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec freevars_match_returns (m: match_returns_ascription) : Tot (Set.set var) (decreases m) =
| let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
(b `Set.union` ret) `Set.union` as_ | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.freevars_branches | val freevars_branches (brs: list branch) : Tot (Set.set var) (decreases brs) | val freevars_branches (brs: list branch) : Tot (Set.set var) (decreases brs) | let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_ | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 705,
"start_col": 0,
"start_line": 567
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
//////////////////////////////////////////////////////////////////////////////// | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | brs: Prims.list FStar.Stubs.Reflection.V2.Data.branch
-> Prims.Tot (FStar.Set.set FStar.Stubs.Reflection.V2.Data.var) | Prims.Tot | [
"total",
""
] | [
"freevars",
"freevars_opt",
"freevars_comp",
"freevars_args",
"freevars_terms",
"freevars_binder",
"freevars_pattern",
"freevars_patterns",
"freevars_branch",
"freevars_branches",
"freevars_match_returns"
] | [
"Prims.list",
"FStar.Stubs.Reflection.V2.Data.branch",
"FStar.Set.empty",
"FStar.Stubs.Reflection.V2.Data.var",
"FStar.Set.union",
"FStar.Reflection.Typing.freevars_branch",
"FStar.Reflection.Typing.freevars_branches",
"FStar.Set.set"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec freevars_branches (brs: list branch) : Tot (Set.set var) (decreases brs) =
| match brs with
| [] -> Set.empty
| hd :: tl -> (freevars_branch hd) `Set.union` (freevars_branches tl) | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.ln'_comp | val ln'_comp (c: comp) (i: int) : Tot bool (decreases c) | val ln'_comp (c: comp) (i: int) : Tot bool (decreases c) | let rec ln' (e:term) (n:int)
: Tot bool (decreases e)
= match inspect_ln e with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_Var _ -> true
| Tv_BVar m -> bv_index m <= n
| Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n
| Tv_Abs b body ->
ln'_binder b n &&
ln' body (n + 1)
| Tv_Arrow b c ->
ln'_binder b n &&
ln'_comp c (n + 1)
| Tv_Refine b f ->
ln'_binder b n &&
ln' f (n + 1)
| Tv_Uvar _ _ ->
false
| Tv_Let recf attrs b def body ->
ln'_terms attrs n &&
ln'_binder b n &&
(if recf then ln' def (n + 1) else ln' def n) &&
ln' body (n + 1)
| Tv_Match scr ret brs ->
ln' scr n &&
(match ret with
| None -> true
| Some m -> ln'_match_returns m n) &&
ln'_branches brs n
| Tv_AscribedT e t tac b ->
ln' e n &&
ln' t n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
| Tv_AscribedC e c tac b ->
ln' e n &&
ln'_comp c n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
and ln'_comp (c:comp) (i:int)
: Tot bool (decreases c)
= match inspect_comp c with
| C_Total t
| C_GTotal t -> ln' t i
| C_Lemma pre post pats ->
ln' pre i &&
ln' post i &&
ln' pats i
| C_Eff us eff_name res args decrs ->
ln' res i &&
ln'_args args i &&
ln'_terms decrs i
and ln'_args (ts:list argv) (i:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| (t,q)::ts ->
ln' t i &&
ln'_args ts i
and ln'_binder (b:binder) (n:int)
: Tot bool (decreases b)
= let bndr = inspect_binder b in
ln' bndr.sort n &&
ln'_terms bndr.attrs n
and ln'_terms (ts:list term) (n:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| t::ts -> ln' t n && ln'_terms ts n
and ln'_patterns (ps:list (pattern & bool)) (i:int)
: Tot bool
(decreases ps)
= match ps with
| [] -> true
| (p, b)::ps ->
let b0 = ln'_pattern p i in
let n = binder_offset_pattern p in
let b1 = ln'_patterns ps (i + n) in
b0 && b1
and ln'_pattern (p:pattern) (i:int)
: Tot bool
(decreases p)
= match p with
| Pat_Constant _ -> true
| Pat_Cons head univs subpats ->
ln'_patterns subpats i
| Pat_Var bv s -> true
| Pat_Dot_Term topt ->
(match topt with
| None -> true
| Some t -> ln' t i)
and ln'_branch (br:branch) (i:int)
: Tot bool (decreases br)
= let p, t = br in
let b = ln'_pattern p i in
let j = binder_offset_pattern p in
let b' = ln' t (i + j) in
b&&b'
and ln'_branches (brs:list branch) (i:int)
: Tot bool (decreases brs)
= match brs with
| [] -> true
| br::brs ->
ln'_branch br i &&
ln'_branches brs i
and ln'_match_returns (m:match_returns_ascription) (i:int)
: Tot bool (decreases m)
= let b, (ret, as_, eq) = m in
let b = ln'_binder b i in
let ret =
match ret with
| Inl t -> ln' t (i + 1)
| Inr c -> ln'_comp c (i + 1)
in
let as_ =
match as_ with
| None -> true
| Some t -> ln' t (i + 1)
in
b && ret && as_ | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 19,
"end_line": 855,
"start_col": 0,
"start_line": 708
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
////////////////////////////////////////////////////////////////////////////////
let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: FStar.Stubs.Reflection.Types.comp -> i: Prims.int -> Prims.Tot Prims.bool | Prims.Tot | [
"total",
""
] | [
"ln'",
"ln'_comp",
"ln'_args",
"ln'_binder",
"ln'_terms",
"ln'_patterns",
"ln'_pattern",
"ln'_branch",
"ln'_branches",
"ln'_match_returns"
] | [
"FStar.Stubs.Reflection.Types.comp",
"Prims.int",
"FStar.Stubs.Reflection.V2.Builtins.inspect_comp",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Reflection.Typing.ln'",
"FStar.Stubs.Reflection.Types.term",
"Prims.op_AmpAmp",
"FStar.Stubs.Reflection.V2.Data.universes",
"FStar.Stubs.Reflection.Types.name",
"Prims.list",
"FStar.Stubs.Reflection.V2.Data.argv",
"FStar.Reflection.Typing.ln'_args",
"FStar.Reflection.Typing.ln'_terms",
"Prims.bool"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec ln'_comp (c: comp) (i: int) : Tot bool (decreases c) =
| match inspect_comp c with
| C_Total t | C_GTotal t -> ln' t i
| C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i
| C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.ln'_branch | val ln'_branch (br: branch) (i: int) : Tot bool (decreases br) | val ln'_branch (br: branch) (i: int) : Tot bool (decreases br) | let rec ln' (e:term) (n:int)
: Tot bool (decreases e)
= match inspect_ln e with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_Var _ -> true
| Tv_BVar m -> bv_index m <= n
| Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n
| Tv_Abs b body ->
ln'_binder b n &&
ln' body (n + 1)
| Tv_Arrow b c ->
ln'_binder b n &&
ln'_comp c (n + 1)
| Tv_Refine b f ->
ln'_binder b n &&
ln' f (n + 1)
| Tv_Uvar _ _ ->
false
| Tv_Let recf attrs b def body ->
ln'_terms attrs n &&
ln'_binder b n &&
(if recf then ln' def (n + 1) else ln' def n) &&
ln' body (n + 1)
| Tv_Match scr ret brs ->
ln' scr n &&
(match ret with
| None -> true
| Some m -> ln'_match_returns m n) &&
ln'_branches brs n
| Tv_AscribedT e t tac b ->
ln' e n &&
ln' t n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
| Tv_AscribedC e c tac b ->
ln' e n &&
ln'_comp c n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
and ln'_comp (c:comp) (i:int)
: Tot bool (decreases c)
= match inspect_comp c with
| C_Total t
| C_GTotal t -> ln' t i
| C_Lemma pre post pats ->
ln' pre i &&
ln' post i &&
ln' pats i
| C_Eff us eff_name res args decrs ->
ln' res i &&
ln'_args args i &&
ln'_terms decrs i
and ln'_args (ts:list argv) (i:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| (t,q)::ts ->
ln' t i &&
ln'_args ts i
and ln'_binder (b:binder) (n:int)
: Tot bool (decreases b)
= let bndr = inspect_binder b in
ln' bndr.sort n &&
ln'_terms bndr.attrs n
and ln'_terms (ts:list term) (n:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| t::ts -> ln' t n && ln'_terms ts n
and ln'_patterns (ps:list (pattern & bool)) (i:int)
: Tot bool
(decreases ps)
= match ps with
| [] -> true
| (p, b)::ps ->
let b0 = ln'_pattern p i in
let n = binder_offset_pattern p in
let b1 = ln'_patterns ps (i + n) in
b0 && b1
and ln'_pattern (p:pattern) (i:int)
: Tot bool
(decreases p)
= match p with
| Pat_Constant _ -> true
| Pat_Cons head univs subpats ->
ln'_patterns subpats i
| Pat_Var bv s -> true
| Pat_Dot_Term topt ->
(match topt with
| None -> true
| Some t -> ln' t i)
and ln'_branch (br:branch) (i:int)
: Tot bool (decreases br)
= let p, t = br in
let b = ln'_pattern p i in
let j = binder_offset_pattern p in
let b' = ln' t (i + j) in
b&&b'
and ln'_branches (brs:list branch) (i:int)
: Tot bool (decreases brs)
= match brs with
| [] -> true
| br::brs ->
ln'_branch br i &&
ln'_branches brs i
and ln'_match_returns (m:match_returns_ascription) (i:int)
: Tot bool (decreases m)
= let b, (ret, as_, eq) = m in
let b = ln'_binder b i in
let ret =
match ret with
| Inl t -> ln' t (i + 1)
| Inr c -> ln'_comp c (i + 1)
in
let as_ =
match as_ with
| None -> true
| Some t -> ln' t (i + 1)
in
b && ret && as_ | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 19,
"end_line": 855,
"start_col": 0,
"start_line": 708
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
////////////////////////////////////////////////////////////////////////////////
let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | br: FStar.Stubs.Reflection.V2.Data.branch -> i: Prims.int -> Prims.Tot Prims.bool | Prims.Tot | [
"total",
""
] | [
"ln'",
"ln'_comp",
"ln'_args",
"ln'_binder",
"ln'_terms",
"ln'_patterns",
"ln'_pattern",
"ln'_branch",
"ln'_branches",
"ln'_match_returns"
] | [
"FStar.Stubs.Reflection.V2.Data.branch",
"Prims.int",
"FStar.Stubs.Reflection.V2.Data.pattern",
"FStar.Stubs.Reflection.Types.term",
"Prims.op_AmpAmp",
"Prims.bool",
"FStar.Reflection.Typing.ln'",
"Prims.op_Addition",
"Prims.nat",
"FStar.Reflection.Typing.binder_offset_pattern",
"FStar.Reflection.Typing.ln'_pattern"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec ln'_branch (br: branch) (i: int) : Tot bool (decreases br) =
| let p, t = br in
let b = ln'_pattern p i in
let j = binder_offset_pattern p in
let b' = ln' t (i + j) in
b && b' | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.ln'_pattern | val ln'_pattern (p: pattern) (i: int) : Tot bool (decreases p) | val ln'_pattern (p: pattern) (i: int) : Tot bool (decreases p) | let rec ln' (e:term) (n:int)
: Tot bool (decreases e)
= match inspect_ln e with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_Var _ -> true
| Tv_BVar m -> bv_index m <= n
| Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n
| Tv_Abs b body ->
ln'_binder b n &&
ln' body (n + 1)
| Tv_Arrow b c ->
ln'_binder b n &&
ln'_comp c (n + 1)
| Tv_Refine b f ->
ln'_binder b n &&
ln' f (n + 1)
| Tv_Uvar _ _ ->
false
| Tv_Let recf attrs b def body ->
ln'_terms attrs n &&
ln'_binder b n &&
(if recf then ln' def (n + 1) else ln' def n) &&
ln' body (n + 1)
| Tv_Match scr ret brs ->
ln' scr n &&
(match ret with
| None -> true
| Some m -> ln'_match_returns m n) &&
ln'_branches brs n
| Tv_AscribedT e t tac b ->
ln' e n &&
ln' t n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
| Tv_AscribedC e c tac b ->
ln' e n &&
ln'_comp c n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
and ln'_comp (c:comp) (i:int)
: Tot bool (decreases c)
= match inspect_comp c with
| C_Total t
| C_GTotal t -> ln' t i
| C_Lemma pre post pats ->
ln' pre i &&
ln' post i &&
ln' pats i
| C_Eff us eff_name res args decrs ->
ln' res i &&
ln'_args args i &&
ln'_terms decrs i
and ln'_args (ts:list argv) (i:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| (t,q)::ts ->
ln' t i &&
ln'_args ts i
and ln'_binder (b:binder) (n:int)
: Tot bool (decreases b)
= let bndr = inspect_binder b in
ln' bndr.sort n &&
ln'_terms bndr.attrs n
and ln'_terms (ts:list term) (n:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| t::ts -> ln' t n && ln'_terms ts n
and ln'_patterns (ps:list (pattern & bool)) (i:int)
: Tot bool
(decreases ps)
= match ps with
| [] -> true
| (p, b)::ps ->
let b0 = ln'_pattern p i in
let n = binder_offset_pattern p in
let b1 = ln'_patterns ps (i + n) in
b0 && b1
and ln'_pattern (p:pattern) (i:int)
: Tot bool
(decreases p)
= match p with
| Pat_Constant _ -> true
| Pat_Cons head univs subpats ->
ln'_patterns subpats i
| Pat_Var bv s -> true
| Pat_Dot_Term topt ->
(match topt with
| None -> true
| Some t -> ln' t i)
and ln'_branch (br:branch) (i:int)
: Tot bool (decreases br)
= let p, t = br in
let b = ln'_pattern p i in
let j = binder_offset_pattern p in
let b' = ln' t (i + j) in
b&&b'
and ln'_branches (brs:list branch) (i:int)
: Tot bool (decreases brs)
= match brs with
| [] -> true
| br::brs ->
ln'_branch br i &&
ln'_branches brs i
and ln'_match_returns (m:match_returns_ascription) (i:int)
: Tot bool (decreases m)
= let b, (ret, as_, eq) = m in
let b = ln'_binder b i in
let ret =
match ret with
| Inl t -> ln' t (i + 1)
| Inr c -> ln'_comp c (i + 1)
in
let as_ =
match as_ with
| None -> true
| Some t -> ln' t (i + 1)
in
b && ret && as_ | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 19,
"end_line": 855,
"start_col": 0,
"start_line": 708
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
////////////////////////////////////////////////////////////////////////////////
let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: FStar.Stubs.Reflection.V2.Data.pattern -> i: Prims.int -> Prims.Tot Prims.bool | Prims.Tot | [
"total",
""
] | [
"ln'",
"ln'_comp",
"ln'_args",
"ln'_binder",
"ln'_terms",
"ln'_patterns",
"ln'_pattern",
"ln'_branch",
"ln'_branches",
"ln'_match_returns"
] | [
"FStar.Stubs.Reflection.V2.Data.pattern",
"Prims.int",
"FStar.Stubs.Reflection.V2.Data.vconst",
"FStar.Stubs.Reflection.Types.fv",
"FStar.Pervasives.Native.option",
"FStar.Stubs.Reflection.V2.Data.universes",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.bool",
"FStar.Reflection.Typing.ln'_patterns",
"FStar.Sealed.sealed",
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Reflection.V2.Data.ppname_t",
"FStar.Reflection.Typing.ln'"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec ln'_pattern (p: pattern) (i: int) : Tot bool (decreases p) =
| match p with
| Pat_Constant _ -> true
| Pat_Cons head univs subpats -> ln'_patterns subpats i
| Pat_Var bv s -> true
| Pat_Dot_Term topt ->
(match topt with
| None -> true
| Some t -> ln' t i) | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.freevars_terms | val freevars_terms (ts: list term) : FStar.Set.set var | val freevars_terms (ts: list term) : FStar.Set.set var | let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_ | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 705,
"start_col": 0,
"start_line": 567
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
//////////////////////////////////////////////////////////////////////////////// | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ts: Prims.list FStar.Stubs.Reflection.Types.term -> FStar.Set.set FStar.Stubs.Reflection.V2.Data.var | Prims.Tot | [
"total"
] | [
"freevars",
"freevars_opt",
"freevars_comp",
"freevars_args",
"freevars_terms",
"freevars_binder",
"freevars_pattern",
"freevars_patterns",
"freevars_branch",
"freevars_branches",
"freevars_match_returns"
] | [
"Prims.list",
"FStar.Stubs.Reflection.Types.term",
"FStar.Set.empty",
"FStar.Stubs.Reflection.V2.Data.var",
"FStar.Set.union",
"FStar.Reflection.Typing.freevars",
"FStar.Reflection.Typing.freevars_terms",
"FStar.Set.set"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec freevars_terms (ts: list term) : FStar.Set.set var =
| match ts with
| [] -> Set.empty
| t :: ts -> (freevars t) `Set.union` (freevars_terms ts) | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.ln'_match_returns | val ln'_match_returns (m: match_returns_ascription) (i: int) : Tot bool (decreases m) | val ln'_match_returns (m: match_returns_ascription) (i: int) : Tot bool (decreases m) | let rec ln' (e:term) (n:int)
: Tot bool (decreases e)
= match inspect_ln e with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_Var _ -> true
| Tv_BVar m -> bv_index m <= n
| Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n
| Tv_Abs b body ->
ln'_binder b n &&
ln' body (n + 1)
| Tv_Arrow b c ->
ln'_binder b n &&
ln'_comp c (n + 1)
| Tv_Refine b f ->
ln'_binder b n &&
ln' f (n + 1)
| Tv_Uvar _ _ ->
false
| Tv_Let recf attrs b def body ->
ln'_terms attrs n &&
ln'_binder b n &&
(if recf then ln' def (n + 1) else ln' def n) &&
ln' body (n + 1)
| Tv_Match scr ret brs ->
ln' scr n &&
(match ret with
| None -> true
| Some m -> ln'_match_returns m n) &&
ln'_branches brs n
| Tv_AscribedT e t tac b ->
ln' e n &&
ln' t n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
| Tv_AscribedC e c tac b ->
ln' e n &&
ln'_comp c n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
and ln'_comp (c:comp) (i:int)
: Tot bool (decreases c)
= match inspect_comp c with
| C_Total t
| C_GTotal t -> ln' t i
| C_Lemma pre post pats ->
ln' pre i &&
ln' post i &&
ln' pats i
| C_Eff us eff_name res args decrs ->
ln' res i &&
ln'_args args i &&
ln'_terms decrs i
and ln'_args (ts:list argv) (i:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| (t,q)::ts ->
ln' t i &&
ln'_args ts i
and ln'_binder (b:binder) (n:int)
: Tot bool (decreases b)
= let bndr = inspect_binder b in
ln' bndr.sort n &&
ln'_terms bndr.attrs n
and ln'_terms (ts:list term) (n:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| t::ts -> ln' t n && ln'_terms ts n
and ln'_patterns (ps:list (pattern & bool)) (i:int)
: Tot bool
(decreases ps)
= match ps with
| [] -> true
| (p, b)::ps ->
let b0 = ln'_pattern p i in
let n = binder_offset_pattern p in
let b1 = ln'_patterns ps (i + n) in
b0 && b1
and ln'_pattern (p:pattern) (i:int)
: Tot bool
(decreases p)
= match p with
| Pat_Constant _ -> true
| Pat_Cons head univs subpats ->
ln'_patterns subpats i
| Pat_Var bv s -> true
| Pat_Dot_Term topt ->
(match topt with
| None -> true
| Some t -> ln' t i)
and ln'_branch (br:branch) (i:int)
: Tot bool (decreases br)
= let p, t = br in
let b = ln'_pattern p i in
let j = binder_offset_pattern p in
let b' = ln' t (i + j) in
b&&b'
and ln'_branches (brs:list branch) (i:int)
: Tot bool (decreases brs)
= match brs with
| [] -> true
| br::brs ->
ln'_branch br i &&
ln'_branches brs i
and ln'_match_returns (m:match_returns_ascription) (i:int)
: Tot bool (decreases m)
= let b, (ret, as_, eq) = m in
let b = ln'_binder b i in
let ret =
match ret with
| Inl t -> ln' t (i + 1)
| Inr c -> ln'_comp c (i + 1)
in
let as_ =
match as_ with
| None -> true
| Some t -> ln' t (i + 1)
in
b && ret && as_ | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 19,
"end_line": 855,
"start_col": 0,
"start_line": 708
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
////////////////////////////////////////////////////////////////////////////////
let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: FStar.Stubs.Reflection.Types.match_returns_ascription -> i: Prims.int -> Prims.Tot Prims.bool | Prims.Tot | [
"total",
""
] | [
"ln'",
"ln'_comp",
"ln'_args",
"ln'_binder",
"ln'_terms",
"ln'_patterns",
"ln'_pattern",
"ln'_branch",
"ln'_branches",
"ln'_match_returns"
] | [
"FStar.Stubs.Reflection.Types.match_returns_ascription",
"Prims.int",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Pervasives.either",
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Reflection.Types.comp",
"FStar.Pervasives.Native.option",
"Prims.bool",
"Prims.op_AmpAmp",
"FStar.Reflection.Typing.ln'",
"Prims.op_Addition",
"FStar.Reflection.Typing.ln'_comp",
"FStar.Reflection.Typing.ln'_binder"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec ln'_match_returns (m: match_returns_ascription) (i: int) : Tot bool (decreases m) =
| let b, (ret, as_, eq) = m in
let b = ln'_binder b i in
let ret =
match ret with
| Inl t -> ln' t (i + 1)
| Inr c -> ln'_comp c (i + 1)
in
let as_ =
match as_ with
| None -> true
| Some t -> ln' t (i + 1)
in
b && ret && as_ | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.ln'_binder | val ln'_binder (b: binder) (n: int) : Tot bool (decreases b) | val ln'_binder (b: binder) (n: int) : Tot bool (decreases b) | let rec ln' (e:term) (n:int)
: Tot bool (decreases e)
= match inspect_ln e with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_Var _ -> true
| Tv_BVar m -> bv_index m <= n
| Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n
| Tv_Abs b body ->
ln'_binder b n &&
ln' body (n + 1)
| Tv_Arrow b c ->
ln'_binder b n &&
ln'_comp c (n + 1)
| Tv_Refine b f ->
ln'_binder b n &&
ln' f (n + 1)
| Tv_Uvar _ _ ->
false
| Tv_Let recf attrs b def body ->
ln'_terms attrs n &&
ln'_binder b n &&
(if recf then ln' def (n + 1) else ln' def n) &&
ln' body (n + 1)
| Tv_Match scr ret brs ->
ln' scr n &&
(match ret with
| None -> true
| Some m -> ln'_match_returns m n) &&
ln'_branches brs n
| Tv_AscribedT e t tac b ->
ln' e n &&
ln' t n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
| Tv_AscribedC e c tac b ->
ln' e n &&
ln'_comp c n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
and ln'_comp (c:comp) (i:int)
: Tot bool (decreases c)
= match inspect_comp c with
| C_Total t
| C_GTotal t -> ln' t i
| C_Lemma pre post pats ->
ln' pre i &&
ln' post i &&
ln' pats i
| C_Eff us eff_name res args decrs ->
ln' res i &&
ln'_args args i &&
ln'_terms decrs i
and ln'_args (ts:list argv) (i:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| (t,q)::ts ->
ln' t i &&
ln'_args ts i
and ln'_binder (b:binder) (n:int)
: Tot bool (decreases b)
= let bndr = inspect_binder b in
ln' bndr.sort n &&
ln'_terms bndr.attrs n
and ln'_terms (ts:list term) (n:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| t::ts -> ln' t n && ln'_terms ts n
and ln'_patterns (ps:list (pattern & bool)) (i:int)
: Tot bool
(decreases ps)
= match ps with
| [] -> true
| (p, b)::ps ->
let b0 = ln'_pattern p i in
let n = binder_offset_pattern p in
let b1 = ln'_patterns ps (i + n) in
b0 && b1
and ln'_pattern (p:pattern) (i:int)
: Tot bool
(decreases p)
= match p with
| Pat_Constant _ -> true
| Pat_Cons head univs subpats ->
ln'_patterns subpats i
| Pat_Var bv s -> true
| Pat_Dot_Term topt ->
(match topt with
| None -> true
| Some t -> ln' t i)
and ln'_branch (br:branch) (i:int)
: Tot bool (decreases br)
= let p, t = br in
let b = ln'_pattern p i in
let j = binder_offset_pattern p in
let b' = ln' t (i + j) in
b&&b'
and ln'_branches (brs:list branch) (i:int)
: Tot bool (decreases brs)
= match brs with
| [] -> true
| br::brs ->
ln'_branch br i &&
ln'_branches brs i
and ln'_match_returns (m:match_returns_ascription) (i:int)
: Tot bool (decreases m)
= let b, (ret, as_, eq) = m in
let b = ln'_binder b i in
let ret =
match ret with
| Inl t -> ln' t (i + 1)
| Inr c -> ln'_comp c (i + 1)
in
let as_ =
match as_ with
| None -> true
| Some t -> ln' t (i + 1)
in
b && ret && as_ | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 19,
"end_line": 855,
"start_col": 0,
"start_line": 708
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
////////////////////////////////////////////////////////////////////////////////
let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Stubs.Reflection.Types.binder -> n: Prims.int -> Prims.Tot Prims.bool | Prims.Tot | [
"total",
""
] | [
"ln'",
"ln'_comp",
"ln'_args",
"ln'_binder",
"ln'_terms",
"ln'_patterns",
"ln'_pattern",
"ln'_branch",
"ln'_branches",
"ln'_match_returns"
] | [
"FStar.Stubs.Reflection.Types.binder",
"Prims.int",
"Prims.op_AmpAmp",
"FStar.Reflection.Typing.ln'",
"FStar.Stubs.Reflection.V2.Data.__proj__Mkbinder_view__item__sort",
"FStar.Reflection.Typing.ln'_terms",
"FStar.Stubs.Reflection.V2.Data.__proj__Mkbinder_view__item__attrs",
"FStar.Stubs.Reflection.V2.Data.binder_view",
"Prims.precedes",
"FStar.Stubs.Reflection.V2.Builtins.inspect_binder",
"Prims.bool"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec ln'_binder (b: binder) (n: int) : Tot bool (decreases b) =
| let bndr = inspect_binder b in
ln' bndr.sort n && ln'_terms bndr.attrs n | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.ln'_patterns | val ln'_patterns (ps: list (pattern & bool)) (i: int) : Tot bool (decreases ps) | val ln'_patterns (ps: list (pattern & bool)) (i: int) : Tot bool (decreases ps) | let rec ln' (e:term) (n:int)
: Tot bool (decreases e)
= match inspect_ln e with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_Var _ -> true
| Tv_BVar m -> bv_index m <= n
| Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n
| Tv_Abs b body ->
ln'_binder b n &&
ln' body (n + 1)
| Tv_Arrow b c ->
ln'_binder b n &&
ln'_comp c (n + 1)
| Tv_Refine b f ->
ln'_binder b n &&
ln' f (n + 1)
| Tv_Uvar _ _ ->
false
| Tv_Let recf attrs b def body ->
ln'_terms attrs n &&
ln'_binder b n &&
(if recf then ln' def (n + 1) else ln' def n) &&
ln' body (n + 1)
| Tv_Match scr ret brs ->
ln' scr n &&
(match ret with
| None -> true
| Some m -> ln'_match_returns m n) &&
ln'_branches brs n
| Tv_AscribedT e t tac b ->
ln' e n &&
ln' t n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
| Tv_AscribedC e c tac b ->
ln' e n &&
ln'_comp c n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
and ln'_comp (c:comp) (i:int)
: Tot bool (decreases c)
= match inspect_comp c with
| C_Total t
| C_GTotal t -> ln' t i
| C_Lemma pre post pats ->
ln' pre i &&
ln' post i &&
ln' pats i
| C_Eff us eff_name res args decrs ->
ln' res i &&
ln'_args args i &&
ln'_terms decrs i
and ln'_args (ts:list argv) (i:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| (t,q)::ts ->
ln' t i &&
ln'_args ts i
and ln'_binder (b:binder) (n:int)
: Tot bool (decreases b)
= let bndr = inspect_binder b in
ln' bndr.sort n &&
ln'_terms bndr.attrs n
and ln'_terms (ts:list term) (n:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| t::ts -> ln' t n && ln'_terms ts n
and ln'_patterns (ps:list (pattern & bool)) (i:int)
: Tot bool
(decreases ps)
= match ps with
| [] -> true
| (p, b)::ps ->
let b0 = ln'_pattern p i in
let n = binder_offset_pattern p in
let b1 = ln'_patterns ps (i + n) in
b0 && b1
and ln'_pattern (p:pattern) (i:int)
: Tot bool
(decreases p)
= match p with
| Pat_Constant _ -> true
| Pat_Cons head univs subpats ->
ln'_patterns subpats i
| Pat_Var bv s -> true
| Pat_Dot_Term topt ->
(match topt with
| None -> true
| Some t -> ln' t i)
and ln'_branch (br:branch) (i:int)
: Tot bool (decreases br)
= let p, t = br in
let b = ln'_pattern p i in
let j = binder_offset_pattern p in
let b' = ln' t (i + j) in
b&&b'
and ln'_branches (brs:list branch) (i:int)
: Tot bool (decreases brs)
= match brs with
| [] -> true
| br::brs ->
ln'_branch br i &&
ln'_branches brs i
and ln'_match_returns (m:match_returns_ascription) (i:int)
: Tot bool (decreases m)
= let b, (ret, as_, eq) = m in
let b = ln'_binder b i in
let ret =
match ret with
| Inl t -> ln' t (i + 1)
| Inr c -> ln'_comp c (i + 1)
in
let as_ =
match as_ with
| None -> true
| Some t -> ln' t (i + 1)
in
b && ret && as_ | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 19,
"end_line": 855,
"start_col": 0,
"start_line": 708
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
////////////////////////////////////////////////////////////////////////////////
let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ps: Prims.list (FStar.Stubs.Reflection.V2.Data.pattern * Prims.bool) -> i: Prims.int
-> Prims.Tot Prims.bool | Prims.Tot | [
"total",
""
] | [
"ln'",
"ln'_comp",
"ln'_args",
"ln'_binder",
"ln'_terms",
"ln'_patterns",
"ln'_pattern",
"ln'_branch",
"ln'_branches",
"ln'_match_returns"
] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"FStar.Stubs.Reflection.V2.Data.pattern",
"Prims.bool",
"Prims.int",
"Prims.op_AmpAmp",
"FStar.Reflection.Typing.ln'_patterns",
"Prims.op_Addition",
"Prims.nat",
"FStar.Reflection.Typing.binder_offset_pattern",
"FStar.Reflection.Typing.ln'_pattern"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec ln'_patterns (ps: list (pattern & bool)) (i: int) : Tot bool (decreases ps) =
| match ps with
| [] -> true
| (p, b) :: ps ->
let b0 = ln'_pattern p i in
let n = binder_offset_pattern p in
let b1 = ln'_patterns ps (i + n) in
b0 && b1 | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.freevars_opt | val freevars_opt (#a: Type0) (o: option a) (f: (x: a{x << o} -> FStar.Set.set var))
: FStar.Set.set var | val freevars_opt (#a: Type0) (o: option a) (f: (x: a{x << o} -> FStar.Set.set var))
: FStar.Set.set var | let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_ | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 705,
"start_col": 0,
"start_line": 567
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
//////////////////////////////////////////////////////////////////////////////// | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
o: FStar.Pervasives.Native.option a ->
f: (x: a{x << o} -> FStar.Set.set FStar.Stubs.Reflection.V2.Data.var)
-> FStar.Set.set FStar.Stubs.Reflection.V2.Data.var | Prims.Tot | [
"total"
] | [
"freevars",
"freevars_opt",
"freevars_comp",
"freevars_args",
"freevars_terms",
"freevars_binder",
"freevars_pattern",
"freevars_patterns",
"freevars_branch",
"freevars_branches",
"freevars_match_returns"
] | [
"FStar.Pervasives.Native.option",
"Prims.precedes",
"FStar.Set.set",
"FStar.Stubs.Reflection.V2.Data.var",
"FStar.Set.empty"
] | [
"mutual recursion"
] | false | false | false | false | false | let rec freevars_opt (#a: Type0) (o: option a) (f: (x: a{x << o} -> FStar.Set.set var))
: FStar.Set.set var =
| match o with
| None -> Set.empty
| Some x -> f x | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.freevars_patterns | val freevars_patterns (ps: list (pattern & bool)) : Tot (Set.set var) (decreases ps) | val freevars_patterns (ps: list (pattern & bool)) : Tot (Set.set var) (decreases ps) | let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_ | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 705,
"start_col": 0,
"start_line": 567
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
//////////////////////////////////////////////////////////////////////////////// | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ps: Prims.list (FStar.Stubs.Reflection.V2.Data.pattern * Prims.bool)
-> Prims.Tot (FStar.Set.set FStar.Stubs.Reflection.V2.Data.var) | Prims.Tot | [
"total",
""
] | [
"freevars",
"freevars_opt",
"freevars_comp",
"freevars_args",
"freevars_terms",
"freevars_binder",
"freevars_pattern",
"freevars_patterns",
"freevars_branch",
"freevars_branches",
"freevars_match_returns"
] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"FStar.Stubs.Reflection.V2.Data.pattern",
"Prims.bool",
"FStar.Set.empty",
"FStar.Stubs.Reflection.V2.Data.var",
"FStar.Set.union",
"FStar.Reflection.Typing.freevars_pattern",
"FStar.Reflection.Typing.freevars_patterns",
"FStar.Set.set"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec freevars_patterns (ps: list (pattern & bool)) : Tot (Set.set var) (decreases ps) =
| match ps with
| [] -> Set.empty
| (p, b) :: ps -> (freevars_pattern p) `Set.union` (freevars_patterns ps) | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.freevars_comp | val freevars_comp (c: comp) : FStar.Set.set var | val freevars_comp (c: comp) : FStar.Set.set var | let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_ | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 705,
"start_col": 0,
"start_line": 567
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
//////////////////////////////////////////////////////////////////////////////// | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: FStar.Stubs.Reflection.Types.comp -> FStar.Set.set FStar.Stubs.Reflection.V2.Data.var | Prims.Tot | [
"total"
] | [
"freevars",
"freevars_opt",
"freevars_comp",
"freevars_args",
"freevars_terms",
"freevars_binder",
"freevars_pattern",
"freevars_patterns",
"freevars_branch",
"freevars_branches",
"freevars_match_returns"
] | [
"FStar.Stubs.Reflection.Types.comp",
"FStar.Stubs.Reflection.V2.Builtins.inspect_comp",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Reflection.Typing.freevars",
"FStar.Stubs.Reflection.Types.term",
"FStar.Set.union",
"FStar.Stubs.Reflection.V2.Data.var",
"FStar.Stubs.Reflection.V2.Data.universes",
"FStar.Stubs.Reflection.Types.name",
"Prims.list",
"FStar.Stubs.Reflection.V2.Data.argv",
"FStar.Reflection.Typing.freevars_args",
"FStar.Reflection.Typing.freevars_terms",
"FStar.Set.set"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec freevars_comp (c: comp) : FStar.Set.set var =
| match inspect_comp c with
| C_Total t | C_GTotal t -> freevars t
| C_Lemma pre post pats -> ((freevars pre) `Set.union` (freevars post)) `Set.union` (freevars pats)
| C_Eff us eff_name res args decrs ->
((freevars res) `Set.union` (freevars_args args)) `Set.union` (freevars_terms decrs) | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.ln'_terms | val ln'_terms (ts: list term) (n: int) : Tot bool (decreases ts) | val ln'_terms (ts: list term) (n: int) : Tot bool (decreases ts) | let rec ln' (e:term) (n:int)
: Tot bool (decreases e)
= match inspect_ln e with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_Var _ -> true
| Tv_BVar m -> bv_index m <= n
| Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n
| Tv_Abs b body ->
ln'_binder b n &&
ln' body (n + 1)
| Tv_Arrow b c ->
ln'_binder b n &&
ln'_comp c (n + 1)
| Tv_Refine b f ->
ln'_binder b n &&
ln' f (n + 1)
| Tv_Uvar _ _ ->
false
| Tv_Let recf attrs b def body ->
ln'_terms attrs n &&
ln'_binder b n &&
(if recf then ln' def (n + 1) else ln' def n) &&
ln' body (n + 1)
| Tv_Match scr ret brs ->
ln' scr n &&
(match ret with
| None -> true
| Some m -> ln'_match_returns m n) &&
ln'_branches brs n
| Tv_AscribedT e t tac b ->
ln' e n &&
ln' t n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
| Tv_AscribedC e c tac b ->
ln' e n &&
ln'_comp c n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
and ln'_comp (c:comp) (i:int)
: Tot bool (decreases c)
= match inspect_comp c with
| C_Total t
| C_GTotal t -> ln' t i
| C_Lemma pre post pats ->
ln' pre i &&
ln' post i &&
ln' pats i
| C_Eff us eff_name res args decrs ->
ln' res i &&
ln'_args args i &&
ln'_terms decrs i
and ln'_args (ts:list argv) (i:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| (t,q)::ts ->
ln' t i &&
ln'_args ts i
and ln'_binder (b:binder) (n:int)
: Tot bool (decreases b)
= let bndr = inspect_binder b in
ln' bndr.sort n &&
ln'_terms bndr.attrs n
and ln'_terms (ts:list term) (n:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| t::ts -> ln' t n && ln'_terms ts n
and ln'_patterns (ps:list (pattern & bool)) (i:int)
: Tot bool
(decreases ps)
= match ps with
| [] -> true
| (p, b)::ps ->
let b0 = ln'_pattern p i in
let n = binder_offset_pattern p in
let b1 = ln'_patterns ps (i + n) in
b0 && b1
and ln'_pattern (p:pattern) (i:int)
: Tot bool
(decreases p)
= match p with
| Pat_Constant _ -> true
| Pat_Cons head univs subpats ->
ln'_patterns subpats i
| Pat_Var bv s -> true
| Pat_Dot_Term topt ->
(match topt with
| None -> true
| Some t -> ln' t i)
and ln'_branch (br:branch) (i:int)
: Tot bool (decreases br)
= let p, t = br in
let b = ln'_pattern p i in
let j = binder_offset_pattern p in
let b' = ln' t (i + j) in
b&&b'
and ln'_branches (brs:list branch) (i:int)
: Tot bool (decreases brs)
= match brs with
| [] -> true
| br::brs ->
ln'_branch br i &&
ln'_branches brs i
and ln'_match_returns (m:match_returns_ascription) (i:int)
: Tot bool (decreases m)
= let b, (ret, as_, eq) = m in
let b = ln'_binder b i in
let ret =
match ret with
| Inl t -> ln' t (i + 1)
| Inr c -> ln'_comp c (i + 1)
in
let as_ =
match as_ with
| None -> true
| Some t -> ln' t (i + 1)
in
b && ret && as_ | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 19,
"end_line": 855,
"start_col": 0,
"start_line": 708
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
////////////////////////////////////////////////////////////////////////////////
let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ts: Prims.list FStar.Stubs.Reflection.Types.term -> n: Prims.int -> Prims.Tot Prims.bool | Prims.Tot | [
"total",
""
] | [
"ln'",
"ln'_comp",
"ln'_args",
"ln'_binder",
"ln'_terms",
"ln'_patterns",
"ln'_pattern",
"ln'_branch",
"ln'_branches",
"ln'_match_returns"
] | [
"Prims.list",
"FStar.Stubs.Reflection.Types.term",
"Prims.int",
"Prims.op_AmpAmp",
"FStar.Reflection.Typing.ln'",
"FStar.Reflection.Typing.ln'_terms",
"Prims.bool"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec ln'_terms (ts: list term) (n: int) : Tot bool (decreases ts) =
| match ts with
| [] -> true
| t :: ts -> ln' t n && ln'_terms ts n | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.ln'_args | val ln'_args (ts: list argv) (i: int) : Tot bool (decreases ts) | val ln'_args (ts: list argv) (i: int) : Tot bool (decreases ts) | let rec ln' (e:term) (n:int)
: Tot bool (decreases e)
= match inspect_ln e with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_Var _ -> true
| Tv_BVar m -> bv_index m <= n
| Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n
| Tv_Abs b body ->
ln'_binder b n &&
ln' body (n + 1)
| Tv_Arrow b c ->
ln'_binder b n &&
ln'_comp c (n + 1)
| Tv_Refine b f ->
ln'_binder b n &&
ln' f (n + 1)
| Tv_Uvar _ _ ->
false
| Tv_Let recf attrs b def body ->
ln'_terms attrs n &&
ln'_binder b n &&
(if recf then ln' def (n + 1) else ln' def n) &&
ln' body (n + 1)
| Tv_Match scr ret brs ->
ln' scr n &&
(match ret with
| None -> true
| Some m -> ln'_match_returns m n) &&
ln'_branches brs n
| Tv_AscribedT e t tac b ->
ln' e n &&
ln' t n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
| Tv_AscribedC e c tac b ->
ln' e n &&
ln'_comp c n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
and ln'_comp (c:comp) (i:int)
: Tot bool (decreases c)
= match inspect_comp c with
| C_Total t
| C_GTotal t -> ln' t i
| C_Lemma pre post pats ->
ln' pre i &&
ln' post i &&
ln' pats i
| C_Eff us eff_name res args decrs ->
ln' res i &&
ln'_args args i &&
ln'_terms decrs i
and ln'_args (ts:list argv) (i:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| (t,q)::ts ->
ln' t i &&
ln'_args ts i
and ln'_binder (b:binder) (n:int)
: Tot bool (decreases b)
= let bndr = inspect_binder b in
ln' bndr.sort n &&
ln'_terms bndr.attrs n
and ln'_terms (ts:list term) (n:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| t::ts -> ln' t n && ln'_terms ts n
and ln'_patterns (ps:list (pattern & bool)) (i:int)
: Tot bool
(decreases ps)
= match ps with
| [] -> true
| (p, b)::ps ->
let b0 = ln'_pattern p i in
let n = binder_offset_pattern p in
let b1 = ln'_patterns ps (i + n) in
b0 && b1
and ln'_pattern (p:pattern) (i:int)
: Tot bool
(decreases p)
= match p with
| Pat_Constant _ -> true
| Pat_Cons head univs subpats ->
ln'_patterns subpats i
| Pat_Var bv s -> true
| Pat_Dot_Term topt ->
(match topt with
| None -> true
| Some t -> ln' t i)
and ln'_branch (br:branch) (i:int)
: Tot bool (decreases br)
= let p, t = br in
let b = ln'_pattern p i in
let j = binder_offset_pattern p in
let b' = ln' t (i + j) in
b&&b'
and ln'_branches (brs:list branch) (i:int)
: Tot bool (decreases brs)
= match brs with
| [] -> true
| br::brs ->
ln'_branch br i &&
ln'_branches brs i
and ln'_match_returns (m:match_returns_ascription) (i:int)
: Tot bool (decreases m)
= let b, (ret, as_, eq) = m in
let b = ln'_binder b i in
let ret =
match ret with
| Inl t -> ln' t (i + 1)
| Inr c -> ln'_comp c (i + 1)
in
let as_ =
match as_ with
| None -> true
| Some t -> ln' t (i + 1)
in
b && ret && as_ | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 19,
"end_line": 855,
"start_col": 0,
"start_line": 708
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
////////////////////////////////////////////////////////////////////////////////
let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ts: Prims.list FStar.Stubs.Reflection.V2.Data.argv -> i: Prims.int -> Prims.Tot Prims.bool | Prims.Tot | [
"total",
""
] | [
"ln'",
"ln'_comp",
"ln'_args",
"ln'_binder",
"ln'_terms",
"ln'_patterns",
"ln'_pattern",
"ln'_branch",
"ln'_branches",
"ln'_match_returns"
] | [
"Prims.list",
"FStar.Stubs.Reflection.V2.Data.argv",
"Prims.int",
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Reflection.V2.Data.aqualv",
"Prims.op_AmpAmp",
"FStar.Reflection.Typing.ln'",
"FStar.Reflection.Typing.ln'_args",
"Prims.bool"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec ln'_args (ts: list argv) (i: int) : Tot bool (decreases ts) =
| match ts with
| [] -> true
| (t, q) :: ts -> ln' t i && ln'_args ts i | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.freevars_pattern | val freevars_pattern (p: pattern) : Tot (Set.set var) (decreases p) | val freevars_pattern (p: pattern) : Tot (Set.set var) (decreases p) | let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_ | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 705,
"start_col": 0,
"start_line": 567
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
//////////////////////////////////////////////////////////////////////////////// | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: FStar.Stubs.Reflection.V2.Data.pattern
-> Prims.Tot (FStar.Set.set FStar.Stubs.Reflection.V2.Data.var) | Prims.Tot | [
"total",
""
] | [
"freevars",
"freevars_opt",
"freevars_comp",
"freevars_args",
"freevars_terms",
"freevars_binder",
"freevars_pattern",
"freevars_patterns",
"freevars_branch",
"freevars_branches",
"freevars_match_returns"
] | [
"FStar.Stubs.Reflection.V2.Data.pattern",
"FStar.Stubs.Reflection.V2.Data.vconst",
"FStar.Set.empty",
"FStar.Stubs.Reflection.V2.Data.var",
"FStar.Stubs.Reflection.Types.fv",
"FStar.Pervasives.Native.option",
"FStar.Stubs.Reflection.V2.Data.universes",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.bool",
"FStar.Reflection.Typing.freevars_patterns",
"FStar.Sealed.sealed",
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Reflection.V2.Data.ppname_t",
"FStar.Reflection.Typing.freevars_opt",
"FStar.Reflection.Typing.freevars",
"FStar.Set.set"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec freevars_pattern (p: pattern) : Tot (Set.set var) (decreases p) =
| match p with
| Pat_Constant _ -> Set.empty
| Pat_Cons head univs subpats -> freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt -> freevars_opt topt freevars | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.freevars_branch | val freevars_branch (br: branch) : Tot (Set.set var) (decreases br) | val freevars_branch (br: branch) : Tot (Set.set var) (decreases br) | let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_ | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 705,
"start_col": 0,
"start_line": 567
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
//////////////////////////////////////////////////////////////////////////////// | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | br: FStar.Stubs.Reflection.V2.Data.branch
-> Prims.Tot (FStar.Set.set FStar.Stubs.Reflection.V2.Data.var) | Prims.Tot | [
"total",
""
] | [
"freevars",
"freevars_opt",
"freevars_comp",
"freevars_args",
"freevars_terms",
"freevars_binder",
"freevars_pattern",
"freevars_patterns",
"freevars_branch",
"freevars_branches",
"freevars_match_returns"
] | [
"FStar.Stubs.Reflection.V2.Data.branch",
"FStar.Stubs.Reflection.V2.Data.pattern",
"FStar.Stubs.Reflection.Types.term",
"FStar.Set.union",
"FStar.Stubs.Reflection.V2.Data.var",
"FStar.Reflection.Typing.freevars_pattern",
"FStar.Reflection.Typing.freevars",
"FStar.Set.set"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec freevars_branch (br: branch) : Tot (Set.set var) (decreases br) =
| let p, t = br in
(freevars_pattern p) `Set.union` (freevars t) | false |
PulseCore.Action.fsti | PulseCore.Action.inames | val inames : Type0 | let inames = Ghost.erased (FStar.Set.set iname) | {
"file_name": "lib/pulse_core/PulseCore.Action.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 47,
"end_line": 10,
"start_col": 0,
"start_line": 10
} | module PulseCore.Action
module I = PulseCore.InstantiatedSemantics
module PP = PulseCore.Preorder
open PulseCore.InstantiatedSemantics
open FStar.PCM
open FStar.Ghost
val iname : eqtype | {
"checked_file": "/",
"dependencies": [
"PulseCore.Preorder.fst.checked",
"PulseCore.InstantiatedSemantics.fsti.checked",
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "PulseCore.Action.fsti"
} | [
{
"abbrev": false,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "PulseCore.MonotonicStateMonad",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "PulseCore.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "PulseCore.Semantics",
"short_module": "Sem"
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "PulseCore.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "PulseCore",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Ghost.erased",
"FStar.Set.set",
"PulseCore.Action.iname"
] | [] | false | false | false | true | true | let inames =
| Ghost.erased (FStar.Set.set iname) | false |
|
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.ln' | val ln' (e: term) (n: int) : Tot bool (decreases e) | val ln' (e: term) (n: int) : Tot bool (decreases e) | let rec ln' (e:term) (n:int)
: Tot bool (decreases e)
= match inspect_ln e with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_Var _ -> true
| Tv_BVar m -> bv_index m <= n
| Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n
| Tv_Abs b body ->
ln'_binder b n &&
ln' body (n + 1)
| Tv_Arrow b c ->
ln'_binder b n &&
ln'_comp c (n + 1)
| Tv_Refine b f ->
ln'_binder b n &&
ln' f (n + 1)
| Tv_Uvar _ _ ->
false
| Tv_Let recf attrs b def body ->
ln'_terms attrs n &&
ln'_binder b n &&
(if recf then ln' def (n + 1) else ln' def n) &&
ln' body (n + 1)
| Tv_Match scr ret brs ->
ln' scr n &&
(match ret with
| None -> true
| Some m -> ln'_match_returns m n) &&
ln'_branches brs n
| Tv_AscribedT e t tac b ->
ln' e n &&
ln' t n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
| Tv_AscribedC e c tac b ->
ln' e n &&
ln'_comp c n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
and ln'_comp (c:comp) (i:int)
: Tot bool (decreases c)
= match inspect_comp c with
| C_Total t
| C_GTotal t -> ln' t i
| C_Lemma pre post pats ->
ln' pre i &&
ln' post i &&
ln' pats i
| C_Eff us eff_name res args decrs ->
ln' res i &&
ln'_args args i &&
ln'_terms decrs i
and ln'_args (ts:list argv) (i:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| (t,q)::ts ->
ln' t i &&
ln'_args ts i
and ln'_binder (b:binder) (n:int)
: Tot bool (decreases b)
= let bndr = inspect_binder b in
ln' bndr.sort n &&
ln'_terms bndr.attrs n
and ln'_terms (ts:list term) (n:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| t::ts -> ln' t n && ln'_terms ts n
and ln'_patterns (ps:list (pattern & bool)) (i:int)
: Tot bool
(decreases ps)
= match ps with
| [] -> true
| (p, b)::ps ->
let b0 = ln'_pattern p i in
let n = binder_offset_pattern p in
let b1 = ln'_patterns ps (i + n) in
b0 && b1
and ln'_pattern (p:pattern) (i:int)
: Tot bool
(decreases p)
= match p with
| Pat_Constant _ -> true
| Pat_Cons head univs subpats ->
ln'_patterns subpats i
| Pat_Var bv s -> true
| Pat_Dot_Term topt ->
(match topt with
| None -> true
| Some t -> ln' t i)
and ln'_branch (br:branch) (i:int)
: Tot bool (decreases br)
= let p, t = br in
let b = ln'_pattern p i in
let j = binder_offset_pattern p in
let b' = ln' t (i + j) in
b&&b'
and ln'_branches (brs:list branch) (i:int)
: Tot bool (decreases brs)
= match brs with
| [] -> true
| br::brs ->
ln'_branch br i &&
ln'_branches brs i
and ln'_match_returns (m:match_returns_ascription) (i:int)
: Tot bool (decreases m)
= let b, (ret, as_, eq) = m in
let b = ln'_binder b i in
let ret =
match ret with
| Inl t -> ln' t (i + 1)
| Inr c -> ln'_comp c (i + 1)
in
let as_ =
match as_ with
| None -> true
| Some t -> ln' t (i + 1)
in
b && ret && as_ | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 19,
"end_line": 855,
"start_col": 0,
"start_line": 708
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
////////////////////////////////////////////////////////////////////////////////
let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: FStar.Stubs.Reflection.Types.term -> n: Prims.int -> Prims.Tot Prims.bool | Prims.Tot | [
"total",
""
] | [
"ln'",
"ln'_comp",
"ln'_args",
"ln'_binder",
"ln'_terms",
"ln'_patterns",
"ln'_pattern",
"ln'_branch",
"ln'_branches",
"ln'_match_returns"
] | [
"FStar.Stubs.Reflection.Types.term",
"Prims.int",
"FStar.Stubs.Reflection.V2.Builtins.inspect_ln",
"FStar.Stubs.Reflection.Types.fv",
"FStar.Stubs.Reflection.V2.Data.universes",
"FStar.Stubs.Reflection.Types.universe",
"FStar.Stubs.Reflection.V2.Data.vconst",
"FStar.Stubs.Reflection.Types.namedv",
"FStar.Stubs.Reflection.Types.bv",
"Prims.op_LessThanOrEqual",
"FStar.Reflection.Typing.bv_index",
"FStar.Stubs.Reflection.V2.Data.aqualv",
"Prims.op_AmpAmp",
"FStar.Reflection.Typing.ln'",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Reflection.Typing.ln'_binder",
"Prims.op_Addition",
"FStar.Stubs.Reflection.Types.comp",
"FStar.Reflection.Typing.ln'_comp",
"FStar.Stubs.Reflection.V2.Data.simple_binder",
"Prims.nat",
"FStar.Stubs.Reflection.Types.ctx_uvar_and_subst",
"Prims.bool",
"Prims.list",
"FStar.Reflection.Typing.ln'_terms",
"FStar.Pervasives.Native.option",
"FStar.Stubs.Reflection.Types.match_returns_ascription",
"FStar.Stubs.Reflection.V2.Data.branch",
"FStar.Reflection.Typing.ln'_match_returns",
"FStar.Reflection.Typing.ln'_branches"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec ln' (e: term) (n: int) : Tot bool (decreases e) =
| match inspect_ln e with
| Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true
| Tv_BVar m -> bv_index m <= n
| Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n
| Tv_Abs b body -> ln'_binder b n && ln' body (n + 1)
| Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1)
| Tv_Refine b f -> ln'_binder b n && ln' f (n + 1)
| Tv_Uvar _ _ -> false
| Tv_Let recf attrs b def body ->
ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) &&
ln' body (n + 1)
| Tv_Match scr ret brs ->
ln' scr n &&
(match ret with
| None -> true
| Some m -> ln'_match_returns m n) &&
ln'_branches brs n
| Tv_AscribedT e t tac b ->
ln' e n && ln' t n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
| Tv_AscribedC e c tac b ->
ln' e n && ln'_comp c n &&
(match tac with
| None -> true
| Some tac -> ln' tac n) | false |
Pulse.Lib.GhostWitness.fst | Pulse.Lib.GhostWitness.psquash | val psquash (a: Type u#a) : prop | val psquash (a: Type u#a) : prop | let psquash (a:Type u#a) : prop = squash a | {
"file_name": "share/steel/examples/pulse/lib/Pulse.Lib.GhostWitness.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 42,
"end_line": 8,
"start_col": 0,
"start_line": 8
} | module Pulse.Lib.GhostWitness
open Pulse.Lib.Pervasives
let sqeq (p : Type) (_ : squash p) : erased p =
FStar.IndefiniteDescription.elim_squash #p () | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Pervasives.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Lib.GhostWitness.fst"
} | [
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"Prims.squash",
"Prims.prop"
] | [] | false | false | false | true | true | let psquash (a: Type u#a) : prop =
| squash a | false |
PulseCore.Action.fsti | PulseCore.Action.emp_inames | val emp_inames:inames | val emp_inames:inames | let emp_inames : inames = Ghost.hide Set.empty | {
"file_name": "lib/pulse_core/PulseCore.Action.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 46,
"end_line": 12,
"start_col": 0,
"start_line": 12
} | module PulseCore.Action
module I = PulseCore.InstantiatedSemantics
module PP = PulseCore.Preorder
open PulseCore.InstantiatedSemantics
open FStar.PCM
open FStar.Ghost
val iname : eqtype
let inames = Ghost.erased (FStar.Set.set iname) | {
"checked_file": "/",
"dependencies": [
"PulseCore.Preorder.fst.checked",
"PulseCore.InstantiatedSemantics.fsti.checked",
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "PulseCore.Action.fsti"
} | [
{
"abbrev": false,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "PulseCore.MonotonicStateMonad",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "PulseCore.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "PulseCore.Semantics",
"short_module": "Sem"
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "PulseCore.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "PulseCore",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | PulseCore.Action.inames | Prims.Tot | [
"total"
] | [] | [
"FStar.Ghost.hide",
"FStar.Set.set",
"PulseCore.Action.iname",
"FStar.Set.empty"
] | [] | false | false | false | true | false | let emp_inames:inames =
| Ghost.hide Set.empty | false |
PulseCore.Action.fsti | PulseCore.Action.join_inames | val join_inames (is1 is2: inames) : inames | val join_inames (is1 is2: inames) : inames | let join_inames (is1 is2 : inames) : inames =
Set.union is1 is2 | {
"file_name": "lib/pulse_core/PulseCore.Action.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 19,
"end_line": 15,
"start_col": 0,
"start_line": 14
} | module PulseCore.Action
module I = PulseCore.InstantiatedSemantics
module PP = PulseCore.Preorder
open PulseCore.InstantiatedSemantics
open FStar.PCM
open FStar.Ghost
val iname : eqtype
let inames = Ghost.erased (FStar.Set.set iname)
let emp_inames : inames = Ghost.hide Set.empty | {
"checked_file": "/",
"dependencies": [
"PulseCore.Preorder.fst.checked",
"PulseCore.InstantiatedSemantics.fsti.checked",
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "PulseCore.Action.fsti"
} | [
{
"abbrev": false,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "PulseCore.MonotonicStateMonad",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "PulseCore.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "PulseCore.Semantics",
"short_module": "Sem"
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "PulseCore.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "PulseCore",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | is1: PulseCore.Action.inames -> is2: PulseCore.Action.inames -> PulseCore.Action.inames | Prims.Tot | [
"total"
] | [] | [
"PulseCore.Action.inames",
"FStar.Ghost.hide",
"FStar.Set.set",
"PulseCore.Action.iname",
"FStar.Set.union",
"FStar.Ghost.reveal"
] | [] | false | false | false | true | false | let join_inames (is1 is2: inames) : inames =
| Set.union is1 is2 | false |
PulseCore.Action.fsti | PulseCore.Action.inames_subset | val inames_subset (is1 is2: inames) : Type0 | val inames_subset (is1 is2: inames) : Type0 | let inames_subset (is1 is2 : inames) : Type0 =
Set.subset is1 is2 | {
"file_name": "lib/pulse_core/PulseCore.Action.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 20,
"end_line": 18,
"start_col": 0,
"start_line": 17
} | module PulseCore.Action
module I = PulseCore.InstantiatedSemantics
module PP = PulseCore.Preorder
open PulseCore.InstantiatedSemantics
open FStar.PCM
open FStar.Ghost
val iname : eqtype
let inames = Ghost.erased (FStar.Set.set iname)
let emp_inames : inames = Ghost.hide Set.empty
let join_inames (is1 is2 : inames) : inames =
Set.union is1 is2 | {
"checked_file": "/",
"dependencies": [
"PulseCore.Preorder.fst.checked",
"PulseCore.InstantiatedSemantics.fsti.checked",
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "PulseCore.Action.fsti"
} | [
{
"abbrev": false,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "PulseCore.MonotonicStateMonad",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "PulseCore.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "PulseCore.Semantics",
"short_module": "Sem"
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "PulseCore.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "PulseCore",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | is1: PulseCore.Action.inames -> is2: PulseCore.Action.inames -> Type0 | Prims.Tot | [
"total"
] | [] | [
"PulseCore.Action.inames",
"FStar.Set.subset",
"PulseCore.Action.iname",
"FStar.Ghost.reveal",
"FStar.Set.set"
] | [] | false | false | false | true | true | let inames_subset (is1 is2: inames) : Type0 =
| Set.subset is1 is2 | false |
PulseCore.Action.fsti | PulseCore.Action.add_inv | val add_inv (#p: _) (opens: inames) (i: inv p) : inames | val add_inv (#p: _) (opens: inames) (i: inv p) : inames | let add_inv (#p:_) (opens:inames) (i:inv p)
: inames
= Set.union (Set.singleton (name_of_inv i)) opens | {
"file_name": "lib/pulse_core/PulseCore.Action.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 49,
"end_line": 103,
"start_col": 0,
"start_line": 101
} | module PulseCore.Action
module I = PulseCore.InstantiatedSemantics
module PP = PulseCore.Preorder
open PulseCore.InstantiatedSemantics
open FStar.PCM
open FStar.Ghost
val iname : eqtype
let inames = Ghost.erased (FStar.Set.set iname)
let emp_inames : inames = Ghost.hide Set.empty
let join_inames (is1 is2 : inames) : inames =
Set.union is1 is2
let inames_subset (is1 is2 : inames) : Type0 =
Set.subset is1 is2
let (/!) (is1 is2 : inames) : Type0 =
Set.disjoint is1 is2
unfold
let inames_disj (ictx:inames) : Type = is:inames{is /! ictx}
val act
(a:Type u#a)
(opens:inames)
(pre:slprop)
(post:a -> slprop)
: Type u#(max a 2)
val return
(#a:Type u#a)
(#post:a -> slprop)
(x:a)
: act a emp_inames (post x) post
val bind
(#a:Type u#a)
(#b:Type u#b)
(#opens:inames)
(#pre1 #post1 #post2:_)
(f:act a opens pre1 post1)
(g:(x:a -> act b opens (post1 x) post2))
: act b opens pre1 post2
val frame
(#a:Type u#a)
(#opens:inames)
(#pre #post #frame:_)
(f:act a opens pre post)
: act a opens (pre ** frame) (fun x -> post x ** frame)
val weaken
(#a:Type)
(#pre:slprop)
(#post:a -> slprop)
(#opens opens':inames)
(f:act a opens pre post)
: act a (Set.union opens opens') pre post
val sub
(#a:Type)
(#pre:slprop)
(#post:a -> slprop)
(#opens:inames)
(pre':slprop { slprop_equiv pre pre' })
(post':a -> slprop { forall x. slprop_equiv (post x) (post' x) })
(f:act a opens pre post)
: act a opens pre' post'
val lift (#a:Type u#100) #opens (#pre:slprop) (#post:a -> slprop)
(m:act a opens pre post)
: I.stt a pre post
val lift0 (#a:Type u#0) #opens #pre #post
(m:act a opens pre post)
: I.stt a pre post
val lift1 (#a:Type u#1) #opens #pre #post
(m:act a opens pre post)
: I.stt a pre post
val lift2 (#a:Type u#2) #opens #pre #post
(m:act a opens pre post)
: I.stt a pre post
//////////////////////////////////////////////////////////////////////
// Invariants
//////////////////////////////////////////////////////////////////////
val inv (p:slprop) : Type0
val name_of_inv #p (i:inv p) : GTot iname
let mem_inv (#p:_) (opens:inames) (i:inv p)
: GTot bool
= Set.mem (name_of_inv i) opens | {
"checked_file": "/",
"dependencies": [
"PulseCore.Preorder.fst.checked",
"PulseCore.InstantiatedSemantics.fsti.checked",
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "PulseCore.Action.fsti"
} | [
{
"abbrev": false,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "PulseCore.MonotonicStateMonad",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "PulseCore.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "PulseCore.Semantics",
"short_module": "Sem"
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "PulseCore.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "PulseCore",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | opens: PulseCore.Action.inames -> i: PulseCore.Action.inv p -> PulseCore.Action.inames | Prims.Tot | [
"total"
] | [] | [
"PulseCore.InstantiatedSemantics.slprop",
"PulseCore.Action.inames",
"PulseCore.Action.inv",
"FStar.Ghost.hide",
"FStar.Set.set",
"PulseCore.Action.iname",
"FStar.Set.union",
"FStar.Set.singleton",
"PulseCore.Action.name_of_inv",
"FStar.Ghost.reveal"
] | [] | false | false | false | false | false | let add_inv (#p: _) (opens: inames) (i: inv p) : inames =
| Set.union (Set.singleton (name_of_inv i)) opens | false |
PulseCore.Action.fsti | PulseCore.Action.mem_inv | val mem_inv (#p: _) (opens: inames) (i: inv p) : GTot bool | val mem_inv (#p: _) (opens: inames) (i: inv p) : GTot bool | let mem_inv (#p:_) (opens:inames) (i:inv p)
: GTot bool
= Set.mem (name_of_inv i) opens | {
"file_name": "lib/pulse_core/PulseCore.Action.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 31,
"end_line": 99,
"start_col": 0,
"start_line": 97
} | module PulseCore.Action
module I = PulseCore.InstantiatedSemantics
module PP = PulseCore.Preorder
open PulseCore.InstantiatedSemantics
open FStar.PCM
open FStar.Ghost
val iname : eqtype
let inames = Ghost.erased (FStar.Set.set iname)
let emp_inames : inames = Ghost.hide Set.empty
let join_inames (is1 is2 : inames) : inames =
Set.union is1 is2
let inames_subset (is1 is2 : inames) : Type0 =
Set.subset is1 is2
let (/!) (is1 is2 : inames) : Type0 =
Set.disjoint is1 is2
unfold
let inames_disj (ictx:inames) : Type = is:inames{is /! ictx}
val act
(a:Type u#a)
(opens:inames)
(pre:slprop)
(post:a -> slprop)
: Type u#(max a 2)
val return
(#a:Type u#a)
(#post:a -> slprop)
(x:a)
: act a emp_inames (post x) post
val bind
(#a:Type u#a)
(#b:Type u#b)
(#opens:inames)
(#pre1 #post1 #post2:_)
(f:act a opens pre1 post1)
(g:(x:a -> act b opens (post1 x) post2))
: act b opens pre1 post2
val frame
(#a:Type u#a)
(#opens:inames)
(#pre #post #frame:_)
(f:act a opens pre post)
: act a opens (pre ** frame) (fun x -> post x ** frame)
val weaken
(#a:Type)
(#pre:slprop)
(#post:a -> slprop)
(#opens opens':inames)
(f:act a opens pre post)
: act a (Set.union opens opens') pre post
val sub
(#a:Type)
(#pre:slprop)
(#post:a -> slprop)
(#opens:inames)
(pre':slprop { slprop_equiv pre pre' })
(post':a -> slprop { forall x. slprop_equiv (post x) (post' x) })
(f:act a opens pre post)
: act a opens pre' post'
val lift (#a:Type u#100) #opens (#pre:slprop) (#post:a -> slprop)
(m:act a opens pre post)
: I.stt a pre post
val lift0 (#a:Type u#0) #opens #pre #post
(m:act a opens pre post)
: I.stt a pre post
val lift1 (#a:Type u#1) #opens #pre #post
(m:act a opens pre post)
: I.stt a pre post
val lift2 (#a:Type u#2) #opens #pre #post
(m:act a opens pre post)
: I.stt a pre post
//////////////////////////////////////////////////////////////////////
// Invariants
//////////////////////////////////////////////////////////////////////
val inv (p:slprop) : Type0
val name_of_inv #p (i:inv p) : GTot iname | {
"checked_file": "/",
"dependencies": [
"PulseCore.Preorder.fst.checked",
"PulseCore.InstantiatedSemantics.fsti.checked",
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "PulseCore.Action.fsti"
} | [
{
"abbrev": false,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "PulseCore.MonotonicStateMonad",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "PulseCore.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "PulseCore.Semantics",
"short_module": "Sem"
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "PulseCore.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "PulseCore",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | opens: PulseCore.Action.inames -> i: PulseCore.Action.inv p -> Prims.GTot Prims.bool | Prims.GTot | [
"sometrivial"
] | [] | [
"PulseCore.InstantiatedSemantics.slprop",
"PulseCore.Action.inames",
"PulseCore.Action.inv",
"FStar.Set.mem",
"PulseCore.Action.iname",
"PulseCore.Action.name_of_inv",
"FStar.Ghost.reveal",
"FStar.Set.set",
"Prims.bool"
] | [] | false | false | false | false | false | let mem_inv (#p: _) (opens: inames) (i: inv p) : GTot bool =
| Set.mem (name_of_inv i) opens | false |
PulseCore.Action.fsti | PulseCore.Action.property | val property : a: Type -> Type | let property (a:Type)
= a -> prop | {
"file_name": "lib/pulse_core/PulseCore.Action.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 13,
"end_line": 186,
"start_col": 0,
"start_line": 185
} | module PulseCore.Action
module I = PulseCore.InstantiatedSemantics
module PP = PulseCore.Preorder
open PulseCore.InstantiatedSemantics
open FStar.PCM
open FStar.Ghost
val iname : eqtype
let inames = Ghost.erased (FStar.Set.set iname)
let emp_inames : inames = Ghost.hide Set.empty
let join_inames (is1 is2 : inames) : inames =
Set.union is1 is2
let inames_subset (is1 is2 : inames) : Type0 =
Set.subset is1 is2
let (/!) (is1 is2 : inames) : Type0 =
Set.disjoint is1 is2
unfold
let inames_disj (ictx:inames) : Type = is:inames{is /! ictx}
val act
(a:Type u#a)
(opens:inames)
(pre:slprop)
(post:a -> slprop)
: Type u#(max a 2)
val return
(#a:Type u#a)
(#post:a -> slprop)
(x:a)
: act a emp_inames (post x) post
val bind
(#a:Type u#a)
(#b:Type u#b)
(#opens:inames)
(#pre1 #post1 #post2:_)
(f:act a opens pre1 post1)
(g:(x:a -> act b opens (post1 x) post2))
: act b opens pre1 post2
val frame
(#a:Type u#a)
(#opens:inames)
(#pre #post #frame:_)
(f:act a opens pre post)
: act a opens (pre ** frame) (fun x -> post x ** frame)
val weaken
(#a:Type)
(#pre:slprop)
(#post:a -> slprop)
(#opens opens':inames)
(f:act a opens pre post)
: act a (Set.union opens opens') pre post
val sub
(#a:Type)
(#pre:slprop)
(#post:a -> slprop)
(#opens:inames)
(pre':slprop { slprop_equiv pre pre' })
(post':a -> slprop { forall x. slprop_equiv (post x) (post' x) })
(f:act a opens pre post)
: act a opens pre' post'
val lift (#a:Type u#100) #opens (#pre:slprop) (#post:a -> slprop)
(m:act a opens pre post)
: I.stt a pre post
val lift0 (#a:Type u#0) #opens #pre #post
(m:act a opens pre post)
: I.stt a pre post
val lift1 (#a:Type u#1) #opens #pre #post
(m:act a opens pre post)
: I.stt a pre post
val lift2 (#a:Type u#2) #opens #pre #post
(m:act a opens pre post)
: I.stt a pre post
//////////////////////////////////////////////////////////////////////
// Invariants
//////////////////////////////////////////////////////////////////////
val inv (p:slprop) : Type0
val name_of_inv #p (i:inv p) : GTot iname
let mem_inv (#p:_) (opens:inames) (i:inv p)
: GTot bool
= Set.mem (name_of_inv i) opens
let add_inv (#p:_) (opens:inames) (i:inv p)
: inames
= Set.union (Set.singleton (name_of_inv i)) opens
val new_invariant (p:slprop)
: act (inv p) emp_inames p (fun _ -> emp)
val with_invariant
(#a:Type)
(#fp:slprop)
(#fp':a -> slprop)
(#f_opens:inames)
(#p:slprop)
(i:inv p{not (mem_inv f_opens i)})
(f:unit -> act a f_opens (p ** fp) (fun x -> p ** fp' x))
: act a (add_inv f_opens i) fp fp'
////////////////////////////////////////////////////////////////////////
// References
////////////////////////////////////////////////////////////////////////
val ref ([@@@unused] a:Type u#a) ([@@@unused] p:pcm a) : Type u#0
val ref_null (#a:Type u#a) (p:pcm a) : ref a p
val is_ref_null (#a:Type) (#p:FStar.PCM.pcm a) (r:ref a p)
: b:bool { b <==> r == ref_null p }
val pts_to (#a:Type u#1) (#p:pcm a) (r:ref a p) (v:a) : slprop
val pts_to_not_null (#a:Type) (#p:FStar.PCM.pcm a) (r:ref a p) (v:a)
: act (squash (not (is_ref_null r)))
emp_inames
(pts_to r v)
(fun _ -> pts_to r v)
val alloc
(#a:Type u#1)
(#pcm:pcm a)
(x:a{compatible pcm x x /\ pcm.refine x})
: act (ref a pcm) emp_inames emp (fun r -> pts_to r x)
val read
(#a:Type)
(#p:pcm a)
(r:ref a p)
(x:erased a)
(f:(v:a{compatible p x v}
-> GTot (y:a{compatible p y v /\
FStar.PCM.frame_compatible p x v y})))
: act (v:a{compatible p x v /\ p.refine v}) emp_inames
(pts_to r x)
(fun v -> pts_to r (f v))
val write
(#a:Type)
(#p:pcm a)
(r:ref a p)
(x y:Ghost.erased a)
(f:FStar.PCM.frame_preserving_upd p x y)
: act unit emp_inames
(pts_to r x)
(fun _ -> pts_to r y)
val share
(#a:Type)
(#pcm:pcm a)
(r:ref a pcm)
(v0:FStar.Ghost.erased a)
(v1:FStar.Ghost.erased a{composable pcm v0 v1})
: act unit emp_inames
(pts_to r (v0 `op pcm` v1))
(fun _ -> pts_to r v0 ** pts_to r v1)
val gather
(#a:Type)
(#pcm:pcm a)
(r:ref a pcm)
(v0:FStar.Ghost.erased a)
(v1:FStar.Ghost.erased a)
: act (squash (composable pcm v0 v1))
emp_inames
(pts_to r v0 ** pts_to r v1)
(fun _ -> pts_to r (op pcm v0 v1)) | {
"checked_file": "/",
"dependencies": [
"PulseCore.Preorder.fst.checked",
"PulseCore.InstantiatedSemantics.fsti.checked",
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "PulseCore.Action.fsti"
} | [
{
"abbrev": false,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "PulseCore.MonotonicStateMonad",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "PulseCore.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "PulseCore.Semantics",
"short_module": "Sem"
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "PulseCore.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "PulseCore",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> Type | Prims.Tot | [
"total"
] | [] | [
"Prims.prop"
] | [] | false | false | false | true | true | let property (a: Type) =
| a -> prop | false |
|
Hacl.Spec.K256.Field52.Lemmas2.fst | Hacl.Spec.K256.Field52.Lemmas2.normalize5_second_part_x | val normalize5_second_part_x : x: Lib.IntTypes.uint64 ->
_:
((((Lib.IntTypes.uint64 * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) *
Lib.IntTypes.uint64)
-> Hacl.Spec.K256.Field52.Definitions.felem5 | let normalize5_second_part_x (x:uint64) (r0,r1,r2,r3,r4) : felem5 =
let is_ge_p_m = is_felem_ge_prime5 (r0,r1,r2,r3,r4) in // as_nat r >= S.prime
let m_to_one = is_ge_p_m &. u64 1 in
let x1 = m_to_one |. x in
let (s0,s1,s2,s3,s4) = plus_x_mul_pow2_256_minus_prime x1 (r0,r1,r2,r3,r4) in
let x2, (k0,k1,k2,k3,k4) = minus_x_mul_pow2_256 (s0,s1,s2,s3,s4) in
(k0,k1,k2,k3,k4) | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 18,
"end_line": 217,
"start_col": 0,
"start_line": 211
} | module Hacl.Spec.K256.Field52.Lemmas2
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
include Hacl.Spec.K256.Field52.Definitions
include Hacl.Spec.K256.Field52
module ML = Hacl.Spec.K256.MathLemmas
module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas
#set-options "--z3rlimit 100 --fuel 0 --ifuel 0"
/// Normalize-weak
val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires felem_fits5 f m)
(ensures
(let x, r = minus_x_mul_pow2_256 f in
let (r0,r1,r2,r3,r4) = r in
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
v x < pow2 16 /\ v x = v t4 / pow2 48 /\
v r4 = v t4 % pow2 48 /\
as_nat5 r == as_nat5 f - v x * pow2 256 /\
felem_fits5 r (m0,m1,m2,m3,1)))
let minus_x_mul_pow2_256_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
let x = t4 >>. 48ul in let t4' = t4 &. mask48 in
LD.lemma_mask48 t4;
let r = (t0,t1,t2,t3,t4') in
calc (==) { // as_nat5 f
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208;
(==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208;
(==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208;
(==) { }
(v x * pow2 48) * pow208 + as_nat5 r;
(==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 }
v x * pow2 256 + as_nat5 r;
};
Math.Lemmas.lemma_div_lt (v t4) 64 48
val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f (m0,m1,m2,m3,1)))
(ensures (let r = carry_round5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let carry_round_after_last_carry_mod_prime5_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in //(m0,m1,m2,m3,1)
let t1' = t1 +. (t0 >>. 52ul) in let t0' = t0 &. mask52 in
LD.lemma_carry52 m1 m0 t1 t0;
assert (felem_fits1 t1' (m1 + 1));
assert (felem_fits1 t0' 1);
assert (v t0' = v t0 % pow2 52);
assert (v t1' = v t1 + v t0 / pow2 52);
let t2' = t2 +. (t1' >>. 52ul) in let t1'' = t1' &. mask52 in
LD.lemma_carry52 m2 (m1 + 1) t2 t1';
assert (felem_fits1 t2' (m2 + 1));
assert (felem_fits1 t1'' 1);
assert (v t1'' = v t1' % pow2 52);
assert (v t2' = v t2 + v t1' / pow2 52);
let t3' = t3 +. (t2' >>. 52ul) in let t2'' = t2' &. mask52 in
LD.lemma_carry52 m3 (m2 + 1) t3 t2';
assert (felem_fits1 t3' (m3 + 1));
assert (felem_fits1 t2'' 1);
assert (v t2'' = v t2' % pow2 52);
assert (v t3' = v t3 + v t2' / pow2 52);
let t4' = t4 +. (t3' >>. 52ul) in let t3'' = t3' &. mask52 in
LD.lemma_carry_last52 m4 (m3 + 1) t4 t3';
assert (felem_fits_last1 t4' (m4 + 1));
assert (felem_fits1 t3'' 1);
assert (v t3'' = v t3' % pow2 52);
assert (v t4' = v t4 + v t3' / pow2 52);
LD.carry_last_small_mod_lemma t4 t3';
ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4);
let r = carry_round5 f in
assert ((t0',t1'',t2'',t3'',t4') == r);
assert (as_nat5 r == as_nat5 f)
val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f m /\ v x < pow2 16))
(ensures
(let r = plus_x_mul_pow2_256_minus_prime x f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let plus_x_mul_pow2_256_minus_prime_lemma m x f =
let (t0,t1,t2,t3,t4) = f in
let (m0,m1,m2,m3,m4) = m in
let t0' = t0 +. x *. u64 0x1000003D1 in
assert (v x < pow2 16);
Math.Lemmas.lemma_mult_lt_right 0x1000003D1 (v x) (pow2 16);
assert_norm (pow2 16 * 0x1000003D1 < max52);
assert (v t0 + v x * 0x1000003D1 < (m0 + 1) * max52);
Math.Lemmas.lemma_mult_le_right max52 (m0 + 1) 4096;
assert_norm (4096 * max52 < pow2 64);
Math.Lemmas.small_mod (v t0 + v x * 0x1000003D1) (pow2 64);
assert (v t0' = v t0 + v x * 0x1000003D1);
assert (felem_fits1 t0' (m0 + 1));
let r = carry_round5 (t0',t1,t2,t3,t4) in
carry_round_after_last_carry_mod_prime5_lemma (m0+1,m1,m2,m3,m4) (t0',t1,t2,t3,t4);
assert (as_nat5 r == as_nat5 (t0',t1,t2,t3,t4));
LD.lemma_pow2_256_minus_prime ();
assert (as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime))
val normalize_weak5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
felem_fits5 f m))
(ensures (let r = normalize_weak5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f - v t4 / pow2 48 * S.prime /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let normalize_weak5_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let x, f1 = minus_x_mul_pow2_256 f in
minus_x_mul_pow2_256_lemma m f;
assert (as_nat5 f1 == as_nat5 f - v x * pow2 256);
assert (felem_fits5 f1 (m0,m1,m2,m3,1));
let f2 = plus_x_mul_pow2_256_minus_prime x f1 in
plus_x_mul_pow2_256_minus_prime_lemma (m0,m1,m2,m3,1) x f1;
assert (as_nat5 f2 == as_nat5 f1 + v x * (pow2 256 - S.prime));
assert (felem_fits5 f2 (1,1,1,1,2));
assert (f2 == normalize_weak5 f);
Math.Lemmas.distributivity_sub_right (v x) (pow2 256) S.prime;
assert (as_nat5 f2 == as_nat5 f - v x * S.prime)
/// Normalize
#push-options "--ifuel 1"
val is_felem_ge_prime5_lemma: f:felem5 -> Lemma
(requires felem_fits5 f (1,1,1,1,1))
(ensures (let is_m = is_felem_ge_prime5 f in
(v is_m = 0 \/ v is_m = ones_v U64) /\
(if v is_m = ones_v U64 then (as_nat5 f >= S.prime) else (as_nat5 f < S.prime))))
let is_felem_ge_prime5_lemma f = ()
#pop-options
// let (f0,f1,f2,f3,f4) = f in
// let m4 = eq_mask f4 mask48 in
// eq_mask_lemma f4 mask48;
// assert (if v f4 = v mask48 then v m4 = ones_v U64 else v m4 = 0);
// let m3 = eq_mask f3 mask52 in
// eq_mask_lemma f3 mask52;
// assert (if v f3 = v mask52 then v m3 = ones_v U64 else v m3 = 0);
// let m2 = eq_mask f2 mask52 in
// eq_mask_lemma f2 mask52;
// assert (if v f2 = v mask52 then v m2 = ones_v U64 else v m2 = 0);
// let m1 = eq_mask f1 mask52 in
// eq_mask_lemma f1 mask52;
// assert (if v f1 = v mask52 then v m1 = ones_v U64 else v m1 = 0);
// let m0 = gte_mask f0 (u64 0xffffefffffc2f) in
// gte_mask_lemma f0 (u64 0xffffefffffc2f);
// assert (if v f0 >= 0xffffefffffc2f then v m0 = ones_v U64 else v m0 = 0);
// let m = m0 &. m1 &. m2 &. m3 &. m4 in ()
// if v m4 = 0 then
// logand_zeros (m0 &. m1 &. m2 &. m3)
// else begin
// logand_ones (m0 &. m1 &. m2 &. m3) end
noextract
let normalize5_first_part (f0,f1,f2,f3,f4) =
let (t0,t1,t2,t3,t4) = normalize_weak5 (f0,f1,f2,f3,f4) in
let x, (r0,r1,r2,r3,r4) = minus_x_mul_pow2_256 (t0,t1,t2,t3,t4) in
x, (r0,r1,r2,r3,r4) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.K256.MathLemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.fst.checked",
"Hacl.Spec.K256.Field52.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas",
"short_module": "LD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.MathLemmas",
"short_module": "ML"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
x: Lib.IntTypes.uint64 ->
_:
((((Lib.IntTypes.uint64 * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) *
Lib.IntTypes.uint64)
-> Hacl.Spec.K256.Field52.Definitions.felem5 | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.uint64",
"FStar.Pervasives.Native.tuple5",
"FStar.Pervasives.Native.Mktuple5",
"Hacl.Spec.K256.Field52.Definitions.felem5",
"FStar.Pervasives.Native.tuple2",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Hacl.Spec.K256.Field52.minus_x_mul_pow2_256",
"Hacl.Spec.K256.Field52.plus_x_mul_pow2_256_minus_prime",
"Lib.IntTypes.op_Bar_Dot",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.u64",
"Hacl.Spec.K256.Field52.is_felem_ge_prime5"
] | [] | false | false | false | true | false | let normalize5_second_part_x (x: uint64) (r0, r1, r2, r3, r4) : felem5 =
| let is_ge_p_m = is_felem_ge_prime5 (r0, r1, r2, r3, r4) in
let m_to_one = is_ge_p_m &. u64 1 in
let x1 = m_to_one |. x in
let s0, s1, s2, s3, s4 = plus_x_mul_pow2_256_minus_prime x1 (r0, r1, r2, r3, r4) in
let x2, (k0, k1, k2, k3, k4) = minus_x_mul_pow2_256 (s0, s1, s2, s3, s4) in
(k0, k1, k2, k3, k4) | false |
|
PulseCore.Action.fsti | PulseCore.Action.stable_property | val stable_property : pcm: FStar.PCM.pcm a -> Type | let stable_property (#a:Type) (pcm:pcm a)
= fact:property a {
FStar.Preorder.stable fact (PP.preorder_of_pcm pcm)
} | {
"file_name": "lib/pulse_core/PulseCore.Action.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 5,
"end_line": 197,
"start_col": 0,
"start_line": 194
} | module PulseCore.Action
module I = PulseCore.InstantiatedSemantics
module PP = PulseCore.Preorder
open PulseCore.InstantiatedSemantics
open FStar.PCM
open FStar.Ghost
val iname : eqtype
let inames = Ghost.erased (FStar.Set.set iname)
let emp_inames : inames = Ghost.hide Set.empty
let join_inames (is1 is2 : inames) : inames =
Set.union is1 is2
let inames_subset (is1 is2 : inames) : Type0 =
Set.subset is1 is2
let (/!) (is1 is2 : inames) : Type0 =
Set.disjoint is1 is2
unfold
let inames_disj (ictx:inames) : Type = is:inames{is /! ictx}
val act
(a:Type u#a)
(opens:inames)
(pre:slprop)
(post:a -> slprop)
: Type u#(max a 2)
val return
(#a:Type u#a)
(#post:a -> slprop)
(x:a)
: act a emp_inames (post x) post
val bind
(#a:Type u#a)
(#b:Type u#b)
(#opens:inames)
(#pre1 #post1 #post2:_)
(f:act a opens pre1 post1)
(g:(x:a -> act b opens (post1 x) post2))
: act b opens pre1 post2
val frame
(#a:Type u#a)
(#opens:inames)
(#pre #post #frame:_)
(f:act a opens pre post)
: act a opens (pre ** frame) (fun x -> post x ** frame)
val weaken
(#a:Type)
(#pre:slprop)
(#post:a -> slprop)
(#opens opens':inames)
(f:act a opens pre post)
: act a (Set.union opens opens') pre post
val sub
(#a:Type)
(#pre:slprop)
(#post:a -> slprop)
(#opens:inames)
(pre':slprop { slprop_equiv pre pre' })
(post':a -> slprop { forall x. slprop_equiv (post x) (post' x) })
(f:act a opens pre post)
: act a opens pre' post'
val lift (#a:Type u#100) #opens (#pre:slprop) (#post:a -> slprop)
(m:act a opens pre post)
: I.stt a pre post
val lift0 (#a:Type u#0) #opens #pre #post
(m:act a opens pre post)
: I.stt a pre post
val lift1 (#a:Type u#1) #opens #pre #post
(m:act a opens pre post)
: I.stt a pre post
val lift2 (#a:Type u#2) #opens #pre #post
(m:act a opens pre post)
: I.stt a pre post
//////////////////////////////////////////////////////////////////////
// Invariants
//////////////////////////////////////////////////////////////////////
val inv (p:slprop) : Type0
val name_of_inv #p (i:inv p) : GTot iname
let mem_inv (#p:_) (opens:inames) (i:inv p)
: GTot bool
= Set.mem (name_of_inv i) opens
let add_inv (#p:_) (opens:inames) (i:inv p)
: inames
= Set.union (Set.singleton (name_of_inv i)) opens
val new_invariant (p:slprop)
: act (inv p) emp_inames p (fun _ -> emp)
val with_invariant
(#a:Type)
(#fp:slprop)
(#fp':a -> slprop)
(#f_opens:inames)
(#p:slprop)
(i:inv p{not (mem_inv f_opens i)})
(f:unit -> act a f_opens (p ** fp) (fun x -> p ** fp' x))
: act a (add_inv f_opens i) fp fp'
////////////////////////////////////////////////////////////////////////
// References
////////////////////////////////////////////////////////////////////////
val ref ([@@@unused] a:Type u#a) ([@@@unused] p:pcm a) : Type u#0
val ref_null (#a:Type u#a) (p:pcm a) : ref a p
val is_ref_null (#a:Type) (#p:FStar.PCM.pcm a) (r:ref a p)
: b:bool { b <==> r == ref_null p }
val pts_to (#a:Type u#1) (#p:pcm a) (r:ref a p) (v:a) : slprop
val pts_to_not_null (#a:Type) (#p:FStar.PCM.pcm a) (r:ref a p) (v:a)
: act (squash (not (is_ref_null r)))
emp_inames
(pts_to r v)
(fun _ -> pts_to r v)
val alloc
(#a:Type u#1)
(#pcm:pcm a)
(x:a{compatible pcm x x /\ pcm.refine x})
: act (ref a pcm) emp_inames emp (fun r -> pts_to r x)
val read
(#a:Type)
(#p:pcm a)
(r:ref a p)
(x:erased a)
(f:(v:a{compatible p x v}
-> GTot (y:a{compatible p y v /\
FStar.PCM.frame_compatible p x v y})))
: act (v:a{compatible p x v /\ p.refine v}) emp_inames
(pts_to r x)
(fun v -> pts_to r (f v))
val write
(#a:Type)
(#p:pcm a)
(r:ref a p)
(x y:Ghost.erased a)
(f:FStar.PCM.frame_preserving_upd p x y)
: act unit emp_inames
(pts_to r x)
(fun _ -> pts_to r y)
val share
(#a:Type)
(#pcm:pcm a)
(r:ref a pcm)
(v0:FStar.Ghost.erased a)
(v1:FStar.Ghost.erased a{composable pcm v0 v1})
: act unit emp_inames
(pts_to r (v0 `op pcm` v1))
(fun _ -> pts_to r v0 ** pts_to r v1)
val gather
(#a:Type)
(#pcm:pcm a)
(r:ref a pcm)
(v0:FStar.Ghost.erased a)
(v1:FStar.Ghost.erased a)
: act (squash (composable pcm v0 v1))
emp_inames
(pts_to r v0 ** pts_to r v1)
(fun _ -> pts_to r (op pcm v0 v1))
let property (a:Type)
= a -> prop
val witnessed (#a:Type u#1)
(#pcm:pcm a)
(r:ref a pcm)
(fact:property a)
: Type0 | {
"checked_file": "/",
"dependencies": [
"PulseCore.Preorder.fst.checked",
"PulseCore.InstantiatedSemantics.fsti.checked",
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "PulseCore.Action.fsti"
} | [
{
"abbrev": false,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "PulseCore.MonotonicStateMonad",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "PulseCore.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "PulseCore.Semantics",
"short_module": "Sem"
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "PulseCore.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "PulseCore.InstantiatedSemantics",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "PulseCore",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseCore",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | pcm: FStar.PCM.pcm a -> Type | Prims.Tot | [
"total"
] | [] | [
"FStar.PCM.pcm",
"PulseCore.Action.property",
"FStar.Preorder.stable",
"PulseCore.Preorder.preorder_of_pcm"
] | [] | false | false | false | true | true | let stable_property (#a: Type) (pcm: pcm a) =
| fact: property a {FStar.Preorder.stable fact (PP.preorder_of_pcm pcm)} | false |
|
Pulse.Lib.GhostWitness.fst | Pulse.Lib.GhostWitness.ghost_witness2 | val ghost_witness2 (a:Type u#2) (_:squash a) :
stt_ghost a emp (fun _ -> emp) | val ghost_witness2 (a:Type u#2) (_:squash a) :
stt_ghost a emp (fun _ -> emp) | let ghost_witness2 = __ghost_witness2 | {
"file_name": "share/steel/examples/pulse/lib/Pulse.Lib.GhostWitness.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 37,
"end_line": 40,
"start_col": 0,
"start_line": 40
} | module Pulse.Lib.GhostWitness
open Pulse.Lib.Pervasives
let sqeq (p : Type) (_ : squash p) : erased p =
FStar.IndefiniteDescription.elim_squash #p ()
let psquash (a:Type u#a) : prop = squash a
```pulse
ghost
fn __ghost_witness (a:Type u#0) (_:squash a)
requires emp
returns i:a
ensures emp
{
let pf = elim_pure_explicit (psquash a);
let pf : squash a = FStar.Squash.join_squash pf;
let i = sqeq a pf;
let i = reveal i;
i
}
```
let ghost_witness = __ghost_witness
```pulse
ghost
fn __ghost_witness2 (a:Type u#2) (_:squash a)
requires emp
returns i:a
ensures emp
{
let pf = elim_pure_explicit (psquash a);
let pf : squash a = FStar.Squash.join_squash pf;
let i = sqeq a pf;
let i = reveal i;
i
} | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Pervasives.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Lib.GhostWitness.fst"
} | [
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> _: Prims.squash a
-> Pulse.Lib.Core.stt_ghost a Pulse.Lib.Core.emp (fun _ -> Pulse.Lib.Core.emp) | Prims.Tot | [
"total"
] | [] | [
"Pulse.Lib.GhostWitness.__ghost_witness2"
] | [] | false | false | false | false | false | let ghost_witness2 =
| __ghost_witness2 | false |
Pulse.Lib.GhostWitness.fst | Pulse.Lib.GhostWitness.ghost_witness | val ghost_witness (a:Type u#0) (_:squash a) :
stt_ghost a emp (fun _ -> emp) | val ghost_witness (a:Type u#0) (_:squash a) :
stt_ghost a emp (fun _ -> emp) | let ghost_witness = __ghost_witness | {
"file_name": "share/steel/examples/pulse/lib/Pulse.Lib.GhostWitness.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 35,
"end_line": 24,
"start_col": 0,
"start_line": 24
} | module Pulse.Lib.GhostWitness
open Pulse.Lib.Pervasives
let sqeq (p : Type) (_ : squash p) : erased p =
FStar.IndefiniteDescription.elim_squash #p ()
let psquash (a:Type u#a) : prop = squash a
```pulse
ghost
fn __ghost_witness (a:Type u#0) (_:squash a)
requires emp
returns i:a
ensures emp
{
let pf = elim_pure_explicit (psquash a);
let pf : squash a = FStar.Squash.join_squash pf;
let i = sqeq a pf;
let i = reveal i;
i
} | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Pervasives.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Lib.GhostWitness.fst"
} | [
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type0 -> _: Prims.squash a
-> Pulse.Lib.Core.stt_ghost a Pulse.Lib.Core.emp (fun _ -> Pulse.Lib.Core.emp) | Prims.Tot | [
"total"
] | [] | [
"Pulse.Lib.GhostWitness.__ghost_witness"
] | [] | false | false | false | false | false | let ghost_witness =
| __ghost_witness | false |
Pulse.Lib.GhostWitness.fst | Pulse.Lib.GhostWitness.ghost_witness_exists | val ghost_witness_exists (a:Type u#0) :
stt_ghost a (pure (exists (x:a). True)) (fun _ -> emp) | val ghost_witness_exists (a:Type u#0) :
stt_ghost a (pure (exists (x:a). True)) (fun _ -> emp) | let ghost_witness_exists = __ghost_witness_exists | {
"file_name": "share/steel/examples/pulse/lib/Pulse.Lib.GhostWitness.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 49,
"end_line": 52,
"start_col": 0,
"start_line": 52
} | module Pulse.Lib.GhostWitness
open Pulse.Lib.Pervasives
let sqeq (p : Type) (_ : squash p) : erased p =
FStar.IndefiniteDescription.elim_squash #p ()
let psquash (a:Type u#a) : prop = squash a
```pulse
ghost
fn __ghost_witness (a:Type u#0) (_:squash a)
requires emp
returns i:a
ensures emp
{
let pf = elim_pure_explicit (psquash a);
let pf : squash a = FStar.Squash.join_squash pf;
let i = sqeq a pf;
let i = reveal i;
i
}
```
let ghost_witness = __ghost_witness
```pulse
ghost
fn __ghost_witness2 (a:Type u#2) (_:squash a)
requires emp
returns i:a
ensures emp
{
let pf = elim_pure_explicit (psquash a);
let pf : squash a = FStar.Squash.join_squash pf;
let i = sqeq a pf;
let i = reveal i;
i
}
```
let ghost_witness2 = __ghost_witness2
```pulse
ghost
fn __ghost_witness_exists (a:Type u#0)
requires pure (exists (x:a). True)
returns i:a
ensures emp
{
ghost_witness a ();
} | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Pervasives.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Lib.GhostWitness.fst"
} | [
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type0
-> Pulse.Lib.Core.stt_ghost a
(Pulse.Lib.Core.pure (exists (x: a). Prims.l_True))
(fun _ -> Pulse.Lib.Core.emp) | Prims.Tot | [
"total"
] | [] | [
"Pulse.Lib.GhostWitness.__ghost_witness_exists"
] | [] | false | false | false | false | false | let ghost_witness_exists =
| __ghost_witness_exists | false |
Pulse.Lib.GhostWitness.fst | Pulse.Lib.GhostWitness.ghost_witness_exists2 | val ghost_witness_exists2 (a:Type u#2) :
stt_ghost a (pure (exists (x:a). True)) (fun _ -> emp) | val ghost_witness_exists2 (a:Type u#2) :
stt_ghost a (pure (exists (x:a). True)) (fun _ -> emp) | let ghost_witness_exists2 = __ghost_witness_exists2 | {
"file_name": "share/steel/examples/pulse/lib/Pulse.Lib.GhostWitness.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 51,
"end_line": 64,
"start_col": 0,
"start_line": 64
} | module Pulse.Lib.GhostWitness
open Pulse.Lib.Pervasives
let sqeq (p : Type) (_ : squash p) : erased p =
FStar.IndefiniteDescription.elim_squash #p ()
let psquash (a:Type u#a) : prop = squash a
```pulse
ghost
fn __ghost_witness (a:Type u#0) (_:squash a)
requires emp
returns i:a
ensures emp
{
let pf = elim_pure_explicit (psquash a);
let pf : squash a = FStar.Squash.join_squash pf;
let i = sqeq a pf;
let i = reveal i;
i
}
```
let ghost_witness = __ghost_witness
```pulse
ghost
fn __ghost_witness2 (a:Type u#2) (_:squash a)
requires emp
returns i:a
ensures emp
{
let pf = elim_pure_explicit (psquash a);
let pf : squash a = FStar.Squash.join_squash pf;
let i = sqeq a pf;
let i = reveal i;
i
}
```
let ghost_witness2 = __ghost_witness2
```pulse
ghost
fn __ghost_witness_exists (a:Type u#0)
requires pure (exists (x:a). True)
returns i:a
ensures emp
{
ghost_witness a ();
}
```
let ghost_witness_exists = __ghost_witness_exists
```pulse
ghost
fn __ghost_witness_exists2 (a:Type u#2)
requires pure (exists (x:a). True)
returns i:a
ensures emp
{
ghost_witness2 a ();
} | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Pervasives.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Lib.GhostWitness.fst"
} | [
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type
-> Pulse.Lib.Core.stt_ghost a
(Pulse.Lib.Core.pure (exists (x: a). Prims.l_True))
(fun _ -> Pulse.Lib.Core.emp) | Prims.Tot | [
"total"
] | [] | [
"Pulse.Lib.GhostWitness.__ghost_witness_exists2"
] | [] | false | false | false | false | false | let ghost_witness_exists2 =
| __ghost_witness_exists2 | false |
Vale.X64.BufferViewStore.fst | Vale.X64.BufferViewStore.get128_aux | val get128_aux (ptr: int) (heap: machine_heap) (v: quad32) (k: nat{k < 16})
: Lemma (requires get_heap_val128 ptr heap == v)
(ensures heap.[ ptr + k ] == UInt8.v (Seq.index (put128 v) k)) | val get128_aux (ptr: int) (heap: machine_heap) (v: quad32) (k: nat{k < 16})
: Lemma (requires get_heap_val128 ptr heap == v)
(ensures heap.[ ptr + k ] == UInt8.v (Seq.index (put128 v) k)) | let get128_aux (ptr:int) (heap:machine_heap) (v:quad32) (k:nat{k < 16}) : Lemma
(requires get_heap_val128 ptr heap == v)
(ensures heap.[ptr + k] == UInt8.v (Seq.index (put128 v) k)) =
get_heap_val128_reveal ();
get_heap_val32_reveal ();
put128_reveal ();
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_nat_8_injective () | {
"file_name": "vale/code/arch/x64/Vale.X64.BufferViewStore.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 28,
"end_line": 48,
"start_col": 0,
"start_line": 40
} | module Vale.X64.BufferViewStore
open FStar.Mul
open Vale.Interop.Views
open Vale.Interop
module MB = LowStar.Monotonic.Buffer
module HS = FStar.HyperStack
open Vale.Lib.BufferViewHelpers
open Vale.Def.Types_s
open Vale.Def.Words_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Two
open Vale.Def.Words.Four_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Seq
open Vale.Arch.Types
open FStar.Calc
friend LowStar.BufferView.Up
#reset-options "--z3rlimit 10 --max_fuel 0 --initial_fuel 0 --max_ifuel 1 --initial_ifuel 1"
let math_aux (a b c:int) : Lemma (a + b + (c - b) == a + c) = ()
let map_aux (ptr1 ptr2:int) (v:int) (m:machine_heap) : Lemma
(requires ptr1 == ptr2 /\ m.[ptr1] == v)
(ensures m.[ptr2] == v) = ()
let get64_aux (ptr:int) (heap:machine_heap) (v:nat64) (k:nat{k < 8}) : Lemma
(requires get_heap_val64 ptr heap == v)
(ensures heap.[ptr + k] == UInt8.v (Seq.index (put64 (UInt64.uint_to_t v)) k)) =
get_heap_val64_reveal ();
put64_reveal ();
le_nat64_to_bytes_reveal ();
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
four_to_nat_8_injective ();
two_to_nat_32_injective () | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.BufferViewHelpers.fst.checked",
"Vale.Interop.Views.fsti.checked",
"Vale.Interop.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Seq.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.Arch.MachineHeap.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferView.Up.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.BufferViewStore.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.BufferViewHelpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "Vale.Interop",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Views",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Interop.Base",
"short_module": "IB"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.BufferViewHelpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Up",
"short_module": "UV"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "Vale.Interop",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Views",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
ptr: Prims.int ->
heap: Vale.Arch.MachineHeap_s.machine_heap ->
v: Vale.Def.Types_s.quad32 ->
k: Prims.nat{k < 16}
-> FStar.Pervasives.Lemma (requires Vale.Arch.MachineHeap_s.get_heap_val128 ptr heap == v)
(ensures
heap.[ ptr + k ] == FStar.UInt8.v (FStar.Seq.Base.index (Vale.Interop.Views.put128 v) k)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.int",
"Vale.Arch.MachineHeap_s.machine_heap",
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Vale.Def.Words.Seq.four_to_nat_8_injective",
"Prims.unit",
"FStar.Pervasives.reveal_opaque",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.nat8",
"Prims.l_True",
"Prims.eq2",
"FStar.Seq.Base.length",
"Vale.Def.Types_s.le_quad32_to_bytes",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.nat8",
"FStar.Mul.op_Star",
"Vale.Def.Words.Seq_s.seq_four_to_seq_LE",
"Vale.Interop.Views.put128_reveal",
"Vale.Arch.MachineHeap_s.get_heap_val32_reveal",
"Vale.Arch.MachineHeap_s.get_heap_val128_reveal",
"Vale.Arch.MachineHeap_s.get_heap_val128",
"Prims.squash",
"Prims.l_or",
"Prims.l_and",
"Prims.op_GreaterThanOrEqual",
"Vale.Def.Words_s.pow2_8",
"FStar.UInt.size",
"FStar.UInt8.n",
"Vale.Interop.op_String_Access",
"Prims.op_Addition",
"FStar.UInt8.v",
"FStar.Seq.Base.index",
"FStar.UInt8.t",
"Vale.Interop.Views.put128",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let get128_aux (ptr: int) (heap: machine_heap) (v: quad32) (k: nat{k < 16})
: Lemma (requires get_heap_val128 ptr heap == v)
(ensures heap.[ ptr + k ] == UInt8.v (Seq.index (put128 v) k)) =
| get_heap_val128_reveal ();
get_heap_val32_reveal ();
put128_reveal ();
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_nat_8_injective () | false |
Hacl.Spec.K256.Field52.Lemmas2.fst | Hacl.Spec.K256.Field52.Lemmas2.normalize_weak5_lemma | val normalize_weak5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
felem_fits5 f m))
(ensures (let r = normalize_weak5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f - v t4 / pow2 48 * S.prime /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) | val normalize_weak5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
felem_fits5 f m))
(ensures (let r = normalize_weak5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f - v t4 / pow2 48 * S.prime /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) | let normalize_weak5_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let x, f1 = minus_x_mul_pow2_256 f in
minus_x_mul_pow2_256_lemma m f;
assert (as_nat5 f1 == as_nat5 f - v x * pow2 256);
assert (felem_fits5 f1 (m0,m1,m2,m3,1));
let f2 = plus_x_mul_pow2_256_minus_prime x f1 in
plus_x_mul_pow2_256_minus_prime_lemma (m0,m1,m2,m3,1) x f1;
assert (as_nat5 f2 == as_nat5 f1 + v x * (pow2 256 - S.prime));
assert (felem_fits5 f2 (1,1,1,1,2));
assert (f2 == normalize_weak5 f);
Math.Lemmas.distributivity_sub_right (v x) (pow2 256) S.prime;
assert (as_nat5 f2 == as_nat5 f - v x * S.prime) | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 50,
"end_line": 162,
"start_col": 0,
"start_line": 148
} | module Hacl.Spec.K256.Field52.Lemmas2
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
include Hacl.Spec.K256.Field52.Definitions
include Hacl.Spec.K256.Field52
module ML = Hacl.Spec.K256.MathLemmas
module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas
#set-options "--z3rlimit 100 --fuel 0 --ifuel 0"
/// Normalize-weak
val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires felem_fits5 f m)
(ensures
(let x, r = minus_x_mul_pow2_256 f in
let (r0,r1,r2,r3,r4) = r in
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
v x < pow2 16 /\ v x = v t4 / pow2 48 /\
v r4 = v t4 % pow2 48 /\
as_nat5 r == as_nat5 f - v x * pow2 256 /\
felem_fits5 r (m0,m1,m2,m3,1)))
let minus_x_mul_pow2_256_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
let x = t4 >>. 48ul in let t4' = t4 &. mask48 in
LD.lemma_mask48 t4;
let r = (t0,t1,t2,t3,t4') in
calc (==) { // as_nat5 f
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208;
(==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208;
(==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208;
(==) { }
(v x * pow2 48) * pow208 + as_nat5 r;
(==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 }
v x * pow2 256 + as_nat5 r;
};
Math.Lemmas.lemma_div_lt (v t4) 64 48
val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f (m0,m1,m2,m3,1)))
(ensures (let r = carry_round5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let carry_round_after_last_carry_mod_prime5_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in //(m0,m1,m2,m3,1)
let t1' = t1 +. (t0 >>. 52ul) in let t0' = t0 &. mask52 in
LD.lemma_carry52 m1 m0 t1 t0;
assert (felem_fits1 t1' (m1 + 1));
assert (felem_fits1 t0' 1);
assert (v t0' = v t0 % pow2 52);
assert (v t1' = v t1 + v t0 / pow2 52);
let t2' = t2 +. (t1' >>. 52ul) in let t1'' = t1' &. mask52 in
LD.lemma_carry52 m2 (m1 + 1) t2 t1';
assert (felem_fits1 t2' (m2 + 1));
assert (felem_fits1 t1'' 1);
assert (v t1'' = v t1' % pow2 52);
assert (v t2' = v t2 + v t1' / pow2 52);
let t3' = t3 +. (t2' >>. 52ul) in let t2'' = t2' &. mask52 in
LD.lemma_carry52 m3 (m2 + 1) t3 t2';
assert (felem_fits1 t3' (m3 + 1));
assert (felem_fits1 t2'' 1);
assert (v t2'' = v t2' % pow2 52);
assert (v t3' = v t3 + v t2' / pow2 52);
let t4' = t4 +. (t3' >>. 52ul) in let t3'' = t3' &. mask52 in
LD.lemma_carry_last52 m4 (m3 + 1) t4 t3';
assert (felem_fits_last1 t4' (m4 + 1));
assert (felem_fits1 t3'' 1);
assert (v t3'' = v t3' % pow2 52);
assert (v t4' = v t4 + v t3' / pow2 52);
LD.carry_last_small_mod_lemma t4 t3';
ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4);
let r = carry_round5 f in
assert ((t0',t1'',t2'',t3'',t4') == r);
assert (as_nat5 r == as_nat5 f)
val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f m /\ v x < pow2 16))
(ensures
(let r = plus_x_mul_pow2_256_minus_prime x f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let plus_x_mul_pow2_256_minus_prime_lemma m x f =
let (t0,t1,t2,t3,t4) = f in
let (m0,m1,m2,m3,m4) = m in
let t0' = t0 +. x *. u64 0x1000003D1 in
assert (v x < pow2 16);
Math.Lemmas.lemma_mult_lt_right 0x1000003D1 (v x) (pow2 16);
assert_norm (pow2 16 * 0x1000003D1 < max52);
assert (v t0 + v x * 0x1000003D1 < (m0 + 1) * max52);
Math.Lemmas.lemma_mult_le_right max52 (m0 + 1) 4096;
assert_norm (4096 * max52 < pow2 64);
Math.Lemmas.small_mod (v t0 + v x * 0x1000003D1) (pow2 64);
assert (v t0' = v t0 + v x * 0x1000003D1);
assert (felem_fits1 t0' (m0 + 1));
let r = carry_round5 (t0',t1,t2,t3,t4) in
carry_round_after_last_carry_mod_prime5_lemma (m0+1,m1,m2,m3,m4) (t0',t1,t2,t3,t4);
assert (as_nat5 r == as_nat5 (t0',t1,t2,t3,t4));
LD.lemma_pow2_256_minus_prime ();
assert (as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime))
val normalize_weak5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
felem_fits5 f m))
(ensures (let r = normalize_weak5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f - v t4 / pow2 48 * S.prime /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.K256.MathLemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.fst.checked",
"Hacl.Spec.K256.Field52.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas",
"short_module": "LD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.MathLemmas",
"short_module": "ML"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: Hacl.Spec.K256.Field52.Definitions.scale64_5 -> f: Hacl.Spec.K256.Field52.Definitions.felem5
-> FStar.Pervasives.Lemma
(requires
(let _ = m in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ m0 m1 m2 m3 _ = _ in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
Hacl.Spec.K256.Field52.Definitions.felem_fits5 f m)
<:
Type0))
(ensures
(let r = Hacl.Spec.K256.Field52.normalize_weak5 f in
let _ = r in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ r4 = _ in
let _ = f in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ t4 = _ in
Hacl.Spec.K256.Field52.Definitions.as_nat5 r ==
Hacl.Spec.K256.Field52.Definitions.as_nat5 f -
(Lib.IntTypes.v t4 / Prims.pow2 48) * Spec.K256.PointOps.prime /\
Hacl.Spec.K256.Field52.Definitions.felem_fits5 r (1, 1, 1, 1, 2) /\
Lib.IntTypes.v r4 < Lib.IntTypes.v t4 + Prims.pow2 12 /\
(Lib.IntTypes.v r4 >= Prims.pow2 48 ==>
Lib.IntTypes.v r4 % Prims.pow2 48 < Prims.pow2 12))
<:
Type0)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.K256.Field52.Definitions.scale64_5",
"Hacl.Spec.K256.Field52.Definitions.felem5",
"Prims.nat",
"Lib.IntTypes.uint64",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Hacl.Spec.K256.Field52.Definitions.as_nat5",
"Prims.op_Subtraction",
"FStar.Mul.op_Star",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Spec.K256.PointOps.prime",
"Prims.unit",
"FStar.Math.Lemmas.distributivity_sub_right",
"Prims.pow2",
"Hacl.Spec.K256.Field52.normalize_weak5",
"Hacl.Spec.K256.Field52.Definitions.felem_fits5",
"FStar.Pervasives.Native.Mktuple5",
"Prims.op_Addition",
"Hacl.Spec.K256.Field52.Lemmas2.plus_x_mul_pow2_256_minus_prime_lemma",
"Hacl.Spec.K256.Field52.plus_x_mul_pow2_256_minus_prime",
"Hacl.Spec.K256.Field52.Lemmas2.minus_x_mul_pow2_256_lemma",
"FStar.Pervasives.Native.tuple2",
"Lib.IntTypes.int_t",
"Hacl.Spec.K256.Field52.minus_x_mul_pow2_256"
] | [] | false | false | true | false | false | let normalize_weak5_lemma m f =
| let m0, m1, m2, m3, m4 = m in
let x, f1 = minus_x_mul_pow2_256 f in
minus_x_mul_pow2_256_lemma m f;
assert (as_nat5 f1 == as_nat5 f - v x * pow2 256);
assert (felem_fits5 f1 (m0, m1, m2, m3, 1));
let f2 = plus_x_mul_pow2_256_minus_prime x f1 in
plus_x_mul_pow2_256_minus_prime_lemma (m0, m1, m2, m3, 1) x f1;
assert (as_nat5 f2 == as_nat5 f1 + v x * (pow2 256 - S.prime));
assert (felem_fits5 f2 (1, 1, 1, 1, 2));
assert (f2 == normalize_weak5 f);
Math.Lemmas.distributivity_sub_right (v x) (pow2 256) S.prime;
assert (as_nat5 f2 == as_nat5 f - v x * S.prime) | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.mk_checked_let | val mk_checked_let (g: R.env) (nm: string) (tm: R.term) (ty: R.typ{typing g tm (T.E_Total, ty)})
: T.Tac (sigelt_for g) | val mk_checked_let (g: R.env) (nm: string) (tm: R.term) (ty: R.typ{typing g tm (T.E_Total, ty)})
: T.Tac (sigelt_for g) | let mk_checked_let (g:R.env) (nm:string) (tm:R.term) (ty:R.typ{typing g tm (T.E_Total, ty)}) : T.Tac (sigelt_for g) =
let fv = pack_fv (T.cur_module () @ [nm]) in
let lb = R.pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = tm }) in
let se = R.pack_sigelt (R.Sg_Let false [lb]) in
let pf : sigelt_typing g se =
ST_Let g fv ty tm ()
in
( true, se, None ) | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 20,
"end_line": 1839,
"start_col": 0,
"start_line": 1832
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
////////////////////////////////////////////////////////////////////////////////
let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_
let rec ln' (e:term) (n:int)
: Tot bool (decreases e)
= match inspect_ln e with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_Var _ -> true
| Tv_BVar m -> bv_index m <= n
| Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n
| Tv_Abs b body ->
ln'_binder b n &&
ln' body (n + 1)
| Tv_Arrow b c ->
ln'_binder b n &&
ln'_comp c (n + 1)
| Tv_Refine b f ->
ln'_binder b n &&
ln' f (n + 1)
| Tv_Uvar _ _ ->
false
| Tv_Let recf attrs b def body ->
ln'_terms attrs n &&
ln'_binder b n &&
(if recf then ln' def (n + 1) else ln' def n) &&
ln' body (n + 1)
| Tv_Match scr ret brs ->
ln' scr n &&
(match ret with
| None -> true
| Some m -> ln'_match_returns m n) &&
ln'_branches brs n
| Tv_AscribedT e t tac b ->
ln' e n &&
ln' t n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
| Tv_AscribedC e c tac b ->
ln' e n &&
ln'_comp c n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
and ln'_comp (c:comp) (i:int)
: Tot bool (decreases c)
= match inspect_comp c with
| C_Total t
| C_GTotal t -> ln' t i
| C_Lemma pre post pats ->
ln' pre i &&
ln' post i &&
ln' pats i
| C_Eff us eff_name res args decrs ->
ln' res i &&
ln'_args args i &&
ln'_terms decrs i
and ln'_args (ts:list argv) (i:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| (t,q)::ts ->
ln' t i &&
ln'_args ts i
and ln'_binder (b:binder) (n:int)
: Tot bool (decreases b)
= let bndr = inspect_binder b in
ln' bndr.sort n &&
ln'_terms bndr.attrs n
and ln'_terms (ts:list term) (n:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| t::ts -> ln' t n && ln'_terms ts n
and ln'_patterns (ps:list (pattern & bool)) (i:int)
: Tot bool
(decreases ps)
= match ps with
| [] -> true
| (p, b)::ps ->
let b0 = ln'_pattern p i in
let n = binder_offset_pattern p in
let b1 = ln'_patterns ps (i + n) in
b0 && b1
and ln'_pattern (p:pattern) (i:int)
: Tot bool
(decreases p)
= match p with
| Pat_Constant _ -> true
| Pat_Cons head univs subpats ->
ln'_patterns subpats i
| Pat_Var bv s -> true
| Pat_Dot_Term topt ->
(match topt with
| None -> true
| Some t -> ln' t i)
and ln'_branch (br:branch) (i:int)
: Tot bool (decreases br)
= let p, t = br in
let b = ln'_pattern p i in
let j = binder_offset_pattern p in
let b' = ln' t (i + j) in
b&&b'
and ln'_branches (brs:list branch) (i:int)
: Tot bool (decreases brs)
= match brs with
| [] -> true
| br::brs ->
ln'_branch br i &&
ln'_branches brs i
and ln'_match_returns (m:match_returns_ascription) (i:int)
: Tot bool (decreases m)
= let b, (ret, as_, eq) = m in
let b = ln'_binder b i in
let ret =
match ret with
| Inl t -> ln' t (i + 1)
| Inr c -> ln'_comp c (i + 1)
in
let as_ =
match as_ with
| None -> true
| Some t -> ln' t (i + 1)
in
b && ret && as_
let ln (t:term) = ln' t (-1)
let ln_comp (c:comp) = ln'_comp c (-1)
//
// term_ctxt is used to define the equiv relation later,
// basically putting two equiv terms in a hole gives equiv terms
//
// The abs, arrow, refine, and let cases don't seem right here,
// since to prove their equiv, we need to extend gamma for their bodies
//
// If this is useful only for app, then may be we should remove it,
// and add app rules to the equiv relation itself
[@@ no_auto_projectors]
noeq
type term_ctxt =
| Ctxt_hole : term_ctxt
| Ctxt_app_head : term_ctxt -> argv -> term_ctxt
| Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt
// | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt
// | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt
// | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt
// | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt
// | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt
// | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt
// | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt
// | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt
// | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt
// | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt
// and bv_ctxt =
// | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt
// and binder_ctxt =
// | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt
// and comp_ctxt =
// | Ctxt_total : term_ctxt -> comp_ctxt
// | Ctxt_gtotal : term_ctxt -> comp_ctxt
let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) =
match e with
| Ctxt_hole -> t
| Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg)
| Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q))
// | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body)
// | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t))
// | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c)
// | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t))
// | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi)
// | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t))
// | Ctxt_let_sort b attrs bv sort def body ->
// pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body)
// | Ctxt_let_def b attrs bv sort def body ->
// pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body)
// | Ctxt_let_body b attrs bv sort def body ->
// pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t))
// | Ctxt_match_scrutinee sc ret brs ->
// pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs)
// and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) =
// let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in
// pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t}
// and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) =
// match c with
// | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t))
// | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t))
noeq
type constant_typing: vconst -> term -> Type0 =
| CT_Unit: constant_typing C_Unit unit_ty
| CT_True: constant_typing C_True bool_ty
| CT_False: constant_typing C_False bool_ty
[@@ no_auto_projectors]
noeq
type univ_eq : universe -> universe -> Type0 =
| UN_Refl :
u:universe ->
univ_eq u u
| UN_MaxCongL :
u:universe ->
u':universe ->
v:universe ->
univ_eq u u' ->
univ_eq (u_max u v) (u_max u' v)
| UN_MaxCongR :
u:universe ->
v:universe ->
v':universe ->
univ_eq v v' ->
univ_eq (u_max u v) (u_max u v')
| UN_MaxComm:
u:universe ->
v:universe ->
univ_eq (u_max u v) (u_max v u)
| UN_MaxLeq:
u:universe ->
v:universe ->
univ_leq u v ->
univ_eq (u_max u v) v
and univ_leq : universe -> universe -> Type0 =
| UNLEQ_Refl:
u:universe ->
univ_leq u u
| UNLEQ_Succ:
u:universe ->
v:universe ->
univ_leq u v ->
univ_leq u (u_succ v)
| UNLEQ_Max:
u:universe ->
v:universe ->
univ_leq u (u_max u v)
let mk_if (scrutinee then_ else_:R.term) : R.term =
pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_);
(Pat_Constant C_False, else_)])
// effect and type
type comp_typ = T.tot_or_ghost & typ
let close_comp_typ' (c:comp_typ) (x:var) (i:nat) =
fst c, subst_term (snd c) [ ND x i ]
let close_comp_typ (c:comp_typ) (x:var) =
close_comp_typ' c x 0
let open_comp_typ' (c:comp_typ) (x:var) (i:nat) =
fst c, subst_term (snd c) (open_with_var x i)
let open_comp_typ (c:comp_typ) (x:var) =
open_comp_typ' c x 0
let freevars_comp_typ (c:comp_typ) = freevars (snd c)
let mk_comp (c:comp_typ) : R.comp =
match fst c with
| T.E_Total -> mk_total (snd c)
| T.E_Ghost -> mk_ghost (snd c)
let mk_arrow_ct ty qual (c:comp_typ) : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c))
type relation =
| R_Eq
| R_Sub
let binding = var & term
let bindings = list binding
let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs
let rec extend_env_l (g:env) (bs:bindings)
: env
= match bs with
| [] -> g
| (x,t)::bs -> extend_env (extend_env_l g bs) x t
//
// TODO: support for erasable attribute
//
let is_non_informative_name (l:name) : bool =
l = R.unit_lid ||
l = R.squash_qn ||
l = ["FStar"; "Ghost"; "erased"]
let is_non_informative_fv (f:fv) : bool =
is_non_informative_name (inspect_fv f)
let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) =
match vs with
| [] -> t
| v::vs ->
subst_term (__close_term_vs (i+1) vs t) [ND v i]
let close_term_vs (vs : list var) (t : term) : term =
__close_term_vs 0 vs t
let close_term_bs (bs : list binding) (t : term) : term =
close_term_vs (List.Tot.map fst bs) t
let bindings_to_refl_bindings (bs : list binding) : list R.binding =
L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs
let refl_bindings_to_bindings (bs : list R.binding) : list binding =
L.map (fun b -> b.uniq, b.sort) bs
[@@ no_auto_projectors]
noeq
type non_informative : env -> term -> Type0 =
| Non_informative_type:
g:env ->
u:universe ->
non_informative g (pack_ln (Tv_Type u))
| Non_informative_fv:
g:env ->
x:fv{is_non_informative_fv x} ->
non_informative g (pack_ln (Tv_FVar x))
| Non_informative_uinst:
g:env ->
x:fv{is_non_informative_fv x} ->
us:list universe ->
non_informative g (pack_ln (Tv_UInst x us))
| Non_informative_app:
g:env ->
t:term ->
arg:argv ->
non_informative g t ->
non_informative g (pack_ln (Tv_App t arg))
| Non_informative_total_arrow:
g:env ->
t0:term ->
q:aqualv ->
t1:term ->
non_informative g t1 ->
non_informative g (mk_arrow_ct t0 q (T.E_Total, t1))
| Non_informative_ghost_arrow:
g:env ->
t0:term ->
q:aqualv ->
t1:term ->
non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1))
| Non_informative_token:
g:env ->
t:typ ->
squash (T.non_informative_token g t) ->
non_informative g t
val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0
val bindings_ok_pat_constant :
g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c))
let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 =
bindings_ok_for_pat g bs (fst br)
let bindings_ok_for_branch_N (g:env) (bss : list (list R.binding)) (brs : list branch) =
zip2prop (bindings_ok_for_branch g) bss brs
let binding_to_namedv (b:R.binding) : Tot namedv =
pack_namedv {
RD.uniq = b.uniq;
RD.sort = seal b.sort;
RD.ppname = b.ppname;
}
(* Elaborates the p pattern into a term, using the bs bindings for the
pattern variables. The resulting term is properly scoped only on an
environment which contains all of bs. See for instance the branch_typing
judg. Returns an option, since this can fail if e.g. there are not
enough bindings, and returns the list of unused binders as well, which
should be empty if the list of binding was indeed ok. *)
let rec elaborate_pat (p : pattern) (bs : list R.binding) : Tot (option (term & list R.binding)) (decreases p) =
match p, bs with
| Pat_Constant c, _ -> Some (pack_ln (Tv_Const c), bs)
| Pat_Cons fv univs subpats, bs ->
let head = pack_ln (Tv_FVar fv) in
fold_left_dec
(Some (head, bs))
subpats
(fun st pi ->
let (p,i) = pi in
match st with | None -> None | Some (head, bs) ->
match elaborate_pat p bs with | None -> None | Some (t, bs') -> Some (pack_ln (Tv_App head (t, (if i then Q_Implicit else Q_Explicit))), bs'))
| Pat_Var _ _, b::bs ->
Some (pack_ln (Tv_Var (binding_to_namedv b)), bs)
| Pat_Dot_Term (Some t), _ -> Some (t, bs)
| Pat_Dot_Term None, _ -> None
| _ -> None
[@@ no_auto_projectors]
noeq
type typing : env -> term -> comp_typ -> Type0 =
| T_Token :
g:env ->
e:term ->
c:comp_typ ->
squash (T.typing_token g e c) ->
typing g e c
| T_Var :
g:env ->
x:namedv { Some? (lookup_bvar g (namedv_uniq x)) } ->
typing g (pack_ln (Tv_Var x)) (T.E_Total, Some?.v (lookup_bvar g (namedv_uniq x)))
| T_FVar :
g:env ->
x:fv { Some? (lookup_fvar g x) } ->
typing g (pack_ln (Tv_FVar x)) (T.E_Total, Some?.v (lookup_fvar g x))
| T_UInst :
g:env ->
x:fv ->
us:list universe { Some? (lookup_fvar_uinst g x us) } ->
typing g (pack_ln (Tv_UInst x us)) (T.E_Total, Some?.v (lookup_fvar_uinst g x us))
| T_Const:
g:env ->
v:vconst ->
t:term ->
constant_typing v t ->
typing g (constant_as_term v) (T.E_Total, t)
| T_Abs :
g:env ->
x:var { None? (lookup_bvar g x) } ->
ty:term ->
body:term { ~(x `Set.mem` freevars body) } ->
body_c:comp_typ ->
u:universe ->
pp_name:pp_name_t ->
q:aqualv ->
ty_eff:T.tot_or_ghost ->
typing g ty (ty_eff, tm_type u) ->
typing (extend_env g x ty) (open_term body x) body_c ->
typing g (pack_ln (Tv_Abs (mk_binder pp_name ty q) body))
(T.E_Total,
pack_ln (Tv_Arrow (mk_binder pp_name ty q)
(mk_comp (close_comp_typ body_c x))))
| T_App :
g:env ->
e1:term ->
e2:term ->
x:binder ->
t:term ->
eff:T.tot_or_ghost ->
typing g e1 (eff, pack_ln (Tv_Arrow x (mk_comp (eff, t)))) ->
typing g e2 (eff, binder_sort x) ->
typing g (pack_ln (Tv_App e1 (e2, binder_qual x)))
(eff, open_with t e2)
| T_Let:
g:env ->
x:var { None? (lookup_bvar g x) } ->
e1:term ->
t1:typ ->
e2:term ->
t2:typ ->
eff:T.tot_or_ghost ->
pp_name:pp_name_t ->
typing g e1 (eff, t1) ->
typing (extend_env g x t1) (open_term e2 x) (eff, t2) ->
typing g (mk_let pp_name e1 t1 e2) (eff, open_with (close_term t2 x) e1)
| T_Arrow:
g:env ->
x:var { None? (lookup_bvar g x) } ->
t1:term ->
t2:term { ~(x `Set.mem` freevars t2) } ->
u1:universe ->
u2:universe ->
pp_name:pp_name_t ->
q:aqualv ->
eff:T.tot_or_ghost ->
t1_eff:T.tot_or_ghost ->
t2_eff:T.tot_or_ghost ->
typing g t1 (t1_eff, tm_type u1) ->
typing (extend_env g x t1) (open_term t2 x) (t2_eff, tm_type u2) ->
typing g (pack_ln (Tv_Arrow (mk_binder pp_name t1 q) (mk_comp (eff, t2))))
(T.E_Total, tm_type (u_max u1 u2))
| T_Refine:
g:env ->
x:var { None? (lookup_bvar g x) } ->
t:term ->
e:term { ~(x `Set.mem` freevars e) } ->
u1:universe ->
u2:universe ->
t_eff:T.tot_or_ghost ->
e_eff:T.tot_or_ghost ->
typing g t (t_eff, tm_type u1) ->
typing (extend_env g x t) (open_term e x) (e_eff, tm_type u2) ->
typing g (pack_ln (Tv_Refine (mk_simple_binder pp_name_default t) e)) (T.E_Total, tm_type u1)
| T_PropIrrelevance:
g:env ->
e:term ->
t:term ->
e_eff:T.tot_or_ghost ->
t_eff:T.tot_or_ghost ->
typing g e (e_eff, t) ->
typing g t (t_eff, tm_prop) ->
typing g (`()) (T.E_Total, t)
| T_Sub:
g:env ->
e:term ->
c:comp_typ ->
c':comp_typ ->
typing g e c ->
sub_comp g c c' ->
typing g e c'
| T_If:
g:env ->
scrutinee:term ->
then_:term ->
else_:term ->
ty:term ->
u_ty:universe ->
hyp:var { None? (lookup_bvar g hyp) /\ ~(hyp `Set.mem` (freevars then_ `Set.union` freevars else_)) } ->
eff:T.tot_or_ghost ->
ty_eff:T.tot_or_ghost ->
typing g scrutinee (eff, bool_ty) ->
typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee true_bool)) then_ (eff, ty) ->
typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee false_bool)) else_ (eff, ty) ->
typing g ty (ty_eff, tm_type u_ty) -> //typedness of ty cannot rely on hyp
typing g (mk_if scrutinee then_ else_) (eff, ty)
| T_Match:
g:env ->
sc_u : universe ->
sc_ty : typ ->
sc : term ->
ty_eff:T.tot_or_ghost ->
typing g sc_ty (ty_eff, tm_type sc_u) ->
eff:T.tot_or_ghost ->
typing g sc (eff, sc_ty) ->
branches:list branch ->
ty:comp_typ ->
bnds:list (list R.binding) ->
complet : match_is_complete g sc sc_ty (List.Tot.map fst branches) bnds -> // complete patterns
branches_typing g sc_u sc_ty sc ty branches bnds -> // each branch has proper type
typing g (pack_ln (Tv_Match sc None branches)) ty
and related : env -> term -> relation -> term -> Type0 =
| Rel_refl:
g:env ->
t:term ->
rel:relation ->
related g t rel t
| Rel_sym:
g:env ->
t0:term ->
t1:term ->
related g t0 R_Eq t1 ->
related g t1 R_Eq t0
| Rel_trans:
g:env ->
t0:term ->
t1:term ->
t2:term ->
rel:relation ->
related g t0 rel t1 ->
related g t1 rel t2 ->
related g t0 rel t2
| Rel_univ:
g:env ->
u:universe ->
v:universe ->
univ_eq u v ->
related g (tm_type u) R_Eq (tm_type v)
| Rel_beta:
g:env ->
t:typ ->
q:aqualv ->
e:term { ln' e 0 } ->
arg:term { ln arg } ->
related g (R.pack_ln (R.Tv_App (mk_abs t q e) (arg, q)))
R_Eq
(subst_term e [ DT 0 arg ])
| Rel_eq_token:
g:env ->
t0:term ->
t1:term ->
squash (T.equiv_token g t0 t1) ->
related g t0 R_Eq t1
| Rel_subtyping_token:
g:env ->
t0:term ->
t1:term ->
squash (T.subtyping_token g t0 t1) ->
related g t0 R_Sub t1
| Rel_equiv:
g:env ->
t0:term ->
t1:term ->
rel:relation ->
related g t0 R_Eq t1 ->
related g t0 rel t1
| Rel_arrow:
g:env ->
t1:term ->
t2:term ->
q:aqualv ->
c1:comp_typ ->
c2:comp_typ ->
rel:relation ->
x:var{
None? (lookup_bvar g x) /\
~ (x `Set.mem` (freevars_comp_typ c1 `Set.union` freevars_comp_typ c2))
} ->
related g t2 rel t1 ->
related_comp (extend_env g x t2)
(open_comp_typ c1 x)
rel
(open_comp_typ c2 x) ->
related g (mk_arrow_ct t1 q c1) rel (mk_arrow_ct t2 q c2)
| Rel_abs:
g:env ->
t1:term ->
t2:term ->
q:aqualv ->
e1:term ->
e2:term ->
x:var{
None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars e1 `Set.union` freevars e2))
} ->
related g t1 R_Eq t2 ->
related (extend_env g x t1)
(subst_term e1 (open_with_var x 0))
R_Eq
(subst_term e2 (open_with_var x 0)) ->
related g (mk_abs t1 q e1) R_Eq (mk_abs t2 q e2)
| Rel_ctxt:
g:env ->
t0:term ->
t1:term ->
ctxt:term_ctxt ->
related g t0 R_Eq t1 ->
related g (apply_term_ctxt ctxt t0) R_Eq (apply_term_ctxt ctxt t1)
and related_comp : env -> comp_typ -> relation -> comp_typ -> Type0 =
| Relc_typ:
g:env ->
t0:term ->
t1:term ->
eff:T.tot_or_ghost ->
rel:relation ->
related g t0 rel t1 ->
related_comp g (eff, t0) rel (eff, t1)
| Relc_total_ghost:
g:env ->
t:term ->
related_comp g (T.E_Total, t) R_Sub (T.E_Ghost, t)
| Relc_ghost_total:
g:env ->
t:term ->
non_informative g t ->
related_comp g (T.E_Ghost, t) R_Sub (T.E_Total, t)
and branches_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ)
: (brs:list branch) -> (bnds : list (list R.binding)) -> Type0
=
(* This judgement only enforces that branch_typing holds for every
element of brs and its respective bnds (which must have the same
length). *)
| BT_Nil :
branches_typing g sc_u sc_ty sc rty [] []
| BT_S :
br : branch ->
bnds : list R.binding ->
pf : branch_typing g sc_u sc_ty sc rty br bnds ->
rest_br : list branch ->
rest_bnds : list (list R.binding) ->
rest : branches_typing g sc_u sc_ty sc rty rest_br rest_bnds ->
branches_typing g sc_u sc_ty sc rty (br :: rest_br) (bnds :: rest_bnds)
and branch_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ)
: (br : branch) -> (bnds : list R.binding) -> Type0
=
| BO :
pat : pattern ->
bnds : list R.binding{bindings_ok_for_pat g bnds pat} ->
hyp_var:var{None? (lookup_bvar (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var)} ->
body:term ->
_ : squash (Some? (elaborate_pat pat bnds)) ->
typing (extend_env
(extend_env_l g (refl_bindings_to_bindings bnds))
hyp_var (eq2 sc_u sc_ty sc (fst (Some?.v (elaborate_pat pat bnds))))
)
body rty ->
branch_typing g sc_u sc_ty sc rty
(pat, close_term_bs (refl_bindings_to_bindings bnds) body)
bnds
and match_is_complete : env -> term -> typ -> list pattern -> list (list R.binding) -> Type0 =
| MC_Tok :
env:_ ->
sc:_ ->
ty:_ ->
pats:_ ->
bnds:_ ->
squash (T.match_complete_token env sc ty pats bnds) -> match_is_complete env sc ty pats bnds
and sub_typing (g:env) (t1 t2:term) = related g t1 R_Sub t2
and sub_comp (g:env) (c1 c2:comp_typ) = related_comp g c1 R_Sub c2
and equiv (g:env) (t1 t2:term) = related g t1 R_Eq t2
type tot_typing (g:env) (e:term) (t:term) = typing g e (T.E_Total, t)
type ghost_typing (g:env) (e:term) (t:term) = typing g e (T.E_Ghost, t)
val subtyping_token_renaming (g:env)
(bs0:bindings)
(bs1:bindings)
(x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) })
(y:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) y) })
(t:term)
(t0 t1:term)
(d:T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1)
: T.subtyping_token (extend_env_l g (rename_bindings bs1 x y@(y,t)::bs0))
(rename t0 x y)
(rename t1 x y)
val subtyping_token_weakening (g:env)
(bs0:bindings)
(bs1:bindings)
(x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) })
(t:term)
(t0 t1:term)
(d:T.subtyping_token (extend_env_l g (bs1@bs0)) t0 t1)
: T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1
let simplify_umax (#g:R.env) (#t:R.term) (#u:R.universe)
(d:typing g t (T.E_Total, tm_type (u_max u u)))
: typing g t (T.E_Total, tm_type u)
= let ue
: univ_eq (u_max u u) u
= UN_MaxLeq u u (UNLEQ_Refl u)
in
let du : related g (tm_type (u_max u u)) R_Eq (tm_type u)
= Rel_univ g (u_max u u) u ue in
let du : related g (tm_type (u_max u u)) R_Sub (tm_type u)
= Rel_equiv _ _ _ _ du in
T_Sub _ _ _ _ d (Relc_typ _ _ _ T.E_Total _ du)
val well_typed_terms_are_ln (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c)
: Lemma (ensures ln e /\ ln (snd c))
val type_correctness (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c)
: GTot (u:R.universe & typing g (snd c) (T.E_Total, tm_type u))
val binder_offset_pattern_invariant (p:pattern) (ss:subst)
: Lemma (binder_offset_pattern p == binder_offset_pattern (subst_pattern p ss))
val binder_offset_patterns_invariant (p:list (pattern & bool)) (ss:subst)
: Lemma (binder_offset_patterns p == binder_offset_patterns (subst_patterns p ss))
val open_close_inverse' (i:nat) (t:term { ln' t (i - 1) }) (x:var)
: Lemma
(ensures subst_term
(subst_term t [ ND x i ])
(open_with_var x i)
== t)
val open_close_inverse'_binder (i:nat) (b:binder { ln'_binder b (i - 1) }) (x:var)
: Lemma (ensures subst_binder
(subst_binder b [ ND x i ])
(open_with_var x i)
== b)
val open_close_inverse'_terms (i:nat) (ts:list term { ln'_terms ts (i - 1) }) (x:var)
: Lemma (ensures subst_terms
(subst_terms ts [ ND x i ])
(open_with_var x i)
== ts)
val open_close_inverse'_comp (i:nat) (c:comp { ln'_comp c (i - 1) }) (x:var)
: Lemma
(ensures subst_comp
(subst_comp c [ ND x i ])
(open_with_var x i)
== c)
val open_close_inverse'_args (i:nat)
(ts:list argv { ln'_args ts (i - 1) })
(x:var)
: Lemma
(ensures subst_args
(subst_args ts [ ND x i ])
(open_with_var x i)
== ts)
val open_close_inverse'_patterns (i:nat)
(ps:list (pattern & bool) { ln'_patterns ps (i - 1) })
(x:var)
: Lemma
(ensures subst_patterns
(subst_patterns ps [ ND x i ])
(open_with_var x i)
== ps)
val open_close_inverse'_pattern (i:nat) (p:pattern{ln'_pattern p (i - 1)}) (x:var)
: Lemma
(ensures subst_pattern
(subst_pattern p [ ND x i ])
(open_with_var x i)
== p)
val open_close_inverse'_branch (i:nat) (br:branch{ln'_branch br (i - 1)}) (x:var)
: Lemma
(ensures subst_branch
(subst_branch br [ ND x i ])
(open_with_var x i)
== br)
val open_close_inverse'_branches (i:nat)
(brs:list branch { ln'_branches brs (i - 1) })
(x:var)
: Lemma
(ensures subst_branches
(subst_branches brs [ ND x i ])
(open_with_var x i)
== brs)
val open_close_inverse'_match_returns (i:nat)
(m:match_returns_ascription { ln'_match_returns m (i - 1) })
(x:var)
: Lemma
(ensures subst_match_returns
(subst_match_returns m [ ND x i ])
(open_with_var x i)
== m)
val open_close_inverse (e:R.term { ln e }) (x:var)
: Lemma (open_term (close_term e x) x == e)
val close_open_inverse' (i:nat)
(t:term)
(x:var { ~(x `Set.mem` freevars t) })
: Lemma
(ensures subst_term
(subst_term t (open_with_var x i))
[ ND x i ]
== t)
val close_open_inverse'_comp (i:nat)
(c:comp)
(x:var{ ~(x `Set.mem` freevars_comp c) })
: Lemma
(ensures subst_comp
(subst_comp c (open_with_var x i))
[ ND x i ]
== c)
val close_open_inverse'_args (i:nat) (args:list argv) (x:var{ ~(x `Set.mem` freevars_args args) })
: Lemma
(ensures subst_args
(subst_args args (open_with_var x i))
[ ND x i]
== args)
val close_open_inverse'_binder (i:nat) (b:binder) (x:var{ ~(x `Set.mem` freevars_binder b) })
: Lemma
(ensures subst_binder
(subst_binder b (open_with_var x i))
[ ND x i ]
== b)
val close_open_inverse'_terms (i:nat) (ts:list term) (x:var{ ~(x `Set.mem` freevars_terms ts) })
: Lemma
(ensures subst_terms
(subst_terms ts (open_with_var x i))
[ ND x i ]
== ts)
val close_open_inverse'_branches (i:nat) (brs:list branch)
(x:var{ ~(x `Set.mem` freevars_branches brs) })
: Lemma
(ensures subst_branches
(subst_branches brs (open_with_var x i))
[ ND x i ]
== brs)
val close_open_inverse'_branch (i:nat)
(br:branch)
(x:var{ ~(x `Set.mem` freevars_branch br) })
: Lemma
(ensures subst_branch
(subst_branch br (open_with_var x i))
[ ND x i ]
== br)
val close_open_inverse'_pattern (i:nat)
(p:pattern)
(x:var{ ~(x `Set.mem` freevars_pattern p) })
: Lemma
(ensures subst_pattern
(subst_pattern p (open_with_var x i))
[ ND x i ]
== p)
val close_open_inverse'_patterns (i:nat)
(ps:list (pattern & bool))
(x:var {~ (x `Set.mem` freevars_patterns ps) })
: Lemma
(ensures subst_patterns
(subst_patterns ps (open_with_var x i))
[ ND x i ]
== ps)
val close_open_inverse'_match_returns (i:nat) (m:match_returns_ascription)
(x:var{ ~(x `Set.mem` freevars_match_returns m) })
: Lemma
(ensures subst_match_returns
(subst_match_returns m (open_with_var x i))
[ ND x i ]
== m)
val close_open_inverse (e:R.term) (x:var {~ (x `Set.mem` freevars e) })
: Lemma (close_term (open_term e x) x == e)
//
// fst has corresponding lemmas for other syntax classes
//
val close_with_not_free_var (t:R.term) (x:var) (i:nat)
: Lemma
(requires ~ (Set.mem x (freevars t)))
(ensures subst_term t [ ND x i ] == t)
// this also requires x to be not in freevars e1 `Set.union` freevars e2
val equiv_arrow (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv)
(x:var { None? (lookup_bvar g x) })
(eq:equiv (extend_env g x ty)
(subst_term e1 (open_with_var x 0))
(subst_term e2 (open_with_var x 0)))
: equiv g (mk_arrow ty q e1)
(mk_arrow ty q e2)
// the proof for this requires e1 and e2 to be ln
val equiv_abs_close (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv)
(x:var{None? (lookup_bvar g x)})
(eq:equiv (extend_env g x ty) e1 e2)
: equiv g (mk_abs ty q (subst_term e1 [ ND x 0 ]))
(mk_abs ty q (subst_term e2 [ ND x 0 ]))
val open_with_gt_ln (e:term) (i:nat) (t:term) (j:nat)
: Lemma
(requires ln' e i /\ i < j)
(ensures subst_term e [ DT j t ] == e)
[SMTPat (ln' e i); SMTPat (subst_term e [ DT j t ])]
//
// Type of the top-level tactic that would splice-in the definitions
//
let fstar_env_fvs (g:R.env) =
lookup_fvar g unit_fv == Some (tm_type u_zero) /\
lookup_fvar g bool_fv == Some (tm_type u_zero) /\
lookup_fvar g b2t_fv == Some b2t_ty
type fstar_env = g:R.env{fstar_env_fvs g}
type fstar_top_env = g:fstar_env {
forall x. None? (lookup_bvar g x )
}
//
// This doesn't allow for universe polymorphic definitions
//
// May be we can change it to:
//
// g:fstar_top_env -> T.tac ((us, e, t):(univ_names & term & typ){typing (push g us) e t})
//
noeq
type sigelt_typing : env -> sigelt -> Type0 =
| ST_Let :
g : env ->
fv : R.fv ->
ty : R.typ ->
tm : R.term ->
squash (typing g tm (T.E_Total, ty)) ->
sigelt_typing g (pack_sigelt (Sg_Let false [pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = tm })]))
| ST_Let_Opaque :
g : env ->
fv : R.fv ->
ty : R.typ ->
(* no tm: only a proof of existence *)
squash (exists (tm:R.term). typing g tm (T.E_Total, ty)) ->
sigelt_typing g (pack_sigelt (Sg_Let false [pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = (`_) })]))
(**
* The type of the top-level tactic that would splice-in the definitions.
* It returns a list of well typed definitions, via the judgment above.
*
* Each definition can have a 'blob' attached with a given name.
* The blob can be used later, e.g., during extraction, and passed back to the
* extension to perform additional processing.
*)
(*
* It returns either:
* - Some tm, blob, typ, with a proof that `typing g tm typ`
* - None, blob, typ), with a proof that `exists tm. typing g tm typ`
* The blob itself is optional and can store some additional metadata that
* constructed by the tactic. If present, it will be stored in the
* sigmeta_extension_data field of the enclosing sigelt.
*
*)
let blob = string & R.term
(* If checked is true, this sigelt is properly typed for the environment. If not,
we don't know and let F* re-typecheck the sigelt. *)
let sigelt_for (g:env) =
tup:(bool & sigelt & option blob)
{
let (checked, se, _) = tup in
checked ==> sigelt_typing g se
}
let dsl_tac_result_t (g:env) = list (sigelt_for g)
type dsl_tac_t = g:fstar_top_env -> T.Tac (dsl_tac_result_t g)
val if_complete_match (g:env) (t:term)
: T.match_complete_token g t bool_ty [
Pat_Constant C_True;
Pat_Constant C_False;
] [[]; []]
// Derived rule for if
val mkif
(g:fstar_env)
(scrutinee:term)
(then_:term)
(else_:term)
(ty:term)
(u_ty:universe)
(hyp:var { None? (lookup_bvar g hyp) /\ ~(hyp `Set.mem` (freevars then_ `Set.union` freevars else_)) })
(eff:T.tot_or_ghost)
(ty_eff:T.tot_or_ghost)
(ts : typing g scrutinee (eff, bool_ty))
(tt : typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee true_bool)) then_ (eff, ty))
(te : typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee false_bool)) else_ (eff, ty))
(tr : typing g ty (ty_eff, tm_type u_ty))
: typing g (mk_if scrutinee then_ else_) (eff, ty) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
g: FStar.Stubs.Reflection.Types.env ->
nm: Prims.string ->
tm: FStar.Stubs.Reflection.Types.term ->
ty:
FStar.Stubs.Reflection.Types.typ
{FStar.Reflection.Typing.typing g tm (FStar.Stubs.TypeChecker.Core.E_Total, ty)}
-> FStar.Tactics.Effect.Tac (FStar.Reflection.Typing.sigelt_for g) | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.env",
"Prims.string",
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Reflection.Typing.typing",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Stubs.TypeChecker.Core.tot_or_ghost",
"FStar.Stubs.TypeChecker.Core.E_Total",
"FStar.Pervasives.Native.Mktuple3",
"Prims.bool",
"FStar.Stubs.Reflection.Types.sigelt",
"FStar.Pervasives.Native.option",
"FStar.Reflection.Typing.blob",
"FStar.Pervasives.Native.None",
"FStar.Reflection.Typing.sigelt_typing",
"FStar.Reflection.Typing.ST_Let",
"FStar.Stubs.Reflection.V2.Builtins.pack_sigelt",
"FStar.Stubs.Reflection.V2.Data.Sg_Let",
"Prims.Cons",
"FStar.Stubs.Reflection.Types.letbinding",
"Prims.Nil",
"FStar.Stubs.Reflection.V2.Builtins.pack_lb",
"FStar.Stubs.Reflection.V2.Data.Mklb_view",
"FStar.Stubs.Reflection.Types.univ_name",
"FStar.Reflection.Typing.sigelt_for",
"FStar.Stubs.Reflection.Types.fv",
"FStar.Stubs.Reflection.V2.Builtins.pack_fv",
"FStar.Stubs.Reflection.Types.name",
"FStar.List.Tot.Base.op_At",
"Prims.list",
"FStar.Tactics.V2.Derived.cur_module"
] | [] | false | true | false | false | false | let mk_checked_let (g: R.env) (nm: string) (tm: R.term) (ty: R.typ{typing g tm (T.E_Total, ty)})
: T.Tac (sigelt_for g) =
| let fv = pack_fv (T.cur_module () @ [nm]) in
let lb = R.pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = tm }) in
let se = R.pack_sigelt (R.Sg_Let false [lb]) in
let pf:sigelt_typing g se = ST_Let g fv ty tm () in
(true, se, None) | false |
Hacl.Spec.K256.Field52.Lemmas2.fst | Hacl.Spec.K256.Field52.Lemmas2.plus_x_mul_pow2_256_minus_prime_lemma | val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f m /\ v x < pow2 16))
(ensures
(let r = plus_x_mul_pow2_256_minus_prime x f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) | val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f m /\ v x < pow2 16))
(ensures
(let r = plus_x_mul_pow2_256_minus_prime x f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) | let plus_x_mul_pow2_256_minus_prime_lemma m x f =
let (t0,t1,t2,t3,t4) = f in
let (m0,m1,m2,m3,m4) = m in
let t0' = t0 +. x *. u64 0x1000003D1 in
assert (v x < pow2 16);
Math.Lemmas.lemma_mult_lt_right 0x1000003D1 (v x) (pow2 16);
assert_norm (pow2 16 * 0x1000003D1 < max52);
assert (v t0 + v x * 0x1000003D1 < (m0 + 1) * max52);
Math.Lemmas.lemma_mult_le_right max52 (m0 + 1) 4096;
assert_norm (4096 * max52 < pow2 64);
Math.Lemmas.small_mod (v t0 + v x * 0x1000003D1) (pow2 64);
assert (v t0' = v t0 + v x * 0x1000003D1);
assert (felem_fits1 t0' (m0 + 1));
let r = carry_round5 (t0',t1,t2,t3,t4) in
carry_round_after_last_carry_mod_prime5_lemma (m0+1,m1,m2,m3,m4) (t0',t1,t2,t3,t4);
assert (as_nat5 r == as_nat5 (t0',t1,t2,t3,t4));
LD.lemma_pow2_256_minus_prime ();
assert (as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime)) | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 62,
"end_line": 134,
"start_col": 0,
"start_line": 115
} | module Hacl.Spec.K256.Field52.Lemmas2
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
include Hacl.Spec.K256.Field52.Definitions
include Hacl.Spec.K256.Field52
module ML = Hacl.Spec.K256.MathLemmas
module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas
#set-options "--z3rlimit 100 --fuel 0 --ifuel 0"
/// Normalize-weak
val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires felem_fits5 f m)
(ensures
(let x, r = minus_x_mul_pow2_256 f in
let (r0,r1,r2,r3,r4) = r in
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
v x < pow2 16 /\ v x = v t4 / pow2 48 /\
v r4 = v t4 % pow2 48 /\
as_nat5 r == as_nat5 f - v x * pow2 256 /\
felem_fits5 r (m0,m1,m2,m3,1)))
let minus_x_mul_pow2_256_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
let x = t4 >>. 48ul in let t4' = t4 &. mask48 in
LD.lemma_mask48 t4;
let r = (t0,t1,t2,t3,t4') in
calc (==) { // as_nat5 f
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208;
(==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208;
(==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208;
(==) { }
(v x * pow2 48) * pow208 + as_nat5 r;
(==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 }
v x * pow2 256 + as_nat5 r;
};
Math.Lemmas.lemma_div_lt (v t4) 64 48
val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f (m0,m1,m2,m3,1)))
(ensures (let r = carry_round5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let carry_round_after_last_carry_mod_prime5_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in //(m0,m1,m2,m3,1)
let t1' = t1 +. (t0 >>. 52ul) in let t0' = t0 &. mask52 in
LD.lemma_carry52 m1 m0 t1 t0;
assert (felem_fits1 t1' (m1 + 1));
assert (felem_fits1 t0' 1);
assert (v t0' = v t0 % pow2 52);
assert (v t1' = v t1 + v t0 / pow2 52);
let t2' = t2 +. (t1' >>. 52ul) in let t1'' = t1' &. mask52 in
LD.lemma_carry52 m2 (m1 + 1) t2 t1';
assert (felem_fits1 t2' (m2 + 1));
assert (felem_fits1 t1'' 1);
assert (v t1'' = v t1' % pow2 52);
assert (v t2' = v t2 + v t1' / pow2 52);
let t3' = t3 +. (t2' >>. 52ul) in let t2'' = t2' &. mask52 in
LD.lemma_carry52 m3 (m2 + 1) t3 t2';
assert (felem_fits1 t3' (m3 + 1));
assert (felem_fits1 t2'' 1);
assert (v t2'' = v t2' % pow2 52);
assert (v t3' = v t3 + v t2' / pow2 52);
let t4' = t4 +. (t3' >>. 52ul) in let t3'' = t3' &. mask52 in
LD.lemma_carry_last52 m4 (m3 + 1) t4 t3';
assert (felem_fits_last1 t4' (m4 + 1));
assert (felem_fits1 t3'' 1);
assert (v t3'' = v t3' % pow2 52);
assert (v t4' = v t4 + v t3' / pow2 52);
LD.carry_last_small_mod_lemma t4 t3';
ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4);
let r = carry_round5 f in
assert ((t0',t1'',t2'',t3'',t4') == r);
assert (as_nat5 r == as_nat5 f)
val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f m /\ v x < pow2 16))
(ensures
(let r = plus_x_mul_pow2_256_minus_prime x f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.K256.MathLemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.fst.checked",
"Hacl.Spec.K256.Field52.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas",
"short_module": "LD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.MathLemmas",
"short_module": "ML"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
m: Hacl.Spec.K256.Field52.Definitions.scale64_5 ->
x: Lib.IntTypes.uint64 ->
f: Hacl.Spec.K256.Field52.Definitions.felem5
-> FStar.Pervasives.Lemma
(requires
(let _ = m in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ m0 m1 m2 m3 m4 = _ in
let _ = f in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ _ = _ in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
Hacl.Spec.K256.Field52.Definitions.felem_fits5 f m /\ Lib.IntTypes.v x < Prims.pow2 16
)
<:
Type0)
<:
Type0))
(ensures
(let r = Hacl.Spec.K256.Field52.plus_x_mul_pow2_256_minus_prime x f in
let _ = r in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ r4 = _ in
let _ = f in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ t4 = _ in
Hacl.Spec.K256.Field52.Definitions.as_nat5 r ==
Hacl.Spec.K256.Field52.Definitions.as_nat5 f +
Lib.IntTypes.v x * (Prims.pow2 256 - Spec.K256.PointOps.prime) /\
Hacl.Spec.K256.Field52.Definitions.felem_fits5 r (1, 1, 1, 1, 2) /\
Lib.IntTypes.v r4 < Lib.IntTypes.v t4 + Prims.pow2 12 /\
(Lib.IntTypes.v r4 >= Prims.pow2 48 ==>
Lib.IntTypes.v r4 % Prims.pow2 48 < Prims.pow2 12))
<:
Type0)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.K256.Field52.Definitions.scale64_5",
"Lib.IntTypes.uint64",
"Hacl.Spec.K256.Field52.Definitions.felem5",
"Prims.nat",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Hacl.Spec.K256.Field52.Definitions.as_nat5",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.op_Subtraction",
"Prims.pow2",
"Spec.K256.PointOps.prime",
"Prims.unit",
"Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_pow2_256_minus_prime",
"FStar.Pervasives.Native.Mktuple5",
"Hacl.Spec.K256.Field52.Lemmas2.carry_round_after_last_carry_mod_prime5_lemma",
"Hacl.Spec.K256.Field52.carry_round5",
"Prims.b2t",
"Hacl.Spec.K256.Field52.Definitions.felem_fits1",
"Prims.op_Equality",
"FStar.Math.Lemmas.small_mod",
"FStar.Pervasives.assert_norm",
"Prims.op_LessThan",
"Hacl.Spec.K256.Field52.Definitions.max52",
"FStar.Math.Lemmas.lemma_mult_le_right",
"FStar.Math.Lemmas.lemma_mult_lt_right",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Plus_Dot",
"Lib.IntTypes.op_Star_Dot",
"Lib.IntTypes.u64"
] | [] | false | false | true | false | false | let plus_x_mul_pow2_256_minus_prime_lemma m x f =
| let t0, t1, t2, t3, t4 = f in
let m0, m1, m2, m3, m4 = m in
let t0' = t0 +. x *. u64 0x1000003D1 in
assert (v x < pow2 16);
Math.Lemmas.lemma_mult_lt_right 0x1000003D1 (v x) (pow2 16);
assert_norm (pow2 16 * 0x1000003D1 < max52);
assert (v t0 + v x * 0x1000003D1 < (m0 + 1) * max52);
Math.Lemmas.lemma_mult_le_right max52 (m0 + 1) 4096;
assert_norm (4096 * max52 < pow2 64);
Math.Lemmas.small_mod (v t0 + v x * 0x1000003D1) (pow2 64);
assert (v t0' = v t0 + v x * 0x1000003D1);
assert (felem_fits1 t0' (m0 + 1));
let r = carry_round5 (t0', t1, t2, t3, t4) in
carry_round_after_last_carry_mod_prime5_lemma (m0 + 1, m1, m2, m3, m4) (t0', t1, t2, t3, t4);
assert (as_nat5 r == as_nat5 (t0', t1, t2, t3, t4));
LD.lemma_pow2_256_minus_prime ();
assert (as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime)) | false |
Hacl.Spec.K256.Field52.Lemmas2.fst | Hacl.Spec.K256.Field52.Lemmas2.carry_round_after_last_carry_mod_prime5_lemma | val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f (m0,m1,m2,m3,1)))
(ensures (let r = carry_round5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) | val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f (m0,m1,m2,m3,1)))
(ensures (let r = carry_round5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) | let carry_round_after_last_carry_mod_prime5_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in //(m0,m1,m2,m3,1)
let t1' = t1 +. (t0 >>. 52ul) in let t0' = t0 &. mask52 in
LD.lemma_carry52 m1 m0 t1 t0;
assert (felem_fits1 t1' (m1 + 1));
assert (felem_fits1 t0' 1);
assert (v t0' = v t0 % pow2 52);
assert (v t1' = v t1 + v t0 / pow2 52);
let t2' = t2 +. (t1' >>. 52ul) in let t1'' = t1' &. mask52 in
LD.lemma_carry52 m2 (m1 + 1) t2 t1';
assert (felem_fits1 t2' (m2 + 1));
assert (felem_fits1 t1'' 1);
assert (v t1'' = v t1' % pow2 52);
assert (v t2' = v t2 + v t1' / pow2 52);
let t3' = t3 +. (t2' >>. 52ul) in let t2'' = t2' &. mask52 in
LD.lemma_carry52 m3 (m2 + 1) t3 t2';
assert (felem_fits1 t3' (m3 + 1));
assert (felem_fits1 t2'' 1);
assert (v t2'' = v t2' % pow2 52);
assert (v t3' = v t3 + v t2' / pow2 52);
let t4' = t4 +. (t3' >>. 52ul) in let t3'' = t3' &. mask52 in
LD.lemma_carry_last52 m4 (m3 + 1) t4 t3';
assert (felem_fits_last1 t4' (m4 + 1));
assert (felem_fits1 t3'' 1);
assert (v t3'' = v t3' % pow2 52);
assert (v t4' = v t4 + v t3' / pow2 52);
LD.carry_last_small_mod_lemma t4 t3';
ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4);
let r = carry_round5 f in
assert ((t0',t1'',t2'',t3'',t4') == r);
assert (as_nat5 r == as_nat5 f) | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 33,
"end_line": 99,
"start_col": 0,
"start_line": 63
} | module Hacl.Spec.K256.Field52.Lemmas2
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
include Hacl.Spec.K256.Field52.Definitions
include Hacl.Spec.K256.Field52
module ML = Hacl.Spec.K256.MathLemmas
module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas
#set-options "--z3rlimit 100 --fuel 0 --ifuel 0"
/// Normalize-weak
val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires felem_fits5 f m)
(ensures
(let x, r = minus_x_mul_pow2_256 f in
let (r0,r1,r2,r3,r4) = r in
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
v x < pow2 16 /\ v x = v t4 / pow2 48 /\
v r4 = v t4 % pow2 48 /\
as_nat5 r == as_nat5 f - v x * pow2 256 /\
felem_fits5 r (m0,m1,m2,m3,1)))
let minus_x_mul_pow2_256_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
let x = t4 >>. 48ul in let t4' = t4 &. mask48 in
LD.lemma_mask48 t4;
let r = (t0,t1,t2,t3,t4') in
calc (==) { // as_nat5 f
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208;
(==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208;
(==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208;
(==) { }
(v x * pow2 48) * pow208 + as_nat5 r;
(==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 }
v x * pow2 256 + as_nat5 r;
};
Math.Lemmas.lemma_div_lt (v t4) 64 48
val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f (m0,m1,m2,m3,1)))
(ensures (let r = carry_round5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.K256.MathLemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.fst.checked",
"Hacl.Spec.K256.Field52.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas",
"short_module": "LD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.MathLemmas",
"short_module": "ML"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: Hacl.Spec.K256.Field52.Definitions.scale64_5 -> f: Hacl.Spec.K256.Field52.Definitions.felem5
-> FStar.Pervasives.Lemma
(requires
(let _ = m in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ m0 m1 m2 m3 m4 = _ in
m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
Hacl.Spec.K256.Field52.Definitions.felem_fits5 f (m0, m1, m2, m3, 1))
<:
Type0))
(ensures
(let r = Hacl.Spec.K256.Field52.carry_round5 f in
let _ = r in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ r4 = _ in
let _ = f in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ t4 = _ in
Hacl.Spec.K256.Field52.Definitions.as_nat5 r ==
Hacl.Spec.K256.Field52.Definitions.as_nat5 f /\
Hacl.Spec.K256.Field52.Definitions.felem_fits5 r (1, 1, 1, 1, 2) /\
Lib.IntTypes.v r4 < Lib.IntTypes.v t4 + Prims.pow2 12 /\
(Lib.IntTypes.v r4 >= Prims.pow2 48 ==>
Lib.IntTypes.v r4 % Prims.pow2 48 < Prims.pow2 12))
<:
Type0)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.K256.Field52.Definitions.scale64_5",
"Hacl.Spec.K256.Field52.Definitions.felem5",
"Prims.nat",
"Lib.IntTypes.uint64",
"Prims._assert",
"Prims.eq2",
"Hacl.Spec.K256.Field52.Definitions.as_nat5",
"Prims.unit",
"FStar.Pervasives.Native.tuple5",
"FStar.Pervasives.Native.Mktuple5",
"Hacl.Spec.K256.Field52.carry_round5",
"Hacl.Spec.K256.MathLemmas.lemma_simplify_carry_round",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Hacl.Spec.K256.Field52.Definitions.Lemmas.carry_last_small_mod_lemma",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Addition",
"Prims.op_Division",
"Prims.pow2",
"Prims.op_Modulus",
"Hacl.Spec.K256.Field52.Definitions.felem_fits1",
"Hacl.Spec.K256.Field52.Definitions.felem_fits_last1",
"Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_carry_last52",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Amp_Dot",
"Hacl.Spec.K256.Field52.Definitions.mask52",
"Lib.IntTypes.op_Plus_Dot",
"Lib.IntTypes.op_Greater_Greater_Dot",
"FStar.UInt32.__uint_to_t",
"Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_carry52"
] | [] | false | false | true | false | false | let carry_round_after_last_carry_mod_prime5_lemma m f =
| let m0, m1, m2, m3, m4 = m in
let t0, t1, t2, t3, t4 = f in
let t1' = t1 +. (t0 >>. 52ul) in
let t0' = t0 &. mask52 in
LD.lemma_carry52 m1 m0 t1 t0;
assert (felem_fits1 t1' (m1 + 1));
assert (felem_fits1 t0' 1);
assert (v t0' = v t0 % pow2 52);
assert (v t1' = v t1 + v t0 / pow2 52);
let t2' = t2 +. (t1' >>. 52ul) in
let t1'' = t1' &. mask52 in
LD.lemma_carry52 m2 (m1 + 1) t2 t1';
assert (felem_fits1 t2' (m2 + 1));
assert (felem_fits1 t1'' 1);
assert (v t1'' = v t1' % pow2 52);
assert (v t2' = v t2 + v t1' / pow2 52);
let t3' = t3 +. (t2' >>. 52ul) in
let t2'' = t2' &. mask52 in
LD.lemma_carry52 m3 (m2 + 1) t3 t2';
assert (felem_fits1 t3' (m3 + 1));
assert (felem_fits1 t2'' 1);
assert (v t2'' = v t2' % pow2 52);
assert (v t3' = v t3 + v t2' / pow2 52);
let t4' = t4 +. (t3' >>. 52ul) in
let t3'' = t3' &. mask52 in
LD.lemma_carry_last52 m4 (m3 + 1) t4 t3';
assert (felem_fits_last1 t4' (m4 + 1));
assert (felem_fits1 t3'' 1);
assert (v t3'' = v t3' % pow2 52);
assert (v t4' = v t4 + v t3' / pow2 52);
LD.carry_last_small_mod_lemma t4 t3';
ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4);
let r = carry_round5 f in
assert ((t0', t1'', t2'', t3'', t4') == r);
assert (as_nat5 r == as_nat5 f) | false |
FStar.Reflection.Typing.fsti | FStar.Reflection.Typing.mk_unchecked_let | val mk_unchecked_let (g: R.env) (nm: string) (tm: R.term) (ty: R.typ) : T.Tac (sigelt_for g) | val mk_unchecked_let (g: R.env) (nm: string) (tm: R.term) (ty: R.typ) : T.Tac (sigelt_for g) | let mk_unchecked_let (g:R.env) (nm:string) (tm:R.term) (ty:R.typ) : T.Tac (sigelt_for g) =
let fv = pack_fv (T.cur_module () @ [nm]) in
let lb = R.pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = tm }) in
let se = R.pack_sigelt (R.Sg_Let false [lb]) in
( false, se, None ) | {
"file_name": "ulib/experimental/FStar.Reflection.Typing.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 21,
"end_line": 1845,
"start_col": 0,
"start_line": 1841
} | (*
Copyright 2008-2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Reflection.Typing
(** This module defines a typing judgment for (parts of) the total
and ghost fragment of F*.
We are using it in the meta DSL framework as an
official specification for the F* type system.
We expect it to grow to cover more of the F* language.
IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE.
*)
open FStar.List.Tot
open FStar.Reflection.V2
module L = FStar.List.Tot
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RD = FStar.Stubs.Reflection.V2.Data
(* MOVE to some helper module *)
let rec fold_left_dec #a #b
(acc : a)
(l : list b)
(f : a -> (x:b{x << l}) -> a)
: Tot a (decreases l)
=
match l with
| [] -> acc
| x::xs -> fold_left_dec (f acc x) xs f
let rec map_dec #a #b
(l : list a)
(f : (x:a{x << l}) -> b)
: Tot (list b) (decreases l)
=
match l with
| [] -> []
| x::xs -> f x :: map_dec xs f
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 =
match xs, ys with
| [], [] -> True
| x::xx, y::yy -> f x y /\ zip2prop f xx yy
| _ -> False
(* / MOVE *)
val inspect_pack (t:R.term_view)
: Lemma (ensures R.(inspect_ln (pack_ln t) == t))
[SMTPat R.(inspect_ln (pack_ln t))]
val pack_inspect (t:R.term)
: Lemma (requires ~(Tv_Unsupp? (inspect_ln t)))
(ensures R.(pack_ln (inspect_ln t) == t))
[SMTPat R.(pack_ln (inspect_ln t))]
val inspect_pack_namedv (t:R.namedv_view)
: Lemma (ensures R.(inspect_namedv (pack_namedv t) == t))
[SMTPat R.(inspect_namedv (pack_namedv t))]
val pack_inspect_namedv (t:R.namedv)
: Lemma (ensures R.(pack_namedv (inspect_namedv t) == t))
[SMTPat R.(pack_namedv (inspect_namedv t))]
val inspect_pack_bv (t:R.bv_view)
: Lemma (ensures R.(inspect_bv (pack_bv t) == t))
[SMTPat R.(inspect_bv (pack_bv t))]
val pack_inspect_bv (t:R.bv)
: Lemma (ensures R.(pack_bv (inspect_bv t) == t))
[SMTPat R.(pack_bv (inspect_bv t))]
val inspect_pack_binder (bview:R.binder_view)
: Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview))
[SMTPat R.(inspect_binder (pack_binder bview))]
val pack_inspect_binder (t:R.binder)
: Lemma (ensures (R.pack_binder (R.inspect_binder t) == t))
[SMTPat (R.pack_binder (R.inspect_binder t))]
val inspect_pack_comp (t:R.comp_view)
: Lemma (ensures (R.inspect_comp (R.pack_comp t) == t))
[SMTPat (R.inspect_comp (R.pack_comp t))]
val pack_inspect_comp (t:R.comp)
: Lemma (ensures (R.pack_comp (R.inspect_comp t) == t))
[SMTPat (R.pack_comp (R.inspect_comp t))]
val inspect_pack_fv (nm:R.name)
: Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm)
[SMTPat (R.inspect_fv (R.pack_fv nm))]
val pack_inspect_fv (fv:R.fv)
: Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv)
[SMTPat (R.pack_fv (R.inspect_fv fv))]
val inspect_pack_universe (u:R.universe_view)
: Lemma (ensures R.inspect_universe (R.pack_universe u) == u)
[SMTPat (R.inspect_universe (R.pack_universe u))]
val pack_inspect_universe (u:R.universe)
: Lemma (requires ~(Uv_Unk? (inspect_universe u)))
(ensures R.pack_universe (R.inspect_universe u) == u)
[SMTPat (R.pack_universe (R.inspect_universe u))]
val lookup_bvar (e:env) (x:int) : option term
val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
let tun = pack_ln Tv_Unknown
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder
= pack_binder
{ ppname = pp_name;
qual = q;
attrs = [];
sort = ty}
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder
= pack_binder
{ ppname = pp_name;
qual = Q_Explicit;
attrs = [];
sort = ty}
let extend_env (e:env) (x:var) (ty:term) : env =
R.push_binding e ({
ppname = seal_pp_name "x";
uniq = x;
sort = ty;
})
val lookup_bvar_extend_env (g:env) (x y:var) (ty:term)
: Lemma
(ensures (
if x = y
then lookup_bvar (extend_env g x ty) y == Some ty
else lookup_bvar (extend_env g x ty) y == lookup_bvar g y))
[SMTPat (lookup_bvar (extend_env g x ty) y)]
val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term)
: Lemma
(ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us)
[SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)]
let bv_index (x:bv)
: var
= (inspect_bv x).index
let namedv_uniq (x:namedv)
: var
= (inspect_namedv x).uniq
let binder_sort (b:binder) =
(inspect_binder b).sort
let binder_qual (b:binder) =
let { qual = q } = inspect_binder b in q
noeq
type subst_elt =
| DT : nat -> term -> subst_elt
| NT : var -> term -> subst_elt
| ND : var -> nat -> subst_elt
let shift_subst_elt (n:nat) = function
| DT i t -> DT (i + n) t
| NT x t -> NT x t
| ND x i -> ND x (i + n)
let subst = list subst_elt
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst = shift_subst_n 1
let maybe_uniq_of_term (x:term) =
match inspect_ln x with
| Tv_Var namedv -> Some (namedv_uniq namedv)
| _ -> None
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt =
match s with
| [] -> None
| (DT j t)::ss ->
if j = bv_index bv
then Some (DT j t)
else find_matching_subst_elt_bv ss bv
| _::ss -> find_matching_subst_elt_bv ss bv
let subst_db (bv:bv) (s:subst) : term =
match find_matching_subst_elt_bv s bv with
| Some (DT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
//if we're substituting a name j for a name k, retain the pp_name of j
let v : namedv = pack_namedv {
sort = (inspect_bv bv).sort;
ppname = (inspect_bv bv).ppname;
uniq = k;
} in
pack_ln (Tv_Var v))
| _ -> pack_ln (Tv_BVar bv)
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt =
match s with
| [] -> None
| (NT y _)::rest
| (ND y _)::rest ->
if y = namedv_uniq v
then Some (L.hd s)
else find_matching_subst_elt_var rest v
| _::rest -> find_matching_subst_elt_var rest v
let subst_var (v:namedv) (s:subst) : term =
match find_matching_subst_elt_var s v with
| Some (NT _ t) ->
(match maybe_uniq_of_term t with
| None -> t
| Some k ->
pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k })))
| Some (ND _ i) ->
let bv = pack_bv {
sort = (inspect_namedv v).sort;
ppname = (inspect_namedv v).ppname;
index = i;
} in
pack_ln (Tv_BVar bv)
| _ -> pack_ln (Tv_Var v)
let make_bv (n:nat) : bv_view = {
ppname = pp_name_default;
index = n;
sort = sort_default;
}
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = {
ppname = s;
index = n;
sort = sort_default;
}
let var_as_bv (v:nat) = pack_bv (make_bv v)
let make_namedv (n:nat) : namedv_view = {
ppname = pp_name_default;
uniq = n;
sort = sort_default;
}
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = {
ppname = s;
uniq = n;
sort = sort_default;
}
let var_as_namedv (v:nat) : namedv =
pack_namedv {
uniq = v;
sort = sort_default;
ppname = pp_name_default;
}
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let binder_of_t_q t q = mk_binder pp_name_default t q
let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
let mk_total t = pack_comp (C_Total t)
let mk_ghost t = pack_comp (C_GTotal t)
let mk_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t))
let mk_ghost_arrow ty qual t : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t))
let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
let mk_let ppname (e1 t1 e2:R.term) =
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let open_with_var_elt (x:var) (i:nat) : subst_elt =
DT i (pack_ln (Tv_Var (var_as_namedv x)))
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst)
: ctx_uvar_and_subst
let rec binder_offset_patterns (ps:list (pattern & bool))
: nat
= match ps with
| [] -> 0
| (p, b)::ps ->
let n = binder_offset_pattern p in
let m = binder_offset_patterns ps in
n + m
and binder_offset_pattern (p:pattern)
: nat
= match p with
| Pat_Constant _
| Pat_Dot_Term _ -> 0
| Pat_Var _ _ -> 1
| Pat_Cons head univs subpats ->
binder_offset_patterns subpats
let rec subst_term (t:term) (ss:subst)
: Tot term (decreases t)
= match inspect_ln t with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unsupp
| Tv_Unknown -> t
| Tv_Var x -> subst_var x ss
| Tv_BVar j -> subst_db j ss
| Tv_App hd argv ->
pack_ln (Tv_App (subst_term hd ss)
(subst_term (fst argv) ss, snd argv))
| Tv_Abs b body ->
let b' = subst_binder b ss in
pack_ln (Tv_Abs b' (subst_term body (shift_subst ss)))
| Tv_Arrow b c ->
let b' = subst_binder b ss in
pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss)))
| Tv_Refine b f ->
let b = subst_binder b ss in
pack_ln (Tv_Refine b (subst_term f (shift_subst ss)))
| Tv_Uvar j c ->
pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss))
| Tv_Let recf attrs b def body ->
let b = subst_binder b ss in
pack_ln (Tv_Let recf
(subst_terms attrs ss)
b
(if recf
then subst_term def (shift_subst ss)
else subst_term def ss)
(subst_term body (shift_subst ss)))
| Tv_Match scr ret brs ->
pack_ln (Tv_Match (subst_term scr ss)
(match ret with
| None -> None
| Some m -> Some (subst_match_returns m ss))
(subst_branches brs ss))
| Tv_AscribedT e t tac b ->
pack_ln (Tv_AscribedT (subst_term e ss)
(subst_term t ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
| Tv_AscribedC e c tac b ->
pack_ln (Tv_AscribedC (subst_term e ss)
(subst_comp c ss)
(match tac with
| None -> None
| Some tac -> Some (subst_term tac ss))
b)
and subst_binder (b:binder) (ss:subst)
: Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b)
= let bndr = inspect_binder b in
pack_binder {
ppname = bndr.ppname;
qual = bndr.qual;
attrs = subst_terms bndr.attrs ss;
sort = subst_term bndr.sort ss
}
and subst_comp (c:comp) (ss:subst)
: Tot comp (decreases c)
= match inspect_comp c with
| C_Total t ->
pack_comp (C_Total (subst_term t ss))
| C_GTotal t ->
pack_comp (C_GTotal (subst_term t ss))
| C_Lemma pre post pats ->
pack_comp (C_Lemma (subst_term pre ss)
(subst_term post ss)
(subst_term pats ss))
| C_Eff us eff_name res args decrs ->
pack_comp (C_Eff us eff_name
(subst_term res ss)
(subst_args args ss)
(subst_terms decrs ss))
and subst_terms (ts:list term) (ss:subst)
: Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder
(decreases ts)
= match ts with
| [] -> []
| t::ts -> subst_term t ss :: subst_terms ts ss
and subst_args (ts:list argv) (ss:subst)
: Tot (list argv) (decreases ts)
= match ts with
| [] -> []
| (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss
and subst_patterns (ps:list (pattern & bool)) (ss:subst)
: Tot (list (pattern & bool))
(decreases ps)
= match ps with
| [] -> ps
| (p, b)::ps ->
let n = binder_offset_pattern p in
let p = subst_pattern p ss in
let ps = subst_patterns ps (shift_subst_n n ss) in
(p,b)::ps
and subst_pattern (p:pattern) (ss:subst)
: Tot pattern
(decreases p)
= match p with
| Pat_Constant _ -> p
| Pat_Cons fv us pats ->
let pats = subst_patterns pats ss in
Pat_Cons fv us pats
| Pat_Var bv s ->
Pat_Var bv s
| Pat_Dot_Term topt ->
Pat_Dot_Term (match topt with
| None -> None
| Some t -> Some (subst_term t ss))
and subst_branch (br:branch) (ss:subst)
: Tot branch (decreases br)
= let p, t = br in
let p = subst_pattern p ss in
let j = binder_offset_pattern p in
let t = subst_term t (shift_subst_n j ss) in
p, t
and subst_branches (brs:list branch) (ss:subst)
: Tot (list branch) (decreases brs)
= match brs with
| [] -> []
| br::brs -> subst_branch br ss :: subst_branches brs ss
and subst_match_returns (m:match_returns_ascription) (ss:subst)
: Tot match_returns_ascription (decreases m)
= let b, (ret, as_, eq) = m in
let b = subst_binder b ss in
let ret =
match ret with
| Inl t -> Inl (subst_term t (shift_subst ss))
| Inr c -> Inr (subst_comp c (shift_subst ss))
in
let as_ =
match as_ with
| None -> None
| Some t -> Some (subst_term t (shift_subst ss))
in
b, (ret, as_, eq)
val open_with (t:term) (v:term) : term
val open_with_spec (t v:term)
: Lemma (open_with t v ==
subst_term t [ DT 0 v ])
val open_term (t:term) (v:var) : term
val open_term_spec (t:term) (v:var)
: Lemma (open_term t v ==
subst_term t (open_with_var v 0))
val close_term (t:term) (v:var) : term
val close_term_spec (t:term) (v:var)
: Lemma (close_term t v ==
subst_term t [ ND v 0 ])
val rename (t:term) (x y:var) : term
val rename_spec (t:term) (x y:var)
: Lemma (rename t x y ==
subst_term t [ NT x (var_as_term y)])
val bv_index_of_make_bv (n:nat)
: Lemma (ensures bv_index (pack_bv (make_bv n)) == n)
[SMTPat (bv_index (pack_bv (make_bv n)))]
val namedv_uniq_of_make_namedv (n:nat)
: Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n)
[SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let unit_exp = constant_as_term C_Unit
let unit_fv = pack_fv unit_lid
let unit_ty = pack_ln (Tv_FVar unit_fv)
let bool_fv = pack_fv bool_lid
let bool_ty = pack_ln (Tv_FVar bool_fv)
let u_zero = pack_universe Uv_Zero
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_succ u = pack_universe (Uv_Succ u)
let tm_type u = pack_ln (Tv_Type u)
let tm_prop =
let prop_fv = R.pack_fv R.prop_qn in
R.pack_ln (Tv_FVar prop_fv)
let eqtype_lid : R.name = ["Prims"; "eqtype"]
let true_bool = pack_ln (Tv_Const C_True)
let false_bool = pack_ln (Tv_Const C_False)
let eq2 (u:universe) (t v0 v1:term)
: term
= let eq2 = pack_fv eq2_qn in
let eq2 = pack_ln (Tv_UInst eq2 [u]) in
let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in
let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in
let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in
h2
let b2t_lid : R.name = ["Prims"; "b2t"]
let b2t_fv : R.fv = R.pack_fv b2t_lid
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
////////////////////////////////////////////////////////////////////////////////
// freevars
////////////////////////////////////////////////////////////////////////////////
let rec freevars (e:term)
: FStar.Set.set var
= match inspect_ln e with
| Tv_Uvar _ _ -> Set.complement Set.empty
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_BVar _ -> Set.empty
| Tv_Var x -> Set.singleton (namedv_uniq x)
| Tv_App e1 (e2, _) ->
Set.union (freevars e1) (freevars e2)
| Tv_Abs b body ->
Set.union (freevars_binder b) (freevars body)
| Tv_Arrow b c ->
Set.union (freevars_binder b) (freevars_comp c)
| Tv_Refine b f ->
freevars (binder_sort b) `Set.union`
freevars f
| Tv_Let recf attrs b def body ->
freevars_terms attrs `Set.union`
freevars (binder_sort b) `Set.union`
freevars def `Set.union`
freevars body
| Tv_Match scr ret brs ->
freevars scr `Set.union`
freevars_opt ret freevars_match_returns `Set.union`
freevars_branches brs
| Tv_AscribedT e t tac b ->
freevars e `Set.union`
freevars t `Set.union`
freevars_opt tac freevars
| Tv_AscribedC e c tac b ->
freevars e `Set.union`
freevars_comp c `Set.union`
freevars_opt tac freevars
and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
: FStar.Set.set var
= match o with
| None -> Set.empty
| Some x -> f x
and freevars_comp (c:comp)
: FStar.Set.set var
= match inspect_comp c with
| C_Total t
| C_GTotal t ->
freevars t
| C_Lemma pre post pats ->
freevars pre `Set.union`
freevars post `Set.union`
freevars pats
| C_Eff us eff_name res args decrs ->
freevars res `Set.union`
freevars_args args `Set.union`
freevars_terms decrs
and freevars_args (ts:list argv)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| (t,q)::ts ->
freevars t `Set.union`
freevars_args ts
and freevars_terms (ts:list term)
: FStar.Set.set var
= match ts with
| [] -> Set.empty
| t::ts ->
freevars t `Set.union`
freevars_terms ts
and freevars_binder (b:binder)
: Tot (Set.set var) (decreases b)
= let bndr = inspect_binder b in
freevars bndr.sort `Set.union`
freevars_terms bndr.attrs
and freevars_pattern (p:pattern)
: Tot (Set.set var) (decreases p)
= match p with
| Pat_Constant _ ->
Set.empty
| Pat_Cons head univs subpats ->
freevars_patterns subpats
| Pat_Var bv s -> Set.empty
| Pat_Dot_Term topt ->
freevars_opt topt freevars
and freevars_patterns (ps:list (pattern & bool))
: Tot (Set.set var) (decreases ps)
= match ps with
| [] -> Set.empty
| (p, b)::ps ->
freevars_pattern p `Set.union`
freevars_patterns ps
and freevars_branch (br:branch)
: Tot (Set.set var) (decreases br)
= let p, t = br in
freevars_pattern p `Set.union`
freevars t
and freevars_branches (brs:list branch)
: Tot (Set.set var) (decreases brs)
= match brs with
| [] -> Set.empty
| hd::tl -> freevars_branch hd `Set.union` freevars_branches tl
and freevars_match_returns (m:match_returns_ascription)
: Tot (Set.set var) (decreases m)
= let b, (ret, as_, eq) = m in
let b = freevars_binder b in
let ret =
match ret with
| Inl t -> freevars t
| Inr c -> freevars_comp c
in
let as_ = freevars_opt as_ freevars in
b `Set.union` ret `Set.union` as_
let rec ln' (e:term) (n:int)
: Tot bool (decreases e)
= match inspect_ln e with
| Tv_UInst _ _
| Tv_FVar _
| Tv_Type _
| Tv_Const _
| Tv_Unknown
| Tv_Unsupp
| Tv_Var _ -> true
| Tv_BVar m -> bv_index m <= n
| Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n
| Tv_Abs b body ->
ln'_binder b n &&
ln' body (n + 1)
| Tv_Arrow b c ->
ln'_binder b n &&
ln'_comp c (n + 1)
| Tv_Refine b f ->
ln'_binder b n &&
ln' f (n + 1)
| Tv_Uvar _ _ ->
false
| Tv_Let recf attrs b def body ->
ln'_terms attrs n &&
ln'_binder b n &&
(if recf then ln' def (n + 1) else ln' def n) &&
ln' body (n + 1)
| Tv_Match scr ret brs ->
ln' scr n &&
(match ret with
| None -> true
| Some m -> ln'_match_returns m n) &&
ln'_branches brs n
| Tv_AscribedT e t tac b ->
ln' e n &&
ln' t n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
| Tv_AscribedC e c tac b ->
ln' e n &&
ln'_comp c n &&
(match tac with
| None -> true
| Some tac -> ln' tac n)
and ln'_comp (c:comp) (i:int)
: Tot bool (decreases c)
= match inspect_comp c with
| C_Total t
| C_GTotal t -> ln' t i
| C_Lemma pre post pats ->
ln' pre i &&
ln' post i &&
ln' pats i
| C_Eff us eff_name res args decrs ->
ln' res i &&
ln'_args args i &&
ln'_terms decrs i
and ln'_args (ts:list argv) (i:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| (t,q)::ts ->
ln' t i &&
ln'_args ts i
and ln'_binder (b:binder) (n:int)
: Tot bool (decreases b)
= let bndr = inspect_binder b in
ln' bndr.sort n &&
ln'_terms bndr.attrs n
and ln'_terms (ts:list term) (n:int)
: Tot bool (decreases ts)
= match ts with
| [] -> true
| t::ts -> ln' t n && ln'_terms ts n
and ln'_patterns (ps:list (pattern & bool)) (i:int)
: Tot bool
(decreases ps)
= match ps with
| [] -> true
| (p, b)::ps ->
let b0 = ln'_pattern p i in
let n = binder_offset_pattern p in
let b1 = ln'_patterns ps (i + n) in
b0 && b1
and ln'_pattern (p:pattern) (i:int)
: Tot bool
(decreases p)
= match p with
| Pat_Constant _ -> true
| Pat_Cons head univs subpats ->
ln'_patterns subpats i
| Pat_Var bv s -> true
| Pat_Dot_Term topt ->
(match topt with
| None -> true
| Some t -> ln' t i)
and ln'_branch (br:branch) (i:int)
: Tot bool (decreases br)
= let p, t = br in
let b = ln'_pattern p i in
let j = binder_offset_pattern p in
let b' = ln' t (i + j) in
b&&b'
and ln'_branches (brs:list branch) (i:int)
: Tot bool (decreases brs)
= match brs with
| [] -> true
| br::brs ->
ln'_branch br i &&
ln'_branches brs i
and ln'_match_returns (m:match_returns_ascription) (i:int)
: Tot bool (decreases m)
= let b, (ret, as_, eq) = m in
let b = ln'_binder b i in
let ret =
match ret with
| Inl t -> ln' t (i + 1)
| Inr c -> ln'_comp c (i + 1)
in
let as_ =
match as_ with
| None -> true
| Some t -> ln' t (i + 1)
in
b && ret && as_
let ln (t:term) = ln' t (-1)
let ln_comp (c:comp) = ln'_comp c (-1)
//
// term_ctxt is used to define the equiv relation later,
// basically putting two equiv terms in a hole gives equiv terms
//
// The abs, arrow, refine, and let cases don't seem right here,
// since to prove their equiv, we need to extend gamma for their bodies
//
// If this is useful only for app, then may be we should remove it,
// and add app rules to the equiv relation itself
[@@ no_auto_projectors]
noeq
type term_ctxt =
| Ctxt_hole : term_ctxt
| Ctxt_app_head : term_ctxt -> argv -> term_ctxt
| Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt
// | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt
// | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt
// | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt
// | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt
// | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt
// | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt
// | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt
// | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt
// | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt
// | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt
// and bv_ctxt =
// | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt
// and binder_ctxt =
// | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt
// and comp_ctxt =
// | Ctxt_total : term_ctxt -> comp_ctxt
// | Ctxt_gtotal : term_ctxt -> comp_ctxt
let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) =
match e with
| Ctxt_hole -> t
| Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg)
| Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q))
// | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body)
// | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t))
// | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c)
// | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t))
// | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi)
// | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t))
// | Ctxt_let_sort b attrs bv sort def body ->
// pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body)
// | Ctxt_let_def b attrs bv sort def body ->
// pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body)
// | Ctxt_let_body b attrs bv sort def body ->
// pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t))
// | Ctxt_match_scrutinee sc ret brs ->
// pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs)
// and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) =
// let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in
// pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t}
// and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) =
// match c with
// | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t))
// | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t))
noeq
type constant_typing: vconst -> term -> Type0 =
| CT_Unit: constant_typing C_Unit unit_ty
| CT_True: constant_typing C_True bool_ty
| CT_False: constant_typing C_False bool_ty
[@@ no_auto_projectors]
noeq
type univ_eq : universe -> universe -> Type0 =
| UN_Refl :
u:universe ->
univ_eq u u
| UN_MaxCongL :
u:universe ->
u':universe ->
v:universe ->
univ_eq u u' ->
univ_eq (u_max u v) (u_max u' v)
| UN_MaxCongR :
u:universe ->
v:universe ->
v':universe ->
univ_eq v v' ->
univ_eq (u_max u v) (u_max u v')
| UN_MaxComm:
u:universe ->
v:universe ->
univ_eq (u_max u v) (u_max v u)
| UN_MaxLeq:
u:universe ->
v:universe ->
univ_leq u v ->
univ_eq (u_max u v) v
and univ_leq : universe -> universe -> Type0 =
| UNLEQ_Refl:
u:universe ->
univ_leq u u
| UNLEQ_Succ:
u:universe ->
v:universe ->
univ_leq u v ->
univ_leq u (u_succ v)
| UNLEQ_Max:
u:universe ->
v:universe ->
univ_leq u (u_max u v)
let mk_if (scrutinee then_ else_:R.term) : R.term =
pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_);
(Pat_Constant C_False, else_)])
// effect and type
type comp_typ = T.tot_or_ghost & typ
let close_comp_typ' (c:comp_typ) (x:var) (i:nat) =
fst c, subst_term (snd c) [ ND x i ]
let close_comp_typ (c:comp_typ) (x:var) =
close_comp_typ' c x 0
let open_comp_typ' (c:comp_typ) (x:var) (i:nat) =
fst c, subst_term (snd c) (open_with_var x i)
let open_comp_typ (c:comp_typ) (x:var) =
open_comp_typ' c x 0
let freevars_comp_typ (c:comp_typ) = freevars (snd c)
let mk_comp (c:comp_typ) : R.comp =
match fst c with
| T.E_Total -> mk_total (snd c)
| T.E_Ghost -> mk_ghost (snd c)
let mk_arrow_ct ty qual (c:comp_typ) : R.term =
R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c))
type relation =
| R_Eq
| R_Sub
let binding = var & term
let bindings = list binding
let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs
let rec extend_env_l (g:env) (bs:bindings)
: env
= match bs with
| [] -> g
| (x,t)::bs -> extend_env (extend_env_l g bs) x t
//
// TODO: support for erasable attribute
//
let is_non_informative_name (l:name) : bool =
l = R.unit_lid ||
l = R.squash_qn ||
l = ["FStar"; "Ghost"; "erased"]
let is_non_informative_fv (f:fv) : bool =
is_non_informative_name (inspect_fv f)
let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) =
match vs with
| [] -> t
| v::vs ->
subst_term (__close_term_vs (i+1) vs t) [ND v i]
let close_term_vs (vs : list var) (t : term) : term =
__close_term_vs 0 vs t
let close_term_bs (bs : list binding) (t : term) : term =
close_term_vs (List.Tot.map fst bs) t
let bindings_to_refl_bindings (bs : list binding) : list R.binding =
L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs
let refl_bindings_to_bindings (bs : list R.binding) : list binding =
L.map (fun b -> b.uniq, b.sort) bs
[@@ no_auto_projectors]
noeq
type non_informative : env -> term -> Type0 =
| Non_informative_type:
g:env ->
u:universe ->
non_informative g (pack_ln (Tv_Type u))
| Non_informative_fv:
g:env ->
x:fv{is_non_informative_fv x} ->
non_informative g (pack_ln (Tv_FVar x))
| Non_informative_uinst:
g:env ->
x:fv{is_non_informative_fv x} ->
us:list universe ->
non_informative g (pack_ln (Tv_UInst x us))
| Non_informative_app:
g:env ->
t:term ->
arg:argv ->
non_informative g t ->
non_informative g (pack_ln (Tv_App t arg))
| Non_informative_total_arrow:
g:env ->
t0:term ->
q:aqualv ->
t1:term ->
non_informative g t1 ->
non_informative g (mk_arrow_ct t0 q (T.E_Total, t1))
| Non_informative_ghost_arrow:
g:env ->
t0:term ->
q:aqualv ->
t1:term ->
non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1))
| Non_informative_token:
g:env ->
t:typ ->
squash (T.non_informative_token g t) ->
non_informative g t
val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0
val bindings_ok_pat_constant :
g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c))
let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 =
bindings_ok_for_pat g bs (fst br)
let bindings_ok_for_branch_N (g:env) (bss : list (list R.binding)) (brs : list branch) =
zip2prop (bindings_ok_for_branch g) bss brs
let binding_to_namedv (b:R.binding) : Tot namedv =
pack_namedv {
RD.uniq = b.uniq;
RD.sort = seal b.sort;
RD.ppname = b.ppname;
}
(* Elaborates the p pattern into a term, using the bs bindings for the
pattern variables. The resulting term is properly scoped only on an
environment which contains all of bs. See for instance the branch_typing
judg. Returns an option, since this can fail if e.g. there are not
enough bindings, and returns the list of unused binders as well, which
should be empty if the list of binding was indeed ok. *)
let rec elaborate_pat (p : pattern) (bs : list R.binding) : Tot (option (term & list R.binding)) (decreases p) =
match p, bs with
| Pat_Constant c, _ -> Some (pack_ln (Tv_Const c), bs)
| Pat_Cons fv univs subpats, bs ->
let head = pack_ln (Tv_FVar fv) in
fold_left_dec
(Some (head, bs))
subpats
(fun st pi ->
let (p,i) = pi in
match st with | None -> None | Some (head, bs) ->
match elaborate_pat p bs with | None -> None | Some (t, bs') -> Some (pack_ln (Tv_App head (t, (if i then Q_Implicit else Q_Explicit))), bs'))
| Pat_Var _ _, b::bs ->
Some (pack_ln (Tv_Var (binding_to_namedv b)), bs)
| Pat_Dot_Term (Some t), _ -> Some (t, bs)
| Pat_Dot_Term None, _ -> None
| _ -> None
[@@ no_auto_projectors]
noeq
type typing : env -> term -> comp_typ -> Type0 =
| T_Token :
g:env ->
e:term ->
c:comp_typ ->
squash (T.typing_token g e c) ->
typing g e c
| T_Var :
g:env ->
x:namedv { Some? (lookup_bvar g (namedv_uniq x)) } ->
typing g (pack_ln (Tv_Var x)) (T.E_Total, Some?.v (lookup_bvar g (namedv_uniq x)))
| T_FVar :
g:env ->
x:fv { Some? (lookup_fvar g x) } ->
typing g (pack_ln (Tv_FVar x)) (T.E_Total, Some?.v (lookup_fvar g x))
| T_UInst :
g:env ->
x:fv ->
us:list universe { Some? (lookup_fvar_uinst g x us) } ->
typing g (pack_ln (Tv_UInst x us)) (T.E_Total, Some?.v (lookup_fvar_uinst g x us))
| T_Const:
g:env ->
v:vconst ->
t:term ->
constant_typing v t ->
typing g (constant_as_term v) (T.E_Total, t)
| T_Abs :
g:env ->
x:var { None? (lookup_bvar g x) } ->
ty:term ->
body:term { ~(x `Set.mem` freevars body) } ->
body_c:comp_typ ->
u:universe ->
pp_name:pp_name_t ->
q:aqualv ->
ty_eff:T.tot_or_ghost ->
typing g ty (ty_eff, tm_type u) ->
typing (extend_env g x ty) (open_term body x) body_c ->
typing g (pack_ln (Tv_Abs (mk_binder pp_name ty q) body))
(T.E_Total,
pack_ln (Tv_Arrow (mk_binder pp_name ty q)
(mk_comp (close_comp_typ body_c x))))
| T_App :
g:env ->
e1:term ->
e2:term ->
x:binder ->
t:term ->
eff:T.tot_or_ghost ->
typing g e1 (eff, pack_ln (Tv_Arrow x (mk_comp (eff, t)))) ->
typing g e2 (eff, binder_sort x) ->
typing g (pack_ln (Tv_App e1 (e2, binder_qual x)))
(eff, open_with t e2)
| T_Let:
g:env ->
x:var { None? (lookup_bvar g x) } ->
e1:term ->
t1:typ ->
e2:term ->
t2:typ ->
eff:T.tot_or_ghost ->
pp_name:pp_name_t ->
typing g e1 (eff, t1) ->
typing (extend_env g x t1) (open_term e2 x) (eff, t2) ->
typing g (mk_let pp_name e1 t1 e2) (eff, open_with (close_term t2 x) e1)
| T_Arrow:
g:env ->
x:var { None? (lookup_bvar g x) } ->
t1:term ->
t2:term { ~(x `Set.mem` freevars t2) } ->
u1:universe ->
u2:universe ->
pp_name:pp_name_t ->
q:aqualv ->
eff:T.tot_or_ghost ->
t1_eff:T.tot_or_ghost ->
t2_eff:T.tot_or_ghost ->
typing g t1 (t1_eff, tm_type u1) ->
typing (extend_env g x t1) (open_term t2 x) (t2_eff, tm_type u2) ->
typing g (pack_ln (Tv_Arrow (mk_binder pp_name t1 q) (mk_comp (eff, t2))))
(T.E_Total, tm_type (u_max u1 u2))
| T_Refine:
g:env ->
x:var { None? (lookup_bvar g x) } ->
t:term ->
e:term { ~(x `Set.mem` freevars e) } ->
u1:universe ->
u2:universe ->
t_eff:T.tot_or_ghost ->
e_eff:T.tot_or_ghost ->
typing g t (t_eff, tm_type u1) ->
typing (extend_env g x t) (open_term e x) (e_eff, tm_type u2) ->
typing g (pack_ln (Tv_Refine (mk_simple_binder pp_name_default t) e)) (T.E_Total, tm_type u1)
| T_PropIrrelevance:
g:env ->
e:term ->
t:term ->
e_eff:T.tot_or_ghost ->
t_eff:T.tot_or_ghost ->
typing g e (e_eff, t) ->
typing g t (t_eff, tm_prop) ->
typing g (`()) (T.E_Total, t)
| T_Sub:
g:env ->
e:term ->
c:comp_typ ->
c':comp_typ ->
typing g e c ->
sub_comp g c c' ->
typing g e c'
| T_If:
g:env ->
scrutinee:term ->
then_:term ->
else_:term ->
ty:term ->
u_ty:universe ->
hyp:var { None? (lookup_bvar g hyp) /\ ~(hyp `Set.mem` (freevars then_ `Set.union` freevars else_)) } ->
eff:T.tot_or_ghost ->
ty_eff:T.tot_or_ghost ->
typing g scrutinee (eff, bool_ty) ->
typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee true_bool)) then_ (eff, ty) ->
typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee false_bool)) else_ (eff, ty) ->
typing g ty (ty_eff, tm_type u_ty) -> //typedness of ty cannot rely on hyp
typing g (mk_if scrutinee then_ else_) (eff, ty)
| T_Match:
g:env ->
sc_u : universe ->
sc_ty : typ ->
sc : term ->
ty_eff:T.tot_or_ghost ->
typing g sc_ty (ty_eff, tm_type sc_u) ->
eff:T.tot_or_ghost ->
typing g sc (eff, sc_ty) ->
branches:list branch ->
ty:comp_typ ->
bnds:list (list R.binding) ->
complet : match_is_complete g sc sc_ty (List.Tot.map fst branches) bnds -> // complete patterns
branches_typing g sc_u sc_ty sc ty branches bnds -> // each branch has proper type
typing g (pack_ln (Tv_Match sc None branches)) ty
and related : env -> term -> relation -> term -> Type0 =
| Rel_refl:
g:env ->
t:term ->
rel:relation ->
related g t rel t
| Rel_sym:
g:env ->
t0:term ->
t1:term ->
related g t0 R_Eq t1 ->
related g t1 R_Eq t0
| Rel_trans:
g:env ->
t0:term ->
t1:term ->
t2:term ->
rel:relation ->
related g t0 rel t1 ->
related g t1 rel t2 ->
related g t0 rel t2
| Rel_univ:
g:env ->
u:universe ->
v:universe ->
univ_eq u v ->
related g (tm_type u) R_Eq (tm_type v)
| Rel_beta:
g:env ->
t:typ ->
q:aqualv ->
e:term { ln' e 0 } ->
arg:term { ln arg } ->
related g (R.pack_ln (R.Tv_App (mk_abs t q e) (arg, q)))
R_Eq
(subst_term e [ DT 0 arg ])
| Rel_eq_token:
g:env ->
t0:term ->
t1:term ->
squash (T.equiv_token g t0 t1) ->
related g t0 R_Eq t1
| Rel_subtyping_token:
g:env ->
t0:term ->
t1:term ->
squash (T.subtyping_token g t0 t1) ->
related g t0 R_Sub t1
| Rel_equiv:
g:env ->
t0:term ->
t1:term ->
rel:relation ->
related g t0 R_Eq t1 ->
related g t0 rel t1
| Rel_arrow:
g:env ->
t1:term ->
t2:term ->
q:aqualv ->
c1:comp_typ ->
c2:comp_typ ->
rel:relation ->
x:var{
None? (lookup_bvar g x) /\
~ (x `Set.mem` (freevars_comp_typ c1 `Set.union` freevars_comp_typ c2))
} ->
related g t2 rel t1 ->
related_comp (extend_env g x t2)
(open_comp_typ c1 x)
rel
(open_comp_typ c2 x) ->
related g (mk_arrow_ct t1 q c1) rel (mk_arrow_ct t2 q c2)
| Rel_abs:
g:env ->
t1:term ->
t2:term ->
q:aqualv ->
e1:term ->
e2:term ->
x:var{
None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars e1 `Set.union` freevars e2))
} ->
related g t1 R_Eq t2 ->
related (extend_env g x t1)
(subst_term e1 (open_with_var x 0))
R_Eq
(subst_term e2 (open_with_var x 0)) ->
related g (mk_abs t1 q e1) R_Eq (mk_abs t2 q e2)
| Rel_ctxt:
g:env ->
t0:term ->
t1:term ->
ctxt:term_ctxt ->
related g t0 R_Eq t1 ->
related g (apply_term_ctxt ctxt t0) R_Eq (apply_term_ctxt ctxt t1)
and related_comp : env -> comp_typ -> relation -> comp_typ -> Type0 =
| Relc_typ:
g:env ->
t0:term ->
t1:term ->
eff:T.tot_or_ghost ->
rel:relation ->
related g t0 rel t1 ->
related_comp g (eff, t0) rel (eff, t1)
| Relc_total_ghost:
g:env ->
t:term ->
related_comp g (T.E_Total, t) R_Sub (T.E_Ghost, t)
| Relc_ghost_total:
g:env ->
t:term ->
non_informative g t ->
related_comp g (T.E_Ghost, t) R_Sub (T.E_Total, t)
and branches_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ)
: (brs:list branch) -> (bnds : list (list R.binding)) -> Type0
=
(* This judgement only enforces that branch_typing holds for every
element of brs and its respective bnds (which must have the same
length). *)
| BT_Nil :
branches_typing g sc_u sc_ty sc rty [] []
| BT_S :
br : branch ->
bnds : list R.binding ->
pf : branch_typing g sc_u sc_ty sc rty br bnds ->
rest_br : list branch ->
rest_bnds : list (list R.binding) ->
rest : branches_typing g sc_u sc_ty sc rty rest_br rest_bnds ->
branches_typing g sc_u sc_ty sc rty (br :: rest_br) (bnds :: rest_bnds)
and branch_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ)
: (br : branch) -> (bnds : list R.binding) -> Type0
=
| BO :
pat : pattern ->
bnds : list R.binding{bindings_ok_for_pat g bnds pat} ->
hyp_var:var{None? (lookup_bvar (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var)} ->
body:term ->
_ : squash (Some? (elaborate_pat pat bnds)) ->
typing (extend_env
(extend_env_l g (refl_bindings_to_bindings bnds))
hyp_var (eq2 sc_u sc_ty sc (fst (Some?.v (elaborate_pat pat bnds))))
)
body rty ->
branch_typing g sc_u sc_ty sc rty
(pat, close_term_bs (refl_bindings_to_bindings bnds) body)
bnds
and match_is_complete : env -> term -> typ -> list pattern -> list (list R.binding) -> Type0 =
| MC_Tok :
env:_ ->
sc:_ ->
ty:_ ->
pats:_ ->
bnds:_ ->
squash (T.match_complete_token env sc ty pats bnds) -> match_is_complete env sc ty pats bnds
and sub_typing (g:env) (t1 t2:term) = related g t1 R_Sub t2
and sub_comp (g:env) (c1 c2:comp_typ) = related_comp g c1 R_Sub c2
and equiv (g:env) (t1 t2:term) = related g t1 R_Eq t2
type tot_typing (g:env) (e:term) (t:term) = typing g e (T.E_Total, t)
type ghost_typing (g:env) (e:term) (t:term) = typing g e (T.E_Ghost, t)
val subtyping_token_renaming (g:env)
(bs0:bindings)
(bs1:bindings)
(x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) })
(y:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) y) })
(t:term)
(t0 t1:term)
(d:T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1)
: T.subtyping_token (extend_env_l g (rename_bindings bs1 x y@(y,t)::bs0))
(rename t0 x y)
(rename t1 x y)
val subtyping_token_weakening (g:env)
(bs0:bindings)
(bs1:bindings)
(x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) })
(t:term)
(t0 t1:term)
(d:T.subtyping_token (extend_env_l g (bs1@bs0)) t0 t1)
: T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1
let simplify_umax (#g:R.env) (#t:R.term) (#u:R.universe)
(d:typing g t (T.E_Total, tm_type (u_max u u)))
: typing g t (T.E_Total, tm_type u)
= let ue
: univ_eq (u_max u u) u
= UN_MaxLeq u u (UNLEQ_Refl u)
in
let du : related g (tm_type (u_max u u)) R_Eq (tm_type u)
= Rel_univ g (u_max u u) u ue in
let du : related g (tm_type (u_max u u)) R_Sub (tm_type u)
= Rel_equiv _ _ _ _ du in
T_Sub _ _ _ _ d (Relc_typ _ _ _ T.E_Total _ du)
val well_typed_terms_are_ln (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c)
: Lemma (ensures ln e /\ ln (snd c))
val type_correctness (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c)
: GTot (u:R.universe & typing g (snd c) (T.E_Total, tm_type u))
val binder_offset_pattern_invariant (p:pattern) (ss:subst)
: Lemma (binder_offset_pattern p == binder_offset_pattern (subst_pattern p ss))
val binder_offset_patterns_invariant (p:list (pattern & bool)) (ss:subst)
: Lemma (binder_offset_patterns p == binder_offset_patterns (subst_patterns p ss))
val open_close_inverse' (i:nat) (t:term { ln' t (i - 1) }) (x:var)
: Lemma
(ensures subst_term
(subst_term t [ ND x i ])
(open_with_var x i)
== t)
val open_close_inverse'_binder (i:nat) (b:binder { ln'_binder b (i - 1) }) (x:var)
: Lemma (ensures subst_binder
(subst_binder b [ ND x i ])
(open_with_var x i)
== b)
val open_close_inverse'_terms (i:nat) (ts:list term { ln'_terms ts (i - 1) }) (x:var)
: Lemma (ensures subst_terms
(subst_terms ts [ ND x i ])
(open_with_var x i)
== ts)
val open_close_inverse'_comp (i:nat) (c:comp { ln'_comp c (i - 1) }) (x:var)
: Lemma
(ensures subst_comp
(subst_comp c [ ND x i ])
(open_with_var x i)
== c)
val open_close_inverse'_args (i:nat)
(ts:list argv { ln'_args ts (i - 1) })
(x:var)
: Lemma
(ensures subst_args
(subst_args ts [ ND x i ])
(open_with_var x i)
== ts)
val open_close_inverse'_patterns (i:nat)
(ps:list (pattern & bool) { ln'_patterns ps (i - 1) })
(x:var)
: Lemma
(ensures subst_patterns
(subst_patterns ps [ ND x i ])
(open_with_var x i)
== ps)
val open_close_inverse'_pattern (i:nat) (p:pattern{ln'_pattern p (i - 1)}) (x:var)
: Lemma
(ensures subst_pattern
(subst_pattern p [ ND x i ])
(open_with_var x i)
== p)
val open_close_inverse'_branch (i:nat) (br:branch{ln'_branch br (i - 1)}) (x:var)
: Lemma
(ensures subst_branch
(subst_branch br [ ND x i ])
(open_with_var x i)
== br)
val open_close_inverse'_branches (i:nat)
(brs:list branch { ln'_branches brs (i - 1) })
(x:var)
: Lemma
(ensures subst_branches
(subst_branches brs [ ND x i ])
(open_with_var x i)
== brs)
val open_close_inverse'_match_returns (i:nat)
(m:match_returns_ascription { ln'_match_returns m (i - 1) })
(x:var)
: Lemma
(ensures subst_match_returns
(subst_match_returns m [ ND x i ])
(open_with_var x i)
== m)
val open_close_inverse (e:R.term { ln e }) (x:var)
: Lemma (open_term (close_term e x) x == e)
val close_open_inverse' (i:nat)
(t:term)
(x:var { ~(x `Set.mem` freevars t) })
: Lemma
(ensures subst_term
(subst_term t (open_with_var x i))
[ ND x i ]
== t)
val close_open_inverse'_comp (i:nat)
(c:comp)
(x:var{ ~(x `Set.mem` freevars_comp c) })
: Lemma
(ensures subst_comp
(subst_comp c (open_with_var x i))
[ ND x i ]
== c)
val close_open_inverse'_args (i:nat) (args:list argv) (x:var{ ~(x `Set.mem` freevars_args args) })
: Lemma
(ensures subst_args
(subst_args args (open_with_var x i))
[ ND x i]
== args)
val close_open_inverse'_binder (i:nat) (b:binder) (x:var{ ~(x `Set.mem` freevars_binder b) })
: Lemma
(ensures subst_binder
(subst_binder b (open_with_var x i))
[ ND x i ]
== b)
val close_open_inverse'_terms (i:nat) (ts:list term) (x:var{ ~(x `Set.mem` freevars_terms ts) })
: Lemma
(ensures subst_terms
(subst_terms ts (open_with_var x i))
[ ND x i ]
== ts)
val close_open_inverse'_branches (i:nat) (brs:list branch)
(x:var{ ~(x `Set.mem` freevars_branches brs) })
: Lemma
(ensures subst_branches
(subst_branches brs (open_with_var x i))
[ ND x i ]
== brs)
val close_open_inverse'_branch (i:nat)
(br:branch)
(x:var{ ~(x `Set.mem` freevars_branch br) })
: Lemma
(ensures subst_branch
(subst_branch br (open_with_var x i))
[ ND x i ]
== br)
val close_open_inverse'_pattern (i:nat)
(p:pattern)
(x:var{ ~(x `Set.mem` freevars_pattern p) })
: Lemma
(ensures subst_pattern
(subst_pattern p (open_with_var x i))
[ ND x i ]
== p)
val close_open_inverse'_patterns (i:nat)
(ps:list (pattern & bool))
(x:var {~ (x `Set.mem` freevars_patterns ps) })
: Lemma
(ensures subst_patterns
(subst_patterns ps (open_with_var x i))
[ ND x i ]
== ps)
val close_open_inverse'_match_returns (i:nat) (m:match_returns_ascription)
(x:var{ ~(x `Set.mem` freevars_match_returns m) })
: Lemma
(ensures subst_match_returns
(subst_match_returns m (open_with_var x i))
[ ND x i ]
== m)
val close_open_inverse (e:R.term) (x:var {~ (x `Set.mem` freevars e) })
: Lemma (close_term (open_term e x) x == e)
//
// fst has corresponding lemmas for other syntax classes
//
val close_with_not_free_var (t:R.term) (x:var) (i:nat)
: Lemma
(requires ~ (Set.mem x (freevars t)))
(ensures subst_term t [ ND x i ] == t)
// this also requires x to be not in freevars e1 `Set.union` freevars e2
val equiv_arrow (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv)
(x:var { None? (lookup_bvar g x) })
(eq:equiv (extend_env g x ty)
(subst_term e1 (open_with_var x 0))
(subst_term e2 (open_with_var x 0)))
: equiv g (mk_arrow ty q e1)
(mk_arrow ty q e2)
// the proof for this requires e1 and e2 to be ln
val equiv_abs_close (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv)
(x:var{None? (lookup_bvar g x)})
(eq:equiv (extend_env g x ty) e1 e2)
: equiv g (mk_abs ty q (subst_term e1 [ ND x 0 ]))
(mk_abs ty q (subst_term e2 [ ND x 0 ]))
val open_with_gt_ln (e:term) (i:nat) (t:term) (j:nat)
: Lemma
(requires ln' e i /\ i < j)
(ensures subst_term e [ DT j t ] == e)
[SMTPat (ln' e i); SMTPat (subst_term e [ DT j t ])]
//
// Type of the top-level tactic that would splice-in the definitions
//
let fstar_env_fvs (g:R.env) =
lookup_fvar g unit_fv == Some (tm_type u_zero) /\
lookup_fvar g bool_fv == Some (tm_type u_zero) /\
lookup_fvar g b2t_fv == Some b2t_ty
type fstar_env = g:R.env{fstar_env_fvs g}
type fstar_top_env = g:fstar_env {
forall x. None? (lookup_bvar g x )
}
//
// This doesn't allow for universe polymorphic definitions
//
// May be we can change it to:
//
// g:fstar_top_env -> T.tac ((us, e, t):(univ_names & term & typ){typing (push g us) e t})
//
noeq
type sigelt_typing : env -> sigelt -> Type0 =
| ST_Let :
g : env ->
fv : R.fv ->
ty : R.typ ->
tm : R.term ->
squash (typing g tm (T.E_Total, ty)) ->
sigelt_typing g (pack_sigelt (Sg_Let false [pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = tm })]))
| ST_Let_Opaque :
g : env ->
fv : R.fv ->
ty : R.typ ->
(* no tm: only a proof of existence *)
squash (exists (tm:R.term). typing g tm (T.E_Total, ty)) ->
sigelt_typing g (pack_sigelt (Sg_Let false [pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = (`_) })]))
(**
* The type of the top-level tactic that would splice-in the definitions.
* It returns a list of well typed definitions, via the judgment above.
*
* Each definition can have a 'blob' attached with a given name.
* The blob can be used later, e.g., during extraction, and passed back to the
* extension to perform additional processing.
*)
(*
* It returns either:
* - Some tm, blob, typ, with a proof that `typing g tm typ`
* - None, blob, typ), with a proof that `exists tm. typing g tm typ`
* The blob itself is optional and can store some additional metadata that
* constructed by the tactic. If present, it will be stored in the
* sigmeta_extension_data field of the enclosing sigelt.
*
*)
let blob = string & R.term
(* If checked is true, this sigelt is properly typed for the environment. If not,
we don't know and let F* re-typecheck the sigelt. *)
let sigelt_for (g:env) =
tup:(bool & sigelt & option blob)
{
let (checked, se, _) = tup in
checked ==> sigelt_typing g se
}
let dsl_tac_result_t (g:env) = list (sigelt_for g)
type dsl_tac_t = g:fstar_top_env -> T.Tac (dsl_tac_result_t g)
val if_complete_match (g:env) (t:term)
: T.match_complete_token g t bool_ty [
Pat_Constant C_True;
Pat_Constant C_False;
] [[]; []]
// Derived rule for if
val mkif
(g:fstar_env)
(scrutinee:term)
(then_:term)
(else_:term)
(ty:term)
(u_ty:universe)
(hyp:var { None? (lookup_bvar g hyp) /\ ~(hyp `Set.mem` (freevars then_ `Set.union` freevars else_)) })
(eff:T.tot_or_ghost)
(ty_eff:T.tot_or_ghost)
(ts : typing g scrutinee (eff, bool_ty))
(tt : typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee true_bool)) then_ (eff, ty))
(te : typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee false_bool)) else_ (eff, ty))
(tr : typing g ty (ty_eff, tm_type u_ty))
: typing g (mk_if scrutinee then_ else_) (eff, ty)
(* Helper to return a single let definition in a splice_t tactic. *)
let mk_checked_let (g:R.env) (nm:string) (tm:R.term) (ty:R.typ{typing g tm (T.E_Total, ty)}) : T.Tac (sigelt_for g) =
let fv = pack_fv (T.cur_module () @ [nm]) in
let lb = R.pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = tm }) in
let se = R.pack_sigelt (R.Sg_Let false [lb]) in
let pf : sigelt_typing g se =
ST_Let g fv ty tm ()
in
( true, se, None ) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Reflection.V2.Data.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.Inhabited.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.Typing.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Reflection.V2.Data",
"short_module": "RD"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
g: FStar.Stubs.Reflection.Types.env ->
nm: Prims.string ->
tm: FStar.Stubs.Reflection.Types.term ->
ty: FStar.Stubs.Reflection.Types.typ
-> FStar.Tactics.Effect.Tac (FStar.Reflection.Typing.sigelt_for g) | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.env",
"Prims.string",
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Pervasives.Native.Mktuple3",
"Prims.bool",
"FStar.Stubs.Reflection.Types.sigelt",
"FStar.Pervasives.Native.option",
"FStar.Reflection.Typing.blob",
"FStar.Pervasives.Native.None",
"FStar.Stubs.Reflection.V2.Builtins.pack_sigelt",
"FStar.Stubs.Reflection.V2.Data.Sg_Let",
"Prims.Cons",
"FStar.Stubs.Reflection.Types.letbinding",
"Prims.Nil",
"FStar.Stubs.Reflection.V2.Builtins.pack_lb",
"FStar.Stubs.Reflection.V2.Data.Mklb_view",
"FStar.Stubs.Reflection.Types.univ_name",
"FStar.Reflection.Typing.sigelt_for",
"FStar.Stubs.Reflection.Types.fv",
"FStar.Stubs.Reflection.V2.Builtins.pack_fv",
"FStar.Stubs.Reflection.Types.name",
"FStar.List.Tot.Base.op_At",
"Prims.list",
"FStar.Tactics.V2.Derived.cur_module"
] | [] | false | true | false | false | false | let mk_unchecked_let (g: R.env) (nm: string) (tm: R.term) (ty: R.typ) : T.Tac (sigelt_for g) =
| let fv = pack_fv (T.cur_module () @ [nm]) in
let lb = R.pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = tm }) in
let se = R.pack_sigelt (R.Sg_Let false [lb]) in
(false, se, None) | false |
Hacl.Spec.K256.Field52.Lemmas2.fst | Hacl.Spec.K256.Field52.Lemmas2.lemma_a_minus_b_n_c_n_k | val lemma_a_minus_b_n_c_n_k (k a b c:nat) (n:pos) : Lemma
(requires k < n /\ k == a - b * n - c * n)
(ensures k == a % n) | val lemma_a_minus_b_n_c_n_k (k a b c:nat) (n:pos) : Lemma
(requires k < n /\ k == a - b * n - c * n)
(ensures k == a % n) | let lemma_a_minus_b_n_c_n_k k a b c n =
Math.Lemmas.lemma_mod_sub (a - b * n) n c;
Math.Lemmas.lemma_mod_sub a n b;
Math.Lemmas.small_mod k n | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 27,
"end_line": 352,
"start_col": 0,
"start_line": 349
} | module Hacl.Spec.K256.Field52.Lemmas2
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
include Hacl.Spec.K256.Field52.Definitions
include Hacl.Spec.K256.Field52
module ML = Hacl.Spec.K256.MathLemmas
module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas
#set-options "--z3rlimit 100 --fuel 0 --ifuel 0"
/// Normalize-weak
val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires felem_fits5 f m)
(ensures
(let x, r = minus_x_mul_pow2_256 f in
let (r0,r1,r2,r3,r4) = r in
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
v x < pow2 16 /\ v x = v t4 / pow2 48 /\
v r4 = v t4 % pow2 48 /\
as_nat5 r == as_nat5 f - v x * pow2 256 /\
felem_fits5 r (m0,m1,m2,m3,1)))
let minus_x_mul_pow2_256_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
let x = t4 >>. 48ul in let t4' = t4 &. mask48 in
LD.lemma_mask48 t4;
let r = (t0,t1,t2,t3,t4') in
calc (==) { // as_nat5 f
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208;
(==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208;
(==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208;
(==) { }
(v x * pow2 48) * pow208 + as_nat5 r;
(==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 }
v x * pow2 256 + as_nat5 r;
};
Math.Lemmas.lemma_div_lt (v t4) 64 48
val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f (m0,m1,m2,m3,1)))
(ensures (let r = carry_round5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let carry_round_after_last_carry_mod_prime5_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in //(m0,m1,m2,m3,1)
let t1' = t1 +. (t0 >>. 52ul) in let t0' = t0 &. mask52 in
LD.lemma_carry52 m1 m0 t1 t0;
assert (felem_fits1 t1' (m1 + 1));
assert (felem_fits1 t0' 1);
assert (v t0' = v t0 % pow2 52);
assert (v t1' = v t1 + v t0 / pow2 52);
let t2' = t2 +. (t1' >>. 52ul) in let t1'' = t1' &. mask52 in
LD.lemma_carry52 m2 (m1 + 1) t2 t1';
assert (felem_fits1 t2' (m2 + 1));
assert (felem_fits1 t1'' 1);
assert (v t1'' = v t1' % pow2 52);
assert (v t2' = v t2 + v t1' / pow2 52);
let t3' = t3 +. (t2' >>. 52ul) in let t2'' = t2' &. mask52 in
LD.lemma_carry52 m3 (m2 + 1) t3 t2';
assert (felem_fits1 t3' (m3 + 1));
assert (felem_fits1 t2'' 1);
assert (v t2'' = v t2' % pow2 52);
assert (v t3' = v t3 + v t2' / pow2 52);
let t4' = t4 +. (t3' >>. 52ul) in let t3'' = t3' &. mask52 in
LD.lemma_carry_last52 m4 (m3 + 1) t4 t3';
assert (felem_fits_last1 t4' (m4 + 1));
assert (felem_fits1 t3'' 1);
assert (v t3'' = v t3' % pow2 52);
assert (v t4' = v t4 + v t3' / pow2 52);
LD.carry_last_small_mod_lemma t4 t3';
ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4);
let r = carry_round5 f in
assert ((t0',t1'',t2'',t3'',t4') == r);
assert (as_nat5 r == as_nat5 f)
val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f m /\ v x < pow2 16))
(ensures
(let r = plus_x_mul_pow2_256_minus_prime x f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let plus_x_mul_pow2_256_minus_prime_lemma m x f =
let (t0,t1,t2,t3,t4) = f in
let (m0,m1,m2,m3,m4) = m in
let t0' = t0 +. x *. u64 0x1000003D1 in
assert (v x < pow2 16);
Math.Lemmas.lemma_mult_lt_right 0x1000003D1 (v x) (pow2 16);
assert_norm (pow2 16 * 0x1000003D1 < max52);
assert (v t0 + v x * 0x1000003D1 < (m0 + 1) * max52);
Math.Lemmas.lemma_mult_le_right max52 (m0 + 1) 4096;
assert_norm (4096 * max52 < pow2 64);
Math.Lemmas.small_mod (v t0 + v x * 0x1000003D1) (pow2 64);
assert (v t0' = v t0 + v x * 0x1000003D1);
assert (felem_fits1 t0' (m0 + 1));
let r = carry_round5 (t0',t1,t2,t3,t4) in
carry_round_after_last_carry_mod_prime5_lemma (m0+1,m1,m2,m3,m4) (t0',t1,t2,t3,t4);
assert (as_nat5 r == as_nat5 (t0',t1,t2,t3,t4));
LD.lemma_pow2_256_minus_prime ();
assert (as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime))
val normalize_weak5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
felem_fits5 f m))
(ensures (let r = normalize_weak5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f - v t4 / pow2 48 * S.prime /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let normalize_weak5_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let x, f1 = minus_x_mul_pow2_256 f in
minus_x_mul_pow2_256_lemma m f;
assert (as_nat5 f1 == as_nat5 f - v x * pow2 256);
assert (felem_fits5 f1 (m0,m1,m2,m3,1));
let f2 = plus_x_mul_pow2_256_minus_prime x f1 in
plus_x_mul_pow2_256_minus_prime_lemma (m0,m1,m2,m3,1) x f1;
assert (as_nat5 f2 == as_nat5 f1 + v x * (pow2 256 - S.prime));
assert (felem_fits5 f2 (1,1,1,1,2));
assert (f2 == normalize_weak5 f);
Math.Lemmas.distributivity_sub_right (v x) (pow2 256) S.prime;
assert (as_nat5 f2 == as_nat5 f - v x * S.prime)
/// Normalize
#push-options "--ifuel 1"
val is_felem_ge_prime5_lemma: f:felem5 -> Lemma
(requires felem_fits5 f (1,1,1,1,1))
(ensures (let is_m = is_felem_ge_prime5 f in
(v is_m = 0 \/ v is_m = ones_v U64) /\
(if v is_m = ones_v U64 then (as_nat5 f >= S.prime) else (as_nat5 f < S.prime))))
let is_felem_ge_prime5_lemma f = ()
#pop-options
// let (f0,f1,f2,f3,f4) = f in
// let m4 = eq_mask f4 mask48 in
// eq_mask_lemma f4 mask48;
// assert (if v f4 = v mask48 then v m4 = ones_v U64 else v m4 = 0);
// let m3 = eq_mask f3 mask52 in
// eq_mask_lemma f3 mask52;
// assert (if v f3 = v mask52 then v m3 = ones_v U64 else v m3 = 0);
// let m2 = eq_mask f2 mask52 in
// eq_mask_lemma f2 mask52;
// assert (if v f2 = v mask52 then v m2 = ones_v U64 else v m2 = 0);
// let m1 = eq_mask f1 mask52 in
// eq_mask_lemma f1 mask52;
// assert (if v f1 = v mask52 then v m1 = ones_v U64 else v m1 = 0);
// let m0 = gte_mask f0 (u64 0xffffefffffc2f) in
// gte_mask_lemma f0 (u64 0xffffefffffc2f);
// assert (if v f0 >= 0xffffefffffc2f then v m0 = ones_v U64 else v m0 = 0);
// let m = m0 &. m1 &. m2 &. m3 &. m4 in ()
// if v m4 = 0 then
// logand_zeros (m0 &. m1 &. m2 &. m3)
// else begin
// logand_ones (m0 &. m1 &. m2 &. m3) end
noextract
let normalize5_first_part (f0,f1,f2,f3,f4) =
let (t0,t1,t2,t3,t4) = normalize_weak5 (f0,f1,f2,f3,f4) in
let x, (r0,r1,r2,r3,r4) = minus_x_mul_pow2_256 (t0,t1,t2,t3,t4) in
x, (r0,r1,r2,r3,r4)
noextract
let normalize5_second_part_x (x:uint64) (r0,r1,r2,r3,r4) : felem5 =
let is_ge_p_m = is_felem_ge_prime5 (r0,r1,r2,r3,r4) in // as_nat r >= S.prime
let m_to_one = is_ge_p_m &. u64 1 in
let x1 = m_to_one |. x in
let (s0,s1,s2,s3,s4) = plus_x_mul_pow2_256_minus_prime x1 (r0,r1,r2,r3,r4) in
let x2, (k0,k1,k2,k3,k4) = minus_x_mul_pow2_256 (s0,s1,s2,s3,s4) in
(k0,k1,k2,k3,k4)
val normalize5_first_part_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
felem_fits5 f m))
(ensures (let x, r = normalize5_first_part f in
let (f0,f1,f2,f3,f4) = f in
let (r0,r1,r2,r3,r4) = r in
as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256 /\
felem_fits5 r (1,1,1,1,1) /\ (v x = 0 \/ (v x = 1 /\ v r4 < pow2 12))))
let normalize5_first_part_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (f0,f1,f2,f3,f4) = f in
let t = normalize_weak5 f in
let (t0,t1,t2,t3,t4) = t in
normalize_weak5_lemma m f;
assert (as_nat5 t == as_nat5 f - v f4 / pow2 48 * S.prime);
assert (felem_fits5 t (1,1,1,1,2));
assert ((v t4 >= pow2 48 ==> v t4 % pow2 48 < pow2 12));
let x, r = minus_x_mul_pow2_256 t in
let (r0,r1,r2,r3,r4) = r in
minus_x_mul_pow2_256_lemma (1,1,1,1,2) t;
assert (as_nat5 r == as_nat5 t - v x * pow2 256);
assert (as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256);
assert (felem_fits5 r (1,1,1,1,1));
assert (v r4 = v t4 % pow2 48 /\ v x = v t4 / pow2 48);
LD.lemma_div_pow48 t4;
assert (if v t4 < pow2 48 then v x = 0 else v x = 1 /\ v r4 < pow2 12)
val normalize5_second_part_x_is_one_lemma: x:uint64 -> r:felem5 -> Lemma
(requires (let (r0,r1,r2,r3,r4) = r in
felem_fits5 r (1,1,1,1,1) /\ v x = 1 /\ v r4 < pow2 12))
(ensures (let k = normalize5_second_part_x x r in
as_nat5 k == as_nat5 r + v x * pow2 256 - S.prime /\
felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime))
let normalize5_second_part_x_is_one_lemma x r =
LD.lemma_as_nat_bound_f4_lt_pow12 r;
assert (as_nat5 r <= pow2 220 - 1);
assert_norm (pow2 220 - 1 < S.prime);
let is_ge_p_m = is_felem_ge_prime5 r in
is_felem_ge_prime5_lemma r;
assert (v is_ge_p_m = 0);
let m_to_one = is_ge_p_m &. u64 1 in
logand_lemma is_ge_p_m (u64 1);
assert (v m_to_one = 0);
let x1 = m_to_one |. x in //1
logor_spec m_to_one x;
FStar.UInt.logor_commutative #64 (v m_to_one) (v x);
FStar.UInt.logor_lemma_1 #64 (v x);
assert (v x1 = 1);
let s = plus_x_mul_pow2_256_minus_prime x1 r in // + x * (pow2 256 - S.prime)
plus_x_mul_pow2_256_minus_prime_lemma (1,1,1,1,1) x1 r;
assert (as_nat5 s = as_nat5 r + pow2 256 - S.prime); //(v s4 >= pow2 48 ==> v s4 % pow2 48 < pow2 12)
let (s0,s1,s2,s3,s4) = s in
Math.Lemmas.pow2_double_sum 12;
assert (v s4 < pow2 13);
let x2, k = minus_x_mul_pow2_256 s in // - s4 / pow2 48 * pow2 256
minus_x_mul_pow2_256_lemma (1,1,1,1,2) s;
assert (felem_fits5 k (1,1,1,1,1));
assert (as_nat5 k = as_nat5 s - v s4 / pow2 48 * pow2 256);
LD.lemma_div_pow48 s4;
assert (as_nat5 k = as_nat5 s);
assert (as_nat5 k < pow2 220 + pow2 256 - S.prime);
assert_norm (pow2 220 + pow2 256 - S.prime < S.prime)
val normalize5_second_part_x_is_zero_lemma: x:uint64 -> r:felem5 -> Lemma
(requires (let (r0,r1,r2,r3,r4) = r in
felem_fits5 r (1,1,1,1,1) /\ v x = 0))
(ensures (let k = normalize5_second_part_x x r in
as_nat5 k == (if as_nat5 r < S.prime then as_nat5 r else as_nat5 r - S.prime) /\
felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime))
let normalize5_second_part_x_is_zero_lemma x r =
let is_ge_p_m = is_felem_ge_prime5 r in
is_felem_ge_prime5_lemma r;
assert (if v is_ge_p_m = ones_v U64
then (as_nat5 r >= S.prime) else as_nat5 r < S.prime);
let m_to_one = is_ge_p_m &. u64 1 in
logand_lemma is_ge_p_m (u64 1);
assert (if v is_ge_p_m = ones_v U64 then v m_to_one = 1 else v m_to_one = 0);
let x1 = m_to_one |. x in //1
logor_spec m_to_one x;
FStar.UInt.logor_lemma_1 #64 (v m_to_one);
assert (v x1 = v m_to_one);
assert (if v x1 = 1 then (as_nat5 r >= S.prime) else as_nat5 r < S.prime);
let s = plus_x_mul_pow2_256_minus_prime x1 r in // + x1 * (pow2 256 - S.prime)
plus_x_mul_pow2_256_minus_prime_lemma (1,1,1,1,1) x1 r;
assert (as_nat5 s = as_nat5 r + v x1 * (pow2 256 - S.prime)); //(v s4 >= pow2 48 ==> v s4 % pow2 48 < pow2 12)
let (s0,s1,s2,s3,s4) = s in
let x2, k = minus_x_mul_pow2_256 s in // - s4 / pow2 48 * pow2 256
minus_x_mul_pow2_256_lemma (1,1,1,1,2) s;
assert (felem_fits5 k (1,1,1,1,1));
assert (as_nat5 k = as_nat5 s - v s4 / pow2 48 * pow2 256);
if v x1 = 0 then begin
assert (as_nat5 s = as_nat5 r);
LD.as_nat_inj s r;
assert (felem_fits_last1 s4 1);
Math.Lemmas.small_div (v s4) (pow2 48);
assert (as_nat5 k = as_nat5 r) end
else begin
assert (as_nat5 s = as_nat5 r + pow2 256 - S.prime);
assert (as_nat5 s >= pow2 256);
assert (v s4 >= pow2 48);
LD.lemma_div_pow48 s4;
assert (as_nat5 k = as_nat5 r - S.prime) end
val lemma_a_minus_b_n_c_n_k (k a b c:nat) (n:pos) : Lemma
(requires k < n /\ k == a - b * n - c * n)
(ensures k == a % n) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.K256.MathLemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.fst.checked",
"Hacl.Spec.K256.Field52.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas",
"short_module": "LD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.MathLemmas",
"short_module": "ML"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | k: Prims.nat -> a: Prims.nat -> b: Prims.nat -> c: Prims.nat -> n: Prims.pos
-> FStar.Pervasives.Lemma (requires k < n /\ k == a - b * n - c * n) (ensures k == a % n) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.pos",
"FStar.Math.Lemmas.small_mod",
"Prims.unit",
"FStar.Math.Lemmas.lemma_mod_sub",
"Prims.op_Subtraction",
"FStar.Mul.op_Star"
] | [] | true | false | true | false | false | let lemma_a_minus_b_n_c_n_k k a b c n =
| Math.Lemmas.lemma_mod_sub (a - b * n) n c;
Math.Lemmas.lemma_mod_sub a n b;
Math.Lemmas.small_mod k n | false |
Vale.X64.BufferViewStore.fst | Vale.X64.BufferViewStore.get64_aux | val get64_aux (ptr: int) (heap: machine_heap) (v: nat64) (k: nat{k < 8})
: Lemma (requires get_heap_val64 ptr heap == v)
(ensures heap.[ ptr + k ] == UInt8.v (Seq.index (put64 (UInt64.uint_to_t v)) k)) | val get64_aux (ptr: int) (heap: machine_heap) (v: nat64) (k: nat{k < 8})
: Lemma (requires get_heap_val64 ptr heap == v)
(ensures heap.[ ptr + k ] == UInt8.v (Seq.index (put64 (UInt64.uint_to_t v)) k)) | let get64_aux (ptr:int) (heap:machine_heap) (v:nat64) (k:nat{k < 8}) : Lemma
(requires get_heap_val64 ptr heap == v)
(ensures heap.[ptr + k] == UInt8.v (Seq.index (put64 (UInt64.uint_to_t v)) k)) =
get_heap_val64_reveal ();
put64_reveal ();
le_nat64_to_bytes_reveal ();
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
four_to_nat_8_injective ();
two_to_nat_32_injective () | {
"file_name": "vale/code/arch/x64/Vale.X64.BufferViewStore.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 28,
"end_line": 38,
"start_col": 0,
"start_line": 30
} | module Vale.X64.BufferViewStore
open FStar.Mul
open Vale.Interop.Views
open Vale.Interop
module MB = LowStar.Monotonic.Buffer
module HS = FStar.HyperStack
open Vale.Lib.BufferViewHelpers
open Vale.Def.Types_s
open Vale.Def.Words_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Two
open Vale.Def.Words.Four_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Seq
open Vale.Arch.Types
open FStar.Calc
friend LowStar.BufferView.Up
#reset-options "--z3rlimit 10 --max_fuel 0 --initial_fuel 0 --max_ifuel 1 --initial_ifuel 1"
let math_aux (a b c:int) : Lemma (a + b + (c - b) == a + c) = ()
let map_aux (ptr1 ptr2:int) (v:int) (m:machine_heap) : Lemma
(requires ptr1 == ptr2 /\ m.[ptr1] == v)
(ensures m.[ptr2] == v) = () | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.BufferViewHelpers.fst.checked",
"Vale.Interop.Views.fsti.checked",
"Vale.Interop.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Seq.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.Arch.MachineHeap.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferView.Up.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.BufferViewStore.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.BufferViewHelpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "Vale.Interop",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Views",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Interop.Base",
"short_module": "IB"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.BufferViewHelpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Up",
"short_module": "UV"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "Vale.Interop",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Views",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
ptr: Prims.int ->
heap: Vale.Arch.MachineHeap_s.machine_heap ->
v: Vale.Def.Words_s.nat64 ->
k: Prims.nat{k < 8}
-> FStar.Pervasives.Lemma (requires Vale.Arch.MachineHeap_s.get_heap_val64 ptr heap == v)
(ensures
heap.[ ptr + k ] ==
FStar.UInt8.v (FStar.Seq.Base.index (Vale.Interop.Views.put64 (FStar.UInt64.uint_to_t v)) k)
) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.int",
"Vale.Arch.MachineHeap_s.machine_heap",
"Vale.Def.Words_s.nat64",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Vale.Def.Words.Two.two_to_nat_32_injective",
"Prims.unit",
"Vale.Def.Words.Seq.four_to_nat_8_injective",
"FStar.Pervasives.reveal_opaque",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.nat8",
"Prims.eq2",
"FStar.Seq.Base.length",
"FStar.Mul.op_Star",
"Vale.Def.Words.Seq_s.seq_four_to_seq_LE",
"Vale.Def.Types_s.le_nat64_to_bytes_reveal",
"Vale.Interop.Views.put64_reveal",
"Vale.Arch.MachineHeap_s.get_heap_val64_reveal",
"Vale.Arch.MachineHeap_s.get_heap_val64",
"Prims.squash",
"Prims.l_or",
"Prims.l_and",
"Prims.op_GreaterThanOrEqual",
"Vale.Def.Words_s.pow2_8",
"FStar.UInt.size",
"FStar.UInt8.n",
"Vale.Interop.op_String_Access",
"Vale.Def.Types_s.nat8",
"Prims.op_Addition",
"FStar.UInt8.v",
"FStar.Seq.Base.index",
"FStar.UInt8.t",
"Vale.Interop.Views.put64",
"FStar.UInt64.uint_to_t",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let get64_aux (ptr: int) (heap: machine_heap) (v: nat64) (k: nat{k < 8})
: Lemma (requires get_heap_val64 ptr heap == v)
(ensures heap.[ ptr + k ] == UInt8.v (Seq.index (put64 (UInt64.uint_to_t v)) k)) =
| get_heap_val64_reveal ();
put64_reveal ();
le_nat64_to_bytes_reveal ();
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
four_to_nat_8_injective ();
two_to_nat_32_injective () | false |
Hacl.Spec.K256.Field52.Lemmas2.fst | Hacl.Spec.K256.Field52.Lemmas2.normalize5_first_part_lemma | val normalize5_first_part_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
felem_fits5 f m))
(ensures (let x, r = normalize5_first_part f in
let (f0,f1,f2,f3,f4) = f in
let (r0,r1,r2,r3,r4) = r in
as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256 /\
felem_fits5 r (1,1,1,1,1) /\ (v x = 0 \/ (v x = 1 /\ v r4 < pow2 12)))) | val normalize5_first_part_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
felem_fits5 f m))
(ensures (let x, r = normalize5_first_part f in
let (f0,f1,f2,f3,f4) = f in
let (r0,r1,r2,r3,r4) = r in
as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256 /\
felem_fits5 r (1,1,1,1,1) /\ (v x = 0 \/ (v x = 1 /\ v r4 < pow2 12)))) | let normalize5_first_part_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (f0,f1,f2,f3,f4) = f in
let t = normalize_weak5 f in
let (t0,t1,t2,t3,t4) = t in
normalize_weak5_lemma m f;
assert (as_nat5 t == as_nat5 f - v f4 / pow2 48 * S.prime);
assert (felem_fits5 t (1,1,1,1,2));
assert ((v t4 >= pow2 48 ==> v t4 % pow2 48 < pow2 12));
let x, r = minus_x_mul_pow2_256 t in
let (r0,r1,r2,r3,r4) = r in
minus_x_mul_pow2_256_lemma (1,1,1,1,2) t;
assert (as_nat5 r == as_nat5 t - v x * pow2 256);
assert (as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256);
assert (felem_fits5 r (1,1,1,1,1));
assert (v r4 = v t4 % pow2 48 /\ v x = v t4 / pow2 48);
LD.lemma_div_pow48 t4;
assert (if v t4 < pow2 48 then v x = 0 else v x = 1 /\ v r4 < pow2 12) | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 72,
"end_line": 249,
"start_col": 0,
"start_line": 231
} | module Hacl.Spec.K256.Field52.Lemmas2
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
include Hacl.Spec.K256.Field52.Definitions
include Hacl.Spec.K256.Field52
module ML = Hacl.Spec.K256.MathLemmas
module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas
#set-options "--z3rlimit 100 --fuel 0 --ifuel 0"
/// Normalize-weak
val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires felem_fits5 f m)
(ensures
(let x, r = minus_x_mul_pow2_256 f in
let (r0,r1,r2,r3,r4) = r in
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
v x < pow2 16 /\ v x = v t4 / pow2 48 /\
v r4 = v t4 % pow2 48 /\
as_nat5 r == as_nat5 f - v x * pow2 256 /\
felem_fits5 r (m0,m1,m2,m3,1)))
let minus_x_mul_pow2_256_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
let x = t4 >>. 48ul in let t4' = t4 &. mask48 in
LD.lemma_mask48 t4;
let r = (t0,t1,t2,t3,t4') in
calc (==) { // as_nat5 f
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208;
(==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208;
(==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208;
(==) { }
(v x * pow2 48) * pow208 + as_nat5 r;
(==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 }
v x * pow2 256 + as_nat5 r;
};
Math.Lemmas.lemma_div_lt (v t4) 64 48
val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f (m0,m1,m2,m3,1)))
(ensures (let r = carry_round5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let carry_round_after_last_carry_mod_prime5_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in //(m0,m1,m2,m3,1)
let t1' = t1 +. (t0 >>. 52ul) in let t0' = t0 &. mask52 in
LD.lemma_carry52 m1 m0 t1 t0;
assert (felem_fits1 t1' (m1 + 1));
assert (felem_fits1 t0' 1);
assert (v t0' = v t0 % pow2 52);
assert (v t1' = v t1 + v t0 / pow2 52);
let t2' = t2 +. (t1' >>. 52ul) in let t1'' = t1' &. mask52 in
LD.lemma_carry52 m2 (m1 + 1) t2 t1';
assert (felem_fits1 t2' (m2 + 1));
assert (felem_fits1 t1'' 1);
assert (v t1'' = v t1' % pow2 52);
assert (v t2' = v t2 + v t1' / pow2 52);
let t3' = t3 +. (t2' >>. 52ul) in let t2'' = t2' &. mask52 in
LD.lemma_carry52 m3 (m2 + 1) t3 t2';
assert (felem_fits1 t3' (m3 + 1));
assert (felem_fits1 t2'' 1);
assert (v t2'' = v t2' % pow2 52);
assert (v t3' = v t3 + v t2' / pow2 52);
let t4' = t4 +. (t3' >>. 52ul) in let t3'' = t3' &. mask52 in
LD.lemma_carry_last52 m4 (m3 + 1) t4 t3';
assert (felem_fits_last1 t4' (m4 + 1));
assert (felem_fits1 t3'' 1);
assert (v t3'' = v t3' % pow2 52);
assert (v t4' = v t4 + v t3' / pow2 52);
LD.carry_last_small_mod_lemma t4 t3';
ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4);
let r = carry_round5 f in
assert ((t0',t1'',t2'',t3'',t4') == r);
assert (as_nat5 r == as_nat5 f)
val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f m /\ v x < pow2 16))
(ensures
(let r = plus_x_mul_pow2_256_minus_prime x f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let plus_x_mul_pow2_256_minus_prime_lemma m x f =
let (t0,t1,t2,t3,t4) = f in
let (m0,m1,m2,m3,m4) = m in
let t0' = t0 +. x *. u64 0x1000003D1 in
assert (v x < pow2 16);
Math.Lemmas.lemma_mult_lt_right 0x1000003D1 (v x) (pow2 16);
assert_norm (pow2 16 * 0x1000003D1 < max52);
assert (v t0 + v x * 0x1000003D1 < (m0 + 1) * max52);
Math.Lemmas.lemma_mult_le_right max52 (m0 + 1) 4096;
assert_norm (4096 * max52 < pow2 64);
Math.Lemmas.small_mod (v t0 + v x * 0x1000003D1) (pow2 64);
assert (v t0' = v t0 + v x * 0x1000003D1);
assert (felem_fits1 t0' (m0 + 1));
let r = carry_round5 (t0',t1,t2,t3,t4) in
carry_round_after_last_carry_mod_prime5_lemma (m0+1,m1,m2,m3,m4) (t0',t1,t2,t3,t4);
assert (as_nat5 r == as_nat5 (t0',t1,t2,t3,t4));
LD.lemma_pow2_256_minus_prime ();
assert (as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime))
val normalize_weak5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
felem_fits5 f m))
(ensures (let r = normalize_weak5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f - v t4 / pow2 48 * S.prime /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let normalize_weak5_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let x, f1 = minus_x_mul_pow2_256 f in
minus_x_mul_pow2_256_lemma m f;
assert (as_nat5 f1 == as_nat5 f - v x * pow2 256);
assert (felem_fits5 f1 (m0,m1,m2,m3,1));
let f2 = plus_x_mul_pow2_256_minus_prime x f1 in
plus_x_mul_pow2_256_minus_prime_lemma (m0,m1,m2,m3,1) x f1;
assert (as_nat5 f2 == as_nat5 f1 + v x * (pow2 256 - S.prime));
assert (felem_fits5 f2 (1,1,1,1,2));
assert (f2 == normalize_weak5 f);
Math.Lemmas.distributivity_sub_right (v x) (pow2 256) S.prime;
assert (as_nat5 f2 == as_nat5 f - v x * S.prime)
/// Normalize
#push-options "--ifuel 1"
val is_felem_ge_prime5_lemma: f:felem5 -> Lemma
(requires felem_fits5 f (1,1,1,1,1))
(ensures (let is_m = is_felem_ge_prime5 f in
(v is_m = 0 \/ v is_m = ones_v U64) /\
(if v is_m = ones_v U64 then (as_nat5 f >= S.prime) else (as_nat5 f < S.prime))))
let is_felem_ge_prime5_lemma f = ()
#pop-options
// let (f0,f1,f2,f3,f4) = f in
// let m4 = eq_mask f4 mask48 in
// eq_mask_lemma f4 mask48;
// assert (if v f4 = v mask48 then v m4 = ones_v U64 else v m4 = 0);
// let m3 = eq_mask f3 mask52 in
// eq_mask_lemma f3 mask52;
// assert (if v f3 = v mask52 then v m3 = ones_v U64 else v m3 = 0);
// let m2 = eq_mask f2 mask52 in
// eq_mask_lemma f2 mask52;
// assert (if v f2 = v mask52 then v m2 = ones_v U64 else v m2 = 0);
// let m1 = eq_mask f1 mask52 in
// eq_mask_lemma f1 mask52;
// assert (if v f1 = v mask52 then v m1 = ones_v U64 else v m1 = 0);
// let m0 = gte_mask f0 (u64 0xffffefffffc2f) in
// gte_mask_lemma f0 (u64 0xffffefffffc2f);
// assert (if v f0 >= 0xffffefffffc2f then v m0 = ones_v U64 else v m0 = 0);
// let m = m0 &. m1 &. m2 &. m3 &. m4 in ()
// if v m4 = 0 then
// logand_zeros (m0 &. m1 &. m2 &. m3)
// else begin
// logand_ones (m0 &. m1 &. m2 &. m3) end
noextract
let normalize5_first_part (f0,f1,f2,f3,f4) =
let (t0,t1,t2,t3,t4) = normalize_weak5 (f0,f1,f2,f3,f4) in
let x, (r0,r1,r2,r3,r4) = minus_x_mul_pow2_256 (t0,t1,t2,t3,t4) in
x, (r0,r1,r2,r3,r4)
noextract
let normalize5_second_part_x (x:uint64) (r0,r1,r2,r3,r4) : felem5 =
let is_ge_p_m = is_felem_ge_prime5 (r0,r1,r2,r3,r4) in // as_nat r >= S.prime
let m_to_one = is_ge_p_m &. u64 1 in
let x1 = m_to_one |. x in
let (s0,s1,s2,s3,s4) = plus_x_mul_pow2_256_minus_prime x1 (r0,r1,r2,r3,r4) in
let x2, (k0,k1,k2,k3,k4) = minus_x_mul_pow2_256 (s0,s1,s2,s3,s4) in
(k0,k1,k2,k3,k4)
val normalize5_first_part_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
felem_fits5 f m))
(ensures (let x, r = normalize5_first_part f in
let (f0,f1,f2,f3,f4) = f in
let (r0,r1,r2,r3,r4) = r in
as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256 /\
felem_fits5 r (1,1,1,1,1) /\ (v x = 0 \/ (v x = 1 /\ v r4 < pow2 12)))) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.K256.MathLemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.fst.checked",
"Hacl.Spec.K256.Field52.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas",
"short_module": "LD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.MathLemmas",
"short_module": "ML"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: Hacl.Spec.K256.Field52.Definitions.scale64_5 -> f: Hacl.Spec.K256.Field52.Definitions.felem5
-> FStar.Pervasives.Lemma
(requires
(let _ = m in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ m0 m1 m2 m3 _ = _ in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
Hacl.Spec.K256.Field52.Definitions.felem_fits5 f m)
<:
Type0))
(ensures
(let _ = Hacl.Spec.K256.Field52.Lemmas2.normalize5_first_part f in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ x r = _ in
let _ = f in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ f4 = _ in
let _ = r in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ r4 = _ in
Hacl.Spec.K256.Field52.Definitions.as_nat5 r ==
Hacl.Spec.K256.Field52.Definitions.as_nat5 f -
(Lib.IntTypes.v f4 / Prims.pow2 48) * Spec.K256.PointOps.prime -
Lib.IntTypes.v x * Prims.pow2 256 /\
Hacl.Spec.K256.Field52.Definitions.felem_fits5 r (1, 1, 1, 1, 1) /\
(Lib.IntTypes.v x = 0 \/ Lib.IntTypes.v x = 1 /\ Lib.IntTypes.v r4 < Prims.pow2 12))
<:
Type0)
<:
Type0)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.K256.Field52.Definitions.scale64_5",
"Hacl.Spec.K256.Field52.Definitions.felem5",
"Prims.nat",
"Lib.IntTypes.uint64",
"Prims._assert",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.pow2",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Prims.l_and",
"Prims.unit",
"Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_div_pow48",
"Prims.op_Modulus",
"Prims.op_Division",
"Hacl.Spec.K256.Field52.Definitions.felem_fits5",
"FStar.Pervasives.Native.Mktuple5",
"Prims.eq2",
"Hacl.Spec.K256.Field52.Definitions.as_nat5",
"Prims.op_Subtraction",
"FStar.Mul.op_Star",
"Spec.K256.PointOps.prime",
"Hacl.Spec.K256.Field52.Lemmas2.minus_x_mul_pow2_256_lemma",
"FStar.Pervasives.Native.tuple2",
"Lib.IntTypes.int_t",
"Hacl.Spec.K256.Field52.minus_x_mul_pow2_256",
"Prims.l_imp",
"Prims.op_GreaterThanOrEqual",
"Hacl.Spec.K256.Field52.Lemmas2.normalize_weak5_lemma",
"Hacl.Spec.K256.Field52.normalize_weak5"
] | [] | false | false | true | false | false | let normalize5_first_part_lemma m f =
| let m0, m1, m2, m3, m4 = m in
let f0, f1, f2, f3, f4 = f in
let t = normalize_weak5 f in
let t0, t1, t2, t3, t4 = t in
normalize_weak5_lemma m f;
assert (as_nat5 t == as_nat5 f - (v f4 / pow2 48) * S.prime);
assert (felem_fits5 t (1, 1, 1, 1, 2));
assert ((v t4 >= pow2 48 ==> v t4 % pow2 48 < pow2 12));
let x, r = minus_x_mul_pow2_256 t in
let r0, r1, r2, r3, r4 = r in
minus_x_mul_pow2_256_lemma (1, 1, 1, 1, 2) t;
assert (as_nat5 r == as_nat5 t - v x * pow2 256);
assert (as_nat5 r == as_nat5 f - (v f4 / pow2 48) * S.prime - v x * pow2 256);
assert (felem_fits5 r (1, 1, 1, 1, 1));
assert (v r4 = v t4 % pow2 48 /\ v x = v t4 / pow2 48);
LD.lemma_div_pow48 t4;
assert (if v t4 < pow2 48 then v x = 0 else v x = 1 /\ v r4 < pow2 12) | false |
PulseTutorial.SpinLock.fst | PulseTutorial.SpinLock.lock_inv | val lock_inv : r: Pulse.Lib.Reference.ref FStar.UInt32.t -> p: Pulse.Lib.Core.vprop -> Pulse.Lib.Core.vprop | let lock_inv (r:ref U32.t) (p:vprop) =
exists* v. pts_to r v ** maybe (v = 0ul) p | {
"file_name": "share/steel/examples/pulse/by-example/PulseTutorial.SpinLock.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 44,
"end_line": 11,
"start_col": 0,
"start_line": 10
} | module PulseTutorial.SpinLock
open Pulse.Lib.Pervasives
module Box = Pulse.Lib.Box
module U32 = FStar.UInt32
//lock$
let maybe (b:bool) (p:vprop) =
if b then p else emp | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Pervasives.fst.checked",
"Pulse.Lib.Box.fsti.checked",
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "PulseTutorial.SpinLock.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Pulse.Lib.Box",
"short_module": "Box"
},
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseTutorial",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseTutorial",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Pulse.Lib.Reference.ref FStar.UInt32.t -> p: Pulse.Lib.Core.vprop -> Pulse.Lib.Core.vprop | Prims.Tot | [
"total"
] | [] | [
"Pulse.Lib.Reference.ref",
"FStar.UInt32.t",
"Pulse.Lib.Core.vprop",
"Pulse.Lib.Core.op_exists_Star",
"Pulse.Lib.Core.op_Star_Star",
"Pulse.Lib.Reference.pts_to",
"PulseCore.FractionalPermission.full_perm",
"PulseTutorial.SpinLock.maybe",
"Prims.op_Equality",
"FStar.UInt32.__uint_to_t"
] | [] | false | false | false | true | false | let lock_inv (r: ref U32.t) (p: vprop) =
| exists* v. pts_to r v ** maybe (v = 0ul) p | false |
|
PulseTutorial.SpinLock.fst | PulseTutorial.SpinLock.maybe | val maybe : b: Prims.bool -> p: Pulse.Lib.Core.vprop -> Pulse.Lib.Core.vprop | let maybe (b:bool) (p:vprop) =
if b then p else emp | {
"file_name": "share/steel/examples/pulse/by-example/PulseTutorial.SpinLock.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 24,
"end_line": 8,
"start_col": 0,
"start_line": 7
} | module PulseTutorial.SpinLock
open Pulse.Lib.Pervasives
module Box = Pulse.Lib.Box
module U32 = FStar.UInt32 | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Pervasives.fst.checked",
"Pulse.Lib.Box.fsti.checked",
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "PulseTutorial.SpinLock.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Pulse.Lib.Box",
"short_module": "Box"
},
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseTutorial",
"short_module": null
},
{
"abbrev": false,
"full_module": "PulseTutorial",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Prims.bool -> p: Pulse.Lib.Core.vprop -> Pulse.Lib.Core.vprop | Prims.Tot | [
"total"
] | [] | [
"Prims.bool",
"Pulse.Lib.Core.vprop",
"Pulse.Lib.Core.emp"
] | [] | false | false | false | true | false | let maybe (b: bool) (p: vprop) =
| if b then p else emp | false |
|
Vale.SHA.PPC64LE.SHA_helpers.fst | Vale.SHA.PPC64LE.SHA_helpers.lemma_shuffle_core_properties | val lemma_shuffle_core_properties (t:counter) (block:block_w) (hash_orig:hash256) : Lemma
(requires t < size_k_w_256)
(ensures (let hash = Spec.Loops.repeat_range 0 t (shuffle_core_opaque block) hash_orig in
let h = Spec.Loops.repeat_range 0 (t + 1) (shuffle_core_opaque block) hash_orig in
let a0 = word_to_nat32 hash.[0] in
let b0 = word_to_nat32 hash.[1] in
let c0 = word_to_nat32 hash.[2] in
let d0 = word_to_nat32 hash.[3] in
let e0 = word_to_nat32 hash.[4] in
let f0 = word_to_nat32 hash.[5] in
let g0 = word_to_nat32 hash.[6] in
let h0 = word_to_nat32 hash.[7] in
let t1 = add_wrap (add_wrap (add_wrap (add_wrap h0 (sigma256_1_1 e0)) (ch_256 e0 f0 g0)) (word_to_nat32 k.[t])) (ws_opaque block t) in
let t2 = add_wrap (sigma256_1_0 a0) (maj_256 a0 b0 c0) in
word_to_nat32 h.[0] == add_wrap t1 t2 /\
word_to_nat32 h.[1] == a0 /\
word_to_nat32 h.[2] == b0 /\
word_to_nat32 h.[3] == c0 /\
word_to_nat32 h.[4] == add_wrap d0 t1 /\
word_to_nat32 h.[5] == e0 /\
word_to_nat32 h.[6] == f0 /\
word_to_nat32 h.[7] == g0)) | val lemma_shuffle_core_properties (t:counter) (block:block_w) (hash_orig:hash256) : Lemma
(requires t < size_k_w_256)
(ensures (let hash = Spec.Loops.repeat_range 0 t (shuffle_core_opaque block) hash_orig in
let h = Spec.Loops.repeat_range 0 (t + 1) (shuffle_core_opaque block) hash_orig in
let a0 = word_to_nat32 hash.[0] in
let b0 = word_to_nat32 hash.[1] in
let c0 = word_to_nat32 hash.[2] in
let d0 = word_to_nat32 hash.[3] in
let e0 = word_to_nat32 hash.[4] in
let f0 = word_to_nat32 hash.[5] in
let g0 = word_to_nat32 hash.[6] in
let h0 = word_to_nat32 hash.[7] in
let t1 = add_wrap (add_wrap (add_wrap (add_wrap h0 (sigma256_1_1 e0)) (ch_256 e0 f0 g0)) (word_to_nat32 k.[t])) (ws_opaque block t) in
let t2 = add_wrap (sigma256_1_0 a0) (maj_256 a0 b0 c0) in
word_to_nat32 h.[0] == add_wrap t1 t2 /\
word_to_nat32 h.[1] == a0 /\
word_to_nat32 h.[2] == b0 /\
word_to_nat32 h.[3] == c0 /\
word_to_nat32 h.[4] == add_wrap d0 t1 /\
word_to_nat32 h.[5] == e0 /\
word_to_nat32 h.[6] == f0 /\
word_to_nat32 h.[7] == g0)) | let lemma_shuffle_core_properties (t:counter) (block:block_w) (hash_orig:hash256) : Lemma
(requires t < size_k_w_256)
(ensures (let hash = Spec.Loops.repeat_range 0 t (shuffle_core_opaque block) hash_orig in
let h = Spec.Loops.repeat_range 0 (t + 1) (shuffle_core_opaque block) hash_orig in
let a0 = word_to_nat32 hash.[0] in
let b0 = word_to_nat32 hash.[1] in
let c0 = word_to_nat32 hash.[2] in
let d0 = word_to_nat32 hash.[3] in
let e0 = word_to_nat32 hash.[4] in
let f0 = word_to_nat32 hash.[5] in
let g0 = word_to_nat32 hash.[6] in
let h0 = word_to_nat32 hash.[7] in
let t1 = add_wrap (add_wrap (add_wrap (add_wrap h0 (sigma256_1_1 e0)) (ch_256 e0 f0 g0)) (word_to_nat32 k.[t])) (ws_opaque block t) in
let t2 = add_wrap (sigma256_1_0 a0) (maj_256 a0 b0 c0) in
word_to_nat32 h.[0] == add_wrap t1 t2 /\
word_to_nat32 h.[1] == a0 /\
word_to_nat32 h.[2] == b0 /\
word_to_nat32 h.[3] == c0 /\
word_to_nat32 h.[4] == add_wrap d0 t1 /\
word_to_nat32 h.[5] == e0 /\
word_to_nat32 h.[6] == f0 /\
word_to_nat32 h.[7] == g0))
=
let hash = Spec.Loops.repeat_range 0 t (shuffle_core_opaque block) hash_orig in
let a0 = word_to_nat32 hash.[0] in
let b0 = word_to_nat32 hash.[1] in
let c0 = word_to_nat32 hash.[2] in
let d0 = word_to_nat32 hash.[3] in
let e0 = word_to_nat32 hash.[4] in
let f0 = word_to_nat32 hash.[5] in
let g0 = word_to_nat32 hash.[6] in
let h0 = word_to_nat32 hash.[7] in
ch_256_reveal ();
maj_256_reveal ();
lemma_add_wrap_is_add_mod h0 (sigma256_1_1 e0);
lemma_add_wrap_is_add_mod (add_wrap h0 (sigma256_1_1 e0)) (ch_256 e0 f0 g0);
lemma_add_wrap_is_add_mod (add_wrap (add_wrap h0 (sigma256_1_1 e0)) (ch_256 e0 f0 g0)) (word_to_nat32 k.[t]);
lemma_add_wrap_is_add_mod (add_wrap (add_wrap (add_wrap h0 (sigma256_1_1 e0)) (ch_256 e0 f0 g0)) (word_to_nat32 k.[t])) (ws_opaque block t);
lemma_add_wrap_is_add_mod (sigma256_1_0 a0) (maj_256 a0 b0 c0);
lemma_add_wrap_is_add_mod (add_wrap (add_wrap (add_wrap (add_wrap h0 (sigma256_1_1 e0)) (ch_256 e0 f0 g0)) (word_to_nat32 k.[t])) (ws_opaque block t)) (add_wrap (sigma256_1_0 a0) (maj_256 a0 b0 c0));
lemma_add_wrap_is_add_mod d0 (add_wrap (add_wrap (add_wrap (add_wrap h0 (sigma256_1_1 e0)) (ch_256 e0 f0 g0)) (word_to_nat32 k.[t])) (ws_opaque block t));
Spec.Loops.repeat_range_induction 0 (t + 1) (shuffle_core_opaque block) hash_orig;
shuffle_core_properties block (Spec.Loops.repeat_range 0 t (shuffle_core_opaque block) hash_orig) t | {
"file_name": "vale/code/crypto/sha/Vale.SHA.PPC64LE.SHA_helpers.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 101,
"end_line": 449,
"start_col": 0,
"start_line": 407
} | module Vale.SHA.PPC64LE.SHA_helpers
open FStar.Mul
open Vale.Def.Prop_s
open Vale.Def.Opaque_s
open Spec.SHA2
open Spec.SHA2.Lemmas
open Spec.Agile.Hash
open Spec.Hash.Definitions
open Spec.Hash.Lemmas
open Vale.Def.Types_s
open Vale.Def.Words_s
open FStar.Seq
open FStar.UInt32 // Interop with UInt-based SHA spec
open Vale.Arch.Types
open Vale.Arch.TypesNative
open Vale.Def.Sel
open Vale.SHA2.Wrapper
friend Spec.SHA2
friend Spec.SHA2.Lemmas
friend Vale.SHA2.Wrapper
#reset-options "--max_fuel 0 --max_ifuel 0"
// Define these specific converters here, so that F* only reasons about
// the correctness of the conversion once, rather that at every call site
let vv (u:Lib.IntTypes.uint32) : nat32 = Lib.IntTypes.v u
let to_uint32 (n:nat32) : Lib.IntTypes.uint32 = Lib.IntTypes.u32 n
let word = Lib.IntTypes.uint32
let k = (Spec.SHA2.k0 SHA2_256)
val add_mod_lemma:x:Lib.IntTypes.uint32 -> y:Lib.IntTypes.uint32 ->
Lemma (add_mod x y == Lib.IntTypes.(x +. y))
[SMTPat (Lib.IntTypes.(x +. y))]
let add_mod_lemma x y = ()
unfold let ws_opaque_aux = ws
let ws_opaque (b:block_w) (t:counter{t < size_k_w_256}) : nat32 =
vv (ws_opaque_aux SHA2_256 b t)
unfold let shuffle_core_opaque_aux = shuffle_core
let shuffle_core_opaque (block:block_w) (hash:hash256) (t:counter{t < size_k_w_256}):hash256 =
shuffle_core_opaque_aux SHA2_256 block hash t
[@"opaque_to_smt"] let update_multi_opaque_aux = opaque_make update_multi
irreducible let update_multi_reveal = opaque_revealer (`%update_multi_opaque_aux) update_multi_opaque_aux update_multi
let update_multi_opaque (hash:hash256) (blocks:bytes_blocks):hash256 =
update_multi_opaque_aux SHA2_256 hash () blocks
let update_multi_transparent (hash:hash256) (blocks:bytes_blocks) =
update_multi SHA2_256 hash () blocks
let word_to_nat32 = vv
let nat32_to_word = to_uint32
let make_ordered_hash_def (abcd efgh:quad32) :
(hash:words_state SHA2_256 {
length hash == 8 /\
hash.[0] == to_uint32 abcd.lo0 /\
hash.[1] == to_uint32 abcd.lo1 /\
hash.[2] == to_uint32 abcd.hi2 /\
hash.[3] == to_uint32 abcd.hi3 /\
hash.[4] == to_uint32 efgh.lo0 /\
hash.[5] == to_uint32 efgh.lo1 /\
hash.[6] == to_uint32 efgh.hi2 /\
hash.[7] == to_uint32 efgh.hi3
})
=
let a = to_uint32 abcd.lo0 in
let b = to_uint32 abcd.lo1 in
let c = to_uint32 abcd.hi2 in
let d = to_uint32 abcd.hi3 in
let e = to_uint32 efgh.lo0 in
let f = to_uint32 efgh.lo1 in
let g = to_uint32 efgh.hi2 in
let h = to_uint32 efgh.hi3 in
let l = [a; b; c; d; e; f; g; h] in
assert_norm (List.length l == 8);
let hash = seq_of_list l in
assert (length hash == 8);
elim_of_list l;
hash
[@"opaque_to_smt"] let make_ordered_hash = opaque_make make_ordered_hash_def
irreducible let make_ordered_hash_reveal = opaque_revealer (`%make_ordered_hash) make_ordered_hash make_ordered_hash_def
let shuffle_core_properties (block:block_w) (hash:hash256) (t:counter{t < size_k_w_256}) :
Lemma(let h = shuffle_core_opaque block hash t in
let open Lib.IntTypes in
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
let t1 = h0 +. (_Sigma1 SHA2_256 e0) +. (_Ch SHA2_256 e0 f0 g0) +. (k0 SHA2_256).[t] +. (ws SHA2_256 block t) in
let t2 = (_Sigma0 SHA2_256 a0) +. (_Maj SHA2_256 a0 b0 c0) in
h.[0] == t1 +. t2 /\
h.[1] == a0 /\
h.[2] == b0 /\
h.[3] == c0 /\
h.[4] == d0 +. t1 /\
h.[5] == e0 /\
h.[6] == f0 /\
h.[7] == g0)
=
Pervasives.reveal_opaque (`%shuffle_core) shuffle_core;
let h = shuffle_core SHA2_256 block hash t in
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
let t1 = h0 +. (_Sigma1 SHA2_256 e0) +. (_Ch SHA2_256 e0 f0 g0) +. (k0 SHA2_256).[t] +. (ws SHA2_256 block t) in
let t2 = (_Sigma0 SHA2_256 a0) +. (_Maj SHA2_256 a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert (h == seq_of_list l);
elim_of_list l;
()
let lemma_add_wrap_is_add_mod (n0 n1:nat32) :
Lemma (add_wrap n0 n1 == vv (add_mod (to_uint32 n0) (to_uint32 n1)))
=
assert_norm (pow2 32 == pow2_32);
()
unfold let shuffle_opaque = shuffle
let update_block (hash:hash256) (block:block_w): Tot (hash256) =
let hash_1 = shuffle_opaque SHA2_256 hash block in
let open Lib.IntTypes in
Spec.Loops.seq_map2 ( +. ) hash hash_1
#push-options "--z3cliopt smt.arith.nl=true" (* FIXME: Seemingly needed after fix to #2894 in F*, but should not be *)
let lemma_update_block_equiv (hash:hash256) (block:bytes{length block = block_length}) :
Lemma (update_block hash (words_of_bytes SHA2_256 #(block_word_length SHA2_256) block) == update SHA2_256 hash block)
=
Pervasives.reveal_opaque (`%Spec.SHA2.update) Spec.SHA2.update;
Pervasives.reveal_opaque (`%Spec.SHA2.shuffle) Spec.SHA2.shuffle;
assert (equal (update_block hash (words_of_bytes SHA2_256 #(block_word_length SHA2_256) block)) (update SHA2_256 hash block));
()
#pop-options
let update_multi_one (h:hash256) (b:bytes_blocks {length b = block_length}) : Lemma
(ensures (update_multi SHA2_256 h () b == update SHA2_256 h b)) =
update_multi_update SHA2_256 h b
friend Lib.ByteSequence
#reset-options "--z3rlimit 50 --max_fuel 1 --max_ifuel 0 --z3cliopt smt.arith.nl=true"
let lemma_be_to_n_4 (s:seq4 nat8) : Lemma
(Lib.ByteSequence.nat_from_bytes_be #Lib.IntTypes.SEC (seq_nat8_to_seq_uint8 s) == be_bytes_to_nat32 s)
=
let open Lib.IntTypes in
let open Vale.Def.Words.Four_s in
assert (pow2 8 = 0x100);
assert (pow2 16 = 0x10000);
assert_norm (pow2 24 = 0x1000000);
let x = seq_nat8_to_seq_uint8 s in
let f = Lib.ByteSequence.nat_from_intseq_be_ #U8 #SEC in
calc (==) {
f x <: nat ;
== { }
FStar.UInt8.v (last x) + pow2 8 * f (slice x 0 3);
== {}
index s 3 + pow2 8 * f (slice x 0 3);
== {}
index s 3 + pow2 8 * index s 2 + pow2 16 * f (slice x 0 2);
== {}
index s 3 + pow2 8 * index s 2 + pow2 16 * index s 1 + pow2 24 * f (slice x 0 1);
== {}
index s 3 + pow2 8 * index s 2 + pow2 16 * index s 1 + pow2 24 * index s 0 + pow2 32 * f (slice x 0 0);
== {}
index s 3 + pow2 8 * index s 2 + pow2 16 * index s 1 + pow2 24 * index s 0;
== {}
four_to_nat_unfold 8 (seq_to_four_BE s);
== {reveal_opaque (`%four_to_nat) four_to_nat}
be_bytes_to_nat32 s;
}
let lemma_mod_transform (quads:seq quad32) : Lemma
(requires length quads % 4 == 0)
(ensures length (seq_nat8_to_seq_uint8 (le_seq_quad32_to_bytes quads)) % 64 == 0)
=
()
let lemma_update_multi_opaque_vale_is_update_multi (hash:hash256) (blocks:bytes) : Lemma
(requires length blocks % 64 = 0)
(ensures update_multi_opaque_vale hash blocks == update_multi_transparent hash blocks)
=
update_multi_reveal ();
()
let sigma_0_0_partial_def (t:counter) (block:block_w) : nat32 =
if 16 <= t && t < size_k_w_256 then
(let sigma0_in = ws_opaque block (t-15) in
sigma256_0_0 sigma0_in)
else
0
#reset-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 30"
let lemma_sha256_sigma0 (src:quad32) (t:counter) (block:block_w) : Lemma
(requires 16 <= t /\ t < size_k_w(SHA2_256) /\
src.hi3 == ws_opaque block (t-15))
(ensures (sigma256_0_0 src.hi3 == sigma_0_0_partial t block))
=
sigma_0_0_partial_reveal ();
()
#reset-options "--max_fuel 0 --max_ifuel 0"
let sigma_0_1_partial_def (t:counter) (block:block_w) : nat32 =
if 16 <= t && t < size_k_w_256 then
(let sigma1_in = ws_opaque block (t-2) in
sigma256_0_1 sigma1_in)
else
0
#reset-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 30"
let lemma_sha256_sigma1 (src:quad32) (t:counter) (block:block_w) : Lemma
(requires 16 <= t /\ t < size_k_w(SHA2_256) /\
src.hi3 == ws_opaque block (t-2))
(ensures (sigma256_0_1 src.hi3 == sigma_0_1_partial t block))
=
sigma_0_1_partial_reveal ();
()
#reset-options "--max_fuel 0 --max_ifuel 0"
let sigma_1_0_partial_def (t:counter) (block:block_w) (hash_orig:hash256) : nat32 =
if t < size_k_w_256 then
(let sigma0_in = word_to_nat32 ((repeat_range_vale t block hash_orig).[0]) in
sigma256_1_0 sigma0_in)
else
0
#reset-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 30"
let lemma_sha256_sigma2 (src:quad32) (t:counter) (block:block_w) (hash_orig:hash256) : Lemma
(requires t < size_k_w(SHA2_256) /\
src.hi3 == word_to_nat32 ((repeat_range_vale t block hash_orig).[0]))
(ensures (sigma256_1_0 src.hi3 == sigma_1_0_partial t block hash_orig))
=
sigma_1_0_partial_reveal ();
()
#reset-options "--max_fuel 0 --max_ifuel 0"
let sigma_1_1_partial_def (t:counter) (block:block_w) (hash_orig:hash256) : nat32 =
if t < size_k_w_256 then
(let sigma1_in = word_to_nat32 ((repeat_range_vale t block hash_orig).[4]) in
sigma256_1_1 sigma1_in)
else
0
#reset-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 30"
let lemma_sha256_sigma3 (src:quad32) (t:counter) (block:block_w) (hash_orig:hash256) : Lemma
(requires t < size_k_w(SHA2_256) /\
src.hi3 == word_to_nat32 ((repeat_range_vale t block hash_orig).[4]))
(ensures (sigma256_1_1 src.hi3 == sigma_1_1_partial t block hash_orig))
=
sigma_1_1_partial_reveal ();
()
#reset-options "--max_fuel 0 --max_ifuel 0"
let make_seperated_hash_def (a b c d e f g h:nat32) :
(hash:words_state SHA2_256 {
length hash == 8 /\
hash.[0] == to_uint32 a /\
hash.[1] == to_uint32 b /\
hash.[2] == to_uint32 c /\
hash.[3] == to_uint32 d /\
hash.[4] == to_uint32 e /\
hash.[5] == to_uint32 f /\
hash.[6] == to_uint32 g /\
hash.[7] == to_uint32 h
})
=
let a = to_uint32 a in
let b = to_uint32 b in
let c = to_uint32 c in
let d = to_uint32 d in
let e = to_uint32 e in
let f = to_uint32 f in
let g = to_uint32 g in
let h = to_uint32 h in
let l = [a; b; c; d; e; f; g; h] in
assert_norm (List.length l == 8);
let hash = seq_of_list l in
assert (length hash == 8);
elim_of_list l;
hash
[@"opaque_to_smt"] let make_seperated_hash = opaque_make make_seperated_hash_def
irreducible let make_seperated_hash_reveal = opaque_revealer (`%make_seperated_hash) make_seperated_hash make_seperated_hash_def
let make_seperated_hash_quad32_def (a b c d e f g h:quad32) :
(hash:words_state SHA2_256 {
length hash == 8 /\
hash.[0] == to_uint32 a.hi3 /\
hash.[1] == to_uint32 b.hi3 /\
hash.[2] == to_uint32 c.hi3 /\
hash.[3] == to_uint32 d.hi3 /\
hash.[4] == to_uint32 e.hi3 /\
hash.[5] == to_uint32 f.hi3 /\
hash.[6] == to_uint32 g.hi3 /\
hash.[7] == to_uint32 h.hi3
})
=
let a = to_uint32 a.hi3 in
let b = to_uint32 b.hi3 in
let c = to_uint32 c.hi3 in
let d = to_uint32 d.hi3 in
let e = to_uint32 e.hi3 in
let f = to_uint32 f.hi3 in
let g = to_uint32 g.hi3 in
let h = to_uint32 h.hi3 in
let l = [a; b; c; d; e; f; g; h] in
assert_norm (List.length l == 8);
let hash = seq_of_list l in
assert (length hash == 8);
elim_of_list l;
hash
[@"opaque_to_smt"] let make_seperated_hash_quad32 = opaque_make make_seperated_hash_quad32_def
irreducible let make_seperated_hash_quad32_reveal = opaque_revealer (`%make_seperated_hash_quad32) make_seperated_hash_quad32 make_seperated_hash_quad32_def
let lemma_make_seperated_hash (hash:hash256) (a b c d e f g h:quad32) : Lemma
(requires length hash == 8 /\
a.hi3 == word_to_nat32 hash.[0] /\
b.hi3 == word_to_nat32 hash.[1] /\
c.hi3 == word_to_nat32 hash.[2] /\
d.hi3 == word_to_nat32 hash.[3] /\
e.hi3 == word_to_nat32 hash.[4] /\
f.hi3 == word_to_nat32 hash.[5] /\
g.hi3 == word_to_nat32 hash.[6] /\
h.hi3 == word_to_nat32 hash.[7])
(ensures hash == make_seperated_hash_quad32 a b c d e f g h)
=
assert (equal hash (make_seperated_hash_quad32 a b c d e f g h))
let lemma_vsel32 (a b c:nat32) : Lemma
(ensures (isel32 a b c = (iand32 c a) *^ (iand32 (inot32 c) b)))
=
reveal_iand_all 32;
reveal_inot_all 32;
reveal_ixor_all 32;
lemma_equal_nth 32 (isel32 a b c) ((iand32 c a) *^ (iand32 (inot32 c) b))
let ch_256_def (x y z:nat32) :
(a:nat32 {a == (iand32 x y) *^ (iand32 (inot32 x) z)})
=
reveal_iand_all 32;
reveal_inot_all 32;
reveal_ixor_all 32;
ch256 x y z
[@"opaque_to_smt"] let ch_256 = opaque_make ch_256_def
irreducible let ch_256_reveal = opaque_revealer (`%ch_256) ch_256 ch_256_def
let lemma_eq_maj_xvsel32 (a b c:nat32) : Lemma
(ensures (isel32 c b (a *^ b) = (iand32 a b) *^ ((iand32 a c) *^ (iand32 b c))))
=
reveal_iand_all 32;
reveal_ixor_all 32;
lemma_equal_nth 32 (isel32 c b (a *^ b)) ((iand32 a b) *^ ((iand32 a c) *^ (iand32 b c)))
let maj_256_def (x y z:nat32) :
(a:nat32 {a == (iand32 x y) *^ ((iand32 x z) *^ (iand32 y z))})
=
reveal_iand_all 32;
reveal_ixor_all 32;
maj256 x y z
[@"opaque_to_smt"] let maj_256 = opaque_make maj_256_def
irreducible let maj_256_reveal = opaque_revealer (`%maj_256) maj_256 maj_256_def
let lemma_sigma_0_0_partial (t:counter) (block:block_w) : Lemma
(requires 16 <= t /\ t < size_k_w(SHA2_256))
(ensures (sigma256_0_0 (ws_opaque block (t-15)) == sigma_0_0_partial t block))
=
sigma_0_0_partial_reveal ()
let lemma_sigma_0_1_partial (t:counter) (block:block_w) : Lemma
(requires 16 <= t /\ t < size_k_w(SHA2_256))
(ensures (sigma256_0_1 (ws_opaque block (t-2)) == sigma_0_1_partial t block))
=
sigma_0_1_partial_reveal ()
let lemma_sigma_1_0_partial (t:counter) (block:block_w) (hash_orig:hash256) : Lemma
(requires t < size_k_w(SHA2_256))
(ensures (sigma256_1_0 (word_to_nat32 ((repeat_range_vale t block hash_orig).[0])) == sigma_1_0_partial t block hash_orig))
=
sigma_1_0_partial_reveal ()
let lemma_sigma_1_1_partial (t:counter) (block:block_w) (hash_orig:hash256) : Lemma
(requires t < size_k_w(SHA2_256))
(ensures (sigma256_1_1 (word_to_nat32 ((repeat_range_vale t block hash_orig).[4])) == sigma_1_1_partial t block hash_orig))
=
sigma_1_1_partial_reveal ()
#reset-options "--z3rlimit 20 --max_fuel 1"
let lemma_quads_to_block_be qs
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32);
reveal_opaque (`%ws) ws
#reset-options "--max_fuel 0 --max_ifuel 0" | {
"checked_file": "/",
"dependencies": [
"Vale.SHA2.Wrapper.fst.checked",
"Vale.SHA2.Wrapper.fst.checked",
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Seq.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Sel.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Spec.SHA2.Lemmas.fst.checked",
"Spec.SHA2.Lemmas.fst.checked",
"Spec.SHA2.fst.checked",
"Spec.SHA2.fst.checked",
"Spec.Loops.fst.checked",
"Spec.Hash.Lemmas.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.SHA.PPC64LE.SHA_helpers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.UInt32 // Interop with UInt-based SHA spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.SHA2.Wrapper",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Sel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt32",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile.Hash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.SHA2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.SHA2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.SHA2.Wrapper",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Sel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.SHA.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.SHA.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
t: Vale.SHA.PPC64LE.SHA_helpers.counter ->
block: Vale.SHA.PPC64LE.SHA_helpers.block_w ->
hash_orig: Vale.SHA.PPC64LE.SHA_helpers.hash256
-> FStar.Pervasives.Lemma (requires t < Vale.SHA.PPC64LE.SHA_helpers.size_k_w_256)
(ensures
(let hash =
Spec.Loops.repeat_range 0
t
(Vale.SHA.PPC64LE.SHA_helpers.shuffle_core_opaque block)
hash_orig
in
let h =
Spec.Loops.repeat_range 0
(t + 1)
(Vale.SHA.PPC64LE.SHA_helpers.shuffle_core_opaque block)
hash_orig
in
let a0 = Vale.SHA.PPC64LE.SHA_helpers.word_to_nat32 hash.[ 0 ] in
let b0 = Vale.SHA.PPC64LE.SHA_helpers.word_to_nat32 hash.[ 1 ] in
let c0 = Vale.SHA.PPC64LE.SHA_helpers.word_to_nat32 hash.[ 2 ] in
let d0 = Vale.SHA.PPC64LE.SHA_helpers.word_to_nat32 hash.[ 3 ] in
let e0 = Vale.SHA.PPC64LE.SHA_helpers.word_to_nat32 hash.[ 4 ] in
let f0 = Vale.SHA.PPC64LE.SHA_helpers.word_to_nat32 hash.[ 5 ] in
let g0 = Vale.SHA.PPC64LE.SHA_helpers.word_to_nat32 hash.[ 6 ] in
let h0 = Vale.SHA.PPC64LE.SHA_helpers.word_to_nat32 hash.[ 7 ] in
let t1 =
Vale.Def.Types_s.add_wrap (Vale.Def.Types_s.add_wrap (Vale.Def.Types_s.add_wrap (Vale.Def.Types_s.add_wrap
h0
(Vale.SHA2.Wrapper.sigma256_1_1 e0))
(Vale.SHA.PPC64LE.SHA_helpers.ch_256 e0 f0 g0))
(Vale.SHA.PPC64LE.SHA_helpers.word_to_nat32 Vale.SHA.PPC64LE.SHA_helpers.k.[ t ]))
(Vale.SHA.PPC64LE.SHA_helpers.ws_opaque block t)
in
let t2 =
Vale.Def.Types_s.add_wrap (Vale.SHA2.Wrapper.sigma256_1_0 a0)
(Vale.SHA.PPC64LE.SHA_helpers.maj_256 a0 b0 c0)
in
Vale.SHA.PPC64LE.SHA_helpers.word_to_nat32 h.[ 0 ] == Vale.Def.Types_s.add_wrap t1 t2 /\
Vale.SHA.PPC64LE.SHA_helpers.word_to_nat32 h.[ 1 ] == a0 /\
Vale.SHA.PPC64LE.SHA_helpers.word_to_nat32 h.[ 2 ] == b0 /\
Vale.SHA.PPC64LE.SHA_helpers.word_to_nat32 h.[ 3 ] == c0 /\
Vale.SHA.PPC64LE.SHA_helpers.word_to_nat32 h.[ 4 ] == Vale.Def.Types_s.add_wrap d0 t1 /\
Vale.SHA.PPC64LE.SHA_helpers.word_to_nat32 h.[ 5 ] == e0 /\
Vale.SHA.PPC64LE.SHA_helpers.word_to_nat32 h.[ 6 ] == f0 /\
Vale.SHA.PPC64LE.SHA_helpers.word_to_nat32 h.[ 7 ] == g0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.SHA.PPC64LE.SHA_helpers.counter",
"Vale.SHA.PPC64LE.SHA_helpers.block_w",
"Vale.SHA.PPC64LE.SHA_helpers.hash256",
"Vale.SHA.PPC64LE.SHA_helpers.shuffle_core_properties",
"Spec.Loops.repeat_range",
"Vale.SHA.PPC64LE.SHA_helpers.shuffle_core_opaque",
"Prims.unit",
"Spec.Loops.repeat_range_induction",
"Prims.op_Addition",
"Vale.SHA.PPC64LE.SHA_helpers.lemma_add_wrap_is_add_mod",
"Vale.Def.Types_s.add_wrap",
"Vale.Def.Words_s.pow2_32",
"Vale.SHA2.Wrapper.sigma256_1_1",
"Vale.SHA.PPC64LE.SHA_helpers.ch_256",
"Vale.SHA.PPC64LE.SHA_helpers.word_to_nat32",
"Spec.SHA2.op_String_Access",
"Vale.SHA.PPC64LE.SHA_helpers.word",
"Vale.SHA.PPC64LE.SHA_helpers.k",
"Vale.SHA.PPC64LE.SHA_helpers.ws_opaque",
"Vale.SHA2.Wrapper.sigma256_1_0",
"Vale.SHA.PPC64LE.SHA_helpers.maj_256",
"Vale.SHA.PPC64LE.SHA_helpers.maj_256_reveal",
"Vale.SHA.PPC64LE.SHA_helpers.ch_256_reveal",
"Vale.Def.Words_s.nat32",
"FStar.Seq.Base.seq",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"Prims.op_LessThan",
"Vale.SHA.PPC64LE.SHA_helpers.size_k_w_256",
"Prims.squash",
"Prims.l_and",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_shuffle_core_properties (t: counter) (block: block_w) (hash_orig: hash256)
: Lemma (requires t < size_k_w_256)
(ensures
(let hash = Spec.Loops.repeat_range 0 t (shuffle_core_opaque block) hash_orig in
let h = Spec.Loops.repeat_range 0 (t + 1) (shuffle_core_opaque block) hash_orig in
let a0 = word_to_nat32 hash.[ 0 ] in
let b0 = word_to_nat32 hash.[ 1 ] in
let c0 = word_to_nat32 hash.[ 2 ] in
let d0 = word_to_nat32 hash.[ 3 ] in
let e0 = word_to_nat32 hash.[ 4 ] in
let f0 = word_to_nat32 hash.[ 5 ] in
let g0 = word_to_nat32 hash.[ 6 ] in
let h0 = word_to_nat32 hash.[ 7 ] in
let t1 =
add_wrap (add_wrap (add_wrap (add_wrap h0 (sigma256_1_1 e0)) (ch_256 e0 f0 g0))
(word_to_nat32 k.[ t ]))
(ws_opaque block t)
in
let t2 = add_wrap (sigma256_1_0 a0) (maj_256 a0 b0 c0) in
word_to_nat32 h.[ 0 ] == add_wrap t1 t2 /\ word_to_nat32 h.[ 1 ] == a0 /\
word_to_nat32 h.[ 2 ] == b0 /\ word_to_nat32 h.[ 3 ] == c0 /\
word_to_nat32 h.[ 4 ] == add_wrap d0 t1 /\ word_to_nat32 h.[ 5 ] == e0 /\
word_to_nat32 h.[ 6 ] == f0 /\ word_to_nat32 h.[ 7 ] == g0)) =
| let hash = Spec.Loops.repeat_range 0 t (shuffle_core_opaque block) hash_orig in
let a0 = word_to_nat32 hash.[ 0 ] in
let b0 = word_to_nat32 hash.[ 1 ] in
let c0 = word_to_nat32 hash.[ 2 ] in
let d0 = word_to_nat32 hash.[ 3 ] in
let e0 = word_to_nat32 hash.[ 4 ] in
let f0 = word_to_nat32 hash.[ 5 ] in
let g0 = word_to_nat32 hash.[ 6 ] in
let h0 = word_to_nat32 hash.[ 7 ] in
ch_256_reveal ();
maj_256_reveal ();
lemma_add_wrap_is_add_mod h0 (sigma256_1_1 e0);
lemma_add_wrap_is_add_mod (add_wrap h0 (sigma256_1_1 e0)) (ch_256 e0 f0 g0);
lemma_add_wrap_is_add_mod (add_wrap (add_wrap h0 (sigma256_1_1 e0)) (ch_256 e0 f0 g0))
(word_to_nat32 k.[ t ]);
lemma_add_wrap_is_add_mod (add_wrap (add_wrap (add_wrap h0 (sigma256_1_1 e0)) (ch_256 e0 f0 g0))
(word_to_nat32 k.[ t ]))
(ws_opaque block t);
lemma_add_wrap_is_add_mod (sigma256_1_0 a0) (maj_256 a0 b0 c0);
lemma_add_wrap_is_add_mod (add_wrap (add_wrap (add_wrap (add_wrap h0 (sigma256_1_1 e0))
(ch_256 e0 f0 g0))
(word_to_nat32 k.[ t ]))
(ws_opaque block t))
(add_wrap (sigma256_1_0 a0) (maj_256 a0 b0 c0));
lemma_add_wrap_is_add_mod d0
(add_wrap (add_wrap (add_wrap (add_wrap h0 (sigma256_1_1 e0)) (ch_256 e0 f0 g0))
(word_to_nat32 k.[ t ]))
(ws_opaque block t));
Spec.Loops.repeat_range_induction 0 (t + 1) (shuffle_core_opaque block) hash_orig;
shuffle_core_properties block (Spec.Loops.repeat_range 0 t (shuffle_core_opaque block) hash_orig) t | false |
Pulse.Lib.GhostWitness.fst | Pulse.Lib.GhostWitness.sqeq | val sqeq: p: Type -> squash p -> erased p | val sqeq: p: Type -> squash p -> erased p | let sqeq (p : Type) (_ : squash p) : erased p =
FStar.IndefiniteDescription.elim_squash #p () | {
"file_name": "share/steel/examples/pulse/lib/Pulse.Lib.GhostWitness.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 47,
"end_line": 6,
"start_col": 0,
"start_line": 5
} | module Pulse.Lib.GhostWitness
open Pulse.Lib.Pervasives | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Pervasives.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Lib.GhostWitness.fst"
} | [
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Type -> _: Prims.squash p -> FStar.Ghost.erased p | Prims.Tot | [
"total"
] | [] | [
"Prims.squash",
"FStar.Ghost.hide",
"FStar.IndefiniteDescription.elim_squash",
"FStar.Ghost.erased"
] | [] | false | false | false | true | false | let sqeq (p: Type) (_: squash p) : erased p =
| FStar.IndefiniteDescription.elim_squash #p () | false |
Hacl.Spec.K256.Field52.Lemmas2.fst | Hacl.Spec.K256.Field52.Lemmas2.normalize5_second_part_x_is_one_lemma | val normalize5_second_part_x_is_one_lemma: x:uint64 -> r:felem5 -> Lemma
(requires (let (r0,r1,r2,r3,r4) = r in
felem_fits5 r (1,1,1,1,1) /\ v x = 1 /\ v r4 < pow2 12))
(ensures (let k = normalize5_second_part_x x r in
as_nat5 k == as_nat5 r + v x * pow2 256 - S.prime /\
felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime)) | val normalize5_second_part_x_is_one_lemma: x:uint64 -> r:felem5 -> Lemma
(requires (let (r0,r1,r2,r3,r4) = r in
felem_fits5 r (1,1,1,1,1) /\ v x = 1 /\ v r4 < pow2 12))
(ensures (let k = normalize5_second_part_x x r in
as_nat5 k == as_nat5 r + v x * pow2 256 - S.prime /\
felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime)) | let normalize5_second_part_x_is_one_lemma x r =
LD.lemma_as_nat_bound_f4_lt_pow12 r;
assert (as_nat5 r <= pow2 220 - 1);
assert_norm (pow2 220 - 1 < S.prime);
let is_ge_p_m = is_felem_ge_prime5 r in
is_felem_ge_prime5_lemma r;
assert (v is_ge_p_m = 0);
let m_to_one = is_ge_p_m &. u64 1 in
logand_lemma is_ge_p_m (u64 1);
assert (v m_to_one = 0);
let x1 = m_to_one |. x in //1
logor_spec m_to_one x;
FStar.UInt.logor_commutative #64 (v m_to_one) (v x);
FStar.UInt.logor_lemma_1 #64 (v x);
assert (v x1 = 1);
let s = plus_x_mul_pow2_256_minus_prime x1 r in // + x * (pow2 256 - S.prime)
plus_x_mul_pow2_256_minus_prime_lemma (1,1,1,1,1) x1 r;
assert (as_nat5 s = as_nat5 r + pow2 256 - S.prime); //(v s4 >= pow2 48 ==> v s4 % pow2 48 < pow2 12)
let (s0,s1,s2,s3,s4) = s in
Math.Lemmas.pow2_double_sum 12;
assert (v s4 < pow2 13);
let x2, k = minus_x_mul_pow2_256 s in // - s4 / pow2 48 * pow2 256
minus_x_mul_pow2_256_lemma (1,1,1,1,2) s;
assert (felem_fits5 k (1,1,1,1,1));
assert (as_nat5 k = as_nat5 s - v s4 / pow2 48 * pow2 256);
LD.lemma_div_pow48 s4;
assert (as_nat5 k = as_nat5 s);
assert (as_nat5 k < pow2 220 + pow2 256 - S.prime);
assert_norm (pow2 220 + pow2 256 - S.prime < S.prime) | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 55,
"end_line": 294,
"start_col": 0,
"start_line": 259
} | module Hacl.Spec.K256.Field52.Lemmas2
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
include Hacl.Spec.K256.Field52.Definitions
include Hacl.Spec.K256.Field52
module ML = Hacl.Spec.K256.MathLemmas
module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas
#set-options "--z3rlimit 100 --fuel 0 --ifuel 0"
/// Normalize-weak
val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires felem_fits5 f m)
(ensures
(let x, r = minus_x_mul_pow2_256 f in
let (r0,r1,r2,r3,r4) = r in
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
v x < pow2 16 /\ v x = v t4 / pow2 48 /\
v r4 = v t4 % pow2 48 /\
as_nat5 r == as_nat5 f - v x * pow2 256 /\
felem_fits5 r (m0,m1,m2,m3,1)))
let minus_x_mul_pow2_256_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
let x = t4 >>. 48ul in let t4' = t4 &. mask48 in
LD.lemma_mask48 t4;
let r = (t0,t1,t2,t3,t4') in
calc (==) { // as_nat5 f
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208;
(==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208;
(==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208;
(==) { }
(v x * pow2 48) * pow208 + as_nat5 r;
(==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 }
v x * pow2 256 + as_nat5 r;
};
Math.Lemmas.lemma_div_lt (v t4) 64 48
val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f (m0,m1,m2,m3,1)))
(ensures (let r = carry_round5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let carry_round_after_last_carry_mod_prime5_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in //(m0,m1,m2,m3,1)
let t1' = t1 +. (t0 >>. 52ul) in let t0' = t0 &. mask52 in
LD.lemma_carry52 m1 m0 t1 t0;
assert (felem_fits1 t1' (m1 + 1));
assert (felem_fits1 t0' 1);
assert (v t0' = v t0 % pow2 52);
assert (v t1' = v t1 + v t0 / pow2 52);
let t2' = t2 +. (t1' >>. 52ul) in let t1'' = t1' &. mask52 in
LD.lemma_carry52 m2 (m1 + 1) t2 t1';
assert (felem_fits1 t2' (m2 + 1));
assert (felem_fits1 t1'' 1);
assert (v t1'' = v t1' % pow2 52);
assert (v t2' = v t2 + v t1' / pow2 52);
let t3' = t3 +. (t2' >>. 52ul) in let t2'' = t2' &. mask52 in
LD.lemma_carry52 m3 (m2 + 1) t3 t2';
assert (felem_fits1 t3' (m3 + 1));
assert (felem_fits1 t2'' 1);
assert (v t2'' = v t2' % pow2 52);
assert (v t3' = v t3 + v t2' / pow2 52);
let t4' = t4 +. (t3' >>. 52ul) in let t3'' = t3' &. mask52 in
LD.lemma_carry_last52 m4 (m3 + 1) t4 t3';
assert (felem_fits_last1 t4' (m4 + 1));
assert (felem_fits1 t3'' 1);
assert (v t3'' = v t3' % pow2 52);
assert (v t4' = v t4 + v t3' / pow2 52);
LD.carry_last_small_mod_lemma t4 t3';
ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4);
let r = carry_round5 f in
assert ((t0',t1'',t2'',t3'',t4') == r);
assert (as_nat5 r == as_nat5 f)
val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f m /\ v x < pow2 16))
(ensures
(let r = plus_x_mul_pow2_256_minus_prime x f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let plus_x_mul_pow2_256_minus_prime_lemma m x f =
let (t0,t1,t2,t3,t4) = f in
let (m0,m1,m2,m3,m4) = m in
let t0' = t0 +. x *. u64 0x1000003D1 in
assert (v x < pow2 16);
Math.Lemmas.lemma_mult_lt_right 0x1000003D1 (v x) (pow2 16);
assert_norm (pow2 16 * 0x1000003D1 < max52);
assert (v t0 + v x * 0x1000003D1 < (m0 + 1) * max52);
Math.Lemmas.lemma_mult_le_right max52 (m0 + 1) 4096;
assert_norm (4096 * max52 < pow2 64);
Math.Lemmas.small_mod (v t0 + v x * 0x1000003D1) (pow2 64);
assert (v t0' = v t0 + v x * 0x1000003D1);
assert (felem_fits1 t0' (m0 + 1));
let r = carry_round5 (t0',t1,t2,t3,t4) in
carry_round_after_last_carry_mod_prime5_lemma (m0+1,m1,m2,m3,m4) (t0',t1,t2,t3,t4);
assert (as_nat5 r == as_nat5 (t0',t1,t2,t3,t4));
LD.lemma_pow2_256_minus_prime ();
assert (as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime))
val normalize_weak5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
felem_fits5 f m))
(ensures (let r = normalize_weak5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f - v t4 / pow2 48 * S.prime /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let normalize_weak5_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let x, f1 = minus_x_mul_pow2_256 f in
minus_x_mul_pow2_256_lemma m f;
assert (as_nat5 f1 == as_nat5 f - v x * pow2 256);
assert (felem_fits5 f1 (m0,m1,m2,m3,1));
let f2 = plus_x_mul_pow2_256_minus_prime x f1 in
plus_x_mul_pow2_256_minus_prime_lemma (m0,m1,m2,m3,1) x f1;
assert (as_nat5 f2 == as_nat5 f1 + v x * (pow2 256 - S.prime));
assert (felem_fits5 f2 (1,1,1,1,2));
assert (f2 == normalize_weak5 f);
Math.Lemmas.distributivity_sub_right (v x) (pow2 256) S.prime;
assert (as_nat5 f2 == as_nat5 f - v x * S.prime)
/// Normalize
#push-options "--ifuel 1"
val is_felem_ge_prime5_lemma: f:felem5 -> Lemma
(requires felem_fits5 f (1,1,1,1,1))
(ensures (let is_m = is_felem_ge_prime5 f in
(v is_m = 0 \/ v is_m = ones_v U64) /\
(if v is_m = ones_v U64 then (as_nat5 f >= S.prime) else (as_nat5 f < S.prime))))
let is_felem_ge_prime5_lemma f = ()
#pop-options
// let (f0,f1,f2,f3,f4) = f in
// let m4 = eq_mask f4 mask48 in
// eq_mask_lemma f4 mask48;
// assert (if v f4 = v mask48 then v m4 = ones_v U64 else v m4 = 0);
// let m3 = eq_mask f3 mask52 in
// eq_mask_lemma f3 mask52;
// assert (if v f3 = v mask52 then v m3 = ones_v U64 else v m3 = 0);
// let m2 = eq_mask f2 mask52 in
// eq_mask_lemma f2 mask52;
// assert (if v f2 = v mask52 then v m2 = ones_v U64 else v m2 = 0);
// let m1 = eq_mask f1 mask52 in
// eq_mask_lemma f1 mask52;
// assert (if v f1 = v mask52 then v m1 = ones_v U64 else v m1 = 0);
// let m0 = gte_mask f0 (u64 0xffffefffffc2f) in
// gte_mask_lemma f0 (u64 0xffffefffffc2f);
// assert (if v f0 >= 0xffffefffffc2f then v m0 = ones_v U64 else v m0 = 0);
// let m = m0 &. m1 &. m2 &. m3 &. m4 in ()
// if v m4 = 0 then
// logand_zeros (m0 &. m1 &. m2 &. m3)
// else begin
// logand_ones (m0 &. m1 &. m2 &. m3) end
noextract
let normalize5_first_part (f0,f1,f2,f3,f4) =
let (t0,t1,t2,t3,t4) = normalize_weak5 (f0,f1,f2,f3,f4) in
let x, (r0,r1,r2,r3,r4) = minus_x_mul_pow2_256 (t0,t1,t2,t3,t4) in
x, (r0,r1,r2,r3,r4)
noextract
let normalize5_second_part_x (x:uint64) (r0,r1,r2,r3,r4) : felem5 =
let is_ge_p_m = is_felem_ge_prime5 (r0,r1,r2,r3,r4) in // as_nat r >= S.prime
let m_to_one = is_ge_p_m &. u64 1 in
let x1 = m_to_one |. x in
let (s0,s1,s2,s3,s4) = plus_x_mul_pow2_256_minus_prime x1 (r0,r1,r2,r3,r4) in
let x2, (k0,k1,k2,k3,k4) = minus_x_mul_pow2_256 (s0,s1,s2,s3,s4) in
(k0,k1,k2,k3,k4)
val normalize5_first_part_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
felem_fits5 f m))
(ensures (let x, r = normalize5_first_part f in
let (f0,f1,f2,f3,f4) = f in
let (r0,r1,r2,r3,r4) = r in
as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256 /\
felem_fits5 r (1,1,1,1,1) /\ (v x = 0 \/ (v x = 1 /\ v r4 < pow2 12))))
let normalize5_first_part_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (f0,f1,f2,f3,f4) = f in
let t = normalize_weak5 f in
let (t0,t1,t2,t3,t4) = t in
normalize_weak5_lemma m f;
assert (as_nat5 t == as_nat5 f - v f4 / pow2 48 * S.prime);
assert (felem_fits5 t (1,1,1,1,2));
assert ((v t4 >= pow2 48 ==> v t4 % pow2 48 < pow2 12));
let x, r = minus_x_mul_pow2_256 t in
let (r0,r1,r2,r3,r4) = r in
minus_x_mul_pow2_256_lemma (1,1,1,1,2) t;
assert (as_nat5 r == as_nat5 t - v x * pow2 256);
assert (as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256);
assert (felem_fits5 r (1,1,1,1,1));
assert (v r4 = v t4 % pow2 48 /\ v x = v t4 / pow2 48);
LD.lemma_div_pow48 t4;
assert (if v t4 < pow2 48 then v x = 0 else v x = 1 /\ v r4 < pow2 12)
val normalize5_second_part_x_is_one_lemma: x:uint64 -> r:felem5 -> Lemma
(requires (let (r0,r1,r2,r3,r4) = r in
felem_fits5 r (1,1,1,1,1) /\ v x = 1 /\ v r4 < pow2 12))
(ensures (let k = normalize5_second_part_x x r in
as_nat5 k == as_nat5 r + v x * pow2 256 - S.prime /\
felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime)) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.K256.MathLemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.fst.checked",
"Hacl.Spec.K256.Field52.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas",
"short_module": "LD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.MathLemmas",
"short_module": "ML"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Lib.IntTypes.uint64 -> r: Hacl.Spec.K256.Field52.Definitions.felem5
-> FStar.Pervasives.Lemma
(requires
(let _ = r in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ r4 = _ in
Hacl.Spec.K256.Field52.Definitions.felem_fits5 r (1, 1, 1, 1, 1) /\ Lib.IntTypes.v x = 1 /\
Lib.IntTypes.v r4 < Prims.pow2 12)
<:
Type0))
(ensures
(let k = Hacl.Spec.K256.Field52.Lemmas2.normalize5_second_part_x x r in
Hacl.Spec.K256.Field52.Definitions.as_nat5 k ==
Hacl.Spec.K256.Field52.Definitions.as_nat5 r + Lib.IntTypes.v x * Prims.pow2 256 -
Spec.K256.PointOps.prime /\
Hacl.Spec.K256.Field52.Definitions.felem_fits5 k (1, 1, 1, 1, 1) /\
Hacl.Spec.K256.Field52.Definitions.as_nat5 k < Spec.K256.PointOps.prime)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.uint64",
"Hacl.Spec.K256.Field52.Definitions.felem5",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Subtraction",
"Prims.op_Addition",
"Prims.pow2",
"Spec.K256.PointOps.prime",
"Prims.unit",
"Prims._assert",
"Hacl.Spec.K256.Field52.Definitions.as_nat5",
"Prims.op_Equality",
"Prims.nat",
"Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_div_pow48",
"Prims.int",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Hacl.Spec.K256.Field52.Definitions.felem_fits5",
"FStar.Pervasives.Native.Mktuple5",
"Hacl.Spec.K256.Field52.Lemmas2.minus_x_mul_pow2_256_lemma",
"FStar.Pervasives.Native.tuple2",
"Lib.IntTypes.int_t",
"Hacl.Spec.K256.Field52.minus_x_mul_pow2_256",
"FStar.Math.Lemmas.pow2_double_sum",
"Hacl.Spec.K256.Field52.Lemmas2.plus_x_mul_pow2_256_minus_prime_lemma",
"Hacl.Spec.K256.Field52.plus_x_mul_pow2_256_minus_prime",
"FStar.UInt.logor_lemma_1",
"FStar.UInt.logor_commutative",
"Lib.IntTypes.logor_spec",
"Lib.IntTypes.op_Bar_Dot",
"Lib.IntTypes.logand_lemma",
"Lib.IntTypes.u64",
"Lib.IntTypes.op_Amp_Dot",
"Hacl.Spec.K256.Field52.Lemmas2.is_felem_ge_prime5_lemma",
"Hacl.Spec.K256.Field52.is_felem_ge_prime5",
"Prims.op_LessThanOrEqual",
"Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_as_nat_bound_f4_lt_pow12"
] | [] | false | false | true | false | false | let normalize5_second_part_x_is_one_lemma x r =
| LD.lemma_as_nat_bound_f4_lt_pow12 r;
assert (as_nat5 r <= pow2 220 - 1);
assert_norm (pow2 220 - 1 < S.prime);
let is_ge_p_m = is_felem_ge_prime5 r in
is_felem_ge_prime5_lemma r;
assert (v is_ge_p_m = 0);
let m_to_one = is_ge_p_m &. u64 1 in
logand_lemma is_ge_p_m (u64 1);
assert (v m_to_one = 0);
let x1 = m_to_one |. x in
logor_spec m_to_one x;
FStar.UInt.logor_commutative #64 (v m_to_one) (v x);
FStar.UInt.logor_lemma_1 #64 (v x);
assert (v x1 = 1);
let s = plus_x_mul_pow2_256_minus_prime x1 r in
plus_x_mul_pow2_256_minus_prime_lemma (1, 1, 1, 1, 1) x1 r;
assert (as_nat5 s = as_nat5 r + pow2 256 - S.prime);
let s0, s1, s2, s3, s4 = s in
Math.Lemmas.pow2_double_sum 12;
assert (v s4 < pow2 13);
let x2, k = minus_x_mul_pow2_256 s in
minus_x_mul_pow2_256_lemma (1, 1, 1, 1, 2) s;
assert (felem_fits5 k (1, 1, 1, 1, 1));
assert (as_nat5 k = as_nat5 s - (v s4 / pow2 48) * pow2 256);
LD.lemma_div_pow48 s4;
assert (as_nat5 k = as_nat5 s);
assert (as_nat5 k < pow2 220 + pow2 256 - S.prime);
assert_norm (pow2 220 + pow2 256 - S.prime < S.prime) | false |
Hacl.Spec.K256.Field52.Lemmas2.fst | Hacl.Spec.K256.Field52.Lemmas2.normalize5_second_part_x_is_zero_lemma | val normalize5_second_part_x_is_zero_lemma: x:uint64 -> r:felem5 -> Lemma
(requires (let (r0,r1,r2,r3,r4) = r in
felem_fits5 r (1,1,1,1,1) /\ v x = 0))
(ensures (let k = normalize5_second_part_x x r in
as_nat5 k == (if as_nat5 r < S.prime then as_nat5 r else as_nat5 r - S.prime) /\
felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime)) | val normalize5_second_part_x_is_zero_lemma: x:uint64 -> r:felem5 -> Lemma
(requires (let (r0,r1,r2,r3,r4) = r in
felem_fits5 r (1,1,1,1,1) /\ v x = 0))
(ensures (let k = normalize5_second_part_x x r in
as_nat5 k == (if as_nat5 r < S.prime then as_nat5 r else as_nat5 r - S.prime) /\
felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime)) | let normalize5_second_part_x_is_zero_lemma x r =
let is_ge_p_m = is_felem_ge_prime5 r in
is_felem_ge_prime5_lemma r;
assert (if v is_ge_p_m = ones_v U64
then (as_nat5 r >= S.prime) else as_nat5 r < S.prime);
let m_to_one = is_ge_p_m &. u64 1 in
logand_lemma is_ge_p_m (u64 1);
assert (if v is_ge_p_m = ones_v U64 then v m_to_one = 1 else v m_to_one = 0);
let x1 = m_to_one |. x in //1
logor_spec m_to_one x;
FStar.UInt.logor_lemma_1 #64 (v m_to_one);
assert (v x1 = v m_to_one);
assert (if v x1 = 1 then (as_nat5 r >= S.prime) else as_nat5 r < S.prime);
let s = plus_x_mul_pow2_256_minus_prime x1 r in // + x1 * (pow2 256 - S.prime)
plus_x_mul_pow2_256_minus_prime_lemma (1,1,1,1,1) x1 r;
assert (as_nat5 s = as_nat5 r + v x1 * (pow2 256 - S.prime)); //(v s4 >= pow2 48 ==> v s4 % pow2 48 < pow2 12)
let (s0,s1,s2,s3,s4) = s in
let x2, k = minus_x_mul_pow2_256 s in // - s4 / pow2 48 * pow2 256
minus_x_mul_pow2_256_lemma (1,1,1,1,2) s;
assert (felem_fits5 k (1,1,1,1,1));
assert (as_nat5 k = as_nat5 s - v s4 / pow2 48 * pow2 256);
if v x1 = 0 then begin
assert (as_nat5 s = as_nat5 r);
LD.as_nat_inj s r;
assert (felem_fits_last1 s4 1);
Math.Lemmas.small_div (v s4) (pow2 48);
assert (as_nat5 k = as_nat5 r) end
else begin
assert (as_nat5 s = as_nat5 r + pow2 256 - S.prime);
assert (as_nat5 s >= pow2 256);
assert (v s4 >= pow2 48);
LD.lemma_div_pow48 s4;
assert (as_nat5 k = as_nat5 r - S.prime) end | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 48,
"end_line": 342,
"start_col": 0,
"start_line": 304
} | module Hacl.Spec.K256.Field52.Lemmas2
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
include Hacl.Spec.K256.Field52.Definitions
include Hacl.Spec.K256.Field52
module ML = Hacl.Spec.K256.MathLemmas
module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas
#set-options "--z3rlimit 100 --fuel 0 --ifuel 0"
/// Normalize-weak
val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires felem_fits5 f m)
(ensures
(let x, r = minus_x_mul_pow2_256 f in
let (r0,r1,r2,r3,r4) = r in
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
v x < pow2 16 /\ v x = v t4 / pow2 48 /\
v r4 = v t4 % pow2 48 /\
as_nat5 r == as_nat5 f - v x * pow2 256 /\
felem_fits5 r (m0,m1,m2,m3,1)))
let minus_x_mul_pow2_256_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
let x = t4 >>. 48ul in let t4' = t4 &. mask48 in
LD.lemma_mask48 t4;
let r = (t0,t1,t2,t3,t4') in
calc (==) { // as_nat5 f
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208;
(==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208;
(==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208;
(==) { }
(v x * pow2 48) * pow208 + as_nat5 r;
(==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 }
v x * pow2 256 + as_nat5 r;
};
Math.Lemmas.lemma_div_lt (v t4) 64 48
val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f (m0,m1,m2,m3,1)))
(ensures (let r = carry_round5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let carry_round_after_last_carry_mod_prime5_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in //(m0,m1,m2,m3,1)
let t1' = t1 +. (t0 >>. 52ul) in let t0' = t0 &. mask52 in
LD.lemma_carry52 m1 m0 t1 t0;
assert (felem_fits1 t1' (m1 + 1));
assert (felem_fits1 t0' 1);
assert (v t0' = v t0 % pow2 52);
assert (v t1' = v t1 + v t0 / pow2 52);
let t2' = t2 +. (t1' >>. 52ul) in let t1'' = t1' &. mask52 in
LD.lemma_carry52 m2 (m1 + 1) t2 t1';
assert (felem_fits1 t2' (m2 + 1));
assert (felem_fits1 t1'' 1);
assert (v t1'' = v t1' % pow2 52);
assert (v t2' = v t2 + v t1' / pow2 52);
let t3' = t3 +. (t2' >>. 52ul) in let t2'' = t2' &. mask52 in
LD.lemma_carry52 m3 (m2 + 1) t3 t2';
assert (felem_fits1 t3' (m3 + 1));
assert (felem_fits1 t2'' 1);
assert (v t2'' = v t2' % pow2 52);
assert (v t3' = v t3 + v t2' / pow2 52);
let t4' = t4 +. (t3' >>. 52ul) in let t3'' = t3' &. mask52 in
LD.lemma_carry_last52 m4 (m3 + 1) t4 t3';
assert (felem_fits_last1 t4' (m4 + 1));
assert (felem_fits1 t3'' 1);
assert (v t3'' = v t3' % pow2 52);
assert (v t4' = v t4 + v t3' / pow2 52);
LD.carry_last_small_mod_lemma t4 t3';
ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4);
let r = carry_round5 f in
assert ((t0',t1'',t2'',t3'',t4') == r);
assert (as_nat5 r == as_nat5 f)
val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f m /\ v x < pow2 16))
(ensures
(let r = plus_x_mul_pow2_256_minus_prime x f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let plus_x_mul_pow2_256_minus_prime_lemma m x f =
let (t0,t1,t2,t3,t4) = f in
let (m0,m1,m2,m3,m4) = m in
let t0' = t0 +. x *. u64 0x1000003D1 in
assert (v x < pow2 16);
Math.Lemmas.lemma_mult_lt_right 0x1000003D1 (v x) (pow2 16);
assert_norm (pow2 16 * 0x1000003D1 < max52);
assert (v t0 + v x * 0x1000003D1 < (m0 + 1) * max52);
Math.Lemmas.lemma_mult_le_right max52 (m0 + 1) 4096;
assert_norm (4096 * max52 < pow2 64);
Math.Lemmas.small_mod (v t0 + v x * 0x1000003D1) (pow2 64);
assert (v t0' = v t0 + v x * 0x1000003D1);
assert (felem_fits1 t0' (m0 + 1));
let r = carry_round5 (t0',t1,t2,t3,t4) in
carry_round_after_last_carry_mod_prime5_lemma (m0+1,m1,m2,m3,m4) (t0',t1,t2,t3,t4);
assert (as_nat5 r == as_nat5 (t0',t1,t2,t3,t4));
LD.lemma_pow2_256_minus_prime ();
assert (as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime))
val normalize_weak5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
felem_fits5 f m))
(ensures (let r = normalize_weak5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f - v t4 / pow2 48 * S.prime /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let normalize_weak5_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let x, f1 = minus_x_mul_pow2_256 f in
minus_x_mul_pow2_256_lemma m f;
assert (as_nat5 f1 == as_nat5 f - v x * pow2 256);
assert (felem_fits5 f1 (m0,m1,m2,m3,1));
let f2 = plus_x_mul_pow2_256_minus_prime x f1 in
plus_x_mul_pow2_256_minus_prime_lemma (m0,m1,m2,m3,1) x f1;
assert (as_nat5 f2 == as_nat5 f1 + v x * (pow2 256 - S.prime));
assert (felem_fits5 f2 (1,1,1,1,2));
assert (f2 == normalize_weak5 f);
Math.Lemmas.distributivity_sub_right (v x) (pow2 256) S.prime;
assert (as_nat5 f2 == as_nat5 f - v x * S.prime)
/// Normalize
#push-options "--ifuel 1"
val is_felem_ge_prime5_lemma: f:felem5 -> Lemma
(requires felem_fits5 f (1,1,1,1,1))
(ensures (let is_m = is_felem_ge_prime5 f in
(v is_m = 0 \/ v is_m = ones_v U64) /\
(if v is_m = ones_v U64 then (as_nat5 f >= S.prime) else (as_nat5 f < S.prime))))
let is_felem_ge_prime5_lemma f = ()
#pop-options
// let (f0,f1,f2,f3,f4) = f in
// let m4 = eq_mask f4 mask48 in
// eq_mask_lemma f4 mask48;
// assert (if v f4 = v mask48 then v m4 = ones_v U64 else v m4 = 0);
// let m3 = eq_mask f3 mask52 in
// eq_mask_lemma f3 mask52;
// assert (if v f3 = v mask52 then v m3 = ones_v U64 else v m3 = 0);
// let m2 = eq_mask f2 mask52 in
// eq_mask_lemma f2 mask52;
// assert (if v f2 = v mask52 then v m2 = ones_v U64 else v m2 = 0);
// let m1 = eq_mask f1 mask52 in
// eq_mask_lemma f1 mask52;
// assert (if v f1 = v mask52 then v m1 = ones_v U64 else v m1 = 0);
// let m0 = gte_mask f0 (u64 0xffffefffffc2f) in
// gte_mask_lemma f0 (u64 0xffffefffffc2f);
// assert (if v f0 >= 0xffffefffffc2f then v m0 = ones_v U64 else v m0 = 0);
// let m = m0 &. m1 &. m2 &. m3 &. m4 in ()
// if v m4 = 0 then
// logand_zeros (m0 &. m1 &. m2 &. m3)
// else begin
// logand_ones (m0 &. m1 &. m2 &. m3) end
noextract
let normalize5_first_part (f0,f1,f2,f3,f4) =
let (t0,t1,t2,t3,t4) = normalize_weak5 (f0,f1,f2,f3,f4) in
let x, (r0,r1,r2,r3,r4) = minus_x_mul_pow2_256 (t0,t1,t2,t3,t4) in
x, (r0,r1,r2,r3,r4)
noextract
let normalize5_second_part_x (x:uint64) (r0,r1,r2,r3,r4) : felem5 =
let is_ge_p_m = is_felem_ge_prime5 (r0,r1,r2,r3,r4) in // as_nat r >= S.prime
let m_to_one = is_ge_p_m &. u64 1 in
let x1 = m_to_one |. x in
let (s0,s1,s2,s3,s4) = plus_x_mul_pow2_256_minus_prime x1 (r0,r1,r2,r3,r4) in
let x2, (k0,k1,k2,k3,k4) = minus_x_mul_pow2_256 (s0,s1,s2,s3,s4) in
(k0,k1,k2,k3,k4)
val normalize5_first_part_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
felem_fits5 f m))
(ensures (let x, r = normalize5_first_part f in
let (f0,f1,f2,f3,f4) = f in
let (r0,r1,r2,r3,r4) = r in
as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256 /\
felem_fits5 r (1,1,1,1,1) /\ (v x = 0 \/ (v x = 1 /\ v r4 < pow2 12))))
let normalize5_first_part_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (f0,f1,f2,f3,f4) = f in
let t = normalize_weak5 f in
let (t0,t1,t2,t3,t4) = t in
normalize_weak5_lemma m f;
assert (as_nat5 t == as_nat5 f - v f4 / pow2 48 * S.prime);
assert (felem_fits5 t (1,1,1,1,2));
assert ((v t4 >= pow2 48 ==> v t4 % pow2 48 < pow2 12));
let x, r = minus_x_mul_pow2_256 t in
let (r0,r1,r2,r3,r4) = r in
minus_x_mul_pow2_256_lemma (1,1,1,1,2) t;
assert (as_nat5 r == as_nat5 t - v x * pow2 256);
assert (as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256);
assert (felem_fits5 r (1,1,1,1,1));
assert (v r4 = v t4 % pow2 48 /\ v x = v t4 / pow2 48);
LD.lemma_div_pow48 t4;
assert (if v t4 < pow2 48 then v x = 0 else v x = 1 /\ v r4 < pow2 12)
val normalize5_second_part_x_is_one_lemma: x:uint64 -> r:felem5 -> Lemma
(requires (let (r0,r1,r2,r3,r4) = r in
felem_fits5 r (1,1,1,1,1) /\ v x = 1 /\ v r4 < pow2 12))
(ensures (let k = normalize5_second_part_x x r in
as_nat5 k == as_nat5 r + v x * pow2 256 - S.prime /\
felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime))
let normalize5_second_part_x_is_one_lemma x r =
LD.lemma_as_nat_bound_f4_lt_pow12 r;
assert (as_nat5 r <= pow2 220 - 1);
assert_norm (pow2 220 - 1 < S.prime);
let is_ge_p_m = is_felem_ge_prime5 r in
is_felem_ge_prime5_lemma r;
assert (v is_ge_p_m = 0);
let m_to_one = is_ge_p_m &. u64 1 in
logand_lemma is_ge_p_m (u64 1);
assert (v m_to_one = 0);
let x1 = m_to_one |. x in //1
logor_spec m_to_one x;
FStar.UInt.logor_commutative #64 (v m_to_one) (v x);
FStar.UInt.logor_lemma_1 #64 (v x);
assert (v x1 = 1);
let s = plus_x_mul_pow2_256_minus_prime x1 r in // + x * (pow2 256 - S.prime)
plus_x_mul_pow2_256_minus_prime_lemma (1,1,1,1,1) x1 r;
assert (as_nat5 s = as_nat5 r + pow2 256 - S.prime); //(v s4 >= pow2 48 ==> v s4 % pow2 48 < pow2 12)
let (s0,s1,s2,s3,s4) = s in
Math.Lemmas.pow2_double_sum 12;
assert (v s4 < pow2 13);
let x2, k = minus_x_mul_pow2_256 s in // - s4 / pow2 48 * pow2 256
minus_x_mul_pow2_256_lemma (1,1,1,1,2) s;
assert (felem_fits5 k (1,1,1,1,1));
assert (as_nat5 k = as_nat5 s - v s4 / pow2 48 * pow2 256);
LD.lemma_div_pow48 s4;
assert (as_nat5 k = as_nat5 s);
assert (as_nat5 k < pow2 220 + pow2 256 - S.prime);
assert_norm (pow2 220 + pow2 256 - S.prime < S.prime)
val normalize5_second_part_x_is_zero_lemma: x:uint64 -> r:felem5 -> Lemma
(requires (let (r0,r1,r2,r3,r4) = r in
felem_fits5 r (1,1,1,1,1) /\ v x = 0))
(ensures (let k = normalize5_second_part_x x r in
as_nat5 k == (if as_nat5 r < S.prime then as_nat5 r else as_nat5 r - S.prime) /\
felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime)) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.K256.MathLemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.fst.checked",
"Hacl.Spec.K256.Field52.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas",
"short_module": "LD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.MathLemmas",
"short_module": "ML"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Lib.IntTypes.uint64 -> r: Hacl.Spec.K256.Field52.Definitions.felem5
-> FStar.Pervasives.Lemma
(requires
(let _ = r in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ _ = _ in
Hacl.Spec.K256.Field52.Definitions.felem_fits5 r (1, 1, 1, 1, 1) /\ Lib.IntTypes.v x = 0
)
<:
Type0))
(ensures
(let k = Hacl.Spec.K256.Field52.Lemmas2.normalize5_second_part_x x r in
Hacl.Spec.K256.Field52.Definitions.as_nat5 k ==
(match Hacl.Spec.K256.Field52.Definitions.as_nat5 r < Spec.K256.PointOps.prime with
| true -> Hacl.Spec.K256.Field52.Definitions.as_nat5 r
| _ -> Hacl.Spec.K256.Field52.Definitions.as_nat5 r - Spec.K256.PointOps.prime) /\
Hacl.Spec.K256.Field52.Definitions.felem_fits5 k (1, 1, 1, 1, 1) /\
Hacl.Spec.K256.Field52.Definitions.as_nat5 k < Spec.K256.PointOps.prime)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.uint64",
"Hacl.Spec.K256.Field52.Definitions.felem5",
"Prims.op_Equality",
"Prims.int",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims._assert",
"Prims.b2t",
"Prims.nat",
"Hacl.Spec.K256.Field52.Definitions.as_nat5",
"Prims.unit",
"FStar.Math.Lemmas.small_div",
"Prims.pow2",
"Hacl.Spec.K256.Field52.Definitions.felem_fits_last1",
"Hacl.Spec.K256.Field52.Definitions.Lemmas.as_nat_inj",
"Prims.bool",
"Prims.op_Subtraction",
"Spec.K256.PointOps.prime",
"Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_div_pow48",
"Prims.op_GreaterThanOrEqual",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Hacl.Spec.K256.Field52.Definitions.felem_fits5",
"FStar.Pervasives.Native.Mktuple5",
"Hacl.Spec.K256.Field52.Lemmas2.minus_x_mul_pow2_256_lemma",
"FStar.Pervasives.Native.tuple2",
"Lib.IntTypes.int_t",
"Hacl.Spec.K256.Field52.minus_x_mul_pow2_256",
"Hacl.Spec.K256.Field52.Lemmas2.plus_x_mul_pow2_256_minus_prime_lemma",
"Hacl.Spec.K256.Field52.plus_x_mul_pow2_256_minus_prime",
"Prims.op_LessThan",
"Lib.IntTypes.range_t",
"FStar.UInt.logor_lemma_1",
"Lib.IntTypes.logor_spec",
"Lib.IntTypes.op_Bar_Dot",
"Lib.IntTypes.ones_v",
"Lib.IntTypes.logand_lemma",
"Lib.IntTypes.u64",
"Lib.IntTypes.op_Amp_Dot",
"Hacl.Spec.K256.Field52.Lemmas2.is_felem_ge_prime5_lemma",
"Hacl.Spec.K256.Field52.is_felem_ge_prime5"
] | [] | false | false | true | false | false | let normalize5_second_part_x_is_zero_lemma x r =
| let is_ge_p_m = is_felem_ge_prime5 r in
is_felem_ge_prime5_lemma r;
assert (if v is_ge_p_m = ones_v U64 then (as_nat5 r >= S.prime) else as_nat5 r < S.prime);
let m_to_one = is_ge_p_m &. u64 1 in
logand_lemma is_ge_p_m (u64 1);
assert (if v is_ge_p_m = ones_v U64 then v m_to_one = 1 else v m_to_one = 0);
let x1 = m_to_one |. x in
logor_spec m_to_one x;
FStar.UInt.logor_lemma_1 #64 (v m_to_one);
assert (v x1 = v m_to_one);
assert (if v x1 = 1 then (as_nat5 r >= S.prime) else as_nat5 r < S.prime);
let s = plus_x_mul_pow2_256_minus_prime x1 r in
plus_x_mul_pow2_256_minus_prime_lemma (1, 1, 1, 1, 1) x1 r;
assert (as_nat5 s = as_nat5 r + v x1 * (pow2 256 - S.prime));
let s0, s1, s2, s3, s4 = s in
let x2, k = minus_x_mul_pow2_256 s in
minus_x_mul_pow2_256_lemma (1, 1, 1, 1, 2) s;
assert (felem_fits5 k (1, 1, 1, 1, 1));
assert (as_nat5 k = as_nat5 s - (v s4 / pow2 48) * pow2 256);
if v x1 = 0
then
(assert (as_nat5 s = as_nat5 r);
LD.as_nat_inj s r;
assert (felem_fits_last1 s4 1);
Math.Lemmas.small_div (v s4) (pow2 48);
assert (as_nat5 k = as_nat5 r))
else
(assert (as_nat5 s = as_nat5 r + pow2 256 - S.prime);
assert (as_nat5 s >= pow2 256);
assert (v s4 >= pow2 48);
LD.lemma_div_pow48 s4;
assert (as_nat5 k = as_nat5 r - S.prime)) | false |
Hacl.Spec.K256.Field52.Lemmas2.fst | Hacl.Spec.K256.Field52.Lemmas2.normalize5_lemma | val normalize5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
felem_fits5 f m))
(ensures (let r = normalize5 f in
as_nat5 r == as_nat5 f % S.prime /\
felem_fits5 r (1,1,1,1,1))) | val normalize5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
felem_fits5 f m))
(ensures (let r = normalize5 f in
as_nat5 r == as_nat5 f % S.prime /\
felem_fits5 r (1,1,1,1,1))) | let normalize5_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (f0,f1,f2,f3,f4) = f in
let x, r = normalize5_first_part f in
let k = normalize5_second_part_x x r in
let (r0,r1,r2,r3,r4) = r in
normalize5_first_part_lemma m f;
assert (as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256);
if v x = 1 then begin
normalize5_second_part_x_is_one_lemma x r;
lemma_a_minus_b_n_c_n_k (as_nat5 k) (as_nat5 f) (v f4 / pow2 48) 1 S.prime end
else begin
normalize5_second_part_x_is_zero_lemma x r;
if as_nat5 r < S.prime then
lemma_a_minus_b_n_c_n_k (as_nat5 k) (as_nat5 f) (v f4 / pow2 48) 0 S.prime
else
lemma_a_minus_b_n_c_n_k (as_nat5 k) (as_nat5 f) (v f4 / pow2 48) 1 S.prime end | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 84,
"end_line": 382,
"start_col": 0,
"start_line": 364
} | module Hacl.Spec.K256.Field52.Lemmas2
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
include Hacl.Spec.K256.Field52.Definitions
include Hacl.Spec.K256.Field52
module ML = Hacl.Spec.K256.MathLemmas
module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas
#set-options "--z3rlimit 100 --fuel 0 --ifuel 0"
/// Normalize-weak
val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires felem_fits5 f m)
(ensures
(let x, r = minus_x_mul_pow2_256 f in
let (r0,r1,r2,r3,r4) = r in
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
v x < pow2 16 /\ v x = v t4 / pow2 48 /\
v r4 = v t4 % pow2 48 /\
as_nat5 r == as_nat5 f - v x * pow2 256 /\
felem_fits5 r (m0,m1,m2,m3,1)))
let minus_x_mul_pow2_256_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
let x = t4 >>. 48ul in let t4' = t4 &. mask48 in
LD.lemma_mask48 t4;
let r = (t0,t1,t2,t3,t4') in
calc (==) { // as_nat5 f
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208;
(==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208;
(==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208;
(==) { }
(v x * pow2 48) * pow208 + as_nat5 r;
(==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 }
v x * pow2 256 + as_nat5 r;
};
Math.Lemmas.lemma_div_lt (v t4) 64 48
val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f (m0,m1,m2,m3,1)))
(ensures (let r = carry_round5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let carry_round_after_last_carry_mod_prime5_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in //(m0,m1,m2,m3,1)
let t1' = t1 +. (t0 >>. 52ul) in let t0' = t0 &. mask52 in
LD.lemma_carry52 m1 m0 t1 t0;
assert (felem_fits1 t1' (m1 + 1));
assert (felem_fits1 t0' 1);
assert (v t0' = v t0 % pow2 52);
assert (v t1' = v t1 + v t0 / pow2 52);
let t2' = t2 +. (t1' >>. 52ul) in let t1'' = t1' &. mask52 in
LD.lemma_carry52 m2 (m1 + 1) t2 t1';
assert (felem_fits1 t2' (m2 + 1));
assert (felem_fits1 t1'' 1);
assert (v t1'' = v t1' % pow2 52);
assert (v t2' = v t2 + v t1' / pow2 52);
let t3' = t3 +. (t2' >>. 52ul) in let t2'' = t2' &. mask52 in
LD.lemma_carry52 m3 (m2 + 1) t3 t2';
assert (felem_fits1 t3' (m3 + 1));
assert (felem_fits1 t2'' 1);
assert (v t2'' = v t2' % pow2 52);
assert (v t3' = v t3 + v t2' / pow2 52);
let t4' = t4 +. (t3' >>. 52ul) in let t3'' = t3' &. mask52 in
LD.lemma_carry_last52 m4 (m3 + 1) t4 t3';
assert (felem_fits_last1 t4' (m4 + 1));
assert (felem_fits1 t3'' 1);
assert (v t3'' = v t3' % pow2 52);
assert (v t4' = v t4 + v t3' / pow2 52);
LD.carry_last_small_mod_lemma t4 t3';
ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4);
let r = carry_round5 f in
assert ((t0',t1'',t2'',t3'',t4') == r);
assert (as_nat5 r == as_nat5 f)
val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\
felem_fits5 f m /\ v x < pow2 16))
(ensures
(let r = plus_x_mul_pow2_256_minus_prime x f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let plus_x_mul_pow2_256_minus_prime_lemma m x f =
let (t0,t1,t2,t3,t4) = f in
let (m0,m1,m2,m3,m4) = m in
let t0' = t0 +. x *. u64 0x1000003D1 in
assert (v x < pow2 16);
Math.Lemmas.lemma_mult_lt_right 0x1000003D1 (v x) (pow2 16);
assert_norm (pow2 16 * 0x1000003D1 < max52);
assert (v t0 + v x * 0x1000003D1 < (m0 + 1) * max52);
Math.Lemmas.lemma_mult_le_right max52 (m0 + 1) 4096;
assert_norm (4096 * max52 < pow2 64);
Math.Lemmas.small_mod (v t0 + v x * 0x1000003D1) (pow2 64);
assert (v t0' = v t0 + v x * 0x1000003D1);
assert (felem_fits1 t0' (m0 + 1));
let r = carry_round5 (t0',t1,t2,t3,t4) in
carry_round_after_last_carry_mod_prime5_lemma (m0+1,m1,m2,m3,m4) (t0',t1,t2,t3,t4);
assert (as_nat5 r == as_nat5 (t0',t1,t2,t3,t4));
LD.lemma_pow2_256_minus_prime ();
assert (as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime))
val normalize_weak5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
felem_fits5 f m))
(ensures (let r = normalize_weak5 f in
let (r0,r1,r2,r3,r4) = r in
let (t0,t1,t2,t3,t4) = f in
as_nat5 r == as_nat5 f - v t4 / pow2 48 * S.prime /\ felem_fits5 r (1,1,1,1,2) /\
v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
let normalize_weak5_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let x, f1 = minus_x_mul_pow2_256 f in
minus_x_mul_pow2_256_lemma m f;
assert (as_nat5 f1 == as_nat5 f - v x * pow2 256);
assert (felem_fits5 f1 (m0,m1,m2,m3,1));
let f2 = plus_x_mul_pow2_256_minus_prime x f1 in
plus_x_mul_pow2_256_minus_prime_lemma (m0,m1,m2,m3,1) x f1;
assert (as_nat5 f2 == as_nat5 f1 + v x * (pow2 256 - S.prime));
assert (felem_fits5 f2 (1,1,1,1,2));
assert (f2 == normalize_weak5 f);
Math.Lemmas.distributivity_sub_right (v x) (pow2 256) S.prime;
assert (as_nat5 f2 == as_nat5 f - v x * S.prime)
/// Normalize
#push-options "--ifuel 1"
val is_felem_ge_prime5_lemma: f:felem5 -> Lemma
(requires felem_fits5 f (1,1,1,1,1))
(ensures (let is_m = is_felem_ge_prime5 f in
(v is_m = 0 \/ v is_m = ones_v U64) /\
(if v is_m = ones_v U64 then (as_nat5 f >= S.prime) else (as_nat5 f < S.prime))))
let is_felem_ge_prime5_lemma f = ()
#pop-options
// let (f0,f1,f2,f3,f4) = f in
// let m4 = eq_mask f4 mask48 in
// eq_mask_lemma f4 mask48;
// assert (if v f4 = v mask48 then v m4 = ones_v U64 else v m4 = 0);
// let m3 = eq_mask f3 mask52 in
// eq_mask_lemma f3 mask52;
// assert (if v f3 = v mask52 then v m3 = ones_v U64 else v m3 = 0);
// let m2 = eq_mask f2 mask52 in
// eq_mask_lemma f2 mask52;
// assert (if v f2 = v mask52 then v m2 = ones_v U64 else v m2 = 0);
// let m1 = eq_mask f1 mask52 in
// eq_mask_lemma f1 mask52;
// assert (if v f1 = v mask52 then v m1 = ones_v U64 else v m1 = 0);
// let m0 = gte_mask f0 (u64 0xffffefffffc2f) in
// gte_mask_lemma f0 (u64 0xffffefffffc2f);
// assert (if v f0 >= 0xffffefffffc2f then v m0 = ones_v U64 else v m0 = 0);
// let m = m0 &. m1 &. m2 &. m3 &. m4 in ()
// if v m4 = 0 then
// logand_zeros (m0 &. m1 &. m2 &. m3)
// else begin
// logand_ones (m0 &. m1 &. m2 &. m3) end
noextract
let normalize5_first_part (f0,f1,f2,f3,f4) =
let (t0,t1,t2,t3,t4) = normalize_weak5 (f0,f1,f2,f3,f4) in
let x, (r0,r1,r2,r3,r4) = minus_x_mul_pow2_256 (t0,t1,t2,t3,t4) in
x, (r0,r1,r2,r3,r4)
noextract
let normalize5_second_part_x (x:uint64) (r0,r1,r2,r3,r4) : felem5 =
let is_ge_p_m = is_felem_ge_prime5 (r0,r1,r2,r3,r4) in // as_nat r >= S.prime
let m_to_one = is_ge_p_m &. u64 1 in
let x1 = m_to_one |. x in
let (s0,s1,s2,s3,s4) = plus_x_mul_pow2_256_minus_prime x1 (r0,r1,r2,r3,r4) in
let x2, (k0,k1,k2,k3,k4) = minus_x_mul_pow2_256 (s0,s1,s2,s3,s4) in
(k0,k1,k2,k3,k4)
val normalize5_first_part_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
felem_fits5 f m))
(ensures (let x, r = normalize5_first_part f in
let (f0,f1,f2,f3,f4) = f in
let (r0,r1,r2,r3,r4) = r in
as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256 /\
felem_fits5 r (1,1,1,1,1) /\ (v x = 0 \/ (v x = 1 /\ v r4 < pow2 12))))
let normalize5_first_part_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (f0,f1,f2,f3,f4) = f in
let t = normalize_weak5 f in
let (t0,t1,t2,t3,t4) = t in
normalize_weak5_lemma m f;
assert (as_nat5 t == as_nat5 f - v f4 / pow2 48 * S.prime);
assert (felem_fits5 t (1,1,1,1,2));
assert ((v t4 >= pow2 48 ==> v t4 % pow2 48 < pow2 12));
let x, r = minus_x_mul_pow2_256 t in
let (r0,r1,r2,r3,r4) = r in
minus_x_mul_pow2_256_lemma (1,1,1,1,2) t;
assert (as_nat5 r == as_nat5 t - v x * pow2 256);
assert (as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256);
assert (felem_fits5 r (1,1,1,1,1));
assert (v r4 = v t4 % pow2 48 /\ v x = v t4 / pow2 48);
LD.lemma_div_pow48 t4;
assert (if v t4 < pow2 48 then v x = 0 else v x = 1 /\ v r4 < pow2 12)
val normalize5_second_part_x_is_one_lemma: x:uint64 -> r:felem5 -> Lemma
(requires (let (r0,r1,r2,r3,r4) = r in
felem_fits5 r (1,1,1,1,1) /\ v x = 1 /\ v r4 < pow2 12))
(ensures (let k = normalize5_second_part_x x r in
as_nat5 k == as_nat5 r + v x * pow2 256 - S.prime /\
felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime))
let normalize5_second_part_x_is_one_lemma x r =
LD.lemma_as_nat_bound_f4_lt_pow12 r;
assert (as_nat5 r <= pow2 220 - 1);
assert_norm (pow2 220 - 1 < S.prime);
let is_ge_p_m = is_felem_ge_prime5 r in
is_felem_ge_prime5_lemma r;
assert (v is_ge_p_m = 0);
let m_to_one = is_ge_p_m &. u64 1 in
logand_lemma is_ge_p_m (u64 1);
assert (v m_to_one = 0);
let x1 = m_to_one |. x in //1
logor_spec m_to_one x;
FStar.UInt.logor_commutative #64 (v m_to_one) (v x);
FStar.UInt.logor_lemma_1 #64 (v x);
assert (v x1 = 1);
let s = plus_x_mul_pow2_256_minus_prime x1 r in // + x * (pow2 256 - S.prime)
plus_x_mul_pow2_256_minus_prime_lemma (1,1,1,1,1) x1 r;
assert (as_nat5 s = as_nat5 r + pow2 256 - S.prime); //(v s4 >= pow2 48 ==> v s4 % pow2 48 < pow2 12)
let (s0,s1,s2,s3,s4) = s in
Math.Lemmas.pow2_double_sum 12;
assert (v s4 < pow2 13);
let x2, k = minus_x_mul_pow2_256 s in // - s4 / pow2 48 * pow2 256
minus_x_mul_pow2_256_lemma (1,1,1,1,2) s;
assert (felem_fits5 k (1,1,1,1,1));
assert (as_nat5 k = as_nat5 s - v s4 / pow2 48 * pow2 256);
LD.lemma_div_pow48 s4;
assert (as_nat5 k = as_nat5 s);
assert (as_nat5 k < pow2 220 + pow2 256 - S.prime);
assert_norm (pow2 220 + pow2 256 - S.prime < S.prime)
val normalize5_second_part_x_is_zero_lemma: x:uint64 -> r:felem5 -> Lemma
(requires (let (r0,r1,r2,r3,r4) = r in
felem_fits5 r (1,1,1,1,1) /\ v x = 0))
(ensures (let k = normalize5_second_part_x x r in
as_nat5 k == (if as_nat5 r < S.prime then as_nat5 r else as_nat5 r - S.prime) /\
felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime))
let normalize5_second_part_x_is_zero_lemma x r =
let is_ge_p_m = is_felem_ge_prime5 r in
is_felem_ge_prime5_lemma r;
assert (if v is_ge_p_m = ones_v U64
then (as_nat5 r >= S.prime) else as_nat5 r < S.prime);
let m_to_one = is_ge_p_m &. u64 1 in
logand_lemma is_ge_p_m (u64 1);
assert (if v is_ge_p_m = ones_v U64 then v m_to_one = 1 else v m_to_one = 0);
let x1 = m_to_one |. x in //1
logor_spec m_to_one x;
FStar.UInt.logor_lemma_1 #64 (v m_to_one);
assert (v x1 = v m_to_one);
assert (if v x1 = 1 then (as_nat5 r >= S.prime) else as_nat5 r < S.prime);
let s = plus_x_mul_pow2_256_minus_prime x1 r in // + x1 * (pow2 256 - S.prime)
plus_x_mul_pow2_256_minus_prime_lemma (1,1,1,1,1) x1 r;
assert (as_nat5 s = as_nat5 r + v x1 * (pow2 256 - S.prime)); //(v s4 >= pow2 48 ==> v s4 % pow2 48 < pow2 12)
let (s0,s1,s2,s3,s4) = s in
let x2, k = minus_x_mul_pow2_256 s in // - s4 / pow2 48 * pow2 256
minus_x_mul_pow2_256_lemma (1,1,1,1,2) s;
assert (felem_fits5 k (1,1,1,1,1));
assert (as_nat5 k = as_nat5 s - v s4 / pow2 48 * pow2 256);
if v x1 = 0 then begin
assert (as_nat5 s = as_nat5 r);
LD.as_nat_inj s r;
assert (felem_fits_last1 s4 1);
Math.Lemmas.small_div (v s4) (pow2 48);
assert (as_nat5 k = as_nat5 r) end
else begin
assert (as_nat5 s = as_nat5 r + pow2 256 - S.prime);
assert (as_nat5 s >= pow2 256);
assert (v s4 >= pow2 48);
LD.lemma_div_pow48 s4;
assert (as_nat5 k = as_nat5 r - S.prime) end
val lemma_a_minus_b_n_c_n_k (k a b c:nat) (n:pos) : Lemma
(requires k < n /\ k == a - b * n - c * n)
(ensures k == a % n)
let lemma_a_minus_b_n_c_n_k k a b c n =
Math.Lemmas.lemma_mod_sub (a - b * n) n c;
Math.Lemmas.lemma_mod_sub a n b;
Math.Lemmas.small_mod k n
val normalize5_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires (let (m0,m1,m2,m3,m4) = m in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\
m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
felem_fits5 f m))
(ensures (let r = normalize5 f in
as_nat5 r == as_nat5 f % S.prime /\
felem_fits5 r (1,1,1,1,1))) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.K256.MathLemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.fst.checked",
"Hacl.Spec.K256.Field52.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas",
"short_module": "LD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.MathLemmas",
"short_module": "ML"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: Hacl.Spec.K256.Field52.Definitions.scale64_5 -> f: Hacl.Spec.K256.Field52.Definitions.felem5
-> FStar.Pervasives.Lemma
(requires
(let _ = m in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ m0 m1 m2 m3 _ = _ in
m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\
Hacl.Spec.K256.Field52.Definitions.felem_fits5 f m)
<:
Type0))
(ensures
(let r = Hacl.Spec.K256.Field52.normalize5 f in
Hacl.Spec.K256.Field52.Definitions.as_nat5 r ==
Hacl.Spec.K256.Field52.Definitions.as_nat5 f % Spec.K256.PointOps.prime /\
Hacl.Spec.K256.Field52.Definitions.felem_fits5 r (1, 1, 1, 1, 1))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.K256.Field52.Definitions.scale64_5",
"Hacl.Spec.K256.Field52.Definitions.felem5",
"Prims.nat",
"Lib.IntTypes.uint64",
"FStar.Pervasives.Native.tuple5",
"Prims.op_Equality",
"Prims.int",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Hacl.Spec.K256.Field52.Lemmas2.lemma_a_minus_b_n_c_n_k",
"Hacl.Spec.K256.Field52.Definitions.as_nat5",
"Prims.op_Division",
"Prims.pow2",
"Spec.K256.PointOps.prime",
"Prims.unit",
"Hacl.Spec.K256.Field52.Lemmas2.normalize5_second_part_x_is_one_lemma",
"Prims.bool",
"Prims.op_LessThan",
"Hacl.Spec.K256.Field52.Lemmas2.normalize5_second_part_x_is_zero_lemma",
"Prims._assert",
"Prims.eq2",
"Prims.op_Subtraction",
"FStar.Mul.op_Star",
"Hacl.Spec.K256.Field52.Lemmas2.normalize5_first_part_lemma",
"Lib.IntTypes.int_t",
"Hacl.Spec.K256.Field52.Lemmas2.normalize5_second_part_x",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.K256.Field52.Lemmas2.normalize5_first_part"
] | [] | false | false | true | false | false | let normalize5_lemma m f =
| let m0, m1, m2, m3, m4 = m in
let f0, f1, f2, f3, f4 = f in
let x, r = normalize5_first_part f in
let k = normalize5_second_part_x x r in
let r0, r1, r2, r3, r4 = r in
normalize5_first_part_lemma m f;
assert (as_nat5 r == as_nat5 f - (v f4 / pow2 48) * S.prime - v x * pow2 256);
if v x = 1
then
(normalize5_second_part_x_is_one_lemma x r;
lemma_a_minus_b_n_c_n_k (as_nat5 k) (as_nat5 f) (v f4 / pow2 48) 1 S.prime)
else
(normalize5_second_part_x_is_zero_lemma x r;
if as_nat5 r < S.prime
then lemma_a_minus_b_n_c_n_k (as_nat5 k) (as_nat5 f) (v f4 / pow2 48) 0 S.prime
else lemma_a_minus_b_n_c_n_k (as_nat5 k) (as_nat5 f) (v f4 / pow2 48) 1 S.prime) | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.optional_freeable | val optional_freeable : h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Streaming.Interface.optional_key i km key -> Type0 | let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 61,
"start_col": 0,
"start_line": 51
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier. | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Streaming.Interface.optional_key i km key -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Interface.key_management",
"Hacl.Streaming.Interface.stateful",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Interface.optional_key",
"Prims.l_True",
"Hacl.Streaming.Interface.__proj__Stateful__item__freeable",
"Prims.unit",
"FStar.Pervasives.allow_inversion"
] | [] | false | false | false | false | true | let optional_freeable
#index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
| allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k | false |
|
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.optional_footprint | val optional_footprint : h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Streaming.Interface.optional_key i km key
-> Prims.GTot LowStar.Monotonic.Buffer.loc | let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 35,
"end_line": 85,
"start_col": 0,
"start_line": 75
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Streaming.Interface.optional_key i km key
-> Prims.GTot LowStar.Monotonic.Buffer.loc | Prims.GTot | [
"sometrivial"
] | [] | [
"Hacl.Streaming.Interface.key_management",
"Hacl.Streaming.Interface.stateful",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Interface.optional_key",
"LowStar.Monotonic.Buffer.loc_none",
"Hacl.Streaming.Interface.__proj__Stateful__item__footprint",
"LowStar.Monotonic.Buffer.loc",
"Prims.unit",
"FStar.Pervasives.allow_inversion"
] | [] | false | false | false | false | false | let optional_footprint
#index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
| allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k | false |
|
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.optional_invariant | val optional_invariant : h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Streaming.Interface.optional_key i km key -> Type0 | let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 35,
"end_line": 73,
"start_col": 0,
"start_line": 63
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Streaming.Interface.optional_key i km key -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Interface.key_management",
"Hacl.Streaming.Interface.stateful",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Interface.optional_key",
"Prims.l_True",
"Hacl.Streaming.Interface.__proj__Stateful__item__invariant",
"Prims.unit",
"FStar.Pervasives.allow_inversion"
] | [] | false | false | false | false | true | let optional_invariant
#index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
| allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k | false |
|
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.optional_reveal | val optional_reveal : h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Streaming.Interface.optional_key i km key
-> Prims.GTot (Stateful?.t key i) | let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 26,
"end_line": 97,
"start_col": 0,
"start_line": 87
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Streaming.Interface.optional_key i km key
-> Prims.GTot (Stateful?.t key i) | Prims.GTot | [
"sometrivial"
] | [] | [
"Hacl.Streaming.Interface.key_management",
"Hacl.Streaming.Interface.stateful",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Interface.optional_key",
"FStar.Ghost.reveal",
"Hacl.Streaming.Interface.__proj__Stateful__item__t",
"Hacl.Streaming.Interface.__proj__Stateful__item__v",
"Prims.unit",
"FStar.Pervasives.allow_inversion"
] | [] | false | false | false | false | false | let optional_reveal
#index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
| allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k | false |
|
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.optional_hide | val optional_hide
(#index: _)
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i)
: optional_key i km key | val optional_hide
(#index: _)
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i)
: optional_key i km key | let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 16,
"end_line": 110,
"start_col": 0,
"start_line": 99
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> k: Stateful?.s key i
-> Hacl.Streaming.Interface.optional_key i km key | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Interface.key_management",
"Hacl.Streaming.Interface.stateful",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"FStar.Ghost.hide",
"Hacl.Streaming.Interface.__proj__Stateful__item__t",
"Hacl.Streaming.Interface.__proj__Stateful__item__v",
"Hacl.Streaming.Interface.optional_key",
"Prims.unit",
"FStar.Pervasives.allow_inversion"
] | [] | false | false | false | false | false | let optional_hide
#index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i)
: optional_key i km key =
| allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.footprint_s | val footprint_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): GTot B.loc | val footprint_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): GTot B.loc | let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key) | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 112,
"end_line": 169,
"start_col": 0,
"start_line": 167
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: Hacl.Streaming.Interface.block index ->
i: index ->
h: FStar.Monotonic.HyperStack.mem ->
s: Hacl.Streaming.Functor.state_s' c i
-> Prims.GTot LowStar.Monotonic.Buffer.loc | Prims.GTot | [
"sometrivial"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Functor.state_s'",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Interface.__proj__Block__item__state",
"LowStar.Buffer.buffer",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_Equality",
"FStar.UInt32.t",
"LowStar.Monotonic.Buffer.len",
"LowStar.Buffer.trivial_preorder",
"Hacl.Streaming.Interface.__proj__Block__item__blocks_state_len",
"FStar.UInt64.t",
"FStar.Ghost.erased",
"FStar.Seq.Base.seq",
"Hacl.Streaming.Spec.uint8",
"Hacl.Streaming.Interface.optional_key",
"Hacl.Streaming.Interface.__proj__Block__item__km",
"Hacl.Streaming.Interface.__proj__Block__item__key",
"LowStar.Monotonic.Buffer.loc_union",
"LowStar.Monotonic.Buffer.loc_addr_of_buffer",
"Hacl.Streaming.Interface.__proj__Stateful__item__footprint",
"Hacl.Streaming.Functor.optional_footprint",
"LowStar.Monotonic.Buffer.loc"
] | [] | false | false | false | false | false | let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
| let State block_state buf_ _ _ p_key = s in
let open B in
((loc_addr_of_buffer buf_) `loc_union` (c.state.footprint h block_state))
`loc_union`
(optional_footprint h p_key) | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.stateful_frame_preserves_freeable | val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s)) | val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s)) | let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
() | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 140,
"start_col": 0,
"start_line": 126
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
l: LowStar.Monotonic.Buffer.loc ->
s: Stateful?.s sc i ->
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem
-> FStar.Pervasives.Lemma
(requires
Stateful?.invariant sc h0 s /\
LowStar.Monotonic.Buffer.loc_disjoint l (Stateful?.footprint sc h0 s) /\
LowStar.Monotonic.Buffer.modifies l h0 h1)
(ensures Stateful?.freeable sc h0 s ==> Stateful?.freeable sc h1 s) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Streaming.Interface.stateful",
"LowStar.Monotonic.Buffer.loc",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"FStar.Monotonic.HyperStack.mem",
"Prims.unit",
"Prims.l_and",
"Hacl.Streaming.Interface.__proj__Stateful__item__invariant",
"LowStar.Monotonic.Buffer.loc_disjoint",
"Hacl.Streaming.Interface.__proj__Stateful__item__footprint",
"LowStar.Monotonic.Buffer.modifies",
"Hacl.Streaming.Interface.__proj__Stateful__item__freeable",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil",
"Hacl.Streaming.Interface.__proj__Stateful__item__frame_freeable"
] | [] | false | false | true | false | false | let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
| let lem h0 h1
: Lemma
(requires
(sc.invariant h0 s /\ B.loc_disjoint l (sc.footprint h0 s) /\ B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (sc.freeable h1 s))
[SMTPat (sc.freeable h0 s); SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
() | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.freeable_s | val freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i) : Type0 | val freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i) : Type0 | let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 78,
"end_line": 206,
"start_col": 0,
"start_line": 204
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: Hacl.Streaming.Interface.block index ->
i: index ->
h: FStar.Monotonic.HyperStack.mem ->
s: Hacl.Streaming.Functor.state_s' c i
-> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Functor.state_s'",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Interface.__proj__Block__item__state",
"LowStar.Buffer.buffer",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_Equality",
"FStar.UInt32.t",
"LowStar.Monotonic.Buffer.len",
"LowStar.Buffer.trivial_preorder",
"Hacl.Streaming.Interface.__proj__Block__item__blocks_state_len",
"FStar.UInt64.t",
"FStar.Ghost.erased",
"FStar.Seq.Base.seq",
"Hacl.Streaming.Spec.uint8",
"Hacl.Streaming.Interface.optional_key",
"Hacl.Streaming.Interface.__proj__Block__item__km",
"Hacl.Streaming.Interface.__proj__Block__item__key",
"Prims.l_and",
"LowStar.Monotonic.Buffer.freeable",
"Hacl.Streaming.Interface.__proj__Stateful__item__freeable",
"Hacl.Streaming.Functor.optional_freeable"
] | [] | false | false | false | false | true | let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i) : Type0 =
| let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.seen | val seen: #index:Type0 -> c:block index -> i:index -> h:HS.mem -> s:state' c i -> GTot bytes | val seen: #index:Type0 -> c:block index -> i:index -> h:HS.mem -> s:state' c i -> GTot bytes | let seen #index c i h s =
G.reveal (State?.seen (B.deref h s)) | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 38,
"end_line": 222,
"start_col": 0,
"start_line": 221
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: Hacl.Streaming.Interface.block index ->
i: index ->
h: FStar.Monotonic.HyperStack.mem ->
s: Hacl.Streaming.Functor.state' c i
-> Prims.GTot Hacl.Streaming.Functor.bytes | Prims.GTot | [
"sometrivial"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Functor.state'",
"FStar.Ghost.reveal",
"FStar.Seq.Base.seq",
"Hacl.Streaming.Spec.uint8",
"Hacl.Streaming.Functor.__proj__State__item__seen",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Interface.__proj__Block__item__state",
"Hacl.Streaming.Interface.optional_key",
"Hacl.Streaming.Interface.__proj__Block__item__km",
"Hacl.Streaming.Interface.__proj__Block__item__key",
"LowStar.Monotonic.Buffer.deref",
"Hacl.Streaming.Functor.state_s",
"LowStar.Buffer.trivial_preorder",
"Hacl.Streaming.Functor.bytes"
] | [] | false | false | false | false | false | let seen #index c i h s =
| G.reveal (State?.seen (B.deref h s)) | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.optional_frame | val optional_frame
(#index: _)
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem)
: Lemma
(requires
(optional_invariant h0 s /\ B.loc_disjoint l (optional_footprint h0 s) /\ B.modifies l h0 h1
))
(ensures
(optional_invariant h1 s /\ optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s))) | val optional_frame
(#index: _)
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem)
: Lemma
(requires
(optional_invariant h0 s /\ B.loc_disjoint l (optional_footprint h0 s) /\ B.modifies l h0 h1
))
(ensures
(optional_invariant h1 s /\ optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s))) | let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1 | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 64,
"end_line": 165,
"start_col": 0,
"start_line": 142
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
l: LowStar.Monotonic.Buffer.loc ->
s: Hacl.Streaming.Interface.optional_key i km key ->
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem
-> FStar.Pervasives.Lemma
(requires
Hacl.Streaming.Functor.optional_invariant h0 s /\
LowStar.Monotonic.Buffer.loc_disjoint l (Hacl.Streaming.Functor.optional_footprint h0 s) /\
LowStar.Monotonic.Buffer.modifies l h0 h1)
(ensures
Hacl.Streaming.Functor.optional_invariant h1 s /\
Hacl.Streaming.Functor.optional_reveal h0 s == Hacl.Streaming.Functor.optional_reveal h1 s /\
Hacl.Streaming.Functor.optional_footprint h1 s ==
Hacl.Streaming.Functor.optional_footprint h0 s /\
(Hacl.Streaming.Functor.optional_freeable h0 s ==>
Hacl.Streaming.Functor.optional_freeable h1 s)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Streaming.Interface.key_management",
"Hacl.Streaming.Interface.stateful",
"LowStar.Monotonic.Buffer.loc",
"Hacl.Streaming.Interface.optional_key",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Functor.stateful_frame_preserves_freeable",
"Prims.unit",
"Hacl.Streaming.Interface.__proj__Stateful__item__frame_invariant",
"FStar.Pervasives.allow_inversion",
"Prims.l_and",
"Hacl.Streaming.Functor.optional_invariant",
"LowStar.Monotonic.Buffer.loc_disjoint",
"Hacl.Streaming.Functor.optional_footprint",
"LowStar.Monotonic.Buffer.modifies",
"Prims.squash",
"Prims.eq2",
"Hacl.Streaming.Interface.__proj__Stateful__item__t",
"Hacl.Streaming.Functor.optional_reveal",
"Prims.l_imp",
"Hacl.Streaming.Functor.optional_freeable",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let optional_frame
#index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0: HS.mem)
(h1: HS.mem)
: Lemma
(requires
(optional_invariant h0 s /\ B.loc_disjoint l (optional_footprint h0 s) /\ B.modifies l h0 h1
))
(ensures
(optional_invariant h1 s /\ optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s))) =
| allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1 | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.all_seen | val all_seen (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) : GTot bytes | val all_seen (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) : GTot bytes | let all_seen (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
S.append (init_input c i h s) (seen c i h s) | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 46,
"end_line": 234,
"start_col": 0,
"start_line": 233
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
()
let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s))
let init_input (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
c.init_input_s i (reveal_key c i h s) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: Hacl.Streaming.Interface.block index ->
i: index ->
h: FStar.Monotonic.HyperStack.mem ->
s: Hacl.Streaming.Functor.state' c i
-> Prims.GTot Hacl.Streaming.Functor.bytes | Prims.GTot | [
"sometrivial"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Functor.state'",
"FStar.Seq.Base.append",
"Hacl.Streaming.Spec.uint8",
"Hacl.Streaming.Functor.init_input",
"Hacl.Streaming.Functor.seen",
"Hacl.Streaming.Functor.bytes"
] | [] | false | false | false | false | false | let all_seen (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) : GTot bytes =
| S.append (init_input c i h s) (seen c i h s) | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.reveal_key | val reveal_key: #index:Type0 -> c:block index -> i:index -> h:HS.mem -> s:state' c i -> GTot (c.key.I.t i) | val reveal_key: #index:Type0 -> c:block index -> i:index -> h:HS.mem -> s:state' c i -> GTot (c.key.I.t i) | let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s)) | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 48,
"end_line": 228,
"start_col": 0,
"start_line": 227
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: Hacl.Streaming.Interface.block index ->
i: index ->
h: FStar.Monotonic.HyperStack.mem ->
s: Hacl.Streaming.Functor.state' c i
-> Prims.GTot (Stateful?.t (Block?.key c) i) | Prims.GTot | [
"sometrivial"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Functor.state'",
"Hacl.Streaming.Functor.optional_reveal",
"Hacl.Streaming.Interface.__proj__Block__item__km",
"Hacl.Streaming.Interface.__proj__Block__item__key",
"Hacl.Streaming.Functor.__proj__State__item__p_key",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Interface.__proj__Block__item__state",
"Hacl.Streaming.Interface.optional_key",
"LowStar.Monotonic.Buffer.deref",
"Hacl.Streaming.Functor.state_s",
"LowStar.Buffer.trivial_preorder",
"Hacl.Streaming.Interface.__proj__Stateful__item__t"
] | [] | false | false | false | false | false | let reveal_key #index c i h s =
| optional_reveal h (State?.p_key (B.deref h s)) | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.init_input | val init_input (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) : GTot bytes | val init_input (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) : GTot bytes | let init_input (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
c.init_input_s i (reveal_key c i h s) | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 39,
"end_line": 231,
"start_col": 0,
"start_line": 230
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
()
let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: Hacl.Streaming.Interface.block index ->
i: index ->
h: FStar.Monotonic.HyperStack.mem ->
s: Hacl.Streaming.Functor.state' c i
-> Prims.GTot Hacl.Streaming.Functor.bytes | Prims.GTot | [
"sometrivial"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Functor.state'",
"Hacl.Streaming.Interface.__proj__Block__item__init_input_s",
"Hacl.Streaming.Functor.reveal_key",
"Hacl.Streaming.Functor.bytes"
] | [] | false | false | false | false | false | let init_input (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) : GTot bytes =
| c.init_input_s i (reveal_key c i h s) | false |
LList.fst | LList.push | val push (#a:Type) (ptr:t a) (l:list (cell a)) (v:a)
: Steel (t a & list (cell a))
(llist ptr l)
(fun pc -> llist (fst pc) (snd pc))
(requires fun _ -> True)
(ensures fun _ pc _ -> datas (snd pc) == v::datas l) | val push (#a:Type) (ptr:t a) (l:list (cell a)) (v:a)
: Steel (t a & list (cell a))
(llist ptr l)
(fun pc -> llist (fst pc) (snd pc))
(requires fun _ -> True)
(ensures fun _ pc _ -> datas (snd pc) == v::datas l) | let push #a ptr l v =
let cell = mk_cell ptr v in
let p = alloc_pt cell in
rewrite_slprop (llist ptr l) (llist (next cell) l) (fun _ -> ());
intro_llist_cons p cell l;
let pc = p, (cell::l) in
pc | {
"file_name": "share/steel/examples/steel/LList.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 4,
"end_line": 46,
"start_col": 0,
"start_line": 40
} | module LList
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open Steel.FractionalPermission
open Steel.Reference
include LList.Invariant
module L = FStar.List.Tot.Base
#set-options "--ide_id_info_off"
let rec datas (#a:Type) (l:list (cell a)) : list a =
match l with
| [] -> []
| hd::tl -> data hd :: datas tl
val new_llist (#a:Type) (init:a)
: Steel (t a & list (cell a))
emp
(fun pc -> llist (fst pc) (snd pc))
(requires fun _ -> True)
(ensures fun _ pc _ -> datas (snd pc) == [init])
let new_llist #a init =
let cell = mk_cell null_llist init in
let p = alloc_pt cell in
intro_llist_nil a;
rewrite_slprop (llist null_llist []) (llist (next cell) []) (fun _ -> ());
intro_llist_cons p cell [];
let pc = p, [cell] in
pc
val push (#a:Type) (ptr:t a) (l:list (cell a)) (v:a)
: Steel (t a & list (cell a))
(llist ptr l)
(fun pc -> llist (fst pc) (snd pc))
(requires fun _ -> True)
(ensures fun _ pc _ -> datas (snd pc) == v::datas l) | {
"checked_file": "/",
"dependencies": [
"Steel.Reference.fsti.checked",
"Steel.Memory.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"LList.Invariant.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "LList.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LList.Invariant",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Reference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ptr: LList.Invariant.t a -> l: Prims.list (LList.Invariant.cell a) -> v: a
-> Steel.Effect.Steel (LList.Invariant.t a * Prims.list (LList.Invariant.cell a)) | Steel.Effect.Steel | [] | [] | [
"LList.Invariant.t",
"Prims.list",
"LList.Invariant.cell",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"Prims.Cons",
"Prims.unit",
"LList.Invariant.intro_llist_cons",
"Steel.Effect.Atomic.rewrite_slprop",
"FStar.Ghost.hide",
"FStar.Set.set",
"Steel.Memory.iname",
"FStar.Set.empty",
"LList.Invariant.llist",
"LList.Invariant.next",
"Steel.Memory.mem",
"Steel.Reference.ref",
"Steel.Reference.alloc_pt",
"LList.Invariant.mk_cell"
] | [] | false | true | false | false | false | let push #a ptr l v =
| let cell = mk_cell ptr v in
let p = alloc_pt cell in
rewrite_slprop (llist ptr l) (llist (next cell) l) (fun _ -> ());
intro_llist_cons p cell l;
let pc = p, (cell :: l) in
pc | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.invariant_s | val invariant_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 | val invariant_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 | let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 62,
"end_line": 200,
"start_col": 0,
"start_line": 176
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: Hacl.Streaming.Interface.block index ->
i: index ->
h: FStar.Monotonic.HyperStack.mem ->
s: Hacl.Streaming.Functor.state_s' c i
-> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Functor.state_s'",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Interface.__proj__Block__item__state",
"LowStar.Buffer.buffer",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_Equality",
"FStar.UInt32.t",
"LowStar.Monotonic.Buffer.len",
"LowStar.Buffer.trivial_preorder",
"Hacl.Streaming.Interface.__proj__Block__item__blocks_state_len",
"FStar.UInt64.t",
"FStar.Ghost.erased",
"FStar.Seq.Base.seq",
"Hacl.Streaming.Spec.uint8",
"Hacl.Streaming.Interface.optional_key",
"Hacl.Streaming.Interface.__proj__Block__item__km",
"Hacl.Streaming.Interface.__proj__Block__item__key",
"Hacl.Streaming.Spec.bytes",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"Hacl.Streaming.Interface.__proj__Stateful__item__invariant",
"Hacl.Streaming.Functor.optional_invariant",
"LowStar.Monotonic.Buffer.loc_disjoint",
"LowStar.Monotonic.Buffer.loc_buffer",
"Hacl.Streaming.Interface.__proj__Stateful__item__footprint",
"Hacl.Streaming.Functor.optional_footprint",
"Prims.int",
"Prims.op_Addition",
"FStar.Seq.Base.length",
"FStar.UInt64.v",
"FStar.UInt32.v",
"Hacl.Streaming.Interface.__proj__Block__item__init_input_len",
"Prims.op_LessThanOrEqual",
"Hacl.Streaming.Interface.__proj__Block__item__max_input_len",
"Prims.eq2",
"Hacl.Streaming.Interface.__proj__Stateful__item__t",
"Hacl.Streaming.Interface.__proj__Stateful__item__v",
"Hacl.Streaming.Interface.__proj__Block__item__update_multi_s",
"Hacl.Streaming.Interface.__proj__Block__item__init_s",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.slice",
"LowStar.Monotonic.Buffer.as_seq",
"Prims.unit",
"Prims._assert",
"Prims.op_Modulus",
"FStar.Math.Lemmas.modulo_lemma",
"Hacl.Streaming.Interface.__proj__Block__item__block_len",
"FStar.Pervasives.Native.tuple2",
"Hacl.Streaming.Spec.split_at_last",
"Hacl.Streaming.Interface.uint8",
"FStar.Seq.Base.append",
"Hacl.Streaming.Interface.__proj__Block__item__init_input_s",
"Hacl.Streaming.Functor.optional_reveal",
"FStar.Ghost.reveal"
] | [] | false | false | false | false | true | let invariant_s #index (c: block index) (i: index) h s =
| let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
assert (0 % U32.v (Block?.block_len c i) = 0);
Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
assert (0 % U32.v (Block?.blocks_state_len c i) = 0);
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest | false |
Vale.X64.BufferViewStore.fst | Vale.X64.BufferViewStore.bv_upd_update_heap128 | val bv_upd_update_heap128:
(b:IB.b8{DV.length (IB.get_downview b.IB.bsrc) % 16 == 0}) ->
(heap:machine_heap) ->
(i:nat{i < DV.length (IB.get_downview b.IB.bsrc) / 16}) ->
(v:quad32) ->
(mem:IB.interop_heap{MB.live (IB.hs_of_mem mem) b.IB.bsrc}) ->
Lemma
(requires IB.correct_down_p mem heap b)
(ensures
(let dv = IB.get_downview b.IB.bsrc in
let bv = UV.mk_buffer dv up_view128 in
let addrs = IB.addrs_of_mem mem in
let h = IB.hs_of_mem mem in
UV.length_eq bv;
let heap' = update_heap128 (addrs b + 16 * i) v heap in
UV.upd h bv i v == DV.upd_seq h dv (get_seq_heap heap' addrs b))) | val bv_upd_update_heap128:
(b:IB.b8{DV.length (IB.get_downview b.IB.bsrc) % 16 == 0}) ->
(heap:machine_heap) ->
(i:nat{i < DV.length (IB.get_downview b.IB.bsrc) / 16}) ->
(v:quad32) ->
(mem:IB.interop_heap{MB.live (IB.hs_of_mem mem) b.IB.bsrc}) ->
Lemma
(requires IB.correct_down_p mem heap b)
(ensures
(let dv = IB.get_downview b.IB.bsrc in
let bv = UV.mk_buffer dv up_view128 in
let addrs = IB.addrs_of_mem mem in
let h = IB.hs_of_mem mem in
UV.length_eq bv;
let heap' = update_heap128 (addrs b + 16 * i) v heap in
UV.upd h bv i v == DV.upd_seq h dv (get_seq_heap heap' addrs b))) | let bv_upd_update_heap128 b heap i v mem =
let dv = IB.get_downview b.IB.bsrc in
DV.length_eq dv;
let uv = UV.mk_buffer dv up_view128 in
let addrs = IB.addrs_of_mem mem in
let h = IB.hs_of_mem mem in
UV.length_eq uv;
let ptr = addrs b + 16 * i in
let heap' = update_heap128 ptr v heap in
let prefix, _, suffix = UV.split_at_i uv i h in
let s_down = prefix `Seq.append` (put128 v `Seq.append` suffix) in
let s_f = get_seq_heap heap' addrs b in
let h' = UV.upd h uv i v in
// This is by definition of UV.upd, fetched from the friended definition
assert (h' == DV.upd_seq h dv s_down);
DV.upd_seq_spec h dv s_down;
// assert (DV.as_seq h' dv == s_down);
let aux1 (j:nat{j < i * 16}) : Lemma (Seq.index s_down j == Seq.index s_f j)
= let base = j / 16 in
let s_init = DV.as_seq h dv in
calc (==) {
Seq.index s_down j;
( == ) { FStar.Math.Lemmas.euclidean_division_definition j 16 }
Seq.index s_down (base * 16 + j%16);
( == ) { assert (base * 16 + 16 <= Seq.length s_down);
Seq.lemma_index_slice s_down (base*16) (base*16 + 16) (j % 16)
} // True by slice properties
Seq.index (Seq.slice s_down (base*16) (base*16 + 16)) (j%16);
( == ) {
UV.sel_upd uv i base v h;
// assert (UV.sel h uv base == UV.sel h' uv base);
UV.get_sel h uv base;
UV.get_sel h' uv base;
// With the injectivity of get128, which we get from get128 and put128 being inverses,
// we get the following
assert (Seq.equal (Seq.slice s_init (base*16) (base*16+16)) (Seq.slice s_down (base*16) (base*16+16))) }
Seq.index (Seq.slice s_init (base*16) (base*16+16)) (j%16);
( == ) { assert (base * 16 + 16 <= Seq.length s_init);
Seq.lemma_index_slice s_init (base*16) (base*16 + 16) (j % 16)
} // True by slice properties
Seq.index s_init (base * 16 + j%16);
( == ) { FStar.Math.Lemmas.euclidean_division_definition j 16 }
Seq.index s_init j;
( == ) { assert (Seq.index s_init j == UInt8.uint_to_t (heap.[addrs b + j])) }
UInt8.uint_to_t (heap.[addrs b + j]); // True by correct_down_p
( == ) { Vale.Arch.MachineHeap.frame_update_heap128 ptr v heap } // True by frame_update
UInt8.uint_to_t (heap'.[addrs b + j]);
( == ) { } // True by definition of get_seq_heap
Seq.index s_f j;
}
in let aux2(j:nat{j >= i * 16 /\ j < i * 16 + 16}) : Lemma (Seq.index s_down j == Seq.index s_f j)
= UV.sel_upd uv i i v h;
// assert (UV.sel h' uv i == v);
UV.get_sel h' uv i;
// assert (Vale.Interop.Views.get128 (Seq.slice s_down (i*16) (i*16+16)) = v);
Vale.Arch.MachineHeap.correct_update_get128 ptr v heap;
// assert (get_heap_val128 ptr heap' = v);
let k = j - i * 16 in
get128_aux ptr heap' v k;
// assert (heap'.[ptr + k] = UInt8.v (Seq.index (put128 v) k));
map_aux (ptr + k) (addrs b + j) (UInt8.v (Seq.index s_down j)) heap'
// assert (heap'.[ptr + k] = heap'.[addrs b + j])
in let aux3 (j:nat{j >= i * 16 + 16 /\ j < Seq.length s_down}) : Lemma (Seq.index s_down j == Seq.index s_f j)
= let base = j / 16 in
let s_init = DV.as_seq h dv in
calc (==) {
Seq.index s_down j;
( == ) { FStar.Math.Lemmas.euclidean_division_definition j 16 }
Seq.index s_down (base * 16 + j%16);
( == ) { assert (base * 16 + 16 <= Seq.length s_down);
Seq.lemma_index_slice s_down (base*16) (base*16 + 16) (j % 16)
} // True by slice properties
Seq.index (Seq.slice s_down (base*16) (base*16 + 16)) (j%16);
( == ) {
UV.sel_upd uv i base v h;
// assert (UV.sel h uv base == UV.sel h' uv base);
UV.get_sel h uv base;
UV.get_sel h' uv base;
// With the injectivity of get128, which we get from get128 and put128 being inverses,
// we get the following
assert (Seq.equal (Seq.slice s_init (base*16) (base*16+16)) (Seq.slice s_down (base*16) (base*16+16))) }
Seq.index (Seq.slice s_init (base*16) (base*16+16)) (j%16);
( == ) { assert (base * 16 + 16 <= Seq.length s_init);
Seq.lemma_index_slice s_init (base*16) (base * 16 + 16) (j % 16)
} // True by slice properties
Seq.index s_init (base * 16 + j%16);
( == ) { FStar.Math.Lemmas.euclidean_division_definition j 16 }
Seq.index s_init j;
( == ) { assert (Seq.index s_init j == UInt8.uint_to_t (heap.[addrs b + j])) }
UInt8.uint_to_t (heap.[addrs b + j]); // True by correct_down_p
( == ) { Vale.Arch.MachineHeap.frame_update_heap128 ptr v heap } // True by frame_update
UInt8.uint_to_t (heap'.[addrs b + j]);
( == ) { } // True by definition of get_seq_heap
Seq.index s_f j;
}
in
Classical.forall_intro aux1;
Classical.forall_intro aux2;
Classical.forall_intro aux3;
assert (Seq.equal s_down s_f) | {
"file_name": "vale/code/arch/x64/Vale.X64.BufferViewStore.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 31,
"end_line": 264,
"start_col": 0,
"start_line": 162
} | module Vale.X64.BufferViewStore
open FStar.Mul
open Vale.Interop.Views
open Vale.Interop
module MB = LowStar.Monotonic.Buffer
module HS = FStar.HyperStack
open Vale.Lib.BufferViewHelpers
open Vale.Def.Types_s
open Vale.Def.Words_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Two
open Vale.Def.Words.Four_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Seq
open Vale.Arch.Types
open FStar.Calc
friend LowStar.BufferView.Up
#reset-options "--z3rlimit 10 --max_fuel 0 --initial_fuel 0 --max_ifuel 1 --initial_ifuel 1"
let math_aux (a b c:int) : Lemma (a + b + (c - b) == a + c) = ()
let map_aux (ptr1 ptr2:int) (v:int) (m:machine_heap) : Lemma
(requires ptr1 == ptr2 /\ m.[ptr1] == v)
(ensures m.[ptr2] == v) = ()
let get64_aux (ptr:int) (heap:machine_heap) (v:nat64) (k:nat{k < 8}) : Lemma
(requires get_heap_val64 ptr heap == v)
(ensures heap.[ptr + k] == UInt8.v (Seq.index (put64 (UInt64.uint_to_t v)) k)) =
get_heap_val64_reveal ();
put64_reveal ();
le_nat64_to_bytes_reveal ();
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
four_to_nat_8_injective ();
two_to_nat_32_injective ()
let get128_aux (ptr:int) (heap:machine_heap) (v:quad32) (k:nat{k < 16}) : Lemma
(requires get_heap_val128 ptr heap == v)
(ensures heap.[ptr + k] == UInt8.v (Seq.index (put128 v) k)) =
get_heap_val128_reveal ();
get_heap_val32_reveal ();
put128_reveal ();
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_nat_8_injective ()
#reset-options "--max_fuel 1 --initial_fuel 1 --z3rlimit 200"
let bv_upd_update_heap64 b heap i v mem =
let dv = IB.get_downview b.IB.bsrc in
DV.length_eq dv;
let uv = UV.mk_buffer dv up_view64 in
let addrs = IB.addrs_of_mem mem in
let h = IB.hs_of_mem mem in
UV.length_eq uv;
let ptr = addrs b + 8 * i in
let heap' = update_heap64 ptr v heap in
let prefix, _, suffix = UV.split_at_i uv i h in
let s_down = prefix `Seq.append` (put64 (UInt64.uint_to_t v) `Seq.append` suffix) in
let s_f = get_seq_heap heap' addrs b in
let h' = UV.upd h uv i (UInt64.uint_to_t v) in
// This is by definition of UV.upd, fetched from the friended definition
assert (h' == DV.upd_seq h dv s_down);
DV.upd_seq_spec h dv s_down;
// assert (DV.as_seq h' dv == s_down);
// We know that all elements but UV.sel h' uv i will be the same, (using UV.sel_upd lemmas)
// hence aux1 and aux3 can be proven with initial correct_down_p on h
// and the Bytes_Semantics.frame lemma
// For aux2, we know that get64 (Seq.slice s_down (i*8) (i*8+8)) = v (through UV.sel lemmas)
// We also know that get_heap_val64 ptr = v, which with get64_aux and some index matching
// should give us the property
let aux1 (j:nat{j < i * 8}) : Lemma (Seq.index s_down j == Seq.index s_f j)
= let base = j / 8 in
let s_init = DV.as_seq h dv in
calc (==) {
Seq.index s_down j;
( == ) { FStar.Math.Lemmas.euclidean_division_definition j 8 }
Seq.index s_down (base * 8 + j%8);
( == ) { assert (base * 8 + 8 <= Seq.length s_down);
Seq.lemma_index_slice s_down (base*8) (base*8 + 8) (j % 8)
} // True by slice properties
Seq.index (Seq.slice s_down (base*8) (base*8 + 8)) (j%8);
( == ) {
UV.sel_upd uv i base (UInt64.uint_to_t v) h;
// assert (UV.sel h uv base == UV.sel h' uv base);
UV.get_sel h uv base;
UV.get_sel h' uv base;
// With the injectivity of get64, which we get from get64 and put64 being inverses,
// we get the following
assert (Seq.equal (Seq.slice s_init (base*8) (base*8+8)) (Seq.slice s_down (base*8) (base*8+8))) }
Seq.index (Seq.slice s_init (base*8) (base*8 + 8)) (j%8);
( == ) { assert (base * 8 + 8 <= Seq.length s_init);
Seq.lemma_index_slice s_init (base*8) (base*8 + 8) (j % 8)
} // True by slice properties
Seq.index s_init (base * 8 + j%8);
( == ) { FStar.Math.Lemmas.euclidean_division_definition j 8 }
Seq.index s_init j;
( == ) { assert (Seq.index s_init j == UInt8.uint_to_t (heap.[addrs b + j])) }
UInt8.uint_to_t (heap.[addrs b + j]); // True by correct_down_p
( == ) { Vale.Arch.MachineHeap.frame_update_heap64 ptr v heap } // True by frame_update
UInt8.uint_to_t (heap'.[addrs b + j]);
( == ) { } // True by definition of get_seq_heap
Seq.index s_f j;
}
in let aux2(j:nat{j >= i * 8 /\ j < i * 8 + 8}) : Lemma (Seq.index s_down j == Seq.index s_f j)
= UV.sel_upd uv i i (UInt64.uint_to_t v) h;
// assert (UV.sel h' uv i == UInt64.uint_to_t v);
UV.get_sel h' uv i;
// assert (Vale.Interop.Views.get64 (Seq.slice s_down (i*8) (i*8+8)) = UInt64.uint_to_t v);
Vale.Arch.MachineHeap.correct_update_get64 ptr v heap;
// assert (get_heap_val64 ptr heap' = v);
let k = j - i * 8 in
get64_aux ptr heap' v k;
// assert (heap'.[ptr + k] = UInt8.v (Seq.index (put64 (UInt64.uint_to_t v)) k));
map_aux (ptr + k) (addrs b + j) (UInt8.v (Seq.index s_down j)) heap'
// assert (heap'.[ptr + k] = heap'.[addrs b + j])
in let aux3 (j:nat{j >= i * 8 + 8 /\ j < Seq.length s_down}) : Lemma (Seq.index s_down j == Seq.index s_f j)
= let base = j / 8 in
let s_init = DV.as_seq h dv in
calc (==) {
Seq.index s_down j;
( == ) { FStar.Math.Lemmas.euclidean_division_definition j 8 }
Seq.index s_down (base * 8 + j%8);
( == ) { assert (base * 8 + 8 <= Seq.length s_down);
Seq.lemma_index_slice s_down (base*8) (base*8 + 8) (j % 8)
} // True by slice properties
Seq.index (Seq.slice s_down (base*8) (base*8 + 8)) (j%8);
( == ) {
UV.sel_upd uv i base (UInt64.uint_to_t v) h;
// assert (UV.sel h uv base == UV.sel h' uv base);
UV.get_sel h uv base;
UV.get_sel h' uv base;
// With the injectivity of get64, which we get from get64 and put64 being inverses,
// we get the following
assert (Seq.equal (Seq.slice s_init (base*8) (base*8+8)) (Seq.slice s_down (base*8) (base*8+8))) }
Seq.index (Seq.slice s_init (base*8) (base*8 + 8)) (j%8);
( == ) { assert (base * 8 + 8 <= Seq.length s_init);
Seq.lemma_index_slice s_init (base*8) (base*8 + 8) (j % 8)
} // True by slice properties
Seq.index s_init (base * 8 + j%8);
( == ) { FStar.Math.Lemmas.euclidean_division_definition j 8 }
Seq.index s_init j;
( == ) { assert (Seq.index s_init j == UInt8.uint_to_t (heap.[addrs b + j])) }
UInt8.uint_to_t (heap.[addrs b + j]); // True by correct_down_p
( == ) { Vale.Arch.MachineHeap.frame_update_heap64 ptr v heap } // True by frame_update
UInt8.uint_to_t (heap'.[addrs b + j]);
( == ) { } // True by definition of get_seq_heap
Seq.index s_f j;
}
in
Classical.forall_intro aux1;
Classical.forall_intro aux2;
Classical.forall_intro aux3;
assert (Seq.equal s_down s_f) | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.BufferViewHelpers.fst.checked",
"Vale.Interop.Views.fsti.checked",
"Vale.Interop.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Seq.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.Arch.MachineHeap.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferView.Up.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.BufferViewStore.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.BufferViewHelpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "Vale.Interop",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Views",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Interop.Base",
"short_module": "IB"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.BufferViewHelpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Up",
"short_module": "UV"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "Vale.Interop",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Views",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 200,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b:
Vale.Interop.Types.b8
{ LowStar.BufferView.Down.length (Vale.Interop.Types.get_downview (Buffer?.bsrc b)) % 16 ==
0 } ->
heap: Vale.Arch.MachineHeap_s.machine_heap ->
i:
Prims.nat
{i < LowStar.BufferView.Down.length (Vale.Interop.Types.get_downview (Buffer?.bsrc b)) / 16} ->
v: Vale.Def.Types_s.quad32 ->
mem:
Vale.Interop.Heap_s.interop_heap
{LowStar.Monotonic.Buffer.live (Vale.Interop.Heap_s.hs_of_mem mem) (Buffer?.bsrc b)}
-> FStar.Pervasives.Lemma (requires Vale.Interop.Heap_s.correct_down_p mem heap b)
(ensures
(let dv = Vale.Interop.Types.get_downview (Buffer?.bsrc b) in
let bv = LowStar.BufferView.Up.mk_buffer dv Vale.Interop.Views.up_view128 in
let addrs = Vale.Interop.Heap_s.addrs_of_mem mem in
let h = Vale.Interop.Heap_s.hs_of_mem mem in
LowStar.BufferView.Up.length_eq bv;
let heap' = Vale.Arch.MachineHeap_s.update_heap128 (addrs b + 16 * i) v heap in
LowStar.BufferView.Up.upd h bv i v ==
LowStar.BufferView.Down.upd_seq h dv (Vale.Interop.get_seq_heap heap' addrs b))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Interop.Types.b8",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"LowStar.BufferView.Down.length",
"FStar.UInt8.t",
"Vale.Interop.Types.get_downview",
"Vale.Interop.Types.__proj__Buffer__item__src",
"Vale.Interop.Types.b8_preorder",
"Vale.Interop.Types.__proj__Buffer__item__writeable",
"Vale.Interop.Types.base_typ_as_type",
"Vale.Interop.Types.__proj__Buffer__item__bsrc",
"Vale.Arch.MachineHeap_s.machine_heap",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Division",
"Vale.Def.Types_s.quad32",
"Vale.Interop.Heap_s.interop_heap",
"LowStar.Monotonic.Buffer.live",
"Vale.Interop.Heap_s.hs_of_mem",
"FStar.Seq.Base.seq",
"LowStar.BufferView.Up.buffer_src",
"FStar.Seq.Properties.lseq",
"LowStar.BufferView.Up.__proj__View__item__n",
"LowStar.BufferView.Up.get_view",
"Prims._assert",
"FStar.Seq.Base.equal",
"Prims.unit",
"FStar.Classical.forall_intro",
"Prims.l_and",
"Prims.op_GreaterThanOrEqual",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"FStar.Seq.Base.length",
"FStar.Seq.Base.index",
"Prims.op_Multiply",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Calc.calc_finish",
"Prims.Cons",
"FStar.Preorder.relation",
"FStar.Calc.calc_step",
"FStar.UInt8.uint_to_t",
"Vale.Interop.op_String_Access",
"Vale.Def.Types_s.nat8",
"FStar.Seq.Base.slice",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.euclidean_division_definition",
"FStar.Seq.Base.lemma_index_slice",
"Prims.op_LessThanOrEqual",
"LowStar.BufferView.Up.get_sel",
"LowStar.BufferView.Up.sel_upd",
"Vale.Arch.MachineHeap.frame_update_heap128",
"LowStar.BufferView.Down.as_seq",
"Vale.X64.BufferViewStore.map_aux",
"FStar.UInt8.v",
"Vale.X64.BufferViewStore.get128_aux",
"Prims.op_Subtraction",
"Vale.Arch.MachineHeap.correct_update_get128",
"LowStar.BufferView.Down.upd_seq_spec",
"FStar.Monotonic.HyperStack.mem",
"LowStar.BufferView.Down.upd_seq",
"LowStar.BufferView.Up.upd",
"Vale.Interop.get_seq_heap",
"FStar.Seq.Base.append",
"Vale.Interop.Views.put128",
"FStar.Pervasives.Native.tuple3",
"LowStar.BufferView.Up.as_down_buffer",
"LowStar.BufferView.Up.split_at_i",
"Vale.Arch.MachineHeap_s.update_heap128",
"LowStar.BufferView.Up.length_eq",
"Vale.Interop.Types.addr_map",
"Vale.Interop.Heap_s.addrs_of_mem",
"LowStar.BufferView.Up.buffer",
"LowStar.BufferView.Up.mk_buffer",
"Vale.Interop.Views.up_view128",
"LowStar.BufferView.Down.length_eq",
"LowStar.BufferView.Down.buffer"
] | [] | false | false | true | false | false | let bv_upd_update_heap128 b heap i v mem =
| let dv = IB.get_downview b.IB.bsrc in
DV.length_eq dv;
let uv = UV.mk_buffer dv up_view128 in
let addrs = IB.addrs_of_mem mem in
let h = IB.hs_of_mem mem in
UV.length_eq uv;
let ptr = addrs b + 16 * i in
let heap' = update_heap128 ptr v heap in
let prefix, _, suffix = UV.split_at_i uv i h in
let s_down = prefix `Seq.append` ((put128 v) `Seq.append` suffix) in
let s_f = get_seq_heap heap' addrs b in
let h' = UV.upd h uv i v in
assert (h' == DV.upd_seq h dv s_down);
DV.upd_seq_spec h dv s_down;
let aux1 (j: nat{j < i * 16}) : Lemma (Seq.index s_down j == Seq.index s_f j) =
let base = j / 16 in
let s_init = DV.as_seq h dv in
calc ( == ) {
Seq.index s_down j;
( == ) { FStar.Math.Lemmas.euclidean_division_definition j 16 }
Seq.index s_down (base * 16 + j % 16);
( == ) { (assert (base * 16 + 16 <= Seq.length s_down);
Seq.lemma_index_slice s_down (base * 16) (base * 16 + 16) (j % 16)) }
Seq.index (Seq.slice s_down (base * 16) (base * 16 + 16)) (j % 16);
( == ) { (UV.sel_upd uv i base v h;
UV.get_sel h uv base;
UV.get_sel h' uv base;
assert (Seq.equal (Seq.slice s_init (base * 16) (base * 16 + 16))
(Seq.slice s_down (base * 16) (base * 16 + 16)))) }
Seq.index (Seq.slice s_init (base * 16) (base * 16 + 16)) (j % 16);
( == ) { (assert (base * 16 + 16 <= Seq.length s_init);
Seq.lemma_index_slice s_init (base * 16) (base * 16 + 16) (j % 16)) }
Seq.index s_init (base * 16 + j % 16);
( == ) { FStar.Math.Lemmas.euclidean_division_definition j 16 }
Seq.index s_init j;
( == ) { assert (Seq.index s_init j == UInt8.uint_to_t (heap.[ addrs b + j ])) }
UInt8.uint_to_t (heap.[ addrs b + j ]);
( == ) { Vale.Arch.MachineHeap.frame_update_heap128 ptr v heap }
UInt8.uint_to_t (heap'.[ addrs b + j ]);
( == ) { () }
Seq.index s_f j;
}
in
let aux2 (j: nat{j >= i * 16 /\ j < i * 16 + 16}) : Lemma (Seq.index s_down j == Seq.index s_f j) =
UV.sel_upd uv i i v h;
UV.get_sel h' uv i;
Vale.Arch.MachineHeap.correct_update_get128 ptr v heap;
let k = j - i * 16 in
get128_aux ptr heap' v k;
map_aux (ptr + k) (addrs b + j) (UInt8.v (Seq.index s_down j)) heap'
in
let aux3 (j: nat{j >= i * 16 + 16 /\ j < Seq.length s_down})
: Lemma (Seq.index s_down j == Seq.index s_f j) =
let base = j / 16 in
let s_init = DV.as_seq h dv in
calc ( == ) {
Seq.index s_down j;
( == ) { FStar.Math.Lemmas.euclidean_division_definition j 16 }
Seq.index s_down (base * 16 + j % 16);
( == ) { (assert (base * 16 + 16 <= Seq.length s_down);
Seq.lemma_index_slice s_down (base * 16) (base * 16 + 16) (j % 16)) }
Seq.index (Seq.slice s_down (base * 16) (base * 16 + 16)) (j % 16);
( == ) { (UV.sel_upd uv i base v h;
UV.get_sel h uv base;
UV.get_sel h' uv base;
assert (Seq.equal (Seq.slice s_init (base * 16) (base * 16 + 16))
(Seq.slice s_down (base * 16) (base * 16 + 16)))) }
Seq.index (Seq.slice s_init (base * 16) (base * 16 + 16)) (j % 16);
( == ) { (assert (base * 16 + 16 <= Seq.length s_init);
Seq.lemma_index_slice s_init (base * 16) (base * 16 + 16) (j % 16)) }
Seq.index s_init (base * 16 + j % 16);
( == ) { FStar.Math.Lemmas.euclidean_division_definition j 16 }
Seq.index s_init j;
( == ) { assert (Seq.index s_init j == UInt8.uint_to_t (heap.[ addrs b + j ])) }
UInt8.uint_to_t (heap.[ addrs b + j ]);
( == ) { Vale.Arch.MachineHeap.frame_update_heap128 ptr v heap }
UInt8.uint_to_t (heap'.[ addrs b + j ]);
( == ) { () }
Seq.index s_f j;
}
in
Classical.forall_intro aux1;
Classical.forall_intro aux2;
Classical.forall_intro aux3;
assert (Seq.equal s_down s_f) | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.freeable | val freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) : Type0 | val freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) : Type0 | let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 14,
"end_line": 210,
"start_col": 0,
"start_line": 208
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: Hacl.Streaming.Interface.block index ->
i: index ->
h: FStar.Monotonic.HyperStack.mem ->
s: Hacl.Streaming.Functor.state' c i
-> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Functor.state'",
"Prims.l_and",
"Hacl.Streaming.Functor.freeable_s",
"LowStar.Monotonic.Buffer.get",
"Hacl.Streaming.Functor.state_s",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Interface.__proj__Block__item__state",
"Hacl.Streaming.Interface.optional_key",
"Hacl.Streaming.Interface.__proj__Block__item__km",
"Hacl.Streaming.Interface.__proj__Block__item__key",
"LowStar.Buffer.trivial_preorder",
"LowStar.Monotonic.Buffer.freeable"
] | [] | false | false | false | false | true | let freeable (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
| freeable_s c i h (B.get h s 0) /\ B.freeable s | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.invariant_loc_in_footprint | val invariant_loc_in_footprint
(#index: Type0)
(c: block index)
(i: index)
(s: state' c i)
(m: HS.mem)
: Lemma
(requires (invariant c i m s))
(ensures (B.loc_in (footprint c i m s) m))
[SMTPat (invariant c i m s)] | val invariant_loc_in_footprint
(#index: Type0)
(c: block index)
(i: index)
(s: state' c i)
(m: HS.mem)
: Lemma
(requires (invariant c i m s))
(ensures (B.loc_in (footprint c i m s) m))
[SMTPat (invariant c i m s)] | let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
() | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 218,
"start_col": 0,
"start_line": 213
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: Hacl.Streaming.Interface.block index ->
i: index ->
s: Hacl.Streaming.Functor.state' c i ->
m: FStar.Monotonic.HyperStack.mem
-> FStar.Pervasives.Lemma (requires Hacl.Streaming.Functor.invariant c i m s)
(ensures LowStar.Monotonic.Buffer.loc_in (Hacl.Streaming.Functor.footprint c i m s) m)
[SMTPat (Hacl.Streaming.Functor.invariant c i m s)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Streaming.Interface.block",
"Hacl.Streaming.Functor.state'",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Interface.__proj__Block__item__key",
"Prims.unit",
"Hacl.Streaming.Interface.__proj__Stateful__item__invariant",
"Prims.squash",
"LowStar.Monotonic.Buffer.loc_in",
"Hacl.Streaming.Interface.__proj__Stateful__item__footprint",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil",
"Hacl.Streaming.Interface.__proj__Stateful__item__invariant_loc_in_footprint",
"Hacl.Streaming.Interface.__proj__Block__item__state"
] | [] | true | false | true | false | false | let invariant_loc_in_footprint #index c i s m =
| [@@ inline_let ]let _ = c.state.invariant_loc_in_footprint #i in
[@@ inline_let ]let _ = c.key.invariant_loc_in_footprint #i in
() | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.total_len_h | val total_len_h : c: Hacl.Streaming.Interface.block index ->
i: index ->
h: FStar.Monotonic.HyperStack.mem ->
p: Hacl.Streaming.Functor.state' c i
-> Prims.GTot FStar.UInt64.t | let total_len_h #index (c: block index) (i: index) h (p: state' c i) =
State?.total_len (B.deref h p) | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 32,
"end_line": 788,
"start_col": 0,
"start_line": 787
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
()
let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s))
let init_input (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
c.init_input_s i (reveal_key c i h s)
let all_seen (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
S.append (init_input c i h s) (seen c i h s)
let frame_invariant #index c i l s h0 h1 =
let state_t = B.deref h0 s in
let State block_state _ _ _ p_key = state_t in
c.state.frame_invariant #i l block_state h0 h1;
stateful_frame_preserves_freeable #index #c.state #i l block_state h0 h1;
allow_inversion key_management;
match c.km with
| Erased -> ()
| Runtime ->
stateful_frame_preserves_freeable #index #c.key #i l p_key h0 h1;
c.key.frame_invariant #i l p_key h0 h1
let frame_seen #_ _ _ _ _ _ _ =
()
/// Stateful API
/// ============
let index_of_state #index c i t t' s =
let open LowStar.BufferOps in
let State block_state _ _ _ _ = !*s in
c.index_of_state i block_state
let seen_length #index c i t t' s =
let open LowStar.BufferOps in
let State _ _ total_len _ _ = !*s in
total_len
(* TODO: malloc and alloca have big portions of proofs in common, so it may
* be possible to factorize them, but it is not clear how *)
#restart-solver
#push-options "--z3rlimit 500"
let malloc #index c i t t' key r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none key h0 h1;
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none key h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none key h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) c.state.frame_freeable B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 key);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 key) (c.key.footprint #i h3 k'));
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') key h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 key)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none key h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) key buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let s = B.get h8 p 0 in
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true r) (footprint c i h8 p));
(**) assert (ST.equal_stack_domains h1 h8);
(**) assert (ST.equal_stack_domains h0 h1);
p
#pop-options
#push-options "--z3rlimit 100"
let copy #index c i t t' state r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
// All source state is suffixed by 0.
let State block_state0 buf0 total_len0 seen0 k0 = !*state in
let i = c.index_of_state i block_state0 in
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
B.blit buf0 0ul buf 0ul (c.blocks_state_len i);
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h0 h1;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h1 state);
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h1 h2;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h2 state);
c.state.copy (G.hide i) block_state0 block_state;
(**) let h2 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i (c.state.footprint #i h2 block_state) k0 h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant #i B.loc_none k0 h2 h3;
(**) c.state.frame_invariant #i B.loc_none block_state h2 h3;
(**) c.state.frame_freeable #i B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k0);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k0) (c.key.footprint #i h3 k'));
c.key.copy i k0 k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant #i (c.key.footprint #i h3 k') k0 h3 h4;
(**) c.state.frame_invariant #i (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable #i (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased -> k0
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
let s = State block_state buf total_len0 seen0 k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h5 h6;
(**) c.state.frame_invariant #i B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
p
#pop-options
#push-options "--z3rlimit 200"
let alloca #index c i t t' k =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.alloca (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none k h0 h1;
let block_state = c.state.alloca i in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none k h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.alloca i in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none k h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k) (c.key.footprint #i h3 k'));
c.key.copy i k k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') k h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 k)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.alloca s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none k h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) k buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true (HS.get_tip h8)) (footprint c i h8 p));
(**) assert(ST.same_refs_in_non_tip_regions h0 h8);
p
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let reset #index c i t t' state key =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
let open LowStar.BufferOps in
(**) let h1 = ST.get () in
let State block_state buf _ _ k' = !*state in
let i = c.index_of_state i block_state in
LowStar.Ignore.ignore i; // This is only used in types and proofs
[@inline_let]
let block_state: c.state.s i = block_state in
c.init (G.hide i) key buf block_state;
(**) let h2 = ST.get () in
(**) optional_frame #_ #i #c.km #c.key (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) k' h1 h2;
(**) c.key.frame_invariant (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) key h1 h2;
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % UInt32.v (Block?.block_len c i) = 0);
(**) assert (reveal_key c i h1 state == reveal_key c i h2 state);
(**) c.update_multi_zero i (c.state.v i h2 block_state) 0;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h2 k') key h2 h4;
(**) c.state.frame_invariant (c.key.footprint #i h2 k') block_state h2 h4;
(**) stateful_frame_preserves_freeable (c.key.footprint #i h2 k') block_state h2 h4;
k'
| Erased ->
G.hide (c.key.v i h1 key)
in
(**) let h2 = ST.get () in
(**) assert(preserves_freeable c i state h1 h2);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let tmp: state_s c i t t' = State block_state buf total_len (G.hide S.empty) k' in
B.upd state 0ul tmp;
(**) let h3 = ST.get () in
(**) c.state.frame_invariant B.(loc_buffer state) block_state h2 h3;
(**) c.key.frame_invariant B.(loc_buffer state) key h2 h3;
(**) optional_frame #_ #i #c.km #c.key B.(loc_buffer state) k' h2 h3;
(**) stateful_frame_preserves_freeable B.(loc_buffer state) block_state h2 h3;
(**) assert(preserves_freeable c i state h2 h3);
// This seems to cause insurmountable difficulties. Puzzled.
ST.lemma_equal_domains_trans h1 h2 h3;
// AR: 07/22: same old `Seq.equal` and `==` story
(**) assert (Seq.equal (seen c i h3 state) Seq.empty);
(**) assert (footprint c i h1 state == footprint c i h3 state);
(**) assert (B.(modifies (footprint c i h1 state) h1 h3));
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h3 state in
(**) let all_seen_ = all_seen c i h3 state in
// SH (11/22): the proof fails if we don't introduce the call to [split_at_last]
(**) let blocks, rest = split_at_last c i all_seen_ in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert (invariant_s c i h3 (B.get h3 state 0))
(**) end;
(**) assert(preserves_freeable c i state h1 h3)
#pop-options
/// Some helpers to minimize modulo-reasoning
/// =========================================
val split_at_last_num_blocks_lem (#index : Type0) (c: block index) (i: index) (b: nat):
Lemma (
let n_blocks = split_at_last_num_blocks c i b in
let blocks = n_blocks * U32.v (c.blocks_state_len i) in
0 <= blocks /\ blocks <= b)
let split_at_last_num_blocks_lem #index c i b = ()
/// The ``rest`` function below allows computing, based ``total_len`` stored in
/// the state, the length of useful data currently stored in ``buf``.
/// Unsurprisingly, there's a fair amount of modulo reasoning here because of
/// 64-bit-to-32-bit conversions, so we do them once and for all in a helper.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest #index (c: block index) (i: index)
(total_len: UInt64.t): (x:UInt32.t {
let n = split_at_last_num_blocks c i (U64.v total_len) in
let l = U32.v (c.blocks_state_len i) in
0 <= n * l /\ n * l <= U64.v total_len /\
U32.v x = U64.v total_len - (n * l)})
=
let open FStar.Int.Cast in
[@inline_let] let l = uint32_to_uint64 (c.blocks_state_len i) in
[@inline_let] let r = total_len `U64.rem` l in
(**) let total_len_v : Ghost.erased nat = U64.v total_len in
(**) let l_v : Ghost.erased nat = U64.v l in
(**) let r_v : Ghost.erased nat = U64.v r in
(**) assert(Ghost.reveal r_v = total_len_v - ((total_len_v / l_v) * l_v));
(**) Math.Lemmas.euclidean_division_definition total_len_v l_v;
(**) assert(Ghost.reveal r_v = total_len_v % l_v);
(**) assert(r_v < l_v);
if U64.(r =^ uint_to_t 0) && U64.(total_len >^ uint_to_t 0) then
begin
(**) split_at_last_num_blocks_lem c i (U64.v total_len);
c.blocks_state_len i
end
else
begin
[@inline_let] let r' = FStar.Int.Cast.uint64_to_uint32 r in
(**) FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32);
(**) calc (==) {
(**) U32.v r';
(**) (==) { }
(**) U64.v r % pow2 32;
(**) (==) { FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32) }
(**) U64.v r;
(**) (==) { FStar.Math.Lemmas.euclidean_division_definition (U64.v total_len) (U64.v (uint32_to_uint64 (c.blocks_state_len i))) }
(**) U64.v total_len % U64.v (uint32_to_uint64 (c.blocks_state_len i) );
(**) (==) { }
(**) U64.v total_len % U32.v (c.blocks_state_len i);
(**) };
(**) assert(
(**) let n = split_at_last_num_blocks c i (U64.v total_len) in
(**) let l = U32.v (c.blocks_state_len i) in
(**) U32.v r' = U64.v total_len - (n * l));
r'
end
#pop-options
/// The ``nblocks`` function below allows computing, given ``total_len`` stored in
/// the state, the number of blocks of data which have been processed (the remaining
/// unprocessed data being left in ``buf``).
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let nblocks #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.blocks_state_len i) in
U32.v x * l <= U32.v len /\
U32.v x = split_at_last_num_blocks c i (U32.v len) })
=
let open FStar.Int.Cast in
[@inline_let] let l = c.blocks_state_len i in
[@inline_let] let r = rest c i (uint32_to_uint64 len) in
(**) let len_v : Ghost.erased nat = U32.v len in
(**) let l_v : Ghost.erased nat = U32.v l in
(**) let r_v : Ghost.erased nat = U32.v r in
(**) let n_s : Ghost.erased nat = split_at_last_num_blocks c i len_v in
(**) assert(Ghost.reveal len_v = n_s * l_v + r_v);
(**) Math.Lemmas.nat_times_nat_is_nat n_s l_v;
(**) assert(U32.v r <= U32.v len);
[@inline_let] let blocks = len `U32.sub` r in
(**) let blocks_v : Ghost.erased nat = U32.v blocks in
(**) assert(blocks_v % l_v = 0);
[@inline_let] let n = blocks `U32.div` l in
(**) let n_v : Ghost.erased nat = U32.v n in
(**) assert(n_v * l_v = Ghost.reveal blocks_v);
(**) split_at_last_num_blocks_spec c i len_v n_v r_v;
n
#pop-options
/// The ``rest`` function to call on the unprocessed data length in the ``finish``
/// function.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest_finish #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.block_len i) in
let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
0 <= n * l /\ n * l <= U32.v len /\
U32.v x = U32.v len - (n * l)})
=
[@inline_let] let l = c.block_len i in
[@inline_let] let r = len `U32.rem` l in
(**) split_at_last_num_blocks_lem c i (U32.v len);
if U32.(r =^ uint_to_t 0) && U32.(len >^ uint_to_t 0) then
begin
(**) begin
(**) let l = U32.v (c.block_len i) in
(**) let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
(**) Math.Lemmas.nat_times_nat_is_nat n l
(**) end;
c.block_len i
end
else
r
#pop-options
/// We always add 32-bit lengths to 64-bit lengths. Having a helper for that allows
/// doing modulo reasoning once and for all.
inline_for_extraction noextract
let add_len #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t):
Pure UInt64.t
(requires U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures fun x -> U64.v x = U64.v total_len + U32.v len /\ U64.v x <= U64.v (c.max_input_len i))
=
total_len `U64.add` Int.Cast.uint32_to_uint64 len
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let add_len_small #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t): Lemma
(requires
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i total_len) /\
U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures (rest c i (add_len c i total_len len) = rest c i total_len `U32.add` len))
=
let total_len_v = U64.v total_len in
let l = U32.v (c.blocks_state_len i) in
let b = total_len_v + U32.v len in
let n = split_at_last_num_blocks c i total_len_v in
let r = U32.v (rest c i total_len) in
assert(total_len_v = n * l + r);
let r' = U32.v (rest c i total_len) + U32.v len in
assert(r' <= l);
assert(r' = 0 ==> b = 0);
Math.Lemmas.euclidean_division_definition b l;
assert(b = n * l + r');
split_at_last_num_blocks_spec c i b n r'
#pop-options
/// Beginning of the three sub-cases (see Hacl.Streaming.Spec)
/// ========================================================== | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: Hacl.Streaming.Interface.block index ->
i: index ->
h: FStar.Monotonic.HyperStack.mem ->
p: Hacl.Streaming.Functor.state' c i
-> Prims.GTot FStar.UInt64.t | Prims.GTot | [
"sometrivial"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Functor.state'",
"Hacl.Streaming.Functor.__proj__State__item__total_len",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Interface.__proj__Block__item__state",
"Hacl.Streaming.Interface.optional_key",
"Hacl.Streaming.Interface.__proj__Block__item__km",
"Hacl.Streaming.Interface.__proj__Block__item__key",
"LowStar.Monotonic.Buffer.deref",
"Hacl.Streaming.Functor.state_s",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt64.t"
] | [] | false | false | false | false | false | let total_len_h #index (c: block index) (i: index) h (p: state' c i) =
| State?.total_len (B.deref h p) | false |
|
FStar.Pervasives.Native.fst | FStar.Pervasives.Native.fst | val fst (x: tuple2 'a 'b) : 'a | val fst (x: tuple2 'a 'b) : 'a | let fst (x: tuple2 'a 'b) : 'a = Mktuple2?._1 x | {
"file_name": "ulib/FStar.Pervasives.Native.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 62,
"start_col": 0,
"start_line": 62
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pervasives.Native
(* This is a file from the core library, dependencies must be explicit *)
open Prims
/// This module is implicitly opened in the scope of all other modules.
///
/// It provides several basic types in F* that enjoy some special
/// status in extraction. For instance, the tuple type below is
/// compiled to OCaml's tuple type, rather than to a F*-defined
/// inductive type. See ulib/ml/FStar_Pervasives_Native.ml
///
(** [option a] represents either [Some a]-value or a non-informative [None]. *)
type option (a: Type) =
| None : option a
| Some : v: a -> option a
(**** Tuples *)
/// Aside from special support in extraction, the tuple types have
/// special syntax in F*.
///
/// For instance, rather than [tupleN a1 ... aN],
/// we usually write [a1 & ... & aN] or [a1 * ... * aN].
///
/// The latter notation is more common for those coming to F* from
/// OCaml or F#. However, the [*] also clashes with the multiplication
/// operator on integers define in FStar.Mul. For this reason, we now
/// prefer to use the [&] notation, though there are still many uses
/// of [*] remaining.
///
/// Tuple values are introduced using as [a1, ..., an], rather than
/// [MktupleN a1 ... aN].
///
/// We define tuples up to a fixed arity of 14. We have considered
/// splitting this module into 14 different modules, one for each
/// tuple type rather than eagerly including 14-tuples in the
/// dependence graph of all programs.
(** Pairs: [tuple2 a b] is can be written either as [a * b], for
notation compatible with OCaml's. Or, better, as [a & b]. *)
type tuple2 'a 'b = | Mktuple2 : _1: 'a -> _2: 'b -> tuple2 'a 'b | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Pervasives.Native.fst"
} | [
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: ('a * 'b) -> 'a | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.__proj__Mktuple2__item___1"
] | [] | false | false | false | true | false | let fst (x: tuple2 'a 'b) : 'a =
| Mktuple2?._1 x | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.split_at_last_all_seen | val split_at_last_all_seen : c: Hacl.Streaming.Interface.block index ->
i: index ->
h: FStar.Monotonic.HyperStack.mem ->
p: Hacl.Streaming.Functor.state' c i
-> Prims.GTot (Hacl.Streaming.Spec.bytes * Hacl.Streaming.Spec.bytes) | let split_at_last_all_seen #index (c: block index) (i: index) h (p: state' c i) =
let all_seen = all_seen c i h p in
let blocks, rest = split_at_last c i all_seen in
blocks, rest | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 14,
"end_line": 794,
"start_col": 0,
"start_line": 791
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
()
let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s))
let init_input (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
c.init_input_s i (reveal_key c i h s)
let all_seen (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
S.append (init_input c i h s) (seen c i h s)
let frame_invariant #index c i l s h0 h1 =
let state_t = B.deref h0 s in
let State block_state _ _ _ p_key = state_t in
c.state.frame_invariant #i l block_state h0 h1;
stateful_frame_preserves_freeable #index #c.state #i l block_state h0 h1;
allow_inversion key_management;
match c.km with
| Erased -> ()
| Runtime ->
stateful_frame_preserves_freeable #index #c.key #i l p_key h0 h1;
c.key.frame_invariant #i l p_key h0 h1
let frame_seen #_ _ _ _ _ _ _ =
()
/// Stateful API
/// ============
let index_of_state #index c i t t' s =
let open LowStar.BufferOps in
let State block_state _ _ _ _ = !*s in
c.index_of_state i block_state
let seen_length #index c i t t' s =
let open LowStar.BufferOps in
let State _ _ total_len _ _ = !*s in
total_len
(* TODO: malloc and alloca have big portions of proofs in common, so it may
* be possible to factorize them, but it is not clear how *)
#restart-solver
#push-options "--z3rlimit 500"
let malloc #index c i t t' key r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none key h0 h1;
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none key h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none key h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) c.state.frame_freeable B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 key);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 key) (c.key.footprint #i h3 k'));
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') key h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 key)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none key h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) key buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let s = B.get h8 p 0 in
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true r) (footprint c i h8 p));
(**) assert (ST.equal_stack_domains h1 h8);
(**) assert (ST.equal_stack_domains h0 h1);
p
#pop-options
#push-options "--z3rlimit 100"
let copy #index c i t t' state r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
// All source state is suffixed by 0.
let State block_state0 buf0 total_len0 seen0 k0 = !*state in
let i = c.index_of_state i block_state0 in
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
B.blit buf0 0ul buf 0ul (c.blocks_state_len i);
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h0 h1;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h1 state);
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h1 h2;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h2 state);
c.state.copy (G.hide i) block_state0 block_state;
(**) let h2 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i (c.state.footprint #i h2 block_state) k0 h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant #i B.loc_none k0 h2 h3;
(**) c.state.frame_invariant #i B.loc_none block_state h2 h3;
(**) c.state.frame_freeable #i B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k0);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k0) (c.key.footprint #i h3 k'));
c.key.copy i k0 k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant #i (c.key.footprint #i h3 k') k0 h3 h4;
(**) c.state.frame_invariant #i (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable #i (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased -> k0
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
let s = State block_state buf total_len0 seen0 k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h5 h6;
(**) c.state.frame_invariant #i B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
p
#pop-options
#push-options "--z3rlimit 200"
let alloca #index c i t t' k =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.alloca (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none k h0 h1;
let block_state = c.state.alloca i in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none k h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.alloca i in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none k h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k) (c.key.footprint #i h3 k'));
c.key.copy i k k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') k h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 k)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.alloca s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none k h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) k buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true (HS.get_tip h8)) (footprint c i h8 p));
(**) assert(ST.same_refs_in_non_tip_regions h0 h8);
p
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let reset #index c i t t' state key =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
let open LowStar.BufferOps in
(**) let h1 = ST.get () in
let State block_state buf _ _ k' = !*state in
let i = c.index_of_state i block_state in
LowStar.Ignore.ignore i; // This is only used in types and proofs
[@inline_let]
let block_state: c.state.s i = block_state in
c.init (G.hide i) key buf block_state;
(**) let h2 = ST.get () in
(**) optional_frame #_ #i #c.km #c.key (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) k' h1 h2;
(**) c.key.frame_invariant (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) key h1 h2;
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % UInt32.v (Block?.block_len c i) = 0);
(**) assert (reveal_key c i h1 state == reveal_key c i h2 state);
(**) c.update_multi_zero i (c.state.v i h2 block_state) 0;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h2 k') key h2 h4;
(**) c.state.frame_invariant (c.key.footprint #i h2 k') block_state h2 h4;
(**) stateful_frame_preserves_freeable (c.key.footprint #i h2 k') block_state h2 h4;
k'
| Erased ->
G.hide (c.key.v i h1 key)
in
(**) let h2 = ST.get () in
(**) assert(preserves_freeable c i state h1 h2);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let tmp: state_s c i t t' = State block_state buf total_len (G.hide S.empty) k' in
B.upd state 0ul tmp;
(**) let h3 = ST.get () in
(**) c.state.frame_invariant B.(loc_buffer state) block_state h2 h3;
(**) c.key.frame_invariant B.(loc_buffer state) key h2 h3;
(**) optional_frame #_ #i #c.km #c.key B.(loc_buffer state) k' h2 h3;
(**) stateful_frame_preserves_freeable B.(loc_buffer state) block_state h2 h3;
(**) assert(preserves_freeable c i state h2 h3);
// This seems to cause insurmountable difficulties. Puzzled.
ST.lemma_equal_domains_trans h1 h2 h3;
// AR: 07/22: same old `Seq.equal` and `==` story
(**) assert (Seq.equal (seen c i h3 state) Seq.empty);
(**) assert (footprint c i h1 state == footprint c i h3 state);
(**) assert (B.(modifies (footprint c i h1 state) h1 h3));
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h3 state in
(**) let all_seen_ = all_seen c i h3 state in
// SH (11/22): the proof fails if we don't introduce the call to [split_at_last]
(**) let blocks, rest = split_at_last c i all_seen_ in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert (invariant_s c i h3 (B.get h3 state 0))
(**) end;
(**) assert(preserves_freeable c i state h1 h3)
#pop-options
/// Some helpers to minimize modulo-reasoning
/// =========================================
val split_at_last_num_blocks_lem (#index : Type0) (c: block index) (i: index) (b: nat):
Lemma (
let n_blocks = split_at_last_num_blocks c i b in
let blocks = n_blocks * U32.v (c.blocks_state_len i) in
0 <= blocks /\ blocks <= b)
let split_at_last_num_blocks_lem #index c i b = ()
/// The ``rest`` function below allows computing, based ``total_len`` stored in
/// the state, the length of useful data currently stored in ``buf``.
/// Unsurprisingly, there's a fair amount of modulo reasoning here because of
/// 64-bit-to-32-bit conversions, so we do them once and for all in a helper.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest #index (c: block index) (i: index)
(total_len: UInt64.t): (x:UInt32.t {
let n = split_at_last_num_blocks c i (U64.v total_len) in
let l = U32.v (c.blocks_state_len i) in
0 <= n * l /\ n * l <= U64.v total_len /\
U32.v x = U64.v total_len - (n * l)})
=
let open FStar.Int.Cast in
[@inline_let] let l = uint32_to_uint64 (c.blocks_state_len i) in
[@inline_let] let r = total_len `U64.rem` l in
(**) let total_len_v : Ghost.erased nat = U64.v total_len in
(**) let l_v : Ghost.erased nat = U64.v l in
(**) let r_v : Ghost.erased nat = U64.v r in
(**) assert(Ghost.reveal r_v = total_len_v - ((total_len_v / l_v) * l_v));
(**) Math.Lemmas.euclidean_division_definition total_len_v l_v;
(**) assert(Ghost.reveal r_v = total_len_v % l_v);
(**) assert(r_v < l_v);
if U64.(r =^ uint_to_t 0) && U64.(total_len >^ uint_to_t 0) then
begin
(**) split_at_last_num_blocks_lem c i (U64.v total_len);
c.blocks_state_len i
end
else
begin
[@inline_let] let r' = FStar.Int.Cast.uint64_to_uint32 r in
(**) FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32);
(**) calc (==) {
(**) U32.v r';
(**) (==) { }
(**) U64.v r % pow2 32;
(**) (==) { FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32) }
(**) U64.v r;
(**) (==) { FStar.Math.Lemmas.euclidean_division_definition (U64.v total_len) (U64.v (uint32_to_uint64 (c.blocks_state_len i))) }
(**) U64.v total_len % U64.v (uint32_to_uint64 (c.blocks_state_len i) );
(**) (==) { }
(**) U64.v total_len % U32.v (c.blocks_state_len i);
(**) };
(**) assert(
(**) let n = split_at_last_num_blocks c i (U64.v total_len) in
(**) let l = U32.v (c.blocks_state_len i) in
(**) U32.v r' = U64.v total_len - (n * l));
r'
end
#pop-options
/// The ``nblocks`` function below allows computing, given ``total_len`` stored in
/// the state, the number of blocks of data which have been processed (the remaining
/// unprocessed data being left in ``buf``).
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let nblocks #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.blocks_state_len i) in
U32.v x * l <= U32.v len /\
U32.v x = split_at_last_num_blocks c i (U32.v len) })
=
let open FStar.Int.Cast in
[@inline_let] let l = c.blocks_state_len i in
[@inline_let] let r = rest c i (uint32_to_uint64 len) in
(**) let len_v : Ghost.erased nat = U32.v len in
(**) let l_v : Ghost.erased nat = U32.v l in
(**) let r_v : Ghost.erased nat = U32.v r in
(**) let n_s : Ghost.erased nat = split_at_last_num_blocks c i len_v in
(**) assert(Ghost.reveal len_v = n_s * l_v + r_v);
(**) Math.Lemmas.nat_times_nat_is_nat n_s l_v;
(**) assert(U32.v r <= U32.v len);
[@inline_let] let blocks = len `U32.sub` r in
(**) let blocks_v : Ghost.erased nat = U32.v blocks in
(**) assert(blocks_v % l_v = 0);
[@inline_let] let n = blocks `U32.div` l in
(**) let n_v : Ghost.erased nat = U32.v n in
(**) assert(n_v * l_v = Ghost.reveal blocks_v);
(**) split_at_last_num_blocks_spec c i len_v n_v r_v;
n
#pop-options
/// The ``rest`` function to call on the unprocessed data length in the ``finish``
/// function.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest_finish #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.block_len i) in
let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
0 <= n * l /\ n * l <= U32.v len /\
U32.v x = U32.v len - (n * l)})
=
[@inline_let] let l = c.block_len i in
[@inline_let] let r = len `U32.rem` l in
(**) split_at_last_num_blocks_lem c i (U32.v len);
if U32.(r =^ uint_to_t 0) && U32.(len >^ uint_to_t 0) then
begin
(**) begin
(**) let l = U32.v (c.block_len i) in
(**) let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
(**) Math.Lemmas.nat_times_nat_is_nat n l
(**) end;
c.block_len i
end
else
r
#pop-options
/// We always add 32-bit lengths to 64-bit lengths. Having a helper for that allows
/// doing modulo reasoning once and for all.
inline_for_extraction noextract
let add_len #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t):
Pure UInt64.t
(requires U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures fun x -> U64.v x = U64.v total_len + U32.v len /\ U64.v x <= U64.v (c.max_input_len i))
=
total_len `U64.add` Int.Cast.uint32_to_uint64 len
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let add_len_small #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t): Lemma
(requires
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i total_len) /\
U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures (rest c i (add_len c i total_len len) = rest c i total_len `U32.add` len))
=
let total_len_v = U64.v total_len in
let l = U32.v (c.blocks_state_len i) in
let b = total_len_v + U32.v len in
let n = split_at_last_num_blocks c i total_len_v in
let r = U32.v (rest c i total_len) in
assert(total_len_v = n * l + r);
let r' = U32.v (rest c i total_len) + U32.v len in
assert(r' <= l);
assert(r' = 0 ==> b = 0);
Math.Lemmas.euclidean_division_definition b l;
assert(b = n * l + r');
split_at_last_num_blocks_spec c i b n r'
#pop-options
/// Beginning of the three sub-cases (see Hacl.Streaming.Spec)
/// ==========================================================
noextract
let total_len_h #index (c: block index) (i: index) h (p: state' c i) =
State?.total_len (B.deref h p) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: Hacl.Streaming.Interface.block index ->
i: index ->
h: FStar.Monotonic.HyperStack.mem ->
p: Hacl.Streaming.Functor.state' c i
-> Prims.GTot (Hacl.Streaming.Spec.bytes * Hacl.Streaming.Spec.bytes) | Prims.GTot | [
"sometrivial"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Functor.state'",
"Hacl.Streaming.Spec.bytes",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple2",
"Hacl.Streaming.Spec.split_at_last",
"Hacl.Streaming.Functor.bytes",
"Hacl.Streaming.Functor.all_seen"
] | [] | false | false | false | false | false | let split_at_last_all_seen #index (c: block index) (i: index) h (p: state' c i) =
| let all_seen = all_seen c i h p in
let blocks, rest = split_at_last c i all_seen in
blocks, rest | false |
|
FStar.Pervasives.Native.fst | FStar.Pervasives.Native.snd | val snd (x: tuple2 'a 'b) : 'b | val snd (x: tuple2 'a 'b) : 'b | let snd (x: tuple2 'a 'b) : 'b = Mktuple2?._2 x | {
"file_name": "ulib/FStar.Pervasives.Native.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 63,
"start_col": 0,
"start_line": 63
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pervasives.Native
(* This is a file from the core library, dependencies must be explicit *)
open Prims
/// This module is implicitly opened in the scope of all other modules.
///
/// It provides several basic types in F* that enjoy some special
/// status in extraction. For instance, the tuple type below is
/// compiled to OCaml's tuple type, rather than to a F*-defined
/// inductive type. See ulib/ml/FStar_Pervasives_Native.ml
///
(** [option a] represents either [Some a]-value or a non-informative [None]. *)
type option (a: Type) =
| None : option a
| Some : v: a -> option a
(**** Tuples *)
/// Aside from special support in extraction, the tuple types have
/// special syntax in F*.
///
/// For instance, rather than [tupleN a1 ... aN],
/// we usually write [a1 & ... & aN] or [a1 * ... * aN].
///
/// The latter notation is more common for those coming to F* from
/// OCaml or F#. However, the [*] also clashes with the multiplication
/// operator on integers define in FStar.Mul. For this reason, we now
/// prefer to use the [&] notation, though there are still many uses
/// of [*] remaining.
///
/// Tuple values are introduced using as [a1, ..., an], rather than
/// [MktupleN a1 ... aN].
///
/// We define tuples up to a fixed arity of 14. We have considered
/// splitting this module into 14 different modules, one for each
/// tuple type rather than eagerly including 14-tuples in the
/// dependence graph of all programs.
(** Pairs: [tuple2 a b] is can be written either as [a * b], for
notation compatible with OCaml's. Or, better, as [a & b]. *)
type tuple2 'a 'b = | Mktuple2 : _1: 'a -> _2: 'b -> tuple2 'a 'b
(** The fst and snd projections on pairs are very common *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Pervasives.Native.fst"
} | [
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: ('a * 'b) -> 'b | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.__proj__Mktuple2__item___2"
] | [] | false | false | false | true | false | let snd (x: tuple2 'a 'b) : 'b =
| Mktuple2?._2 x | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.index_of_state | val index_of_state:
#index:Type0 ->
c:block index ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
Stack index
(fun h0 -> invariant c i h0 s)
(fun h0 i' h1 -> h0 == h1 /\ i' == i)) | val index_of_state:
#index:Type0 ->
c:block index ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
Stack index
(fun h0 -> invariant c i h0 s)
(fun h0 i' h1 -> h0 == h1 /\ i' == i)) | let index_of_state #index c i t t' s =
let open LowStar.BufferOps in
let State block_state _ _ _ _ = !*s in
c.index_of_state i block_state | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 32,
"end_line": 257,
"start_col": 0,
"start_line": 254
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
()
let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s))
let init_input (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
c.init_input_s i (reveal_key c i h s)
let all_seen (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
S.append (init_input c i h s) (seen c i h s)
let frame_invariant #index c i l s h0 h1 =
let state_t = B.deref h0 s in
let State block_state _ _ _ p_key = state_t in
c.state.frame_invariant #i l block_state h0 h1;
stateful_frame_preserves_freeable #index #c.state #i l block_state h0 h1;
allow_inversion key_management;
match c.km with
| Erased -> ()
| Runtime ->
stateful_frame_preserves_freeable #index #c.key #i l p_key h0 h1;
c.key.frame_invariant #i l p_key h0 h1
let frame_seen #_ _ _ _ _ _ _ =
()
/// Stateful API
/// ============ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Hacl.Streaming.Interface.block index -> i: FStar.Ghost.erased index
-> (let i = FStar.Ghost.reveal i in
t: Type0{t == Stateful?.s (Block?.state c) i} ->
t': Type0{t' == Hacl.Streaming.Interface.optional_key i (Block?.km c) (Block?.key c)} ->
s: Hacl.Streaming.Functor.state c i t t'
-> FStar.HyperStack.ST.Stack index) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.Ghost.erased",
"Prims.eq2",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Interface.__proj__Block__item__state",
"FStar.Ghost.reveal",
"Hacl.Streaming.Interface.optional_key",
"Hacl.Streaming.Interface.__proj__Block__item__km",
"Hacl.Streaming.Interface.__proj__Block__item__key",
"Hacl.Streaming.Functor.state",
"LowStar.Buffer.buffer",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_Equality",
"FStar.UInt32.t",
"LowStar.Monotonic.Buffer.len",
"LowStar.Buffer.trivial_preorder",
"Hacl.Streaming.Interface.__proj__Block__item__blocks_state_len",
"FStar.UInt64.t",
"FStar.Seq.Base.seq",
"Hacl.Streaming.Spec.uint8",
"Hacl.Streaming.Interface.__proj__Block__item__index_of_state",
"Hacl.Streaming.Functor.state_s",
"LowStar.BufferOps.op_Bang_Star"
] | [] | false | false | false | false | false | let index_of_state #index c i t t' s =
| let open LowStar.BufferOps in
let State block_state _ _ _ _ = !*s in
c.index_of_state i block_state | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.seen_length | val seen_length:
#index:Type0 ->
c:block index ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
Stack U64.t
(fun h0 -> invariant c i h0 s)
(fun h0 l h1 -> h0 == h1 /\ U64.v l == U32.v (c.init_input_len i) + S.length (seen c i h0 s))) | val seen_length:
#index:Type0 ->
c:block index ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
Stack U64.t
(fun h0 -> invariant c i h0 s)
(fun h0 l h1 -> h0 == h1 /\ U64.v l == U32.v (c.init_input_len i) + S.length (seen c i h0 s))) | let seen_length #index c i t t' s =
let open LowStar.BufferOps in
let State _ _ total_len _ _ = !*s in
total_len | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 11,
"end_line": 262,
"start_col": 0,
"start_line": 259
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
()
let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s))
let init_input (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
c.init_input_s i (reveal_key c i h s)
let all_seen (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
S.append (init_input c i h s) (seen c i h s)
let frame_invariant #index c i l s h0 h1 =
let state_t = B.deref h0 s in
let State block_state _ _ _ p_key = state_t in
c.state.frame_invariant #i l block_state h0 h1;
stateful_frame_preserves_freeable #index #c.state #i l block_state h0 h1;
allow_inversion key_management;
match c.km with
| Erased -> ()
| Runtime ->
stateful_frame_preserves_freeable #index #c.key #i l p_key h0 h1;
c.key.frame_invariant #i l p_key h0 h1
let frame_seen #_ _ _ _ _ _ _ =
()
/// Stateful API
/// ============
let index_of_state #index c i t t' s =
let open LowStar.BufferOps in
let State block_state _ _ _ _ = !*s in
c.index_of_state i block_state | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Hacl.Streaming.Interface.block index -> i: FStar.Ghost.erased index
-> (let i = FStar.Ghost.reveal i in
t: Type0{t == Stateful?.s (Block?.state c) i} ->
t': Type0{t' == Hacl.Streaming.Interface.optional_key i (Block?.km c) (Block?.key c)} ->
s: Hacl.Streaming.Functor.state c i t t'
-> FStar.HyperStack.ST.Stack FStar.UInt64.t) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.Ghost.erased",
"Prims.eq2",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Interface.__proj__Block__item__state",
"FStar.Ghost.reveal",
"Hacl.Streaming.Interface.optional_key",
"Hacl.Streaming.Interface.__proj__Block__item__km",
"Hacl.Streaming.Interface.__proj__Block__item__key",
"Hacl.Streaming.Functor.state",
"LowStar.Buffer.buffer",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_Equality",
"FStar.UInt32.t",
"LowStar.Monotonic.Buffer.len",
"LowStar.Buffer.trivial_preorder",
"Hacl.Streaming.Interface.__proj__Block__item__blocks_state_len",
"FStar.UInt64.t",
"FStar.Seq.Base.seq",
"Hacl.Streaming.Spec.uint8",
"Hacl.Streaming.Functor.state_s",
"LowStar.BufferOps.op_Bang_Star"
] | [] | false | false | false | false | false | let seen_length #index c i t t' s =
| let open LowStar.BufferOps in
let State _ _ total_len _ _ = !*s in
total_len | false |
Vale.X64.BufferViewStore.fst | Vale.X64.BufferViewStore.bv_upd_update_heap64 | val bv_upd_update_heap64:
(b:IB.b8{DV.length (IB.get_downview b.IB.bsrc) % 8 == 0}) ->
(heap:machine_heap) ->
(i:nat{i < DV.length (IB.get_downview b.IB.bsrc) / 8}) ->
(v:nat64) ->
(mem:IB.interop_heap{MB.live (IB.hs_of_mem mem) b.IB.bsrc}) ->
Lemma
(requires IB.correct_down_p mem heap b)
(ensures
(let dv = IB.get_downview b.IB.bsrc in
let bv = UV.mk_buffer dv up_view64 in
let addrs = IB.addrs_of_mem mem in
let h = IB.hs_of_mem mem in
UV.length_eq bv;
let heap' = update_heap64 (addrs b + 8 * i) v heap in
UV.upd h bv i (UInt64.uint_to_t v) == DV.upd_seq h dv (get_seq_heap heap' addrs b))) | val bv_upd_update_heap64:
(b:IB.b8{DV.length (IB.get_downview b.IB.bsrc) % 8 == 0}) ->
(heap:machine_heap) ->
(i:nat{i < DV.length (IB.get_downview b.IB.bsrc) / 8}) ->
(v:nat64) ->
(mem:IB.interop_heap{MB.live (IB.hs_of_mem mem) b.IB.bsrc}) ->
Lemma
(requires IB.correct_down_p mem heap b)
(ensures
(let dv = IB.get_downview b.IB.bsrc in
let bv = UV.mk_buffer dv up_view64 in
let addrs = IB.addrs_of_mem mem in
let h = IB.hs_of_mem mem in
UV.length_eq bv;
let heap' = update_heap64 (addrs b + 8 * i) v heap in
UV.upd h bv i (UInt64.uint_to_t v) == DV.upd_seq h dv (get_seq_heap heap' addrs b))) | let bv_upd_update_heap64 b heap i v mem =
let dv = IB.get_downview b.IB.bsrc in
DV.length_eq dv;
let uv = UV.mk_buffer dv up_view64 in
let addrs = IB.addrs_of_mem mem in
let h = IB.hs_of_mem mem in
UV.length_eq uv;
let ptr = addrs b + 8 * i in
let heap' = update_heap64 ptr v heap in
let prefix, _, suffix = UV.split_at_i uv i h in
let s_down = prefix `Seq.append` (put64 (UInt64.uint_to_t v) `Seq.append` suffix) in
let s_f = get_seq_heap heap' addrs b in
let h' = UV.upd h uv i (UInt64.uint_to_t v) in
// This is by definition of UV.upd, fetched from the friended definition
assert (h' == DV.upd_seq h dv s_down);
DV.upd_seq_spec h dv s_down;
// assert (DV.as_seq h' dv == s_down);
// We know that all elements but UV.sel h' uv i will be the same, (using UV.sel_upd lemmas)
// hence aux1 and aux3 can be proven with initial correct_down_p on h
// and the Bytes_Semantics.frame lemma
// For aux2, we know that get64 (Seq.slice s_down (i*8) (i*8+8)) = v (through UV.sel lemmas)
// We also know that get_heap_val64 ptr = v, which with get64_aux and some index matching
// should give us the property
let aux1 (j:nat{j < i * 8}) : Lemma (Seq.index s_down j == Seq.index s_f j)
= let base = j / 8 in
let s_init = DV.as_seq h dv in
calc (==) {
Seq.index s_down j;
( == ) { FStar.Math.Lemmas.euclidean_division_definition j 8 }
Seq.index s_down (base * 8 + j%8);
( == ) { assert (base * 8 + 8 <= Seq.length s_down);
Seq.lemma_index_slice s_down (base*8) (base*8 + 8) (j % 8)
} // True by slice properties
Seq.index (Seq.slice s_down (base*8) (base*8 + 8)) (j%8);
( == ) {
UV.sel_upd uv i base (UInt64.uint_to_t v) h;
// assert (UV.sel h uv base == UV.sel h' uv base);
UV.get_sel h uv base;
UV.get_sel h' uv base;
// With the injectivity of get64, which we get from get64 and put64 being inverses,
// we get the following
assert (Seq.equal (Seq.slice s_init (base*8) (base*8+8)) (Seq.slice s_down (base*8) (base*8+8))) }
Seq.index (Seq.slice s_init (base*8) (base*8 + 8)) (j%8);
( == ) { assert (base * 8 + 8 <= Seq.length s_init);
Seq.lemma_index_slice s_init (base*8) (base*8 + 8) (j % 8)
} // True by slice properties
Seq.index s_init (base * 8 + j%8);
( == ) { FStar.Math.Lemmas.euclidean_division_definition j 8 }
Seq.index s_init j;
( == ) { assert (Seq.index s_init j == UInt8.uint_to_t (heap.[addrs b + j])) }
UInt8.uint_to_t (heap.[addrs b + j]); // True by correct_down_p
( == ) { Vale.Arch.MachineHeap.frame_update_heap64 ptr v heap } // True by frame_update
UInt8.uint_to_t (heap'.[addrs b + j]);
( == ) { } // True by definition of get_seq_heap
Seq.index s_f j;
}
in let aux2(j:nat{j >= i * 8 /\ j < i * 8 + 8}) : Lemma (Seq.index s_down j == Seq.index s_f j)
= UV.sel_upd uv i i (UInt64.uint_to_t v) h;
// assert (UV.sel h' uv i == UInt64.uint_to_t v);
UV.get_sel h' uv i;
// assert (Vale.Interop.Views.get64 (Seq.slice s_down (i*8) (i*8+8)) = UInt64.uint_to_t v);
Vale.Arch.MachineHeap.correct_update_get64 ptr v heap;
// assert (get_heap_val64 ptr heap' = v);
let k = j - i * 8 in
get64_aux ptr heap' v k;
// assert (heap'.[ptr + k] = UInt8.v (Seq.index (put64 (UInt64.uint_to_t v)) k));
map_aux (ptr + k) (addrs b + j) (UInt8.v (Seq.index s_down j)) heap'
// assert (heap'.[ptr + k] = heap'.[addrs b + j])
in let aux3 (j:nat{j >= i * 8 + 8 /\ j < Seq.length s_down}) : Lemma (Seq.index s_down j == Seq.index s_f j)
= let base = j / 8 in
let s_init = DV.as_seq h dv in
calc (==) {
Seq.index s_down j;
( == ) { FStar.Math.Lemmas.euclidean_division_definition j 8 }
Seq.index s_down (base * 8 + j%8);
( == ) { assert (base * 8 + 8 <= Seq.length s_down);
Seq.lemma_index_slice s_down (base*8) (base*8 + 8) (j % 8)
} // True by slice properties
Seq.index (Seq.slice s_down (base*8) (base*8 + 8)) (j%8);
( == ) {
UV.sel_upd uv i base (UInt64.uint_to_t v) h;
// assert (UV.sel h uv base == UV.sel h' uv base);
UV.get_sel h uv base;
UV.get_sel h' uv base;
// With the injectivity of get64, which we get from get64 and put64 being inverses,
// we get the following
assert (Seq.equal (Seq.slice s_init (base*8) (base*8+8)) (Seq.slice s_down (base*8) (base*8+8))) }
Seq.index (Seq.slice s_init (base*8) (base*8 + 8)) (j%8);
( == ) { assert (base * 8 + 8 <= Seq.length s_init);
Seq.lemma_index_slice s_init (base*8) (base*8 + 8) (j % 8)
} // True by slice properties
Seq.index s_init (base * 8 + j%8);
( == ) { FStar.Math.Lemmas.euclidean_division_definition j 8 }
Seq.index s_init j;
( == ) { assert (Seq.index s_init j == UInt8.uint_to_t (heap.[addrs b + j])) }
UInt8.uint_to_t (heap.[addrs b + j]); // True by correct_down_p
( == ) { Vale.Arch.MachineHeap.frame_update_heap64 ptr v heap } // True by frame_update
UInt8.uint_to_t (heap'.[addrs b + j]);
( == ) { } // True by definition of get_seq_heap
Seq.index s_f j;
}
in
Classical.forall_intro aux1;
Classical.forall_intro aux2;
Classical.forall_intro aux3;
assert (Seq.equal s_down s_f) | {
"file_name": "vale/code/arch/x64/Vale.X64.BufferViewStore.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 31,
"end_line": 160,
"start_col": 0,
"start_line": 52
} | module Vale.X64.BufferViewStore
open FStar.Mul
open Vale.Interop.Views
open Vale.Interop
module MB = LowStar.Monotonic.Buffer
module HS = FStar.HyperStack
open Vale.Lib.BufferViewHelpers
open Vale.Def.Types_s
open Vale.Def.Words_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Two
open Vale.Def.Words.Four_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Seq
open Vale.Arch.Types
open FStar.Calc
friend LowStar.BufferView.Up
#reset-options "--z3rlimit 10 --max_fuel 0 --initial_fuel 0 --max_ifuel 1 --initial_ifuel 1"
let math_aux (a b c:int) : Lemma (a + b + (c - b) == a + c) = ()
let map_aux (ptr1 ptr2:int) (v:int) (m:machine_heap) : Lemma
(requires ptr1 == ptr2 /\ m.[ptr1] == v)
(ensures m.[ptr2] == v) = ()
let get64_aux (ptr:int) (heap:machine_heap) (v:nat64) (k:nat{k < 8}) : Lemma
(requires get_heap_val64 ptr heap == v)
(ensures heap.[ptr + k] == UInt8.v (Seq.index (put64 (UInt64.uint_to_t v)) k)) =
get_heap_val64_reveal ();
put64_reveal ();
le_nat64_to_bytes_reveal ();
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
four_to_nat_8_injective ();
two_to_nat_32_injective ()
let get128_aux (ptr:int) (heap:machine_heap) (v:quad32) (k:nat{k < 16}) : Lemma
(requires get_heap_val128 ptr heap == v)
(ensures heap.[ptr + k] == UInt8.v (Seq.index (put128 v) k)) =
get_heap_val128_reveal ();
get_heap_val32_reveal ();
put128_reveal ();
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_nat_8_injective ()
#reset-options "--max_fuel 1 --initial_fuel 1 --z3rlimit 200" | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.BufferViewHelpers.fst.checked",
"Vale.Interop.Views.fsti.checked",
"Vale.Interop.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Seq.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.Arch.MachineHeap.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferView.Up.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.BufferViewStore.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.BufferViewHelpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "Vale.Interop",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Views",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Interop.Base",
"short_module": "IB"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.BufferViewHelpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Up",
"short_module": "UV"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "Vale.Interop",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Views",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 200,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b:
Vale.Interop.Types.b8
{LowStar.BufferView.Down.length (Vale.Interop.Types.get_downview (Buffer?.bsrc b)) % 8 == 0} ->
heap: Vale.Arch.MachineHeap_s.machine_heap ->
i:
Prims.nat
{i < LowStar.BufferView.Down.length (Vale.Interop.Types.get_downview (Buffer?.bsrc b)) / 8} ->
v: Vale.Def.Words_s.nat64 ->
mem:
Vale.Interop.Heap_s.interop_heap
{LowStar.Monotonic.Buffer.live (Vale.Interop.Heap_s.hs_of_mem mem) (Buffer?.bsrc b)}
-> FStar.Pervasives.Lemma (requires Vale.Interop.Heap_s.correct_down_p mem heap b)
(ensures
(let dv = Vale.Interop.Types.get_downview (Buffer?.bsrc b) in
let bv = LowStar.BufferView.Up.mk_buffer dv Vale.Interop.Views.up_view64 in
let addrs = Vale.Interop.Heap_s.addrs_of_mem mem in
let h = Vale.Interop.Heap_s.hs_of_mem mem in
LowStar.BufferView.Up.length_eq bv;
let heap' = Vale.Arch.MachineHeap_s.update_heap64 (addrs b + 8 * i) v heap in
LowStar.BufferView.Up.upd h bv i (FStar.UInt64.uint_to_t v) ==
LowStar.BufferView.Down.upd_seq h dv (Vale.Interop.get_seq_heap heap' addrs b))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Interop.Types.b8",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"LowStar.BufferView.Down.length",
"FStar.UInt8.t",
"Vale.Interop.Types.get_downview",
"Vale.Interop.Types.__proj__Buffer__item__src",
"Vale.Interop.Types.b8_preorder",
"Vale.Interop.Types.__proj__Buffer__item__writeable",
"Vale.Interop.Types.base_typ_as_type",
"Vale.Interop.Types.__proj__Buffer__item__bsrc",
"Vale.Arch.MachineHeap_s.machine_heap",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Division",
"Vale.Def.Words_s.nat64",
"Vale.Interop.Heap_s.interop_heap",
"LowStar.Monotonic.Buffer.live",
"Vale.Interop.Heap_s.hs_of_mem",
"FStar.Seq.Base.seq",
"LowStar.BufferView.Up.buffer_src",
"FStar.UInt64.t",
"FStar.Seq.Properties.lseq",
"LowStar.BufferView.Up.__proj__View__item__n",
"LowStar.BufferView.Up.get_view",
"Prims._assert",
"FStar.Seq.Base.equal",
"Prims.unit",
"FStar.Classical.forall_intro",
"Prims.l_and",
"Prims.op_GreaterThanOrEqual",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"FStar.Seq.Base.length",
"FStar.Seq.Base.index",
"Prims.op_Multiply",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Calc.calc_finish",
"Prims.Cons",
"FStar.Preorder.relation",
"FStar.Calc.calc_step",
"FStar.UInt8.uint_to_t",
"Vale.Interop.op_String_Access",
"Vale.Def.Types_s.nat8",
"FStar.Seq.Base.slice",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.euclidean_division_definition",
"FStar.Seq.Base.lemma_index_slice",
"Prims.op_LessThanOrEqual",
"LowStar.BufferView.Up.get_sel",
"LowStar.BufferView.Up.sel_upd",
"FStar.UInt64.uint_to_t",
"Vale.Arch.MachineHeap.frame_update_heap64",
"LowStar.BufferView.Down.as_seq",
"Vale.X64.BufferViewStore.map_aux",
"FStar.UInt8.v",
"Vale.X64.BufferViewStore.get64_aux",
"Prims.op_Subtraction",
"Vale.Arch.MachineHeap.correct_update_get64",
"LowStar.BufferView.Down.upd_seq_spec",
"FStar.Monotonic.HyperStack.mem",
"LowStar.BufferView.Down.upd_seq",
"LowStar.BufferView.Up.upd",
"Vale.Interop.get_seq_heap",
"FStar.Seq.Base.append",
"Vale.Interop.Views.put64",
"FStar.Pervasives.Native.tuple3",
"LowStar.BufferView.Up.as_down_buffer",
"LowStar.BufferView.Up.split_at_i",
"Vale.Arch.MachineHeap_s.update_heap64",
"LowStar.BufferView.Up.length_eq",
"Vale.Interop.Types.addr_map",
"Vale.Interop.Heap_s.addrs_of_mem",
"LowStar.BufferView.Up.buffer",
"LowStar.BufferView.Up.mk_buffer",
"Vale.Interop.Views.up_view64",
"LowStar.BufferView.Down.length_eq",
"LowStar.BufferView.Down.buffer"
] | [] | false | false | true | false | false | let bv_upd_update_heap64 b heap i v mem =
| let dv = IB.get_downview b.IB.bsrc in
DV.length_eq dv;
let uv = UV.mk_buffer dv up_view64 in
let addrs = IB.addrs_of_mem mem in
let h = IB.hs_of_mem mem in
UV.length_eq uv;
let ptr = addrs b + 8 * i in
let heap' = update_heap64 ptr v heap in
let prefix, _, suffix = UV.split_at_i uv i h in
let s_down = prefix `Seq.append` ((put64 (UInt64.uint_to_t v)) `Seq.append` suffix) in
let s_f = get_seq_heap heap' addrs b in
let h' = UV.upd h uv i (UInt64.uint_to_t v) in
assert (h' == DV.upd_seq h dv s_down);
DV.upd_seq_spec h dv s_down;
let aux1 (j: nat{j < i * 8}) : Lemma (Seq.index s_down j == Seq.index s_f j) =
let base = j / 8 in
let s_init = DV.as_seq h dv in
calc ( == ) {
Seq.index s_down j;
( == ) { FStar.Math.Lemmas.euclidean_division_definition j 8 }
Seq.index s_down (base * 8 + j % 8);
( == ) { (assert (base * 8 + 8 <= Seq.length s_down);
Seq.lemma_index_slice s_down (base * 8) (base * 8 + 8) (j % 8)) }
Seq.index (Seq.slice s_down (base * 8) (base * 8 + 8)) (j % 8);
( == ) { (UV.sel_upd uv i base (UInt64.uint_to_t v) h;
UV.get_sel h uv base;
UV.get_sel h' uv base;
assert (Seq.equal (Seq.slice s_init (base * 8) (base * 8 + 8))
(Seq.slice s_down (base * 8) (base * 8 + 8)))) }
Seq.index (Seq.slice s_init (base * 8) (base * 8 + 8)) (j % 8);
( == ) { (assert (base * 8 + 8 <= Seq.length s_init);
Seq.lemma_index_slice s_init (base * 8) (base * 8 + 8) (j % 8)) }
Seq.index s_init (base * 8 + j % 8);
( == ) { FStar.Math.Lemmas.euclidean_division_definition j 8 }
Seq.index s_init j;
( == ) { assert (Seq.index s_init j == UInt8.uint_to_t (heap.[ addrs b + j ])) }
UInt8.uint_to_t (heap.[ addrs b + j ]);
( == ) { Vale.Arch.MachineHeap.frame_update_heap64 ptr v heap }
UInt8.uint_to_t (heap'.[ addrs b + j ]);
( == ) { () }
Seq.index s_f j;
}
in
let aux2 (j: nat{j >= i * 8 /\ j < i * 8 + 8}) : Lemma (Seq.index s_down j == Seq.index s_f j) =
UV.sel_upd uv i i (UInt64.uint_to_t v) h;
UV.get_sel h' uv i;
Vale.Arch.MachineHeap.correct_update_get64 ptr v heap;
let k = j - i * 8 in
get64_aux ptr heap' v k;
map_aux (ptr + k) (addrs b + j) (UInt8.v (Seq.index s_down j)) heap'
in
let aux3 (j: nat{j >= i * 8 + 8 /\ j < Seq.length s_down})
: Lemma (Seq.index s_down j == Seq.index s_f j) =
let base = j / 8 in
let s_init = DV.as_seq h dv in
calc ( == ) {
Seq.index s_down j;
( == ) { FStar.Math.Lemmas.euclidean_division_definition j 8 }
Seq.index s_down (base * 8 + j % 8);
( == ) { (assert (base * 8 + 8 <= Seq.length s_down);
Seq.lemma_index_slice s_down (base * 8) (base * 8 + 8) (j % 8)) }
Seq.index (Seq.slice s_down (base * 8) (base * 8 + 8)) (j % 8);
( == ) { (UV.sel_upd uv i base (UInt64.uint_to_t v) h;
UV.get_sel h uv base;
UV.get_sel h' uv base;
assert (Seq.equal (Seq.slice s_init (base * 8) (base * 8 + 8))
(Seq.slice s_down (base * 8) (base * 8 + 8)))) }
Seq.index (Seq.slice s_init (base * 8) (base * 8 + 8)) (j % 8);
( == ) { (assert (base * 8 + 8 <= Seq.length s_init);
Seq.lemma_index_slice s_init (base * 8) (base * 8 + 8) (j % 8)) }
Seq.index s_init (base * 8 + j % 8);
( == ) { FStar.Math.Lemmas.euclidean_division_definition j 8 }
Seq.index s_init j;
( == ) { assert (Seq.index s_init j == UInt8.uint_to_t (heap.[ addrs b + j ])) }
UInt8.uint_to_t (heap.[ addrs b + j ]);
( == ) { Vale.Arch.MachineHeap.frame_update_heap64 ptr v heap }
UInt8.uint_to_t (heap'.[ addrs b + j ]);
( == ) { () }
Seq.index s_f j;
}
in
Classical.forall_intro aux1;
Classical.forall_intro aux2;
Classical.forall_intro aux3;
assert (Seq.equal s_down s_f) | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.frame_invariant | val frame_invariant: #index:Type0 -> c:block index -> i:index -> l:B.loc -> s:state' c i -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant c i h0 s /\
B.loc_disjoint l (footprint c i h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant c i h1 s /\
footprint c i h0 s == footprint c i h1 s /\
preserves_freeable c i s h0 h1))
[ SMTPat (invariant c i h1 s); SMTPat (B.modifies l h0 h1) ] | val frame_invariant: #index:Type0 -> c:block index -> i:index -> l:B.loc -> s:state' c i -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant c i h0 s /\
B.loc_disjoint l (footprint c i h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant c i h1 s /\
footprint c i h0 s == footprint c i h1 s /\
preserves_freeable c i s h0 h1))
[ SMTPat (invariant c i h1 s); SMTPat (B.modifies l h0 h1) ] | let frame_invariant #index c i l s h0 h1 =
let state_t = B.deref h0 s in
let State block_state _ _ _ p_key = state_t in
c.state.frame_invariant #i l block_state h0 h1;
stateful_frame_preserves_freeable #index #c.state #i l block_state h0 h1;
allow_inversion key_management;
match c.km with
| Erased -> ()
| Runtime ->
stateful_frame_preserves_freeable #index #c.key #i l p_key h0 h1;
c.key.frame_invariant #i l p_key h0 h1 | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 44,
"end_line": 246,
"start_col": 0,
"start_line": 236
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
()
let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s))
let init_input (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
c.init_input_s i (reveal_key c i h s)
let all_seen (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
S.append (init_input c i h s) (seen c i h s) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: Hacl.Streaming.Interface.block index ->
i: index ->
l: LowStar.Monotonic.Buffer.loc ->
s: Hacl.Streaming.Functor.state' c i ->
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem
-> FStar.Pervasives.Lemma
(requires
Hacl.Streaming.Functor.invariant c i h0 s /\
LowStar.Monotonic.Buffer.loc_disjoint l (Hacl.Streaming.Functor.footprint c i h0 s) /\
LowStar.Monotonic.Buffer.modifies l h0 h1)
(ensures
Hacl.Streaming.Functor.invariant c i h1 s /\
Hacl.Streaming.Functor.footprint c i h0 s == Hacl.Streaming.Functor.footprint c i h1 s /\
Hacl.Streaming.Functor.preserves_freeable c i s h0 h1)
[
SMTPat (Hacl.Streaming.Functor.invariant c i h1 s);
SMTPat (LowStar.Monotonic.Buffer.modifies l h0 h1)
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Streaming.Interface.block",
"LowStar.Monotonic.Buffer.loc",
"Hacl.Streaming.Functor.state'",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Interface.__proj__Block__item__state",
"LowStar.Buffer.buffer",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_Equality",
"FStar.UInt32.t",
"LowStar.Monotonic.Buffer.len",
"LowStar.Buffer.trivial_preorder",
"Hacl.Streaming.Interface.__proj__Block__item__blocks_state_len",
"FStar.UInt64.t",
"FStar.Ghost.erased",
"FStar.Seq.Base.seq",
"Hacl.Streaming.Spec.uint8",
"Hacl.Streaming.Interface.optional_key",
"Hacl.Streaming.Interface.__proj__Block__item__km",
"Hacl.Streaming.Interface.__proj__Block__item__key",
"Hacl.Streaming.Interface.__proj__Stateful__item__frame_invariant",
"Prims.unit",
"Hacl.Streaming.Functor.stateful_frame_preserves_freeable",
"FStar.Pervasives.allow_inversion",
"Hacl.Streaming.Interface.key_management",
"Hacl.Streaming.Functor.state_s",
"LowStar.Monotonic.Buffer.deref"
] | [] | false | false | true | false | false | let frame_invariant #index c i l s h0 h1 =
| let state_t = B.deref h0 s in
let State block_state _ _ _ p_key = state_t in
c.state.frame_invariant #i l block_state h0 h1;
stateful_frame_preserves_freeable #index #c.state #i l block_state h0 h1;
allow_inversion key_management;
match c.km with
| Erased -> ()
| Runtime ->
stateful_frame_preserves_freeable #index #c.key #i l p_key h0 h1;
c.key.frame_invariant #i l p_key h0 h1 | false |
Hacl.Spec.K256.Field52.Lemmas2.fst | Hacl.Spec.K256.Field52.Lemmas2.minus_x_mul_pow2_256_lemma | val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires felem_fits5 f m)
(ensures
(let x, r = minus_x_mul_pow2_256 f in
let (r0,r1,r2,r3,r4) = r in
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
v x < pow2 16 /\ v x = v t4 / pow2 48 /\
v r4 = v t4 % pow2 48 /\
as_nat5 r == as_nat5 f - v x * pow2 256 /\
felem_fits5 r (m0,m1,m2,m3,1))) | val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires felem_fits5 f m)
(ensures
(let x, r = minus_x_mul_pow2_256 f in
let (r0,r1,r2,r3,r4) = r in
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
v x < pow2 16 /\ v x = v t4 / pow2 48 /\
v r4 = v t4 % pow2 48 /\
as_nat5 r == as_nat5 f - v x * pow2 256 /\
felem_fits5 r (m0,m1,m2,m3,1))) | let minus_x_mul_pow2_256_lemma m f =
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
let x = t4 >>. 48ul in let t4' = t4 &. mask48 in
LD.lemma_mask48 t4;
let r = (t0,t1,t2,t3,t4') in
calc (==) { // as_nat5 f
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208;
(==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208;
(==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208;
(==) { }
(v x * pow2 48) * pow208 + as_nat5 r;
(==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 }
v x * pow2 256 + as_nat5 r;
};
Math.Lemmas.lemma_div_lt (v t4) 64 48 | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 39,
"end_line": 50,
"start_col": 0,
"start_line": 30
} | module Hacl.Spec.K256.Field52.Lemmas2
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
include Hacl.Spec.K256.Field52.Definitions
include Hacl.Spec.K256.Field52
module ML = Hacl.Spec.K256.MathLemmas
module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas
#set-options "--z3rlimit 100 --fuel 0 --ifuel 0"
/// Normalize-weak
val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma
(requires felem_fits5 f m)
(ensures
(let x, r = minus_x_mul_pow2_256 f in
let (r0,r1,r2,r3,r4) = r in
let (m0,m1,m2,m3,m4) = m in
let (t0,t1,t2,t3,t4) = f in
v x < pow2 16 /\ v x = v t4 / pow2 48 /\
v r4 = v t4 % pow2 48 /\
as_nat5 r == as_nat5 f - v x * pow2 256 /\
felem_fits5 r (m0,m1,m2,m3,1))) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.K256.MathLemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked",
"Hacl.Spec.K256.Field52.Definitions.fst.checked",
"Hacl.Spec.K256.Field52.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas",
"short_module": "LD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.MathLemmas",
"short_module": "ML"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: Hacl.Spec.K256.Field52.Definitions.scale64_5 -> f: Hacl.Spec.K256.Field52.Definitions.felem5
-> FStar.Pervasives.Lemma (requires Hacl.Spec.K256.Field52.Definitions.felem_fits5 f m)
(ensures
(let _ = Hacl.Spec.K256.Field52.minus_x_mul_pow2_256 f in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ x r = _ in
let _ = r in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ r4 = _ in
let _ = m in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ m0 m1 m2 m3 _ = _ in
let _ = f in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ t4 = _ in
Lib.IntTypes.v x < Prims.pow2 16 /\
Lib.IntTypes.v x = Lib.IntTypes.v t4 / Prims.pow2 48 /\
Lib.IntTypes.v r4 = Lib.IntTypes.v t4 % Prims.pow2 48 /\
Hacl.Spec.K256.Field52.Definitions.as_nat5 r ==
Hacl.Spec.K256.Field52.Definitions.as_nat5 f - Lib.IntTypes.v x * Prims.pow2 256 /\
Hacl.Spec.K256.Field52.Definitions.felem_fits5 r (m0, m1, m2, m3, 1))
<:
Type0)
<:
Type0)
<:
Type0)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.K256.Field52.Definitions.scale64_5",
"Hacl.Spec.K256.Field52.Definitions.felem5",
"Prims.nat",
"Lib.IntTypes.uint64",
"FStar.Math.Lemmas.lemma_div_lt",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.unit",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Hacl.Spec.K256.Field52.Definitions.pow52",
"Hacl.Spec.K256.Field52.Definitions.pow104",
"Hacl.Spec.K256.Field52.Definitions.pow156",
"Hacl.Spec.K256.Field52.Definitions.pow208",
"Prims.pow2",
"Hacl.Spec.K256.Field52.Definitions.as_nat5",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Prims.op_Division",
"Prims.op_Modulus",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.euclidean_division_definition",
"Prims.squash",
"FStar.Math.Lemmas.distributivity_add_left",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Math.Lemmas.paren_mul_right",
"FStar.Pervasives.Native.tuple5",
"Lib.IntTypes.int_t",
"FStar.Pervasives.Native.Mktuple5",
"Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_mask48",
"Lib.IntTypes.op_Amp_Dot",
"Hacl.Spec.K256.Field52.Definitions.mask48",
"Lib.IntTypes.op_Greater_Greater_Dot",
"FStar.UInt32.__uint_to_t"
] | [] | false | false | true | false | false | let minus_x_mul_pow2_256_lemma m f =
| let m0, m1, m2, m3, m4 = m in
let t0, t1, t2, t3, t4 = f in
let x = t4 >>. 48ul in
let t4' = t4 &. mask48 in
LD.lemma_mask48 t4;
let r = (t0, t1, t2, t3, t4') in
calc ( == ) {
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208;
( == ) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 +
((v t4 / pow2 48) * pow2 48 + v t4 % pow2 48) * pow208;
( == ) { Math.Lemmas.distributivity_add_left ((v t4 / pow2 48) * pow2 48) (v t4 % pow2 48) pow208 }
v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + ((v t4 / pow2 48) * pow2 48) * pow208 +
(v t4 % pow2 48) * pow208;
( == ) { () }
(v x * pow2 48) * pow208 + as_nat5 r;
( == ) { (Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208;
Math.Lemmas.pow2_plus 48 208) }
v x * pow2 256 + as_nat5 r;
};
Math.Lemmas.lemma_div_lt (v t4) 64 48 | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.seen_h | val seen_h : c: Hacl.Streaming.Interface.block _ ->
i: _ ->
h: FStar.Monotonic.HyperStack.mem ->
s: Hacl.Streaming.Functor.state' c i
-> Prims.GTot Hacl.Streaming.Functor.bytes | let seen_h = seen | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 27,
"end_line": 1192,
"start_col": 10,
"start_line": 1192
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
()
let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s))
let init_input (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
c.init_input_s i (reveal_key c i h s)
let all_seen (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
S.append (init_input c i h s) (seen c i h s)
let frame_invariant #index c i l s h0 h1 =
let state_t = B.deref h0 s in
let State block_state _ _ _ p_key = state_t in
c.state.frame_invariant #i l block_state h0 h1;
stateful_frame_preserves_freeable #index #c.state #i l block_state h0 h1;
allow_inversion key_management;
match c.km with
| Erased -> ()
| Runtime ->
stateful_frame_preserves_freeable #index #c.key #i l p_key h0 h1;
c.key.frame_invariant #i l p_key h0 h1
let frame_seen #_ _ _ _ _ _ _ =
()
/// Stateful API
/// ============
let index_of_state #index c i t t' s =
let open LowStar.BufferOps in
let State block_state _ _ _ _ = !*s in
c.index_of_state i block_state
let seen_length #index c i t t' s =
let open LowStar.BufferOps in
let State _ _ total_len _ _ = !*s in
total_len
(* TODO: malloc and alloca have big portions of proofs in common, so it may
* be possible to factorize them, but it is not clear how *)
#restart-solver
#push-options "--z3rlimit 500"
let malloc #index c i t t' key r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none key h0 h1;
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none key h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none key h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) c.state.frame_freeable B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 key);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 key) (c.key.footprint #i h3 k'));
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') key h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 key)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none key h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) key buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let s = B.get h8 p 0 in
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true r) (footprint c i h8 p));
(**) assert (ST.equal_stack_domains h1 h8);
(**) assert (ST.equal_stack_domains h0 h1);
p
#pop-options
#push-options "--z3rlimit 100"
let copy #index c i t t' state r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
// All source state is suffixed by 0.
let State block_state0 buf0 total_len0 seen0 k0 = !*state in
let i = c.index_of_state i block_state0 in
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
B.blit buf0 0ul buf 0ul (c.blocks_state_len i);
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h0 h1;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h1 state);
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h1 h2;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h2 state);
c.state.copy (G.hide i) block_state0 block_state;
(**) let h2 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i (c.state.footprint #i h2 block_state) k0 h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant #i B.loc_none k0 h2 h3;
(**) c.state.frame_invariant #i B.loc_none block_state h2 h3;
(**) c.state.frame_freeable #i B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k0);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k0) (c.key.footprint #i h3 k'));
c.key.copy i k0 k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant #i (c.key.footprint #i h3 k') k0 h3 h4;
(**) c.state.frame_invariant #i (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable #i (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased -> k0
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
let s = State block_state buf total_len0 seen0 k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h5 h6;
(**) c.state.frame_invariant #i B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
p
#pop-options
#push-options "--z3rlimit 200"
let alloca #index c i t t' k =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.alloca (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none k h0 h1;
let block_state = c.state.alloca i in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none k h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.alloca i in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none k h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k) (c.key.footprint #i h3 k'));
c.key.copy i k k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') k h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 k)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.alloca s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none k h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) k buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true (HS.get_tip h8)) (footprint c i h8 p));
(**) assert(ST.same_refs_in_non_tip_regions h0 h8);
p
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let reset #index c i t t' state key =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
let open LowStar.BufferOps in
(**) let h1 = ST.get () in
let State block_state buf _ _ k' = !*state in
let i = c.index_of_state i block_state in
LowStar.Ignore.ignore i; // This is only used in types and proofs
[@inline_let]
let block_state: c.state.s i = block_state in
c.init (G.hide i) key buf block_state;
(**) let h2 = ST.get () in
(**) optional_frame #_ #i #c.km #c.key (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) k' h1 h2;
(**) c.key.frame_invariant (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) key h1 h2;
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % UInt32.v (Block?.block_len c i) = 0);
(**) assert (reveal_key c i h1 state == reveal_key c i h2 state);
(**) c.update_multi_zero i (c.state.v i h2 block_state) 0;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h2 k') key h2 h4;
(**) c.state.frame_invariant (c.key.footprint #i h2 k') block_state h2 h4;
(**) stateful_frame_preserves_freeable (c.key.footprint #i h2 k') block_state h2 h4;
k'
| Erased ->
G.hide (c.key.v i h1 key)
in
(**) let h2 = ST.get () in
(**) assert(preserves_freeable c i state h1 h2);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let tmp: state_s c i t t' = State block_state buf total_len (G.hide S.empty) k' in
B.upd state 0ul tmp;
(**) let h3 = ST.get () in
(**) c.state.frame_invariant B.(loc_buffer state) block_state h2 h3;
(**) c.key.frame_invariant B.(loc_buffer state) key h2 h3;
(**) optional_frame #_ #i #c.km #c.key B.(loc_buffer state) k' h2 h3;
(**) stateful_frame_preserves_freeable B.(loc_buffer state) block_state h2 h3;
(**) assert(preserves_freeable c i state h2 h3);
// This seems to cause insurmountable difficulties. Puzzled.
ST.lemma_equal_domains_trans h1 h2 h3;
// AR: 07/22: same old `Seq.equal` and `==` story
(**) assert (Seq.equal (seen c i h3 state) Seq.empty);
(**) assert (footprint c i h1 state == footprint c i h3 state);
(**) assert (B.(modifies (footprint c i h1 state) h1 h3));
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h3 state in
(**) let all_seen_ = all_seen c i h3 state in
// SH (11/22): the proof fails if we don't introduce the call to [split_at_last]
(**) let blocks, rest = split_at_last c i all_seen_ in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert (invariant_s c i h3 (B.get h3 state 0))
(**) end;
(**) assert(preserves_freeable c i state h1 h3)
#pop-options
/// Some helpers to minimize modulo-reasoning
/// =========================================
val split_at_last_num_blocks_lem (#index : Type0) (c: block index) (i: index) (b: nat):
Lemma (
let n_blocks = split_at_last_num_blocks c i b in
let blocks = n_blocks * U32.v (c.blocks_state_len i) in
0 <= blocks /\ blocks <= b)
let split_at_last_num_blocks_lem #index c i b = ()
/// The ``rest`` function below allows computing, based ``total_len`` stored in
/// the state, the length of useful data currently stored in ``buf``.
/// Unsurprisingly, there's a fair amount of modulo reasoning here because of
/// 64-bit-to-32-bit conversions, so we do them once and for all in a helper.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest #index (c: block index) (i: index)
(total_len: UInt64.t): (x:UInt32.t {
let n = split_at_last_num_blocks c i (U64.v total_len) in
let l = U32.v (c.blocks_state_len i) in
0 <= n * l /\ n * l <= U64.v total_len /\
U32.v x = U64.v total_len - (n * l)})
=
let open FStar.Int.Cast in
[@inline_let] let l = uint32_to_uint64 (c.blocks_state_len i) in
[@inline_let] let r = total_len `U64.rem` l in
(**) let total_len_v : Ghost.erased nat = U64.v total_len in
(**) let l_v : Ghost.erased nat = U64.v l in
(**) let r_v : Ghost.erased nat = U64.v r in
(**) assert(Ghost.reveal r_v = total_len_v - ((total_len_v / l_v) * l_v));
(**) Math.Lemmas.euclidean_division_definition total_len_v l_v;
(**) assert(Ghost.reveal r_v = total_len_v % l_v);
(**) assert(r_v < l_v);
if U64.(r =^ uint_to_t 0) && U64.(total_len >^ uint_to_t 0) then
begin
(**) split_at_last_num_blocks_lem c i (U64.v total_len);
c.blocks_state_len i
end
else
begin
[@inline_let] let r' = FStar.Int.Cast.uint64_to_uint32 r in
(**) FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32);
(**) calc (==) {
(**) U32.v r';
(**) (==) { }
(**) U64.v r % pow2 32;
(**) (==) { FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32) }
(**) U64.v r;
(**) (==) { FStar.Math.Lemmas.euclidean_division_definition (U64.v total_len) (U64.v (uint32_to_uint64 (c.blocks_state_len i))) }
(**) U64.v total_len % U64.v (uint32_to_uint64 (c.blocks_state_len i) );
(**) (==) { }
(**) U64.v total_len % U32.v (c.blocks_state_len i);
(**) };
(**) assert(
(**) let n = split_at_last_num_blocks c i (U64.v total_len) in
(**) let l = U32.v (c.blocks_state_len i) in
(**) U32.v r' = U64.v total_len - (n * l));
r'
end
#pop-options
/// The ``nblocks`` function below allows computing, given ``total_len`` stored in
/// the state, the number of blocks of data which have been processed (the remaining
/// unprocessed data being left in ``buf``).
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let nblocks #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.blocks_state_len i) in
U32.v x * l <= U32.v len /\
U32.v x = split_at_last_num_blocks c i (U32.v len) })
=
let open FStar.Int.Cast in
[@inline_let] let l = c.blocks_state_len i in
[@inline_let] let r = rest c i (uint32_to_uint64 len) in
(**) let len_v : Ghost.erased nat = U32.v len in
(**) let l_v : Ghost.erased nat = U32.v l in
(**) let r_v : Ghost.erased nat = U32.v r in
(**) let n_s : Ghost.erased nat = split_at_last_num_blocks c i len_v in
(**) assert(Ghost.reveal len_v = n_s * l_v + r_v);
(**) Math.Lemmas.nat_times_nat_is_nat n_s l_v;
(**) assert(U32.v r <= U32.v len);
[@inline_let] let blocks = len `U32.sub` r in
(**) let blocks_v : Ghost.erased nat = U32.v blocks in
(**) assert(blocks_v % l_v = 0);
[@inline_let] let n = blocks `U32.div` l in
(**) let n_v : Ghost.erased nat = U32.v n in
(**) assert(n_v * l_v = Ghost.reveal blocks_v);
(**) split_at_last_num_blocks_spec c i len_v n_v r_v;
n
#pop-options
/// The ``rest`` function to call on the unprocessed data length in the ``finish``
/// function.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest_finish #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.block_len i) in
let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
0 <= n * l /\ n * l <= U32.v len /\
U32.v x = U32.v len - (n * l)})
=
[@inline_let] let l = c.block_len i in
[@inline_let] let r = len `U32.rem` l in
(**) split_at_last_num_blocks_lem c i (U32.v len);
if U32.(r =^ uint_to_t 0) && U32.(len >^ uint_to_t 0) then
begin
(**) begin
(**) let l = U32.v (c.block_len i) in
(**) let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
(**) Math.Lemmas.nat_times_nat_is_nat n l
(**) end;
c.block_len i
end
else
r
#pop-options
/// We always add 32-bit lengths to 64-bit lengths. Having a helper for that allows
/// doing modulo reasoning once and for all.
inline_for_extraction noextract
let add_len #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t):
Pure UInt64.t
(requires U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures fun x -> U64.v x = U64.v total_len + U32.v len /\ U64.v x <= U64.v (c.max_input_len i))
=
total_len `U64.add` Int.Cast.uint32_to_uint64 len
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let add_len_small #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t): Lemma
(requires
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i total_len) /\
U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures (rest c i (add_len c i total_len len) = rest c i total_len `U32.add` len))
=
let total_len_v = U64.v total_len in
let l = U32.v (c.blocks_state_len i) in
let b = total_len_v + U32.v len in
let n = split_at_last_num_blocks c i total_len_v in
let r = U32.v (rest c i total_len) in
assert(total_len_v = n * l + r);
let r' = U32.v (rest c i total_len) + U32.v len in
assert(r' <= l);
assert(r' = 0 ==> b = 0);
Math.Lemmas.euclidean_division_definition b l;
assert(b = n * l + r');
split_at_last_num_blocks_spec c i b n r'
#pop-options
/// Beginning of the three sub-cases (see Hacl.Streaming.Spec)
/// ==========================================================
noextract
let total_len_h #index (c: block index) (i: index) h (p: state' c i) =
State?.total_len (B.deref h p)
noextract
let split_at_last_all_seen #index (c: block index) (i: index) h (p: state' c i) =
let all_seen = all_seen c i h p in
let blocks, rest = split_at_last c i all_seen in
blocks, rest
inline_for_extraction noextract
val update_small:
#index:Type0 ->
(c: block index) ->
i:index -> (
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
Stack unit
(requires fun h0 ->
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i (total_len_h c i h0 s)))
(ensures fun h0 s' h1 ->
update_post c i s data len h0 h1))
/// SH: The proof obligations for update_small have problem succeeding in command
/// line mode: hence the restart-solver instruction, the crazy rlimit and the
/// intermediate lemma. Interestingly (and frustratingly), the proof succeeds
/// quite quickly locally on command-line with this rlimit, but fails with a lower
/// one. Besides, the lemma is needed only for the CI regression.
let split_at_last_rest_eq (#index : Type0) (c: block index)
(i: index)
(t:Type0 { t == c.state.s i })
(t':Type0 { t' == optional_key i c.km c.key })
(s: state c i t t') (h0: HS.mem) :
Lemma
(requires (
invariant c i h0 s))
(ensures (
let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
Seq.length r == U32.v sz)) =
let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
()
/// Particularly difficult proof. Z3 profiling indicates that a pattern goes off
/// the rails. So I disabled all of the known "bad" patterns, then did the proof
/// by hand. Fortunately, there were only two stateful operations. The idea was
/// to do all ofthe modifies-reasoning in the two lemmas above, then disable the
/// bad pattern for the main function.
///
/// This style is a little tedious, because it requires a little bit of digging
/// to understand what needs to hold in order to be able to prove that e.g. the
/// sequence remains unmodified from h0 to h2, but this seems more robust?
val modifies_footprint:
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
s:state' c i ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
let State _ buf_ _ _ _ = B.deref h0 s in (
update_pre c i s data len h0 /\
B.(modifies (loc_buffer buf_) h0 h1))))
(ensures (
let State bs0 buf0 _ _ k0 = B.deref h0 s in
let State bs1 buf1 _ _ k1 = B.deref h1 s in (
footprint c i h0 s == footprint c i h1 s /\
preserves_freeable c i s h0 h1 /\
bs0 == bs1 /\ buf0 == buf1 /\ k0 == k1 /\
c.state.invariant h1 bs1 /\
c.state.v i h1 bs1 == c.state.v i h0 bs0 /\
c.state.footprint h1 bs1 == c.state.footprint h0 bs0 /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_buffer buf1)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_buffer data)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_addr_of_buffer buf1)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (c.state.footprint h1 bs1)) /\
B.(loc_disjoint (loc_buffer s) (loc_buffer buf1)) /\
B.(loc_disjoint (loc_buffer s) (loc_buffer data)) /\
B.(loc_disjoint (loc_buffer s) (c.state.footprint h1 bs1)) /\
(if c.km = Runtime then
c.key.invariant #i h1 k1 /\
c.key.v i h1 k1 == c.key.v i h0 k0 /\
c.key.footprint #i h1 k1 == c.key.footprint #i h0 k0 /\
B.(loc_disjoint (loc_addr_of_buffer s) (c.key.footprint #i h1 k1)) /\
B.(loc_disjoint (loc_buffer s) (c.key.footprint #i h1 k1))
else
B.(loc_disjoint (loc_addr_of_buffer s) loc_none) /\
True)))))
let modifies_footprint c i p data len h0 h1 =
let _ = c.state.frame_freeable #i in
let _ = c.key.frame_freeable #i in
let s0 = B.deref h0 p in
let s1 = B.deref h0 p in
let State bs0 buf0 _ _ k0 = s0 in
let State bs1 buf0 _ _ k1 = s1 in
c.state.frame_invariant (B.loc_buffer buf0) bs0 h0 h1;
if c.km = Runtime then
c.key.frame_invariant #i (B.loc_buffer buf0) k0 h0 h1
val modifies_footprint':
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
p:state' c i ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
let State bs0 buf0 _ _ k0 = B.deref h0 p in
let State bs1 buf1 _ _ k1 = B.deref h1 p in (
B.live h0 p /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.state.footprint #i h0 bs0)) /\
B.(loc_disjoint (loc_addr_of_buffer p) (loc_addr_of_buffer buf0)) /\
c.state.invariant h0 bs0 /\
(if c.km = Runtime then
B.(loc_disjoint (loc_addr_of_buffer p) (c.key.footprint #i h0 k0)) /\
c.key.invariant #i h0 k0
else
B.(loc_disjoint (loc_addr_of_buffer p) loc_none)) /\
B.(modifies (loc_buffer p) h0 h1)) /\
bs0 == bs1 /\ buf0 == buf1 /\ k0 == k1))
(ensures (
let State bs0 buf0 _ _ k0 = B.deref h0 p in
let State bs1 buf1 _ _ k1 = B.deref h1 p in (
B.live h1 p /\
footprint c i h0 p == footprint c i h1 p /\
preserves_freeable c i p h0 h1 /\
B.(loc_disjoint (loc_addr_of_buffer p) (footprint_s c i h1 (B.deref h1 p))) /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.state.footprint #i h1 bs1)) /\
B.(loc_disjoint (loc_buffer p) (c.state.footprint #i h1 bs1)) /\
c.state.invariant h1 bs1 /\
c.state.v i h1 bs1 == c.state.v i h0 bs0 /\
c.state.footprint h1 bs1 == c.state.footprint h0 bs0 /\
(if c.km = Runtime then
c.key.invariant #i h1 k1 /\
c.key.v i h1 k1 == c.key.v i h0 k0 /\
c.key.footprint #i h1 k1 == c.key.footprint #i h0 k0 /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.key.footprint #i h1 k1)) /\
B.(loc_disjoint (loc_buffer p) (c.key.footprint #i h1 k1))
else
B.(loc_disjoint (loc_addr_of_buffer p) loc_none))))))
let modifies_footprint' c i p data len h0 h1 =
let _ = c.state.frame_freeable #i in
let _ = c.key.frame_freeable #i in
let _ = c.state.frame_invariant #i in
let _ = c.key.frame_invariant #i in
let _ = allow_inversion key_management in
let s0 = B.deref h0 p in
let s1 = B.deref h0 p in
let State bs0 buf0 _ _ k0 = s0 in
let State bs1 buf1 _ _ k1 = s1 in
c.state.frame_invariant (B.loc_addr_of_buffer p) bs0 h0 h1;
if c.km = Runtime then
c.key.frame_invariant #i (B.loc_addr_of_buffer p) k0 h0 h1
/// Small helper which we use to factor out functional correctness proof obligations.
/// It states that a state was correctly updated to process some data between two
/// memory snapshots (the key is the same, the seen data was updated, etc.).
///
/// Note that we don't specify anything about the buffer and the block_state: they
/// might have been updated differently depending on the case.
unfold val state_is_updated :
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Type0)
#push-options "--z3cliopt smt.arith.nl=false"
let state_is_updated #index c i t t' p data len h0 h1 =
// Functional conditions about the memory updates
let s0 = B.get h0 p 0 in
let s1 = B.get h1 p 0 in
let State block_state0 buf0 total_len0 seen0 key0 = s0 in
let State block_state1 buf1 total_len1 seen1 key1 = s1 in
block_state1 == block_state0 /\
buf1 == buf0 /\
U64.v total_len1 == U64.v total_len0 + U32.v len /\
key1 == key0 /\
seen1 `S.equal` (seen0 `S.append` (B.as_seq h0 data)) /\
optional_reveal #index #i #c.km #c.key h1 key1 == optional_reveal #index #i #c.km #c.key h0 key0
#pop-options
/// The functional part of the invariant
unfold val invariant_s_funct :
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Pure Type0 (requires
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
state_is_updated c i t t' s data len h0 h1)
(ensures (fun _ -> True)))
let invariant_s_funct #index c i t t' p data len h0 h1 =
let blocks, rest = split_at_last_all_seen c i h1 p in
let s = B.get h1 p 0 in
let State block_state buf_ total_len seen key = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 key in
let init_s = c.init_s i key_v in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (c.block_len i));
c.state.v i h1 block_state == c.update_multi_s i init_s 0 blocks /\
S.equal (S.slice (B.as_seq h1 buf_) 0 (Seq.length rest)) rest
/// We isolate the functional correctness proof obligations for [update_small]
val update_small_functional_correctness :
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
// The precondition of [small_update]
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i (total_len_h c i h0 s)) /\
// Generic conditions
state_is_updated c i t t' s data len h0 h1 /\
// Functional conditions about the memory updates
begin
let s0 = B.get h0 s 0 in
let s1 = B.get h1 s 0 in
let State block_state0 buf0 total_len0 seen0 key0 = s0 in
let State block_state1 buf1 total_len1 seen1 key1 = s1 in
let sz = rest c i total_len0 in
let buf = buf0 in
let data_v0 = B.as_seq h0 data in
let buf_beg_v0 = S.slice (B.as_seq h0 buf) 0 (U32.v sz) in
let buf_part_v1 = S.slice (B.as_seq h1 buf) 0 (U32.v sz + U32.v len) in
buf_part_v1 == S.append buf_beg_v0 data_v0 /\
c.state.v i h1 block_state1 == c.state.v i h0 block_state0
end
))
(ensures (invariant_s_funct c i t t' s data len h0 h1)))
#push-options "--z3cliopt smt.arith.nl=false"
let update_small_functional_correctness #index c i t t' p data len h0 h1 =
let s0 = B.get h0 p 0 in
let s1 = B.get h1 p 0 in
let State block_state buf total_len0 seen0 key = s0 in
let seen0 = G.reveal seen0 in
let i = Ghost.reveal i in
let key_v0 = optional_reveal #_ #i #c.km #c.key h0 key in
let init_v0 = c.init_input_s i key_v0 in
let all_seen0 = S.append init_v0 seen0 in
let blocks0, rest0 = split_at_last c i all_seen0 in
let State block_state buf total_len1 seen1 key = s1 in
let seen1 = G.reveal seen1 in
let i = Ghost.reveal i in
let key_v1 = optional_reveal #_ #i #c.km #c.key h1 key in
assert(key_v1 == key_v0);
let init_v1 = c.init_input_s i key_v1 in
assert(init_v1 == init_v0);
let all_seen1 = S.append init_v1 seen1 in
let blocks1, rest1 = split_at_last c i all_seen1 in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
let data_v0 = B.as_seq h0 data in
split_at_last_small c i all_seen0 data_v0;
// The first problematic condition
assert(blocks1 `S.equal` blocks0);
assert(c.state.v i h1 block_state == c.update_multi_s i (c.init_s i key_v1) 0 blocks1);
// The second problematic condition
assert(S.equal (S.slice (B.as_seq h1 buf) 0 (Seq.length rest1)) rest1)
#pop-options
// The absence of loc_disjoint_includes makes reasoning a little more difficult.
// Notably, we lose all of the important disjointness properties between the
// outer point p and the buffer within B.deref h p. These need to be
// re-established by hand. Another thing that we lose without this pattern is
// knowing that loc_buffer b is included within loc_addr_of_buffer b. This is
// important for reasoning about the preservation of e.g. the contents of data.
#restart-solver
#push-options "--z3rlimit 300 --z3cliopt smt.arith.nl=false --z3refresh \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2,-FStar.Seq.Properties.slice_slice,-LowStar.Monotonic.Buffer.loc_disjoint_includes_r'"
let update_small #index c i t t' p data len =
let open LowStar.BufferOps in
let s = !*p in
let State block_state buf total_len seen_ k' = s in
[@inline_let]
let block_state: c.state.s i = block_state in
// Functional reasoning.
let sz = rest c i total_len in
add_len_small c i total_len len;
let h0 = ST.get () in
let buf1 = B.sub buf 0ul sz in
let buf2 = B.sub buf sz len in
// Memory reasoning.
c.state.invariant_loc_in_footprint h0 block_state;
if c.km = Runtime then
c.key.invariant_loc_in_footprint #i h0 k';
// key_invariant_loc_in_footprint #index c i h0 p;
B.(loc_disjoint_includes_r (loc_buffer data) (footprint c i h0 p) (loc_buffer buf2));
// FIRST STATEFUL OPERATION
B.blit data 0ul buf2 0ul len;
// Memory reasoning.
let h1 = ST.get () in
modifies_footprint c i p data len h0 h1;
c.state.invariant_loc_in_footprint h1 block_state;
if c.km = Runtime then
c.key.invariant_loc_in_footprint #i h1 k';
// Functional reasoning on data
begin
let buf1_v0 = B.as_seq h0 buf1 in
let buf1_v1 = B.as_seq h1 buf1 in
let buf2_v1 = B.as_seq h1 buf2 in
let buf_beg_v0 = S.slice (B.as_seq h0 buf) 0 (U32.v sz) in
let buf_part_v1 = S.slice (B.as_seq h1 buf) 0 (U32.v sz + U32.v len) in
let data_v0 = B.as_seq h0 data in
assert(buf1_v1 == buf1_v0);
assert(buf1_v0 == buf_beg_v0);
assert(buf2_v1 `S.equal` data_v0);
assert(buf_part_v1 `S.equal` S.append buf_beg_v0 data_v0)
end;
// SECOND STATEFUL OPERATION
let total_len = add_len c i total_len len in
[@inline_let]
let tmp: state_s c i t t' =
State #index #c #i block_state buf total_len
(G.hide (G.reveal seen_ `S.append` (B.as_seq h0 data))) k'
in
p *= tmp;
// Memory reasoning.
let h2 = ST.get () in
modifies_footprint' c i p data len h1 h2;
c.state.invariant_loc_in_footprint h2 block_state;
if c.km = Runtime then
c.key.invariant_loc_in_footprint #i h2 k';
ST.lemma_equal_domains_trans h0 h1 h2;
// Prove the invariant
update_small_functional_correctness c i t t' p data len h0 h2
#pop-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: Hacl.Streaming.Interface.block _ ->
i: _ ->
h: FStar.Monotonic.HyperStack.mem ->
s: Hacl.Streaming.Functor.state' c i
-> Prims.GTot Hacl.Streaming.Functor.bytes | Prims.GTot | [
"sometrivial"
] | [] | [
"Hacl.Streaming.Functor.seen",
"Hacl.Streaming.Interface.block",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Functor.state'",
"Hacl.Streaming.Functor.bytes"
] | [] | false | false | false | false | false | let seen_h =
| seen | false |
|
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.rest_finish | val rest_finish (#index: _) (c: block index) (i: index) (len: UInt32.t)
: (x:
UInt32.t
{ let l = U32.v (c.block_len i) in
let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
0 <= n * l /\ n * l <= U32.v len /\ U32.v x = U32.v len - (n * l) }) | val rest_finish (#index: _) (c: block index) (i: index) (len: UInt32.t)
: (x:
UInt32.t
{ let l = U32.v (c.block_len i) in
let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
0 <= n * l /\ n * l <= U32.v len /\ U32.v x = U32.v len - (n * l) }) | let rest_finish #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.block_len i) in
let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
0 <= n * l /\ n * l <= U32.v len /\
U32.v x = U32.v len - (n * l)})
=
[@inline_let] let l = c.block_len i in
[@inline_let] let r = len `U32.rem` l in
(**) split_at_last_num_blocks_lem c i (U32.v len);
if U32.(r =^ uint_to_t 0) && U32.(len >^ uint_to_t 0) then
begin
(**) begin
(**) let l = U32.v (c.block_len i) in
(**) let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
(**) Math.Lemmas.nat_times_nat_is_nat n l
(**) end;
c.block_len i
end
else
r | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 747,
"start_col": 0,
"start_line": 727
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
()
let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s))
let init_input (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
c.init_input_s i (reveal_key c i h s)
let all_seen (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
S.append (init_input c i h s) (seen c i h s)
let frame_invariant #index c i l s h0 h1 =
let state_t = B.deref h0 s in
let State block_state _ _ _ p_key = state_t in
c.state.frame_invariant #i l block_state h0 h1;
stateful_frame_preserves_freeable #index #c.state #i l block_state h0 h1;
allow_inversion key_management;
match c.km with
| Erased -> ()
| Runtime ->
stateful_frame_preserves_freeable #index #c.key #i l p_key h0 h1;
c.key.frame_invariant #i l p_key h0 h1
let frame_seen #_ _ _ _ _ _ _ =
()
/// Stateful API
/// ============
let index_of_state #index c i t t' s =
let open LowStar.BufferOps in
let State block_state _ _ _ _ = !*s in
c.index_of_state i block_state
let seen_length #index c i t t' s =
let open LowStar.BufferOps in
let State _ _ total_len _ _ = !*s in
total_len
(* TODO: malloc and alloca have big portions of proofs in common, so it may
* be possible to factorize them, but it is not clear how *)
#restart-solver
#push-options "--z3rlimit 500"
let malloc #index c i t t' key r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none key h0 h1;
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none key h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none key h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) c.state.frame_freeable B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 key);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 key) (c.key.footprint #i h3 k'));
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') key h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 key)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none key h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) key buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let s = B.get h8 p 0 in
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true r) (footprint c i h8 p));
(**) assert (ST.equal_stack_domains h1 h8);
(**) assert (ST.equal_stack_domains h0 h1);
p
#pop-options
#push-options "--z3rlimit 100"
let copy #index c i t t' state r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
// All source state is suffixed by 0.
let State block_state0 buf0 total_len0 seen0 k0 = !*state in
let i = c.index_of_state i block_state0 in
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
B.blit buf0 0ul buf 0ul (c.blocks_state_len i);
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h0 h1;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h1 state);
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h1 h2;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h2 state);
c.state.copy (G.hide i) block_state0 block_state;
(**) let h2 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i (c.state.footprint #i h2 block_state) k0 h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant #i B.loc_none k0 h2 h3;
(**) c.state.frame_invariant #i B.loc_none block_state h2 h3;
(**) c.state.frame_freeable #i B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k0);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k0) (c.key.footprint #i h3 k'));
c.key.copy i k0 k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant #i (c.key.footprint #i h3 k') k0 h3 h4;
(**) c.state.frame_invariant #i (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable #i (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased -> k0
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
let s = State block_state buf total_len0 seen0 k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h5 h6;
(**) c.state.frame_invariant #i B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
p
#pop-options
#push-options "--z3rlimit 200"
let alloca #index c i t t' k =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.alloca (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none k h0 h1;
let block_state = c.state.alloca i in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none k h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.alloca i in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none k h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k) (c.key.footprint #i h3 k'));
c.key.copy i k k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') k h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 k)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.alloca s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none k h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) k buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true (HS.get_tip h8)) (footprint c i h8 p));
(**) assert(ST.same_refs_in_non_tip_regions h0 h8);
p
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let reset #index c i t t' state key =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
let open LowStar.BufferOps in
(**) let h1 = ST.get () in
let State block_state buf _ _ k' = !*state in
let i = c.index_of_state i block_state in
LowStar.Ignore.ignore i; // This is only used in types and proofs
[@inline_let]
let block_state: c.state.s i = block_state in
c.init (G.hide i) key buf block_state;
(**) let h2 = ST.get () in
(**) optional_frame #_ #i #c.km #c.key (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) k' h1 h2;
(**) c.key.frame_invariant (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) key h1 h2;
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % UInt32.v (Block?.block_len c i) = 0);
(**) assert (reveal_key c i h1 state == reveal_key c i h2 state);
(**) c.update_multi_zero i (c.state.v i h2 block_state) 0;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h2 k') key h2 h4;
(**) c.state.frame_invariant (c.key.footprint #i h2 k') block_state h2 h4;
(**) stateful_frame_preserves_freeable (c.key.footprint #i h2 k') block_state h2 h4;
k'
| Erased ->
G.hide (c.key.v i h1 key)
in
(**) let h2 = ST.get () in
(**) assert(preserves_freeable c i state h1 h2);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let tmp: state_s c i t t' = State block_state buf total_len (G.hide S.empty) k' in
B.upd state 0ul tmp;
(**) let h3 = ST.get () in
(**) c.state.frame_invariant B.(loc_buffer state) block_state h2 h3;
(**) c.key.frame_invariant B.(loc_buffer state) key h2 h3;
(**) optional_frame #_ #i #c.km #c.key B.(loc_buffer state) k' h2 h3;
(**) stateful_frame_preserves_freeable B.(loc_buffer state) block_state h2 h3;
(**) assert(preserves_freeable c i state h2 h3);
// This seems to cause insurmountable difficulties. Puzzled.
ST.lemma_equal_domains_trans h1 h2 h3;
// AR: 07/22: same old `Seq.equal` and `==` story
(**) assert (Seq.equal (seen c i h3 state) Seq.empty);
(**) assert (footprint c i h1 state == footprint c i h3 state);
(**) assert (B.(modifies (footprint c i h1 state) h1 h3));
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h3 state in
(**) let all_seen_ = all_seen c i h3 state in
// SH (11/22): the proof fails if we don't introduce the call to [split_at_last]
(**) let blocks, rest = split_at_last c i all_seen_ in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert (invariant_s c i h3 (B.get h3 state 0))
(**) end;
(**) assert(preserves_freeable c i state h1 h3)
#pop-options
/// Some helpers to minimize modulo-reasoning
/// =========================================
val split_at_last_num_blocks_lem (#index : Type0) (c: block index) (i: index) (b: nat):
Lemma (
let n_blocks = split_at_last_num_blocks c i b in
let blocks = n_blocks * U32.v (c.blocks_state_len i) in
0 <= blocks /\ blocks <= b)
let split_at_last_num_blocks_lem #index c i b = ()
/// The ``rest`` function below allows computing, based ``total_len`` stored in
/// the state, the length of useful data currently stored in ``buf``.
/// Unsurprisingly, there's a fair amount of modulo reasoning here because of
/// 64-bit-to-32-bit conversions, so we do them once and for all in a helper.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest #index (c: block index) (i: index)
(total_len: UInt64.t): (x:UInt32.t {
let n = split_at_last_num_blocks c i (U64.v total_len) in
let l = U32.v (c.blocks_state_len i) in
0 <= n * l /\ n * l <= U64.v total_len /\
U32.v x = U64.v total_len - (n * l)})
=
let open FStar.Int.Cast in
[@inline_let] let l = uint32_to_uint64 (c.blocks_state_len i) in
[@inline_let] let r = total_len `U64.rem` l in
(**) let total_len_v : Ghost.erased nat = U64.v total_len in
(**) let l_v : Ghost.erased nat = U64.v l in
(**) let r_v : Ghost.erased nat = U64.v r in
(**) assert(Ghost.reveal r_v = total_len_v - ((total_len_v / l_v) * l_v));
(**) Math.Lemmas.euclidean_division_definition total_len_v l_v;
(**) assert(Ghost.reveal r_v = total_len_v % l_v);
(**) assert(r_v < l_v);
if U64.(r =^ uint_to_t 0) && U64.(total_len >^ uint_to_t 0) then
begin
(**) split_at_last_num_blocks_lem c i (U64.v total_len);
c.blocks_state_len i
end
else
begin
[@inline_let] let r' = FStar.Int.Cast.uint64_to_uint32 r in
(**) FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32);
(**) calc (==) {
(**) U32.v r';
(**) (==) { }
(**) U64.v r % pow2 32;
(**) (==) { FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32) }
(**) U64.v r;
(**) (==) { FStar.Math.Lemmas.euclidean_division_definition (U64.v total_len) (U64.v (uint32_to_uint64 (c.blocks_state_len i))) }
(**) U64.v total_len % U64.v (uint32_to_uint64 (c.blocks_state_len i) );
(**) (==) { }
(**) U64.v total_len % U32.v (c.blocks_state_len i);
(**) };
(**) assert(
(**) let n = split_at_last_num_blocks c i (U64.v total_len) in
(**) let l = U32.v (c.blocks_state_len i) in
(**) U32.v r' = U64.v total_len - (n * l));
r'
end
#pop-options
/// The ``nblocks`` function below allows computing, given ``total_len`` stored in
/// the state, the number of blocks of data which have been processed (the remaining
/// unprocessed data being left in ``buf``).
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let nblocks #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.blocks_state_len i) in
U32.v x * l <= U32.v len /\
U32.v x = split_at_last_num_blocks c i (U32.v len) })
=
let open FStar.Int.Cast in
[@inline_let] let l = c.blocks_state_len i in
[@inline_let] let r = rest c i (uint32_to_uint64 len) in
(**) let len_v : Ghost.erased nat = U32.v len in
(**) let l_v : Ghost.erased nat = U32.v l in
(**) let r_v : Ghost.erased nat = U32.v r in
(**) let n_s : Ghost.erased nat = split_at_last_num_blocks c i len_v in
(**) assert(Ghost.reveal len_v = n_s * l_v + r_v);
(**) Math.Lemmas.nat_times_nat_is_nat n_s l_v;
(**) assert(U32.v r <= U32.v len);
[@inline_let] let blocks = len `U32.sub` r in
(**) let blocks_v : Ghost.erased nat = U32.v blocks in
(**) assert(blocks_v % l_v = 0);
[@inline_let] let n = blocks `U32.div` l in
(**) let n_v : Ghost.erased nat = U32.v n in
(**) assert(n_v * l_v = Ghost.reveal blocks_v);
(**) split_at_last_num_blocks_spec c i len_v n_v r_v;
n
#pop-options
/// The ``rest`` function to call on the unprocessed data length in the ``finish``
/// function.
#push-options "--z3cliopt smt.arith.nl=false" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Hacl.Streaming.Interface.block index -> i: index -> len: FStar.UInt32.t
-> x:
FStar.UInt32.t
{ let l = FStar.UInt32.v (Block?.block_len c i) in
let n =
FStar.Pervasives.Native.fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l
(FStar.UInt32.v len))
in
0 <= n * l /\ n * l <= FStar.UInt32.v len /\ FStar.UInt32.v x = FStar.UInt32.v len - n * l } | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.UInt32.t",
"Prims.op_AmpAmp",
"FStar.UInt32.op_Equals_Hat",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.op_Greater_Hat",
"Hacl.Streaming.Interface.__proj__Block__item__block_len",
"Prims.unit",
"FStar.Math.Lemmas.nat_times_nat_is_nat",
"Prims.nat",
"FStar.Pervasives.Native.fst",
"Lib.UpdateMulti.split_at_last_lazy_nb_rem",
"FStar.UInt32.v",
"FStar.UInt.uint_t",
"Prims.bool",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Subtraction",
"Hacl.Streaming.Functor.split_at_last_num_blocks_lem",
"FStar.UInt32.rem",
"Prims.op_GreaterThan"
] | [] | false | false | false | false | false | let rest_finish #index (c: block index) (i: index) (len: UInt32.t)
: (x:
UInt32.t
{ let l = U32.v (c.block_len i) in
let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
0 <= n * l /\ n * l <= U32.v len /\ U32.v x = U32.v len - (n * l) }) =
| [@@ inline_let ]let l = c.block_len i in
[@@ inline_let ]let r = len `U32.rem` l in
split_at_last_num_blocks_lem c i (U32.v len);
if U32.(r =^ uint_to_t 0) && U32.(len >^ uint_to_t 0)
then
((let l = U32.v (c.block_len i) in
let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
Math.Lemmas.nat_times_nat_is_nat n l);
c.block_len i)
else r | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.all_seen_h | val all_seen_h : c: Hacl.Streaming.Interface.block _ ->
i: _ ->
h: FStar.Monotonic.HyperStack.mem ->
s: Hacl.Streaming.Functor.state' c i
-> Prims.GTot Hacl.Streaming.Functor.bytes | let all_seen_h = all_seen | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 35,
"end_line": 1193,
"start_col": 10,
"start_line": 1193
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
()
let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s))
let init_input (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
c.init_input_s i (reveal_key c i h s)
let all_seen (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
S.append (init_input c i h s) (seen c i h s)
let frame_invariant #index c i l s h0 h1 =
let state_t = B.deref h0 s in
let State block_state _ _ _ p_key = state_t in
c.state.frame_invariant #i l block_state h0 h1;
stateful_frame_preserves_freeable #index #c.state #i l block_state h0 h1;
allow_inversion key_management;
match c.km with
| Erased -> ()
| Runtime ->
stateful_frame_preserves_freeable #index #c.key #i l p_key h0 h1;
c.key.frame_invariant #i l p_key h0 h1
let frame_seen #_ _ _ _ _ _ _ =
()
/// Stateful API
/// ============
let index_of_state #index c i t t' s =
let open LowStar.BufferOps in
let State block_state _ _ _ _ = !*s in
c.index_of_state i block_state
let seen_length #index c i t t' s =
let open LowStar.BufferOps in
let State _ _ total_len _ _ = !*s in
total_len
(* TODO: malloc and alloca have big portions of proofs in common, so it may
* be possible to factorize them, but it is not clear how *)
#restart-solver
#push-options "--z3rlimit 500"
let malloc #index c i t t' key r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none key h0 h1;
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none key h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none key h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) c.state.frame_freeable B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 key);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 key) (c.key.footprint #i h3 k'));
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') key h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 key)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none key h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) key buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let s = B.get h8 p 0 in
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true r) (footprint c i h8 p));
(**) assert (ST.equal_stack_domains h1 h8);
(**) assert (ST.equal_stack_domains h0 h1);
p
#pop-options
#push-options "--z3rlimit 100"
let copy #index c i t t' state r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
// All source state is suffixed by 0.
let State block_state0 buf0 total_len0 seen0 k0 = !*state in
let i = c.index_of_state i block_state0 in
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
B.blit buf0 0ul buf 0ul (c.blocks_state_len i);
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h0 h1;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h1 state);
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h1 h2;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h2 state);
c.state.copy (G.hide i) block_state0 block_state;
(**) let h2 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i (c.state.footprint #i h2 block_state) k0 h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant #i B.loc_none k0 h2 h3;
(**) c.state.frame_invariant #i B.loc_none block_state h2 h3;
(**) c.state.frame_freeable #i B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k0);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k0) (c.key.footprint #i h3 k'));
c.key.copy i k0 k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant #i (c.key.footprint #i h3 k') k0 h3 h4;
(**) c.state.frame_invariant #i (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable #i (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased -> k0
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
let s = State block_state buf total_len0 seen0 k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h5 h6;
(**) c.state.frame_invariant #i B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
p
#pop-options
#push-options "--z3rlimit 200"
let alloca #index c i t t' k =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.alloca (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none k h0 h1;
let block_state = c.state.alloca i in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none k h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.alloca i in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none k h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k) (c.key.footprint #i h3 k'));
c.key.copy i k k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') k h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 k)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.alloca s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none k h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) k buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true (HS.get_tip h8)) (footprint c i h8 p));
(**) assert(ST.same_refs_in_non_tip_regions h0 h8);
p
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let reset #index c i t t' state key =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
let open LowStar.BufferOps in
(**) let h1 = ST.get () in
let State block_state buf _ _ k' = !*state in
let i = c.index_of_state i block_state in
LowStar.Ignore.ignore i; // This is only used in types and proofs
[@inline_let]
let block_state: c.state.s i = block_state in
c.init (G.hide i) key buf block_state;
(**) let h2 = ST.get () in
(**) optional_frame #_ #i #c.km #c.key (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) k' h1 h2;
(**) c.key.frame_invariant (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) key h1 h2;
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % UInt32.v (Block?.block_len c i) = 0);
(**) assert (reveal_key c i h1 state == reveal_key c i h2 state);
(**) c.update_multi_zero i (c.state.v i h2 block_state) 0;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h2 k') key h2 h4;
(**) c.state.frame_invariant (c.key.footprint #i h2 k') block_state h2 h4;
(**) stateful_frame_preserves_freeable (c.key.footprint #i h2 k') block_state h2 h4;
k'
| Erased ->
G.hide (c.key.v i h1 key)
in
(**) let h2 = ST.get () in
(**) assert(preserves_freeable c i state h1 h2);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let tmp: state_s c i t t' = State block_state buf total_len (G.hide S.empty) k' in
B.upd state 0ul tmp;
(**) let h3 = ST.get () in
(**) c.state.frame_invariant B.(loc_buffer state) block_state h2 h3;
(**) c.key.frame_invariant B.(loc_buffer state) key h2 h3;
(**) optional_frame #_ #i #c.km #c.key B.(loc_buffer state) k' h2 h3;
(**) stateful_frame_preserves_freeable B.(loc_buffer state) block_state h2 h3;
(**) assert(preserves_freeable c i state h2 h3);
// This seems to cause insurmountable difficulties. Puzzled.
ST.lemma_equal_domains_trans h1 h2 h3;
// AR: 07/22: same old `Seq.equal` and `==` story
(**) assert (Seq.equal (seen c i h3 state) Seq.empty);
(**) assert (footprint c i h1 state == footprint c i h3 state);
(**) assert (B.(modifies (footprint c i h1 state) h1 h3));
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h3 state in
(**) let all_seen_ = all_seen c i h3 state in
// SH (11/22): the proof fails if we don't introduce the call to [split_at_last]
(**) let blocks, rest = split_at_last c i all_seen_ in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert (invariant_s c i h3 (B.get h3 state 0))
(**) end;
(**) assert(preserves_freeable c i state h1 h3)
#pop-options
/// Some helpers to minimize modulo-reasoning
/// =========================================
val split_at_last_num_blocks_lem (#index : Type0) (c: block index) (i: index) (b: nat):
Lemma (
let n_blocks = split_at_last_num_blocks c i b in
let blocks = n_blocks * U32.v (c.blocks_state_len i) in
0 <= blocks /\ blocks <= b)
let split_at_last_num_blocks_lem #index c i b = ()
/// The ``rest`` function below allows computing, based ``total_len`` stored in
/// the state, the length of useful data currently stored in ``buf``.
/// Unsurprisingly, there's a fair amount of modulo reasoning here because of
/// 64-bit-to-32-bit conversions, so we do them once and for all in a helper.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest #index (c: block index) (i: index)
(total_len: UInt64.t): (x:UInt32.t {
let n = split_at_last_num_blocks c i (U64.v total_len) in
let l = U32.v (c.blocks_state_len i) in
0 <= n * l /\ n * l <= U64.v total_len /\
U32.v x = U64.v total_len - (n * l)})
=
let open FStar.Int.Cast in
[@inline_let] let l = uint32_to_uint64 (c.blocks_state_len i) in
[@inline_let] let r = total_len `U64.rem` l in
(**) let total_len_v : Ghost.erased nat = U64.v total_len in
(**) let l_v : Ghost.erased nat = U64.v l in
(**) let r_v : Ghost.erased nat = U64.v r in
(**) assert(Ghost.reveal r_v = total_len_v - ((total_len_v / l_v) * l_v));
(**) Math.Lemmas.euclidean_division_definition total_len_v l_v;
(**) assert(Ghost.reveal r_v = total_len_v % l_v);
(**) assert(r_v < l_v);
if U64.(r =^ uint_to_t 0) && U64.(total_len >^ uint_to_t 0) then
begin
(**) split_at_last_num_blocks_lem c i (U64.v total_len);
c.blocks_state_len i
end
else
begin
[@inline_let] let r' = FStar.Int.Cast.uint64_to_uint32 r in
(**) FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32);
(**) calc (==) {
(**) U32.v r';
(**) (==) { }
(**) U64.v r % pow2 32;
(**) (==) { FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32) }
(**) U64.v r;
(**) (==) { FStar.Math.Lemmas.euclidean_division_definition (U64.v total_len) (U64.v (uint32_to_uint64 (c.blocks_state_len i))) }
(**) U64.v total_len % U64.v (uint32_to_uint64 (c.blocks_state_len i) );
(**) (==) { }
(**) U64.v total_len % U32.v (c.blocks_state_len i);
(**) };
(**) assert(
(**) let n = split_at_last_num_blocks c i (U64.v total_len) in
(**) let l = U32.v (c.blocks_state_len i) in
(**) U32.v r' = U64.v total_len - (n * l));
r'
end
#pop-options
/// The ``nblocks`` function below allows computing, given ``total_len`` stored in
/// the state, the number of blocks of data which have been processed (the remaining
/// unprocessed data being left in ``buf``).
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let nblocks #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.blocks_state_len i) in
U32.v x * l <= U32.v len /\
U32.v x = split_at_last_num_blocks c i (U32.v len) })
=
let open FStar.Int.Cast in
[@inline_let] let l = c.blocks_state_len i in
[@inline_let] let r = rest c i (uint32_to_uint64 len) in
(**) let len_v : Ghost.erased nat = U32.v len in
(**) let l_v : Ghost.erased nat = U32.v l in
(**) let r_v : Ghost.erased nat = U32.v r in
(**) let n_s : Ghost.erased nat = split_at_last_num_blocks c i len_v in
(**) assert(Ghost.reveal len_v = n_s * l_v + r_v);
(**) Math.Lemmas.nat_times_nat_is_nat n_s l_v;
(**) assert(U32.v r <= U32.v len);
[@inline_let] let blocks = len `U32.sub` r in
(**) let blocks_v : Ghost.erased nat = U32.v blocks in
(**) assert(blocks_v % l_v = 0);
[@inline_let] let n = blocks `U32.div` l in
(**) let n_v : Ghost.erased nat = U32.v n in
(**) assert(n_v * l_v = Ghost.reveal blocks_v);
(**) split_at_last_num_blocks_spec c i len_v n_v r_v;
n
#pop-options
/// The ``rest`` function to call on the unprocessed data length in the ``finish``
/// function.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest_finish #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.block_len i) in
let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
0 <= n * l /\ n * l <= U32.v len /\
U32.v x = U32.v len - (n * l)})
=
[@inline_let] let l = c.block_len i in
[@inline_let] let r = len `U32.rem` l in
(**) split_at_last_num_blocks_lem c i (U32.v len);
if U32.(r =^ uint_to_t 0) && U32.(len >^ uint_to_t 0) then
begin
(**) begin
(**) let l = U32.v (c.block_len i) in
(**) let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
(**) Math.Lemmas.nat_times_nat_is_nat n l
(**) end;
c.block_len i
end
else
r
#pop-options
/// We always add 32-bit lengths to 64-bit lengths. Having a helper for that allows
/// doing modulo reasoning once and for all.
inline_for_extraction noextract
let add_len #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t):
Pure UInt64.t
(requires U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures fun x -> U64.v x = U64.v total_len + U32.v len /\ U64.v x <= U64.v (c.max_input_len i))
=
total_len `U64.add` Int.Cast.uint32_to_uint64 len
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let add_len_small #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t): Lemma
(requires
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i total_len) /\
U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures (rest c i (add_len c i total_len len) = rest c i total_len `U32.add` len))
=
let total_len_v = U64.v total_len in
let l = U32.v (c.blocks_state_len i) in
let b = total_len_v + U32.v len in
let n = split_at_last_num_blocks c i total_len_v in
let r = U32.v (rest c i total_len) in
assert(total_len_v = n * l + r);
let r' = U32.v (rest c i total_len) + U32.v len in
assert(r' <= l);
assert(r' = 0 ==> b = 0);
Math.Lemmas.euclidean_division_definition b l;
assert(b = n * l + r');
split_at_last_num_blocks_spec c i b n r'
#pop-options
/// Beginning of the three sub-cases (see Hacl.Streaming.Spec)
/// ==========================================================
noextract
let total_len_h #index (c: block index) (i: index) h (p: state' c i) =
State?.total_len (B.deref h p)
noextract
let split_at_last_all_seen #index (c: block index) (i: index) h (p: state' c i) =
let all_seen = all_seen c i h p in
let blocks, rest = split_at_last c i all_seen in
blocks, rest
inline_for_extraction noextract
val update_small:
#index:Type0 ->
(c: block index) ->
i:index -> (
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
Stack unit
(requires fun h0 ->
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i (total_len_h c i h0 s)))
(ensures fun h0 s' h1 ->
update_post c i s data len h0 h1))
/// SH: The proof obligations for update_small have problem succeeding in command
/// line mode: hence the restart-solver instruction, the crazy rlimit and the
/// intermediate lemma. Interestingly (and frustratingly), the proof succeeds
/// quite quickly locally on command-line with this rlimit, but fails with a lower
/// one. Besides, the lemma is needed only for the CI regression.
let split_at_last_rest_eq (#index : Type0) (c: block index)
(i: index)
(t:Type0 { t == c.state.s i })
(t':Type0 { t' == optional_key i c.km c.key })
(s: state c i t t') (h0: HS.mem) :
Lemma
(requires (
invariant c i h0 s))
(ensures (
let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
Seq.length r == U32.v sz)) =
let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
()
/// Particularly difficult proof. Z3 profiling indicates that a pattern goes off
/// the rails. So I disabled all of the known "bad" patterns, then did the proof
/// by hand. Fortunately, there were only two stateful operations. The idea was
/// to do all ofthe modifies-reasoning in the two lemmas above, then disable the
/// bad pattern for the main function.
///
/// This style is a little tedious, because it requires a little bit of digging
/// to understand what needs to hold in order to be able to prove that e.g. the
/// sequence remains unmodified from h0 to h2, but this seems more robust?
val modifies_footprint:
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
s:state' c i ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
let State _ buf_ _ _ _ = B.deref h0 s in (
update_pre c i s data len h0 /\
B.(modifies (loc_buffer buf_) h0 h1))))
(ensures (
let State bs0 buf0 _ _ k0 = B.deref h0 s in
let State bs1 buf1 _ _ k1 = B.deref h1 s in (
footprint c i h0 s == footprint c i h1 s /\
preserves_freeable c i s h0 h1 /\
bs0 == bs1 /\ buf0 == buf1 /\ k0 == k1 /\
c.state.invariant h1 bs1 /\
c.state.v i h1 bs1 == c.state.v i h0 bs0 /\
c.state.footprint h1 bs1 == c.state.footprint h0 bs0 /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_buffer buf1)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_buffer data)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_addr_of_buffer buf1)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (c.state.footprint h1 bs1)) /\
B.(loc_disjoint (loc_buffer s) (loc_buffer buf1)) /\
B.(loc_disjoint (loc_buffer s) (loc_buffer data)) /\
B.(loc_disjoint (loc_buffer s) (c.state.footprint h1 bs1)) /\
(if c.km = Runtime then
c.key.invariant #i h1 k1 /\
c.key.v i h1 k1 == c.key.v i h0 k0 /\
c.key.footprint #i h1 k1 == c.key.footprint #i h0 k0 /\
B.(loc_disjoint (loc_addr_of_buffer s) (c.key.footprint #i h1 k1)) /\
B.(loc_disjoint (loc_buffer s) (c.key.footprint #i h1 k1))
else
B.(loc_disjoint (loc_addr_of_buffer s) loc_none) /\
True)))))
let modifies_footprint c i p data len h0 h1 =
let _ = c.state.frame_freeable #i in
let _ = c.key.frame_freeable #i in
let s0 = B.deref h0 p in
let s1 = B.deref h0 p in
let State bs0 buf0 _ _ k0 = s0 in
let State bs1 buf0 _ _ k1 = s1 in
c.state.frame_invariant (B.loc_buffer buf0) bs0 h0 h1;
if c.km = Runtime then
c.key.frame_invariant #i (B.loc_buffer buf0) k0 h0 h1
val modifies_footprint':
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
p:state' c i ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
let State bs0 buf0 _ _ k0 = B.deref h0 p in
let State bs1 buf1 _ _ k1 = B.deref h1 p in (
B.live h0 p /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.state.footprint #i h0 bs0)) /\
B.(loc_disjoint (loc_addr_of_buffer p) (loc_addr_of_buffer buf0)) /\
c.state.invariant h0 bs0 /\
(if c.km = Runtime then
B.(loc_disjoint (loc_addr_of_buffer p) (c.key.footprint #i h0 k0)) /\
c.key.invariant #i h0 k0
else
B.(loc_disjoint (loc_addr_of_buffer p) loc_none)) /\
B.(modifies (loc_buffer p) h0 h1)) /\
bs0 == bs1 /\ buf0 == buf1 /\ k0 == k1))
(ensures (
let State bs0 buf0 _ _ k0 = B.deref h0 p in
let State bs1 buf1 _ _ k1 = B.deref h1 p in (
B.live h1 p /\
footprint c i h0 p == footprint c i h1 p /\
preserves_freeable c i p h0 h1 /\
B.(loc_disjoint (loc_addr_of_buffer p) (footprint_s c i h1 (B.deref h1 p))) /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.state.footprint #i h1 bs1)) /\
B.(loc_disjoint (loc_buffer p) (c.state.footprint #i h1 bs1)) /\
c.state.invariant h1 bs1 /\
c.state.v i h1 bs1 == c.state.v i h0 bs0 /\
c.state.footprint h1 bs1 == c.state.footprint h0 bs0 /\
(if c.km = Runtime then
c.key.invariant #i h1 k1 /\
c.key.v i h1 k1 == c.key.v i h0 k0 /\
c.key.footprint #i h1 k1 == c.key.footprint #i h0 k0 /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.key.footprint #i h1 k1)) /\
B.(loc_disjoint (loc_buffer p) (c.key.footprint #i h1 k1))
else
B.(loc_disjoint (loc_addr_of_buffer p) loc_none))))))
let modifies_footprint' c i p data len h0 h1 =
let _ = c.state.frame_freeable #i in
let _ = c.key.frame_freeable #i in
let _ = c.state.frame_invariant #i in
let _ = c.key.frame_invariant #i in
let _ = allow_inversion key_management in
let s0 = B.deref h0 p in
let s1 = B.deref h0 p in
let State bs0 buf0 _ _ k0 = s0 in
let State bs1 buf1 _ _ k1 = s1 in
c.state.frame_invariant (B.loc_addr_of_buffer p) bs0 h0 h1;
if c.km = Runtime then
c.key.frame_invariant #i (B.loc_addr_of_buffer p) k0 h0 h1
/// Small helper which we use to factor out functional correctness proof obligations.
/// It states that a state was correctly updated to process some data between two
/// memory snapshots (the key is the same, the seen data was updated, etc.).
///
/// Note that we don't specify anything about the buffer and the block_state: they
/// might have been updated differently depending on the case.
unfold val state_is_updated :
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Type0)
#push-options "--z3cliopt smt.arith.nl=false"
let state_is_updated #index c i t t' p data len h0 h1 =
// Functional conditions about the memory updates
let s0 = B.get h0 p 0 in
let s1 = B.get h1 p 0 in
let State block_state0 buf0 total_len0 seen0 key0 = s0 in
let State block_state1 buf1 total_len1 seen1 key1 = s1 in
block_state1 == block_state0 /\
buf1 == buf0 /\
U64.v total_len1 == U64.v total_len0 + U32.v len /\
key1 == key0 /\
seen1 `S.equal` (seen0 `S.append` (B.as_seq h0 data)) /\
optional_reveal #index #i #c.km #c.key h1 key1 == optional_reveal #index #i #c.km #c.key h0 key0
#pop-options
/// The functional part of the invariant
unfold val invariant_s_funct :
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Pure Type0 (requires
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
state_is_updated c i t t' s data len h0 h1)
(ensures (fun _ -> True)))
let invariant_s_funct #index c i t t' p data len h0 h1 =
let blocks, rest = split_at_last_all_seen c i h1 p in
let s = B.get h1 p 0 in
let State block_state buf_ total_len seen key = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 key in
let init_s = c.init_s i key_v in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (c.block_len i));
c.state.v i h1 block_state == c.update_multi_s i init_s 0 blocks /\
S.equal (S.slice (B.as_seq h1 buf_) 0 (Seq.length rest)) rest
/// We isolate the functional correctness proof obligations for [update_small]
val update_small_functional_correctness :
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
// The precondition of [small_update]
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i (total_len_h c i h0 s)) /\
// Generic conditions
state_is_updated c i t t' s data len h0 h1 /\
// Functional conditions about the memory updates
begin
let s0 = B.get h0 s 0 in
let s1 = B.get h1 s 0 in
let State block_state0 buf0 total_len0 seen0 key0 = s0 in
let State block_state1 buf1 total_len1 seen1 key1 = s1 in
let sz = rest c i total_len0 in
let buf = buf0 in
let data_v0 = B.as_seq h0 data in
let buf_beg_v0 = S.slice (B.as_seq h0 buf) 0 (U32.v sz) in
let buf_part_v1 = S.slice (B.as_seq h1 buf) 0 (U32.v sz + U32.v len) in
buf_part_v1 == S.append buf_beg_v0 data_v0 /\
c.state.v i h1 block_state1 == c.state.v i h0 block_state0
end
))
(ensures (invariant_s_funct c i t t' s data len h0 h1)))
#push-options "--z3cliopt smt.arith.nl=false"
let update_small_functional_correctness #index c i t t' p data len h0 h1 =
let s0 = B.get h0 p 0 in
let s1 = B.get h1 p 0 in
let State block_state buf total_len0 seen0 key = s0 in
let seen0 = G.reveal seen0 in
let i = Ghost.reveal i in
let key_v0 = optional_reveal #_ #i #c.km #c.key h0 key in
let init_v0 = c.init_input_s i key_v0 in
let all_seen0 = S.append init_v0 seen0 in
let blocks0, rest0 = split_at_last c i all_seen0 in
let State block_state buf total_len1 seen1 key = s1 in
let seen1 = G.reveal seen1 in
let i = Ghost.reveal i in
let key_v1 = optional_reveal #_ #i #c.km #c.key h1 key in
assert(key_v1 == key_v0);
let init_v1 = c.init_input_s i key_v1 in
assert(init_v1 == init_v0);
let all_seen1 = S.append init_v1 seen1 in
let blocks1, rest1 = split_at_last c i all_seen1 in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
let data_v0 = B.as_seq h0 data in
split_at_last_small c i all_seen0 data_v0;
// The first problematic condition
assert(blocks1 `S.equal` blocks0);
assert(c.state.v i h1 block_state == c.update_multi_s i (c.init_s i key_v1) 0 blocks1);
// The second problematic condition
assert(S.equal (S.slice (B.as_seq h1 buf) 0 (Seq.length rest1)) rest1)
#pop-options
// The absence of loc_disjoint_includes makes reasoning a little more difficult.
// Notably, we lose all of the important disjointness properties between the
// outer point p and the buffer within B.deref h p. These need to be
// re-established by hand. Another thing that we lose without this pattern is
// knowing that loc_buffer b is included within loc_addr_of_buffer b. This is
// important for reasoning about the preservation of e.g. the contents of data.
#restart-solver
#push-options "--z3rlimit 300 --z3cliopt smt.arith.nl=false --z3refresh \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2,-FStar.Seq.Properties.slice_slice,-LowStar.Monotonic.Buffer.loc_disjoint_includes_r'"
let update_small #index c i t t' p data len =
let open LowStar.BufferOps in
let s = !*p in
let State block_state buf total_len seen_ k' = s in
[@inline_let]
let block_state: c.state.s i = block_state in
// Functional reasoning.
let sz = rest c i total_len in
add_len_small c i total_len len;
let h0 = ST.get () in
let buf1 = B.sub buf 0ul sz in
let buf2 = B.sub buf sz len in
// Memory reasoning.
c.state.invariant_loc_in_footprint h0 block_state;
if c.km = Runtime then
c.key.invariant_loc_in_footprint #i h0 k';
// key_invariant_loc_in_footprint #index c i h0 p;
B.(loc_disjoint_includes_r (loc_buffer data) (footprint c i h0 p) (loc_buffer buf2));
// FIRST STATEFUL OPERATION
B.blit data 0ul buf2 0ul len;
// Memory reasoning.
let h1 = ST.get () in
modifies_footprint c i p data len h0 h1;
c.state.invariant_loc_in_footprint h1 block_state;
if c.km = Runtime then
c.key.invariant_loc_in_footprint #i h1 k';
// Functional reasoning on data
begin
let buf1_v0 = B.as_seq h0 buf1 in
let buf1_v1 = B.as_seq h1 buf1 in
let buf2_v1 = B.as_seq h1 buf2 in
let buf_beg_v0 = S.slice (B.as_seq h0 buf) 0 (U32.v sz) in
let buf_part_v1 = S.slice (B.as_seq h1 buf) 0 (U32.v sz + U32.v len) in
let data_v0 = B.as_seq h0 data in
assert(buf1_v1 == buf1_v0);
assert(buf1_v0 == buf_beg_v0);
assert(buf2_v1 `S.equal` data_v0);
assert(buf_part_v1 `S.equal` S.append buf_beg_v0 data_v0)
end;
// SECOND STATEFUL OPERATION
let total_len = add_len c i total_len len in
[@inline_let]
let tmp: state_s c i t t' =
State #index #c #i block_state buf total_len
(G.hide (G.reveal seen_ `S.append` (B.as_seq h0 data))) k'
in
p *= tmp;
// Memory reasoning.
let h2 = ST.get () in
modifies_footprint' c i p data len h1 h2;
c.state.invariant_loc_in_footprint h2 block_state;
if c.km = Runtime then
c.key.invariant_loc_in_footprint #i h2 k';
ST.lemma_equal_domains_trans h0 h1 h2;
// Prove the invariant
update_small_functional_correctness c i t t' p data len h0 h2
#pop-options
// Stupid name collisions | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: Hacl.Streaming.Interface.block _ ->
i: _ ->
h: FStar.Monotonic.HyperStack.mem ->
s: Hacl.Streaming.Functor.state' c i
-> Prims.GTot Hacl.Streaming.Functor.bytes | Prims.GTot | [
"sometrivial"
] | [] | [
"Hacl.Streaming.Functor.all_seen",
"Hacl.Streaming.Interface.block",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Functor.state'",
"Hacl.Streaming.Functor.bytes"
] | [] | false | false | false | false | false | let all_seen_h =
| all_seen | false |
|
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.add_len | val add_len (#index: _) (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t)
: Pure UInt64.t
(requires U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures
fun x -> U64.v x = U64.v total_len + U32.v len /\ U64.v x <= U64.v (c.max_input_len i)) | val add_len (#index: _) (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t)
: Pure UInt64.t
(requires U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures
fun x -> U64.v x = U64.v total_len + U32.v len /\ U64.v x <= U64.v (c.max_input_len i)) | let add_len #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t):
Pure UInt64.t
(requires U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures fun x -> U64.v x = U64.v total_len + U32.v len /\ U64.v x <= U64.v (c.max_input_len i))
=
total_len `U64.add` Int.Cast.uint32_to_uint64 len | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 51,
"end_line": 758,
"start_col": 0,
"start_line": 753
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
()
let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s))
let init_input (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
c.init_input_s i (reveal_key c i h s)
let all_seen (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
S.append (init_input c i h s) (seen c i h s)
let frame_invariant #index c i l s h0 h1 =
let state_t = B.deref h0 s in
let State block_state _ _ _ p_key = state_t in
c.state.frame_invariant #i l block_state h0 h1;
stateful_frame_preserves_freeable #index #c.state #i l block_state h0 h1;
allow_inversion key_management;
match c.km with
| Erased -> ()
| Runtime ->
stateful_frame_preserves_freeable #index #c.key #i l p_key h0 h1;
c.key.frame_invariant #i l p_key h0 h1
let frame_seen #_ _ _ _ _ _ _ =
()
/// Stateful API
/// ============
let index_of_state #index c i t t' s =
let open LowStar.BufferOps in
let State block_state _ _ _ _ = !*s in
c.index_of_state i block_state
let seen_length #index c i t t' s =
let open LowStar.BufferOps in
let State _ _ total_len _ _ = !*s in
total_len
(* TODO: malloc and alloca have big portions of proofs in common, so it may
* be possible to factorize them, but it is not clear how *)
#restart-solver
#push-options "--z3rlimit 500"
let malloc #index c i t t' key r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none key h0 h1;
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none key h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none key h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) c.state.frame_freeable B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 key);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 key) (c.key.footprint #i h3 k'));
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') key h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 key)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none key h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) key buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let s = B.get h8 p 0 in
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true r) (footprint c i h8 p));
(**) assert (ST.equal_stack_domains h1 h8);
(**) assert (ST.equal_stack_domains h0 h1);
p
#pop-options
#push-options "--z3rlimit 100"
let copy #index c i t t' state r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
// All source state is suffixed by 0.
let State block_state0 buf0 total_len0 seen0 k0 = !*state in
let i = c.index_of_state i block_state0 in
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
B.blit buf0 0ul buf 0ul (c.blocks_state_len i);
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h0 h1;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h1 state);
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h1 h2;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h2 state);
c.state.copy (G.hide i) block_state0 block_state;
(**) let h2 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i (c.state.footprint #i h2 block_state) k0 h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant #i B.loc_none k0 h2 h3;
(**) c.state.frame_invariant #i B.loc_none block_state h2 h3;
(**) c.state.frame_freeable #i B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k0);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k0) (c.key.footprint #i h3 k'));
c.key.copy i k0 k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant #i (c.key.footprint #i h3 k') k0 h3 h4;
(**) c.state.frame_invariant #i (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable #i (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased -> k0
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
let s = State block_state buf total_len0 seen0 k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h5 h6;
(**) c.state.frame_invariant #i B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
p
#pop-options
#push-options "--z3rlimit 200"
let alloca #index c i t t' k =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.alloca (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none k h0 h1;
let block_state = c.state.alloca i in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none k h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.alloca i in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none k h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k) (c.key.footprint #i h3 k'));
c.key.copy i k k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') k h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 k)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.alloca s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none k h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) k buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true (HS.get_tip h8)) (footprint c i h8 p));
(**) assert(ST.same_refs_in_non_tip_regions h0 h8);
p
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let reset #index c i t t' state key =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
let open LowStar.BufferOps in
(**) let h1 = ST.get () in
let State block_state buf _ _ k' = !*state in
let i = c.index_of_state i block_state in
LowStar.Ignore.ignore i; // This is only used in types and proofs
[@inline_let]
let block_state: c.state.s i = block_state in
c.init (G.hide i) key buf block_state;
(**) let h2 = ST.get () in
(**) optional_frame #_ #i #c.km #c.key (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) k' h1 h2;
(**) c.key.frame_invariant (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) key h1 h2;
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % UInt32.v (Block?.block_len c i) = 0);
(**) assert (reveal_key c i h1 state == reveal_key c i h2 state);
(**) c.update_multi_zero i (c.state.v i h2 block_state) 0;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h2 k') key h2 h4;
(**) c.state.frame_invariant (c.key.footprint #i h2 k') block_state h2 h4;
(**) stateful_frame_preserves_freeable (c.key.footprint #i h2 k') block_state h2 h4;
k'
| Erased ->
G.hide (c.key.v i h1 key)
in
(**) let h2 = ST.get () in
(**) assert(preserves_freeable c i state h1 h2);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let tmp: state_s c i t t' = State block_state buf total_len (G.hide S.empty) k' in
B.upd state 0ul tmp;
(**) let h3 = ST.get () in
(**) c.state.frame_invariant B.(loc_buffer state) block_state h2 h3;
(**) c.key.frame_invariant B.(loc_buffer state) key h2 h3;
(**) optional_frame #_ #i #c.km #c.key B.(loc_buffer state) k' h2 h3;
(**) stateful_frame_preserves_freeable B.(loc_buffer state) block_state h2 h3;
(**) assert(preserves_freeable c i state h2 h3);
// This seems to cause insurmountable difficulties. Puzzled.
ST.lemma_equal_domains_trans h1 h2 h3;
// AR: 07/22: same old `Seq.equal` and `==` story
(**) assert (Seq.equal (seen c i h3 state) Seq.empty);
(**) assert (footprint c i h1 state == footprint c i h3 state);
(**) assert (B.(modifies (footprint c i h1 state) h1 h3));
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h3 state in
(**) let all_seen_ = all_seen c i h3 state in
// SH (11/22): the proof fails if we don't introduce the call to [split_at_last]
(**) let blocks, rest = split_at_last c i all_seen_ in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert (invariant_s c i h3 (B.get h3 state 0))
(**) end;
(**) assert(preserves_freeable c i state h1 h3)
#pop-options
/// Some helpers to minimize modulo-reasoning
/// =========================================
val split_at_last_num_blocks_lem (#index : Type0) (c: block index) (i: index) (b: nat):
Lemma (
let n_blocks = split_at_last_num_blocks c i b in
let blocks = n_blocks * U32.v (c.blocks_state_len i) in
0 <= blocks /\ blocks <= b)
let split_at_last_num_blocks_lem #index c i b = ()
/// The ``rest`` function below allows computing, based ``total_len`` stored in
/// the state, the length of useful data currently stored in ``buf``.
/// Unsurprisingly, there's a fair amount of modulo reasoning here because of
/// 64-bit-to-32-bit conversions, so we do them once and for all in a helper.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest #index (c: block index) (i: index)
(total_len: UInt64.t): (x:UInt32.t {
let n = split_at_last_num_blocks c i (U64.v total_len) in
let l = U32.v (c.blocks_state_len i) in
0 <= n * l /\ n * l <= U64.v total_len /\
U32.v x = U64.v total_len - (n * l)})
=
let open FStar.Int.Cast in
[@inline_let] let l = uint32_to_uint64 (c.blocks_state_len i) in
[@inline_let] let r = total_len `U64.rem` l in
(**) let total_len_v : Ghost.erased nat = U64.v total_len in
(**) let l_v : Ghost.erased nat = U64.v l in
(**) let r_v : Ghost.erased nat = U64.v r in
(**) assert(Ghost.reveal r_v = total_len_v - ((total_len_v / l_v) * l_v));
(**) Math.Lemmas.euclidean_division_definition total_len_v l_v;
(**) assert(Ghost.reveal r_v = total_len_v % l_v);
(**) assert(r_v < l_v);
if U64.(r =^ uint_to_t 0) && U64.(total_len >^ uint_to_t 0) then
begin
(**) split_at_last_num_blocks_lem c i (U64.v total_len);
c.blocks_state_len i
end
else
begin
[@inline_let] let r' = FStar.Int.Cast.uint64_to_uint32 r in
(**) FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32);
(**) calc (==) {
(**) U32.v r';
(**) (==) { }
(**) U64.v r % pow2 32;
(**) (==) { FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32) }
(**) U64.v r;
(**) (==) { FStar.Math.Lemmas.euclidean_division_definition (U64.v total_len) (U64.v (uint32_to_uint64 (c.blocks_state_len i))) }
(**) U64.v total_len % U64.v (uint32_to_uint64 (c.blocks_state_len i) );
(**) (==) { }
(**) U64.v total_len % U32.v (c.blocks_state_len i);
(**) };
(**) assert(
(**) let n = split_at_last_num_blocks c i (U64.v total_len) in
(**) let l = U32.v (c.blocks_state_len i) in
(**) U32.v r' = U64.v total_len - (n * l));
r'
end
#pop-options
/// The ``nblocks`` function below allows computing, given ``total_len`` stored in
/// the state, the number of blocks of data which have been processed (the remaining
/// unprocessed data being left in ``buf``).
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let nblocks #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.blocks_state_len i) in
U32.v x * l <= U32.v len /\
U32.v x = split_at_last_num_blocks c i (U32.v len) })
=
let open FStar.Int.Cast in
[@inline_let] let l = c.blocks_state_len i in
[@inline_let] let r = rest c i (uint32_to_uint64 len) in
(**) let len_v : Ghost.erased nat = U32.v len in
(**) let l_v : Ghost.erased nat = U32.v l in
(**) let r_v : Ghost.erased nat = U32.v r in
(**) let n_s : Ghost.erased nat = split_at_last_num_blocks c i len_v in
(**) assert(Ghost.reveal len_v = n_s * l_v + r_v);
(**) Math.Lemmas.nat_times_nat_is_nat n_s l_v;
(**) assert(U32.v r <= U32.v len);
[@inline_let] let blocks = len `U32.sub` r in
(**) let blocks_v : Ghost.erased nat = U32.v blocks in
(**) assert(blocks_v % l_v = 0);
[@inline_let] let n = blocks `U32.div` l in
(**) let n_v : Ghost.erased nat = U32.v n in
(**) assert(n_v * l_v = Ghost.reveal blocks_v);
(**) split_at_last_num_blocks_spec c i len_v n_v r_v;
n
#pop-options
/// The ``rest`` function to call on the unprocessed data length in the ``finish``
/// function.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest_finish #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.block_len i) in
let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
0 <= n * l /\ n * l <= U32.v len /\
U32.v x = U32.v len - (n * l)})
=
[@inline_let] let l = c.block_len i in
[@inline_let] let r = len `U32.rem` l in
(**) split_at_last_num_blocks_lem c i (U32.v len);
if U32.(r =^ uint_to_t 0) && U32.(len >^ uint_to_t 0) then
begin
(**) begin
(**) let l = U32.v (c.block_len i) in
(**) let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
(**) Math.Lemmas.nat_times_nat_is_nat n l
(**) end;
c.block_len i
end
else
r
#pop-options
/// We always add 32-bit lengths to 64-bit lengths. Having a helper for that allows
/// doing modulo reasoning once and for all. | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: Hacl.Streaming.Interface.block index ->
i: index ->
total_len: FStar.UInt64.t ->
len: FStar.UInt32.t
-> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.UInt64.t",
"FStar.UInt32.t",
"FStar.UInt64.add",
"FStar.Int.Cast.uint32_to_uint64",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"FStar.UInt64.v",
"FStar.UInt32.v",
"Hacl.Streaming.Interface.__proj__Block__item__max_input_len",
"Prims.l_and",
"Prims.op_Equality",
"Prims.int"
] | [] | false | false | false | false | false | let add_len #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t)
: Pure UInt64.t
(requires U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures
fun x -> U64.v x = U64.v total_len + U32.v len /\ U64.v x <= U64.v (c.max_input_len i)) =
| total_len `U64.add` (Int.Cast.uint32_to_uint64 len) | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.nblocks | val nblocks (#index: _) (c: block index) (i: index) (len: UInt32.t)
: (x:
UInt32.t
{ let l = U32.v (c.blocks_state_len i) in
U32.v x * l <= U32.v len /\ U32.v x = split_at_last_num_blocks c i (U32.v len) }) | val nblocks (#index: _) (c: block index) (i: index) (len: UInt32.t)
: (x:
UInt32.t
{ let l = U32.v (c.blocks_state_len i) in
U32.v x * l <= U32.v len /\ U32.v x = split_at_last_num_blocks c i (U32.v len) }) | let nblocks #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.blocks_state_len i) in
U32.v x * l <= U32.v len /\
U32.v x = split_at_last_num_blocks c i (U32.v len) })
=
let open FStar.Int.Cast in
[@inline_let] let l = c.blocks_state_len i in
[@inline_let] let r = rest c i (uint32_to_uint64 len) in
(**) let len_v : Ghost.erased nat = U32.v len in
(**) let l_v : Ghost.erased nat = U32.v l in
(**) let r_v : Ghost.erased nat = U32.v r in
(**) let n_s : Ghost.erased nat = split_at_last_num_blocks c i len_v in
(**) assert(Ghost.reveal len_v = n_s * l_v + r_v);
(**) Math.Lemmas.nat_times_nat_is_nat n_s l_v;
(**) assert(U32.v r <= U32.v len);
[@inline_let] let blocks = len `U32.sub` r in
(**) let blocks_v : Ghost.erased nat = U32.v blocks in
(**) assert(blocks_v % l_v = 0);
[@inline_let] let n = blocks `U32.div` l in
(**) let n_v : Ghost.erased nat = U32.v n in
(**) assert(n_v * l_v = Ghost.reveal blocks_v);
(**) split_at_last_num_blocks_spec c i len_v n_v r_v;
n | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 720,
"start_col": 0,
"start_line": 697
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
()
let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s))
let init_input (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
c.init_input_s i (reveal_key c i h s)
let all_seen (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
S.append (init_input c i h s) (seen c i h s)
let frame_invariant #index c i l s h0 h1 =
let state_t = B.deref h0 s in
let State block_state _ _ _ p_key = state_t in
c.state.frame_invariant #i l block_state h0 h1;
stateful_frame_preserves_freeable #index #c.state #i l block_state h0 h1;
allow_inversion key_management;
match c.km with
| Erased -> ()
| Runtime ->
stateful_frame_preserves_freeable #index #c.key #i l p_key h0 h1;
c.key.frame_invariant #i l p_key h0 h1
let frame_seen #_ _ _ _ _ _ _ =
()
/// Stateful API
/// ============
let index_of_state #index c i t t' s =
let open LowStar.BufferOps in
let State block_state _ _ _ _ = !*s in
c.index_of_state i block_state
let seen_length #index c i t t' s =
let open LowStar.BufferOps in
let State _ _ total_len _ _ = !*s in
total_len
(* TODO: malloc and alloca have big portions of proofs in common, so it may
* be possible to factorize them, but it is not clear how *)
#restart-solver
#push-options "--z3rlimit 500"
let malloc #index c i t t' key r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none key h0 h1;
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none key h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none key h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) c.state.frame_freeable B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 key);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 key) (c.key.footprint #i h3 k'));
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') key h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 key)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none key h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) key buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let s = B.get h8 p 0 in
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true r) (footprint c i h8 p));
(**) assert (ST.equal_stack_domains h1 h8);
(**) assert (ST.equal_stack_domains h0 h1);
p
#pop-options
#push-options "--z3rlimit 100"
let copy #index c i t t' state r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
// All source state is suffixed by 0.
let State block_state0 buf0 total_len0 seen0 k0 = !*state in
let i = c.index_of_state i block_state0 in
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
B.blit buf0 0ul buf 0ul (c.blocks_state_len i);
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h0 h1;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h1 state);
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h1 h2;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h2 state);
c.state.copy (G.hide i) block_state0 block_state;
(**) let h2 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i (c.state.footprint #i h2 block_state) k0 h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant #i B.loc_none k0 h2 h3;
(**) c.state.frame_invariant #i B.loc_none block_state h2 h3;
(**) c.state.frame_freeable #i B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k0);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k0) (c.key.footprint #i h3 k'));
c.key.copy i k0 k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant #i (c.key.footprint #i h3 k') k0 h3 h4;
(**) c.state.frame_invariant #i (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable #i (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased -> k0
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
let s = State block_state buf total_len0 seen0 k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h5 h6;
(**) c.state.frame_invariant #i B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
p
#pop-options
#push-options "--z3rlimit 200"
let alloca #index c i t t' k =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.alloca (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none k h0 h1;
let block_state = c.state.alloca i in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none k h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.alloca i in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none k h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k) (c.key.footprint #i h3 k'));
c.key.copy i k k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') k h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 k)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.alloca s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none k h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) k buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true (HS.get_tip h8)) (footprint c i h8 p));
(**) assert(ST.same_refs_in_non_tip_regions h0 h8);
p
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let reset #index c i t t' state key =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
let open LowStar.BufferOps in
(**) let h1 = ST.get () in
let State block_state buf _ _ k' = !*state in
let i = c.index_of_state i block_state in
LowStar.Ignore.ignore i; // This is only used in types and proofs
[@inline_let]
let block_state: c.state.s i = block_state in
c.init (G.hide i) key buf block_state;
(**) let h2 = ST.get () in
(**) optional_frame #_ #i #c.km #c.key (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) k' h1 h2;
(**) c.key.frame_invariant (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) key h1 h2;
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % UInt32.v (Block?.block_len c i) = 0);
(**) assert (reveal_key c i h1 state == reveal_key c i h2 state);
(**) c.update_multi_zero i (c.state.v i h2 block_state) 0;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h2 k') key h2 h4;
(**) c.state.frame_invariant (c.key.footprint #i h2 k') block_state h2 h4;
(**) stateful_frame_preserves_freeable (c.key.footprint #i h2 k') block_state h2 h4;
k'
| Erased ->
G.hide (c.key.v i h1 key)
in
(**) let h2 = ST.get () in
(**) assert(preserves_freeable c i state h1 h2);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let tmp: state_s c i t t' = State block_state buf total_len (G.hide S.empty) k' in
B.upd state 0ul tmp;
(**) let h3 = ST.get () in
(**) c.state.frame_invariant B.(loc_buffer state) block_state h2 h3;
(**) c.key.frame_invariant B.(loc_buffer state) key h2 h3;
(**) optional_frame #_ #i #c.km #c.key B.(loc_buffer state) k' h2 h3;
(**) stateful_frame_preserves_freeable B.(loc_buffer state) block_state h2 h3;
(**) assert(preserves_freeable c i state h2 h3);
// This seems to cause insurmountable difficulties. Puzzled.
ST.lemma_equal_domains_trans h1 h2 h3;
// AR: 07/22: same old `Seq.equal` and `==` story
(**) assert (Seq.equal (seen c i h3 state) Seq.empty);
(**) assert (footprint c i h1 state == footprint c i h3 state);
(**) assert (B.(modifies (footprint c i h1 state) h1 h3));
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h3 state in
(**) let all_seen_ = all_seen c i h3 state in
// SH (11/22): the proof fails if we don't introduce the call to [split_at_last]
(**) let blocks, rest = split_at_last c i all_seen_ in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert (invariant_s c i h3 (B.get h3 state 0))
(**) end;
(**) assert(preserves_freeable c i state h1 h3)
#pop-options
/// Some helpers to minimize modulo-reasoning
/// =========================================
val split_at_last_num_blocks_lem (#index : Type0) (c: block index) (i: index) (b: nat):
Lemma (
let n_blocks = split_at_last_num_blocks c i b in
let blocks = n_blocks * U32.v (c.blocks_state_len i) in
0 <= blocks /\ blocks <= b)
let split_at_last_num_blocks_lem #index c i b = ()
/// The ``rest`` function below allows computing, based ``total_len`` stored in
/// the state, the length of useful data currently stored in ``buf``.
/// Unsurprisingly, there's a fair amount of modulo reasoning here because of
/// 64-bit-to-32-bit conversions, so we do them once and for all in a helper.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest #index (c: block index) (i: index)
(total_len: UInt64.t): (x:UInt32.t {
let n = split_at_last_num_blocks c i (U64.v total_len) in
let l = U32.v (c.blocks_state_len i) in
0 <= n * l /\ n * l <= U64.v total_len /\
U32.v x = U64.v total_len - (n * l)})
=
let open FStar.Int.Cast in
[@inline_let] let l = uint32_to_uint64 (c.blocks_state_len i) in
[@inline_let] let r = total_len `U64.rem` l in
(**) let total_len_v : Ghost.erased nat = U64.v total_len in
(**) let l_v : Ghost.erased nat = U64.v l in
(**) let r_v : Ghost.erased nat = U64.v r in
(**) assert(Ghost.reveal r_v = total_len_v - ((total_len_v / l_v) * l_v));
(**) Math.Lemmas.euclidean_division_definition total_len_v l_v;
(**) assert(Ghost.reveal r_v = total_len_v % l_v);
(**) assert(r_v < l_v);
if U64.(r =^ uint_to_t 0) && U64.(total_len >^ uint_to_t 0) then
begin
(**) split_at_last_num_blocks_lem c i (U64.v total_len);
c.blocks_state_len i
end
else
begin
[@inline_let] let r' = FStar.Int.Cast.uint64_to_uint32 r in
(**) FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32);
(**) calc (==) {
(**) U32.v r';
(**) (==) { }
(**) U64.v r % pow2 32;
(**) (==) { FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32) }
(**) U64.v r;
(**) (==) { FStar.Math.Lemmas.euclidean_division_definition (U64.v total_len) (U64.v (uint32_to_uint64 (c.blocks_state_len i))) }
(**) U64.v total_len % U64.v (uint32_to_uint64 (c.blocks_state_len i) );
(**) (==) { }
(**) U64.v total_len % U32.v (c.blocks_state_len i);
(**) };
(**) assert(
(**) let n = split_at_last_num_blocks c i (U64.v total_len) in
(**) let l = U32.v (c.blocks_state_len i) in
(**) U32.v r' = U64.v total_len - (n * l));
r'
end
#pop-options
/// The ``nblocks`` function below allows computing, given ``total_len`` stored in
/// the state, the number of blocks of data which have been processed (the remaining
/// unprocessed data being left in ``buf``).
#push-options "--z3cliopt smt.arith.nl=false" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Hacl.Streaming.Interface.block index -> i: index -> len: FStar.UInt32.t
-> x:
FStar.UInt32.t
{ let l = FStar.UInt32.v (Block?.blocks_state_len c i) in
FStar.UInt32.v x * l <= FStar.UInt32.v len /\
FStar.UInt32.v x = Hacl.Streaming.Spec.split_at_last_num_blocks c i (FStar.UInt32.v len) } | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.UInt32.t",
"Prims.unit",
"Hacl.Streaming.Spec.split_at_last_num_blocks_spec",
"FStar.Ghost.reveal",
"Prims.nat",
"Prims._assert",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Mul.op_Star",
"FStar.Ghost.erased",
"FStar.Ghost.hide",
"FStar.UInt32.v",
"FStar.UInt32.div",
"Prims.op_Modulus",
"FStar.UInt32.sub",
"Prims.op_LessThanOrEqual",
"FStar.Math.Lemmas.nat_times_nat_is_nat",
"Prims.op_Addition",
"Hacl.Streaming.Spec.split_at_last_num_blocks",
"Prims.l_and",
"Prims.op_Multiply",
"FStar.UInt64.v",
"FStar.Int.Cast.uint32_to_uint64",
"Hacl.Streaming.Interface.__proj__Block__item__blocks_state_len",
"Prims.op_Subtraction",
"Hacl.Streaming.Functor.rest",
"Prims.op_GreaterThan",
"Prims.op_GreaterThanOrEqual",
"Hacl.Streaming.Interface.__proj__Block__item__block_len",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"FStar.UInt.uint_t"
] | [] | false | false | false | false | false | let nblocks #index (c: block index) (i: index) (len: UInt32.t)
: (x:
UInt32.t
{ let l = U32.v (c.blocks_state_len i) in
U32.v x * l <= U32.v len /\ U32.v x = split_at_last_num_blocks c i (U32.v len) }) =
| let open FStar.Int.Cast in
[@@ inline_let ]let l = c.blocks_state_len i in
[@@ inline_let ]let r = rest c i (uint32_to_uint64 len) in
let len_v:Ghost.erased nat = U32.v len in
let l_v:Ghost.erased nat = U32.v l in
let r_v:Ghost.erased nat = U32.v r in
let n_s:Ghost.erased nat = split_at_last_num_blocks c i len_v in
assert (Ghost.reveal len_v = n_s * l_v + r_v);
Math.Lemmas.nat_times_nat_is_nat n_s l_v;
assert (U32.v r <= U32.v len);
[@@ inline_let ]let blocks = len `U32.sub` r in
let blocks_v:Ghost.erased nat = U32.v blocks in
assert (blocks_v % l_v = 0);
[@@ inline_let ]let n = blocks `U32.div` l in
let n_v:Ghost.erased nat = U32.v n in
assert (n_v * l_v = Ghost.reveal blocks_v);
split_at_last_num_blocks_spec c i len_v n_v r_v;
n | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.rest | val rest (#index: _) (c: block index) (i: index) (total_len: UInt64.t)
: (x:
UInt32.t
{ let n = split_at_last_num_blocks c i (U64.v total_len) in
let l = U32.v (c.blocks_state_len i) in
0 <= n * l /\ n * l <= U64.v total_len /\ U32.v x = U64.v total_len - (n * l) }) | val rest (#index: _) (c: block index) (i: index) (total_len: UInt64.t)
: (x:
UInt32.t
{ let n = split_at_last_num_blocks c i (U64.v total_len) in
let l = U32.v (c.blocks_state_len i) in
0 <= n * l /\ n * l <= U64.v total_len /\ U32.v x = U64.v total_len - (n * l) }) | let rest #index (c: block index) (i: index)
(total_len: UInt64.t): (x:UInt32.t {
let n = split_at_last_num_blocks c i (U64.v total_len) in
let l = U32.v (c.blocks_state_len i) in
0 <= n * l /\ n * l <= U64.v total_len /\
U32.v x = U64.v total_len - (n * l)})
=
let open FStar.Int.Cast in
[@inline_let] let l = uint32_to_uint64 (c.blocks_state_len i) in
[@inline_let] let r = total_len `U64.rem` l in
(**) let total_len_v : Ghost.erased nat = U64.v total_len in
(**) let l_v : Ghost.erased nat = U64.v l in
(**) let r_v : Ghost.erased nat = U64.v r in
(**) assert(Ghost.reveal r_v = total_len_v - ((total_len_v / l_v) * l_v));
(**) Math.Lemmas.euclidean_division_definition total_len_v l_v;
(**) assert(Ghost.reveal r_v = total_len_v % l_v);
(**) assert(r_v < l_v);
if U64.(r =^ uint_to_t 0) && U64.(total_len >^ uint_to_t 0) then
begin
(**) split_at_last_num_blocks_lem c i (U64.v total_len);
c.blocks_state_len i
end
else
begin
[@inline_let] let r' = FStar.Int.Cast.uint64_to_uint32 r in
(**) FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32);
(**) calc (==) {
(**) U32.v r';
(**) (==) { }
(**) U64.v r % pow2 32;
(**) (==) { FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32) }
(**) U64.v r;
(**) (==) { FStar.Math.Lemmas.euclidean_division_definition (U64.v total_len) (U64.v (uint32_to_uint64 (c.blocks_state_len i))) }
(**) U64.v total_len % U64.v (uint32_to_uint64 (c.blocks_state_len i) );
(**) (==) { }
(**) U64.v total_len % U32.v (c.blocks_state_len i);
(**) };
(**) assert(
(**) let n = split_at_last_num_blocks c i (U64.v total_len) in
(**) let l = U32.v (c.blocks_state_len i) in
(**) U32.v r' = U64.v total_len - (n * l));
r'
end | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 7,
"end_line": 688,
"start_col": 0,
"start_line": 645
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
()
let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s))
let init_input (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
c.init_input_s i (reveal_key c i h s)
let all_seen (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
S.append (init_input c i h s) (seen c i h s)
let frame_invariant #index c i l s h0 h1 =
let state_t = B.deref h0 s in
let State block_state _ _ _ p_key = state_t in
c.state.frame_invariant #i l block_state h0 h1;
stateful_frame_preserves_freeable #index #c.state #i l block_state h0 h1;
allow_inversion key_management;
match c.km with
| Erased -> ()
| Runtime ->
stateful_frame_preserves_freeable #index #c.key #i l p_key h0 h1;
c.key.frame_invariant #i l p_key h0 h1
let frame_seen #_ _ _ _ _ _ _ =
()
/// Stateful API
/// ============
let index_of_state #index c i t t' s =
let open LowStar.BufferOps in
let State block_state _ _ _ _ = !*s in
c.index_of_state i block_state
let seen_length #index c i t t' s =
let open LowStar.BufferOps in
let State _ _ total_len _ _ = !*s in
total_len
(* TODO: malloc and alloca have big portions of proofs in common, so it may
* be possible to factorize them, but it is not clear how *)
#restart-solver
#push-options "--z3rlimit 500"
let malloc #index c i t t' key r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none key h0 h1;
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none key h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none key h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) c.state.frame_freeable B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 key);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 key) (c.key.footprint #i h3 k'));
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') key h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 key)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none key h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) key buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let s = B.get h8 p 0 in
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true r) (footprint c i h8 p));
(**) assert (ST.equal_stack_domains h1 h8);
(**) assert (ST.equal_stack_domains h0 h1);
p
#pop-options
#push-options "--z3rlimit 100"
let copy #index c i t t' state r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
// All source state is suffixed by 0.
let State block_state0 buf0 total_len0 seen0 k0 = !*state in
let i = c.index_of_state i block_state0 in
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
B.blit buf0 0ul buf 0ul (c.blocks_state_len i);
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h0 h1;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h1 state);
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h1 h2;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h2 state);
c.state.copy (G.hide i) block_state0 block_state;
(**) let h2 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i (c.state.footprint #i h2 block_state) k0 h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant #i B.loc_none k0 h2 h3;
(**) c.state.frame_invariant #i B.loc_none block_state h2 h3;
(**) c.state.frame_freeable #i B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k0);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k0) (c.key.footprint #i h3 k'));
c.key.copy i k0 k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant #i (c.key.footprint #i h3 k') k0 h3 h4;
(**) c.state.frame_invariant #i (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable #i (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased -> k0
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
let s = State block_state buf total_len0 seen0 k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h5 h6;
(**) c.state.frame_invariant #i B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
p
#pop-options
#push-options "--z3rlimit 200"
let alloca #index c i t t' k =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.alloca (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none k h0 h1;
let block_state = c.state.alloca i in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none k h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.alloca i in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none k h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k) (c.key.footprint #i h3 k'));
c.key.copy i k k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') k h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 k)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.alloca s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none k h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) k buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true (HS.get_tip h8)) (footprint c i h8 p));
(**) assert(ST.same_refs_in_non_tip_regions h0 h8);
p
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let reset #index c i t t' state key =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
let open LowStar.BufferOps in
(**) let h1 = ST.get () in
let State block_state buf _ _ k' = !*state in
let i = c.index_of_state i block_state in
LowStar.Ignore.ignore i; // This is only used in types and proofs
[@inline_let]
let block_state: c.state.s i = block_state in
c.init (G.hide i) key buf block_state;
(**) let h2 = ST.get () in
(**) optional_frame #_ #i #c.km #c.key (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) k' h1 h2;
(**) c.key.frame_invariant (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) key h1 h2;
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % UInt32.v (Block?.block_len c i) = 0);
(**) assert (reveal_key c i h1 state == reveal_key c i h2 state);
(**) c.update_multi_zero i (c.state.v i h2 block_state) 0;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h2 k') key h2 h4;
(**) c.state.frame_invariant (c.key.footprint #i h2 k') block_state h2 h4;
(**) stateful_frame_preserves_freeable (c.key.footprint #i h2 k') block_state h2 h4;
k'
| Erased ->
G.hide (c.key.v i h1 key)
in
(**) let h2 = ST.get () in
(**) assert(preserves_freeable c i state h1 h2);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let tmp: state_s c i t t' = State block_state buf total_len (G.hide S.empty) k' in
B.upd state 0ul tmp;
(**) let h3 = ST.get () in
(**) c.state.frame_invariant B.(loc_buffer state) block_state h2 h3;
(**) c.key.frame_invariant B.(loc_buffer state) key h2 h3;
(**) optional_frame #_ #i #c.km #c.key B.(loc_buffer state) k' h2 h3;
(**) stateful_frame_preserves_freeable B.(loc_buffer state) block_state h2 h3;
(**) assert(preserves_freeable c i state h2 h3);
// This seems to cause insurmountable difficulties. Puzzled.
ST.lemma_equal_domains_trans h1 h2 h3;
// AR: 07/22: same old `Seq.equal` and `==` story
(**) assert (Seq.equal (seen c i h3 state) Seq.empty);
(**) assert (footprint c i h1 state == footprint c i h3 state);
(**) assert (B.(modifies (footprint c i h1 state) h1 h3));
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h3 state in
(**) let all_seen_ = all_seen c i h3 state in
// SH (11/22): the proof fails if we don't introduce the call to [split_at_last]
(**) let blocks, rest = split_at_last c i all_seen_ in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert (invariant_s c i h3 (B.get h3 state 0))
(**) end;
(**) assert(preserves_freeable c i state h1 h3)
#pop-options
/// Some helpers to minimize modulo-reasoning
/// =========================================
val split_at_last_num_blocks_lem (#index : Type0) (c: block index) (i: index) (b: nat):
Lemma (
let n_blocks = split_at_last_num_blocks c i b in
let blocks = n_blocks * U32.v (c.blocks_state_len i) in
0 <= blocks /\ blocks <= b)
let split_at_last_num_blocks_lem #index c i b = ()
/// The ``rest`` function below allows computing, based ``total_len`` stored in
/// the state, the length of useful data currently stored in ``buf``.
/// Unsurprisingly, there's a fair amount of modulo reasoning here because of
/// 64-bit-to-32-bit conversions, so we do them once and for all in a helper.
#push-options "--z3cliopt smt.arith.nl=false" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Hacl.Streaming.Interface.block index -> i: index -> total_len: FStar.UInt64.t
-> x:
FStar.UInt32.t
{ let n = Hacl.Streaming.Spec.split_at_last_num_blocks c i (FStar.UInt64.v total_len) in
let l = FStar.UInt32.v (Block?.blocks_state_len c i) in
0 <= n * l /\ n * l <= FStar.UInt64.v total_len /\
FStar.UInt32.v x = FStar.UInt64.v total_len - n * l } | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.UInt64.t",
"Prims.op_AmpAmp",
"FStar.UInt64.op_Equals_Hat",
"FStar.UInt64.uint_to_t",
"FStar.UInt64.op_Greater_Hat",
"Hacl.Streaming.Interface.__proj__Block__item__blocks_state_len",
"Prims.unit",
"Hacl.Streaming.Functor.split_at_last_num_blocks_lem",
"FStar.UInt64.v",
"Prims.bool",
"Prims._assert",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.UInt32.v",
"Prims.op_Subtraction",
"FStar.Mul.op_Star",
"FStar.UInt.uint_t",
"Prims.nat",
"Hacl.Streaming.Spec.split_at_last_num_blocks",
"FStar.Calc.calc_finish",
"FStar.UInt32.n",
"Prims.eq2",
"Prims.op_Modulus",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Int.Cast.uint32_to_uint64",
"Prims.pow2",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"FStar.Math.Lemmas.small_modulo_lemma_1",
"FStar.Math.Lemmas.euclidean_division_definition",
"FStar.UInt32.t",
"FStar.Int.Cast.uint64_to_uint32",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"FStar.Ghost.reveal",
"Prims.op_Division",
"FStar.Ghost.erased",
"FStar.Ghost.hide",
"FStar.UInt64.rem",
"Prims.l_or",
"FStar.UInt.size"
] | [] | false | false | false | false | false | let rest #index (c: block index) (i: index) (total_len: UInt64.t)
: (x:
UInt32.t
{ let n = split_at_last_num_blocks c i (U64.v total_len) in
let l = U32.v (c.blocks_state_len i) in
0 <= n * l /\ n * l <= U64.v total_len /\ U32.v x = U64.v total_len - (n * l) }) =
| let open FStar.Int.Cast in
[@@ inline_let ]let l = uint32_to_uint64 (c.blocks_state_len i) in
[@@ inline_let ]let r = total_len `U64.rem` l in
let total_len_v:Ghost.erased nat = U64.v total_len in
let l_v:Ghost.erased nat = U64.v l in
let r_v:Ghost.erased nat = U64.v r in
assert (Ghost.reveal r_v = total_len_v - ((total_len_v / l_v) * l_v));
Math.Lemmas.euclidean_division_definition total_len_v l_v;
assert (Ghost.reveal r_v = total_len_v % l_v);
assert (r_v < l_v);
if U64.(r =^ uint_to_t 0) && U64.(total_len >^ uint_to_t 0)
then
(split_at_last_num_blocks_lem c i (U64.v total_len);
c.blocks_state_len i)
else
[@@ inline_let ]let r' = FStar.Int.Cast.uint64_to_uint32 r in
FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32);
calc ( == ) {
U32.v r';
( == ) { () }
U64.v r % pow2 32;
( == ) { FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32) }
U64.v r;
( == ) { FStar.Math.Lemmas.euclidean_division_definition (U64.v total_len)
(U64.v (uint32_to_uint64 (c.blocks_state_len i))) }
U64.v total_len % U64.v (uint32_to_uint64 (c.blocks_state_len i));
( == ) { () }
U64.v total_len % U32.v (c.blocks_state_len i);
};
assert (let n = split_at_last_num_blocks c i (U64.v total_len) in
let l = U32.v (c.blocks_state_len i) in
U32.v r' = U64.v total_len - (n * l));
r' | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.state_is_updated | val state_is_updated :
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Type0) | val state_is_updated :
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Type0) | let state_is_updated #index c i t t' p data len h0 h1 =
// Functional conditions about the memory updates
let s0 = B.get h0 p 0 in
let s1 = B.get h1 p 0 in
let State block_state0 buf0 total_len0 seen0 key0 = s0 in
let State block_state1 buf1 total_len1 seen1 key1 = s1 in
block_state1 == block_state0 /\
buf1 == buf0 /\
U64.v total_len1 == U64.v total_len0 + U32.v len /\
key1 == key0 /\
seen1 `S.equal` (seen0 `S.append` (B.as_seq h0 data)) /\
optional_reveal #index #i #c.km #c.key h1 key1 == optional_reveal #index #i #c.km #c.key h0 key0 | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 98,
"end_line": 999,
"start_col": 0,
"start_line": 985
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
()
let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s))
let init_input (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
c.init_input_s i (reveal_key c i h s)
let all_seen (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
S.append (init_input c i h s) (seen c i h s)
let frame_invariant #index c i l s h0 h1 =
let state_t = B.deref h0 s in
let State block_state _ _ _ p_key = state_t in
c.state.frame_invariant #i l block_state h0 h1;
stateful_frame_preserves_freeable #index #c.state #i l block_state h0 h1;
allow_inversion key_management;
match c.km with
| Erased -> ()
| Runtime ->
stateful_frame_preserves_freeable #index #c.key #i l p_key h0 h1;
c.key.frame_invariant #i l p_key h0 h1
let frame_seen #_ _ _ _ _ _ _ =
()
/// Stateful API
/// ============
let index_of_state #index c i t t' s =
let open LowStar.BufferOps in
let State block_state _ _ _ _ = !*s in
c.index_of_state i block_state
let seen_length #index c i t t' s =
let open LowStar.BufferOps in
let State _ _ total_len _ _ = !*s in
total_len
(* TODO: malloc and alloca have big portions of proofs in common, so it may
* be possible to factorize them, but it is not clear how *)
#restart-solver
#push-options "--z3rlimit 500"
let malloc #index c i t t' key r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none key h0 h1;
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none key h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none key h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) c.state.frame_freeable B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 key);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 key) (c.key.footprint #i h3 k'));
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') key h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 key)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none key h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) key buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let s = B.get h8 p 0 in
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true r) (footprint c i h8 p));
(**) assert (ST.equal_stack_domains h1 h8);
(**) assert (ST.equal_stack_domains h0 h1);
p
#pop-options
#push-options "--z3rlimit 100"
let copy #index c i t t' state r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
// All source state is suffixed by 0.
let State block_state0 buf0 total_len0 seen0 k0 = !*state in
let i = c.index_of_state i block_state0 in
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
B.blit buf0 0ul buf 0ul (c.blocks_state_len i);
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h0 h1;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h1 state);
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h1 h2;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h2 state);
c.state.copy (G.hide i) block_state0 block_state;
(**) let h2 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i (c.state.footprint #i h2 block_state) k0 h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant #i B.loc_none k0 h2 h3;
(**) c.state.frame_invariant #i B.loc_none block_state h2 h3;
(**) c.state.frame_freeable #i B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k0);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k0) (c.key.footprint #i h3 k'));
c.key.copy i k0 k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant #i (c.key.footprint #i h3 k') k0 h3 h4;
(**) c.state.frame_invariant #i (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable #i (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased -> k0
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
let s = State block_state buf total_len0 seen0 k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h5 h6;
(**) c.state.frame_invariant #i B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
p
#pop-options
#push-options "--z3rlimit 200"
let alloca #index c i t t' k =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.alloca (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none k h0 h1;
let block_state = c.state.alloca i in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none k h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.alloca i in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none k h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k) (c.key.footprint #i h3 k'));
c.key.copy i k k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') k h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 k)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.alloca s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none k h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) k buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true (HS.get_tip h8)) (footprint c i h8 p));
(**) assert(ST.same_refs_in_non_tip_regions h0 h8);
p
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let reset #index c i t t' state key =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
let open LowStar.BufferOps in
(**) let h1 = ST.get () in
let State block_state buf _ _ k' = !*state in
let i = c.index_of_state i block_state in
LowStar.Ignore.ignore i; // This is only used in types and proofs
[@inline_let]
let block_state: c.state.s i = block_state in
c.init (G.hide i) key buf block_state;
(**) let h2 = ST.get () in
(**) optional_frame #_ #i #c.km #c.key (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) k' h1 h2;
(**) c.key.frame_invariant (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) key h1 h2;
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % UInt32.v (Block?.block_len c i) = 0);
(**) assert (reveal_key c i h1 state == reveal_key c i h2 state);
(**) c.update_multi_zero i (c.state.v i h2 block_state) 0;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h2 k') key h2 h4;
(**) c.state.frame_invariant (c.key.footprint #i h2 k') block_state h2 h4;
(**) stateful_frame_preserves_freeable (c.key.footprint #i h2 k') block_state h2 h4;
k'
| Erased ->
G.hide (c.key.v i h1 key)
in
(**) let h2 = ST.get () in
(**) assert(preserves_freeable c i state h1 h2);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let tmp: state_s c i t t' = State block_state buf total_len (G.hide S.empty) k' in
B.upd state 0ul tmp;
(**) let h3 = ST.get () in
(**) c.state.frame_invariant B.(loc_buffer state) block_state h2 h3;
(**) c.key.frame_invariant B.(loc_buffer state) key h2 h3;
(**) optional_frame #_ #i #c.km #c.key B.(loc_buffer state) k' h2 h3;
(**) stateful_frame_preserves_freeable B.(loc_buffer state) block_state h2 h3;
(**) assert(preserves_freeable c i state h2 h3);
// This seems to cause insurmountable difficulties. Puzzled.
ST.lemma_equal_domains_trans h1 h2 h3;
// AR: 07/22: same old `Seq.equal` and `==` story
(**) assert (Seq.equal (seen c i h3 state) Seq.empty);
(**) assert (footprint c i h1 state == footprint c i h3 state);
(**) assert (B.(modifies (footprint c i h1 state) h1 h3));
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h3 state in
(**) let all_seen_ = all_seen c i h3 state in
// SH (11/22): the proof fails if we don't introduce the call to [split_at_last]
(**) let blocks, rest = split_at_last c i all_seen_ in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert (invariant_s c i h3 (B.get h3 state 0))
(**) end;
(**) assert(preserves_freeable c i state h1 h3)
#pop-options
/// Some helpers to minimize modulo-reasoning
/// =========================================
val split_at_last_num_blocks_lem (#index : Type0) (c: block index) (i: index) (b: nat):
Lemma (
let n_blocks = split_at_last_num_blocks c i b in
let blocks = n_blocks * U32.v (c.blocks_state_len i) in
0 <= blocks /\ blocks <= b)
let split_at_last_num_blocks_lem #index c i b = ()
/// The ``rest`` function below allows computing, based ``total_len`` stored in
/// the state, the length of useful data currently stored in ``buf``.
/// Unsurprisingly, there's a fair amount of modulo reasoning here because of
/// 64-bit-to-32-bit conversions, so we do them once and for all in a helper.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest #index (c: block index) (i: index)
(total_len: UInt64.t): (x:UInt32.t {
let n = split_at_last_num_blocks c i (U64.v total_len) in
let l = U32.v (c.blocks_state_len i) in
0 <= n * l /\ n * l <= U64.v total_len /\
U32.v x = U64.v total_len - (n * l)})
=
let open FStar.Int.Cast in
[@inline_let] let l = uint32_to_uint64 (c.blocks_state_len i) in
[@inline_let] let r = total_len `U64.rem` l in
(**) let total_len_v : Ghost.erased nat = U64.v total_len in
(**) let l_v : Ghost.erased nat = U64.v l in
(**) let r_v : Ghost.erased nat = U64.v r in
(**) assert(Ghost.reveal r_v = total_len_v - ((total_len_v / l_v) * l_v));
(**) Math.Lemmas.euclidean_division_definition total_len_v l_v;
(**) assert(Ghost.reveal r_v = total_len_v % l_v);
(**) assert(r_v < l_v);
if U64.(r =^ uint_to_t 0) && U64.(total_len >^ uint_to_t 0) then
begin
(**) split_at_last_num_blocks_lem c i (U64.v total_len);
c.blocks_state_len i
end
else
begin
[@inline_let] let r' = FStar.Int.Cast.uint64_to_uint32 r in
(**) FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32);
(**) calc (==) {
(**) U32.v r';
(**) (==) { }
(**) U64.v r % pow2 32;
(**) (==) { FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32) }
(**) U64.v r;
(**) (==) { FStar.Math.Lemmas.euclidean_division_definition (U64.v total_len) (U64.v (uint32_to_uint64 (c.blocks_state_len i))) }
(**) U64.v total_len % U64.v (uint32_to_uint64 (c.blocks_state_len i) );
(**) (==) { }
(**) U64.v total_len % U32.v (c.blocks_state_len i);
(**) };
(**) assert(
(**) let n = split_at_last_num_blocks c i (U64.v total_len) in
(**) let l = U32.v (c.blocks_state_len i) in
(**) U32.v r' = U64.v total_len - (n * l));
r'
end
#pop-options
/// The ``nblocks`` function below allows computing, given ``total_len`` stored in
/// the state, the number of blocks of data which have been processed (the remaining
/// unprocessed data being left in ``buf``).
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let nblocks #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.blocks_state_len i) in
U32.v x * l <= U32.v len /\
U32.v x = split_at_last_num_blocks c i (U32.v len) })
=
let open FStar.Int.Cast in
[@inline_let] let l = c.blocks_state_len i in
[@inline_let] let r = rest c i (uint32_to_uint64 len) in
(**) let len_v : Ghost.erased nat = U32.v len in
(**) let l_v : Ghost.erased nat = U32.v l in
(**) let r_v : Ghost.erased nat = U32.v r in
(**) let n_s : Ghost.erased nat = split_at_last_num_blocks c i len_v in
(**) assert(Ghost.reveal len_v = n_s * l_v + r_v);
(**) Math.Lemmas.nat_times_nat_is_nat n_s l_v;
(**) assert(U32.v r <= U32.v len);
[@inline_let] let blocks = len `U32.sub` r in
(**) let blocks_v : Ghost.erased nat = U32.v blocks in
(**) assert(blocks_v % l_v = 0);
[@inline_let] let n = blocks `U32.div` l in
(**) let n_v : Ghost.erased nat = U32.v n in
(**) assert(n_v * l_v = Ghost.reveal blocks_v);
(**) split_at_last_num_blocks_spec c i len_v n_v r_v;
n
#pop-options
/// The ``rest`` function to call on the unprocessed data length in the ``finish``
/// function.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest_finish #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.block_len i) in
let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
0 <= n * l /\ n * l <= U32.v len /\
U32.v x = U32.v len - (n * l)})
=
[@inline_let] let l = c.block_len i in
[@inline_let] let r = len `U32.rem` l in
(**) split_at_last_num_blocks_lem c i (U32.v len);
if U32.(r =^ uint_to_t 0) && U32.(len >^ uint_to_t 0) then
begin
(**) begin
(**) let l = U32.v (c.block_len i) in
(**) let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
(**) Math.Lemmas.nat_times_nat_is_nat n l
(**) end;
c.block_len i
end
else
r
#pop-options
/// We always add 32-bit lengths to 64-bit lengths. Having a helper for that allows
/// doing modulo reasoning once and for all.
inline_for_extraction noextract
let add_len #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t):
Pure UInt64.t
(requires U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures fun x -> U64.v x = U64.v total_len + U32.v len /\ U64.v x <= U64.v (c.max_input_len i))
=
total_len `U64.add` Int.Cast.uint32_to_uint64 len
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let add_len_small #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t): Lemma
(requires
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i total_len) /\
U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures (rest c i (add_len c i total_len len) = rest c i total_len `U32.add` len))
=
let total_len_v = U64.v total_len in
let l = U32.v (c.blocks_state_len i) in
let b = total_len_v + U32.v len in
let n = split_at_last_num_blocks c i total_len_v in
let r = U32.v (rest c i total_len) in
assert(total_len_v = n * l + r);
let r' = U32.v (rest c i total_len) + U32.v len in
assert(r' <= l);
assert(r' = 0 ==> b = 0);
Math.Lemmas.euclidean_division_definition b l;
assert(b = n * l + r');
split_at_last_num_blocks_spec c i b n r'
#pop-options
/// Beginning of the three sub-cases (see Hacl.Streaming.Spec)
/// ==========================================================
noextract
let total_len_h #index (c: block index) (i: index) h (p: state' c i) =
State?.total_len (B.deref h p)
noextract
let split_at_last_all_seen #index (c: block index) (i: index) h (p: state' c i) =
let all_seen = all_seen c i h p in
let blocks, rest = split_at_last c i all_seen in
blocks, rest
inline_for_extraction noextract
val update_small:
#index:Type0 ->
(c: block index) ->
i:index -> (
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
Stack unit
(requires fun h0 ->
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i (total_len_h c i h0 s)))
(ensures fun h0 s' h1 ->
update_post c i s data len h0 h1))
/// SH: The proof obligations for update_small have problem succeeding in command
/// line mode: hence the restart-solver instruction, the crazy rlimit and the
/// intermediate lemma. Interestingly (and frustratingly), the proof succeeds
/// quite quickly locally on command-line with this rlimit, but fails with a lower
/// one. Besides, the lemma is needed only for the CI regression.
let split_at_last_rest_eq (#index : Type0) (c: block index)
(i: index)
(t:Type0 { t == c.state.s i })
(t':Type0 { t' == optional_key i c.km c.key })
(s: state c i t t') (h0: HS.mem) :
Lemma
(requires (
invariant c i h0 s))
(ensures (
let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
Seq.length r == U32.v sz)) =
let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
()
/// Particularly difficult proof. Z3 profiling indicates that a pattern goes off
/// the rails. So I disabled all of the known "bad" patterns, then did the proof
/// by hand. Fortunately, there were only two stateful operations. The idea was
/// to do all ofthe modifies-reasoning in the two lemmas above, then disable the
/// bad pattern for the main function.
///
/// This style is a little tedious, because it requires a little bit of digging
/// to understand what needs to hold in order to be able to prove that e.g. the
/// sequence remains unmodified from h0 to h2, but this seems more robust?
val modifies_footprint:
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
s:state' c i ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
let State _ buf_ _ _ _ = B.deref h0 s in (
update_pre c i s data len h0 /\
B.(modifies (loc_buffer buf_) h0 h1))))
(ensures (
let State bs0 buf0 _ _ k0 = B.deref h0 s in
let State bs1 buf1 _ _ k1 = B.deref h1 s in (
footprint c i h0 s == footprint c i h1 s /\
preserves_freeable c i s h0 h1 /\
bs0 == bs1 /\ buf0 == buf1 /\ k0 == k1 /\
c.state.invariant h1 bs1 /\
c.state.v i h1 bs1 == c.state.v i h0 bs0 /\
c.state.footprint h1 bs1 == c.state.footprint h0 bs0 /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_buffer buf1)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_buffer data)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_addr_of_buffer buf1)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (c.state.footprint h1 bs1)) /\
B.(loc_disjoint (loc_buffer s) (loc_buffer buf1)) /\
B.(loc_disjoint (loc_buffer s) (loc_buffer data)) /\
B.(loc_disjoint (loc_buffer s) (c.state.footprint h1 bs1)) /\
(if c.km = Runtime then
c.key.invariant #i h1 k1 /\
c.key.v i h1 k1 == c.key.v i h0 k0 /\
c.key.footprint #i h1 k1 == c.key.footprint #i h0 k0 /\
B.(loc_disjoint (loc_addr_of_buffer s) (c.key.footprint #i h1 k1)) /\
B.(loc_disjoint (loc_buffer s) (c.key.footprint #i h1 k1))
else
B.(loc_disjoint (loc_addr_of_buffer s) loc_none) /\
True)))))
let modifies_footprint c i p data len h0 h1 =
let _ = c.state.frame_freeable #i in
let _ = c.key.frame_freeable #i in
let s0 = B.deref h0 p in
let s1 = B.deref h0 p in
let State bs0 buf0 _ _ k0 = s0 in
let State bs1 buf0 _ _ k1 = s1 in
c.state.frame_invariant (B.loc_buffer buf0) bs0 h0 h1;
if c.km = Runtime then
c.key.frame_invariant #i (B.loc_buffer buf0) k0 h0 h1
val modifies_footprint':
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
p:state' c i ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
let State bs0 buf0 _ _ k0 = B.deref h0 p in
let State bs1 buf1 _ _ k1 = B.deref h1 p in (
B.live h0 p /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.state.footprint #i h0 bs0)) /\
B.(loc_disjoint (loc_addr_of_buffer p) (loc_addr_of_buffer buf0)) /\
c.state.invariant h0 bs0 /\
(if c.km = Runtime then
B.(loc_disjoint (loc_addr_of_buffer p) (c.key.footprint #i h0 k0)) /\
c.key.invariant #i h0 k0
else
B.(loc_disjoint (loc_addr_of_buffer p) loc_none)) /\
B.(modifies (loc_buffer p) h0 h1)) /\
bs0 == bs1 /\ buf0 == buf1 /\ k0 == k1))
(ensures (
let State bs0 buf0 _ _ k0 = B.deref h0 p in
let State bs1 buf1 _ _ k1 = B.deref h1 p in (
B.live h1 p /\
footprint c i h0 p == footprint c i h1 p /\
preserves_freeable c i p h0 h1 /\
B.(loc_disjoint (loc_addr_of_buffer p) (footprint_s c i h1 (B.deref h1 p))) /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.state.footprint #i h1 bs1)) /\
B.(loc_disjoint (loc_buffer p) (c.state.footprint #i h1 bs1)) /\
c.state.invariant h1 bs1 /\
c.state.v i h1 bs1 == c.state.v i h0 bs0 /\
c.state.footprint h1 bs1 == c.state.footprint h0 bs0 /\
(if c.km = Runtime then
c.key.invariant #i h1 k1 /\
c.key.v i h1 k1 == c.key.v i h0 k0 /\
c.key.footprint #i h1 k1 == c.key.footprint #i h0 k0 /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.key.footprint #i h1 k1)) /\
B.(loc_disjoint (loc_buffer p) (c.key.footprint #i h1 k1))
else
B.(loc_disjoint (loc_addr_of_buffer p) loc_none))))))
let modifies_footprint' c i p data len h0 h1 =
let _ = c.state.frame_freeable #i in
let _ = c.key.frame_freeable #i in
let _ = c.state.frame_invariant #i in
let _ = c.key.frame_invariant #i in
let _ = allow_inversion key_management in
let s0 = B.deref h0 p in
let s1 = B.deref h0 p in
let State bs0 buf0 _ _ k0 = s0 in
let State bs1 buf1 _ _ k1 = s1 in
c.state.frame_invariant (B.loc_addr_of_buffer p) bs0 h0 h1;
if c.km = Runtime then
c.key.frame_invariant #i (B.loc_addr_of_buffer p) k0 h0 h1
/// Small helper which we use to factor out functional correctness proof obligations.
/// It states that a state was correctly updated to process some data between two
/// memory snapshots (the key is the same, the seen data was updated, etc.).
///
/// Note that we don't specify anything about the buffer and the block_state: they
/// might have been updated differently depending on the case.
unfold val state_is_updated :
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Type0) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Hacl.Streaming.Interface.block index -> i: FStar.Ghost.erased index
-> (let i = FStar.Ghost.reveal i in
t: Type0{t == Stateful?.s (Block?.state c) i} ->
t': Type0{t' == Hacl.Streaming.Interface.optional_key i (Block?.km c) (Block?.key c)} ->
s: Hacl.Streaming.Functor.state c i t t' ->
data: LowStar.Buffer.buffer Hacl.Streaming.Spec.uint8 ->
len: FStar.UInt32.t ->
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem
-> Type0) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.Ghost.erased",
"Prims.eq2",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Interface.__proj__Block__item__state",
"FStar.Ghost.reveal",
"Hacl.Streaming.Interface.optional_key",
"Hacl.Streaming.Interface.__proj__Block__item__km",
"Hacl.Streaming.Interface.__proj__Block__item__key",
"Hacl.Streaming.Functor.state",
"LowStar.Buffer.buffer",
"Hacl.Streaming.Spec.uint8",
"FStar.UInt32.t",
"FStar.Monotonic.HyperStack.mem",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_Equality",
"LowStar.Monotonic.Buffer.len",
"LowStar.Buffer.trivial_preorder",
"Hacl.Streaming.Interface.__proj__Block__item__blocks_state_len",
"FStar.UInt64.t",
"FStar.Seq.Base.seq",
"Prims.l_and",
"Prims.l_or",
"Prims.int",
"FStar.UInt64.v",
"Prims.op_Addition",
"FStar.UInt32.v",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.append",
"LowStar.Monotonic.Buffer.as_seq",
"Hacl.Streaming.Interface.__proj__Stateful__item__t",
"Hacl.Streaming.Functor.optional_reveal",
"Hacl.Streaming.Functor.state_s",
"LowStar.Monotonic.Buffer.get"
] | [] | false | false | false | false | false | let state_is_updated #index c i t t' p data len h0 h1 =
| let s0 = B.get h0 p 0 in
let s1 = B.get h1 p 0 in
let State block_state0 buf0 total_len0 seen0 key0 = s0 in
let State block_state1 buf1 total_len1 seen1 key1 = s1 in
block_state1 == block_state0 /\ buf1 == buf0 /\ U64.v total_len1 == U64.v total_len0 + U32.v len /\
key1 == key0 /\ seen1 `S.equal` (seen0 `S.append` (B.as_seq h0 data)) /\
optional_reveal #index #i #c.km #c.key h1 key1 == optional_reveal #index #i #c.km #c.key h0 key0 | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.add_len_small | val add_len_small (#index: _) (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t)
: Lemma
(requires
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i total_len) /\
U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures (rest c i (add_len c i total_len len) = (rest c i total_len) `U32.add` len)) | val add_len_small (#index: _) (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t)
: Lemma
(requires
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i total_len) /\
U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures (rest c i (add_len c i total_len len) = (rest c i total_len) `U32.add` len)) | let add_len_small #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t): Lemma
(requires
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i total_len) /\
U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures (rest c i (add_len c i total_len len) = rest c i total_len `U32.add` len))
=
let total_len_v = U64.v total_len in
let l = U32.v (c.blocks_state_len i) in
let b = total_len_v + U32.v len in
let n = split_at_last_num_blocks c i total_len_v in
let r = U32.v (rest c i total_len) in
assert(total_len_v = n * l + r);
let r' = U32.v (rest c i total_len) + U32.v len in
assert(r' <= l);
assert(r' = 0 ==> b = 0);
Math.Lemmas.euclidean_division_definition b l;
assert(b = n * l + r');
split_at_last_num_blocks_spec c i b n r' | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 42,
"end_line": 779,
"start_col": 0,
"start_line": 762
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
()
let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s))
let init_input (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
c.init_input_s i (reveal_key c i h s)
let all_seen (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
S.append (init_input c i h s) (seen c i h s)
let frame_invariant #index c i l s h0 h1 =
let state_t = B.deref h0 s in
let State block_state _ _ _ p_key = state_t in
c.state.frame_invariant #i l block_state h0 h1;
stateful_frame_preserves_freeable #index #c.state #i l block_state h0 h1;
allow_inversion key_management;
match c.km with
| Erased -> ()
| Runtime ->
stateful_frame_preserves_freeable #index #c.key #i l p_key h0 h1;
c.key.frame_invariant #i l p_key h0 h1
let frame_seen #_ _ _ _ _ _ _ =
()
/// Stateful API
/// ============
let index_of_state #index c i t t' s =
let open LowStar.BufferOps in
let State block_state _ _ _ _ = !*s in
c.index_of_state i block_state
let seen_length #index c i t t' s =
let open LowStar.BufferOps in
let State _ _ total_len _ _ = !*s in
total_len
(* TODO: malloc and alloca have big portions of proofs in common, so it may
* be possible to factorize them, but it is not clear how *)
#restart-solver
#push-options "--z3rlimit 500"
let malloc #index c i t t' key r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none key h0 h1;
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none key h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none key h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) c.state.frame_freeable B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 key);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 key) (c.key.footprint #i h3 k'));
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') key h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 key)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none key h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) key buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let s = B.get h8 p 0 in
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true r) (footprint c i h8 p));
(**) assert (ST.equal_stack_domains h1 h8);
(**) assert (ST.equal_stack_domains h0 h1);
p
#pop-options
#push-options "--z3rlimit 100"
let copy #index c i t t' state r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
// All source state is suffixed by 0.
let State block_state0 buf0 total_len0 seen0 k0 = !*state in
let i = c.index_of_state i block_state0 in
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
B.blit buf0 0ul buf 0ul (c.blocks_state_len i);
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h0 h1;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h1 state);
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h1 h2;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h2 state);
c.state.copy (G.hide i) block_state0 block_state;
(**) let h2 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i (c.state.footprint #i h2 block_state) k0 h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant #i B.loc_none k0 h2 h3;
(**) c.state.frame_invariant #i B.loc_none block_state h2 h3;
(**) c.state.frame_freeable #i B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k0);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k0) (c.key.footprint #i h3 k'));
c.key.copy i k0 k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant #i (c.key.footprint #i h3 k') k0 h3 h4;
(**) c.state.frame_invariant #i (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable #i (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased -> k0
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
let s = State block_state buf total_len0 seen0 k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h5 h6;
(**) c.state.frame_invariant #i B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
p
#pop-options
#push-options "--z3rlimit 200"
let alloca #index c i t t' k =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.alloca (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none k h0 h1;
let block_state = c.state.alloca i in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none k h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.alloca i in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none k h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k) (c.key.footprint #i h3 k'));
c.key.copy i k k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') k h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 k)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.alloca s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none k h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) k buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true (HS.get_tip h8)) (footprint c i h8 p));
(**) assert(ST.same_refs_in_non_tip_regions h0 h8);
p
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let reset #index c i t t' state key =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
let open LowStar.BufferOps in
(**) let h1 = ST.get () in
let State block_state buf _ _ k' = !*state in
let i = c.index_of_state i block_state in
LowStar.Ignore.ignore i; // This is only used in types and proofs
[@inline_let]
let block_state: c.state.s i = block_state in
c.init (G.hide i) key buf block_state;
(**) let h2 = ST.get () in
(**) optional_frame #_ #i #c.km #c.key (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) k' h1 h2;
(**) c.key.frame_invariant (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) key h1 h2;
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % UInt32.v (Block?.block_len c i) = 0);
(**) assert (reveal_key c i h1 state == reveal_key c i h2 state);
(**) c.update_multi_zero i (c.state.v i h2 block_state) 0;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h2 k') key h2 h4;
(**) c.state.frame_invariant (c.key.footprint #i h2 k') block_state h2 h4;
(**) stateful_frame_preserves_freeable (c.key.footprint #i h2 k') block_state h2 h4;
k'
| Erased ->
G.hide (c.key.v i h1 key)
in
(**) let h2 = ST.get () in
(**) assert(preserves_freeable c i state h1 h2);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let tmp: state_s c i t t' = State block_state buf total_len (G.hide S.empty) k' in
B.upd state 0ul tmp;
(**) let h3 = ST.get () in
(**) c.state.frame_invariant B.(loc_buffer state) block_state h2 h3;
(**) c.key.frame_invariant B.(loc_buffer state) key h2 h3;
(**) optional_frame #_ #i #c.km #c.key B.(loc_buffer state) k' h2 h3;
(**) stateful_frame_preserves_freeable B.(loc_buffer state) block_state h2 h3;
(**) assert(preserves_freeable c i state h2 h3);
// This seems to cause insurmountable difficulties. Puzzled.
ST.lemma_equal_domains_trans h1 h2 h3;
// AR: 07/22: same old `Seq.equal` and `==` story
(**) assert (Seq.equal (seen c i h3 state) Seq.empty);
(**) assert (footprint c i h1 state == footprint c i h3 state);
(**) assert (B.(modifies (footprint c i h1 state) h1 h3));
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h3 state in
(**) let all_seen_ = all_seen c i h3 state in
// SH (11/22): the proof fails if we don't introduce the call to [split_at_last]
(**) let blocks, rest = split_at_last c i all_seen_ in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert (invariant_s c i h3 (B.get h3 state 0))
(**) end;
(**) assert(preserves_freeable c i state h1 h3)
#pop-options
/// Some helpers to minimize modulo-reasoning
/// =========================================
val split_at_last_num_blocks_lem (#index : Type0) (c: block index) (i: index) (b: nat):
Lemma (
let n_blocks = split_at_last_num_blocks c i b in
let blocks = n_blocks * U32.v (c.blocks_state_len i) in
0 <= blocks /\ blocks <= b)
let split_at_last_num_blocks_lem #index c i b = ()
/// The ``rest`` function below allows computing, based ``total_len`` stored in
/// the state, the length of useful data currently stored in ``buf``.
/// Unsurprisingly, there's a fair amount of modulo reasoning here because of
/// 64-bit-to-32-bit conversions, so we do them once and for all in a helper.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest #index (c: block index) (i: index)
(total_len: UInt64.t): (x:UInt32.t {
let n = split_at_last_num_blocks c i (U64.v total_len) in
let l = U32.v (c.blocks_state_len i) in
0 <= n * l /\ n * l <= U64.v total_len /\
U32.v x = U64.v total_len - (n * l)})
=
let open FStar.Int.Cast in
[@inline_let] let l = uint32_to_uint64 (c.blocks_state_len i) in
[@inline_let] let r = total_len `U64.rem` l in
(**) let total_len_v : Ghost.erased nat = U64.v total_len in
(**) let l_v : Ghost.erased nat = U64.v l in
(**) let r_v : Ghost.erased nat = U64.v r in
(**) assert(Ghost.reveal r_v = total_len_v - ((total_len_v / l_v) * l_v));
(**) Math.Lemmas.euclidean_division_definition total_len_v l_v;
(**) assert(Ghost.reveal r_v = total_len_v % l_v);
(**) assert(r_v < l_v);
if U64.(r =^ uint_to_t 0) && U64.(total_len >^ uint_to_t 0) then
begin
(**) split_at_last_num_blocks_lem c i (U64.v total_len);
c.blocks_state_len i
end
else
begin
[@inline_let] let r' = FStar.Int.Cast.uint64_to_uint32 r in
(**) FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32);
(**) calc (==) {
(**) U32.v r';
(**) (==) { }
(**) U64.v r % pow2 32;
(**) (==) { FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32) }
(**) U64.v r;
(**) (==) { FStar.Math.Lemmas.euclidean_division_definition (U64.v total_len) (U64.v (uint32_to_uint64 (c.blocks_state_len i))) }
(**) U64.v total_len % U64.v (uint32_to_uint64 (c.blocks_state_len i) );
(**) (==) { }
(**) U64.v total_len % U32.v (c.blocks_state_len i);
(**) };
(**) assert(
(**) let n = split_at_last_num_blocks c i (U64.v total_len) in
(**) let l = U32.v (c.blocks_state_len i) in
(**) U32.v r' = U64.v total_len - (n * l));
r'
end
#pop-options
/// The ``nblocks`` function below allows computing, given ``total_len`` stored in
/// the state, the number of blocks of data which have been processed (the remaining
/// unprocessed data being left in ``buf``).
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let nblocks #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.blocks_state_len i) in
U32.v x * l <= U32.v len /\
U32.v x = split_at_last_num_blocks c i (U32.v len) })
=
let open FStar.Int.Cast in
[@inline_let] let l = c.blocks_state_len i in
[@inline_let] let r = rest c i (uint32_to_uint64 len) in
(**) let len_v : Ghost.erased nat = U32.v len in
(**) let l_v : Ghost.erased nat = U32.v l in
(**) let r_v : Ghost.erased nat = U32.v r in
(**) let n_s : Ghost.erased nat = split_at_last_num_blocks c i len_v in
(**) assert(Ghost.reveal len_v = n_s * l_v + r_v);
(**) Math.Lemmas.nat_times_nat_is_nat n_s l_v;
(**) assert(U32.v r <= U32.v len);
[@inline_let] let blocks = len `U32.sub` r in
(**) let blocks_v : Ghost.erased nat = U32.v blocks in
(**) assert(blocks_v % l_v = 0);
[@inline_let] let n = blocks `U32.div` l in
(**) let n_v : Ghost.erased nat = U32.v n in
(**) assert(n_v * l_v = Ghost.reveal blocks_v);
(**) split_at_last_num_blocks_spec c i len_v n_v r_v;
n
#pop-options
/// The ``rest`` function to call on the unprocessed data length in the ``finish``
/// function.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest_finish #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.block_len i) in
let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
0 <= n * l /\ n * l <= U32.v len /\
U32.v x = U32.v len - (n * l)})
=
[@inline_let] let l = c.block_len i in
[@inline_let] let r = len `U32.rem` l in
(**) split_at_last_num_blocks_lem c i (U32.v len);
if U32.(r =^ uint_to_t 0) && U32.(len >^ uint_to_t 0) then
begin
(**) begin
(**) let l = U32.v (c.block_len i) in
(**) let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
(**) Math.Lemmas.nat_times_nat_is_nat n l
(**) end;
c.block_len i
end
else
r
#pop-options
/// We always add 32-bit lengths to 64-bit lengths. Having a helper for that allows
/// doing modulo reasoning once and for all.
inline_for_extraction noextract
let add_len #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t):
Pure UInt64.t
(requires U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures fun x -> U64.v x = U64.v total_len + U32.v len /\ U64.v x <= U64.v (c.max_input_len i))
=
total_len `U64.add` Int.Cast.uint32_to_uint64 len
#push-options "--z3cliopt smt.arith.nl=false" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: Hacl.Streaming.Interface.block index ->
i: index ->
total_len: FStar.UInt64.t ->
len: FStar.UInt32.t
-> FStar.Pervasives.Lemma
(requires
FStar.UInt32.v len <=
FStar.UInt32.v (Block?.blocks_state_len c i) -
FStar.UInt32.v (Hacl.Streaming.Functor.rest c i total_len) /\
FStar.UInt64.v total_len + FStar.UInt32.v len <= FStar.UInt64.v (Block?.max_input_len c i))
(ensures
Hacl.Streaming.Functor.rest c i (Hacl.Streaming.Functor.add_len c i total_len len) =
FStar.UInt32.add (Hacl.Streaming.Functor.rest c i total_len) len) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.UInt64.t",
"FStar.UInt32.t",
"Hacl.Streaming.Spec.split_at_last_num_blocks_spec",
"Prims.unit",
"Prims._assert",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"FStar.Math.Lemmas.euclidean_division_definition",
"Prims.l_imp",
"Prims.op_LessThanOrEqual",
"FStar.UInt32.v",
"Hacl.Streaming.Functor.rest",
"FStar.UInt.uint_t",
"Prims.nat",
"Hacl.Streaming.Spec.split_at_last_num_blocks",
"Hacl.Streaming.Interface.__proj__Block__item__blocks_state_len",
"FStar.UInt64.v",
"Prims.l_and",
"Prims.op_Subtraction",
"Hacl.Streaming.Interface.__proj__Block__item__max_input_len",
"Prims.squash",
"Hacl.Streaming.Functor.add_len",
"FStar.UInt32.add",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let add_len_small #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t)
: Lemma
(requires
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i total_len) /\
U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures (rest c i (add_len c i total_len len) = (rest c i total_len) `U32.add` len)) =
| let total_len_v = U64.v total_len in
let l = U32.v (c.blocks_state_len i) in
let b = total_len_v + U32.v len in
let n = split_at_last_num_blocks c i total_len_v in
let r = U32.v (rest c i total_len) in
assert (total_len_v = n * l + r);
let r' = U32.v (rest c i total_len) + U32.v len in
assert (r' <= l);
assert (r' = 0 ==> b = 0);
Math.Lemmas.euclidean_division_definition b l;
assert (b = n * l + r');
split_at_last_num_blocks_spec c i b n r' | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.split_at_last_rest_eq | val split_at_last_rest_eq
(#index: Type0)
(c: block index)
(i: index)
(t: Type0{t == c.state.s i})
(t': Type0{t' == optional_key i c.km c.key})
(s: state c i t t')
(h0: HS.mem)
: Lemma (requires (invariant c i h0 s))
(ensures
(let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
Seq.length r == U32.v sz)) | val split_at_last_rest_eq
(#index: Type0)
(c: block index)
(i: index)
(t: Type0{t == c.state.s i})
(t': Type0{t' == optional_key i c.km c.key})
(s: state c i t t')
(h0: HS.mem)
: Lemma (requires (invariant c i h0 s))
(ensures
(let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
Seq.length r == U32.v sz)) | let split_at_last_rest_eq (#index : Type0) (c: block index)
(i: index)
(t:Type0 { t == c.state.s i })
(t':Type0 { t' == optional_key i c.km c.key })
(s: state c i t t') (h0: HS.mem) :
Lemma
(requires (
invariant c i h0 s))
(ensures (
let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
Seq.length r == U32.v sz)) =
let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
() | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 841,
"start_col": 0,
"start_line": 819
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
()
let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s))
let init_input (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
c.init_input_s i (reveal_key c i h s)
let all_seen (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
S.append (init_input c i h s) (seen c i h s)
let frame_invariant #index c i l s h0 h1 =
let state_t = B.deref h0 s in
let State block_state _ _ _ p_key = state_t in
c.state.frame_invariant #i l block_state h0 h1;
stateful_frame_preserves_freeable #index #c.state #i l block_state h0 h1;
allow_inversion key_management;
match c.km with
| Erased -> ()
| Runtime ->
stateful_frame_preserves_freeable #index #c.key #i l p_key h0 h1;
c.key.frame_invariant #i l p_key h0 h1
let frame_seen #_ _ _ _ _ _ _ =
()
/// Stateful API
/// ============
let index_of_state #index c i t t' s =
let open LowStar.BufferOps in
let State block_state _ _ _ _ = !*s in
c.index_of_state i block_state
let seen_length #index c i t t' s =
let open LowStar.BufferOps in
let State _ _ total_len _ _ = !*s in
total_len
(* TODO: malloc and alloca have big portions of proofs in common, so it may
* be possible to factorize them, but it is not clear how *)
#restart-solver
#push-options "--z3rlimit 500"
let malloc #index c i t t' key r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none key h0 h1;
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none key h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none key h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) c.state.frame_freeable B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 key);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 key) (c.key.footprint #i h3 k'));
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') key h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 key)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none key h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) key buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let s = B.get h8 p 0 in
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true r) (footprint c i h8 p));
(**) assert (ST.equal_stack_domains h1 h8);
(**) assert (ST.equal_stack_domains h0 h1);
p
#pop-options
#push-options "--z3rlimit 100"
let copy #index c i t t' state r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
// All source state is suffixed by 0.
let State block_state0 buf0 total_len0 seen0 k0 = !*state in
let i = c.index_of_state i block_state0 in
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
B.blit buf0 0ul buf 0ul (c.blocks_state_len i);
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h0 h1;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h1 state);
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h1 h2;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h2 state);
c.state.copy (G.hide i) block_state0 block_state;
(**) let h2 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i (c.state.footprint #i h2 block_state) k0 h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant #i B.loc_none k0 h2 h3;
(**) c.state.frame_invariant #i B.loc_none block_state h2 h3;
(**) c.state.frame_freeable #i B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k0);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k0) (c.key.footprint #i h3 k'));
c.key.copy i k0 k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant #i (c.key.footprint #i h3 k') k0 h3 h4;
(**) c.state.frame_invariant #i (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable #i (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased -> k0
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
let s = State block_state buf total_len0 seen0 k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h5 h6;
(**) c.state.frame_invariant #i B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
p
#pop-options
#push-options "--z3rlimit 200"
let alloca #index c i t t' k =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.alloca (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none k h0 h1;
let block_state = c.state.alloca i in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none k h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.alloca i in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none k h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k) (c.key.footprint #i h3 k'));
c.key.copy i k k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') k h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 k)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.alloca s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none k h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) k buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true (HS.get_tip h8)) (footprint c i h8 p));
(**) assert(ST.same_refs_in_non_tip_regions h0 h8);
p
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let reset #index c i t t' state key =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
let open LowStar.BufferOps in
(**) let h1 = ST.get () in
let State block_state buf _ _ k' = !*state in
let i = c.index_of_state i block_state in
LowStar.Ignore.ignore i; // This is only used in types and proofs
[@inline_let]
let block_state: c.state.s i = block_state in
c.init (G.hide i) key buf block_state;
(**) let h2 = ST.get () in
(**) optional_frame #_ #i #c.km #c.key (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) k' h1 h2;
(**) c.key.frame_invariant (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) key h1 h2;
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % UInt32.v (Block?.block_len c i) = 0);
(**) assert (reveal_key c i h1 state == reveal_key c i h2 state);
(**) c.update_multi_zero i (c.state.v i h2 block_state) 0;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h2 k') key h2 h4;
(**) c.state.frame_invariant (c.key.footprint #i h2 k') block_state h2 h4;
(**) stateful_frame_preserves_freeable (c.key.footprint #i h2 k') block_state h2 h4;
k'
| Erased ->
G.hide (c.key.v i h1 key)
in
(**) let h2 = ST.get () in
(**) assert(preserves_freeable c i state h1 h2);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let tmp: state_s c i t t' = State block_state buf total_len (G.hide S.empty) k' in
B.upd state 0ul tmp;
(**) let h3 = ST.get () in
(**) c.state.frame_invariant B.(loc_buffer state) block_state h2 h3;
(**) c.key.frame_invariant B.(loc_buffer state) key h2 h3;
(**) optional_frame #_ #i #c.km #c.key B.(loc_buffer state) k' h2 h3;
(**) stateful_frame_preserves_freeable B.(loc_buffer state) block_state h2 h3;
(**) assert(preserves_freeable c i state h2 h3);
// This seems to cause insurmountable difficulties. Puzzled.
ST.lemma_equal_domains_trans h1 h2 h3;
// AR: 07/22: same old `Seq.equal` and `==` story
(**) assert (Seq.equal (seen c i h3 state) Seq.empty);
(**) assert (footprint c i h1 state == footprint c i h3 state);
(**) assert (B.(modifies (footprint c i h1 state) h1 h3));
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h3 state in
(**) let all_seen_ = all_seen c i h3 state in
// SH (11/22): the proof fails if we don't introduce the call to [split_at_last]
(**) let blocks, rest = split_at_last c i all_seen_ in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert (invariant_s c i h3 (B.get h3 state 0))
(**) end;
(**) assert(preserves_freeable c i state h1 h3)
#pop-options
/// Some helpers to minimize modulo-reasoning
/// =========================================
val split_at_last_num_blocks_lem (#index : Type0) (c: block index) (i: index) (b: nat):
Lemma (
let n_blocks = split_at_last_num_blocks c i b in
let blocks = n_blocks * U32.v (c.blocks_state_len i) in
0 <= blocks /\ blocks <= b)
let split_at_last_num_blocks_lem #index c i b = ()
/// The ``rest`` function below allows computing, based ``total_len`` stored in
/// the state, the length of useful data currently stored in ``buf``.
/// Unsurprisingly, there's a fair amount of modulo reasoning here because of
/// 64-bit-to-32-bit conversions, so we do them once and for all in a helper.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest #index (c: block index) (i: index)
(total_len: UInt64.t): (x:UInt32.t {
let n = split_at_last_num_blocks c i (U64.v total_len) in
let l = U32.v (c.blocks_state_len i) in
0 <= n * l /\ n * l <= U64.v total_len /\
U32.v x = U64.v total_len - (n * l)})
=
let open FStar.Int.Cast in
[@inline_let] let l = uint32_to_uint64 (c.blocks_state_len i) in
[@inline_let] let r = total_len `U64.rem` l in
(**) let total_len_v : Ghost.erased nat = U64.v total_len in
(**) let l_v : Ghost.erased nat = U64.v l in
(**) let r_v : Ghost.erased nat = U64.v r in
(**) assert(Ghost.reveal r_v = total_len_v - ((total_len_v / l_v) * l_v));
(**) Math.Lemmas.euclidean_division_definition total_len_v l_v;
(**) assert(Ghost.reveal r_v = total_len_v % l_v);
(**) assert(r_v < l_v);
if U64.(r =^ uint_to_t 0) && U64.(total_len >^ uint_to_t 0) then
begin
(**) split_at_last_num_blocks_lem c i (U64.v total_len);
c.blocks_state_len i
end
else
begin
[@inline_let] let r' = FStar.Int.Cast.uint64_to_uint32 r in
(**) FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32);
(**) calc (==) {
(**) U32.v r';
(**) (==) { }
(**) U64.v r % pow2 32;
(**) (==) { FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32) }
(**) U64.v r;
(**) (==) { FStar.Math.Lemmas.euclidean_division_definition (U64.v total_len) (U64.v (uint32_to_uint64 (c.blocks_state_len i))) }
(**) U64.v total_len % U64.v (uint32_to_uint64 (c.blocks_state_len i) );
(**) (==) { }
(**) U64.v total_len % U32.v (c.blocks_state_len i);
(**) };
(**) assert(
(**) let n = split_at_last_num_blocks c i (U64.v total_len) in
(**) let l = U32.v (c.blocks_state_len i) in
(**) U32.v r' = U64.v total_len - (n * l));
r'
end
#pop-options
/// The ``nblocks`` function below allows computing, given ``total_len`` stored in
/// the state, the number of blocks of data which have been processed (the remaining
/// unprocessed data being left in ``buf``).
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let nblocks #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.blocks_state_len i) in
U32.v x * l <= U32.v len /\
U32.v x = split_at_last_num_blocks c i (U32.v len) })
=
let open FStar.Int.Cast in
[@inline_let] let l = c.blocks_state_len i in
[@inline_let] let r = rest c i (uint32_to_uint64 len) in
(**) let len_v : Ghost.erased nat = U32.v len in
(**) let l_v : Ghost.erased nat = U32.v l in
(**) let r_v : Ghost.erased nat = U32.v r in
(**) let n_s : Ghost.erased nat = split_at_last_num_blocks c i len_v in
(**) assert(Ghost.reveal len_v = n_s * l_v + r_v);
(**) Math.Lemmas.nat_times_nat_is_nat n_s l_v;
(**) assert(U32.v r <= U32.v len);
[@inline_let] let blocks = len `U32.sub` r in
(**) let blocks_v : Ghost.erased nat = U32.v blocks in
(**) assert(blocks_v % l_v = 0);
[@inline_let] let n = blocks `U32.div` l in
(**) let n_v : Ghost.erased nat = U32.v n in
(**) assert(n_v * l_v = Ghost.reveal blocks_v);
(**) split_at_last_num_blocks_spec c i len_v n_v r_v;
n
#pop-options
/// The ``rest`` function to call on the unprocessed data length in the ``finish``
/// function.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest_finish #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.block_len i) in
let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
0 <= n * l /\ n * l <= U32.v len /\
U32.v x = U32.v len - (n * l)})
=
[@inline_let] let l = c.block_len i in
[@inline_let] let r = len `U32.rem` l in
(**) split_at_last_num_blocks_lem c i (U32.v len);
if U32.(r =^ uint_to_t 0) && U32.(len >^ uint_to_t 0) then
begin
(**) begin
(**) let l = U32.v (c.block_len i) in
(**) let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
(**) Math.Lemmas.nat_times_nat_is_nat n l
(**) end;
c.block_len i
end
else
r
#pop-options
/// We always add 32-bit lengths to 64-bit lengths. Having a helper for that allows
/// doing modulo reasoning once and for all.
inline_for_extraction noextract
let add_len #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t):
Pure UInt64.t
(requires U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures fun x -> U64.v x = U64.v total_len + U32.v len /\ U64.v x <= U64.v (c.max_input_len i))
=
total_len `U64.add` Int.Cast.uint32_to_uint64 len
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let add_len_small #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t): Lemma
(requires
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i total_len) /\
U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures (rest c i (add_len c i total_len len) = rest c i total_len `U32.add` len))
=
let total_len_v = U64.v total_len in
let l = U32.v (c.blocks_state_len i) in
let b = total_len_v + U32.v len in
let n = split_at_last_num_blocks c i total_len_v in
let r = U32.v (rest c i total_len) in
assert(total_len_v = n * l + r);
let r' = U32.v (rest c i total_len) + U32.v len in
assert(r' <= l);
assert(r' = 0 ==> b = 0);
Math.Lemmas.euclidean_division_definition b l;
assert(b = n * l + r');
split_at_last_num_blocks_spec c i b n r'
#pop-options
/// Beginning of the three sub-cases (see Hacl.Streaming.Spec)
/// ==========================================================
noextract
let total_len_h #index (c: block index) (i: index) h (p: state' c i) =
State?.total_len (B.deref h p)
noextract
let split_at_last_all_seen #index (c: block index) (i: index) h (p: state' c i) =
let all_seen = all_seen c i h p in
let blocks, rest = split_at_last c i all_seen in
blocks, rest
inline_for_extraction noextract
val update_small:
#index:Type0 ->
(c: block index) ->
i:index -> (
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
Stack unit
(requires fun h0 ->
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i (total_len_h c i h0 s)))
(ensures fun h0 s' h1 ->
update_post c i s data len h0 h1))
/// SH: The proof obligations for update_small have problem succeeding in command
/// line mode: hence the restart-solver instruction, the crazy rlimit and the
/// intermediate lemma. Interestingly (and frustratingly), the proof succeeds
/// quite quickly locally on command-line with this rlimit, but fails with a lower | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: Hacl.Streaming.Interface.block index ->
i: index ->
t: Type0{t == Stateful?.s (Block?.state c) i} ->
t': Type0{t' == Hacl.Streaming.Interface.optional_key i (Block?.km c) (Block?.key c)} ->
s: Hacl.Streaming.Functor.state c i t t' ->
h0: FStar.Monotonic.HyperStack.mem
-> FStar.Pervasives.Lemma (requires Hacl.Streaming.Functor.invariant c i h0 s)
(ensures
(let s = LowStar.Monotonic.Buffer.get h0 s 0 in
let _ = s in
(let Hacl.Streaming.Functor.State #_ #_ #_ #_ #_ _ _ total_len seen_ k' = _ in
let key_v = Hacl.Streaming.Functor.optional_reveal h0 k' in
let all_seen =
FStar.Seq.Base.append (Block?.init_input_s c i key_v) (FStar.Ghost.reveal seen_)
in
let _ = Hacl.Streaming.Spec.split_at_last c i all_seen in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ _ r = _ in
let sz = Hacl.Streaming.Functor.rest c i total_len in
FStar.Seq.Base.length r == FStar.UInt32.v sz)
<:
Type0)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Streaming.Interface.block",
"Prims.eq2",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Interface.__proj__Block__item__state",
"Hacl.Streaming.Interface.optional_key",
"Hacl.Streaming.Interface.__proj__Block__item__km",
"Hacl.Streaming.Interface.__proj__Block__item__key",
"Hacl.Streaming.Functor.state",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Buffer.buffer",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_Equality",
"FStar.UInt32.t",
"LowStar.Monotonic.Buffer.len",
"LowStar.Buffer.trivial_preorder",
"Hacl.Streaming.Interface.__proj__Block__item__blocks_state_len",
"FStar.UInt64.t",
"FStar.Ghost.erased",
"FStar.Seq.Base.seq",
"Hacl.Streaming.Spec.uint8",
"Hacl.Streaming.Spec.bytes",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_Multiply",
"Hacl.Streaming.Spec.split_at_last_num_blocks",
"FStar.UInt64.v",
"FStar.UInt32.v",
"Prims.int",
"Prims.op_Subtraction",
"Hacl.Streaming.Functor.rest",
"Prims.unit",
"FStar.Pervasives.Native.tuple2",
"Hacl.Streaming.Spec.split_at_last",
"Hacl.Streaming.Interface.uint8",
"FStar.Seq.Base.append",
"Hacl.Streaming.Interface.__proj__Block__item__init_input_s",
"FStar.Ghost.reveal",
"Hacl.Streaming.Interface.__proj__Stateful__item__t",
"Hacl.Streaming.Functor.optional_reveal",
"Hacl.Streaming.Functor.state_s",
"LowStar.Monotonic.Buffer.get",
"Hacl.Streaming.Functor.invariant",
"Prims.squash",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt32.n",
"FStar.Seq.Base.length",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let split_at_last_rest_eq
(#index: Type0)
(c: block index)
(i: index)
(t: Type0{t == c.state.s i})
(t': Type0{t' == optional_key i c.km c.key})
(s: state c i t t')
(h0: HS.mem)
: Lemma (requires (invariant c i h0 s))
(ensures
(let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
Seq.length r == U32.v sz)) =
| let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
() | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.invariant_s_funct | val invariant_s_funct :
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Pure Type0 (requires
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
state_is_updated c i t t' s data len h0 h1)
(ensures (fun _ -> True))) | val invariant_s_funct :
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Pure Type0 (requires
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
state_is_updated c i t t' s data len h0 h1)
(ensures (fun _ -> True))) | let invariant_s_funct #index c i t t' p data len h0 h1 =
let blocks, rest = split_at_last_all_seen c i h1 p in
let s = B.get h1 p 0 in
let State block_state buf_ total_len seen key = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 key in
let init_s = c.init_s i key_v in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (c.block_len i));
c.state.v i h1 block_state == c.update_multi_s i init_s 0 blocks /\
S.equal (S.slice (B.as_seq h1 buf_) 0 (Seq.length rest)) rest | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 63,
"end_line": 1029,
"start_col": 0,
"start_line": 1021
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
()
let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s))
let init_input (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
c.init_input_s i (reveal_key c i h s)
let all_seen (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
S.append (init_input c i h s) (seen c i h s)
let frame_invariant #index c i l s h0 h1 =
let state_t = B.deref h0 s in
let State block_state _ _ _ p_key = state_t in
c.state.frame_invariant #i l block_state h0 h1;
stateful_frame_preserves_freeable #index #c.state #i l block_state h0 h1;
allow_inversion key_management;
match c.km with
| Erased -> ()
| Runtime ->
stateful_frame_preserves_freeable #index #c.key #i l p_key h0 h1;
c.key.frame_invariant #i l p_key h0 h1
let frame_seen #_ _ _ _ _ _ _ =
()
/// Stateful API
/// ============
let index_of_state #index c i t t' s =
let open LowStar.BufferOps in
let State block_state _ _ _ _ = !*s in
c.index_of_state i block_state
let seen_length #index c i t t' s =
let open LowStar.BufferOps in
let State _ _ total_len _ _ = !*s in
total_len
(* TODO: malloc and alloca have big portions of proofs in common, so it may
* be possible to factorize them, but it is not clear how *)
#restart-solver
#push-options "--z3rlimit 500"
let malloc #index c i t t' key r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none key h0 h1;
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none key h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none key h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) c.state.frame_freeable B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 key);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 key) (c.key.footprint #i h3 k'));
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') key h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 key)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none key h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) key buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let s = B.get h8 p 0 in
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true r) (footprint c i h8 p));
(**) assert (ST.equal_stack_domains h1 h8);
(**) assert (ST.equal_stack_domains h0 h1);
p
#pop-options
#push-options "--z3rlimit 100"
let copy #index c i t t' state r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
// All source state is suffixed by 0.
let State block_state0 buf0 total_len0 seen0 k0 = !*state in
let i = c.index_of_state i block_state0 in
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
B.blit buf0 0ul buf 0ul (c.blocks_state_len i);
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h0 h1;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h1 state);
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h1 h2;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h2 state);
c.state.copy (G.hide i) block_state0 block_state;
(**) let h2 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i (c.state.footprint #i h2 block_state) k0 h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant #i B.loc_none k0 h2 h3;
(**) c.state.frame_invariant #i B.loc_none block_state h2 h3;
(**) c.state.frame_freeable #i B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k0);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k0) (c.key.footprint #i h3 k'));
c.key.copy i k0 k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant #i (c.key.footprint #i h3 k') k0 h3 h4;
(**) c.state.frame_invariant #i (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable #i (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased -> k0
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
let s = State block_state buf total_len0 seen0 k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h5 h6;
(**) c.state.frame_invariant #i B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
p
#pop-options
#push-options "--z3rlimit 200"
let alloca #index c i t t' k =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.alloca (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none k h0 h1;
let block_state = c.state.alloca i in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none k h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.alloca i in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none k h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k) (c.key.footprint #i h3 k'));
c.key.copy i k k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') k h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 k)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.alloca s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none k h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) k buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true (HS.get_tip h8)) (footprint c i h8 p));
(**) assert(ST.same_refs_in_non_tip_regions h0 h8);
p
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let reset #index c i t t' state key =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
let open LowStar.BufferOps in
(**) let h1 = ST.get () in
let State block_state buf _ _ k' = !*state in
let i = c.index_of_state i block_state in
LowStar.Ignore.ignore i; // This is only used in types and proofs
[@inline_let]
let block_state: c.state.s i = block_state in
c.init (G.hide i) key buf block_state;
(**) let h2 = ST.get () in
(**) optional_frame #_ #i #c.km #c.key (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) k' h1 h2;
(**) c.key.frame_invariant (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) key h1 h2;
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % UInt32.v (Block?.block_len c i) = 0);
(**) assert (reveal_key c i h1 state == reveal_key c i h2 state);
(**) c.update_multi_zero i (c.state.v i h2 block_state) 0;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h2 k') key h2 h4;
(**) c.state.frame_invariant (c.key.footprint #i h2 k') block_state h2 h4;
(**) stateful_frame_preserves_freeable (c.key.footprint #i h2 k') block_state h2 h4;
k'
| Erased ->
G.hide (c.key.v i h1 key)
in
(**) let h2 = ST.get () in
(**) assert(preserves_freeable c i state h1 h2);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let tmp: state_s c i t t' = State block_state buf total_len (G.hide S.empty) k' in
B.upd state 0ul tmp;
(**) let h3 = ST.get () in
(**) c.state.frame_invariant B.(loc_buffer state) block_state h2 h3;
(**) c.key.frame_invariant B.(loc_buffer state) key h2 h3;
(**) optional_frame #_ #i #c.km #c.key B.(loc_buffer state) k' h2 h3;
(**) stateful_frame_preserves_freeable B.(loc_buffer state) block_state h2 h3;
(**) assert(preserves_freeable c i state h2 h3);
// This seems to cause insurmountable difficulties. Puzzled.
ST.lemma_equal_domains_trans h1 h2 h3;
// AR: 07/22: same old `Seq.equal` and `==` story
(**) assert (Seq.equal (seen c i h3 state) Seq.empty);
(**) assert (footprint c i h1 state == footprint c i h3 state);
(**) assert (B.(modifies (footprint c i h1 state) h1 h3));
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h3 state in
(**) let all_seen_ = all_seen c i h3 state in
// SH (11/22): the proof fails if we don't introduce the call to [split_at_last]
(**) let blocks, rest = split_at_last c i all_seen_ in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert (invariant_s c i h3 (B.get h3 state 0))
(**) end;
(**) assert(preserves_freeable c i state h1 h3)
#pop-options
/// Some helpers to minimize modulo-reasoning
/// =========================================
val split_at_last_num_blocks_lem (#index : Type0) (c: block index) (i: index) (b: nat):
Lemma (
let n_blocks = split_at_last_num_blocks c i b in
let blocks = n_blocks * U32.v (c.blocks_state_len i) in
0 <= blocks /\ blocks <= b)
let split_at_last_num_blocks_lem #index c i b = ()
/// The ``rest`` function below allows computing, based ``total_len`` stored in
/// the state, the length of useful data currently stored in ``buf``.
/// Unsurprisingly, there's a fair amount of modulo reasoning here because of
/// 64-bit-to-32-bit conversions, so we do them once and for all in a helper.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest #index (c: block index) (i: index)
(total_len: UInt64.t): (x:UInt32.t {
let n = split_at_last_num_blocks c i (U64.v total_len) in
let l = U32.v (c.blocks_state_len i) in
0 <= n * l /\ n * l <= U64.v total_len /\
U32.v x = U64.v total_len - (n * l)})
=
let open FStar.Int.Cast in
[@inline_let] let l = uint32_to_uint64 (c.blocks_state_len i) in
[@inline_let] let r = total_len `U64.rem` l in
(**) let total_len_v : Ghost.erased nat = U64.v total_len in
(**) let l_v : Ghost.erased nat = U64.v l in
(**) let r_v : Ghost.erased nat = U64.v r in
(**) assert(Ghost.reveal r_v = total_len_v - ((total_len_v / l_v) * l_v));
(**) Math.Lemmas.euclidean_division_definition total_len_v l_v;
(**) assert(Ghost.reveal r_v = total_len_v % l_v);
(**) assert(r_v < l_v);
if U64.(r =^ uint_to_t 0) && U64.(total_len >^ uint_to_t 0) then
begin
(**) split_at_last_num_blocks_lem c i (U64.v total_len);
c.blocks_state_len i
end
else
begin
[@inline_let] let r' = FStar.Int.Cast.uint64_to_uint32 r in
(**) FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32);
(**) calc (==) {
(**) U32.v r';
(**) (==) { }
(**) U64.v r % pow2 32;
(**) (==) { FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32) }
(**) U64.v r;
(**) (==) { FStar.Math.Lemmas.euclidean_division_definition (U64.v total_len) (U64.v (uint32_to_uint64 (c.blocks_state_len i))) }
(**) U64.v total_len % U64.v (uint32_to_uint64 (c.blocks_state_len i) );
(**) (==) { }
(**) U64.v total_len % U32.v (c.blocks_state_len i);
(**) };
(**) assert(
(**) let n = split_at_last_num_blocks c i (U64.v total_len) in
(**) let l = U32.v (c.blocks_state_len i) in
(**) U32.v r' = U64.v total_len - (n * l));
r'
end
#pop-options
/// The ``nblocks`` function below allows computing, given ``total_len`` stored in
/// the state, the number of blocks of data which have been processed (the remaining
/// unprocessed data being left in ``buf``).
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let nblocks #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.blocks_state_len i) in
U32.v x * l <= U32.v len /\
U32.v x = split_at_last_num_blocks c i (U32.v len) })
=
let open FStar.Int.Cast in
[@inline_let] let l = c.blocks_state_len i in
[@inline_let] let r = rest c i (uint32_to_uint64 len) in
(**) let len_v : Ghost.erased nat = U32.v len in
(**) let l_v : Ghost.erased nat = U32.v l in
(**) let r_v : Ghost.erased nat = U32.v r in
(**) let n_s : Ghost.erased nat = split_at_last_num_blocks c i len_v in
(**) assert(Ghost.reveal len_v = n_s * l_v + r_v);
(**) Math.Lemmas.nat_times_nat_is_nat n_s l_v;
(**) assert(U32.v r <= U32.v len);
[@inline_let] let blocks = len `U32.sub` r in
(**) let blocks_v : Ghost.erased nat = U32.v blocks in
(**) assert(blocks_v % l_v = 0);
[@inline_let] let n = blocks `U32.div` l in
(**) let n_v : Ghost.erased nat = U32.v n in
(**) assert(n_v * l_v = Ghost.reveal blocks_v);
(**) split_at_last_num_blocks_spec c i len_v n_v r_v;
n
#pop-options
/// The ``rest`` function to call on the unprocessed data length in the ``finish``
/// function.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest_finish #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.block_len i) in
let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
0 <= n * l /\ n * l <= U32.v len /\
U32.v x = U32.v len - (n * l)})
=
[@inline_let] let l = c.block_len i in
[@inline_let] let r = len `U32.rem` l in
(**) split_at_last_num_blocks_lem c i (U32.v len);
if U32.(r =^ uint_to_t 0) && U32.(len >^ uint_to_t 0) then
begin
(**) begin
(**) let l = U32.v (c.block_len i) in
(**) let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
(**) Math.Lemmas.nat_times_nat_is_nat n l
(**) end;
c.block_len i
end
else
r
#pop-options
/// We always add 32-bit lengths to 64-bit lengths. Having a helper for that allows
/// doing modulo reasoning once and for all.
inline_for_extraction noextract
let add_len #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t):
Pure UInt64.t
(requires U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures fun x -> U64.v x = U64.v total_len + U32.v len /\ U64.v x <= U64.v (c.max_input_len i))
=
total_len `U64.add` Int.Cast.uint32_to_uint64 len
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let add_len_small #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t): Lemma
(requires
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i total_len) /\
U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures (rest c i (add_len c i total_len len) = rest c i total_len `U32.add` len))
=
let total_len_v = U64.v total_len in
let l = U32.v (c.blocks_state_len i) in
let b = total_len_v + U32.v len in
let n = split_at_last_num_blocks c i total_len_v in
let r = U32.v (rest c i total_len) in
assert(total_len_v = n * l + r);
let r' = U32.v (rest c i total_len) + U32.v len in
assert(r' <= l);
assert(r' = 0 ==> b = 0);
Math.Lemmas.euclidean_division_definition b l;
assert(b = n * l + r');
split_at_last_num_blocks_spec c i b n r'
#pop-options
/// Beginning of the three sub-cases (see Hacl.Streaming.Spec)
/// ==========================================================
noextract
let total_len_h #index (c: block index) (i: index) h (p: state' c i) =
State?.total_len (B.deref h p)
noextract
let split_at_last_all_seen #index (c: block index) (i: index) h (p: state' c i) =
let all_seen = all_seen c i h p in
let blocks, rest = split_at_last c i all_seen in
blocks, rest
inline_for_extraction noextract
val update_small:
#index:Type0 ->
(c: block index) ->
i:index -> (
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
Stack unit
(requires fun h0 ->
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i (total_len_h c i h0 s)))
(ensures fun h0 s' h1 ->
update_post c i s data len h0 h1))
/// SH: The proof obligations for update_small have problem succeeding in command
/// line mode: hence the restart-solver instruction, the crazy rlimit and the
/// intermediate lemma. Interestingly (and frustratingly), the proof succeeds
/// quite quickly locally on command-line with this rlimit, but fails with a lower
/// one. Besides, the lemma is needed only for the CI regression.
let split_at_last_rest_eq (#index : Type0) (c: block index)
(i: index)
(t:Type0 { t == c.state.s i })
(t':Type0 { t' == optional_key i c.km c.key })
(s: state c i t t') (h0: HS.mem) :
Lemma
(requires (
invariant c i h0 s))
(ensures (
let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
Seq.length r == U32.v sz)) =
let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
()
/// Particularly difficult proof. Z3 profiling indicates that a pattern goes off
/// the rails. So I disabled all of the known "bad" patterns, then did the proof
/// by hand. Fortunately, there were only two stateful operations. The idea was
/// to do all ofthe modifies-reasoning in the two lemmas above, then disable the
/// bad pattern for the main function.
///
/// This style is a little tedious, because it requires a little bit of digging
/// to understand what needs to hold in order to be able to prove that e.g. the
/// sequence remains unmodified from h0 to h2, but this seems more robust?
val modifies_footprint:
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
s:state' c i ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
let State _ buf_ _ _ _ = B.deref h0 s in (
update_pre c i s data len h0 /\
B.(modifies (loc_buffer buf_) h0 h1))))
(ensures (
let State bs0 buf0 _ _ k0 = B.deref h0 s in
let State bs1 buf1 _ _ k1 = B.deref h1 s in (
footprint c i h0 s == footprint c i h1 s /\
preserves_freeable c i s h0 h1 /\
bs0 == bs1 /\ buf0 == buf1 /\ k0 == k1 /\
c.state.invariant h1 bs1 /\
c.state.v i h1 bs1 == c.state.v i h0 bs0 /\
c.state.footprint h1 bs1 == c.state.footprint h0 bs0 /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_buffer buf1)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_buffer data)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_addr_of_buffer buf1)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (c.state.footprint h1 bs1)) /\
B.(loc_disjoint (loc_buffer s) (loc_buffer buf1)) /\
B.(loc_disjoint (loc_buffer s) (loc_buffer data)) /\
B.(loc_disjoint (loc_buffer s) (c.state.footprint h1 bs1)) /\
(if c.km = Runtime then
c.key.invariant #i h1 k1 /\
c.key.v i h1 k1 == c.key.v i h0 k0 /\
c.key.footprint #i h1 k1 == c.key.footprint #i h0 k0 /\
B.(loc_disjoint (loc_addr_of_buffer s) (c.key.footprint #i h1 k1)) /\
B.(loc_disjoint (loc_buffer s) (c.key.footprint #i h1 k1))
else
B.(loc_disjoint (loc_addr_of_buffer s) loc_none) /\
True)))))
let modifies_footprint c i p data len h0 h1 =
let _ = c.state.frame_freeable #i in
let _ = c.key.frame_freeable #i in
let s0 = B.deref h0 p in
let s1 = B.deref h0 p in
let State bs0 buf0 _ _ k0 = s0 in
let State bs1 buf0 _ _ k1 = s1 in
c.state.frame_invariant (B.loc_buffer buf0) bs0 h0 h1;
if c.km = Runtime then
c.key.frame_invariant #i (B.loc_buffer buf0) k0 h0 h1
val modifies_footprint':
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
p:state' c i ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
let State bs0 buf0 _ _ k0 = B.deref h0 p in
let State bs1 buf1 _ _ k1 = B.deref h1 p in (
B.live h0 p /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.state.footprint #i h0 bs0)) /\
B.(loc_disjoint (loc_addr_of_buffer p) (loc_addr_of_buffer buf0)) /\
c.state.invariant h0 bs0 /\
(if c.km = Runtime then
B.(loc_disjoint (loc_addr_of_buffer p) (c.key.footprint #i h0 k0)) /\
c.key.invariant #i h0 k0
else
B.(loc_disjoint (loc_addr_of_buffer p) loc_none)) /\
B.(modifies (loc_buffer p) h0 h1)) /\
bs0 == bs1 /\ buf0 == buf1 /\ k0 == k1))
(ensures (
let State bs0 buf0 _ _ k0 = B.deref h0 p in
let State bs1 buf1 _ _ k1 = B.deref h1 p in (
B.live h1 p /\
footprint c i h0 p == footprint c i h1 p /\
preserves_freeable c i p h0 h1 /\
B.(loc_disjoint (loc_addr_of_buffer p) (footprint_s c i h1 (B.deref h1 p))) /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.state.footprint #i h1 bs1)) /\
B.(loc_disjoint (loc_buffer p) (c.state.footprint #i h1 bs1)) /\
c.state.invariant h1 bs1 /\
c.state.v i h1 bs1 == c.state.v i h0 bs0 /\
c.state.footprint h1 bs1 == c.state.footprint h0 bs0 /\
(if c.km = Runtime then
c.key.invariant #i h1 k1 /\
c.key.v i h1 k1 == c.key.v i h0 k0 /\
c.key.footprint #i h1 k1 == c.key.footprint #i h0 k0 /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.key.footprint #i h1 k1)) /\
B.(loc_disjoint (loc_buffer p) (c.key.footprint #i h1 k1))
else
B.(loc_disjoint (loc_addr_of_buffer p) loc_none))))))
let modifies_footprint' c i p data len h0 h1 =
let _ = c.state.frame_freeable #i in
let _ = c.key.frame_freeable #i in
let _ = c.state.frame_invariant #i in
let _ = c.key.frame_invariant #i in
let _ = allow_inversion key_management in
let s0 = B.deref h0 p in
let s1 = B.deref h0 p in
let State bs0 buf0 _ _ k0 = s0 in
let State bs1 buf1 _ _ k1 = s1 in
c.state.frame_invariant (B.loc_addr_of_buffer p) bs0 h0 h1;
if c.km = Runtime then
c.key.frame_invariant #i (B.loc_addr_of_buffer p) k0 h0 h1
/// Small helper which we use to factor out functional correctness proof obligations.
/// It states that a state was correctly updated to process some data between two
/// memory snapshots (the key is the same, the seen data was updated, etc.).
///
/// Note that we don't specify anything about the buffer and the block_state: they
/// might have been updated differently depending on the case.
unfold val state_is_updated :
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Type0)
#push-options "--z3cliopt smt.arith.nl=false"
let state_is_updated #index c i t t' p data len h0 h1 =
// Functional conditions about the memory updates
let s0 = B.get h0 p 0 in
let s1 = B.get h1 p 0 in
let State block_state0 buf0 total_len0 seen0 key0 = s0 in
let State block_state1 buf1 total_len1 seen1 key1 = s1 in
block_state1 == block_state0 /\
buf1 == buf0 /\
U64.v total_len1 == U64.v total_len0 + U32.v len /\
key1 == key0 /\
seen1 `S.equal` (seen0 `S.append` (B.as_seq h0 data)) /\
optional_reveal #index #i #c.km #c.key h1 key1 == optional_reveal #index #i #c.km #c.key h0 key0
#pop-options
/// The functional part of the invariant
unfold val invariant_s_funct :
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Pure Type0 (requires
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
state_is_updated c i t t' s data len h0 h1)
(ensures (fun _ -> True))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Hacl.Streaming.Interface.block index -> i: FStar.Ghost.erased index
-> (let i = FStar.Ghost.reveal i in
t: Type0{t == Stateful?.s (Block?.state c) i} ->
t': Type0{t' == Hacl.Streaming.Interface.optional_key i (Block?.km c) (Block?.key c)} ->
s: Hacl.Streaming.Functor.state c i t t' ->
data: LowStar.Buffer.buffer Hacl.Streaming.Spec.uint8 ->
len: FStar.UInt32.t ->
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem
-> Prims.Pure Type0) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.Ghost.erased",
"Prims.eq2",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Interface.__proj__Block__item__state",
"FStar.Ghost.reveal",
"Hacl.Streaming.Interface.optional_key",
"Hacl.Streaming.Interface.__proj__Block__item__km",
"Hacl.Streaming.Interface.__proj__Block__item__key",
"Hacl.Streaming.Functor.state",
"LowStar.Buffer.buffer",
"Hacl.Streaming.Spec.uint8",
"FStar.UInt32.t",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Spec.bytes",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_Equality",
"LowStar.Monotonic.Buffer.len",
"LowStar.Buffer.trivial_preorder",
"Hacl.Streaming.Interface.__proj__Block__item__blocks_state_len",
"FStar.UInt64.t",
"FStar.Seq.Base.seq",
"Prims.l_and",
"Hacl.Streaming.Interface.__proj__Stateful__item__t",
"Hacl.Streaming.Interface.__proj__Stateful__item__v",
"Hacl.Streaming.Interface.__proj__Block__item__update_multi_s",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.slice",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.Seq.Base.length",
"Prims.unit",
"FStar.Math.Lemmas.modulo_lemma",
"FStar.UInt32.v",
"Hacl.Streaming.Interface.__proj__Block__item__block_len",
"Hacl.Streaming.Interface.__proj__Block__item__init_s",
"Hacl.Streaming.Functor.optional_reveal",
"Hacl.Streaming.Functor.state_s",
"LowStar.Monotonic.Buffer.get",
"FStar.Pervasives.Native.tuple2",
"Hacl.Streaming.Functor.split_at_last_all_seen"
] | [] | false | false | false | false | false | let invariant_s_funct #index c i t t' p data len h0 h1 =
| let blocks, rest = split_at_last_all_seen c i h1 p in
let s = B.get h1 p 0 in
let State block_state buf_ total_len seen key = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 key in
let init_s = c.init_s i key_v in
Math.Lemmas.modulo_lemma 0 (U32.v (c.block_len i));
c.state.v i h1 block_state == c.update_multi_s i init_s 0 blocks /\
S.equal (S.slice (B.as_seq h1 buf_) 0 (Seq.length rest)) rest | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.modifies_footprint | val modifies_footprint:
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
s:state' c i ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
let State _ buf_ _ _ _ = B.deref h0 s in (
update_pre c i s data len h0 /\
B.(modifies (loc_buffer buf_) h0 h1))))
(ensures (
let State bs0 buf0 _ _ k0 = B.deref h0 s in
let State bs1 buf1 _ _ k1 = B.deref h1 s in (
footprint c i h0 s == footprint c i h1 s /\
preserves_freeable c i s h0 h1 /\
bs0 == bs1 /\ buf0 == buf1 /\ k0 == k1 /\
c.state.invariant h1 bs1 /\
c.state.v i h1 bs1 == c.state.v i h0 bs0 /\
c.state.footprint h1 bs1 == c.state.footprint h0 bs0 /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_buffer buf1)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_buffer data)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_addr_of_buffer buf1)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (c.state.footprint h1 bs1)) /\
B.(loc_disjoint (loc_buffer s) (loc_buffer buf1)) /\
B.(loc_disjoint (loc_buffer s) (loc_buffer data)) /\
B.(loc_disjoint (loc_buffer s) (c.state.footprint h1 bs1)) /\
(if c.km = Runtime then
c.key.invariant #i h1 k1 /\
c.key.v i h1 k1 == c.key.v i h0 k0 /\
c.key.footprint #i h1 k1 == c.key.footprint #i h0 k0 /\
B.(loc_disjoint (loc_addr_of_buffer s) (c.key.footprint #i h1 k1)) /\
B.(loc_disjoint (loc_buffer s) (c.key.footprint #i h1 k1))
else
B.(loc_disjoint (loc_addr_of_buffer s) loc_none) /\
True))))) | val modifies_footprint:
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
s:state' c i ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
let State _ buf_ _ _ _ = B.deref h0 s in (
update_pre c i s data len h0 /\
B.(modifies (loc_buffer buf_) h0 h1))))
(ensures (
let State bs0 buf0 _ _ k0 = B.deref h0 s in
let State bs1 buf1 _ _ k1 = B.deref h1 s in (
footprint c i h0 s == footprint c i h1 s /\
preserves_freeable c i s h0 h1 /\
bs0 == bs1 /\ buf0 == buf1 /\ k0 == k1 /\
c.state.invariant h1 bs1 /\
c.state.v i h1 bs1 == c.state.v i h0 bs0 /\
c.state.footprint h1 bs1 == c.state.footprint h0 bs0 /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_buffer buf1)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_buffer data)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_addr_of_buffer buf1)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (c.state.footprint h1 bs1)) /\
B.(loc_disjoint (loc_buffer s) (loc_buffer buf1)) /\
B.(loc_disjoint (loc_buffer s) (loc_buffer data)) /\
B.(loc_disjoint (loc_buffer s) (c.state.footprint h1 bs1)) /\
(if c.km = Runtime then
c.key.invariant #i h1 k1 /\
c.key.v i h1 k1 == c.key.v i h0 k0 /\
c.key.footprint #i h1 k1 == c.key.footprint #i h0 k0 /\
B.(loc_disjoint (loc_addr_of_buffer s) (c.key.footprint #i h1 k1)) /\
B.(loc_disjoint (loc_buffer s) (c.key.footprint #i h1 k1))
else
B.(loc_disjoint (loc_addr_of_buffer s) loc_none) /\
True))))) | let modifies_footprint c i p data len h0 h1 =
let _ = c.state.frame_freeable #i in
let _ = c.key.frame_freeable #i in
let s0 = B.deref h0 p in
let s1 = B.deref h0 p in
let State bs0 buf0 _ _ k0 = s0 in
let State bs1 buf0 _ _ k1 = s1 in
c.state.frame_invariant (B.loc_buffer buf0) bs0 h0 h1;
if c.km = Runtime then
c.key.frame_invariant #i (B.loc_buffer buf0) k0 h0 h1 | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 57,
"end_line": 902,
"start_col": 0,
"start_line": 893
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
()
let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s))
let init_input (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
c.init_input_s i (reveal_key c i h s)
let all_seen (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
S.append (init_input c i h s) (seen c i h s)
let frame_invariant #index c i l s h0 h1 =
let state_t = B.deref h0 s in
let State block_state _ _ _ p_key = state_t in
c.state.frame_invariant #i l block_state h0 h1;
stateful_frame_preserves_freeable #index #c.state #i l block_state h0 h1;
allow_inversion key_management;
match c.km with
| Erased -> ()
| Runtime ->
stateful_frame_preserves_freeable #index #c.key #i l p_key h0 h1;
c.key.frame_invariant #i l p_key h0 h1
let frame_seen #_ _ _ _ _ _ _ =
()
/// Stateful API
/// ============
let index_of_state #index c i t t' s =
let open LowStar.BufferOps in
let State block_state _ _ _ _ = !*s in
c.index_of_state i block_state
let seen_length #index c i t t' s =
let open LowStar.BufferOps in
let State _ _ total_len _ _ = !*s in
total_len
(* TODO: malloc and alloca have big portions of proofs in common, so it may
* be possible to factorize them, but it is not clear how *)
#restart-solver
#push-options "--z3rlimit 500"
let malloc #index c i t t' key r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none key h0 h1;
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none key h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none key h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) c.state.frame_freeable B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 key);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 key) (c.key.footprint #i h3 k'));
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') key h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 key)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none key h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) key buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let s = B.get h8 p 0 in
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true r) (footprint c i h8 p));
(**) assert (ST.equal_stack_domains h1 h8);
(**) assert (ST.equal_stack_domains h0 h1);
p
#pop-options
#push-options "--z3rlimit 100"
let copy #index c i t t' state r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
// All source state is suffixed by 0.
let State block_state0 buf0 total_len0 seen0 k0 = !*state in
let i = c.index_of_state i block_state0 in
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
B.blit buf0 0ul buf 0ul (c.blocks_state_len i);
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h0 h1;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h1 state);
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h1 h2;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h2 state);
c.state.copy (G.hide i) block_state0 block_state;
(**) let h2 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i (c.state.footprint #i h2 block_state) k0 h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant #i B.loc_none k0 h2 h3;
(**) c.state.frame_invariant #i B.loc_none block_state h2 h3;
(**) c.state.frame_freeable #i B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k0);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k0) (c.key.footprint #i h3 k'));
c.key.copy i k0 k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant #i (c.key.footprint #i h3 k') k0 h3 h4;
(**) c.state.frame_invariant #i (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable #i (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased -> k0
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
let s = State block_state buf total_len0 seen0 k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h5 h6;
(**) c.state.frame_invariant #i B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
p
#pop-options
#push-options "--z3rlimit 200"
let alloca #index c i t t' k =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.alloca (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none k h0 h1;
let block_state = c.state.alloca i in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none k h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.alloca i in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none k h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k) (c.key.footprint #i h3 k'));
c.key.copy i k k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') k h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 k)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.alloca s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none k h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) k buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true (HS.get_tip h8)) (footprint c i h8 p));
(**) assert(ST.same_refs_in_non_tip_regions h0 h8);
p
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let reset #index c i t t' state key =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
let open LowStar.BufferOps in
(**) let h1 = ST.get () in
let State block_state buf _ _ k' = !*state in
let i = c.index_of_state i block_state in
LowStar.Ignore.ignore i; // This is only used in types and proofs
[@inline_let]
let block_state: c.state.s i = block_state in
c.init (G.hide i) key buf block_state;
(**) let h2 = ST.get () in
(**) optional_frame #_ #i #c.km #c.key (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) k' h1 h2;
(**) c.key.frame_invariant (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) key h1 h2;
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % UInt32.v (Block?.block_len c i) = 0);
(**) assert (reveal_key c i h1 state == reveal_key c i h2 state);
(**) c.update_multi_zero i (c.state.v i h2 block_state) 0;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h2 k') key h2 h4;
(**) c.state.frame_invariant (c.key.footprint #i h2 k') block_state h2 h4;
(**) stateful_frame_preserves_freeable (c.key.footprint #i h2 k') block_state h2 h4;
k'
| Erased ->
G.hide (c.key.v i h1 key)
in
(**) let h2 = ST.get () in
(**) assert(preserves_freeable c i state h1 h2);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let tmp: state_s c i t t' = State block_state buf total_len (G.hide S.empty) k' in
B.upd state 0ul tmp;
(**) let h3 = ST.get () in
(**) c.state.frame_invariant B.(loc_buffer state) block_state h2 h3;
(**) c.key.frame_invariant B.(loc_buffer state) key h2 h3;
(**) optional_frame #_ #i #c.km #c.key B.(loc_buffer state) k' h2 h3;
(**) stateful_frame_preserves_freeable B.(loc_buffer state) block_state h2 h3;
(**) assert(preserves_freeable c i state h2 h3);
// This seems to cause insurmountable difficulties. Puzzled.
ST.lemma_equal_domains_trans h1 h2 h3;
// AR: 07/22: same old `Seq.equal` and `==` story
(**) assert (Seq.equal (seen c i h3 state) Seq.empty);
(**) assert (footprint c i h1 state == footprint c i h3 state);
(**) assert (B.(modifies (footprint c i h1 state) h1 h3));
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h3 state in
(**) let all_seen_ = all_seen c i h3 state in
// SH (11/22): the proof fails if we don't introduce the call to [split_at_last]
(**) let blocks, rest = split_at_last c i all_seen_ in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert (invariant_s c i h3 (B.get h3 state 0))
(**) end;
(**) assert(preserves_freeable c i state h1 h3)
#pop-options
/// Some helpers to minimize modulo-reasoning
/// =========================================
val split_at_last_num_blocks_lem (#index : Type0) (c: block index) (i: index) (b: nat):
Lemma (
let n_blocks = split_at_last_num_blocks c i b in
let blocks = n_blocks * U32.v (c.blocks_state_len i) in
0 <= blocks /\ blocks <= b)
let split_at_last_num_blocks_lem #index c i b = ()
/// The ``rest`` function below allows computing, based ``total_len`` stored in
/// the state, the length of useful data currently stored in ``buf``.
/// Unsurprisingly, there's a fair amount of modulo reasoning here because of
/// 64-bit-to-32-bit conversions, so we do them once and for all in a helper.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest #index (c: block index) (i: index)
(total_len: UInt64.t): (x:UInt32.t {
let n = split_at_last_num_blocks c i (U64.v total_len) in
let l = U32.v (c.blocks_state_len i) in
0 <= n * l /\ n * l <= U64.v total_len /\
U32.v x = U64.v total_len - (n * l)})
=
let open FStar.Int.Cast in
[@inline_let] let l = uint32_to_uint64 (c.blocks_state_len i) in
[@inline_let] let r = total_len `U64.rem` l in
(**) let total_len_v : Ghost.erased nat = U64.v total_len in
(**) let l_v : Ghost.erased nat = U64.v l in
(**) let r_v : Ghost.erased nat = U64.v r in
(**) assert(Ghost.reveal r_v = total_len_v - ((total_len_v / l_v) * l_v));
(**) Math.Lemmas.euclidean_division_definition total_len_v l_v;
(**) assert(Ghost.reveal r_v = total_len_v % l_v);
(**) assert(r_v < l_v);
if U64.(r =^ uint_to_t 0) && U64.(total_len >^ uint_to_t 0) then
begin
(**) split_at_last_num_blocks_lem c i (U64.v total_len);
c.blocks_state_len i
end
else
begin
[@inline_let] let r' = FStar.Int.Cast.uint64_to_uint32 r in
(**) FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32);
(**) calc (==) {
(**) U32.v r';
(**) (==) { }
(**) U64.v r % pow2 32;
(**) (==) { FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32) }
(**) U64.v r;
(**) (==) { FStar.Math.Lemmas.euclidean_division_definition (U64.v total_len) (U64.v (uint32_to_uint64 (c.blocks_state_len i))) }
(**) U64.v total_len % U64.v (uint32_to_uint64 (c.blocks_state_len i) );
(**) (==) { }
(**) U64.v total_len % U32.v (c.blocks_state_len i);
(**) };
(**) assert(
(**) let n = split_at_last_num_blocks c i (U64.v total_len) in
(**) let l = U32.v (c.blocks_state_len i) in
(**) U32.v r' = U64.v total_len - (n * l));
r'
end
#pop-options
/// The ``nblocks`` function below allows computing, given ``total_len`` stored in
/// the state, the number of blocks of data which have been processed (the remaining
/// unprocessed data being left in ``buf``).
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let nblocks #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.blocks_state_len i) in
U32.v x * l <= U32.v len /\
U32.v x = split_at_last_num_blocks c i (U32.v len) })
=
let open FStar.Int.Cast in
[@inline_let] let l = c.blocks_state_len i in
[@inline_let] let r = rest c i (uint32_to_uint64 len) in
(**) let len_v : Ghost.erased nat = U32.v len in
(**) let l_v : Ghost.erased nat = U32.v l in
(**) let r_v : Ghost.erased nat = U32.v r in
(**) let n_s : Ghost.erased nat = split_at_last_num_blocks c i len_v in
(**) assert(Ghost.reveal len_v = n_s * l_v + r_v);
(**) Math.Lemmas.nat_times_nat_is_nat n_s l_v;
(**) assert(U32.v r <= U32.v len);
[@inline_let] let blocks = len `U32.sub` r in
(**) let blocks_v : Ghost.erased nat = U32.v blocks in
(**) assert(blocks_v % l_v = 0);
[@inline_let] let n = blocks `U32.div` l in
(**) let n_v : Ghost.erased nat = U32.v n in
(**) assert(n_v * l_v = Ghost.reveal blocks_v);
(**) split_at_last_num_blocks_spec c i len_v n_v r_v;
n
#pop-options
/// The ``rest`` function to call on the unprocessed data length in the ``finish``
/// function.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest_finish #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.block_len i) in
let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
0 <= n * l /\ n * l <= U32.v len /\
U32.v x = U32.v len - (n * l)})
=
[@inline_let] let l = c.block_len i in
[@inline_let] let r = len `U32.rem` l in
(**) split_at_last_num_blocks_lem c i (U32.v len);
if U32.(r =^ uint_to_t 0) && U32.(len >^ uint_to_t 0) then
begin
(**) begin
(**) let l = U32.v (c.block_len i) in
(**) let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
(**) Math.Lemmas.nat_times_nat_is_nat n l
(**) end;
c.block_len i
end
else
r
#pop-options
/// We always add 32-bit lengths to 64-bit lengths. Having a helper for that allows
/// doing modulo reasoning once and for all.
inline_for_extraction noextract
let add_len #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t):
Pure UInt64.t
(requires U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures fun x -> U64.v x = U64.v total_len + U32.v len /\ U64.v x <= U64.v (c.max_input_len i))
=
total_len `U64.add` Int.Cast.uint32_to_uint64 len
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let add_len_small #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t): Lemma
(requires
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i total_len) /\
U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures (rest c i (add_len c i total_len len) = rest c i total_len `U32.add` len))
=
let total_len_v = U64.v total_len in
let l = U32.v (c.blocks_state_len i) in
let b = total_len_v + U32.v len in
let n = split_at_last_num_blocks c i total_len_v in
let r = U32.v (rest c i total_len) in
assert(total_len_v = n * l + r);
let r' = U32.v (rest c i total_len) + U32.v len in
assert(r' <= l);
assert(r' = 0 ==> b = 0);
Math.Lemmas.euclidean_division_definition b l;
assert(b = n * l + r');
split_at_last_num_blocks_spec c i b n r'
#pop-options
/// Beginning of the three sub-cases (see Hacl.Streaming.Spec)
/// ==========================================================
noextract
let total_len_h #index (c: block index) (i: index) h (p: state' c i) =
State?.total_len (B.deref h p)
noextract
let split_at_last_all_seen #index (c: block index) (i: index) h (p: state' c i) =
let all_seen = all_seen c i h p in
let blocks, rest = split_at_last c i all_seen in
blocks, rest
inline_for_extraction noextract
val update_small:
#index:Type0 ->
(c: block index) ->
i:index -> (
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
Stack unit
(requires fun h0 ->
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i (total_len_h c i h0 s)))
(ensures fun h0 s' h1 ->
update_post c i s data len h0 h1))
/// SH: The proof obligations for update_small have problem succeeding in command
/// line mode: hence the restart-solver instruction, the crazy rlimit and the
/// intermediate lemma. Interestingly (and frustratingly), the proof succeeds
/// quite quickly locally on command-line with this rlimit, but fails with a lower
/// one. Besides, the lemma is needed only for the CI regression.
let split_at_last_rest_eq (#index : Type0) (c: block index)
(i: index)
(t:Type0 { t == c.state.s i })
(t':Type0 { t' == optional_key i c.km c.key })
(s: state c i t t') (h0: HS.mem) :
Lemma
(requires (
invariant c i h0 s))
(ensures (
let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
Seq.length r == U32.v sz)) =
let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
()
/// Particularly difficult proof. Z3 profiling indicates that a pattern goes off
/// the rails. So I disabled all of the known "bad" patterns, then did the proof
/// by hand. Fortunately, there were only two stateful operations. The idea was
/// to do all ofthe modifies-reasoning in the two lemmas above, then disable the
/// bad pattern for the main function.
///
/// This style is a little tedious, because it requires a little bit of digging
/// to understand what needs to hold in order to be able to prove that e.g. the
/// sequence remains unmodified from h0 to h2, but this seems more robust?
val modifies_footprint:
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
s:state' c i ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
let State _ buf_ _ _ _ = B.deref h0 s in (
update_pre c i s data len h0 /\
B.(modifies (loc_buffer buf_) h0 h1))))
(ensures (
let State bs0 buf0 _ _ k0 = B.deref h0 s in
let State bs1 buf1 _ _ k1 = B.deref h1 s in (
footprint c i h0 s == footprint c i h1 s /\
preserves_freeable c i s h0 h1 /\
bs0 == bs1 /\ buf0 == buf1 /\ k0 == k1 /\
c.state.invariant h1 bs1 /\
c.state.v i h1 bs1 == c.state.v i h0 bs0 /\
c.state.footprint h1 bs1 == c.state.footprint h0 bs0 /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_buffer buf1)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_buffer data)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_addr_of_buffer buf1)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (c.state.footprint h1 bs1)) /\
B.(loc_disjoint (loc_buffer s) (loc_buffer buf1)) /\
B.(loc_disjoint (loc_buffer s) (loc_buffer data)) /\
B.(loc_disjoint (loc_buffer s) (c.state.footprint h1 bs1)) /\
(if c.km = Runtime then
c.key.invariant #i h1 k1 /\
c.key.v i h1 k1 == c.key.v i h0 k0 /\
c.key.footprint #i h1 k1 == c.key.footprint #i h0 k0 /\
B.(loc_disjoint (loc_addr_of_buffer s) (c.key.footprint #i h1 k1)) /\
B.(loc_disjoint (loc_buffer s) (c.key.footprint #i h1 k1))
else
B.(loc_disjoint (loc_addr_of_buffer s) loc_none) /\
True))))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Hacl.Streaming.Interface.block index -> i: FStar.Ghost.erased index
-> (let i = FStar.Ghost.reveal i in
s: Hacl.Streaming.Functor.state' c i ->
data: LowStar.Buffer.buffer Hacl.Streaming.Spec.uint8 ->
len: FStar.UInt32.t ->
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem
-> FStar.Pervasives.Lemma
(requires
(let _ = LowStar.Monotonic.Buffer.deref h0 s in
(let Hacl.Streaming.Functor.State #_ #_ #_ #_ #_ _ buf_ _ _ _ = _ in
Hacl.Streaming.Functor.update_pre c i s data len h0 /\
LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_buffer buf_) h0 h1
)
<:
Type0))
(ensures
(let _ = LowStar.Monotonic.Buffer.deref h0 s in
(let Hacl.Streaming.Functor.State #_ #_ #_ #_ #_ bs0 buf0 _ _ k0 = _ in
let _ = LowStar.Monotonic.Buffer.deref h1 s in
(let Hacl.Streaming.Functor.State #_ #_ #_ #_ #_ bs1 buf1 _ _ k1 = _ in
Hacl.Streaming.Functor.footprint c i h0 s ==
Hacl.Streaming.Functor.footprint c i h1 s /\
Hacl.Streaming.Functor.preserves_freeable c i s h0 h1 /\ bs0 == bs1 /\
buf0 == buf1 /\ k0 == k1 /\ Stateful?.invariant (Block?.state c) h1 bs1 /\
Stateful?.v (Block?.state c) i h1 bs1 == Stateful?.v (Block?.state c) i h0 bs0 /\
Stateful?.footprint (Block?.state c) h1 bs1 ==
Stateful?.footprint (Block?.state c) h0 bs0 /\
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_addr_of_buffer
s)
(LowStar.Monotonic.Buffer.loc_buffer buf1) /\
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_addr_of_buffer
s)
(LowStar.Monotonic.Buffer.loc_buffer data) /\
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_addr_of_buffer
s)
(LowStar.Monotonic.Buffer.loc_addr_of_buffer buf1) /\
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_addr_of_buffer
s)
(Stateful?.footprint (Block?.state c) h1 bs1) /\
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_buffer s)
(LowStar.Monotonic.Buffer.loc_buffer buf1) /\
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_buffer s)
(LowStar.Monotonic.Buffer.loc_buffer data) /\
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_buffer s)
(Stateful?.footprint (Block?.state c) h1 bs1) /\
(match Block?.km c = Hacl.Streaming.Interface.Runtime with
| true ->
Stateful?.invariant (Block?.key c) h1 k1 /\
Stateful?.v (Block?.key c) i h1 k1 == Stateful?.v (Block?.key c) i h0 k0 /\
Stateful?.footprint (Block?.key c) h1 k1 ==
Stateful?.footprint (Block?.key c) h0 k0 /\
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_addr_of_buffer
s)
(Stateful?.footprint (Block?.key c) h1 k1) /\
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_buffer s
)
(Stateful?.footprint (Block?.key c) h1 k1)
| _ ->
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_addr_of_buffer
s)
LowStar.Monotonic.Buffer.loc_none /\ Prims.l_True))
<:
Type0)
<:
Type0))) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.Ghost.erased",
"Hacl.Streaming.Functor.state'",
"FStar.Ghost.reveal",
"LowStar.Buffer.buffer",
"Hacl.Streaming.Spec.uint8",
"FStar.UInt32.t",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Interface.__proj__Block__item__state",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_Equality",
"LowStar.Monotonic.Buffer.len",
"LowStar.Buffer.trivial_preorder",
"Hacl.Streaming.Interface.__proj__Block__item__blocks_state_len",
"FStar.UInt64.t",
"FStar.Seq.Base.seq",
"Hacl.Streaming.Interface.optional_key",
"Hacl.Streaming.Interface.__proj__Block__item__km",
"Hacl.Streaming.Interface.__proj__Block__item__key",
"Hacl.Streaming.Interface.key_management",
"Hacl.Streaming.Interface.Runtime",
"Hacl.Streaming.Interface.__proj__Stateful__item__frame_invariant",
"LowStar.Monotonic.Buffer.loc_buffer",
"Prims.bool",
"Prims.unit",
"Hacl.Streaming.Functor.state_s",
"LowStar.Monotonic.Buffer.deref",
"LowStar.Monotonic.Buffer.loc",
"Prims.l_and",
"Hacl.Streaming.Interface.__proj__Stateful__item__invariant",
"Hacl.Streaming.Interface.__proj__Stateful__item__freeable",
"LowStar.Monotonic.Buffer.loc_disjoint",
"Hacl.Streaming.Interface.__proj__Stateful__item__footprint",
"LowStar.Monotonic.Buffer.modifies",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil",
"Hacl.Streaming.Interface.__proj__Stateful__item__frame_freeable"
] | [] | false | false | false | false | false | let modifies_footprint c i p data len h0 h1 =
| let _ = c.state.frame_freeable #i in
let _ = c.key.frame_freeable #i in
let s0 = B.deref h0 p in
let s1 = B.deref h0 p in
let State bs0 buf0 _ _ k0 = s0 in
let State bs1 buf0 _ _ k1 = s1 in
c.state.frame_invariant (B.loc_buffer buf0) bs0 h0 h1;
if c.km = Runtime then c.key.frame_invariant #i (B.loc_buffer buf0) k0 h0 h1 | false |
Hacl.Impl.P256.Scalar.fst | Hacl.Impl.P256.Scalar.bn_is_lt_order_and_gt_zero_mask4 | val bn_is_lt_order_and_gt_zero_mask4: f:felem -> Stack uint64
(requires fun h -> live h f)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
(if 0 < as_nat h0 f && as_nat h0 f < S.order then v r = ones_v U64 else v r = 0)) | val bn_is_lt_order_and_gt_zero_mask4: f:felem -> Stack uint64
(requires fun h -> live h f)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
(if 0 < as_nat h0 f && as_nat h0 f < S.order then v r = ones_v U64 else v r = 0)) | let bn_is_lt_order_and_gt_zero_mask4 f =
let h0 = ST.get () in
let is_lt_order = bn_is_lt_order_mask4 f in
assert (v is_lt_order = (if as_nat h0 f < S.order then ones_v U64 else 0));
let is_eq_zero = bn_is_zero_mask4 f in
assert (v is_eq_zero = (if as_nat h0 f = 0 then ones_v U64 else 0));
lognot_lemma is_eq_zero;
assert (v (lognot is_eq_zero) = (if 0 < as_nat h0 f then ones_v U64 else 0));
let res = logand is_lt_order (lognot is_eq_zero) in
logand_lemma is_lt_order (lognot is_eq_zero);
assert (v res == (if 0 < as_nat h0 f && as_nat h0 f < S.order then ones_v U64 else 0));
res | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Scalar.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 65,
"start_col": 0,
"start_line": 53
} | module Hacl.Impl.P256.Scalar
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
module ST = FStar.HyperStack.ST
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
open Hacl.Impl.P256.Constants
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module BM = Hacl.Bignum.Montgomery
friend Hacl.Bignum256
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// Create one
[@CInline]
let make_qone f =
[@inline_let] let f0 = u64 0xc46353d039cdaaf in
[@inline_let] let f1 = u64 0x4319055258e8617b in
[@inline_let] let f2 = u64 0x0 in
[@inline_let] let f3 = u64 0xffffffff in
assert_norm (v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 < S.order);
assert_norm (v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 == SM.to_qmont 1);
SM.lemma_to_from_qmont_id 1;
bn_make_u64_4 f f0 f1 f2 f3
/// Comparison
[@CInline]
let bn_is_lt_order_mask4 f =
let h0 = ST.get () in
push_frame ();
let tmp = create_felem () in
make_order tmp;
let c = bn_sub4 tmp f tmp in
assert (if v c = 0 then as_nat h0 f >= S.order else as_nat h0 f < S.order);
pop_frame ();
u64 0 -. c | {
"checked_file": "/",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Constants.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"Hacl.Bignum256.fst.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Impl.P256.Scalar.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Constants",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Hacl.Impl.P256.Bignum.felem -> FStar.HyperStack.ST.Stack Lib.IntTypes.uint64 | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.P256.Bignum.felem",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.op_AmpAmp",
"Prims.op_LessThan",
"Hacl.Impl.P256.Bignum.as_nat",
"Spec.P256.PointOps.order",
"Lib.IntTypes.ones_v",
"Prims.bool",
"Lib.IntTypes.logand_lemma",
"Lib.IntTypes.lognot",
"Lib.IntTypes.int_t",
"Lib.IntTypes.logand",
"Prims.b2t",
"Prims.op_Equality",
"Lib.IntTypes.lognot_lemma",
"Lib.IntTypes.uint64",
"Hacl.Impl.P256.Bignum.bn_is_zero_mask4",
"Hacl.Impl.P256.Scalar.bn_is_lt_order_mask4",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get"
] | [] | false | true | false | false | false | let bn_is_lt_order_and_gt_zero_mask4 f =
| let h0 = ST.get () in
let is_lt_order = bn_is_lt_order_mask4 f in
assert (v is_lt_order = (if as_nat h0 f < S.order then ones_v U64 else 0));
let is_eq_zero = bn_is_zero_mask4 f in
assert (v is_eq_zero = (if as_nat h0 f = 0 then ones_v U64 else 0));
lognot_lemma is_eq_zero;
assert (v (lognot is_eq_zero) = (if 0 < as_nat h0 f then ones_v U64 else 0));
let res = logand is_lt_order (lognot is_eq_zero) in
logand_lemma is_lt_order (lognot is_eq_zero);
assert (v res == (if 0 < as_nat h0 f && as_nat h0 f < S.order then ones_v U64 else 0));
res | false |
Hacl.Impl.P256.Scalar.fst | Hacl.Impl.P256.Scalar.make_qone | val make_qone: f:felem -> Stack unit
(requires fun h -> live h f)
(ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\
as_nat h1 f < S.order /\
qmont_as_nat h1 f == 1) | val make_qone: f:felem -> Stack unit
(requires fun h -> live h f)
(ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\
as_nat h1 f < S.order /\
qmont_as_nat h1 f == 1) | let make_qone f =
[@inline_let] let f0 = u64 0xc46353d039cdaaf in
[@inline_let] let f1 = u64 0x4319055258e8617b in
[@inline_let] let f2 = u64 0x0 in
[@inline_let] let f3 = u64 0xffffffff in
assert_norm (v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 < S.order);
assert_norm (v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 == SM.to_qmont 1);
SM.lemma_to_from_qmont_id 1;
bn_make_u64_4 f f0 f1 f2 f3 | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Scalar.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 29,
"end_line": 35,
"start_col": 0,
"start_line": 27
} | module Hacl.Impl.P256.Scalar
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
module ST = FStar.HyperStack.ST
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
open Hacl.Impl.P256.Constants
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module BM = Hacl.Bignum.Montgomery
friend Hacl.Bignum256
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// Create one | {
"checked_file": "/",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Constants.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"Hacl.Bignum256.fst.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Impl.P256.Scalar.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Constants",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Hacl.Impl.P256.Bignum.felem -> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.P256.Bignum.felem",
"Hacl.Impl.P256.Bignum.bn_make_u64_4",
"Prims.unit",
"Hacl.Spec.P256.Montgomery.lemma_to_from_qmont_id",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"Prims.op_Addition",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.Mul.op_Star",
"Prims.pow2",
"Hacl.Spec.P256.Montgomery.to_qmont",
"Prims.b2t",
"Prims.op_LessThan",
"Spec.P256.PointOps.order",
"Lib.IntTypes.int_t",
"Lib.IntTypes.range",
"Lib.IntTypes.u64"
] | [] | false | true | false | false | false | let make_qone f =
| [@@ inline_let ]let f0 = u64 0xc46353d039cdaaf in
[@@ inline_let ]let f1 = u64 0x4319055258e8617b in
[@@ inline_let ]let f2 = u64 0x0 in
[@@ inline_let ]let f3 = u64 0xffffffff in
assert_norm (v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 < S.order);
assert_norm (v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 == SM.to_qmont 1);
SM.lemma_to_from_qmont_id 1;
bn_make_u64_4 f f0 f1 f2 f3 | false |
Hacl.Impl.P256.Scalar.fst | Hacl.Impl.P256.Scalar.qmod_short_lemma | val qmod_short_lemma: a:nat{a < pow2 256} ->
Lemma (let r = if a >= S.order then a - S.order else a in r = a % S.order) | val qmod_short_lemma: a:nat{a < pow2 256} ->
Lemma (let r = if a >= S.order then a - S.order else a in r = a % S.order) | let qmod_short_lemma a =
let r = if a >= S.order then a - S.order else a in
if a >= S.order then begin
Math.Lemmas.lemma_mod_sub a S.order 1;
assert_norm (pow2 256 - S.order < S.order);
Math.Lemmas.small_mod r S.order end
else
Math.Lemmas.small_mod r S.order | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Scalar.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 95,
"start_col": 0,
"start_line": 88
} | module Hacl.Impl.P256.Scalar
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
module ST = FStar.HyperStack.ST
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
open Hacl.Impl.P256.Constants
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module BM = Hacl.Bignum.Montgomery
friend Hacl.Bignum256
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// Create one
[@CInline]
let make_qone f =
[@inline_let] let f0 = u64 0xc46353d039cdaaf in
[@inline_let] let f1 = u64 0x4319055258e8617b in
[@inline_let] let f2 = u64 0x0 in
[@inline_let] let f3 = u64 0xffffffff in
assert_norm (v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 < S.order);
assert_norm (v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 == SM.to_qmont 1);
SM.lemma_to_from_qmont_id 1;
bn_make_u64_4 f f0 f1 f2 f3
/// Comparison
[@CInline]
let bn_is_lt_order_mask4 f =
let h0 = ST.get () in
push_frame ();
let tmp = create_felem () in
make_order tmp;
let c = bn_sub4 tmp f tmp in
assert (if v c = 0 then as_nat h0 f >= S.order else as_nat h0 f < S.order);
pop_frame ();
u64 0 -. c
[@CInline]
let bn_is_lt_order_and_gt_zero_mask4 f =
let h0 = ST.get () in
let is_lt_order = bn_is_lt_order_mask4 f in
assert (v is_lt_order = (if as_nat h0 f < S.order then ones_v U64 else 0));
let is_eq_zero = bn_is_zero_mask4 f in
assert (v is_eq_zero = (if as_nat h0 f = 0 then ones_v U64 else 0));
lognot_lemma is_eq_zero;
assert (v (lognot is_eq_zero) = (if 0 < as_nat h0 f then ones_v U64 else 0));
let res = logand is_lt_order (lognot is_eq_zero) in
logand_lemma is_lt_order (lognot is_eq_zero);
assert (v res == (if 0 < as_nat h0 f && as_nat h0 f < S.order then ones_v U64 else 0));
res
let load_qelem_conditional res b =
push_frame ();
bn_from_bytes_be4 res b;
let is_b_valid = bn_is_lt_order_and_gt_zero_mask4 res in
let oneq = create_felem () in
bn_set_one4 oneq;
let h0 = ST.get () in
Lib.ByteBuffer.buf_mask_select res oneq is_b_valid res;
let h1 = ST.get () in
assert (as_seq h1 res == (if (v is_b_valid = 0) then as_seq h0 oneq else as_seq h0 res));
pop_frame ();
is_b_valid
/// Field Arithmetic
val qmod_short_lemma: a:nat{a < pow2 256} ->
Lemma (let r = if a >= S.order then a - S.order else a in r = a % S.order) | {
"checked_file": "/",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Constants.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"Hacl.Bignum256.fst.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Impl.P256.Scalar.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Prims.nat{a < Prims.pow2 256}
-> FStar.Pervasives.Lemma
(ensures
(let r =
(match a >= Spec.P256.PointOps.order with
| true -> a - Spec.P256.PointOps.order
| _ -> a)
<:
Prims.int
in
r = a % Spec.P256.PointOps.order)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.op_GreaterThanOrEqual",
"Spec.P256.PointOps.order",
"FStar.Math.Lemmas.small_mod",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Subtraction",
"FStar.Math.Lemmas.lemma_mod_sub",
"Prims.bool"
] | [] | false | false | true | false | false | let qmod_short_lemma a =
| let r = if a >= S.order then a - S.order else a in
if a >= S.order
then
(Math.Lemmas.lemma_mod_sub a S.order 1;
assert_norm (pow2 256 - S.order < S.order);
Math.Lemmas.small_mod r S.order)
else Math.Lemmas.small_mod r S.order | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.free | val free:
#index:Type0 ->
c:block index ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
free_st #index c i t t') | val free:
#index:Type0 ->
c:block index ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
free_st #index c i t t') | let free #index c i t t' state =
let _ = allow_inversion key_management in
let open LowStar.BufferOps in
let State block_state buf _ _ k' = !*state in
let h0 = ST.get () in
begin match c.km with
| Runtime -> c.key.free i k'
| Erased -> ()
end;
let h1 = ST.get () in
c.state.frame_freeable #i (optional_footprint #index #i #c.km #c.key h0 k') block_state h0 h1;
c.state.frame_invariant #i (optional_footprint #index #i #c.km #c.key h0 k') block_state h0 h1;
c.state.free i block_state;
B.free buf;
B.free state | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 14,
"end_line": 1817,
"start_col": 0,
"start_line": 1803
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
()
let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s))
let init_input (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
c.init_input_s i (reveal_key c i h s)
let all_seen (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
S.append (init_input c i h s) (seen c i h s)
let frame_invariant #index c i l s h0 h1 =
let state_t = B.deref h0 s in
let State block_state _ _ _ p_key = state_t in
c.state.frame_invariant #i l block_state h0 h1;
stateful_frame_preserves_freeable #index #c.state #i l block_state h0 h1;
allow_inversion key_management;
match c.km with
| Erased -> ()
| Runtime ->
stateful_frame_preserves_freeable #index #c.key #i l p_key h0 h1;
c.key.frame_invariant #i l p_key h0 h1
let frame_seen #_ _ _ _ _ _ _ =
()
/// Stateful API
/// ============
let index_of_state #index c i t t' s =
let open LowStar.BufferOps in
let State block_state _ _ _ _ = !*s in
c.index_of_state i block_state
let seen_length #index c i t t' s =
let open LowStar.BufferOps in
let State _ _ total_len _ _ = !*s in
total_len
(* TODO: malloc and alloca have big portions of proofs in common, so it may
* be possible to factorize them, but it is not clear how *)
#restart-solver
#push-options "--z3rlimit 500"
let malloc #index c i t t' key r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none key h0 h1;
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none key h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none key h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) c.state.frame_freeable B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 key);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 key) (c.key.footprint #i h3 k'));
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') key h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 key)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none key h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) key buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let s = B.get h8 p 0 in
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true r) (footprint c i h8 p));
(**) assert (ST.equal_stack_domains h1 h8);
(**) assert (ST.equal_stack_domains h0 h1);
p
#pop-options
#push-options "--z3rlimit 100"
let copy #index c i t t' state r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
// All source state is suffixed by 0.
let State block_state0 buf0 total_len0 seen0 k0 = !*state in
let i = c.index_of_state i block_state0 in
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
B.blit buf0 0ul buf 0ul (c.blocks_state_len i);
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h0 h1;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h1 state);
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h1 h2;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h2 state);
c.state.copy (G.hide i) block_state0 block_state;
(**) let h2 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i (c.state.footprint #i h2 block_state) k0 h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant #i B.loc_none k0 h2 h3;
(**) c.state.frame_invariant #i B.loc_none block_state h2 h3;
(**) c.state.frame_freeable #i B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k0);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k0) (c.key.footprint #i h3 k'));
c.key.copy i k0 k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant #i (c.key.footprint #i h3 k') k0 h3 h4;
(**) c.state.frame_invariant #i (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable #i (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased -> k0
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
let s = State block_state buf total_len0 seen0 k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h5 h6;
(**) c.state.frame_invariant #i B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
p
#pop-options
#push-options "--z3rlimit 200"
let alloca #index c i t t' k =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.alloca (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none k h0 h1;
let block_state = c.state.alloca i in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none k h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.alloca i in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none k h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k) (c.key.footprint #i h3 k'));
c.key.copy i k k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') k h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 k)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.alloca s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none k h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) k buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true (HS.get_tip h8)) (footprint c i h8 p));
(**) assert(ST.same_refs_in_non_tip_regions h0 h8);
p
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let reset #index c i t t' state key =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
let open LowStar.BufferOps in
(**) let h1 = ST.get () in
let State block_state buf _ _ k' = !*state in
let i = c.index_of_state i block_state in
LowStar.Ignore.ignore i; // This is only used in types and proofs
[@inline_let]
let block_state: c.state.s i = block_state in
c.init (G.hide i) key buf block_state;
(**) let h2 = ST.get () in
(**) optional_frame #_ #i #c.km #c.key (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) k' h1 h2;
(**) c.key.frame_invariant (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) key h1 h2;
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % UInt32.v (Block?.block_len c i) = 0);
(**) assert (reveal_key c i h1 state == reveal_key c i h2 state);
(**) c.update_multi_zero i (c.state.v i h2 block_state) 0;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h2 k') key h2 h4;
(**) c.state.frame_invariant (c.key.footprint #i h2 k') block_state h2 h4;
(**) stateful_frame_preserves_freeable (c.key.footprint #i h2 k') block_state h2 h4;
k'
| Erased ->
G.hide (c.key.v i h1 key)
in
(**) let h2 = ST.get () in
(**) assert(preserves_freeable c i state h1 h2);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let tmp: state_s c i t t' = State block_state buf total_len (G.hide S.empty) k' in
B.upd state 0ul tmp;
(**) let h3 = ST.get () in
(**) c.state.frame_invariant B.(loc_buffer state) block_state h2 h3;
(**) c.key.frame_invariant B.(loc_buffer state) key h2 h3;
(**) optional_frame #_ #i #c.km #c.key B.(loc_buffer state) k' h2 h3;
(**) stateful_frame_preserves_freeable B.(loc_buffer state) block_state h2 h3;
(**) assert(preserves_freeable c i state h2 h3);
// This seems to cause insurmountable difficulties. Puzzled.
ST.lemma_equal_domains_trans h1 h2 h3;
// AR: 07/22: same old `Seq.equal` and `==` story
(**) assert (Seq.equal (seen c i h3 state) Seq.empty);
(**) assert (footprint c i h1 state == footprint c i h3 state);
(**) assert (B.(modifies (footprint c i h1 state) h1 h3));
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h3 state in
(**) let all_seen_ = all_seen c i h3 state in
// SH (11/22): the proof fails if we don't introduce the call to [split_at_last]
(**) let blocks, rest = split_at_last c i all_seen_ in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert (invariant_s c i h3 (B.get h3 state 0))
(**) end;
(**) assert(preserves_freeable c i state h1 h3)
#pop-options
/// Some helpers to minimize modulo-reasoning
/// =========================================
val split_at_last_num_blocks_lem (#index : Type0) (c: block index) (i: index) (b: nat):
Lemma (
let n_blocks = split_at_last_num_blocks c i b in
let blocks = n_blocks * U32.v (c.blocks_state_len i) in
0 <= blocks /\ blocks <= b)
let split_at_last_num_blocks_lem #index c i b = ()
/// The ``rest`` function below allows computing, based ``total_len`` stored in
/// the state, the length of useful data currently stored in ``buf``.
/// Unsurprisingly, there's a fair amount of modulo reasoning here because of
/// 64-bit-to-32-bit conversions, so we do them once and for all in a helper.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest #index (c: block index) (i: index)
(total_len: UInt64.t): (x:UInt32.t {
let n = split_at_last_num_blocks c i (U64.v total_len) in
let l = U32.v (c.blocks_state_len i) in
0 <= n * l /\ n * l <= U64.v total_len /\
U32.v x = U64.v total_len - (n * l)})
=
let open FStar.Int.Cast in
[@inline_let] let l = uint32_to_uint64 (c.blocks_state_len i) in
[@inline_let] let r = total_len `U64.rem` l in
(**) let total_len_v : Ghost.erased nat = U64.v total_len in
(**) let l_v : Ghost.erased nat = U64.v l in
(**) let r_v : Ghost.erased nat = U64.v r in
(**) assert(Ghost.reveal r_v = total_len_v - ((total_len_v / l_v) * l_v));
(**) Math.Lemmas.euclidean_division_definition total_len_v l_v;
(**) assert(Ghost.reveal r_v = total_len_v % l_v);
(**) assert(r_v < l_v);
if U64.(r =^ uint_to_t 0) && U64.(total_len >^ uint_to_t 0) then
begin
(**) split_at_last_num_blocks_lem c i (U64.v total_len);
c.blocks_state_len i
end
else
begin
[@inline_let] let r' = FStar.Int.Cast.uint64_to_uint32 r in
(**) FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32);
(**) calc (==) {
(**) U32.v r';
(**) (==) { }
(**) U64.v r % pow2 32;
(**) (==) { FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32) }
(**) U64.v r;
(**) (==) { FStar.Math.Lemmas.euclidean_division_definition (U64.v total_len) (U64.v (uint32_to_uint64 (c.blocks_state_len i))) }
(**) U64.v total_len % U64.v (uint32_to_uint64 (c.blocks_state_len i) );
(**) (==) { }
(**) U64.v total_len % U32.v (c.blocks_state_len i);
(**) };
(**) assert(
(**) let n = split_at_last_num_blocks c i (U64.v total_len) in
(**) let l = U32.v (c.blocks_state_len i) in
(**) U32.v r' = U64.v total_len - (n * l));
r'
end
#pop-options
/// The ``nblocks`` function below allows computing, given ``total_len`` stored in
/// the state, the number of blocks of data which have been processed (the remaining
/// unprocessed data being left in ``buf``).
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let nblocks #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.blocks_state_len i) in
U32.v x * l <= U32.v len /\
U32.v x = split_at_last_num_blocks c i (U32.v len) })
=
let open FStar.Int.Cast in
[@inline_let] let l = c.blocks_state_len i in
[@inline_let] let r = rest c i (uint32_to_uint64 len) in
(**) let len_v : Ghost.erased nat = U32.v len in
(**) let l_v : Ghost.erased nat = U32.v l in
(**) let r_v : Ghost.erased nat = U32.v r in
(**) let n_s : Ghost.erased nat = split_at_last_num_blocks c i len_v in
(**) assert(Ghost.reveal len_v = n_s * l_v + r_v);
(**) Math.Lemmas.nat_times_nat_is_nat n_s l_v;
(**) assert(U32.v r <= U32.v len);
[@inline_let] let blocks = len `U32.sub` r in
(**) let blocks_v : Ghost.erased nat = U32.v blocks in
(**) assert(blocks_v % l_v = 0);
[@inline_let] let n = blocks `U32.div` l in
(**) let n_v : Ghost.erased nat = U32.v n in
(**) assert(n_v * l_v = Ghost.reveal blocks_v);
(**) split_at_last_num_blocks_spec c i len_v n_v r_v;
n
#pop-options
/// The ``rest`` function to call on the unprocessed data length in the ``finish``
/// function.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest_finish #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.block_len i) in
let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
0 <= n * l /\ n * l <= U32.v len /\
U32.v x = U32.v len - (n * l)})
=
[@inline_let] let l = c.block_len i in
[@inline_let] let r = len `U32.rem` l in
(**) split_at_last_num_blocks_lem c i (U32.v len);
if U32.(r =^ uint_to_t 0) && U32.(len >^ uint_to_t 0) then
begin
(**) begin
(**) let l = U32.v (c.block_len i) in
(**) let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
(**) Math.Lemmas.nat_times_nat_is_nat n l
(**) end;
c.block_len i
end
else
r
#pop-options
/// We always add 32-bit lengths to 64-bit lengths. Having a helper for that allows
/// doing modulo reasoning once and for all.
inline_for_extraction noextract
let add_len #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t):
Pure UInt64.t
(requires U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures fun x -> U64.v x = U64.v total_len + U32.v len /\ U64.v x <= U64.v (c.max_input_len i))
=
total_len `U64.add` Int.Cast.uint32_to_uint64 len
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let add_len_small #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t): Lemma
(requires
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i total_len) /\
U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures (rest c i (add_len c i total_len len) = rest c i total_len `U32.add` len))
=
let total_len_v = U64.v total_len in
let l = U32.v (c.blocks_state_len i) in
let b = total_len_v + U32.v len in
let n = split_at_last_num_blocks c i total_len_v in
let r = U32.v (rest c i total_len) in
assert(total_len_v = n * l + r);
let r' = U32.v (rest c i total_len) + U32.v len in
assert(r' <= l);
assert(r' = 0 ==> b = 0);
Math.Lemmas.euclidean_division_definition b l;
assert(b = n * l + r');
split_at_last_num_blocks_spec c i b n r'
#pop-options
/// Beginning of the three sub-cases (see Hacl.Streaming.Spec)
/// ==========================================================
noextract
let total_len_h #index (c: block index) (i: index) h (p: state' c i) =
State?.total_len (B.deref h p)
noextract
let split_at_last_all_seen #index (c: block index) (i: index) h (p: state' c i) =
let all_seen = all_seen c i h p in
let blocks, rest = split_at_last c i all_seen in
blocks, rest
inline_for_extraction noextract
val update_small:
#index:Type0 ->
(c: block index) ->
i:index -> (
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
Stack unit
(requires fun h0 ->
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i (total_len_h c i h0 s)))
(ensures fun h0 s' h1 ->
update_post c i s data len h0 h1))
/// SH: The proof obligations for update_small have problem succeeding in command
/// line mode: hence the restart-solver instruction, the crazy rlimit and the
/// intermediate lemma. Interestingly (and frustratingly), the proof succeeds
/// quite quickly locally on command-line with this rlimit, but fails with a lower
/// one. Besides, the lemma is needed only for the CI regression.
let split_at_last_rest_eq (#index : Type0) (c: block index)
(i: index)
(t:Type0 { t == c.state.s i })
(t':Type0 { t' == optional_key i c.km c.key })
(s: state c i t t') (h0: HS.mem) :
Lemma
(requires (
invariant c i h0 s))
(ensures (
let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
Seq.length r == U32.v sz)) =
let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
()
/// Particularly difficult proof. Z3 profiling indicates that a pattern goes off
/// the rails. So I disabled all of the known "bad" patterns, then did the proof
/// by hand. Fortunately, there were only two stateful operations. The idea was
/// to do all ofthe modifies-reasoning in the two lemmas above, then disable the
/// bad pattern for the main function.
///
/// This style is a little tedious, because it requires a little bit of digging
/// to understand what needs to hold in order to be able to prove that e.g. the
/// sequence remains unmodified from h0 to h2, but this seems more robust?
val modifies_footprint:
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
s:state' c i ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
let State _ buf_ _ _ _ = B.deref h0 s in (
update_pre c i s data len h0 /\
B.(modifies (loc_buffer buf_) h0 h1))))
(ensures (
let State bs0 buf0 _ _ k0 = B.deref h0 s in
let State bs1 buf1 _ _ k1 = B.deref h1 s in (
footprint c i h0 s == footprint c i h1 s /\
preserves_freeable c i s h0 h1 /\
bs0 == bs1 /\ buf0 == buf1 /\ k0 == k1 /\
c.state.invariant h1 bs1 /\
c.state.v i h1 bs1 == c.state.v i h0 bs0 /\
c.state.footprint h1 bs1 == c.state.footprint h0 bs0 /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_buffer buf1)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_buffer data)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_addr_of_buffer buf1)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (c.state.footprint h1 bs1)) /\
B.(loc_disjoint (loc_buffer s) (loc_buffer buf1)) /\
B.(loc_disjoint (loc_buffer s) (loc_buffer data)) /\
B.(loc_disjoint (loc_buffer s) (c.state.footprint h1 bs1)) /\
(if c.km = Runtime then
c.key.invariant #i h1 k1 /\
c.key.v i h1 k1 == c.key.v i h0 k0 /\
c.key.footprint #i h1 k1 == c.key.footprint #i h0 k0 /\
B.(loc_disjoint (loc_addr_of_buffer s) (c.key.footprint #i h1 k1)) /\
B.(loc_disjoint (loc_buffer s) (c.key.footprint #i h1 k1))
else
B.(loc_disjoint (loc_addr_of_buffer s) loc_none) /\
True)))))
let modifies_footprint c i p data len h0 h1 =
let _ = c.state.frame_freeable #i in
let _ = c.key.frame_freeable #i in
let s0 = B.deref h0 p in
let s1 = B.deref h0 p in
let State bs0 buf0 _ _ k0 = s0 in
let State bs1 buf0 _ _ k1 = s1 in
c.state.frame_invariant (B.loc_buffer buf0) bs0 h0 h1;
if c.km = Runtime then
c.key.frame_invariant #i (B.loc_buffer buf0) k0 h0 h1
val modifies_footprint':
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
p:state' c i ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
let State bs0 buf0 _ _ k0 = B.deref h0 p in
let State bs1 buf1 _ _ k1 = B.deref h1 p in (
B.live h0 p /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.state.footprint #i h0 bs0)) /\
B.(loc_disjoint (loc_addr_of_buffer p) (loc_addr_of_buffer buf0)) /\
c.state.invariant h0 bs0 /\
(if c.km = Runtime then
B.(loc_disjoint (loc_addr_of_buffer p) (c.key.footprint #i h0 k0)) /\
c.key.invariant #i h0 k0
else
B.(loc_disjoint (loc_addr_of_buffer p) loc_none)) /\
B.(modifies (loc_buffer p) h0 h1)) /\
bs0 == bs1 /\ buf0 == buf1 /\ k0 == k1))
(ensures (
let State bs0 buf0 _ _ k0 = B.deref h0 p in
let State bs1 buf1 _ _ k1 = B.deref h1 p in (
B.live h1 p /\
footprint c i h0 p == footprint c i h1 p /\
preserves_freeable c i p h0 h1 /\
B.(loc_disjoint (loc_addr_of_buffer p) (footprint_s c i h1 (B.deref h1 p))) /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.state.footprint #i h1 bs1)) /\
B.(loc_disjoint (loc_buffer p) (c.state.footprint #i h1 bs1)) /\
c.state.invariant h1 bs1 /\
c.state.v i h1 bs1 == c.state.v i h0 bs0 /\
c.state.footprint h1 bs1 == c.state.footprint h0 bs0 /\
(if c.km = Runtime then
c.key.invariant #i h1 k1 /\
c.key.v i h1 k1 == c.key.v i h0 k0 /\
c.key.footprint #i h1 k1 == c.key.footprint #i h0 k0 /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.key.footprint #i h1 k1)) /\
B.(loc_disjoint (loc_buffer p) (c.key.footprint #i h1 k1))
else
B.(loc_disjoint (loc_addr_of_buffer p) loc_none))))))
let modifies_footprint' c i p data len h0 h1 =
let _ = c.state.frame_freeable #i in
let _ = c.key.frame_freeable #i in
let _ = c.state.frame_invariant #i in
let _ = c.key.frame_invariant #i in
let _ = allow_inversion key_management in
let s0 = B.deref h0 p in
let s1 = B.deref h0 p in
let State bs0 buf0 _ _ k0 = s0 in
let State bs1 buf1 _ _ k1 = s1 in
c.state.frame_invariant (B.loc_addr_of_buffer p) bs0 h0 h1;
if c.km = Runtime then
c.key.frame_invariant #i (B.loc_addr_of_buffer p) k0 h0 h1
/// Small helper which we use to factor out functional correctness proof obligations.
/// It states that a state was correctly updated to process some data between two
/// memory snapshots (the key is the same, the seen data was updated, etc.).
///
/// Note that we don't specify anything about the buffer and the block_state: they
/// might have been updated differently depending on the case.
unfold val state_is_updated :
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Type0)
#push-options "--z3cliopt smt.arith.nl=false"
let state_is_updated #index c i t t' p data len h0 h1 =
// Functional conditions about the memory updates
let s0 = B.get h0 p 0 in
let s1 = B.get h1 p 0 in
let State block_state0 buf0 total_len0 seen0 key0 = s0 in
let State block_state1 buf1 total_len1 seen1 key1 = s1 in
block_state1 == block_state0 /\
buf1 == buf0 /\
U64.v total_len1 == U64.v total_len0 + U32.v len /\
key1 == key0 /\
seen1 `S.equal` (seen0 `S.append` (B.as_seq h0 data)) /\
optional_reveal #index #i #c.km #c.key h1 key1 == optional_reveal #index #i #c.km #c.key h0 key0
#pop-options
/// The functional part of the invariant
unfold val invariant_s_funct :
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Pure Type0 (requires
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
state_is_updated c i t t' s data len h0 h1)
(ensures (fun _ -> True)))
let invariant_s_funct #index c i t t' p data len h0 h1 =
let blocks, rest = split_at_last_all_seen c i h1 p in
let s = B.get h1 p 0 in
let State block_state buf_ total_len seen key = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 key in
let init_s = c.init_s i key_v in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (c.block_len i));
c.state.v i h1 block_state == c.update_multi_s i init_s 0 blocks /\
S.equal (S.slice (B.as_seq h1 buf_) 0 (Seq.length rest)) rest
/// We isolate the functional correctness proof obligations for [update_small]
val update_small_functional_correctness :
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
// The precondition of [small_update]
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i (total_len_h c i h0 s)) /\
// Generic conditions
state_is_updated c i t t' s data len h0 h1 /\
// Functional conditions about the memory updates
begin
let s0 = B.get h0 s 0 in
let s1 = B.get h1 s 0 in
let State block_state0 buf0 total_len0 seen0 key0 = s0 in
let State block_state1 buf1 total_len1 seen1 key1 = s1 in
let sz = rest c i total_len0 in
let buf = buf0 in
let data_v0 = B.as_seq h0 data in
let buf_beg_v0 = S.slice (B.as_seq h0 buf) 0 (U32.v sz) in
let buf_part_v1 = S.slice (B.as_seq h1 buf) 0 (U32.v sz + U32.v len) in
buf_part_v1 == S.append buf_beg_v0 data_v0 /\
c.state.v i h1 block_state1 == c.state.v i h0 block_state0
end
))
(ensures (invariant_s_funct c i t t' s data len h0 h1)))
#push-options "--z3cliopt smt.arith.nl=false"
let update_small_functional_correctness #index c i t t' p data len h0 h1 =
let s0 = B.get h0 p 0 in
let s1 = B.get h1 p 0 in
let State block_state buf total_len0 seen0 key = s0 in
let seen0 = G.reveal seen0 in
let i = Ghost.reveal i in
let key_v0 = optional_reveal #_ #i #c.km #c.key h0 key in
let init_v0 = c.init_input_s i key_v0 in
let all_seen0 = S.append init_v0 seen0 in
let blocks0, rest0 = split_at_last c i all_seen0 in
let State block_state buf total_len1 seen1 key = s1 in
let seen1 = G.reveal seen1 in
let i = Ghost.reveal i in
let key_v1 = optional_reveal #_ #i #c.km #c.key h1 key in
assert(key_v1 == key_v0);
let init_v1 = c.init_input_s i key_v1 in
assert(init_v1 == init_v0);
let all_seen1 = S.append init_v1 seen1 in
let blocks1, rest1 = split_at_last c i all_seen1 in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
let data_v0 = B.as_seq h0 data in
split_at_last_small c i all_seen0 data_v0;
// The first problematic condition
assert(blocks1 `S.equal` blocks0);
assert(c.state.v i h1 block_state == c.update_multi_s i (c.init_s i key_v1) 0 blocks1);
// The second problematic condition
assert(S.equal (S.slice (B.as_seq h1 buf) 0 (Seq.length rest1)) rest1)
#pop-options
// The absence of loc_disjoint_includes makes reasoning a little more difficult.
// Notably, we lose all of the important disjointness properties between the
// outer point p and the buffer within B.deref h p. These need to be
// re-established by hand. Another thing that we lose without this pattern is
// knowing that loc_buffer b is included within loc_addr_of_buffer b. This is
// important for reasoning about the preservation of e.g. the contents of data.
#restart-solver
#push-options "--z3rlimit 300 --z3cliopt smt.arith.nl=false --z3refresh \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2,-FStar.Seq.Properties.slice_slice,-LowStar.Monotonic.Buffer.loc_disjoint_includes_r'"
let update_small #index c i t t' p data len =
let open LowStar.BufferOps in
let s = !*p in
let State block_state buf total_len seen_ k' = s in
[@inline_let]
let block_state: c.state.s i = block_state in
// Functional reasoning.
let sz = rest c i total_len in
add_len_small c i total_len len;
let h0 = ST.get () in
let buf1 = B.sub buf 0ul sz in
let buf2 = B.sub buf sz len in
// Memory reasoning.
c.state.invariant_loc_in_footprint h0 block_state;
if c.km = Runtime then
c.key.invariant_loc_in_footprint #i h0 k';
// key_invariant_loc_in_footprint #index c i h0 p;
B.(loc_disjoint_includes_r (loc_buffer data) (footprint c i h0 p) (loc_buffer buf2));
// FIRST STATEFUL OPERATION
B.blit data 0ul buf2 0ul len;
// Memory reasoning.
let h1 = ST.get () in
modifies_footprint c i p data len h0 h1;
c.state.invariant_loc_in_footprint h1 block_state;
if c.km = Runtime then
c.key.invariant_loc_in_footprint #i h1 k';
// Functional reasoning on data
begin
let buf1_v0 = B.as_seq h0 buf1 in
let buf1_v1 = B.as_seq h1 buf1 in
let buf2_v1 = B.as_seq h1 buf2 in
let buf_beg_v0 = S.slice (B.as_seq h0 buf) 0 (U32.v sz) in
let buf_part_v1 = S.slice (B.as_seq h1 buf) 0 (U32.v sz + U32.v len) in
let data_v0 = B.as_seq h0 data in
assert(buf1_v1 == buf1_v0);
assert(buf1_v0 == buf_beg_v0);
assert(buf2_v1 `S.equal` data_v0);
assert(buf_part_v1 `S.equal` S.append buf_beg_v0 data_v0)
end;
// SECOND STATEFUL OPERATION
let total_len = add_len c i total_len len in
[@inline_let]
let tmp: state_s c i t t' =
State #index #c #i block_state buf total_len
(G.hide (G.reveal seen_ `S.append` (B.as_seq h0 data))) k'
in
p *= tmp;
// Memory reasoning.
let h2 = ST.get () in
modifies_footprint' c i p data len h1 h2;
c.state.invariant_loc_in_footprint h2 block_state;
if c.km = Runtime then
c.key.invariant_loc_in_footprint #i h2 k';
ST.lemma_equal_domains_trans h0 h1 h2;
// Prove the invariant
update_small_functional_correctness c i t t' p data len h0 h2
#pop-options
// Stupid name collisions
noextract let seen_h = seen
noextract let all_seen_h = all_seen
/// Case 2: we have no buffered data (ie: the buffer was just initialized), or the
/// internal buffer is full meaning that we can just hash it to go to the case where
/// there is no buffered data. Of course, the data we append has to be non-empty,
/// otherwise we might end-up with an empty internal buffer.
/// Auxiliary lemma which groups the functional correctness proof obligations
/// for [update_empty_or_full].
#push-options "--z3cliopt smt.arith.nl=false"
val update_empty_or_full_functional_correctness :
#index:Type0 ->
c:block index ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer Lib.IntTypes.uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
// Same precondition as [update_empty_or_full_buf]
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
(rest c i (total_len_h c i h0 s) = 0ul \/
rest c i (total_len_h c i h0 s) = c.blocks_state_len i) /\
U32.v len > 0 /\
// Generic additional preconditions
state_is_updated c i t t' s data len h0 h1 /\
// Additional preconditions
begin
let s0 = B.get h0 s 0 in
let s1 = B.get h1 s 0 in
let State block_state0 buf0 total_len0 seen0 key0 = s0 in
let State block_state1 buf1 total_len1 seen1 key1 = s1 in
let seen0 = G.reveal seen0 in
let seen1 = G.reveal seen1 in
let block_state = block_state0 in
let buf = buf0 in
let n_blocks = nblocks c i len in
(**) split_at_last_num_blocks_lem c i (U32.v len);
(**) assert(U32.v n_blocks * U32.v (c.blocks_state_len i) <= U32.v len);
(**) assert(U32.(FStar.UInt.size (v n_blocks * v (c.blocks_state_len i)) n));
let data1_len = n_blocks `U32.mul` c.blocks_state_len i in
let data2_len = len `U32.sub` data1_len in
let data1 = B.gsub data 0ul data1_len in
let data2 = B.gsub data data1_len data2_len in
let all_seen0 = all_seen c i h0 s in
let all_seen1 = all_seen c i h1 s in
let blocks0, res0 = split_at_last c i all_seen0 in
let blocks1, res1 = split_at_last c i all_seen1 in
let data1_v = B.as_seq h0 data1 in
let data2_v = B.as_seq h0 data2 in
let key = optional_reveal #index #i #c.km #c.key h0 key0 in
let init_s = c.init_s i key in
let all_seen_data1 = S.append all_seen0 data1_v in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (c.block_len i));
S.length all_seen0 % U32.v (c.block_len i) = 0 /\ // TODO: should be proved automatically
S.length all_seen_data1 % U32.v (c.block_len i) = 0 /\ // TODO: should be proved automatically
c.state.v i h1 block_state == c.update_multi_s i init_s 0 all_seen_data1 /\
S.slice (B.as_seq h1 buf) 0 (Seq.length data2_v) `S.equal` data2_v /\
True
end /\
True
))
(ensures (invariant_s_funct c i t t' s data len h0 h1)))
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let update_empty_or_full_functional_correctness #index c i t t' p data len h0 h1 =
let s = B.get h0 p 0 in
let State block_state buf_ total_len seen0 key = s in
let init_s = c.init_s i (optional_reveal #index #i #c.km #c.key h0 key) in
Math.Lemmas.modulo_lemma 0 (U32.v (c.block_len i));
let n_blocks = nblocks c i len in
(**) split_at_last_num_blocks_lem c i (U32.v len);
(**) assert(U32.(FStar.UInt.size (v n_blocks * v (c.blocks_state_len i)) n));
let data1_len = n_blocks `U32.mul` c.blocks_state_len i in
let data2_len = len `U32.sub` data1_len in
let data1 = B.gsub data 0ul data1_len in
let data2 = B.gsub data data1_len data2_len in
let data_v = B.as_seq h0 data in
let init_input = init_input c i h0 p in
let seen1 = seen c i h1 p in
let all_seen0 = all_seen c i h0 p in
let all_seen1 = all_seen c i h1 p in
let blocks0, rest0 = split_at_last_all_seen c i h0 p in
let blocks1, rest1 = split_at_last_all_seen c i h1 p in
let data_blocks, data_rest = split_at_last c i data_v in
split_at_last_blocks c i all_seen0 data_v;
assert(Seq.equal all_seen1 (S.append all_seen0 data_v));
assert(S.equal blocks1 (S.append all_seen0 data_blocks));
assert(S.equal data_rest rest1)
#pop-options
inline_for_extraction noextract
val update_empty_or_full_buf:
#index:Type0 ->
c:block index ->
i:index -> (
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer Lib.IntTypes.uint8 ->
len: UInt32.t ->
Stack unit
(requires fun h0 ->
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
(rest c i (total_len_h c i h0 s) = 0ul \/
rest c i (total_len_h c i h0 s) = c.blocks_state_len i) /\
U32.v len > 0)
(ensures fun h0 s' h1 ->
update_post c i s data len h0 h1))
#push-options "--z3cliopt smt.arith.nl=false --z3rlimit 500"
let update_empty_or_full_buf #index c i t t' p data len =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.update_multi_associative i in
let open LowStar.BufferOps in
let s = !*p in
let State block_state buf total_len seen k' = s in
[@inline_let]
let block_state: c.state.s i = block_state in
let sz = rest c i total_len in
let h0 = ST.get () in
Math.Lemmas.modulo_lemma 0 (U32.v (c.block_len i));
assert(0 % U32.v (c.block_len i) = 0);
let init_key : Ghost.erased _ = optional_reveal h0 (k' <: optional_key i c.km c.key) in
let init_state : Ghost.erased _ = c.init_s i init_key in
assert(
let all_seen = all_seen c i h0 p in
let blocks, rest = split_at_last c i all_seen in
Seq.length rest = U32.v sz /\
c.state.v i h0 block_state ==
c.update_multi_s i init_state 0 blocks);
(* Start by "flushing" the buffer: hash it so that all the data seen so far
* has been processed and we can consider the buffer as empty *)
if U32.(sz =^ 0ul) then
begin
assert(
let all_seen = all_seen c i h0 p in
c.state.v i h0 block_state == c.update_multi_s i init_state 0 all_seen)
end
else begin
let prevlen = U64.(total_len `sub` FStar.Int.Cast.uint32_to_uint64 sz) in
c.update_multi (G.hide i) block_state prevlen buf (c.blocks_state_len i);
begin
let h1 = ST.get () in
let all_seen = all_seen c i h0 p in
let blocks, rest = split_at_last c i all_seen in
assert(Seq.length blocks = U64.v prevlen);
assert(c.state.v i h0 block_state == c.update_multi_s i init_state 0 blocks);
assert(c.state.v i h1 block_state ==
c.update_multi_s i (c.update_multi_s i init_state 0 blocks) (U64.v prevlen) rest);
assert(all_seen `Seq.equal` Seq.append blocks rest);
(* TODO: the pattern of ``update_multi_associative`` is not triggered *)
c.update_multi_associative i init_state 0 (U64.v prevlen) blocks rest;
assert(c.state.v i h1 block_state == c.update_multi_s i init_state 0 all_seen)
end
end;
let h1 = ST.get () in
assert(
let all_seen = all_seen c i h0 p in
c.state.v i h1 block_state ==
c.update_multi_s i init_state 0 all_seen);
split_at_last_blocks c i (all_seen c i h0 p) (B.as_seq h0 data); // TODO: remove?
let n_blocks = nblocks c i len in
(**) split_at_last_num_blocks_lem c i (U32.v len);
(**) assert(U32.(FStar.UInt.size (v n_blocks * v (c.blocks_state_len i)) n));
let data1_len = n_blocks `U32.mul` c.blocks_state_len i in
let data2_len = len `U32.sub` data1_len in
let data1 = B.sub data 0ul data1_len in
let data2 = B.sub data data1_len data2_len in
c.update_multi (G.hide i) block_state total_len data1 data1_len;
let h01 = ST.get () in
optional_frame #_ #i #c.km #c.key (c.state.footprint h0 block_state) k' h0 h01;
assert(preserves_freeable c i p h0 h01);
begin
let all_seen = all_seen c i h0 p in
let data1_v = B.as_seq h01 data1 in
c.update_multi_associative i init_state 0 (Seq.length all_seen) all_seen data1_v;
assert(c.state.v i h01 block_state == c.update_multi_s i init_state 0 (Seq.append all_seen data1_v))
end;
let dst = B.sub buf 0ul data2_len in
let h1 = ST.get () in
B.blit data2 0ul dst 0ul data2_len;
let h2 = ST.get () in
c.state.frame_invariant (B.loc_buffer buf) block_state h1 h2;
optional_frame #_ #i #c.km #c.key (B.loc_buffer buf) k' h1 h2;
stateful_frame_preserves_freeable #index #(Block?.state c) #i
(B.loc_buffer dst)
(State?.block_state s) h1 h2;
assert(preserves_freeable c i p h01 h2);
[@inline_let]
let total_len' = add_len c i total_len len in
[@inline_let]
let tmp: state_s c i t t' = State #index #c #i block_state buf total_len'
(seen `S.append` B.as_seq h0 data) k'
in
p *= tmp;
let h3 = ST.get () in
c.state.frame_invariant (B.loc_buffer p) block_state h2 h3;
optional_frame #_ #i #c.km #c.key (B.loc_buffer p) k' h2 h3;
stateful_frame_preserves_freeable #index #(Block?.state c) #i
(B.loc_buffer p)
(State?.block_state s) h2 h3;
assert(preserves_freeable c i p h2 h3);
assert(preserves_freeable c i p h0 h3);
update_empty_or_full_functional_correctness #index c i t t' p data len h0 h3;
(* The following proof obligation is the difficult one - keep it here for
* easy debugging when updating the definitions/proofs *)
assert(invariant_s c i h3 (B.get h3 p 0))
#pop-options
/// Case 3: we are given just enough data to end up on the boundary. It is just
/// a sub-case of [update_small], but with a little bit more precise pre and post
/// conditions.
inline_for_extraction noextract
val update_round:
#index:Type0 ->
c:block index ->
i:index -> (
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
Stack unit
(requires fun h0 ->
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\ (
let r = rest c i (total_len_h c i h0 s) in
U32.v len + U32.v r = U32.v (c.blocks_state_len i) /\
r <> 0ul))
(ensures fun h0 _ h1 ->
update_post c i s data len h0 h1 /\
begin
let blocks, rest = split_at_last_all_seen c i h0 s in
let blocks', rest' = split_at_last_all_seen c i h1 s in
blocks' `S.equal` blocks /\
rest' `S.equal` S.append rest (B.as_seq h0 data) /\
S.length rest' = U32.v (c.blocks_state_len i)
end))
#push-options "--z3rlimit 200 --z3cliopt smt.arith.nl=false"
let update_round #index c i t t' p data len =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.update_multi_associative i in
let open LowStar.BufferOps in
(**) let h0 = ST.get() in
update_small #index c i t t' p data len;
(**) let h1 = ST.get() in
(**) split_at_last_small c i (all_seen c i h0 p) (B.as_seq h0 data);
(**) begin // For some reason, the proof fails if we don't call those
(**) let blocks, rest = split_at_last_all_seen c i h0 p in
(**) let blocks', rest' = split_at_last_all_seen c i h1 p in
(**) ()
(**) end
#pop-options
/// General update function, as a decomposition of the three sub-cases
/// ==================================================================
#push-options "--z3rlimit 200"
let update #index c i t t' state chunk chunk_len =
let open LowStar.BufferOps in
let s = !*state in
let State block_state buf_ total_len seen k' = s in
let i = c.index_of_state i block_state in
if FStar.UInt64.(FStar.Int.Cast.uint32_to_uint64 chunk_len >^ c.max_input_len i -^ total_len) then
Hacl.Streaming.Types.MaximumLengthExceeded
else
let sz = rest c i total_len in
if chunk_len `U32.lte` (c.blocks_state_len i `U32.sub` sz) then
update_small c i t t' state chunk chunk_len
else if sz = 0ul then
update_empty_or_full_buf c i t t' state chunk chunk_len
else begin
let h0 = ST.get () in
let diff = c.blocks_state_len i `U32.sub` sz in
let chunk1 = B.sub chunk 0ul diff in
let chunk2 = B.sub chunk diff (chunk_len `U32.sub` diff) in
update_round c i t t' state chunk1 diff;
let h1 = ST.get () in
update_empty_or_full_buf c i t t' state chunk2 (chunk_len `U32.sub` diff);
let h2 = ST.get () in
(
let seen = G.reveal seen in
assert (seen_h c i h1 state `S.equal` (S.append seen (B.as_seq h0 chunk1)));
assert (seen_h c i h2 state `S.equal` (S.append (S.append seen (B.as_seq h0 chunk1)) (B.as_seq h0 chunk2)));
S.append_assoc seen (B.as_seq h0 chunk1) (B.as_seq h0 chunk2);
assert (S.equal (S.append (B.as_seq h0 chunk1) (B.as_seq h0 chunk2)) (B.as_seq h0 chunk));
assert (S.equal
(S.append (S.append seen (B.as_seq h0 chunk1)) (B.as_seq h0 chunk2))
(S.append seen (B.as_seq h0 chunk)));
assert (seen_h c i h2 state `S.equal` (S.append seen (B.as_seq h0 chunk)));
()
)
end;
Hacl.Streaming.Types.Success
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
val digest_process_begin_functional_correctness :
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
dst:B.buffer uint8 ->
l: c.output_length_t { B.length dst == c.output_length i l } ->
h0: HS.mem ->
h1: HS.mem ->
tmp_block_state: t ->
Lemma
(requires (
// The precondition of [digest]
invariant c i h0 s /\
c.state.invariant #i h1 tmp_block_state /\
begin
let s = B.get h0 s 0 in
let State block_state buf_ total_len seen key = s in
let r = rest c i total_len in
(**) assert(U32.v r <= U64.v total_len);
let prev_len = U64.(total_len `sub` FStar.Int.Cast.uint32_to_uint64 r) in
let r_last = rest_finish c i r in
(**) assert(U32.v r_last <= U32.v r);
let r_multi = U32.(r -^ r_last) in
let buf_multi = B.gsub buf_ 0ul r_multi in
let prev_length = U64.v prev_len in
let k = optional_reveal #_ #i #c.km #c.key h0 key in
c.state.v i h1 tmp_block_state == c.update_multi_s i (c.state.v i h0 block_state) prev_length (B.as_seq h0 buf_multi)
end))
(ensures (
let all_seen = all_seen c i h0 s in
let s = B.get h0 s 0 in
let State block_state buf_ total_len seen key = s in
let block_length = U32.v (c.block_len i) in
let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem block_length (S.length all_seen)) in
let k = optional_reveal #_ #i #c.km #c.key h0 key in
let init_state = c.init_s i k in
(**) Math.Lemmas.modulo_lemma 0 block_length;
(**) Math.Lemmas.cancel_mul_mod n block_length;
(**) Math.Lemmas.nat_times_nat_is_nat n block_length;
(**) split_at_last_num_blocks_lem c i (S.length all_seen);
0 % block_length = 0 /\
0 <= n * block_length /\ (n * block_length) % block_length = 0 /\
c.state.v i h1 tmp_block_state ==
c.update_multi_s i init_state 0 (S.slice all_seen 0 (n * block_length)))
))
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let digest_process_begin_functional_correctness #index c i t t' p dst l h0 h1 tmp_block_state =
let h3 = h0 in
let h4 = h1 in
let s = B.get h0 p 0 in
let State block_state buf_ total_len seen k' = s in
let r = rest c i total_len in
let buf_ = B.gsub buf_ 0ul r in
let prev_len = U64.(total_len `sub` FStar.Int.Cast.uint32_to_uint64 r) in
let r_last = rest_finish c i r in
let r_multi = U32.(r -^ r_last) in
let i = G.reveal i in
let all_seen = all_seen c i h0 p in
let block_length = U32.v (c.block_len i) in
let blocks_state_length = U32.v (c.blocks_state_len i) in
let k = optional_reveal #_ #i #c.km #c.key h0 k' in
let prev_length = U64.v prev_len in
let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem block_length (S.length all_seen)) in
let init_state = c.init_s i k in
Math.Lemmas.modulo_lemma 0 block_length;
Math.Lemmas.cancel_mul_mod n block_length;
assert(prev_length + U32.v r = U64.v total_len);
assert(U32.v r_multi <= U32.v r);
assert(prev_length + U32.v r_multi <= U64.v total_len);
assert(n * block_length <= U64.v total_len);
let buf_multi = B.gsub buf_ 0ul r_multi in
assert(
c.state.v i h4 tmp_block_state ==
c.update_multi_s i (c.state.v i h0 block_state) prev_length (B.as_seq h3 buf_multi));
assert(
B.as_seq h3 buf_multi ==
S.slice all_seen prev_length (prev_length + U32.v r_multi));
assert(
c.state.v i h4 tmp_block_state ==
c.update_multi_s i
(c.update_multi_s i init_state 0 (S.slice all_seen 0 prev_length))
prev_length (S.slice all_seen prev_length (prev_length + U32.v r_multi)));
assert(0 % block_length = 0);
assert(S.length (S.slice all_seen 0 prev_length) % block_length = 0);
assert(prev_length + U32.v r_multi <= S.length all_seen);
c.update_multi_associative i init_state 0 prev_length
(S.slice all_seen 0 prev_length)
(S.slice all_seen prev_length (prev_length + U32.v r_multi));
assert(
S.equal (S.append (S.slice all_seen 0 prev_length)
(S.slice all_seen prev_length (prev_length + U32.v r_multi)))
(S.slice all_seen 0 (prev_length + U32.v r_multi)));
assert(
c.state.v i h4 tmp_block_state ==
c.update_multi_s i init_state 0 (S.slice all_seen 0 (prev_length + U32.v r_multi)));
split_at_last_finish c i all_seen;
Math.Lemmas.nat_times_nat_is_nat n block_length;
assert(0 <= n * block_length);
assert(n * block_length <= S.length all_seen);
assert(
c.state.v i h4 tmp_block_state ==
c.update_multi_s i init_state 0 (S.slice all_seen 0 (n * block_length)))
#pop-options
#restart-solver
#push-options "--z3cliopt smt.arith.nl=false --z3rlimit 200"
let digest #index c i t t' state output l =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.update_multi_associative i in
[@inline_let] let _ = allow_inversion key_management in
let open LowStar.BufferOps in
let h0 = ST.get () in
let State block_state buf_ total_len seen k' = !*state in
push_frame ();
let h1 = ST.get () in
c.state.frame_invariant #i B.loc_none block_state h0 h1;
stateful_frame_preserves_freeable #index #c.state #i B.loc_none block_state h0 h1;
optional_frame #_ #i #c.km #c.key B.loc_none k' h0 h1;
let r = rest c i total_len in
let buf_ = B.sub buf_ 0ul r in
let tmp_block_state = c.state.alloca i in
let h2 = ST.get () in
assert (B.(loc_disjoint (c.state.footprint #i h2 tmp_block_state) (c.state.footprint #i h1 block_state)));
B.modifies_only_not_unused_in B.loc_none h1 h2;
c.state.frame_invariant #i B.loc_none block_state h1 h2;
stateful_frame_preserves_freeable #index #c.state #i B.loc_none block_state h1 h2;
optional_frame #_ #i #c.km #c.key B.loc_none k' h1 h2;
c.state.copy (G.hide i) block_state tmp_block_state;
let h3 = ST.get () in
c.state.frame_invariant #i (c.state.footprint h2 tmp_block_state) block_state h2 h3;
stateful_frame_preserves_freeable #index #c.state #i (c.state.footprint h2 tmp_block_state) block_state h2 h3;
optional_frame #_ #i #c.km #c.key (c.state.footprint h2 tmp_block_state) k' h2 h3;
// Process as many blocks as possible (but leave at least one block for update_last)
let prev_len = U64.(total_len `sub` FStar.Int.Cast.uint32_to_uint64 r) in
// The data length to give to update_last
[@inline_let]
let r_last = rest_finish c i r in
// The data length to process with update_multi before calling update_last
[@inline_let]
let r_multi = U32.(r -^ r_last) in
// Split the buffer according to the computed lengths
let buf_last = B.sub buf_ r_multi (Ghost.hide r_last) in
let buf_multi = B.sub buf_ 0ul r_multi in
[@inline_let]
let state_is_block = c.block_len i = c.blocks_state_len i in
assert(state_is_block ==> U32.v r_multi = 0);
assert(state_is_block ==> r_last = r);
// This will get simplified and will allow some simplifications in the generated code.
// In particular, it should allow to simplify a bit update_multi
[@inline_let] let r_multi = if state_is_block then 0ul else r_multi in
[@inline_let] let r_last = if state_is_block then r else r_last in
c.update_multi (G.hide i) tmp_block_state prev_len buf_multi r_multi;
let h4 = get () in
optional_frame #_ #i #c.km #c.key (c.state.footprint #i h3 tmp_block_state) k' h3 h4;
// Functional correctness
digest_process_begin_functional_correctness #index c i t t' state output l h0 h4 tmp_block_state;
split_at_last_finish c i (all_seen c i h0 state);
// Process the remaining data
assert(UInt32.v r_last <= UInt32.v (Block?.block_len c (Ghost.reveal (Ghost.hide i))));
let prev_len_last = U64.(total_len `sub` FStar.Int.Cast.uint32_to_uint64 r_last) in
begin
// Proving: prev_len_last % block_len = 0
assert(U64.v prev_len_last = U64.v prev_len + U32.v r_multi);
Math.Lemmas.modulo_distributivity (U64.v prev_len) (U32.v r_multi) (U32.v (c.block_len i));
Math.Lemmas.modulo_lemma 0 (U32.v (c.block_len i));
assert(U64.v prev_len_last % U32.v (c.block_len i) = 0)
end;
c.update_last (G.hide i) tmp_block_state prev_len_last buf_last r_last;
let h5 = ST.get () in
c.state.frame_invariant #i (c.state.footprint h3 tmp_block_state) block_state h3 h5;
stateful_frame_preserves_freeable #index #c.state #i (c.state.footprint h3 tmp_block_state) block_state h3 h5;
optional_frame #_ #i #c.km #c.key (c.state.footprint h3 tmp_block_state) k' h3 h5;
c.finish (G.hide i) k' tmp_block_state output l;
let h6 = ST.get () in
begin
let r = r_last in
let all_seen = all_seen c i h0 state in
let blocks_state_length = U32.v (c.blocks_state_len i) in
let block_length = U32.v (c.block_len i) in
let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem block_length (S.length all_seen)) in
let blocks, rest_ = Lib.UpdateMulti.split_at_last_lazy block_length all_seen in
let k = optional_reveal #_ #i #c.km #c.key h0 k' in
Math.Lemmas.modulo_lemma 0 (U32.v (c.block_len i));
assert(0 % U32.v (c.block_len i) = 0);
assert(B.as_seq h3 buf_last == rest_);
calc (S.equal) {
B.as_seq h6 output;
(S.equal) { }
c.finish_s i k (c.state.v i h5 tmp_block_state) l;
(S.equal) { }
c.finish_s i k (
c.update_last_s i (c.state.v i h4 tmp_block_state) (n * block_length)
(B.as_seq h4 buf_last)) l;
(S.equal) { }
c.finish_s i k (
c.update_last_s i (c.state.v i h4 tmp_block_state) (n * block_length)
rest_) l;
(S.equal) { }
c.finish_s i k (
c.update_last_s i
(c.update_multi_s i (c.init_s i k) 0 (S.slice all_seen 0 (n * block_length)))
(n * block_length)
rest_) l;
(S.equal) { c.spec_is_incremental i k seen l }
c.spec_s i k seen l;
}
end;
c.state.frame_invariant #i B.(loc_buffer output `loc_union` c.state.footprint h5 tmp_block_state) block_state h5 h6;
stateful_frame_preserves_freeable #index #c.state #i B.(loc_buffer output `loc_union` c.state.footprint h5 tmp_block_state) block_state h5 h6;
optional_frame #_ #i #c.km #c.key B.(loc_buffer output `loc_union` c.state.footprint h5 tmp_block_state) k' h5 h6;
pop_frame ();
let h7 = ST.get () in
c.state.frame_invariant #i B.(loc_region_only false (HS.get_tip h6)) block_state h6 h7;
stateful_frame_preserves_freeable #index #c.state #i B.(loc_region_only false (HS.get_tip h6)) block_state h6 h7;
optional_frame #_ #i #c.km #c.key B.(loc_region_only false (HS.get_tip h6)) k' h6 h7;
assert (seen_h c i h7 state `S.equal` (G.reveal seen));
// JP: this is not the right way to prove do this proof. Need to use
// modifies_fresh_frame_popped instead, see e.g.
// https://github.com/project-everest/everquic-crypto/blob/d812be94e9b1a77261f001c9accb2040b80b7c39/src/QUIC.Impl.fst#L1111
// for an example
let mloc = B.loc_union (B.loc_buffer output) (footprint c i h0 state) in
B.modifies_remove_fresh_frame h0 h1 h7 mloc;
B.popped_modifies h6 h7;
assert (B.(modifies mloc h0 h7))
#pop-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Hacl.Streaming.Interface.block index -> i: FStar.Ghost.erased index
-> (let i = FStar.Ghost.reveal i in
t: Type0{t == Stateful?.s (Block?.state c) i} ->
t': Type0{t' == Hacl.Streaming.Interface.optional_key i (Block?.km c) (Block?.key c)}
-> Hacl.Streaming.Functor.free_st c i t t') | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.Ghost.erased",
"Prims.eq2",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Interface.__proj__Block__item__state",
"FStar.Ghost.reveal",
"Hacl.Streaming.Interface.optional_key",
"Hacl.Streaming.Interface.__proj__Block__item__km",
"Hacl.Streaming.Interface.__proj__Block__item__key",
"Hacl.Streaming.Functor.state",
"LowStar.Buffer.buffer",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_Equality",
"FStar.UInt32.t",
"LowStar.Monotonic.Buffer.len",
"LowStar.Buffer.trivial_preorder",
"Hacl.Streaming.Interface.__proj__Block__item__blocks_state_len",
"FStar.UInt64.t",
"FStar.Seq.Base.seq",
"Hacl.Streaming.Spec.uint8",
"LowStar.Monotonic.Buffer.free",
"Hacl.Streaming.Functor.state_s",
"Prims.unit",
"Hacl.Streaming.Interface.__proj__Stateful__item__free",
"Hacl.Streaming.Interface.__proj__Stateful__item__frame_invariant",
"Hacl.Streaming.Functor.optional_footprint",
"Hacl.Streaming.Interface.__proj__Stateful__item__frame_freeable",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"LowStar.BufferOps.op_Bang_Star",
"FStar.Pervasives.allow_inversion",
"Hacl.Streaming.Interface.key_management"
] | [] | false | false | false | false | false | let free #index c i t t' state =
| let _ = allow_inversion key_management in
let open LowStar.BufferOps in
let State block_state buf _ _ k' = !*state in
let h0 = ST.get () in
(match c.km with
| Runtime -> c.key.free i k'
| Erased -> ());
let h1 = ST.get () in
c.state.frame_freeable #i (optional_footprint #index #i #c.km #c.key h0 k') block_state h0 h1;
c.state.frame_invariant #i (optional_footprint #index #i #c.km #c.key h0 k') block_state h0 h1;
c.state.free i block_state;
B.free buf;
B.free state | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.update | val update:
#index:Type0 ->
c:block index ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
update_st #index c i t t') | val update:
#index:Type0 ->
c:block index ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
update_st #index c i t t') | let update #index c i t t' state chunk chunk_len =
let open LowStar.BufferOps in
let s = !*state in
let State block_state buf_ total_len seen k' = s in
let i = c.index_of_state i block_state in
if FStar.UInt64.(FStar.Int.Cast.uint32_to_uint64 chunk_len >^ c.max_input_len i -^ total_len) then
Hacl.Streaming.Types.MaximumLengthExceeded
else
let sz = rest c i total_len in
if chunk_len `U32.lte` (c.blocks_state_len i `U32.sub` sz) then
update_small c i t t' state chunk chunk_len
else if sz = 0ul then
update_empty_or_full_buf c i t t' state chunk chunk_len
else begin
let h0 = ST.get () in
let diff = c.blocks_state_len i `U32.sub` sz in
let chunk1 = B.sub chunk 0ul diff in
let chunk2 = B.sub chunk diff (chunk_len `U32.sub` diff) in
update_round c i t t' state chunk1 diff;
let h1 = ST.get () in
update_empty_or_full_buf c i t t' state chunk2 (chunk_len `U32.sub` diff);
let h2 = ST.get () in
(
let seen = G.reveal seen in
assert (seen_h c i h1 state `S.equal` (S.append seen (B.as_seq h0 chunk1)));
assert (seen_h c i h2 state `S.equal` (S.append (S.append seen (B.as_seq h0 chunk1)) (B.as_seq h0 chunk2)));
S.append_assoc seen (B.as_seq h0 chunk1) (B.as_seq h0 chunk2);
assert (S.equal (S.append (B.as_seq h0 chunk1) (B.as_seq h0 chunk2)) (B.as_seq h0 chunk));
assert (S.equal
(S.append (S.append seen (B.as_seq h0 chunk1)) (B.as_seq h0 chunk2))
(S.append seen (B.as_seq h0 chunk)));
assert (seen_h c i h2 state `S.equal` (S.append seen (B.as_seq h0 chunk)));
()
)
end;
Hacl.Streaming.Types.Success | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 32,
"end_line": 1529,
"start_col": 0,
"start_line": 1493
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
()
let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s))
let init_input (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
c.init_input_s i (reveal_key c i h s)
let all_seen (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
S.append (init_input c i h s) (seen c i h s)
let frame_invariant #index c i l s h0 h1 =
let state_t = B.deref h0 s in
let State block_state _ _ _ p_key = state_t in
c.state.frame_invariant #i l block_state h0 h1;
stateful_frame_preserves_freeable #index #c.state #i l block_state h0 h1;
allow_inversion key_management;
match c.km with
| Erased -> ()
| Runtime ->
stateful_frame_preserves_freeable #index #c.key #i l p_key h0 h1;
c.key.frame_invariant #i l p_key h0 h1
let frame_seen #_ _ _ _ _ _ _ =
()
/// Stateful API
/// ============
let index_of_state #index c i t t' s =
let open LowStar.BufferOps in
let State block_state _ _ _ _ = !*s in
c.index_of_state i block_state
let seen_length #index c i t t' s =
let open LowStar.BufferOps in
let State _ _ total_len _ _ = !*s in
total_len
(* TODO: malloc and alloca have big portions of proofs in common, so it may
* be possible to factorize them, but it is not clear how *)
#restart-solver
#push-options "--z3rlimit 500"
let malloc #index c i t t' key r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none key h0 h1;
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none key h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none key h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) c.state.frame_freeable B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 key);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 key) (c.key.footprint #i h3 k'));
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') key h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 key)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none key h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) key buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let s = B.get h8 p 0 in
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true r) (footprint c i h8 p));
(**) assert (ST.equal_stack_domains h1 h8);
(**) assert (ST.equal_stack_domains h0 h1);
p
#pop-options
#push-options "--z3rlimit 100"
let copy #index c i t t' state r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
// All source state is suffixed by 0.
let State block_state0 buf0 total_len0 seen0 k0 = !*state in
let i = c.index_of_state i block_state0 in
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
B.blit buf0 0ul buf 0ul (c.blocks_state_len i);
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h0 h1;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h1 state);
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h1 h2;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h2 state);
c.state.copy (G.hide i) block_state0 block_state;
(**) let h2 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i (c.state.footprint #i h2 block_state) k0 h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant #i B.loc_none k0 h2 h3;
(**) c.state.frame_invariant #i B.loc_none block_state h2 h3;
(**) c.state.frame_freeable #i B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k0);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k0) (c.key.footprint #i h3 k'));
c.key.copy i k0 k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant #i (c.key.footprint #i h3 k') k0 h3 h4;
(**) c.state.frame_invariant #i (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable #i (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased -> k0
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
let s = State block_state buf total_len0 seen0 k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h5 h6;
(**) c.state.frame_invariant #i B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
p
#pop-options
#push-options "--z3rlimit 200"
let alloca #index c i t t' k =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.alloca (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none k h0 h1;
let block_state = c.state.alloca i in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none k h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.alloca i in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none k h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k) (c.key.footprint #i h3 k'));
c.key.copy i k k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') k h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 k)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.alloca s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none k h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) k buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true (HS.get_tip h8)) (footprint c i h8 p));
(**) assert(ST.same_refs_in_non_tip_regions h0 h8);
p
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let reset #index c i t t' state key =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
let open LowStar.BufferOps in
(**) let h1 = ST.get () in
let State block_state buf _ _ k' = !*state in
let i = c.index_of_state i block_state in
LowStar.Ignore.ignore i; // This is only used in types and proofs
[@inline_let]
let block_state: c.state.s i = block_state in
c.init (G.hide i) key buf block_state;
(**) let h2 = ST.get () in
(**) optional_frame #_ #i #c.km #c.key (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) k' h1 h2;
(**) c.key.frame_invariant (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) key h1 h2;
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % UInt32.v (Block?.block_len c i) = 0);
(**) assert (reveal_key c i h1 state == reveal_key c i h2 state);
(**) c.update_multi_zero i (c.state.v i h2 block_state) 0;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h2 k') key h2 h4;
(**) c.state.frame_invariant (c.key.footprint #i h2 k') block_state h2 h4;
(**) stateful_frame_preserves_freeable (c.key.footprint #i h2 k') block_state h2 h4;
k'
| Erased ->
G.hide (c.key.v i h1 key)
in
(**) let h2 = ST.get () in
(**) assert(preserves_freeable c i state h1 h2);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let tmp: state_s c i t t' = State block_state buf total_len (G.hide S.empty) k' in
B.upd state 0ul tmp;
(**) let h3 = ST.get () in
(**) c.state.frame_invariant B.(loc_buffer state) block_state h2 h3;
(**) c.key.frame_invariant B.(loc_buffer state) key h2 h3;
(**) optional_frame #_ #i #c.km #c.key B.(loc_buffer state) k' h2 h3;
(**) stateful_frame_preserves_freeable B.(loc_buffer state) block_state h2 h3;
(**) assert(preserves_freeable c i state h2 h3);
// This seems to cause insurmountable difficulties. Puzzled.
ST.lemma_equal_domains_trans h1 h2 h3;
// AR: 07/22: same old `Seq.equal` and `==` story
(**) assert (Seq.equal (seen c i h3 state) Seq.empty);
(**) assert (footprint c i h1 state == footprint c i h3 state);
(**) assert (B.(modifies (footprint c i h1 state) h1 h3));
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h3 state in
(**) let all_seen_ = all_seen c i h3 state in
// SH (11/22): the proof fails if we don't introduce the call to [split_at_last]
(**) let blocks, rest = split_at_last c i all_seen_ in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert (invariant_s c i h3 (B.get h3 state 0))
(**) end;
(**) assert(preserves_freeable c i state h1 h3)
#pop-options
/// Some helpers to minimize modulo-reasoning
/// =========================================
val split_at_last_num_blocks_lem (#index : Type0) (c: block index) (i: index) (b: nat):
Lemma (
let n_blocks = split_at_last_num_blocks c i b in
let blocks = n_blocks * U32.v (c.blocks_state_len i) in
0 <= blocks /\ blocks <= b)
let split_at_last_num_blocks_lem #index c i b = ()
/// The ``rest`` function below allows computing, based ``total_len`` stored in
/// the state, the length of useful data currently stored in ``buf``.
/// Unsurprisingly, there's a fair amount of modulo reasoning here because of
/// 64-bit-to-32-bit conversions, so we do them once and for all in a helper.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest #index (c: block index) (i: index)
(total_len: UInt64.t): (x:UInt32.t {
let n = split_at_last_num_blocks c i (U64.v total_len) in
let l = U32.v (c.blocks_state_len i) in
0 <= n * l /\ n * l <= U64.v total_len /\
U32.v x = U64.v total_len - (n * l)})
=
let open FStar.Int.Cast in
[@inline_let] let l = uint32_to_uint64 (c.blocks_state_len i) in
[@inline_let] let r = total_len `U64.rem` l in
(**) let total_len_v : Ghost.erased nat = U64.v total_len in
(**) let l_v : Ghost.erased nat = U64.v l in
(**) let r_v : Ghost.erased nat = U64.v r in
(**) assert(Ghost.reveal r_v = total_len_v - ((total_len_v / l_v) * l_v));
(**) Math.Lemmas.euclidean_division_definition total_len_v l_v;
(**) assert(Ghost.reveal r_v = total_len_v % l_v);
(**) assert(r_v < l_v);
if U64.(r =^ uint_to_t 0) && U64.(total_len >^ uint_to_t 0) then
begin
(**) split_at_last_num_blocks_lem c i (U64.v total_len);
c.blocks_state_len i
end
else
begin
[@inline_let] let r' = FStar.Int.Cast.uint64_to_uint32 r in
(**) FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32);
(**) calc (==) {
(**) U32.v r';
(**) (==) { }
(**) U64.v r % pow2 32;
(**) (==) { FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32) }
(**) U64.v r;
(**) (==) { FStar.Math.Lemmas.euclidean_division_definition (U64.v total_len) (U64.v (uint32_to_uint64 (c.blocks_state_len i))) }
(**) U64.v total_len % U64.v (uint32_to_uint64 (c.blocks_state_len i) );
(**) (==) { }
(**) U64.v total_len % U32.v (c.blocks_state_len i);
(**) };
(**) assert(
(**) let n = split_at_last_num_blocks c i (U64.v total_len) in
(**) let l = U32.v (c.blocks_state_len i) in
(**) U32.v r' = U64.v total_len - (n * l));
r'
end
#pop-options
/// The ``nblocks`` function below allows computing, given ``total_len`` stored in
/// the state, the number of blocks of data which have been processed (the remaining
/// unprocessed data being left in ``buf``).
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let nblocks #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.blocks_state_len i) in
U32.v x * l <= U32.v len /\
U32.v x = split_at_last_num_blocks c i (U32.v len) })
=
let open FStar.Int.Cast in
[@inline_let] let l = c.blocks_state_len i in
[@inline_let] let r = rest c i (uint32_to_uint64 len) in
(**) let len_v : Ghost.erased nat = U32.v len in
(**) let l_v : Ghost.erased nat = U32.v l in
(**) let r_v : Ghost.erased nat = U32.v r in
(**) let n_s : Ghost.erased nat = split_at_last_num_blocks c i len_v in
(**) assert(Ghost.reveal len_v = n_s * l_v + r_v);
(**) Math.Lemmas.nat_times_nat_is_nat n_s l_v;
(**) assert(U32.v r <= U32.v len);
[@inline_let] let blocks = len `U32.sub` r in
(**) let blocks_v : Ghost.erased nat = U32.v blocks in
(**) assert(blocks_v % l_v = 0);
[@inline_let] let n = blocks `U32.div` l in
(**) let n_v : Ghost.erased nat = U32.v n in
(**) assert(n_v * l_v = Ghost.reveal blocks_v);
(**) split_at_last_num_blocks_spec c i len_v n_v r_v;
n
#pop-options
/// The ``rest`` function to call on the unprocessed data length in the ``finish``
/// function.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest_finish #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.block_len i) in
let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
0 <= n * l /\ n * l <= U32.v len /\
U32.v x = U32.v len - (n * l)})
=
[@inline_let] let l = c.block_len i in
[@inline_let] let r = len `U32.rem` l in
(**) split_at_last_num_blocks_lem c i (U32.v len);
if U32.(r =^ uint_to_t 0) && U32.(len >^ uint_to_t 0) then
begin
(**) begin
(**) let l = U32.v (c.block_len i) in
(**) let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
(**) Math.Lemmas.nat_times_nat_is_nat n l
(**) end;
c.block_len i
end
else
r
#pop-options
/// We always add 32-bit lengths to 64-bit lengths. Having a helper for that allows
/// doing modulo reasoning once and for all.
inline_for_extraction noextract
let add_len #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t):
Pure UInt64.t
(requires U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures fun x -> U64.v x = U64.v total_len + U32.v len /\ U64.v x <= U64.v (c.max_input_len i))
=
total_len `U64.add` Int.Cast.uint32_to_uint64 len
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let add_len_small #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t): Lemma
(requires
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i total_len) /\
U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures (rest c i (add_len c i total_len len) = rest c i total_len `U32.add` len))
=
let total_len_v = U64.v total_len in
let l = U32.v (c.blocks_state_len i) in
let b = total_len_v + U32.v len in
let n = split_at_last_num_blocks c i total_len_v in
let r = U32.v (rest c i total_len) in
assert(total_len_v = n * l + r);
let r' = U32.v (rest c i total_len) + U32.v len in
assert(r' <= l);
assert(r' = 0 ==> b = 0);
Math.Lemmas.euclidean_division_definition b l;
assert(b = n * l + r');
split_at_last_num_blocks_spec c i b n r'
#pop-options
/// Beginning of the three sub-cases (see Hacl.Streaming.Spec)
/// ==========================================================
noextract
let total_len_h #index (c: block index) (i: index) h (p: state' c i) =
State?.total_len (B.deref h p)
noextract
let split_at_last_all_seen #index (c: block index) (i: index) h (p: state' c i) =
let all_seen = all_seen c i h p in
let blocks, rest = split_at_last c i all_seen in
blocks, rest
inline_for_extraction noextract
val update_small:
#index:Type0 ->
(c: block index) ->
i:index -> (
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
Stack unit
(requires fun h0 ->
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i (total_len_h c i h0 s)))
(ensures fun h0 s' h1 ->
update_post c i s data len h0 h1))
/// SH: The proof obligations for update_small have problem succeeding in command
/// line mode: hence the restart-solver instruction, the crazy rlimit and the
/// intermediate lemma. Interestingly (and frustratingly), the proof succeeds
/// quite quickly locally on command-line with this rlimit, but fails with a lower
/// one. Besides, the lemma is needed only for the CI regression.
let split_at_last_rest_eq (#index : Type0) (c: block index)
(i: index)
(t:Type0 { t == c.state.s i })
(t':Type0 { t' == optional_key i c.km c.key })
(s: state c i t t') (h0: HS.mem) :
Lemma
(requires (
invariant c i h0 s))
(ensures (
let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
Seq.length r == U32.v sz)) =
let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
()
/// Particularly difficult proof. Z3 profiling indicates that a pattern goes off
/// the rails. So I disabled all of the known "bad" patterns, then did the proof
/// by hand. Fortunately, there were only two stateful operations. The idea was
/// to do all ofthe modifies-reasoning in the two lemmas above, then disable the
/// bad pattern for the main function.
///
/// This style is a little tedious, because it requires a little bit of digging
/// to understand what needs to hold in order to be able to prove that e.g. the
/// sequence remains unmodified from h0 to h2, but this seems more robust?
val modifies_footprint:
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
s:state' c i ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
let State _ buf_ _ _ _ = B.deref h0 s in (
update_pre c i s data len h0 /\
B.(modifies (loc_buffer buf_) h0 h1))))
(ensures (
let State bs0 buf0 _ _ k0 = B.deref h0 s in
let State bs1 buf1 _ _ k1 = B.deref h1 s in (
footprint c i h0 s == footprint c i h1 s /\
preserves_freeable c i s h0 h1 /\
bs0 == bs1 /\ buf0 == buf1 /\ k0 == k1 /\
c.state.invariant h1 bs1 /\
c.state.v i h1 bs1 == c.state.v i h0 bs0 /\
c.state.footprint h1 bs1 == c.state.footprint h0 bs0 /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_buffer buf1)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_buffer data)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_addr_of_buffer buf1)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (c.state.footprint h1 bs1)) /\
B.(loc_disjoint (loc_buffer s) (loc_buffer buf1)) /\
B.(loc_disjoint (loc_buffer s) (loc_buffer data)) /\
B.(loc_disjoint (loc_buffer s) (c.state.footprint h1 bs1)) /\
(if c.km = Runtime then
c.key.invariant #i h1 k1 /\
c.key.v i h1 k1 == c.key.v i h0 k0 /\
c.key.footprint #i h1 k1 == c.key.footprint #i h0 k0 /\
B.(loc_disjoint (loc_addr_of_buffer s) (c.key.footprint #i h1 k1)) /\
B.(loc_disjoint (loc_buffer s) (c.key.footprint #i h1 k1))
else
B.(loc_disjoint (loc_addr_of_buffer s) loc_none) /\
True)))))
let modifies_footprint c i p data len h0 h1 =
let _ = c.state.frame_freeable #i in
let _ = c.key.frame_freeable #i in
let s0 = B.deref h0 p in
let s1 = B.deref h0 p in
let State bs0 buf0 _ _ k0 = s0 in
let State bs1 buf0 _ _ k1 = s1 in
c.state.frame_invariant (B.loc_buffer buf0) bs0 h0 h1;
if c.km = Runtime then
c.key.frame_invariant #i (B.loc_buffer buf0) k0 h0 h1
val modifies_footprint':
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
p:state' c i ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
let State bs0 buf0 _ _ k0 = B.deref h0 p in
let State bs1 buf1 _ _ k1 = B.deref h1 p in (
B.live h0 p /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.state.footprint #i h0 bs0)) /\
B.(loc_disjoint (loc_addr_of_buffer p) (loc_addr_of_buffer buf0)) /\
c.state.invariant h0 bs0 /\
(if c.km = Runtime then
B.(loc_disjoint (loc_addr_of_buffer p) (c.key.footprint #i h0 k0)) /\
c.key.invariant #i h0 k0
else
B.(loc_disjoint (loc_addr_of_buffer p) loc_none)) /\
B.(modifies (loc_buffer p) h0 h1)) /\
bs0 == bs1 /\ buf0 == buf1 /\ k0 == k1))
(ensures (
let State bs0 buf0 _ _ k0 = B.deref h0 p in
let State bs1 buf1 _ _ k1 = B.deref h1 p in (
B.live h1 p /\
footprint c i h0 p == footprint c i h1 p /\
preserves_freeable c i p h0 h1 /\
B.(loc_disjoint (loc_addr_of_buffer p) (footprint_s c i h1 (B.deref h1 p))) /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.state.footprint #i h1 bs1)) /\
B.(loc_disjoint (loc_buffer p) (c.state.footprint #i h1 bs1)) /\
c.state.invariant h1 bs1 /\
c.state.v i h1 bs1 == c.state.v i h0 bs0 /\
c.state.footprint h1 bs1 == c.state.footprint h0 bs0 /\
(if c.km = Runtime then
c.key.invariant #i h1 k1 /\
c.key.v i h1 k1 == c.key.v i h0 k0 /\
c.key.footprint #i h1 k1 == c.key.footprint #i h0 k0 /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.key.footprint #i h1 k1)) /\
B.(loc_disjoint (loc_buffer p) (c.key.footprint #i h1 k1))
else
B.(loc_disjoint (loc_addr_of_buffer p) loc_none))))))
let modifies_footprint' c i p data len h0 h1 =
let _ = c.state.frame_freeable #i in
let _ = c.key.frame_freeable #i in
let _ = c.state.frame_invariant #i in
let _ = c.key.frame_invariant #i in
let _ = allow_inversion key_management in
let s0 = B.deref h0 p in
let s1 = B.deref h0 p in
let State bs0 buf0 _ _ k0 = s0 in
let State bs1 buf1 _ _ k1 = s1 in
c.state.frame_invariant (B.loc_addr_of_buffer p) bs0 h0 h1;
if c.km = Runtime then
c.key.frame_invariant #i (B.loc_addr_of_buffer p) k0 h0 h1
/// Small helper which we use to factor out functional correctness proof obligations.
/// It states that a state was correctly updated to process some data between two
/// memory snapshots (the key is the same, the seen data was updated, etc.).
///
/// Note that we don't specify anything about the buffer and the block_state: they
/// might have been updated differently depending on the case.
unfold val state_is_updated :
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Type0)
#push-options "--z3cliopt smt.arith.nl=false"
let state_is_updated #index c i t t' p data len h0 h1 =
// Functional conditions about the memory updates
let s0 = B.get h0 p 0 in
let s1 = B.get h1 p 0 in
let State block_state0 buf0 total_len0 seen0 key0 = s0 in
let State block_state1 buf1 total_len1 seen1 key1 = s1 in
block_state1 == block_state0 /\
buf1 == buf0 /\
U64.v total_len1 == U64.v total_len0 + U32.v len /\
key1 == key0 /\
seen1 `S.equal` (seen0 `S.append` (B.as_seq h0 data)) /\
optional_reveal #index #i #c.km #c.key h1 key1 == optional_reveal #index #i #c.km #c.key h0 key0
#pop-options
/// The functional part of the invariant
unfold val invariant_s_funct :
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Pure Type0 (requires
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
state_is_updated c i t t' s data len h0 h1)
(ensures (fun _ -> True)))
let invariant_s_funct #index c i t t' p data len h0 h1 =
let blocks, rest = split_at_last_all_seen c i h1 p in
let s = B.get h1 p 0 in
let State block_state buf_ total_len seen key = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 key in
let init_s = c.init_s i key_v in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (c.block_len i));
c.state.v i h1 block_state == c.update_multi_s i init_s 0 blocks /\
S.equal (S.slice (B.as_seq h1 buf_) 0 (Seq.length rest)) rest
/// We isolate the functional correctness proof obligations for [update_small]
val update_small_functional_correctness :
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
// The precondition of [small_update]
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i (total_len_h c i h0 s)) /\
// Generic conditions
state_is_updated c i t t' s data len h0 h1 /\
// Functional conditions about the memory updates
begin
let s0 = B.get h0 s 0 in
let s1 = B.get h1 s 0 in
let State block_state0 buf0 total_len0 seen0 key0 = s0 in
let State block_state1 buf1 total_len1 seen1 key1 = s1 in
let sz = rest c i total_len0 in
let buf = buf0 in
let data_v0 = B.as_seq h0 data in
let buf_beg_v0 = S.slice (B.as_seq h0 buf) 0 (U32.v sz) in
let buf_part_v1 = S.slice (B.as_seq h1 buf) 0 (U32.v sz + U32.v len) in
buf_part_v1 == S.append buf_beg_v0 data_v0 /\
c.state.v i h1 block_state1 == c.state.v i h0 block_state0
end
))
(ensures (invariant_s_funct c i t t' s data len h0 h1)))
#push-options "--z3cliopt smt.arith.nl=false"
let update_small_functional_correctness #index c i t t' p data len h0 h1 =
let s0 = B.get h0 p 0 in
let s1 = B.get h1 p 0 in
let State block_state buf total_len0 seen0 key = s0 in
let seen0 = G.reveal seen0 in
let i = Ghost.reveal i in
let key_v0 = optional_reveal #_ #i #c.km #c.key h0 key in
let init_v0 = c.init_input_s i key_v0 in
let all_seen0 = S.append init_v0 seen0 in
let blocks0, rest0 = split_at_last c i all_seen0 in
let State block_state buf total_len1 seen1 key = s1 in
let seen1 = G.reveal seen1 in
let i = Ghost.reveal i in
let key_v1 = optional_reveal #_ #i #c.km #c.key h1 key in
assert(key_v1 == key_v0);
let init_v1 = c.init_input_s i key_v1 in
assert(init_v1 == init_v0);
let all_seen1 = S.append init_v1 seen1 in
let blocks1, rest1 = split_at_last c i all_seen1 in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
let data_v0 = B.as_seq h0 data in
split_at_last_small c i all_seen0 data_v0;
// The first problematic condition
assert(blocks1 `S.equal` blocks0);
assert(c.state.v i h1 block_state == c.update_multi_s i (c.init_s i key_v1) 0 blocks1);
// The second problematic condition
assert(S.equal (S.slice (B.as_seq h1 buf) 0 (Seq.length rest1)) rest1)
#pop-options
// The absence of loc_disjoint_includes makes reasoning a little more difficult.
// Notably, we lose all of the important disjointness properties between the
// outer point p and the buffer within B.deref h p. These need to be
// re-established by hand. Another thing that we lose without this pattern is
// knowing that loc_buffer b is included within loc_addr_of_buffer b. This is
// important for reasoning about the preservation of e.g. the contents of data.
#restart-solver
#push-options "--z3rlimit 300 --z3cliopt smt.arith.nl=false --z3refresh \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2,-FStar.Seq.Properties.slice_slice,-LowStar.Monotonic.Buffer.loc_disjoint_includes_r'"
let update_small #index c i t t' p data len =
let open LowStar.BufferOps in
let s = !*p in
let State block_state buf total_len seen_ k' = s in
[@inline_let]
let block_state: c.state.s i = block_state in
// Functional reasoning.
let sz = rest c i total_len in
add_len_small c i total_len len;
let h0 = ST.get () in
let buf1 = B.sub buf 0ul sz in
let buf2 = B.sub buf sz len in
// Memory reasoning.
c.state.invariant_loc_in_footprint h0 block_state;
if c.km = Runtime then
c.key.invariant_loc_in_footprint #i h0 k';
// key_invariant_loc_in_footprint #index c i h0 p;
B.(loc_disjoint_includes_r (loc_buffer data) (footprint c i h0 p) (loc_buffer buf2));
// FIRST STATEFUL OPERATION
B.blit data 0ul buf2 0ul len;
// Memory reasoning.
let h1 = ST.get () in
modifies_footprint c i p data len h0 h1;
c.state.invariant_loc_in_footprint h1 block_state;
if c.km = Runtime then
c.key.invariant_loc_in_footprint #i h1 k';
// Functional reasoning on data
begin
let buf1_v0 = B.as_seq h0 buf1 in
let buf1_v1 = B.as_seq h1 buf1 in
let buf2_v1 = B.as_seq h1 buf2 in
let buf_beg_v0 = S.slice (B.as_seq h0 buf) 0 (U32.v sz) in
let buf_part_v1 = S.slice (B.as_seq h1 buf) 0 (U32.v sz + U32.v len) in
let data_v0 = B.as_seq h0 data in
assert(buf1_v1 == buf1_v0);
assert(buf1_v0 == buf_beg_v0);
assert(buf2_v1 `S.equal` data_v0);
assert(buf_part_v1 `S.equal` S.append buf_beg_v0 data_v0)
end;
// SECOND STATEFUL OPERATION
let total_len = add_len c i total_len len in
[@inline_let]
let tmp: state_s c i t t' =
State #index #c #i block_state buf total_len
(G.hide (G.reveal seen_ `S.append` (B.as_seq h0 data))) k'
in
p *= tmp;
// Memory reasoning.
let h2 = ST.get () in
modifies_footprint' c i p data len h1 h2;
c.state.invariant_loc_in_footprint h2 block_state;
if c.km = Runtime then
c.key.invariant_loc_in_footprint #i h2 k';
ST.lemma_equal_domains_trans h0 h1 h2;
// Prove the invariant
update_small_functional_correctness c i t t' p data len h0 h2
#pop-options
// Stupid name collisions
noextract let seen_h = seen
noextract let all_seen_h = all_seen
/// Case 2: we have no buffered data (ie: the buffer was just initialized), or the
/// internal buffer is full meaning that we can just hash it to go to the case where
/// there is no buffered data. Of course, the data we append has to be non-empty,
/// otherwise we might end-up with an empty internal buffer.
/// Auxiliary lemma which groups the functional correctness proof obligations
/// for [update_empty_or_full].
#push-options "--z3cliopt smt.arith.nl=false"
val update_empty_or_full_functional_correctness :
#index:Type0 ->
c:block index ->
i:G.erased index -> (
let i = G.reveal i in
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer Lib.IntTypes.uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
// Same precondition as [update_empty_or_full_buf]
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
(rest c i (total_len_h c i h0 s) = 0ul \/
rest c i (total_len_h c i h0 s) = c.blocks_state_len i) /\
U32.v len > 0 /\
// Generic additional preconditions
state_is_updated c i t t' s data len h0 h1 /\
// Additional preconditions
begin
let s0 = B.get h0 s 0 in
let s1 = B.get h1 s 0 in
let State block_state0 buf0 total_len0 seen0 key0 = s0 in
let State block_state1 buf1 total_len1 seen1 key1 = s1 in
let seen0 = G.reveal seen0 in
let seen1 = G.reveal seen1 in
let block_state = block_state0 in
let buf = buf0 in
let n_blocks = nblocks c i len in
(**) split_at_last_num_blocks_lem c i (U32.v len);
(**) assert(U32.v n_blocks * U32.v (c.blocks_state_len i) <= U32.v len);
(**) assert(U32.(FStar.UInt.size (v n_blocks * v (c.blocks_state_len i)) n));
let data1_len = n_blocks `U32.mul` c.blocks_state_len i in
let data2_len = len `U32.sub` data1_len in
let data1 = B.gsub data 0ul data1_len in
let data2 = B.gsub data data1_len data2_len in
let all_seen0 = all_seen c i h0 s in
let all_seen1 = all_seen c i h1 s in
let blocks0, res0 = split_at_last c i all_seen0 in
let blocks1, res1 = split_at_last c i all_seen1 in
let data1_v = B.as_seq h0 data1 in
let data2_v = B.as_seq h0 data2 in
let key = optional_reveal #index #i #c.km #c.key h0 key0 in
let init_s = c.init_s i key in
let all_seen_data1 = S.append all_seen0 data1_v in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (c.block_len i));
S.length all_seen0 % U32.v (c.block_len i) = 0 /\ // TODO: should be proved automatically
S.length all_seen_data1 % U32.v (c.block_len i) = 0 /\ // TODO: should be proved automatically
c.state.v i h1 block_state == c.update_multi_s i init_s 0 all_seen_data1 /\
S.slice (B.as_seq h1 buf) 0 (Seq.length data2_v) `S.equal` data2_v /\
True
end /\
True
))
(ensures (invariant_s_funct c i t t' s data len h0 h1)))
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let update_empty_or_full_functional_correctness #index c i t t' p data len h0 h1 =
let s = B.get h0 p 0 in
let State block_state buf_ total_len seen0 key = s in
let init_s = c.init_s i (optional_reveal #index #i #c.km #c.key h0 key) in
Math.Lemmas.modulo_lemma 0 (U32.v (c.block_len i));
let n_blocks = nblocks c i len in
(**) split_at_last_num_blocks_lem c i (U32.v len);
(**) assert(U32.(FStar.UInt.size (v n_blocks * v (c.blocks_state_len i)) n));
let data1_len = n_blocks `U32.mul` c.blocks_state_len i in
let data2_len = len `U32.sub` data1_len in
let data1 = B.gsub data 0ul data1_len in
let data2 = B.gsub data data1_len data2_len in
let data_v = B.as_seq h0 data in
let init_input = init_input c i h0 p in
let seen1 = seen c i h1 p in
let all_seen0 = all_seen c i h0 p in
let all_seen1 = all_seen c i h1 p in
let blocks0, rest0 = split_at_last_all_seen c i h0 p in
let blocks1, rest1 = split_at_last_all_seen c i h1 p in
let data_blocks, data_rest = split_at_last c i data_v in
split_at_last_blocks c i all_seen0 data_v;
assert(Seq.equal all_seen1 (S.append all_seen0 data_v));
assert(S.equal blocks1 (S.append all_seen0 data_blocks));
assert(S.equal data_rest rest1)
#pop-options
inline_for_extraction noextract
val update_empty_or_full_buf:
#index:Type0 ->
c:block index ->
i:index -> (
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer Lib.IntTypes.uint8 ->
len: UInt32.t ->
Stack unit
(requires fun h0 ->
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
(rest c i (total_len_h c i h0 s) = 0ul \/
rest c i (total_len_h c i h0 s) = c.blocks_state_len i) /\
U32.v len > 0)
(ensures fun h0 s' h1 ->
update_post c i s data len h0 h1))
#push-options "--z3cliopt smt.arith.nl=false --z3rlimit 500"
let update_empty_or_full_buf #index c i t t' p data len =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.update_multi_associative i in
let open LowStar.BufferOps in
let s = !*p in
let State block_state buf total_len seen k' = s in
[@inline_let]
let block_state: c.state.s i = block_state in
let sz = rest c i total_len in
let h0 = ST.get () in
Math.Lemmas.modulo_lemma 0 (U32.v (c.block_len i));
assert(0 % U32.v (c.block_len i) = 0);
let init_key : Ghost.erased _ = optional_reveal h0 (k' <: optional_key i c.km c.key) in
let init_state : Ghost.erased _ = c.init_s i init_key in
assert(
let all_seen = all_seen c i h0 p in
let blocks, rest = split_at_last c i all_seen in
Seq.length rest = U32.v sz /\
c.state.v i h0 block_state ==
c.update_multi_s i init_state 0 blocks);
(* Start by "flushing" the buffer: hash it so that all the data seen so far
* has been processed and we can consider the buffer as empty *)
if U32.(sz =^ 0ul) then
begin
assert(
let all_seen = all_seen c i h0 p in
c.state.v i h0 block_state == c.update_multi_s i init_state 0 all_seen)
end
else begin
let prevlen = U64.(total_len `sub` FStar.Int.Cast.uint32_to_uint64 sz) in
c.update_multi (G.hide i) block_state prevlen buf (c.blocks_state_len i);
begin
let h1 = ST.get () in
let all_seen = all_seen c i h0 p in
let blocks, rest = split_at_last c i all_seen in
assert(Seq.length blocks = U64.v prevlen);
assert(c.state.v i h0 block_state == c.update_multi_s i init_state 0 blocks);
assert(c.state.v i h1 block_state ==
c.update_multi_s i (c.update_multi_s i init_state 0 blocks) (U64.v prevlen) rest);
assert(all_seen `Seq.equal` Seq.append blocks rest);
(* TODO: the pattern of ``update_multi_associative`` is not triggered *)
c.update_multi_associative i init_state 0 (U64.v prevlen) blocks rest;
assert(c.state.v i h1 block_state == c.update_multi_s i init_state 0 all_seen)
end
end;
let h1 = ST.get () in
assert(
let all_seen = all_seen c i h0 p in
c.state.v i h1 block_state ==
c.update_multi_s i init_state 0 all_seen);
split_at_last_blocks c i (all_seen c i h0 p) (B.as_seq h0 data); // TODO: remove?
let n_blocks = nblocks c i len in
(**) split_at_last_num_blocks_lem c i (U32.v len);
(**) assert(U32.(FStar.UInt.size (v n_blocks * v (c.blocks_state_len i)) n));
let data1_len = n_blocks `U32.mul` c.blocks_state_len i in
let data2_len = len `U32.sub` data1_len in
let data1 = B.sub data 0ul data1_len in
let data2 = B.sub data data1_len data2_len in
c.update_multi (G.hide i) block_state total_len data1 data1_len;
let h01 = ST.get () in
optional_frame #_ #i #c.km #c.key (c.state.footprint h0 block_state) k' h0 h01;
assert(preserves_freeable c i p h0 h01);
begin
let all_seen = all_seen c i h0 p in
let data1_v = B.as_seq h01 data1 in
c.update_multi_associative i init_state 0 (Seq.length all_seen) all_seen data1_v;
assert(c.state.v i h01 block_state == c.update_multi_s i init_state 0 (Seq.append all_seen data1_v))
end;
let dst = B.sub buf 0ul data2_len in
let h1 = ST.get () in
B.blit data2 0ul dst 0ul data2_len;
let h2 = ST.get () in
c.state.frame_invariant (B.loc_buffer buf) block_state h1 h2;
optional_frame #_ #i #c.km #c.key (B.loc_buffer buf) k' h1 h2;
stateful_frame_preserves_freeable #index #(Block?.state c) #i
(B.loc_buffer dst)
(State?.block_state s) h1 h2;
assert(preserves_freeable c i p h01 h2);
[@inline_let]
let total_len' = add_len c i total_len len in
[@inline_let]
let tmp: state_s c i t t' = State #index #c #i block_state buf total_len'
(seen `S.append` B.as_seq h0 data) k'
in
p *= tmp;
let h3 = ST.get () in
c.state.frame_invariant (B.loc_buffer p) block_state h2 h3;
optional_frame #_ #i #c.km #c.key (B.loc_buffer p) k' h2 h3;
stateful_frame_preserves_freeable #index #(Block?.state c) #i
(B.loc_buffer p)
(State?.block_state s) h2 h3;
assert(preserves_freeable c i p h2 h3);
assert(preserves_freeable c i p h0 h3);
update_empty_or_full_functional_correctness #index c i t t' p data len h0 h3;
(* The following proof obligation is the difficult one - keep it here for
* easy debugging when updating the definitions/proofs *)
assert(invariant_s c i h3 (B.get h3 p 0))
#pop-options
/// Case 3: we are given just enough data to end up on the boundary. It is just
/// a sub-case of [update_small], but with a little bit more precise pre and post
/// conditions.
inline_for_extraction noextract
val update_round:
#index:Type0 ->
c:block index ->
i:index -> (
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
Stack unit
(requires fun h0 ->
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\ (
let r = rest c i (total_len_h c i h0 s) in
U32.v len + U32.v r = U32.v (c.blocks_state_len i) /\
r <> 0ul))
(ensures fun h0 _ h1 ->
update_post c i s data len h0 h1 /\
begin
let blocks, rest = split_at_last_all_seen c i h0 s in
let blocks', rest' = split_at_last_all_seen c i h1 s in
blocks' `S.equal` blocks /\
rest' `S.equal` S.append rest (B.as_seq h0 data) /\
S.length rest' = U32.v (c.blocks_state_len i)
end))
#push-options "--z3rlimit 200 --z3cliopt smt.arith.nl=false"
let update_round #index c i t t' p data len =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.update_multi_associative i in
let open LowStar.BufferOps in
(**) let h0 = ST.get() in
update_small #index c i t t' p data len;
(**) let h1 = ST.get() in
(**) split_at_last_small c i (all_seen c i h0 p) (B.as_seq h0 data);
(**) begin // For some reason, the proof fails if we don't call those
(**) let blocks, rest = split_at_last_all_seen c i h0 p in
(**) let blocks', rest' = split_at_last_all_seen c i h1 p in
(**) ()
(**) end
#pop-options
/// General update function, as a decomposition of the three sub-cases
/// ================================================================== | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 200,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Hacl.Streaming.Interface.block index -> i: FStar.Ghost.erased index
-> (let i = FStar.Ghost.reveal i in
t: Type0{t == Stateful?.s (Block?.state c) i} ->
t': Type0{t' == Hacl.Streaming.Interface.optional_key i (Block?.km c) (Block?.key c)}
-> Hacl.Streaming.Functor.update_st c i t t') | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.Ghost.erased",
"Prims.eq2",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Interface.__proj__Block__item__state",
"FStar.Ghost.reveal",
"Hacl.Streaming.Interface.optional_key",
"Hacl.Streaming.Interface.__proj__Block__item__km",
"Hacl.Streaming.Interface.__proj__Block__item__key",
"Hacl.Streaming.Functor.state",
"LowStar.Buffer.buffer",
"Hacl.Streaming.Spec.uint8",
"FStar.UInt32.t",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_Equality",
"LowStar.Monotonic.Buffer.len",
"LowStar.Buffer.trivial_preorder",
"Hacl.Streaming.Interface.__proj__Block__item__blocks_state_len",
"FStar.UInt64.t",
"FStar.Seq.Base.seq",
"FStar.UInt64.op_Greater_Hat",
"FStar.Int.Cast.uint32_to_uint64",
"FStar.UInt64.op_Subtraction_Hat",
"Hacl.Streaming.Interface.__proj__Block__item__max_input_len",
"Hacl.Streaming.Types.MaximumLengthExceeded",
"Hacl.Streaming.Types.error_code",
"Prims.bool",
"Hacl.Streaming.Types.Success",
"Prims.unit",
"FStar.UInt32.lte",
"FStar.UInt32.sub",
"Hacl.Streaming.Functor.update_small",
"FStar.UInt32.__uint_to_t",
"Hacl.Streaming.Functor.update_empty_or_full_buf",
"Prims._assert",
"FStar.Seq.Base.equal",
"Hacl.Streaming.Functor.seen_h",
"FStar.Seq.Base.append",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.Seq.Base.append_assoc",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.Streaming.Functor.update_round",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.sub",
"FStar.Ghost.hide",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_Multiply",
"Hacl.Streaming.Spec.split_at_last_num_blocks",
"FStar.UInt64.v",
"FStar.UInt32.v",
"Prims.int",
"Prims.op_Subtraction",
"Hacl.Streaming.Functor.rest",
"Hacl.Streaming.Interface.__proj__Block__item__index_of_state",
"Hacl.Streaming.Functor.state_s",
"LowStar.BufferOps.op_Bang_Star"
] | [] | false | false | false | false | false | let update #index c i t t' state chunk chunk_len =
| let open LowStar.BufferOps in
let s = !*state in
let State block_state buf_ total_len seen k' = s in
let i = c.index_of_state i block_state in
if
let open FStar.UInt64 in
FStar.Int.Cast.uint32_to_uint64 chunk_len >^ c.max_input_len i -^ total_len
then Hacl.Streaming.Types.MaximumLengthExceeded
else
let sz = rest c i total_len in
if chunk_len `U32.lte` ((c.blocks_state_len i) `U32.sub` sz)
then update_small c i t t' state chunk chunk_len
else
if sz = 0ul
then update_empty_or_full_buf c i t t' state chunk chunk_len
else
(let h0 = ST.get () in
let diff = (c.blocks_state_len i) `U32.sub` sz in
let chunk1 = B.sub chunk 0ul diff in
let chunk2 = B.sub chunk diff (chunk_len `U32.sub` diff) in
update_round c i t t' state chunk1 diff;
let h1 = ST.get () in
update_empty_or_full_buf c i t t' state chunk2 (chunk_len `U32.sub` diff);
let h2 = ST.get () in
(let seen = G.reveal seen in
assert ((seen_h c i h1 state) `S.equal` (S.append seen (B.as_seq h0 chunk1)));
assert ((seen_h c i h2 state)
`S.equal`
(S.append (S.append seen (B.as_seq h0 chunk1)) (B.as_seq h0 chunk2)));
S.append_assoc seen (B.as_seq h0 chunk1) (B.as_seq h0 chunk2);
assert (S.equal (S.append (B.as_seq h0 chunk1) (B.as_seq h0 chunk2)) (B.as_seq h0 chunk));
assert (S.equal (S.append (S.append seen (B.as_seq h0 chunk1)) (B.as_seq h0 chunk2))
(S.append seen (B.as_seq h0 chunk)));
assert ((seen_h c i h2 state) `S.equal` (S.append seen (B.as_seq h0 chunk)));
()));
Hacl.Streaming.Types.Success | false |
LowParse.Low.VCList.fst | LowParse.Low.VCList.valid_nlist_nil_recip | val valid_nlist_nil_recip
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma (requires (valid (parse_nlist 0 p) h sl pos))
(ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) | val valid_nlist_nil_recip
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma (requires (valid (parse_nlist 0 p) h sl pos))
(ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) | let valid_nlist_nil_recip
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (valid (parse_nlist 0 p) h sl pos))
(ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos))
= valid_facts (parse_nlist 0 p) h sl pos;
parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) | {
"file_name": "src/lowparse/LowParse.Low.VCList.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 51,
"end_line": 39,
"start_col": 0,
"start_line": 27
} | module LowParse.Low.VCList
include LowParse.Spec.VCList
include LowParse.Low.List
module L = FStar.List.Tot
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module U32 = FStar.UInt32
module B = LowStar.Buffer
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_nlist_nil
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (live_slice h sl /\ U32.v pos <= U32.v sl.len))
(ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos))
= valid_facts (parse_nlist 0 p) h sl pos;
parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.VCList.fsti.checked",
"LowParse.Low.List.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"C.Loops.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.VCList.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.Low.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VCList",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: LowParse.Spec.Base.parser k t ->
h: FStar.Monotonic.HyperStack.mem ->
sl: LowParse.Slice.slice rrel rel ->
pos: FStar.UInt32.t
-> FStar.Pervasives.Lemma
(requires LowParse.Low.Base.Spec.valid (LowParse.Spec.VCList.parse_nlist 0 p) h sl pos)
(ensures
LowParse.Low.Base.Spec.valid_content_pos (LowParse.Spec.VCList.parse_nlist 0 p)
h
sl
pos
[]
pos) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"FStar.Monotonic.HyperStack.mem",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt32.t",
"LowParse.Spec.VCList.parse_nlist_eq",
"LowParse.Slice.bytes_of_slice_from",
"Prims.unit",
"LowParse.Low.Base.Spec.valid_facts",
"LowParse.Spec.VCList.parse_nlist_kind",
"LowParse.Spec.VCList.nlist",
"LowParse.Spec.VCList.parse_nlist",
"LowParse.Low.Base.Spec.valid",
"Prims.squash",
"LowParse.Low.Base.Spec.valid_content_pos",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let valid_nlist_nil_recip
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma (requires (valid (parse_nlist 0 p) h sl pos))
(ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) =
| valid_facts (parse_nlist 0 p) h sl pos;
parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) | false |
Hacl.Streaming.Functor.fst | Hacl.Streaming.Functor.modifies_footprint' | val modifies_footprint':
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
p:state' c i ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
let State bs0 buf0 _ _ k0 = B.deref h0 p in
let State bs1 buf1 _ _ k1 = B.deref h1 p in (
B.live h0 p /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.state.footprint #i h0 bs0)) /\
B.(loc_disjoint (loc_addr_of_buffer p) (loc_addr_of_buffer buf0)) /\
c.state.invariant h0 bs0 /\
(if c.km = Runtime then
B.(loc_disjoint (loc_addr_of_buffer p) (c.key.footprint #i h0 k0)) /\
c.key.invariant #i h0 k0
else
B.(loc_disjoint (loc_addr_of_buffer p) loc_none)) /\
B.(modifies (loc_buffer p) h0 h1)) /\
bs0 == bs1 /\ buf0 == buf1 /\ k0 == k1))
(ensures (
let State bs0 buf0 _ _ k0 = B.deref h0 p in
let State bs1 buf1 _ _ k1 = B.deref h1 p in (
B.live h1 p /\
footprint c i h0 p == footprint c i h1 p /\
preserves_freeable c i p h0 h1 /\
B.(loc_disjoint (loc_addr_of_buffer p) (footprint_s c i h1 (B.deref h1 p))) /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.state.footprint #i h1 bs1)) /\
B.(loc_disjoint (loc_buffer p) (c.state.footprint #i h1 bs1)) /\
c.state.invariant h1 bs1 /\
c.state.v i h1 bs1 == c.state.v i h0 bs0 /\
c.state.footprint h1 bs1 == c.state.footprint h0 bs0 /\
(if c.km = Runtime then
c.key.invariant #i h1 k1 /\
c.key.v i h1 k1 == c.key.v i h0 k0 /\
c.key.footprint #i h1 k1 == c.key.footprint #i h0 k0 /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.key.footprint #i h1 k1)) /\
B.(loc_disjoint (loc_buffer p) (c.key.footprint #i h1 k1))
else
B.(loc_disjoint (loc_addr_of_buffer p) loc_none)))))) | val modifies_footprint':
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
p:state' c i ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
let State bs0 buf0 _ _ k0 = B.deref h0 p in
let State bs1 buf1 _ _ k1 = B.deref h1 p in (
B.live h0 p /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.state.footprint #i h0 bs0)) /\
B.(loc_disjoint (loc_addr_of_buffer p) (loc_addr_of_buffer buf0)) /\
c.state.invariant h0 bs0 /\
(if c.km = Runtime then
B.(loc_disjoint (loc_addr_of_buffer p) (c.key.footprint #i h0 k0)) /\
c.key.invariant #i h0 k0
else
B.(loc_disjoint (loc_addr_of_buffer p) loc_none)) /\
B.(modifies (loc_buffer p) h0 h1)) /\
bs0 == bs1 /\ buf0 == buf1 /\ k0 == k1))
(ensures (
let State bs0 buf0 _ _ k0 = B.deref h0 p in
let State bs1 buf1 _ _ k1 = B.deref h1 p in (
B.live h1 p /\
footprint c i h0 p == footprint c i h1 p /\
preserves_freeable c i p h0 h1 /\
B.(loc_disjoint (loc_addr_of_buffer p) (footprint_s c i h1 (B.deref h1 p))) /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.state.footprint #i h1 bs1)) /\
B.(loc_disjoint (loc_buffer p) (c.state.footprint #i h1 bs1)) /\
c.state.invariant h1 bs1 /\
c.state.v i h1 bs1 == c.state.v i h0 bs0 /\
c.state.footprint h1 bs1 == c.state.footprint h0 bs0 /\
(if c.km = Runtime then
c.key.invariant #i h1 k1 /\
c.key.v i h1 k1 == c.key.v i h0 k0 /\
c.key.footprint #i h1 k1 == c.key.footprint #i h0 k0 /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.key.footprint #i h1 k1)) /\
B.(loc_disjoint (loc_buffer p) (c.key.footprint #i h1 k1))
else
B.(loc_disjoint (loc_addr_of_buffer p) loc_none)))))) | let modifies_footprint' c i p data len h0 h1 =
let _ = c.state.frame_freeable #i in
let _ = c.key.frame_freeable #i in
let _ = c.state.frame_invariant #i in
let _ = c.key.frame_invariant #i in
let _ = allow_inversion key_management in
let s0 = B.deref h0 p in
let s1 = B.deref h0 p in
let State bs0 buf0 _ _ k0 = s0 in
let State bs1 buf1 _ _ k1 = s1 in
c.state.frame_invariant (B.loc_addr_of_buffer p) bs0 h0 h1;
if c.km = Runtime then
c.key.frame_invariant #i (B.loc_addr_of_buffer p) k0 h0 h1 | {
"file_name": "code/streaming/Hacl.Streaming.Functor.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 62,
"end_line": 962,
"start_col": 0,
"start_line": 950
} | module Hacl.Streaming.Functor
/// Provided an instance of the type class, this creates a streaming API on top.
/// This means that every function in this module takes two extra arguments
/// compared to the previous streaming module specialized for hashes: the type
/// of the index, and a type class for that index. Then, as usual, a given value
/// for the index as a parameter.
#set-options "--max_fuel 0 --max_ifuel 0 \
--using_facts_from '*,-LowStar.Monotonic.Buffer.unused_in_not_unused_in_disjoint_2' --z3rlimit 50"
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module U32 = FStar.UInt32
module U64 = FStar.UInt64
open Hacl.Streaming.Interface
open FStar.HyperStack.ST
open LowStar.BufferOps
open FStar.Mul
open Hacl.Streaming.Spec
/// State machinery
/// ===============
/// Little bit of trickery here to make sure state_s is parameterized over
/// something at Type0, not Type0 -> Type0 -- otherwise it wouldn't monomorphize
/// in KaRaMeL.
noeq
type state_s #index (c: block index) (i: index)
(t: Type0 { t == c.state.s i })
(t': Type0 { t' == optional_key i c.km c.key })
=
| State:
block_state: t ->
buf: B.buffer Lib.IntTypes.uint8 { B.len buf = c.blocks_state_len i } ->
total_len: UInt64.t ->
seen: G.erased (S.seq uint8) ->
// Stupid name conflict on overloaded projectors leads to inscrutable
// interleaving errors. Need a field name that does not conflict with the
// one in Hacl.Streaming.Interface. Sigh!!
p_key: t' ->
state_s #index c i t t'
/// Defining a series of helpers to deal with the indexed type of the key. This
/// makes proofs easier.
let optional_freeable #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.freeable #i h k
let optional_invariant #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> True
| Runtime -> key.invariant #i h k
let optional_footprint #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> B.loc_none
| Runtime -> key.footprint #i h k
let optional_reveal #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: optional_key i km key)
=
allow_inversion key_management;
match km with
| Erased -> G.reveal k
| Runtime -> key.v i h k
let optional_hide #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(h: HS.mem)
(k: key.s i):
optional_key i km key
=
allow_inversion key_management;
match km with
| Erased -> G.hide (key.v i h k)
| Runtime -> k
/// This lemma is used to convert the Hacl.Streaming.Interface.stateful.frame_freeable
/// lemma, written with freeable in its precondition, into a lemma of the form:
/// [> freeable h0 s => freeable h1 s
val stateful_frame_preserves_freeable:
#index:Type0 -> #sc:stateful index -> #i:index -> l:B.loc -> s:sc.s i -> h0:HS.mem -> h1:HS.mem ->
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
sc.freeable h0 s ==> sc.freeable h1 s))
let stateful_frame_preserves_freeable #index #sc #i l s h0 h1 =
let lem h0 h1 :
Lemma
(requires (
sc.invariant h0 s /\
B.loc_disjoint l (sc.footprint h0 s) /\
B.modifies l h0 h1 /\
sc.freeable h0 s))
(ensures (
sc.freeable h1 s))
[SMTPat (sc.freeable h0 s);
SMTPat (sc.freeable h1 s)] =
sc.frame_freeable l s h0 h1
in
()
let optional_frame #index
(#i: index)
(#km: key_management)
(#key: stateful index)
(l: B.loc)
(s: optional_key i km key)
(h0 h1: HS.mem):
Lemma
(requires (
optional_invariant h0 s /\
B.loc_disjoint l (optional_footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
optional_invariant h1 s /\
optional_reveal h0 s == optional_reveal h1 s /\
optional_footprint h1 s == optional_footprint h0 s /\
(optional_freeable h0 s ==> optional_freeable h1 s)))
=
allow_inversion key_management;
match km with
| Erased -> ()
| Runtime ->
key.frame_invariant #i l s h0 h1;
stateful_frame_preserves_freeable #index #key #i l s h0 h1
let footprint_s #index (c: block index) (i: index) (h: HS.mem) s =
let State block_state buf_ _ _ p_key = s in
B.(loc_addr_of_buffer buf_ `loc_union` c.state.footprint h block_state `loc_union` optional_footprint h p_key)
/// Invariants
/// ==========
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let invariant_s #index (c: block index) (i: index) h s =
let State block_state buf_ total_len seen key = s in
let seen = G.reveal seen in
let key_v = optional_reveal h key in
let all_seen = S.append (c.init_input_s i key_v) seen in
let blocks, rest = split_at_last c i all_seen in
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % U32.v (Block?.block_len c i) = 0);
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.blocks_state_len c i));
(**) assert(0 % U32.v (Block?.blocks_state_len c i) = 0);
// Liveness and disjointness (administrative)
B.live h buf_ /\ c.state.invariant #i h block_state /\ optional_invariant h key /\
B.(loc_disjoint (loc_buffer buf_) (c.state.footprint h block_state)) /\
B.(loc_disjoint (loc_buffer buf_) (optional_footprint h key)) /\
B.(loc_disjoint (optional_footprint h key) (c.state.footprint h block_state)) /\
// Formerly, the "hashes" predicate
S.length blocks + S.length rest = U64.v total_len /\
U32.v (c.init_input_len i) + S.length seen = U64.v total_len /\
U64.v total_len <= U64.v (c.max_input_len i) /\
// Note the double equals here, we now no longer know that this is a sequence.
c.state.v i h block_state == c.update_multi_s i (c.init_s i key_v) 0 blocks /\
S.equal (S.slice (B.as_seq h buf_) 0 (Seq.length rest)) rest
#pop-options
inline_for_extraction noextract
let freeable_s (#index: Type0) (c: block index) (i: index) (h: HS.mem) (s: state_s' c i): Type0 =
let State block_state buf_ total_len seen key = s in
B.freeable buf_ /\ c.state.freeable h block_state /\ optional_freeable h key
let freeable (#index : Type0) (c: block index) (i: index) (h: HS.mem) (s: state' c i) =
freeable_s c i h (B.get h s 0) /\
B.freeable s
#push-options "--max_ifuel 1"
let invariant_loc_in_footprint #index c i s m =
[@inline_let]
let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let]
let _ = c.key.invariant_loc_in_footprint #i in
()
#pop-options
let seen #index c i h s =
G.reveal (State?.seen (B.deref h s))
let seen_bounded #index c i h s =
()
let reveal_key #index c i h s =
optional_reveal h (State?.p_key (B.deref h s))
let init_input (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
c.init_input_s i (reveal_key c i h s)
let all_seen (#index:Type0) (c:block index) (i:index) (h:HS.mem) (s:state' c i) : GTot bytes =
S.append (init_input c i h s) (seen c i h s)
let frame_invariant #index c i l s h0 h1 =
let state_t = B.deref h0 s in
let State block_state _ _ _ p_key = state_t in
c.state.frame_invariant #i l block_state h0 h1;
stateful_frame_preserves_freeable #index #c.state #i l block_state h0 h1;
allow_inversion key_management;
match c.km with
| Erased -> ()
| Runtime ->
stateful_frame_preserves_freeable #index #c.key #i l p_key h0 h1;
c.key.frame_invariant #i l p_key h0 h1
let frame_seen #_ _ _ _ _ _ _ =
()
/// Stateful API
/// ============
let index_of_state #index c i t t' s =
let open LowStar.BufferOps in
let State block_state _ _ _ _ = !*s in
c.index_of_state i block_state
let seen_length #index c i t t' s =
let open LowStar.BufferOps in
let State _ _ total_len _ _ = !*s in
total_len
(* TODO: malloc and alloca have big portions of proofs in common, so it may
* be possible to factorize them, but it is not clear how *)
#restart-solver
#push-options "--z3rlimit 500"
let malloc #index c i t t' key r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none key h0 h1;
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none key h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none key h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) c.state.frame_freeable B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 key);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 key) (c.key.footprint #i h3 k'));
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') key h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 key)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none key h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) key buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let s = B.get h8 p 0 in
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true r) (footprint c i h8 p));
(**) assert (ST.equal_stack_domains h1 h8);
(**) assert (ST.equal_stack_domains h0 h1);
p
#pop-options
#push-options "--z3rlimit 100"
let copy #index c i t t' state r =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
// All source state is suffixed by 0.
let State block_state0 buf0 total_len0 seen0 k0 = !*state in
let i = c.index_of_state i block_state0 in
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.malloc r (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
B.blit buf0 0ul buf 0ul (c.blocks_state_len i);
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h0 h1;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h1 state);
let block_state = c.state.create_in i r in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h1 h2;
(**) c.state.frame_invariant #i B.loc_none block_state0 h0 h1;
(**) assert (invariant c i h2 state);
c.state.copy (G.hide i) block_state0 block_state;
(**) let h2 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i (c.state.footprint #i h2 block_state) k0 h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.create_in i r in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant #i B.loc_none k0 h2 h3;
(**) c.state.frame_invariant #i B.loc_none block_state h2 h3;
(**) c.state.frame_freeable #i B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k0);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k0) (c.key.footprint #i h3 k'));
c.key.copy i k0 k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant #i (c.key.footprint #i h3 k') k0 h3 h4;
(**) c.state.frame_invariant #i (c.key.footprint #i h3 k') block_state h3 h4;
(**) c.state.frame_freeable #i (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased -> k0
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
let s = State block_state buf total_len0 seen0 k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.malloc r s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) if c.km = Runtime then
(**) c.key.frame_invariant #i B.loc_none k0 h5 h6;
(**) c.state.frame_invariant #i B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) c.state.frame_freeable B.loc_none block_state h5 h6;
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
p
#pop-options
#push-options "--z3rlimit 200"
let alloca #index c i t t' k =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
(**) let h0 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h0;
let buf = B.alloca (Lib.IntTypes.u8 0) (c.blocks_state_len i) in
(**) let h1 = ST.get () in
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h1);
(**) B.loc_unused_in_not_unused_in_disjoint h1;
(**) B.(modifies_only_not_unused_in loc_none h0 h1);
(**) c.key.frame_invariant B.loc_none k h0 h1;
let block_state = c.state.alloca i in
(**) let h2 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h2 block_state) h0 h2);
(**) B.loc_unused_in_not_unused_in_disjoint h2;
(**) B.(modifies_only_not_unused_in loc_none h1 h2);
(**) c.key.frame_invariant B.loc_none k h1 h2;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
let k' = c.key.alloca i in
(**) let h3 = ST.get () in
(**) B.loc_unused_in_not_unused_in_disjoint h3;
(**) B.(modifies_only_not_unused_in loc_none h2 h3);
(**) c.key.frame_invariant B.loc_none k h2 h3;
(**) c.state.frame_invariant B.loc_none block_state h2 h3;
(**) assert (B.fresh_loc (c.key.footprint #i h3 k') h0 h3);
(**) assert (c.key.invariant #i h3 k');
(**) assert (c.key.invariant #i h3 k);
(**) assert B.(loc_disjoint (c.key.footprint #i h3 k) (c.key.footprint #i h3 k'));
c.key.copy i k k';
(**) let h4 = ST.get () in
(**) assert (B.fresh_loc (c.key.footprint #i h4 k') h0 h4);
(**) B.loc_unused_in_not_unused_in_disjoint h4;
(**) B.(modifies_only_not_unused_in loc_none h2 h4);
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h3 k') k h3 h4;
(**) c.state.frame_invariant (c.key.footprint #i h3 k') block_state h3 h4;
k'
| Erased ->
G.hide (c.key.v i h0 k)
in
(**) let h5 = ST.get () in
(**) assert (B.fresh_loc (optional_footprint h5 k') h0 h5);
(**) assert (B.fresh_loc (c.state.footprint #i h5 block_state) h0 h5);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let s = State block_state buf total_len (G.hide S.empty) k' in
(**) assert (B.fresh_loc (footprint_s c i h5 s) h0 h5);
(**) B.loc_unused_in_not_unused_in_disjoint h5;
let p = B.alloca s 1ul in
(**) let h6 = ST.get () in
(**) B.(modifies_only_not_unused_in loc_none h5 h6);
(**) B.(modifies_only_not_unused_in loc_none h0 h6);
(**) c.key.frame_invariant B.loc_none k h5 h6;
(**) c.state.frame_invariant B.loc_none block_state h5 h6;
(**) optional_frame B.loc_none k' h5 h6;
(**) assert (B.fresh_loc (B.loc_addr_of_buffer p) h0 h6);
(**) assert (B.fresh_loc (footprint_s c i h6 s) h0 h6);
(**) assert (optional_reveal h5 k' == optional_reveal h6 k');
c.init (G.hide i) k buf block_state;
(**) let h7 = ST.get () in
(**) assert (B.fresh_loc (c.state.footprint #i h7 block_state) h0 h7);
(**) assert (B.fresh_loc (B.loc_buffer buf) h0 h7);
(**) optional_frame (B.loc_union (c.state.footprint #i h7 block_state) (B.loc_buffer buf)) k' h6 h7;
(**) c.update_multi_zero i (c.state.v i h7 block_state) 0;
(**) B.modifies_only_not_unused_in B.loc_none h0 h7;
(**) assert (c.state.v i h7 block_state == c.init_s i (optional_reveal h6 k'));
(**) let h8 = ST.get () in
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h8 p in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert(invariant_s c i h8 s)
(**) end;
(**) assert (invariant c i h8 p);
(**) assert (seen c i h8 p == S.empty);
(**) assert B.(modifies loc_none h0 h8);
(**) assert (B.fresh_loc (footprint c i h8 p) h0 h8);
(**) assert B.(loc_includes (loc_region_only true (HS.get_tip h8)) (footprint c i h8 p));
(**) assert(ST.same_refs_in_non_tip_regions h0 h8);
p
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let reset #index c i t t' state key =
[@inline_let] let _ = c.state.invariant_loc_in_footprint #i in
[@inline_let] let _ = c.key.invariant_loc_in_footprint #i in
allow_inversion key_management;
let open LowStar.BufferOps in
(**) let h1 = ST.get () in
let State block_state buf _ _ k' = !*state in
let i = c.index_of_state i block_state in
LowStar.Ignore.ignore i; // This is only used in types and proofs
[@inline_let]
let block_state: c.state.s i = block_state in
c.init (G.hide i) key buf block_state;
(**) let h2 = ST.get () in
(**) optional_frame #_ #i #c.km #c.key (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) k' h1 h2;
(**) c.key.frame_invariant (B.loc_union (c.state.footprint #i h1 block_state) (B.loc_buffer buf)) key h1 h2;
(**) Math.Lemmas.modulo_lemma 0 (U32.v (Block?.block_len c i));
(**) assert(0 % UInt32.v (Block?.block_len c i) = 0);
(**) assert (reveal_key c i h1 state == reveal_key c i h2 state);
(**) c.update_multi_zero i (c.state.v i h2 block_state) 0;
let k': optional_key i c.km c.key =
match c.km with
| Runtime ->
c.key.copy i key k';
(**) let h4 = ST.get () in
(**) assert (c.key.invariant #i h4 k');
(**) c.key.frame_invariant (c.key.footprint #i h2 k') key h2 h4;
(**) c.state.frame_invariant (c.key.footprint #i h2 k') block_state h2 h4;
(**) stateful_frame_preserves_freeable (c.key.footprint #i h2 k') block_state h2 h4;
k'
| Erased ->
G.hide (c.key.v i h1 key)
in
(**) let h2 = ST.get () in
(**) assert(preserves_freeable c i state h1 h2);
[@inline_let] let total_len = Int.Cast.uint32_to_uint64 (c.init_input_len i) in
let tmp: state_s c i t t' = State block_state buf total_len (G.hide S.empty) k' in
B.upd state 0ul tmp;
(**) let h3 = ST.get () in
(**) c.state.frame_invariant B.(loc_buffer state) block_state h2 h3;
(**) c.key.frame_invariant B.(loc_buffer state) key h2 h3;
(**) optional_frame #_ #i #c.km #c.key B.(loc_buffer state) k' h2 h3;
(**) stateful_frame_preserves_freeable B.(loc_buffer state) block_state h2 h3;
(**) assert(preserves_freeable c i state h2 h3);
// This seems to cause insurmountable difficulties. Puzzled.
ST.lemma_equal_domains_trans h1 h2 h3;
// AR: 07/22: same old `Seq.equal` and `==` story
(**) assert (Seq.equal (seen c i h3 state) Seq.empty);
(**) assert (footprint c i h1 state == footprint c i h3 state);
(**) assert (B.(modifies (footprint c i h1 state) h1 h3));
(**) assert (U64.v total_len <= U64.v (c.max_input_len i));
(**) begin
(**) let key_v = reveal_key c i h3 state in
(**) let all_seen_ = all_seen c i h3 state in
// SH (11/22): the proof fails if we don't introduce the call to [split_at_last]
(**) let blocks, rest = split_at_last c i all_seen_ in
(**) let init_input = c.init_input_s i key_v in
(**) split_at_last_init c i init_input;
(**) assert (invariant_s c i h3 (B.get h3 state 0))
(**) end;
(**) assert(preserves_freeable c i state h1 h3)
#pop-options
/// Some helpers to minimize modulo-reasoning
/// =========================================
val split_at_last_num_blocks_lem (#index : Type0) (c: block index) (i: index) (b: nat):
Lemma (
let n_blocks = split_at_last_num_blocks c i b in
let blocks = n_blocks * U32.v (c.blocks_state_len i) in
0 <= blocks /\ blocks <= b)
let split_at_last_num_blocks_lem #index c i b = ()
/// The ``rest`` function below allows computing, based ``total_len`` stored in
/// the state, the length of useful data currently stored in ``buf``.
/// Unsurprisingly, there's a fair amount of modulo reasoning here because of
/// 64-bit-to-32-bit conversions, so we do them once and for all in a helper.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest #index (c: block index) (i: index)
(total_len: UInt64.t): (x:UInt32.t {
let n = split_at_last_num_blocks c i (U64.v total_len) in
let l = U32.v (c.blocks_state_len i) in
0 <= n * l /\ n * l <= U64.v total_len /\
U32.v x = U64.v total_len - (n * l)})
=
let open FStar.Int.Cast in
[@inline_let] let l = uint32_to_uint64 (c.blocks_state_len i) in
[@inline_let] let r = total_len `U64.rem` l in
(**) let total_len_v : Ghost.erased nat = U64.v total_len in
(**) let l_v : Ghost.erased nat = U64.v l in
(**) let r_v : Ghost.erased nat = U64.v r in
(**) assert(Ghost.reveal r_v = total_len_v - ((total_len_v / l_v) * l_v));
(**) Math.Lemmas.euclidean_division_definition total_len_v l_v;
(**) assert(Ghost.reveal r_v = total_len_v % l_v);
(**) assert(r_v < l_v);
if U64.(r =^ uint_to_t 0) && U64.(total_len >^ uint_to_t 0) then
begin
(**) split_at_last_num_blocks_lem c i (U64.v total_len);
c.blocks_state_len i
end
else
begin
[@inline_let] let r' = FStar.Int.Cast.uint64_to_uint32 r in
(**) FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32);
(**) calc (==) {
(**) U32.v r';
(**) (==) { }
(**) U64.v r % pow2 32;
(**) (==) { FStar.Math.Lemmas.small_modulo_lemma_1 (U64.v r) (pow2 32) }
(**) U64.v r;
(**) (==) { FStar.Math.Lemmas.euclidean_division_definition (U64.v total_len) (U64.v (uint32_to_uint64 (c.blocks_state_len i))) }
(**) U64.v total_len % U64.v (uint32_to_uint64 (c.blocks_state_len i) );
(**) (==) { }
(**) U64.v total_len % U32.v (c.blocks_state_len i);
(**) };
(**) assert(
(**) let n = split_at_last_num_blocks c i (U64.v total_len) in
(**) let l = U32.v (c.blocks_state_len i) in
(**) U32.v r' = U64.v total_len - (n * l));
r'
end
#pop-options
/// The ``nblocks`` function below allows computing, given ``total_len`` stored in
/// the state, the number of blocks of data which have been processed (the remaining
/// unprocessed data being left in ``buf``).
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let nblocks #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.blocks_state_len i) in
U32.v x * l <= U32.v len /\
U32.v x = split_at_last_num_blocks c i (U32.v len) })
=
let open FStar.Int.Cast in
[@inline_let] let l = c.blocks_state_len i in
[@inline_let] let r = rest c i (uint32_to_uint64 len) in
(**) let len_v : Ghost.erased nat = U32.v len in
(**) let l_v : Ghost.erased nat = U32.v l in
(**) let r_v : Ghost.erased nat = U32.v r in
(**) let n_s : Ghost.erased nat = split_at_last_num_blocks c i len_v in
(**) assert(Ghost.reveal len_v = n_s * l_v + r_v);
(**) Math.Lemmas.nat_times_nat_is_nat n_s l_v;
(**) assert(U32.v r <= U32.v len);
[@inline_let] let blocks = len `U32.sub` r in
(**) let blocks_v : Ghost.erased nat = U32.v blocks in
(**) assert(blocks_v % l_v = 0);
[@inline_let] let n = blocks `U32.div` l in
(**) let n_v : Ghost.erased nat = U32.v n in
(**) assert(n_v * l_v = Ghost.reveal blocks_v);
(**) split_at_last_num_blocks_spec c i len_v n_v r_v;
n
#pop-options
/// The ``rest`` function to call on the unprocessed data length in the ``finish``
/// function.
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let rest_finish #index (c: block index) (i: index)
(len: UInt32.t): (x:UInt32.t {
let l = U32.v (c.block_len i) in
let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
0 <= n * l /\ n * l <= U32.v len /\
U32.v x = U32.v len - (n * l)})
=
[@inline_let] let l = c.block_len i in
[@inline_let] let r = len `U32.rem` l in
(**) split_at_last_num_blocks_lem c i (U32.v len);
if U32.(r =^ uint_to_t 0) && U32.(len >^ uint_to_t 0) then
begin
(**) begin
(**) let l = U32.v (c.block_len i) in
(**) let n = fst (Lib.UpdateMulti.split_at_last_lazy_nb_rem l (U32.v len)) in
(**) Math.Lemmas.nat_times_nat_is_nat n l
(**) end;
c.block_len i
end
else
r
#pop-options
/// We always add 32-bit lengths to 64-bit lengths. Having a helper for that allows
/// doing modulo reasoning once and for all.
inline_for_extraction noextract
let add_len #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t):
Pure UInt64.t
(requires U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures fun x -> U64.v x = U64.v total_len + U32.v len /\ U64.v x <= U64.v (c.max_input_len i))
=
total_len `U64.add` Int.Cast.uint32_to_uint64 len
#push-options "--z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let add_len_small #index (c: block index) (i: index) (total_len: UInt64.t) (len: UInt32.t): Lemma
(requires
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i total_len) /\
U64.v total_len + U32.v len <= U64.v (c.max_input_len i))
(ensures (rest c i (add_len c i total_len len) = rest c i total_len `U32.add` len))
=
let total_len_v = U64.v total_len in
let l = U32.v (c.blocks_state_len i) in
let b = total_len_v + U32.v len in
let n = split_at_last_num_blocks c i total_len_v in
let r = U32.v (rest c i total_len) in
assert(total_len_v = n * l + r);
let r' = U32.v (rest c i total_len) + U32.v len in
assert(r' <= l);
assert(r' = 0 ==> b = 0);
Math.Lemmas.euclidean_division_definition b l;
assert(b = n * l + r');
split_at_last_num_blocks_spec c i b n r'
#pop-options
/// Beginning of the three sub-cases (see Hacl.Streaming.Spec)
/// ==========================================================
noextract
let total_len_h #index (c: block index) (i: index) h (p: state' c i) =
State?.total_len (B.deref h p)
noextract
let split_at_last_all_seen #index (c: block index) (i: index) h (p: state' c i) =
let all_seen = all_seen c i h p in
let blocks, rest = split_at_last c i all_seen in
blocks, rest
inline_for_extraction noextract
val update_small:
#index:Type0 ->
(c: block index) ->
i:index -> (
t:Type0 { t == c.state.s i } ->
t':Type0 { t' == optional_key i c.km c.key } ->
s:state c i t t' ->
data: B.buffer uint8 ->
len: UInt32.t ->
Stack unit
(requires fun h0 ->
update_pre c i s data len h0 /\
U32.v (c.init_input_len i) + S.length (seen c i h0 s) + U32.v len <= U64.v (c.max_input_len i) /\
U32.v len <= U32.v (c.blocks_state_len i) - U32.v (rest c i (total_len_h c i h0 s)))
(ensures fun h0 s' h1 ->
update_post c i s data len h0 h1))
/// SH: The proof obligations for update_small have problem succeeding in command
/// line mode: hence the restart-solver instruction, the crazy rlimit and the
/// intermediate lemma. Interestingly (and frustratingly), the proof succeeds
/// quite quickly locally on command-line with this rlimit, but fails with a lower
/// one. Besides, the lemma is needed only for the CI regression.
let split_at_last_rest_eq (#index : Type0) (c: block index)
(i: index)
(t:Type0 { t == c.state.s i })
(t':Type0 { t' == optional_key i c.km c.key })
(s: state c i t t') (h0: HS.mem) :
Lemma
(requires (
invariant c i h0 s))
(ensures (
let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
Seq.length r == U32.v sz)) =
let s = B.get h0 s 0 in
let State block_state buf total_len seen_ k' = s in
let key_v = optional_reveal #index #i #c.km #c.key h0 k' in
let all_seen = S.append (c.init_input_s i key_v) seen_ in
let _, r = split_at_last c i all_seen in
let sz = rest c i total_len in
()
/// Particularly difficult proof. Z3 profiling indicates that a pattern goes off
/// the rails. So I disabled all of the known "bad" patterns, then did the proof
/// by hand. Fortunately, there were only two stateful operations. The idea was
/// to do all ofthe modifies-reasoning in the two lemmas above, then disable the
/// bad pattern for the main function.
///
/// This style is a little tedious, because it requires a little bit of digging
/// to understand what needs to hold in order to be able to prove that e.g. the
/// sequence remains unmodified from h0 to h2, but this seems more robust?
val modifies_footprint:
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
s:state' c i ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
let State _ buf_ _ _ _ = B.deref h0 s in (
update_pre c i s data len h0 /\
B.(modifies (loc_buffer buf_) h0 h1))))
(ensures (
let State bs0 buf0 _ _ k0 = B.deref h0 s in
let State bs1 buf1 _ _ k1 = B.deref h1 s in (
footprint c i h0 s == footprint c i h1 s /\
preserves_freeable c i s h0 h1 /\
bs0 == bs1 /\ buf0 == buf1 /\ k0 == k1 /\
c.state.invariant h1 bs1 /\
c.state.v i h1 bs1 == c.state.v i h0 bs0 /\
c.state.footprint h1 bs1 == c.state.footprint h0 bs0 /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_buffer buf1)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_buffer data)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (loc_addr_of_buffer buf1)) /\
B.(loc_disjoint (loc_addr_of_buffer s) (c.state.footprint h1 bs1)) /\
B.(loc_disjoint (loc_buffer s) (loc_buffer buf1)) /\
B.(loc_disjoint (loc_buffer s) (loc_buffer data)) /\
B.(loc_disjoint (loc_buffer s) (c.state.footprint h1 bs1)) /\
(if c.km = Runtime then
c.key.invariant #i h1 k1 /\
c.key.v i h1 k1 == c.key.v i h0 k0 /\
c.key.footprint #i h1 k1 == c.key.footprint #i h0 k0 /\
B.(loc_disjoint (loc_addr_of_buffer s) (c.key.footprint #i h1 k1)) /\
B.(loc_disjoint (loc_buffer s) (c.key.footprint #i h1 k1))
else
B.(loc_disjoint (loc_addr_of_buffer s) loc_none) /\
True)))))
let modifies_footprint c i p data len h0 h1 =
let _ = c.state.frame_freeable #i in
let _ = c.key.frame_freeable #i in
let s0 = B.deref h0 p in
let s1 = B.deref h0 p in
let State bs0 buf0 _ _ k0 = s0 in
let State bs1 buf0 _ _ k1 = s1 in
c.state.frame_invariant (B.loc_buffer buf0) bs0 h0 h1;
if c.km = Runtime then
c.key.frame_invariant #i (B.loc_buffer buf0) k0 h0 h1
val modifies_footprint':
#index:Type0 ->
(c: block index) ->
i:G.erased index -> (
let i = G.reveal i in
p:state' c i ->
data: B.buffer uint8 ->
len: UInt32.t ->
h0: HS.mem ->
h1: HS.mem ->
Lemma
(requires (
let State bs0 buf0 _ _ k0 = B.deref h0 p in
let State bs1 buf1 _ _ k1 = B.deref h1 p in (
B.live h0 p /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.state.footprint #i h0 bs0)) /\
B.(loc_disjoint (loc_addr_of_buffer p) (loc_addr_of_buffer buf0)) /\
c.state.invariant h0 bs0 /\
(if c.km = Runtime then
B.(loc_disjoint (loc_addr_of_buffer p) (c.key.footprint #i h0 k0)) /\
c.key.invariant #i h0 k0
else
B.(loc_disjoint (loc_addr_of_buffer p) loc_none)) /\
B.(modifies (loc_buffer p) h0 h1)) /\
bs0 == bs1 /\ buf0 == buf1 /\ k0 == k1))
(ensures (
let State bs0 buf0 _ _ k0 = B.deref h0 p in
let State bs1 buf1 _ _ k1 = B.deref h1 p in (
B.live h1 p /\
footprint c i h0 p == footprint c i h1 p /\
preserves_freeable c i p h0 h1 /\
B.(loc_disjoint (loc_addr_of_buffer p) (footprint_s c i h1 (B.deref h1 p))) /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.state.footprint #i h1 bs1)) /\
B.(loc_disjoint (loc_buffer p) (c.state.footprint #i h1 bs1)) /\
c.state.invariant h1 bs1 /\
c.state.v i h1 bs1 == c.state.v i h0 bs0 /\
c.state.footprint h1 bs1 == c.state.footprint h0 bs0 /\
(if c.km = Runtime then
c.key.invariant #i h1 k1 /\
c.key.v i h1 k1 == c.key.v i h0 k0 /\
c.key.footprint #i h1 k1 == c.key.footprint #i h0 k0 /\
B.(loc_disjoint (loc_addr_of_buffer p) (c.key.footprint #i h1 k1)) /\
B.(loc_disjoint (loc_buffer p) (c.key.footprint #i h1 k1))
else
B.(loc_disjoint (loc_addr_of_buffer p) loc_none)))))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Streaming.Types.fst.checked",
"Hacl.Streaming.Spec.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Streaming.Functor.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming.Interface",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Hacl.Streaming.Interface.block index -> i: FStar.Ghost.erased index
-> (let i = FStar.Ghost.reveal i in
p: Hacl.Streaming.Functor.state' c i ->
data: LowStar.Buffer.buffer Hacl.Streaming.Spec.uint8 ->
len: FStar.UInt32.t ->
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem
-> FStar.Pervasives.Lemma
(requires
(let _ = LowStar.Monotonic.Buffer.deref h0 p in
(let Hacl.Streaming.Functor.State #_ #_ #_ #_ #_ bs0 buf0 _ _ k0 = _ in
let _ = LowStar.Monotonic.Buffer.deref h1 p in
(let Hacl.Streaming.Functor.State #_ #_ #_ #_ #_ bs1 buf1 _ _ k1 = _ in
LowStar.Monotonic.Buffer.live h0 p /\
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_addr_of_buffer
p)
(Stateful?.footprint (Block?.state c) h0 bs0) /\
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_addr_of_buffer
p)
(LowStar.Monotonic.Buffer.loc_addr_of_buffer buf0) /\
Stateful?.invariant (Block?.state c) h0 bs0 /\
(match Block?.km c = Hacl.Streaming.Interface.Runtime with
| true ->
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_addr_of_buffer
p)
(Stateful?.footprint (Block?.key c) h0 k0) /\
Stateful?.invariant (Block?.key c) h0 k0
| _ ->
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_addr_of_buffer
p)
LowStar.Monotonic.Buffer.loc_none) /\
LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_buffer p) h0 h1 /\
bs0 == bs1 /\ buf0 == buf1 /\ k0 == k1)
<:
Type0)
<:
Type0))
(ensures
(let _ = LowStar.Monotonic.Buffer.deref h0 p in
(let Hacl.Streaming.Functor.State #_ #_ #_ #_ #_ bs0 _ _ _ k0 = _ in
let _ = LowStar.Monotonic.Buffer.deref h1 p in
(let Hacl.Streaming.Functor.State #_ #_ #_ #_ #_ bs1 _ _ _ k1 = _ in
LowStar.Monotonic.Buffer.live h1 p /\
Hacl.Streaming.Functor.footprint c i h0 p ==
Hacl.Streaming.Functor.footprint c i h1 p /\
Hacl.Streaming.Functor.preserves_freeable c i p h0 h1 /\
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_addr_of_buffer
p)
(Hacl.Streaming.Functor.footprint_s c
i
h1
(LowStar.Monotonic.Buffer.deref h1 p)) /\
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_addr_of_buffer
p)
(Stateful?.footprint (Block?.state c) h1 bs1) /\
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_buffer p)
(Stateful?.footprint (Block?.state c) h1 bs1) /\
Stateful?.invariant (Block?.state c) h1 bs1 /\
Stateful?.v (Block?.state c) i h1 bs1 == Stateful?.v (Block?.state c) i h0 bs0 /\
Stateful?.footprint (Block?.state c) h1 bs1 ==
Stateful?.footprint (Block?.state c) h0 bs0 /\
(match Block?.km c = Hacl.Streaming.Interface.Runtime with
| true ->
Stateful?.invariant (Block?.key c) h1 k1 /\
Stateful?.v (Block?.key c) i h1 k1 == Stateful?.v (Block?.key c) i h0 k0 /\
Stateful?.footprint (Block?.key c) h1 k1 ==
Stateful?.footprint (Block?.key c) h0 k0 /\
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_addr_of_buffer
p)
(Stateful?.footprint (Block?.key c) h1 k1) /\
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_buffer p
)
(Stateful?.footprint (Block?.key c) h1 k1)
| _ ->
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_addr_of_buffer
p)
LowStar.Monotonic.Buffer.loc_none))
<:
Type0)
<:
Type0))) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Interface.block",
"FStar.Ghost.erased",
"Hacl.Streaming.Functor.state'",
"FStar.Ghost.reveal",
"LowStar.Buffer.buffer",
"Hacl.Streaming.Spec.uint8",
"FStar.UInt32.t",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Interface.__proj__Block__item__state",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_Equality",
"LowStar.Monotonic.Buffer.len",
"LowStar.Buffer.trivial_preorder",
"Hacl.Streaming.Interface.__proj__Block__item__blocks_state_len",
"FStar.UInt64.t",
"FStar.Seq.Base.seq",
"Hacl.Streaming.Interface.optional_key",
"Hacl.Streaming.Interface.__proj__Block__item__km",
"Hacl.Streaming.Interface.__proj__Block__item__key",
"Hacl.Streaming.Interface.key_management",
"Hacl.Streaming.Interface.Runtime",
"Hacl.Streaming.Interface.__proj__Stateful__item__frame_invariant",
"LowStar.Monotonic.Buffer.loc_addr_of_buffer",
"Hacl.Streaming.Functor.state_s",
"Prims.bool",
"Prims.unit",
"LowStar.Monotonic.Buffer.deref",
"FStar.Pervasives.allow_inversion",
"LowStar.Monotonic.Buffer.loc",
"Prims.l_and",
"Hacl.Streaming.Interface.__proj__Stateful__item__invariant",
"LowStar.Monotonic.Buffer.loc_disjoint",
"Hacl.Streaming.Interface.__proj__Stateful__item__footprint",
"LowStar.Monotonic.Buffer.modifies",
"Prims.squash",
"Prims.eq2",
"Hacl.Streaming.Interface.__proj__Stateful__item__t",
"Hacl.Streaming.Interface.__proj__Stateful__item__v",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil",
"Hacl.Streaming.Interface.__proj__Stateful__item__freeable",
"Hacl.Streaming.Interface.__proj__Stateful__item__frame_freeable"
] | [] | false | false | false | false | false | let modifies_footprint' c i p data len h0 h1 =
| let _ = c.state.frame_freeable #i in
let _ = c.key.frame_freeable #i in
let _ = c.state.frame_invariant #i in
let _ = c.key.frame_invariant #i in
let _ = allow_inversion key_management in
let s0 = B.deref h0 p in
let s1 = B.deref h0 p in
let State bs0 buf0 _ _ k0 = s0 in
let State bs1 buf1 _ _ k1 = s1 in
c.state.frame_invariant (B.loc_addr_of_buffer p) bs0 h0 h1;
if c.km = Runtime then c.key.frame_invariant #i (B.loc_addr_of_buffer p) k0 h0 h1 | false |