file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LowParse.Spec.DER.fst | LowParse.Spec.DER.serialize_der_length_payload | val serialize_der_length_payload (x: U8.t) : Tot (serializer (parse_der_length_payload x)) | val serialize_der_length_payload (x: U8.t) : Tot (serializer (parse_der_length_payload x)) | let serialize_der_length_payload
(x: U8.t)
: Tot (serializer (parse_der_length_payload x))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x))
end else
if x = 128uy || x = 255uy
then
fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x)
else if x = 129uy
then begin
serialize_weaken
(parse_der_length_payload_kind x)
(serialize_synth
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))
)
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
serialize_weaken
(parse_der_length_payload_kind x)
(serialize_der_length_payload_greater x len)
end | {
"file_name": "src/lowparse/LowParse.Spec.DER.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 6,
"end_line": 567,
"start_col": 0,
"start_line": 534
} | module LowParse.Spec.DER
open LowParse.Spec.Combinators
open LowParse.Spec.SeqBytes.Base
// include LowParse.Spec.VLData // for in_bounds
open FStar.Mul
module U8 = FStar.UInt8
module UInt = FStar.UInt
module Math = LowParse.Math
module E = FStar.Endianness
module Seq = FStar.Seq
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0"
// let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`())))
let der_length_max_eq =
assert_norm (der_length_max == pow2 (8 * 126) - 1)
let rec log256
(x: nat { x > 0 })
: Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)})
= assert_norm (pow2 8 == 256);
if x < 256
then 1
else begin
let n = log256 (x / 256) in
Math.pow2_plus (8 * (n - 1)) 8;
Math.pow2_plus (8 * n) 8;
n + 1
end
let log256_unique
x
y
= Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x);
Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y)
let log256_le
x1
x2
= Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2)
let der_length_payload_size_le
x1
x2
= if x1 < 128 || x2 < 128
then ()
else
let len_len2 = log256 x2 in
let len_len1 = log256 x1 in
log256_le x1 x2;
assert_norm (pow2 7 == 128);
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126)
let synth_be_int
(len: nat)
(b: Seq.lseq byte len)
: Tot (lint len)
= E.lemma_be_to_n_is_bounded b;
E.be_to_n b
let synth_be_int_injective
(len: nat)
: Lemma
(synth_injective (synth_be_int len))
[SMTPat (synth_injective (synth_be_int len))]
=
synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) ->
E.be_to_n_inj x x'
)
let synth_der_length_129
(x: U8.t { x == 129uy } )
(y: U8.t { U8.v y >= 128 } )
: Tot (refine_with_tag tag_of_der_length x)
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
log256_unique (U8.v y) 1;
U8.v y
let synth_der_length_greater
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x - 128 } )
(y: lint len { y >= pow2 (8 * (len - 1)) } )
: Tot (refine_with_tag tag_of_der_length x)
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
Math.pow2_le_compat (8 * 126) (8 * len);
Math.pow2_le_compat (8 * (len - 1)) 7;
log256_unique y len;
y
let parse_der_length_payload
(x: U8.t)
: Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x))
end else
if x = 128uy
then
fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case
else if x = 255uy
then
fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already
else if x = 129uy
then
weaken (parse_der_length_payload_kind x)
((parse_u8 `parse_filter` (fun y -> U8.v y >= 128))
`parse_synth` synth_der_length_129 x)
else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
weaken (parse_der_length_payload_kind x)
(((parse_seq_flbytes len `parse_synth` (synth_be_int len))
`parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
`parse_synth` synth_der_length_greater x len)
end
let parse_der_length_payload_unfold
(x: U8.t)
(input: bytes)
: Lemma
(
let y = parse (parse_der_length_payload x) input in
(256 < der_length_max) /\ (
if U8.v x < 128
then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0)
else if x = 128uy || x = 255uy
then y == None
else if x = 129uy
then
match parse parse_u8 input with
| None -> y == None
| Some (z, consumed) ->
if U8.v z < 128
then y == None
else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed)
else
let len : nat = U8.v x - 128 in
synth_injective (synth_be_int len) /\ (
let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in
match res with
| None -> y == None
| Some (z, consumed) ->
len > 0 /\ (
if z >= pow2 (8 * (len - 1))
then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed)
else y == None
))))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
()
end else
if x = 128uy
then
()
else if x = 255uy
then
()
else if x = 129uy
then begin
parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input;
parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input;
match parse parse_u8 input with
| None -> ()
| Some (y, _) ->
if U8.v y >= 128
then begin
log256_unique (U8.v y) 1
end else ()
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len))
`parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input;
parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input;
assert (len > 1);
let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in
match res with
| None -> ()
| Some (y, _) ->
if y >= pow2 (8 * (len - 1))
then begin
let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in
Math.pow2_le_compat (8 * 126) (8 * len);
Math.pow2_le_compat (8 * (len - 1)) 7;
log256_unique y len
end else ()
end
inline_for_extraction
let parse_der_length_payload_kind_weak : parser_kind =
strong_parser_kind 0 126 None
inline_for_extraction
let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak
let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t
= parse_tagged_union
parse_u8
tag_of_der_length
(fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x))
[@@(noextract_to "krml")]
let parse_bounded_der_length_payload_kind
(min: der_length_t)
(max: der_length_t { min <= max } )
: Tot parser_kind =
[@inline_let] let _ = der_length_payload_size_le min max in
strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None
let bounded_int
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot Type
= (x: int { min <= x /\ x <= max })
let parse_bounded_der_length_tag_cond
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t)
: Tot bool
= let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max
inline_for_extraction // for parser_kind
let tag_of_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
(x: bounded_int min max)
: Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } )
= [@inline_let]
let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in
tag_of_der_length x
let parse_bounded_der_length_payload
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
: Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x))
= weaken (parse_bounded_der_length_payload_kind min max)
(parse_der_length_payload x
`parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)
`parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)))
[@@(noextract_to "krml")]
let parse_bounded_der_length_kind
(min: der_length_t)
(max: der_length_t { min <= max } )
: Tot parser_kind
= and_then_kind
(parse_filter_kind parse_u8_kind)
(parse_bounded_der_length_payload_kind min max)
let parse_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max))
= parse_tagged_union
(parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max)
(tag_of_bounded_der_length min max)
(parse_bounded_der_length_payload min max)
(* equality *)
let parse_bounded_der_length_payload_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
(input' : bytes)
: Lemma
(parse (parse_bounded_der_length_payload min max x) input' == (
match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_y)
else None
))
=
parse_synth_eq
(parse_der_length_payload x
`parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max))
(fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))
input' ;
parse_filter_eq
(parse_der_length_payload x)
(fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)
input'
let parse_bounded_der_length_unfold_aux
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
match parse (parse_bounded_der_length_payload min max x) input'
with
| Some (y, consumed_y) -> Some (y, consumed_x + consumed_y)
| None -> None
else None
))
= parse_tagged_union_eq
(parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max)
(tag_of_bounded_der_length min max)
(parse_bounded_der_length_payload min max)
input;
parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input
let parse_bounded_der_length_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_x + consumed_y)
else None
else None
))
= parse_bounded_der_length_unfold_aux min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
) input'
else ()
let parse_bounded_der_length_weak
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max))
= parse_der_length_weak
`parse_filter` (fun y -> min <= y && y <= max)
`parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
let parse_bounded_der_length_weak_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length_weak min max) input == (
match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let input' = Seq.slice input consumed_x (Seq.length input) in
begin match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_x + consumed_y)
else None
end
))
= parse_synth_eq
(parse_der_length_weak
`parse_filter` (fun y -> min <= y && y <= max))
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
input;
parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input;
parse_tagged_union_eq
parse_u8
tag_of_der_length
(fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x))
input
let parse_bounded_der_length_eq
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input))
= parse_bounded_der_length_unfold min max input;
parse_bounded_der_length_weak_unfold min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let input' = Seq.slice input consumed_x (Seq.length input) in
begin match parse (parse_der_length_payload x) input' with
| None -> ()
| Some (y, consumed_y) ->
if min <= y && y <= max
then (der_length_payload_size_le min y; der_length_payload_size_le y max)
else ()
end
(* serializer *)
let tag_of_der_length_lt_128
(x: der_length_t)
: Lemma
(requires (U8.v (tag_of_der_length x) < 128))
(ensures (x == U8.v (tag_of_der_length x)))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let tag_of_der_length_invalid
(x: der_length_t)
: Lemma
(requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255))
(ensures False)
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let tag_of_der_length_eq_129
(x: der_length_t)
: Lemma
(requires (U8.v (tag_of_der_length x) == 129))
(ensures (x >= 128 /\ x < 256))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let synth_der_length_129_recip
(x: U8.t { x == 129uy })
(y: refine_with_tag tag_of_der_length x)
: GTot (y: U8.t {U8.v y >= 128})
= tag_of_der_length_eq_129 y;
U8.uint_to_t y
let synth_be_int_recip
(len: nat)
(x: lint len)
: GTot (b: Seq.lseq byte len)
= E.n_to_be len x
let synth_be_int_inverse
(len: nat)
: Lemma
(synth_inverse (synth_be_int len) (synth_be_int_recip len))
= ()
let synth_der_length_greater_recip
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x % 128 } )
(y: refine_with_tag tag_of_der_length x)
: Tot (y: lint len { y >= pow2 (8 * (len - 1)) } )
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
y
let synth_der_length_greater_inverse
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x % 128 } )
: Lemma
(synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len))
= ()
private
let serialize_der_length_payload_greater
(x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } )
(len: nat { len == U8.v x - 128 } )
=
(serialize_synth
#_
#(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
#(refine_with_tag tag_of_der_length x)
_
(synth_der_length_greater x len)
(serialize_filter
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(fun (y: lint len) -> y >= pow2 (8 * (len - 1)))
)
(synth_der_length_greater_recip x len)
()
)
let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y)
let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False
let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.SeqBytes.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.DER.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.SeqBytes.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt8.t -> LowParse.Spec.Base.serializer (LowParse.Spec.DER.parse_der_length_payload x) | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt8.t",
"Prims.op_LessThan",
"LowParse.Spec.Combinators.serialize_weaken",
"LowParse.Spec.Combinators.parse_ret_kind",
"LowParse.Spec.Base.refine_with_tag",
"LowParse.Spec.DER.der_length_t",
"LowParse.Spec.DER.tag_of_der_length",
"LowParse.Spec.DER.parse_der_length_payload_kind",
"LowParse.Spec.Combinators.parse_ret",
"LowParse.Spec.Combinators.serialize_ret",
"LowParse.Spec.DER.tag_of_der_length_lt_128_eta",
"Prims.bool",
"Prims.op_BarBar",
"Prims.op_Equality",
"FStar.UInt8.__uint_to_t",
"LowParse.Spec.Combinators.fail_serializer",
"LowParse.Spec.DER.tag_of_der_length_invalid_eta",
"LowParse.Spec.Combinators.parse_filter_kind",
"LowParse.Spec.Int.parse_u8_kind",
"LowParse.Spec.Combinators.parse_synth",
"LowParse.Spec.Combinators.parse_filter_refine",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt8.v",
"LowParse.Spec.Combinators.parse_filter",
"LowParse.Spec.Int.parse_u8",
"LowParse.Spec.DER.synth_der_length_129",
"LowParse.Spec.Combinators.serialize_synth",
"LowParse.Spec.Combinators.serialize_filter",
"LowParse.Spec.Int.serialize_u8",
"LowParse.Spec.DER.synth_der_length_129_recip",
"LowParse.Spec.Combinators.synth_inverse_intro'",
"Prims.b2t",
"LowParse.Spec.DER.tag_of_der_length_eq_129_eta",
"LowParse.Spec.Base.total_constant_size_parser_kind",
"LowParse.Spec.DER.lint",
"Prims.pow2",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"FStar.Seq.Properties.lseq",
"LowParse.Bytes.byte",
"LowParse.Spec.SeqBytes.Base.parse_seq_flbytes",
"LowParse.Spec.DER.synth_be_int",
"LowParse.Spec.DER.synth_der_length_greater",
"LowParse.Spec.DER.serialize_der_length_payload_greater",
"Prims.unit",
"LowParse.Spec.DER.synth_be_int_injective",
"Prims.nat",
"LowParse.Spec.Base.serializer",
"LowParse.Spec.DER.parse_der_length_payload",
"Prims._assert",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.DER.der_length_max",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int"
] | [] | false | false | false | false | false | let serialize_der_length_payload (x: U8.t) : Tot (serializer (parse_der_length_payload x)) =
| assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let x':der_length_t = U8.v x in
if x' < 128
then
serialize_weaken (parse_der_length_payload_kind x)
(serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x))
else
if x = 128uy || x = 255uy
then
fail_serializer (parse_der_length_payload_kind x)
(refine_with_tag tag_of_der_length x)
(tag_of_der_length_invalid_eta x)
else
if x = 129uy
then
serialize_weaken (parse_der_length_payload_kind x)
(serialize_synth (parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x)
(synth_der_length_129_recip x)
(tag_of_der_length_eq_129_eta x)))
else
let len:nat = U8.v x - 128 in
synth_be_int_injective len;
serialize_weaken (parse_der_length_payload_kind x)
(serialize_der_length_payload_greater x len) | false |
Pulse.Elaborate.Pure.fst | Pulse.Elaborate.Pure.elab_st_comp | val elab_st_comp (c: st_comp) : R.universe & R.term & R.term & R.term | val elab_st_comp (c: st_comp) : R.universe & R.term & R.term & R.term | let elab_st_comp (c:st_comp)
: R.universe & R.term & R.term & R.term
= let res = elab_term c.res in
let pre = elab_term c.pre in
let post = elab_term c.post in
c.u, res, pre, post | {
"file_name": "lib/steel/pulse/Pulse.Elaborate.Pure.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 23,
"end_line": 120,
"start_col": 0,
"start_line": 115
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Elaborate.Pure
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module RU = Pulse.RuntimeUtils
open FStar.List.Tot
open Pulse.Syntax.Base
open Pulse.Reflection.Util
let (let!) (f:option 'a) (g: 'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let elab_qual = function
| None -> R.Q_Explicit
| Some Implicit -> R.Q_Implicit
let elab_observability =
let open R in
function
| Neutral -> pack_ln (Tv_FVar (pack_fv neutral_lid))
| Unobservable -> pack_ln (Tv_FVar (pack_fv unobservable_lid))
| Observable -> pack_ln (Tv_FVar (pack_fv observable_lid))
let rec elab_term (top:term)
: R.term
= let open R in
let w t' = RU.set_range t' top.range in
match top.t with
| Tm_VProp ->
w (pack_ln (Tv_FVar (pack_fv vprop_lid)))
| Tm_Emp ->
w (pack_ln (Tv_FVar (pack_fv emp_lid)))
| Tm_Inv p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv inv_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Pure p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv pure_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Star l r ->
let l = elab_term l in
let r = elab_term r in
w (mk_star l r)
| Tm_ExistsSL u b body
| Tm_ForallSL u b body ->
let t = elab_term b.binder_ty in
let body = elab_term body in
let t = set_range_of t b.binder_ppname.range in
if Tm_ExistsSL? top.t
then w (mk_exists u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
else w (mk_forall u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
| Tm_Inames ->
w (pack_ln (Tv_FVar (pack_fv inames_lid)))
| Tm_EmpInames ->
w (emp_inames_tm)
| Tm_AddInv i is ->
let i = elab_term i in
let is = elab_term is in
w (add_inv_tm (`_) is i) // Careful on the order flip
| Tm_Unknown ->
w (pack_ln R.Tv_Unknown)
| Tm_FStar t ->
w t
let rec elab_pat (p:pattern) : Tot R.pattern =
let elab_fv (f:fv) : R.fv =
R.pack_fv f.fv_name
in
match p with
| Pat_Constant c -> R.Pat_Constant c
| Pat_Var v ty -> R.Pat_Var RT.sort_default v
| Pat_Cons fv vs ->
R.Pat_Cons (elab_fv fv) None (Pulse.Common.map_dec p vs elab_sub_pat)
| Pat_Dot_Term None ->
R.Pat_Dot_Term None
| Pat_Dot_Term (Some t) ->
R.Pat_Dot_Term (Some (elab_term t))
and elab_sub_pat (pi : pattern & bool) : R.pattern & bool =
let (p, i) = pi in
elab_pat p, i
let elab_pats (ps:list pattern) : Tot (list R.pattern) = L.map elab_pat ps | {
"checked_file": "/",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Common.fst.checked",
"prims.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Elaborate.Pure.fst"
} | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Pulse.Syntax.Base.st_comp
-> ((FStar.Stubs.Reflection.Types.universe * FStar.Stubs.Reflection.Types.term) *
FStar.Stubs.Reflection.Types.term) *
FStar.Stubs.Reflection.Types.term | Prims.Tot | [
"total"
] | [] | [
"Pulse.Syntax.Base.st_comp",
"FStar.Pervasives.Native.Mktuple4",
"FStar.Stubs.Reflection.Types.universe",
"FStar.Stubs.Reflection.Types.term",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__u",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__post",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__pre",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__res",
"FStar.Pervasives.Native.tuple4"
] | [] | false | false | false | true | false | let elab_st_comp (c: st_comp) : R.universe & R.term & R.term & R.term =
| let res = elab_term c.res in
let pre = elab_term c.pre in
let post = elab_term c.post in
c.u, res, pre, post | false |
Hacl.Streaming.Blake2s_32.fst | Hacl.Streaming.Blake2s_32.block_state_t | val block_state_t : Type0 | let block_state_t = Common.s Spec.Blake2S Core.M32 | {
"file_name": "code/streaming/Hacl.Streaming.Blake2s_32.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 50,
"end_line": 18,
"start_col": 0,
"start_line": 18
} | module Hacl.Streaming.Blake2s_32
module Blake2s32 = Hacl.Blake2s_32
module Common = Hacl.Streaming.Blake2.Common
module Core = Hacl.Impl.Blake2.Core
module F = Hacl.Streaming.Functor
module G = FStar.Ghost
module Impl = Hacl.Impl.Blake2.Generic
module Spec = Spec.Blake2
inline_for_extraction noextract
let blake2s_32 kk =
Common.blake2 Spec.Blake2S Core.M32 kk Blake2s32.init Blake2s32.update_multi
Blake2s32.update_last Blake2s32.finish
/// Type abbreviations - makes Karamel use pretty names in the generated code | {
"checked_file": "/",
"dependencies": [
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Streaming.Blake2.Common.fst.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2s_32.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": "Impl"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Blake2.Common",
"short_module": "Common"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Blake2.Common.s",
"Spec.Blake2.Definitions.Blake2S",
"Hacl.Impl.Blake2.Core.M32"
] | [] | false | false | false | true | true | let block_state_t =
| Common.s Spec.Blake2S Core.M32 | false |
|
Pulse.Elaborate.Pure.fst | Pulse.Elaborate.Pure.elab_pats | val elab_pats (ps: list pattern) : Tot (list R.pattern) | val elab_pats (ps: list pattern) : Tot (list R.pattern) | let elab_pats (ps:list pattern) : Tot (list R.pattern) = L.map elab_pat ps | {
"file_name": "lib/steel/pulse/Pulse.Elaborate.Pure.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 74,
"end_line": 113,
"start_col": 0,
"start_line": 113
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Elaborate.Pure
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module RU = Pulse.RuntimeUtils
open FStar.List.Tot
open Pulse.Syntax.Base
open Pulse.Reflection.Util
let (let!) (f:option 'a) (g: 'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let elab_qual = function
| None -> R.Q_Explicit
| Some Implicit -> R.Q_Implicit
let elab_observability =
let open R in
function
| Neutral -> pack_ln (Tv_FVar (pack_fv neutral_lid))
| Unobservable -> pack_ln (Tv_FVar (pack_fv unobservable_lid))
| Observable -> pack_ln (Tv_FVar (pack_fv observable_lid))
let rec elab_term (top:term)
: R.term
= let open R in
let w t' = RU.set_range t' top.range in
match top.t with
| Tm_VProp ->
w (pack_ln (Tv_FVar (pack_fv vprop_lid)))
| Tm_Emp ->
w (pack_ln (Tv_FVar (pack_fv emp_lid)))
| Tm_Inv p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv inv_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Pure p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv pure_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Star l r ->
let l = elab_term l in
let r = elab_term r in
w (mk_star l r)
| Tm_ExistsSL u b body
| Tm_ForallSL u b body ->
let t = elab_term b.binder_ty in
let body = elab_term body in
let t = set_range_of t b.binder_ppname.range in
if Tm_ExistsSL? top.t
then w (mk_exists u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
else w (mk_forall u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
| Tm_Inames ->
w (pack_ln (Tv_FVar (pack_fv inames_lid)))
| Tm_EmpInames ->
w (emp_inames_tm)
| Tm_AddInv i is ->
let i = elab_term i in
let is = elab_term is in
w (add_inv_tm (`_) is i) // Careful on the order flip
| Tm_Unknown ->
w (pack_ln R.Tv_Unknown)
| Tm_FStar t ->
w t
let rec elab_pat (p:pattern) : Tot R.pattern =
let elab_fv (f:fv) : R.fv =
R.pack_fv f.fv_name
in
match p with
| Pat_Constant c -> R.Pat_Constant c
| Pat_Var v ty -> R.Pat_Var RT.sort_default v
| Pat_Cons fv vs ->
R.Pat_Cons (elab_fv fv) None (Pulse.Common.map_dec p vs elab_sub_pat)
| Pat_Dot_Term None ->
R.Pat_Dot_Term None
| Pat_Dot_Term (Some t) ->
R.Pat_Dot_Term (Some (elab_term t))
and elab_sub_pat (pi : pattern & bool) : R.pattern & bool =
let (p, i) = pi in
elab_pat p, i | {
"checked_file": "/",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Common.fst.checked",
"prims.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Elaborate.Pure.fst"
} | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ps: Prims.list Pulse.Syntax.Base.pattern -> Prims.list FStar.Stubs.Reflection.V2.Data.pattern | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"Pulse.Syntax.Base.pattern",
"FStar.List.Tot.Base.map",
"FStar.Stubs.Reflection.V2.Data.pattern",
"Pulse.Elaborate.Pure.elab_pat"
] | [] | false | false | false | true | false | let elab_pats (ps: list pattern) : Tot (list R.pattern) =
| L.map elab_pat ps | false |
LowParse.Spec.DER.fst | LowParse.Spec.DER.synth_der_length_payload32 | val synth_der_length_payload32
(x: U8.t{der_length_payload_size_of_tag x <= 4})
(y: refine_with_tag tag_of_der_length x)
: GTot (refine_with_tag tag_of_der_length32 x) | val synth_der_length_payload32
(x: U8.t{der_length_payload_size_of_tag x <= 4})
(y: refine_with_tag tag_of_der_length x)
: GTot (refine_with_tag tag_of_der_length32 x) | let synth_der_length_payload32
(x: U8.t { der_length_payload_size_of_tag x <= 4 } )
(y: refine_with_tag tag_of_der_length x)
: GTot (refine_with_tag tag_of_der_length32 x)
= let _ =
assert_norm (der_length_max == pow2 (8 * 126) - 1);
let _ = assert_norm (pow2 (8 * 2) == 65536) in
let _ = assert_norm (pow2 (8 * 3) == 16777216) in
let _ = assert_norm (pow2 (8 * 4) == 4294967296) in
if y >= 128 then begin
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y) == 128 + log256 y)
end
in
U32.uint_to_t y | {
"file_name": "src/lowparse/LowParse.Spec.DER.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 17,
"end_line": 802,
"start_col": 0,
"start_line": 788
} | module LowParse.Spec.DER
open LowParse.Spec.Combinators
open LowParse.Spec.SeqBytes.Base
// include LowParse.Spec.VLData // for in_bounds
open FStar.Mul
module U8 = FStar.UInt8
module UInt = FStar.UInt
module Math = LowParse.Math
module E = FStar.Endianness
module Seq = FStar.Seq
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0"
// let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`())))
let der_length_max_eq =
assert_norm (der_length_max == pow2 (8 * 126) - 1)
let rec log256
(x: nat { x > 0 })
: Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)})
= assert_norm (pow2 8 == 256);
if x < 256
then 1
else begin
let n = log256 (x / 256) in
Math.pow2_plus (8 * (n - 1)) 8;
Math.pow2_plus (8 * n) 8;
n + 1
end
let log256_unique
x
y
= Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x);
Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y)
let log256_le
x1
x2
= Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2)
let der_length_payload_size_le
x1
x2
= if x1 < 128 || x2 < 128
then ()
else
let len_len2 = log256 x2 in
let len_len1 = log256 x1 in
log256_le x1 x2;
assert_norm (pow2 7 == 128);
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126)
let synth_be_int
(len: nat)
(b: Seq.lseq byte len)
: Tot (lint len)
= E.lemma_be_to_n_is_bounded b;
E.be_to_n b
let synth_be_int_injective
(len: nat)
: Lemma
(synth_injective (synth_be_int len))
[SMTPat (synth_injective (synth_be_int len))]
=
synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) ->
E.be_to_n_inj x x'
)
let synth_der_length_129
(x: U8.t { x == 129uy } )
(y: U8.t { U8.v y >= 128 } )
: Tot (refine_with_tag tag_of_der_length x)
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
log256_unique (U8.v y) 1;
U8.v y
let synth_der_length_greater
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x - 128 } )
(y: lint len { y >= pow2 (8 * (len - 1)) } )
: Tot (refine_with_tag tag_of_der_length x)
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
Math.pow2_le_compat (8 * 126) (8 * len);
Math.pow2_le_compat (8 * (len - 1)) 7;
log256_unique y len;
y
let parse_der_length_payload
(x: U8.t)
: Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x))
end else
if x = 128uy
then
fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case
else if x = 255uy
then
fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already
else if x = 129uy
then
weaken (parse_der_length_payload_kind x)
((parse_u8 `parse_filter` (fun y -> U8.v y >= 128))
`parse_synth` synth_der_length_129 x)
else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
weaken (parse_der_length_payload_kind x)
(((parse_seq_flbytes len `parse_synth` (synth_be_int len))
`parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
`parse_synth` synth_der_length_greater x len)
end
let parse_der_length_payload_unfold
(x: U8.t)
(input: bytes)
: Lemma
(
let y = parse (parse_der_length_payload x) input in
(256 < der_length_max) /\ (
if U8.v x < 128
then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0)
else if x = 128uy || x = 255uy
then y == None
else if x = 129uy
then
match parse parse_u8 input with
| None -> y == None
| Some (z, consumed) ->
if U8.v z < 128
then y == None
else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed)
else
let len : nat = U8.v x - 128 in
synth_injective (synth_be_int len) /\ (
let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in
match res with
| None -> y == None
| Some (z, consumed) ->
len > 0 /\ (
if z >= pow2 (8 * (len - 1))
then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed)
else y == None
))))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
()
end else
if x = 128uy
then
()
else if x = 255uy
then
()
else if x = 129uy
then begin
parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input;
parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input;
match parse parse_u8 input with
| None -> ()
| Some (y, _) ->
if U8.v y >= 128
then begin
log256_unique (U8.v y) 1
end else ()
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len))
`parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input;
parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input;
assert (len > 1);
let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in
match res with
| None -> ()
| Some (y, _) ->
if y >= pow2 (8 * (len - 1))
then begin
let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in
Math.pow2_le_compat (8 * 126) (8 * len);
Math.pow2_le_compat (8 * (len - 1)) 7;
log256_unique y len
end else ()
end
inline_for_extraction
let parse_der_length_payload_kind_weak : parser_kind =
strong_parser_kind 0 126 None
inline_for_extraction
let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak
let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t
= parse_tagged_union
parse_u8
tag_of_der_length
(fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x))
[@@(noextract_to "krml")]
let parse_bounded_der_length_payload_kind
(min: der_length_t)
(max: der_length_t { min <= max } )
: Tot parser_kind =
[@inline_let] let _ = der_length_payload_size_le min max in
strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None
let bounded_int
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot Type
= (x: int { min <= x /\ x <= max })
let parse_bounded_der_length_tag_cond
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t)
: Tot bool
= let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max
inline_for_extraction // for parser_kind
let tag_of_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
(x: bounded_int min max)
: Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } )
= [@inline_let]
let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in
tag_of_der_length x
let parse_bounded_der_length_payload
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
: Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x))
= weaken (parse_bounded_der_length_payload_kind min max)
(parse_der_length_payload x
`parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)
`parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)))
[@@(noextract_to "krml")]
let parse_bounded_der_length_kind
(min: der_length_t)
(max: der_length_t { min <= max } )
: Tot parser_kind
= and_then_kind
(parse_filter_kind parse_u8_kind)
(parse_bounded_der_length_payload_kind min max)
let parse_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max))
= parse_tagged_union
(parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max)
(tag_of_bounded_der_length min max)
(parse_bounded_der_length_payload min max)
(* equality *)
let parse_bounded_der_length_payload_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
(input' : bytes)
: Lemma
(parse (parse_bounded_der_length_payload min max x) input' == (
match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_y)
else None
))
=
parse_synth_eq
(parse_der_length_payload x
`parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max))
(fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))
input' ;
parse_filter_eq
(parse_der_length_payload x)
(fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)
input'
let parse_bounded_der_length_unfold_aux
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
match parse (parse_bounded_der_length_payload min max x) input'
with
| Some (y, consumed_y) -> Some (y, consumed_x + consumed_y)
| None -> None
else None
))
= parse_tagged_union_eq
(parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max)
(tag_of_bounded_der_length min max)
(parse_bounded_der_length_payload min max)
input;
parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input
let parse_bounded_der_length_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_x + consumed_y)
else None
else None
))
= parse_bounded_der_length_unfold_aux min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
) input'
else ()
let parse_bounded_der_length_weak
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max))
= parse_der_length_weak
`parse_filter` (fun y -> min <= y && y <= max)
`parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
let parse_bounded_der_length_weak_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length_weak min max) input == (
match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let input' = Seq.slice input consumed_x (Seq.length input) in
begin match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_x + consumed_y)
else None
end
))
= parse_synth_eq
(parse_der_length_weak
`parse_filter` (fun y -> min <= y && y <= max))
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
input;
parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input;
parse_tagged_union_eq
parse_u8
tag_of_der_length
(fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x))
input
let parse_bounded_der_length_eq
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input))
= parse_bounded_der_length_unfold min max input;
parse_bounded_der_length_weak_unfold min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let input' = Seq.slice input consumed_x (Seq.length input) in
begin match parse (parse_der_length_payload x) input' with
| None -> ()
| Some (y, consumed_y) ->
if min <= y && y <= max
then (der_length_payload_size_le min y; der_length_payload_size_le y max)
else ()
end
(* serializer *)
let tag_of_der_length_lt_128
(x: der_length_t)
: Lemma
(requires (U8.v (tag_of_der_length x) < 128))
(ensures (x == U8.v (tag_of_der_length x)))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let tag_of_der_length_invalid
(x: der_length_t)
: Lemma
(requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255))
(ensures False)
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let tag_of_der_length_eq_129
(x: der_length_t)
: Lemma
(requires (U8.v (tag_of_der_length x) == 129))
(ensures (x >= 128 /\ x < 256))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let synth_der_length_129_recip
(x: U8.t { x == 129uy })
(y: refine_with_tag tag_of_der_length x)
: GTot (y: U8.t {U8.v y >= 128})
= tag_of_der_length_eq_129 y;
U8.uint_to_t y
let synth_be_int_recip
(len: nat)
(x: lint len)
: GTot (b: Seq.lseq byte len)
= E.n_to_be len x
let synth_be_int_inverse
(len: nat)
: Lemma
(synth_inverse (synth_be_int len) (synth_be_int_recip len))
= ()
let synth_der_length_greater_recip
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x % 128 } )
(y: refine_with_tag tag_of_der_length x)
: Tot (y: lint len { y >= pow2 (8 * (len - 1)) } )
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
y
let synth_der_length_greater_inverse
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x % 128 } )
: Lemma
(synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len))
= ()
private
let serialize_der_length_payload_greater
(x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } )
(len: nat { len == U8.v x - 128 } )
=
(serialize_synth
#_
#(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
#(refine_with_tag tag_of_der_length x)
_
(synth_der_length_greater x len)
(serialize_filter
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(fun (y: lint len) -> y >= pow2 (8 * (len - 1)))
)
(synth_der_length_greater_recip x len)
()
)
let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y)
let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False
let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y)
let serialize_der_length_payload
(x: U8.t)
: Tot (serializer (parse_der_length_payload x))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x))
end else
if x = 128uy || x = 255uy
then
fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x)
else if x = 129uy
then begin
serialize_weaken
(parse_der_length_payload_kind x)
(serialize_synth
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))
)
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
serialize_weaken
(parse_der_length_payload_kind x)
(serialize_der_length_payload_greater x len)
end
let serialize_der_length_weak : serializer parse_der_length_weak =
serialize_tagged_union
serialize_u8
tag_of_der_length
(fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x))
#push-options "--max_ifuel 6 --z3rlimit 64"
let serialize_der_length_weak_unfold
(y: der_length_t)
: Lemma
(let res = serialize serialize_der_length_weak y in
let x = tag_of_der_length y in
let s1 = Seq.create 1 x in
if x `U8.lt` 128uy
then res `Seq.equal` s1
else if x = 129uy
then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y))
else
let len = log256 y in
res `Seq.equal` (s1 `Seq.append` E.n_to_be len y)
)
= let x = tag_of_der_length y in
serialize_u8_spec x;
assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
()
end else
if x = 128uy || x = 255uy
then
tag_of_der_length_invalid y
else if x = 129uy
then begin
tag_of_der_length_eq_129 y;
assert (U8.v (synth_der_length_129_recip x y) == y);
let s1 = serialize ( serialize_synth #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x)
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)))
y
in
serialize_synth_eq'
#_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128))
#(refine_with_tag tag_of_der_length x)
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))
y
s1
()
(serialize serialize_u8 (synth_der_length_129_recip x y))
()
;
serialize_u8_spec (U8.uint_to_t y);
()
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
assert (
serialize (serialize_der_length_payload x) y == serialize (serialize_der_length_payload_greater x len) y
);
serialize_synth_eq'
#_
#(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
#(refine_with_tag tag_of_der_length x)
_
(synth_der_length_greater x len)
(serialize_filter
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(fun (y: lint len) -> y >= pow2 (8 * (len - 1)))
)
(synth_der_length_greater_recip x len)
()
y
(serialize (serialize_der_length_payload_greater x len) y)
(_ by (FStar.Tactics.trefl ()))
(serialize
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(synth_der_length_greater_recip x len y)
)
()
;
serialize_synth_eq
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
(synth_der_length_greater_recip x len y);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
()
end;
()
#pop-options
let serialize_bounded_der_length_weak
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (serializer (parse_bounded_der_length_weak min max))
= serialize_synth
_
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
(serialize_filter
serialize_der_length_weak
(fun y -> min <= y && y <= max)
)
(fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max})))
()
let serialize_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (serializer (parse_bounded_der_length min max))
= Classical.forall_intro (parse_bounded_der_length_eq min max);
serialize_ext
_
(serialize_bounded_der_length_weak min max)
(parse_bounded_der_length min max)
let serialize_bounded_der_length_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(y: bounded_int min max)
: Lemma
(let res = serialize (serialize_bounded_der_length min max) y in
let x = tag_of_der_length y in
let s1 = Seq.create 1 x in
if x `U8.lt` 128uy
then res `Seq.equal` s1
else if x = 129uy
then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y))
else
let len = log256 y in
res `Seq.equal` (s1 `Seq.append` E.n_to_be len y)
)
= serialize_synth_eq
_
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
(serialize_filter
serialize_der_length_weak
(fun y -> min <= y && y <= max)
)
(fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max})))
()
y;
serialize_der_length_weak_unfold y
(* 32-bit spec *)
module U32 = FStar.UInt32
let der_length_payload_size_of_tag_inv32
(x: der_length_t)
: Lemma
(requires (x < 4294967296))
(ensures (
tag_of_der_length x == (
if x < 128
then U8.uint_to_t x
else if x < 256
then 129uy
else if x < 65536
then 130uy
else if x < 16777216
then 131uy
else 132uy
)))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126);
assert_norm (pow2 (8 * 1) == 256);
assert_norm (pow2 (8 * 2) == 65536);
assert_norm (pow2 (8 * 3) == 16777216);
assert_norm (pow2 (8 * 4) == 4294967296);
if x < 256
then
log256_unique x 1
else if x < 65536
then
log256_unique x 2
else if x < 16777216
then
log256_unique x 3
else
log256_unique x 4 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.SeqBytes.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.DER.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.SeqBytes.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
x: FStar.UInt8.t{LowParse.Spec.DER.der_length_payload_size_of_tag x <= 4} ->
y: LowParse.Spec.Base.refine_with_tag LowParse.Spec.DER.tag_of_der_length x
-> Prims.GTot (LowParse.Spec.Base.refine_with_tag LowParse.Spec.DER.tag_of_der_length32 x) | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.UInt8.t",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.DER.der_length_payload_size_of_tag",
"LowParse.Spec.Base.refine_with_tag",
"LowParse.Spec.DER.der_length_t",
"LowParse.Spec.DER.tag_of_der_length",
"FStar.UInt32.uint_to_t",
"Prims.unit",
"Prims.op_GreaterThanOrEqual",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"FStar.UInt8.v",
"Prims.op_Addition",
"LowParse.Spec.DER.log256",
"LowParse.Math.pow2_lt_recip",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"Prims.bool",
"FStar.Pervasives.assert_norm",
"Prims.pow2",
"LowParse.Spec.DER.der_length_max",
"FStar.UInt32.t",
"LowParse.Spec.DER.tag_of_der_length32"
] | [] | false | false | false | false | false | let synth_der_length_payload32
(x: U8.t{der_length_payload_size_of_tag x <= 4})
(y: refine_with_tag tag_of_der_length x)
: GTot (refine_with_tag tag_of_der_length32 x) =
| let _ =
assert_norm (der_length_max == pow2 (8 * 126) - 1);
let _ = assert_norm (pow2 (8 * 2) == 65536) in
let _ = assert_norm (pow2 (8 * 3) == 16777216) in
let _ = assert_norm (pow2 (8 * 4) == 4294967296) in
if y >= 128
then
(Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y) == 128 + log256 y))
in
U32.uint_to_t y | false |
LowParse.Spec.DER.fst | LowParse.Spec.DER.der_length_payload_size_of_tag_inv32 | val der_length_payload_size_of_tag_inv32 (x: der_length_t)
: Lemma (requires (x < 4294967296))
(ensures
(tag_of_der_length x ==
(if x < 128
then U8.uint_to_t x
else
if x < 256
then 129uy
else if x < 65536 then 130uy else if x < 16777216 then 131uy else 132uy))) | val der_length_payload_size_of_tag_inv32 (x: der_length_t)
: Lemma (requires (x < 4294967296))
(ensures
(tag_of_der_length x ==
(if x < 128
then U8.uint_to_t x
else
if x < 256
then 129uy
else if x < 65536 then 130uy else if x < 16777216 then 131uy else 132uy))) | let der_length_payload_size_of_tag_inv32
(x: der_length_t)
: Lemma
(requires (x < 4294967296))
(ensures (
tag_of_der_length x == (
if x < 128
then U8.uint_to_t x
else if x < 256
then 129uy
else if x < 65536
then 130uy
else if x < 16777216
then 131uy
else 132uy
)))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126);
assert_norm (pow2 (8 * 1) == 256);
assert_norm (pow2 (8 * 2) == 65536);
assert_norm (pow2 (8 * 3) == 16777216);
assert_norm (pow2 (8 * 4) == 4294967296);
if x < 256
then
log256_unique x 1
else if x < 65536
then
log256_unique x 2
else if x < 16777216
then
log256_unique x 3
else
log256_unique x 4 | {
"file_name": "src/lowparse/LowParse.Spec.DER.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 23,
"end_line": 786,
"start_col": 0,
"start_line": 750
} | module LowParse.Spec.DER
open LowParse.Spec.Combinators
open LowParse.Spec.SeqBytes.Base
// include LowParse.Spec.VLData // for in_bounds
open FStar.Mul
module U8 = FStar.UInt8
module UInt = FStar.UInt
module Math = LowParse.Math
module E = FStar.Endianness
module Seq = FStar.Seq
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0"
// let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`())))
let der_length_max_eq =
assert_norm (der_length_max == pow2 (8 * 126) - 1)
let rec log256
(x: nat { x > 0 })
: Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)})
= assert_norm (pow2 8 == 256);
if x < 256
then 1
else begin
let n = log256 (x / 256) in
Math.pow2_plus (8 * (n - 1)) 8;
Math.pow2_plus (8 * n) 8;
n + 1
end
let log256_unique
x
y
= Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x);
Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y)
let log256_le
x1
x2
= Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2)
let der_length_payload_size_le
x1
x2
= if x1 < 128 || x2 < 128
then ()
else
let len_len2 = log256 x2 in
let len_len1 = log256 x1 in
log256_le x1 x2;
assert_norm (pow2 7 == 128);
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126)
let synth_be_int
(len: nat)
(b: Seq.lseq byte len)
: Tot (lint len)
= E.lemma_be_to_n_is_bounded b;
E.be_to_n b
let synth_be_int_injective
(len: nat)
: Lemma
(synth_injective (synth_be_int len))
[SMTPat (synth_injective (synth_be_int len))]
=
synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) ->
E.be_to_n_inj x x'
)
let synth_der_length_129
(x: U8.t { x == 129uy } )
(y: U8.t { U8.v y >= 128 } )
: Tot (refine_with_tag tag_of_der_length x)
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
log256_unique (U8.v y) 1;
U8.v y
let synth_der_length_greater
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x - 128 } )
(y: lint len { y >= pow2 (8 * (len - 1)) } )
: Tot (refine_with_tag tag_of_der_length x)
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
Math.pow2_le_compat (8 * 126) (8 * len);
Math.pow2_le_compat (8 * (len - 1)) 7;
log256_unique y len;
y
let parse_der_length_payload
(x: U8.t)
: Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x))
end else
if x = 128uy
then
fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case
else if x = 255uy
then
fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already
else if x = 129uy
then
weaken (parse_der_length_payload_kind x)
((parse_u8 `parse_filter` (fun y -> U8.v y >= 128))
`parse_synth` synth_der_length_129 x)
else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
weaken (parse_der_length_payload_kind x)
(((parse_seq_flbytes len `parse_synth` (synth_be_int len))
`parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
`parse_synth` synth_der_length_greater x len)
end
let parse_der_length_payload_unfold
(x: U8.t)
(input: bytes)
: Lemma
(
let y = parse (parse_der_length_payload x) input in
(256 < der_length_max) /\ (
if U8.v x < 128
then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0)
else if x = 128uy || x = 255uy
then y == None
else if x = 129uy
then
match parse parse_u8 input with
| None -> y == None
| Some (z, consumed) ->
if U8.v z < 128
then y == None
else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed)
else
let len : nat = U8.v x - 128 in
synth_injective (synth_be_int len) /\ (
let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in
match res with
| None -> y == None
| Some (z, consumed) ->
len > 0 /\ (
if z >= pow2 (8 * (len - 1))
then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed)
else y == None
))))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
()
end else
if x = 128uy
then
()
else if x = 255uy
then
()
else if x = 129uy
then begin
parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input;
parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input;
match parse parse_u8 input with
| None -> ()
| Some (y, _) ->
if U8.v y >= 128
then begin
log256_unique (U8.v y) 1
end else ()
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len))
`parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input;
parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input;
assert (len > 1);
let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in
match res with
| None -> ()
| Some (y, _) ->
if y >= pow2 (8 * (len - 1))
then begin
let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in
Math.pow2_le_compat (8 * 126) (8 * len);
Math.pow2_le_compat (8 * (len - 1)) 7;
log256_unique y len
end else ()
end
inline_for_extraction
let parse_der_length_payload_kind_weak : parser_kind =
strong_parser_kind 0 126 None
inline_for_extraction
let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak
let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t
= parse_tagged_union
parse_u8
tag_of_der_length
(fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x))
[@@(noextract_to "krml")]
let parse_bounded_der_length_payload_kind
(min: der_length_t)
(max: der_length_t { min <= max } )
: Tot parser_kind =
[@inline_let] let _ = der_length_payload_size_le min max in
strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None
let bounded_int
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot Type
= (x: int { min <= x /\ x <= max })
let parse_bounded_der_length_tag_cond
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t)
: Tot bool
= let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max
inline_for_extraction // for parser_kind
let tag_of_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
(x: bounded_int min max)
: Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } )
= [@inline_let]
let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in
tag_of_der_length x
let parse_bounded_der_length_payload
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
: Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x))
= weaken (parse_bounded_der_length_payload_kind min max)
(parse_der_length_payload x
`parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)
`parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)))
[@@(noextract_to "krml")]
let parse_bounded_der_length_kind
(min: der_length_t)
(max: der_length_t { min <= max } )
: Tot parser_kind
= and_then_kind
(parse_filter_kind parse_u8_kind)
(parse_bounded_der_length_payload_kind min max)
let parse_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max))
= parse_tagged_union
(parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max)
(tag_of_bounded_der_length min max)
(parse_bounded_der_length_payload min max)
(* equality *)
let parse_bounded_der_length_payload_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
(input' : bytes)
: Lemma
(parse (parse_bounded_der_length_payload min max x) input' == (
match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_y)
else None
))
=
parse_synth_eq
(parse_der_length_payload x
`parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max))
(fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))
input' ;
parse_filter_eq
(parse_der_length_payload x)
(fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)
input'
let parse_bounded_der_length_unfold_aux
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
match parse (parse_bounded_der_length_payload min max x) input'
with
| Some (y, consumed_y) -> Some (y, consumed_x + consumed_y)
| None -> None
else None
))
= parse_tagged_union_eq
(parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max)
(tag_of_bounded_der_length min max)
(parse_bounded_der_length_payload min max)
input;
parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input
let parse_bounded_der_length_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_x + consumed_y)
else None
else None
))
= parse_bounded_der_length_unfold_aux min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
) input'
else ()
let parse_bounded_der_length_weak
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max))
= parse_der_length_weak
`parse_filter` (fun y -> min <= y && y <= max)
`parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
let parse_bounded_der_length_weak_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length_weak min max) input == (
match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let input' = Seq.slice input consumed_x (Seq.length input) in
begin match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_x + consumed_y)
else None
end
))
= parse_synth_eq
(parse_der_length_weak
`parse_filter` (fun y -> min <= y && y <= max))
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
input;
parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input;
parse_tagged_union_eq
parse_u8
tag_of_der_length
(fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x))
input
let parse_bounded_der_length_eq
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input))
= parse_bounded_der_length_unfold min max input;
parse_bounded_der_length_weak_unfold min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let input' = Seq.slice input consumed_x (Seq.length input) in
begin match parse (parse_der_length_payload x) input' with
| None -> ()
| Some (y, consumed_y) ->
if min <= y && y <= max
then (der_length_payload_size_le min y; der_length_payload_size_le y max)
else ()
end
(* serializer *)
let tag_of_der_length_lt_128
(x: der_length_t)
: Lemma
(requires (U8.v (tag_of_der_length x) < 128))
(ensures (x == U8.v (tag_of_der_length x)))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let tag_of_der_length_invalid
(x: der_length_t)
: Lemma
(requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255))
(ensures False)
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let tag_of_der_length_eq_129
(x: der_length_t)
: Lemma
(requires (U8.v (tag_of_der_length x) == 129))
(ensures (x >= 128 /\ x < 256))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let synth_der_length_129_recip
(x: U8.t { x == 129uy })
(y: refine_with_tag tag_of_der_length x)
: GTot (y: U8.t {U8.v y >= 128})
= tag_of_der_length_eq_129 y;
U8.uint_to_t y
let synth_be_int_recip
(len: nat)
(x: lint len)
: GTot (b: Seq.lseq byte len)
= E.n_to_be len x
let synth_be_int_inverse
(len: nat)
: Lemma
(synth_inverse (synth_be_int len) (synth_be_int_recip len))
= ()
let synth_der_length_greater_recip
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x % 128 } )
(y: refine_with_tag tag_of_der_length x)
: Tot (y: lint len { y >= pow2 (8 * (len - 1)) } )
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
y
let synth_der_length_greater_inverse
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x % 128 } )
: Lemma
(synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len))
= ()
private
let serialize_der_length_payload_greater
(x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } )
(len: nat { len == U8.v x - 128 } )
=
(serialize_synth
#_
#(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
#(refine_with_tag tag_of_der_length x)
_
(synth_der_length_greater x len)
(serialize_filter
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(fun (y: lint len) -> y >= pow2 (8 * (len - 1)))
)
(synth_der_length_greater_recip x len)
()
)
let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y)
let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False
let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y)
let serialize_der_length_payload
(x: U8.t)
: Tot (serializer (parse_der_length_payload x))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x))
end else
if x = 128uy || x = 255uy
then
fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x)
else if x = 129uy
then begin
serialize_weaken
(parse_der_length_payload_kind x)
(serialize_synth
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))
)
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
serialize_weaken
(parse_der_length_payload_kind x)
(serialize_der_length_payload_greater x len)
end
let serialize_der_length_weak : serializer parse_der_length_weak =
serialize_tagged_union
serialize_u8
tag_of_der_length
(fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x))
#push-options "--max_ifuel 6 --z3rlimit 64"
let serialize_der_length_weak_unfold
(y: der_length_t)
: Lemma
(let res = serialize serialize_der_length_weak y in
let x = tag_of_der_length y in
let s1 = Seq.create 1 x in
if x `U8.lt` 128uy
then res `Seq.equal` s1
else if x = 129uy
then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y))
else
let len = log256 y in
res `Seq.equal` (s1 `Seq.append` E.n_to_be len y)
)
= let x = tag_of_der_length y in
serialize_u8_spec x;
assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
()
end else
if x = 128uy || x = 255uy
then
tag_of_der_length_invalid y
else if x = 129uy
then begin
tag_of_der_length_eq_129 y;
assert (U8.v (synth_der_length_129_recip x y) == y);
let s1 = serialize ( serialize_synth #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x)
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)))
y
in
serialize_synth_eq'
#_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128))
#(refine_with_tag tag_of_der_length x)
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))
y
s1
()
(serialize serialize_u8 (synth_der_length_129_recip x y))
()
;
serialize_u8_spec (U8.uint_to_t y);
()
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
assert (
serialize (serialize_der_length_payload x) y == serialize (serialize_der_length_payload_greater x len) y
);
serialize_synth_eq'
#_
#(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
#(refine_with_tag tag_of_der_length x)
_
(synth_der_length_greater x len)
(serialize_filter
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(fun (y: lint len) -> y >= pow2 (8 * (len - 1)))
)
(synth_der_length_greater_recip x len)
()
y
(serialize (serialize_der_length_payload_greater x len) y)
(_ by (FStar.Tactics.trefl ()))
(serialize
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(synth_der_length_greater_recip x len y)
)
()
;
serialize_synth_eq
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
(synth_der_length_greater_recip x len y);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
()
end;
()
#pop-options
let serialize_bounded_der_length_weak
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (serializer (parse_bounded_der_length_weak min max))
= serialize_synth
_
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
(serialize_filter
serialize_der_length_weak
(fun y -> min <= y && y <= max)
)
(fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max})))
()
let serialize_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (serializer (parse_bounded_der_length min max))
= Classical.forall_intro (parse_bounded_der_length_eq min max);
serialize_ext
_
(serialize_bounded_der_length_weak min max)
(parse_bounded_der_length min max)
let serialize_bounded_der_length_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(y: bounded_int min max)
: Lemma
(let res = serialize (serialize_bounded_der_length min max) y in
let x = tag_of_der_length y in
let s1 = Seq.create 1 x in
if x `U8.lt` 128uy
then res `Seq.equal` s1
else if x = 129uy
then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y))
else
let len = log256 y in
res `Seq.equal` (s1 `Seq.append` E.n_to_be len y)
)
= serialize_synth_eq
_
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
(serialize_filter
serialize_der_length_weak
(fun y -> min <= y && y <= max)
)
(fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max})))
()
y;
serialize_der_length_weak_unfold y
(* 32-bit spec *)
module U32 = FStar.UInt32 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.SeqBytes.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.DER.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.SeqBytes.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: LowParse.Spec.DER.der_length_t
-> FStar.Pervasives.Lemma (requires x < 4294967296)
(ensures
LowParse.Spec.DER.tag_of_der_length x ==
(match x < 128 with
| true -> FStar.UInt8.uint_to_t x
| _ ->
(match x < 256 with
| true -> 129uy
| _ ->
(match x < 65536 with
| true -> 130uy
| _ ->
(match x < 16777216 with
| true -> 131uy
| _ -> 132uy)
<:
FStar.UInt8.t)
<:
FStar.UInt8.t)
<:
FStar.UInt8.t)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"LowParse.Spec.DER.der_length_t",
"Prims.op_LessThan",
"Prims.bool",
"LowParse.Spec.DER.log256_unique",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"Prims.pow2",
"FStar.Mul.op_Star",
"LowParse.Math.pow2_lt_recip",
"Prims.op_Subtraction",
"LowParse.Spec.DER.der_length_max",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"Prims.op_Multiply",
"LowParse.Spec.DER.log256",
"Prims.squash",
"FStar.UInt8.t",
"LowParse.Spec.DER.tag_of_der_length",
"FStar.UInt8.uint_to_t",
"FStar.UInt8.__uint_to_t",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let der_length_payload_size_of_tag_inv32 (x: der_length_t)
: Lemma (requires (x < 4294967296))
(ensures
(tag_of_der_length x ==
(if x < 128
then U8.uint_to_t x
else
if x < 256
then 129uy
else if x < 65536 then 130uy else if x < 16777216 then 131uy else 132uy))) =
| if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126);
assert_norm (pow2 (8 * 1) == 256);
assert_norm (pow2 (8 * 2) == 65536);
assert_norm (pow2 (8 * 3) == 16777216);
assert_norm (pow2 (8 * 4) == 4294967296);
if x < 256
then log256_unique x 1
else
if x < 65536
then log256_unique x 2
else if x < 16777216 then log256_unique x 3 else log256_unique x 4 | false |
Hacl.Streaming.Blake2s_32.fst | Hacl.Streaming.Blake2s_32.hash_with_key | val hash_with_key:Impl.blake2_st Spec.Blake2S Core.M32 | val hash_with_key:Impl.blake2_st Spec.Blake2S Core.M32 | let hash_with_key : Impl.blake2_st Spec.Blake2S Core.M32 =
Impl.blake2 #Spec.Blake2S #Core.M32 Blake2s32.init Blake2s32.update Blake2s32.finish | {
"file_name": "code/streaming/Hacl.Streaming.Blake2s_32.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 86,
"end_line": 60,
"start_col": 0,
"start_line": 59
} | module Hacl.Streaming.Blake2s_32
module Blake2s32 = Hacl.Blake2s_32
module Common = Hacl.Streaming.Blake2.Common
module Core = Hacl.Impl.Blake2.Core
module F = Hacl.Streaming.Functor
module G = FStar.Ghost
module Impl = Hacl.Impl.Blake2.Generic
module Spec = Spec.Blake2
inline_for_extraction noextract
let blake2s_32 kk =
Common.blake2 Spec.Blake2S Core.M32 kk Blake2s32.init Blake2s32.update_multi
Blake2s32.update_last Blake2s32.finish
/// Type abbreviations - makes Karamel use pretty names in the generated code
let block_state_t = Common.s Spec.Blake2S Core.M32
let state_t = F.state_s (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
/// The incremental hash functions instantiations. Note that we can't write a
/// generic one, because the normalization then performed by KaRaMeL explodes.
/// All those implementations are for non-keyed hash.
inline_for_extraction noextract
let alloca =
F.alloca (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
[@ (Comment " State allocation function when there is no key")]
let malloc =
F.malloc (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
[@ (Comment " Re-initialization function when there is no key")]
let reset =
F.reset (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
[@ (Comment " Update function when there is no key; 0 = success, 1 = max length exceeded")]
let update =
F.update (blake2s_32 0) (G.hide ()) (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
[@ (Comment " Finish function when there is no key")]
let digest =
F.digest (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
[@ (Comment " Free state function when there is no key")]
let free =
F.free (blake2s_32 0) (G.hide ()) (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
(* The one-shot hash *)
[@@ Comment "Write the BLAKE2s digest of message `input` using key `key` into `output`.
@param output Pointer to `output_len` bytes of memory where the digest is written to.
@param output_len Length of the to-be-generated digest with 1 <= `output_len` <= 32.
@param input Pointer to `input_len` bytes of memory where the input message is read from.
@param input_len Length of the input message.
@param key Pointer to `key_len` bytes of memory where the key is read from. | {
"checked_file": "/",
"dependencies": [
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Streaming.Blake2.Common.fst.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2s_32.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": "Impl"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Blake2.Common",
"short_module": "Common"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Impl.Blake2.Generic.blake2_st Spec.Blake2.Definitions.Blake2S Hacl.Impl.Blake2.Core.M32 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Impl.Blake2.Generic.blake2",
"Spec.Blake2.Definitions.Blake2S",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Blake2s_32.init",
"Hacl.Blake2s_32.update",
"Hacl.Blake2s_32.finish"
] | [] | false | false | false | true | false | let hash_with_key:Impl.blake2_st Spec.Blake2S Core.M32 =
| Impl.blake2 #Spec.Blake2S #Core.M32 Blake2s32.init Blake2s32.update Blake2s32.finish | false |
LowParse.Spec.DER.fst | LowParse.Spec.DER.synth_der_length_payload32_injective | val synth_der_length_payload32_injective (x: U8.t{der_length_payload_size_of_tag x <= 4})
: Lemma (synth_injective (synth_der_length_payload32 x))
[SMTPat (synth_injective (synth_der_length_payload32 x))] | val synth_der_length_payload32_injective (x: U8.t{der_length_payload_size_of_tag x <= 4})
: Lemma (synth_injective (synth_der_length_payload32 x))
[SMTPat (synth_injective (synth_der_length_payload32 x))] | let synth_der_length_payload32_injective
(x: U8.t { der_length_payload_size_of_tag x <= 4 } )
: Lemma
(synth_injective (synth_der_length_payload32 x))
[SMTPat (synth_injective (synth_der_length_payload32 x))]
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
let _ = assert_norm (pow2 (8 * 2) == 65536) in
let _ = assert_norm (pow2 (8 * 3) == 16777216) in
let _ = assert_norm (pow2 (8 * 4) == 4294967296) in
synth_injective_intro' (synth_der_length_payload32 x) (fun (y1 y2: refine_with_tag tag_of_der_length x) ->
if y1 >= 128 then begin
Math.pow2_lt_recip (8 * (log256 y1 - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y1) == 128 + log256 y1)
end;
if y2 >= 128 then begin
Math.pow2_lt_recip (8 * (log256 y2 - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y2) == 128 + log256 y2)
end
) | {
"file_name": "src/lowparse/LowParse.Spec.DER.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 3,
"end_line": 822,
"start_col": 0,
"start_line": 804
} | module LowParse.Spec.DER
open LowParse.Spec.Combinators
open LowParse.Spec.SeqBytes.Base
// include LowParse.Spec.VLData // for in_bounds
open FStar.Mul
module U8 = FStar.UInt8
module UInt = FStar.UInt
module Math = LowParse.Math
module E = FStar.Endianness
module Seq = FStar.Seq
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0"
// let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`())))
let der_length_max_eq =
assert_norm (der_length_max == pow2 (8 * 126) - 1)
let rec log256
(x: nat { x > 0 })
: Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)})
= assert_norm (pow2 8 == 256);
if x < 256
then 1
else begin
let n = log256 (x / 256) in
Math.pow2_plus (8 * (n - 1)) 8;
Math.pow2_plus (8 * n) 8;
n + 1
end
let log256_unique
x
y
= Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x);
Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y)
let log256_le
x1
x2
= Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2)
let der_length_payload_size_le
x1
x2
= if x1 < 128 || x2 < 128
then ()
else
let len_len2 = log256 x2 in
let len_len1 = log256 x1 in
log256_le x1 x2;
assert_norm (pow2 7 == 128);
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126)
let synth_be_int
(len: nat)
(b: Seq.lseq byte len)
: Tot (lint len)
= E.lemma_be_to_n_is_bounded b;
E.be_to_n b
let synth_be_int_injective
(len: nat)
: Lemma
(synth_injective (synth_be_int len))
[SMTPat (synth_injective (synth_be_int len))]
=
synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) ->
E.be_to_n_inj x x'
)
let synth_der_length_129
(x: U8.t { x == 129uy } )
(y: U8.t { U8.v y >= 128 } )
: Tot (refine_with_tag tag_of_der_length x)
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
log256_unique (U8.v y) 1;
U8.v y
let synth_der_length_greater
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x - 128 } )
(y: lint len { y >= pow2 (8 * (len - 1)) } )
: Tot (refine_with_tag tag_of_der_length x)
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
Math.pow2_le_compat (8 * 126) (8 * len);
Math.pow2_le_compat (8 * (len - 1)) 7;
log256_unique y len;
y
let parse_der_length_payload
(x: U8.t)
: Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x))
end else
if x = 128uy
then
fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case
else if x = 255uy
then
fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already
else if x = 129uy
then
weaken (parse_der_length_payload_kind x)
((parse_u8 `parse_filter` (fun y -> U8.v y >= 128))
`parse_synth` synth_der_length_129 x)
else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
weaken (parse_der_length_payload_kind x)
(((parse_seq_flbytes len `parse_synth` (synth_be_int len))
`parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
`parse_synth` synth_der_length_greater x len)
end
let parse_der_length_payload_unfold
(x: U8.t)
(input: bytes)
: Lemma
(
let y = parse (parse_der_length_payload x) input in
(256 < der_length_max) /\ (
if U8.v x < 128
then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0)
else if x = 128uy || x = 255uy
then y == None
else if x = 129uy
then
match parse parse_u8 input with
| None -> y == None
| Some (z, consumed) ->
if U8.v z < 128
then y == None
else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed)
else
let len : nat = U8.v x - 128 in
synth_injective (synth_be_int len) /\ (
let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in
match res with
| None -> y == None
| Some (z, consumed) ->
len > 0 /\ (
if z >= pow2 (8 * (len - 1))
then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed)
else y == None
))))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
()
end else
if x = 128uy
then
()
else if x = 255uy
then
()
else if x = 129uy
then begin
parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input;
parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input;
match parse parse_u8 input with
| None -> ()
| Some (y, _) ->
if U8.v y >= 128
then begin
log256_unique (U8.v y) 1
end else ()
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len))
`parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input;
parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input;
assert (len > 1);
let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in
match res with
| None -> ()
| Some (y, _) ->
if y >= pow2 (8 * (len - 1))
then begin
let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in
Math.pow2_le_compat (8 * 126) (8 * len);
Math.pow2_le_compat (8 * (len - 1)) 7;
log256_unique y len
end else ()
end
inline_for_extraction
let parse_der_length_payload_kind_weak : parser_kind =
strong_parser_kind 0 126 None
inline_for_extraction
let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak
let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t
= parse_tagged_union
parse_u8
tag_of_der_length
(fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x))
[@@(noextract_to "krml")]
let parse_bounded_der_length_payload_kind
(min: der_length_t)
(max: der_length_t { min <= max } )
: Tot parser_kind =
[@inline_let] let _ = der_length_payload_size_le min max in
strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None
let bounded_int
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot Type
= (x: int { min <= x /\ x <= max })
let parse_bounded_der_length_tag_cond
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t)
: Tot bool
= let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max
inline_for_extraction // for parser_kind
let tag_of_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
(x: bounded_int min max)
: Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } )
= [@inline_let]
let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in
tag_of_der_length x
let parse_bounded_der_length_payload
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
: Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x))
= weaken (parse_bounded_der_length_payload_kind min max)
(parse_der_length_payload x
`parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)
`parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)))
[@@(noextract_to "krml")]
let parse_bounded_der_length_kind
(min: der_length_t)
(max: der_length_t { min <= max } )
: Tot parser_kind
= and_then_kind
(parse_filter_kind parse_u8_kind)
(parse_bounded_der_length_payload_kind min max)
let parse_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max))
= parse_tagged_union
(parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max)
(tag_of_bounded_der_length min max)
(parse_bounded_der_length_payload min max)
(* equality *)
let parse_bounded_der_length_payload_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
(input' : bytes)
: Lemma
(parse (parse_bounded_der_length_payload min max x) input' == (
match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_y)
else None
))
=
parse_synth_eq
(parse_der_length_payload x
`parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max))
(fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))
input' ;
parse_filter_eq
(parse_der_length_payload x)
(fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)
input'
let parse_bounded_der_length_unfold_aux
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
match parse (parse_bounded_der_length_payload min max x) input'
with
| Some (y, consumed_y) -> Some (y, consumed_x + consumed_y)
| None -> None
else None
))
= parse_tagged_union_eq
(parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max)
(tag_of_bounded_der_length min max)
(parse_bounded_der_length_payload min max)
input;
parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input
let parse_bounded_der_length_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_x + consumed_y)
else None
else None
))
= parse_bounded_der_length_unfold_aux min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
) input'
else ()
let parse_bounded_der_length_weak
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max))
= parse_der_length_weak
`parse_filter` (fun y -> min <= y && y <= max)
`parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
let parse_bounded_der_length_weak_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length_weak min max) input == (
match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let input' = Seq.slice input consumed_x (Seq.length input) in
begin match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_x + consumed_y)
else None
end
))
= parse_synth_eq
(parse_der_length_weak
`parse_filter` (fun y -> min <= y && y <= max))
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
input;
parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input;
parse_tagged_union_eq
parse_u8
tag_of_der_length
(fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x))
input
let parse_bounded_der_length_eq
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input))
= parse_bounded_der_length_unfold min max input;
parse_bounded_der_length_weak_unfold min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let input' = Seq.slice input consumed_x (Seq.length input) in
begin match parse (parse_der_length_payload x) input' with
| None -> ()
| Some (y, consumed_y) ->
if min <= y && y <= max
then (der_length_payload_size_le min y; der_length_payload_size_le y max)
else ()
end
(* serializer *)
let tag_of_der_length_lt_128
(x: der_length_t)
: Lemma
(requires (U8.v (tag_of_der_length x) < 128))
(ensures (x == U8.v (tag_of_der_length x)))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let tag_of_der_length_invalid
(x: der_length_t)
: Lemma
(requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255))
(ensures False)
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let tag_of_der_length_eq_129
(x: der_length_t)
: Lemma
(requires (U8.v (tag_of_der_length x) == 129))
(ensures (x >= 128 /\ x < 256))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let synth_der_length_129_recip
(x: U8.t { x == 129uy })
(y: refine_with_tag tag_of_der_length x)
: GTot (y: U8.t {U8.v y >= 128})
= tag_of_der_length_eq_129 y;
U8.uint_to_t y
let synth_be_int_recip
(len: nat)
(x: lint len)
: GTot (b: Seq.lseq byte len)
= E.n_to_be len x
let synth_be_int_inverse
(len: nat)
: Lemma
(synth_inverse (synth_be_int len) (synth_be_int_recip len))
= ()
let synth_der_length_greater_recip
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x % 128 } )
(y: refine_with_tag tag_of_der_length x)
: Tot (y: lint len { y >= pow2 (8 * (len - 1)) } )
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
y
let synth_der_length_greater_inverse
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x % 128 } )
: Lemma
(synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len))
= ()
private
let serialize_der_length_payload_greater
(x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } )
(len: nat { len == U8.v x - 128 } )
=
(serialize_synth
#_
#(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
#(refine_with_tag tag_of_der_length x)
_
(synth_der_length_greater x len)
(serialize_filter
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(fun (y: lint len) -> y >= pow2 (8 * (len - 1)))
)
(synth_der_length_greater_recip x len)
()
)
let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y)
let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False
let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y)
let serialize_der_length_payload
(x: U8.t)
: Tot (serializer (parse_der_length_payload x))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x))
end else
if x = 128uy || x = 255uy
then
fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x)
else if x = 129uy
then begin
serialize_weaken
(parse_der_length_payload_kind x)
(serialize_synth
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))
)
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
serialize_weaken
(parse_der_length_payload_kind x)
(serialize_der_length_payload_greater x len)
end
let serialize_der_length_weak : serializer parse_der_length_weak =
serialize_tagged_union
serialize_u8
tag_of_der_length
(fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x))
#push-options "--max_ifuel 6 --z3rlimit 64"
let serialize_der_length_weak_unfold
(y: der_length_t)
: Lemma
(let res = serialize serialize_der_length_weak y in
let x = tag_of_der_length y in
let s1 = Seq.create 1 x in
if x `U8.lt` 128uy
then res `Seq.equal` s1
else if x = 129uy
then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y))
else
let len = log256 y in
res `Seq.equal` (s1 `Seq.append` E.n_to_be len y)
)
= let x = tag_of_der_length y in
serialize_u8_spec x;
assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
()
end else
if x = 128uy || x = 255uy
then
tag_of_der_length_invalid y
else if x = 129uy
then begin
tag_of_der_length_eq_129 y;
assert (U8.v (synth_der_length_129_recip x y) == y);
let s1 = serialize ( serialize_synth #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x)
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)))
y
in
serialize_synth_eq'
#_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128))
#(refine_with_tag tag_of_der_length x)
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))
y
s1
()
(serialize serialize_u8 (synth_der_length_129_recip x y))
()
;
serialize_u8_spec (U8.uint_to_t y);
()
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
assert (
serialize (serialize_der_length_payload x) y == serialize (serialize_der_length_payload_greater x len) y
);
serialize_synth_eq'
#_
#(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
#(refine_with_tag tag_of_der_length x)
_
(synth_der_length_greater x len)
(serialize_filter
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(fun (y: lint len) -> y >= pow2 (8 * (len - 1)))
)
(synth_der_length_greater_recip x len)
()
y
(serialize (serialize_der_length_payload_greater x len) y)
(_ by (FStar.Tactics.trefl ()))
(serialize
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(synth_der_length_greater_recip x len y)
)
()
;
serialize_synth_eq
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
(synth_der_length_greater_recip x len y);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
()
end;
()
#pop-options
let serialize_bounded_der_length_weak
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (serializer (parse_bounded_der_length_weak min max))
= serialize_synth
_
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
(serialize_filter
serialize_der_length_weak
(fun y -> min <= y && y <= max)
)
(fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max})))
()
let serialize_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (serializer (parse_bounded_der_length min max))
= Classical.forall_intro (parse_bounded_der_length_eq min max);
serialize_ext
_
(serialize_bounded_der_length_weak min max)
(parse_bounded_der_length min max)
let serialize_bounded_der_length_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(y: bounded_int min max)
: Lemma
(let res = serialize (serialize_bounded_der_length min max) y in
let x = tag_of_der_length y in
let s1 = Seq.create 1 x in
if x `U8.lt` 128uy
then res `Seq.equal` s1
else if x = 129uy
then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y))
else
let len = log256 y in
res `Seq.equal` (s1 `Seq.append` E.n_to_be len y)
)
= serialize_synth_eq
_
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
(serialize_filter
serialize_der_length_weak
(fun y -> min <= y && y <= max)
)
(fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max})))
()
y;
serialize_der_length_weak_unfold y
(* 32-bit spec *)
module U32 = FStar.UInt32
let der_length_payload_size_of_tag_inv32
(x: der_length_t)
: Lemma
(requires (x < 4294967296))
(ensures (
tag_of_der_length x == (
if x < 128
then U8.uint_to_t x
else if x < 256
then 129uy
else if x < 65536
then 130uy
else if x < 16777216
then 131uy
else 132uy
)))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126);
assert_norm (pow2 (8 * 1) == 256);
assert_norm (pow2 (8 * 2) == 65536);
assert_norm (pow2 (8 * 3) == 16777216);
assert_norm (pow2 (8 * 4) == 4294967296);
if x < 256
then
log256_unique x 1
else if x < 65536
then
log256_unique x 2
else if x < 16777216
then
log256_unique x 3
else
log256_unique x 4
let synth_der_length_payload32
(x: U8.t { der_length_payload_size_of_tag x <= 4 } )
(y: refine_with_tag tag_of_der_length x)
: GTot (refine_with_tag tag_of_der_length32 x)
= let _ =
assert_norm (der_length_max == pow2 (8 * 126) - 1);
let _ = assert_norm (pow2 (8 * 2) == 65536) in
let _ = assert_norm (pow2 (8 * 3) == 16777216) in
let _ = assert_norm (pow2 (8 * 4) == 4294967296) in
if y >= 128 then begin
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y) == 128 + log256 y)
end
in
U32.uint_to_t y | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.SeqBytes.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.DER.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.SeqBytes.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt8.t{LowParse.Spec.DER.der_length_payload_size_of_tag x <= 4}
-> FStar.Pervasives.Lemma
(ensures
LowParse.Spec.Combinators.synth_injective (LowParse.Spec.DER.synth_der_length_payload32 x))
[
SMTPat (LowParse.Spec.Combinators.synth_injective (LowParse.Spec.DER.synth_der_length_payload32
x))
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt8.t",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.DER.der_length_payload_size_of_tag",
"LowParse.Spec.Combinators.synth_injective_intro'",
"LowParse.Spec.Base.refine_with_tag",
"LowParse.Spec.DER.der_length_t",
"LowParse.Spec.DER.tag_of_der_length",
"FStar.UInt32.t",
"LowParse.Spec.DER.tag_of_der_length32",
"LowParse.Spec.DER.synth_der_length_payload32",
"Prims.op_GreaterThanOrEqual",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"FStar.UInt8.v",
"Prims.op_Addition",
"LowParse.Spec.DER.log256",
"Prims.unit",
"LowParse.Math.pow2_lt_recip",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"Prims.bool",
"FStar.Pervasives.assert_norm",
"Prims.pow2",
"LowParse.Spec.DER.der_length_max",
"Prims.l_True",
"Prims.squash",
"LowParse.Spec.Combinators.synth_injective",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | false | false | true | false | false | let synth_der_length_payload32_injective (x: U8.t{der_length_payload_size_of_tag x <= 4})
: Lemma (synth_injective (synth_der_length_payload32 x))
[SMTPat (synth_injective (synth_der_length_payload32 x))] =
| assert_norm (der_length_max == pow2 (8 * 126) - 1);
let _ = assert_norm (pow2 (8 * 2) == 65536) in
let _ = assert_norm (pow2 (8 * 3) == 16777216) in
let _ = assert_norm (pow2 (8 * 4) == 4294967296) in
synth_injective_intro' (synth_der_length_payload32 x)
(fun (y1: refine_with_tag tag_of_der_length x) (y2: refine_with_tag tag_of_der_length x) ->
if y1 >= 128
then
(Math.pow2_lt_recip (8 * (log256 y1 - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y1) == 128 + log256 y1));
if y2 >= 128
then
(Math.pow2_lt_recip (8 * (log256 y2 - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y2) == 128 + log256 y2))) | false |
LowParse.Spec.DER.fst | LowParse.Spec.DER.parse_der_length_payload_unfold | val parse_der_length_payload_unfold (x: U8.t) (input: bytes)
: Lemma
(let y = parse (parse_der_length_payload x) input in
(256 < der_length_max) /\
(if U8.v x < 128
then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0)
else
if x = 128uy || x = 255uy
then y == None
else
if x = 129uy
then
match parse parse_u8 input with
| None -> y == None
| Some (z, consumed) ->
if U8.v z < 128
then y == None
else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed)
else
let len:nat = U8.v x - 128 in
synth_injective (synth_be_int len) /\
(let res:option (lint len & consumed_length input) =
parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input
in
match res with
| None -> y == None
| Some (z, consumed) ->
len > 0 /\
(if z >= pow2 (8 * (len - 1))
then
z <= der_length_max /\ tag_of_der_length z == x /\
y == Some ((z <: refine_with_tag tag_of_der_length x), consumed)
else y == None)))) | val parse_der_length_payload_unfold (x: U8.t) (input: bytes)
: Lemma
(let y = parse (parse_der_length_payload x) input in
(256 < der_length_max) /\
(if U8.v x < 128
then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0)
else
if x = 128uy || x = 255uy
then y == None
else
if x = 129uy
then
match parse parse_u8 input with
| None -> y == None
| Some (z, consumed) ->
if U8.v z < 128
then y == None
else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed)
else
let len:nat = U8.v x - 128 in
synth_injective (synth_be_int len) /\
(let res:option (lint len & consumed_length input) =
parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input
in
match res with
| None -> y == None
| Some (z, consumed) ->
len > 0 /\
(if z >= pow2 (8 * (len - 1))
then
z <= der_length_max /\ tag_of_der_length z == x /\
y == Some ((z <: refine_with_tag tag_of_der_length x), consumed)
else y == None)))) | let parse_der_length_payload_unfold
(x: U8.t)
(input: bytes)
: Lemma
(
let y = parse (parse_der_length_payload x) input in
(256 < der_length_max) /\ (
if U8.v x < 128
then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0)
else if x = 128uy || x = 255uy
then y == None
else if x = 129uy
then
match parse parse_u8 input with
| None -> y == None
| Some (z, consumed) ->
if U8.v z < 128
then y == None
else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed)
else
let len : nat = U8.v x - 128 in
synth_injective (synth_be_int len) /\ (
let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in
match res with
| None -> y == None
| Some (z, consumed) ->
len > 0 /\ (
if z >= pow2 (8 * (len - 1))
then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed)
else y == None
))))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
()
end else
if x = 128uy
then
()
else if x = 255uy
then
()
else if x = 129uy
then begin
parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input;
parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input;
match parse parse_u8 input with
| None -> ()
| Some (y, _) ->
if U8.v y >= 128
then begin
log256_unique (U8.v y) 1
end else ()
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len))
`parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input;
parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input;
assert (len > 1);
let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in
match res with
| None -> ()
| Some (y, _) ->
if y >= pow2 (8 * (len - 1))
then begin
let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in
Math.pow2_le_compat (8 * 126) (8 * len);
Math.pow2_le_compat (8 * (len - 1)) 7;
log256_unique y len
end else ()
end | {
"file_name": "src/lowparse/LowParse.Spec.DER.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 5,
"end_line": 211,
"start_col": 0,
"start_line": 135
} | module LowParse.Spec.DER
open LowParse.Spec.Combinators
open LowParse.Spec.SeqBytes.Base
// include LowParse.Spec.VLData // for in_bounds
open FStar.Mul
module U8 = FStar.UInt8
module UInt = FStar.UInt
module Math = LowParse.Math
module E = FStar.Endianness
module Seq = FStar.Seq
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0"
// let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`())))
let der_length_max_eq =
assert_norm (der_length_max == pow2 (8 * 126) - 1)
let rec log256
(x: nat { x > 0 })
: Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)})
= assert_norm (pow2 8 == 256);
if x < 256
then 1
else begin
let n = log256 (x / 256) in
Math.pow2_plus (8 * (n - 1)) 8;
Math.pow2_plus (8 * n) 8;
n + 1
end
let log256_unique
x
y
= Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x);
Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y)
let log256_le
x1
x2
= Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2)
let der_length_payload_size_le
x1
x2
= if x1 < 128 || x2 < 128
then ()
else
let len_len2 = log256 x2 in
let len_len1 = log256 x1 in
log256_le x1 x2;
assert_norm (pow2 7 == 128);
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126)
let synth_be_int
(len: nat)
(b: Seq.lseq byte len)
: Tot (lint len)
= E.lemma_be_to_n_is_bounded b;
E.be_to_n b
let synth_be_int_injective
(len: nat)
: Lemma
(synth_injective (synth_be_int len))
[SMTPat (synth_injective (synth_be_int len))]
=
synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) ->
E.be_to_n_inj x x'
)
let synth_der_length_129
(x: U8.t { x == 129uy } )
(y: U8.t { U8.v y >= 128 } )
: Tot (refine_with_tag tag_of_der_length x)
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
log256_unique (U8.v y) 1;
U8.v y
let synth_der_length_greater
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x - 128 } )
(y: lint len { y >= pow2 (8 * (len - 1)) } )
: Tot (refine_with_tag tag_of_der_length x)
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
Math.pow2_le_compat (8 * 126) (8 * len);
Math.pow2_le_compat (8 * (len - 1)) 7;
log256_unique y len;
y
let parse_der_length_payload
(x: U8.t)
: Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x))
end else
if x = 128uy
then
fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case
else if x = 255uy
then
fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already
else if x = 129uy
then
weaken (parse_der_length_payload_kind x)
((parse_u8 `parse_filter` (fun y -> U8.v y >= 128))
`parse_synth` synth_der_length_129 x)
else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
weaken (parse_der_length_payload_kind x)
(((parse_seq_flbytes len `parse_synth` (synth_be_int len))
`parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
`parse_synth` synth_der_length_greater x len)
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.SeqBytes.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.DER.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.SeqBytes.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt8.t -> input: LowParse.Bytes.bytes
-> FStar.Pervasives.Lemma
(ensures
(let y = LowParse.Spec.Base.parse (LowParse.Spec.DER.parse_der_length_payload x) input in
256 < LowParse.Spec.DER.der_length_max /\
(match FStar.UInt8.v x < 128 with
| true ->
LowParse.Spec.DER.tag_of_der_length (FStar.UInt8.v x) == x /\
y == FStar.Pervasives.Native.Some (FStar.UInt8.v x, 0)
| _ ->
(match x = 128uy || x = 255uy with
| true -> y == FStar.Pervasives.Native.None
| _ ->
(match x = 129uy with
| true ->
(match LowParse.Spec.Base.parse LowParse.Spec.Int.parse_u8 input with
| FStar.Pervasives.Native.None #_ -> y == FStar.Pervasives.Native.None
| FStar.Pervasives.Native.Some
#_
(FStar.Pervasives.Native.Mktuple2 #_ #_ z consumed) ->
(match FStar.UInt8.v z < 128 with
| true -> y == FStar.Pervasives.Native.None
| _ ->
LowParse.Spec.DER.tag_of_der_length (FStar.UInt8.v z) == x /\
y == FStar.Pervasives.Native.Some (FStar.UInt8.v z, consumed))
<:
Prims.logical)
<:
Prims.logical
| _ ->
let len = FStar.UInt8.v x - 128 in
LowParse.Spec.Combinators.synth_injective (LowParse.Spec.DER.synth_be_int len) /\
(let res =
LowParse.Spec.Base.parse (LowParse.Spec.Combinators.parse_synth (LowParse.Spec.SeqBytes.Base.parse_seq_flbytes
len)
(LowParse.Spec.DER.synth_be_int len))
input
in
(match res with
| FStar.Pervasives.Native.None #_ -> y == FStar.Pervasives.Native.None
| FStar.Pervasives.Native.Some
#_
(FStar.Pervasives.Native.Mktuple2 #_ #_ z consumed) ->
len > 0 /\
(match z >= Prims.pow2 (8 * (len - 1)) with
| true ->
z <= LowParse.Spec.DER.der_length_max /\
LowParse.Spec.DER.tag_of_der_length z == x /\
y == FStar.Pervasives.Native.Some (z, consumed)
| _ -> y == FStar.Pervasives.Native.None))
<:
Prims.logical))
<:
Prims.logical)
<:
Prims.logical))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt8.t",
"LowParse.Bytes.bytes",
"Prims.op_LessThan",
"Prims.bool",
"Prims.op_Equality",
"FStar.UInt8.__uint_to_t",
"LowParse.Spec.Base.parse",
"LowParse.Spec.Int.parse_u8",
"LowParse.Spec.Base.consumed_length",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt8.v",
"LowParse.Spec.DER.log256_unique",
"Prims.unit",
"LowParse.Spec.Combinators.parse_filter_eq",
"LowParse.Spec.Int.parse_u8_kind",
"LowParse.Spec.Combinators.parse_synth_eq",
"LowParse.Spec.Combinators.parse_filter_kind",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.Base.refine_with_tag",
"LowParse.Spec.DER.der_length_t",
"LowParse.Spec.DER.tag_of_der_length",
"LowParse.Spec.Combinators.parse_filter",
"LowParse.Spec.DER.synth_der_length_129",
"LowParse.Spec.DER.lint",
"Prims.pow2",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"FStar.Math.Lemmas.pow2_le_compat",
"Prims.b2t",
"Prims.op_Multiply",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Combinators.parse_synth",
"LowParse.Spec.Base.total_constant_size_parser_kind",
"FStar.Seq.Properties.lseq",
"LowParse.Bytes.byte",
"LowParse.Spec.SeqBytes.Base.parse_seq_flbytes",
"LowParse.Spec.DER.synth_be_int",
"Prims._assert",
"Prims.op_GreaterThan",
"LowParse.Spec.DER.synth_der_length_greater",
"LowParse.Spec.DER.synth_be_int_injective",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.DER.der_length_max",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.Mktuple2",
"Prims.op_BarBar",
"FStar.Pervasives.Native.None",
"Prims.logical",
"LowParse.Spec.Combinators.synth_injective",
"LowParse.Spec.DER.parse_der_length_payload",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let parse_der_length_payload_unfold (x: U8.t) (input: bytes)
: Lemma
(let y = parse (parse_der_length_payload x) input in
(256 < der_length_max) /\
(if U8.v x < 128
then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0)
else
if x = 128uy || x = 255uy
then y == None
else
if x = 129uy
then
match parse parse_u8 input with
| None -> y == None
| Some (z, consumed) ->
if U8.v z < 128
then y == None
else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed)
else
let len:nat = U8.v x - 128 in
synth_injective (synth_be_int len) /\
(let res:option (lint len & consumed_length input) =
parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input
in
match res with
| None -> y == None
| Some (z, consumed) ->
len > 0 /\
(if z >= pow2 (8 * (len - 1))
then
z <= der_length_max /\ tag_of_der_length z == x /\
y == Some ((z <: refine_with_tag tag_of_der_length x), consumed)
else y == None)))) =
| assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let x':der_length_t = U8.v x in
if x' < 128
then ()
else
if x = 128uy
then ()
else
if x = 255uy
then ()
else
if x = 129uy
then
(parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
input;
parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input;
match parse parse_u8 input with
| None -> ()
| Some (y, _) -> if U8.v y >= 128 then log256_unique (U8.v y) 1)
else
let len:nat = U8.v x - 128 in
synth_be_int_injective len;
parse_synth_eq (((parse_seq_flbytes len) `parse_synth` (synth_be_int len))
`parse_filter`
(fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
(synth_der_length_greater x len)
input;
parse_filter_eq ((parse_seq_flbytes len) `parse_synth` (synth_be_int len))
(fun (y: lint len) -> y >= pow2 (8 * (len - 1)))
input;
assert (len > 1);
let res:option (lint len & consumed_length input) =
parse ((parse_seq_flbytes len) `parse_synth` (synth_be_int len)) input
in
match res with
| None -> ()
| Some (y, _) ->
if y >= pow2 (8 * (len - 1))
then
let y:y: lint len {y >= pow2 (8 * (len - 1))} = y in
Math.pow2_le_compat (8 * 126) (8 * len);
Math.pow2_le_compat (8 * (len - 1)) 7;
log256_unique y len | false |
Alg.fst | Alg.sublist | val sublist : l1: Alg.ops -> l2: Alg.ops -> Prims.logical | let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2 | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 61,
"end_line": 46,
"start_col": 0,
"start_line": 46
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l1: Alg.ops -> l2: Alg.ops -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Alg.ops",
"Prims.l_Forall",
"Alg.op",
"Prims.l_imp",
"FStar.List.Tot.Base.memP",
"Prims.logical"
] | [] | false | false | false | true | true | let sublist (l1 l2: ops) =
| forall x. memP x l1 ==> memP x l2 | false |
|
EverCrypt.DRBG.fst | EverCrypt.DRBG.mk_reseed | val mk_reseed: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> reseed_st a | val mk_reseed: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> reseed_st a | let mk_reseed #a hmac st additional_input additional_input_len =
if additional_input_len >. max_additional_input_length then
false
else
let entropy_input_len = min_length a in
push_frame();
let entropy_input = B.alloca (u8 0) entropy_input_len in
let ok = randombytes entropy_input entropy_input_len in
let result =
if not ok then
false
else
begin
S.hmac_input_bound a;
let st_s = !*st in
mk_reseed hmac (p st_s)
entropy_input_len entropy_input
additional_input_len additional_input;
true
end
in
pop_frame();
result | {
"file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 10,
"end_line": 174,
"start_col": 0,
"start_line": 152
} | module EverCrypt.DRBG
open FStar.HyperStack.ST
open Lib.IntTypes
open Spec.Hash.Definitions
module HS = FStar.HyperStack
module B = LowStar.Buffer
module S = Spec.HMAC_DRBG
open Hacl.HMAC_DRBG
open Lib.RandomBuffer.System
open LowStar.BufferOps
friend Hacl.HMAC_DRBG
friend EverCrypt.HMAC
#set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50"
/// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it
///
/// Respects EverCrypt convention and reverses order of buf_len, buf arguments
[@CAbstractStruct]
noeq
type state_s: supported_alg -> Type0 =
| SHA1_s : state SHA1 -> state_s SHA1
| SHA2_256_s: state SHA2_256 -> state_s SHA2_256
| SHA2_384_s: state SHA2_384 -> state_s SHA2_384
| SHA2_512_s: state SHA2_512 -> state_s SHA2_512
let invert_state_s (a:supported_alg): Lemma
(requires True)
(ensures inversion (state_s a))
[ SMTPat (state_s a) ]
=
allow_inversion (state_s a)
/// Only call this function in extracted code with a known `a`
inline_for_extraction noextract
let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a =
match a with
| SHA1 -> let SHA1_s p = s in p
| SHA2_256 -> let SHA2_256_s p = s in p
| SHA2_384 -> let SHA2_384_s p = s in p
| SHA2_512 -> let SHA2_512_s p = s in p
let freeable_s #a st = freeable (p st)
let footprint_s #a st = footprint (p st)
let invariant_s #a st h = invariant (p st) h
let repr #a st h =
let st = B.get h st 0 in
repr (p st) h
let loc_includes_union_l_footprint_s #a l1 l2 st =
B.loc_includes_union_l l1 l2 (footprint_s st)
let invariant_loc_in_footprint #a st m = ()
let frame_invariant #a l st h0 h1 = ()
/// State allocation
// Would like to specialize alloca in each branch, but two calls to StackInline
// functions in the same block lead to variable redefinitions at extraction.
let alloca a =
let st =
match a with
| SHA1 -> SHA1_s (alloca a)
| SHA2_256 -> SHA2_256_s (alloca a)
| SHA2_384 -> SHA2_384_s (alloca a)
| SHA2_512 -> SHA2_512_s (alloca a)
in
B.alloca st 1ul
let create_in a r =
let st =
match a with
| SHA1 -> SHA1_s (create_in SHA1 r)
| SHA2_256 -> SHA2_256_s (create_in SHA2_256 r)
| SHA2_384 -> SHA2_384_s (create_in SHA2_384 r)
| SHA2_512 -> SHA2_512_s (create_in SHA2_512 r)
in
B.malloc r st 1ul
let create a = create_in a HS.root
/// Instantiate function
inline_for_extraction noextract
val mk_instantiate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> instantiate_st a
let mk_instantiate #a hmac st personalization_string personalization_string_len =
if personalization_string_len >. max_personalization_string_length then
false
else
let entropy_input_len = min_length a in
let nonce_len = min_length a /. 2ul in
let min_entropy = entropy_input_len +! nonce_len in
push_frame();
assert_norm (range (v min_entropy) U32);
let entropy = B.alloca (u8 0) min_entropy in
let ok = randombytes entropy min_entropy in
let result =
if not ok then
false
else
begin
let entropy_input = B.sub entropy 0ul entropy_input_len in
let nonce = B.sub entropy entropy_input_len nonce_len in
S.hmac_input_bound a;
let st_s = !*st in
mk_instantiate hmac (p st_s)
entropy_input_len entropy_input
nonce_len nonce
personalization_string_len personalization_string;
true
end
in
pop_frame();
result
(** @type: true
*)
val instantiate_sha1 : instantiate_st SHA1
(** @type: true
*)
val instantiate_sha2_256: instantiate_st SHA2_256
(** @type: true
*)
val instantiate_sha2_384: instantiate_st SHA2_384
(** @type: true
*)
val instantiate_sha2_512: instantiate_st SHA2_512
let instantiate_sha1 = mk_instantiate EverCrypt.HMAC.compute_sha1
let instantiate_sha2_256 = mk_instantiate EverCrypt.HMAC.compute_sha2_256
let instantiate_sha2_384 = mk_instantiate EverCrypt.HMAC.compute_sha2_384
let instantiate_sha2_512 = mk_instantiate EverCrypt.HMAC.compute_sha2_512
/// Reseed function
inline_for_extraction noextract | {
"checked_file": "/",
"dependencies": [
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.RandomBuffer.System.fsti.checked",
"Lib.Memzero0.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.HMAC_DRBG.fst.checked",
"Hacl.HMAC_DRBG.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"EverCrypt.HMAC.fst.checked"
],
"interface_file": true,
"source_file": "EverCrypt.DRBG.fst"
} | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RandomBuffer.System",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HMAC_DRBG",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | hmac: EverCrypt.HMAC.compute_st a -> EverCrypt.DRBG.reseed_st a | Prims.Tot | [
"total"
] | [] | [
"Hacl.HMAC_DRBG.supported_alg",
"EverCrypt.HMAC.compute_st",
"EverCrypt.DRBG.state",
"LowStar.Buffer.buffer",
"Lib.IntTypes.uint8",
"Lib.IntTypes.size_t",
"Lib.IntTypes.op_Greater_Dot",
"Lib.IntTypes.U32",
"Hacl.HMAC_DRBG.max_additional_input_length",
"Prims.bool",
"Prims.unit",
"FStar.HyperStack.ST.pop_frame",
"Prims.op_Negation",
"Hacl.HMAC_DRBG.mk_reseed",
"EverCrypt.DRBG.p",
"EverCrypt.DRBG.state_s",
"LowStar.BufferOps.op_Bang_Star",
"LowStar.Buffer.trivial_preorder",
"Spec.HMAC_DRBG.hmac_input_bound",
"Lib.RandomBuffer.System.randombytes",
"LowStar.Monotonic.Buffer.mbuffer",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.UInt32.v",
"Prims.b2t",
"LowStar.Monotonic.Buffer.g_is_null",
"LowStar.Buffer.alloca",
"Lib.IntTypes.u8",
"FStar.HyperStack.ST.push_frame",
"Lib.IntTypes.PUB",
"Prims.int",
"Lib.IntTypes.v",
"Spec.HMAC_DRBG.min_length",
"Hacl.HMAC_DRBG.min_length"
] | [] | false | false | false | false | false | let mk_reseed #a hmac st additional_input additional_input_len =
| if additional_input_len >. max_additional_input_length
then false
else
let entropy_input_len = min_length a in
push_frame ();
let entropy_input = B.alloca (u8 0) entropy_input_len in
let ok = randombytes entropy_input entropy_input_len in
let result =
if not ok
then false
else
(S.hmac_input_bound a;
let st_s = !*st in
mk_reseed hmac
(p st_s)
entropy_input_len
entropy_input
additional_input_len
additional_input;
true)
in
pop_frame ();
result | false |
LowParse.Spec.DER.fst | LowParse.Spec.DER.serialize_bounded_der_length32_size | val serialize_bounded_der_length32_size
(min: der_length_t)
(max: der_length_t { min <= max /\ max < 4294967296 })
(y': bounded_int32 min max)
: Lemma
(
Seq.length (serialize (serialize_bounded_der_length32 min max) y') == (
if y' `U32.lt` 128ul
then 1
else if y' `U32.lt` 256ul
then 2
else if y' `U32.lt` 65536ul
then 3
else if y' `U32.lt` 16777216ul
then 4
else 5
)) | val serialize_bounded_der_length32_size
(min: der_length_t)
(max: der_length_t { min <= max /\ max < 4294967296 })
(y': bounded_int32 min max)
: Lemma
(
Seq.length (serialize (serialize_bounded_der_length32 min max) y') == (
if y' `U32.lt` 128ul
then 1
else if y' `U32.lt` 256ul
then 2
else if y' `U32.lt` 65536ul
then 3
else if y' `U32.lt` 16777216ul
then 4
else 5
)) | let serialize_bounded_der_length32_size
min max y'
= serialize_bounded_der_length32_unfold min max y' | {
"file_name": "src/lowparse/LowParse.Spec.DER.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 50,
"end_line": 1008,
"start_col": 0,
"start_line": 1006
} | module LowParse.Spec.DER
open LowParse.Spec.Combinators
open LowParse.Spec.SeqBytes.Base
// include LowParse.Spec.VLData // for in_bounds
open FStar.Mul
module U8 = FStar.UInt8
module UInt = FStar.UInt
module Math = LowParse.Math
module E = FStar.Endianness
module Seq = FStar.Seq
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0"
// let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`())))
let der_length_max_eq =
assert_norm (der_length_max == pow2 (8 * 126) - 1)
let rec log256
(x: nat { x > 0 })
: Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)})
= assert_norm (pow2 8 == 256);
if x < 256
then 1
else begin
let n = log256 (x / 256) in
Math.pow2_plus (8 * (n - 1)) 8;
Math.pow2_plus (8 * n) 8;
n + 1
end
let log256_unique
x
y
= Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x);
Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y)
let log256_le
x1
x2
= Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2)
let der_length_payload_size_le
x1
x2
= if x1 < 128 || x2 < 128
then ()
else
let len_len2 = log256 x2 in
let len_len1 = log256 x1 in
log256_le x1 x2;
assert_norm (pow2 7 == 128);
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126)
let synth_be_int
(len: nat)
(b: Seq.lseq byte len)
: Tot (lint len)
= E.lemma_be_to_n_is_bounded b;
E.be_to_n b
let synth_be_int_injective
(len: nat)
: Lemma
(synth_injective (synth_be_int len))
[SMTPat (synth_injective (synth_be_int len))]
=
synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) ->
E.be_to_n_inj x x'
)
let synth_der_length_129
(x: U8.t { x == 129uy } )
(y: U8.t { U8.v y >= 128 } )
: Tot (refine_with_tag tag_of_der_length x)
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
log256_unique (U8.v y) 1;
U8.v y
let synth_der_length_greater
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x - 128 } )
(y: lint len { y >= pow2 (8 * (len - 1)) } )
: Tot (refine_with_tag tag_of_der_length x)
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
Math.pow2_le_compat (8 * 126) (8 * len);
Math.pow2_le_compat (8 * (len - 1)) 7;
log256_unique y len;
y
let parse_der_length_payload
(x: U8.t)
: Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x))
end else
if x = 128uy
then
fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case
else if x = 255uy
then
fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already
else if x = 129uy
then
weaken (parse_der_length_payload_kind x)
((parse_u8 `parse_filter` (fun y -> U8.v y >= 128))
`parse_synth` synth_der_length_129 x)
else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
weaken (parse_der_length_payload_kind x)
(((parse_seq_flbytes len `parse_synth` (synth_be_int len))
`parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
`parse_synth` synth_der_length_greater x len)
end
let parse_der_length_payload_unfold
(x: U8.t)
(input: bytes)
: Lemma
(
let y = parse (parse_der_length_payload x) input in
(256 < der_length_max) /\ (
if U8.v x < 128
then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0)
else if x = 128uy || x = 255uy
then y == None
else if x = 129uy
then
match parse parse_u8 input with
| None -> y == None
| Some (z, consumed) ->
if U8.v z < 128
then y == None
else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed)
else
let len : nat = U8.v x - 128 in
synth_injective (synth_be_int len) /\ (
let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in
match res with
| None -> y == None
| Some (z, consumed) ->
len > 0 /\ (
if z >= pow2 (8 * (len - 1))
then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed)
else y == None
))))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
()
end else
if x = 128uy
then
()
else if x = 255uy
then
()
else if x = 129uy
then begin
parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input;
parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input;
match parse parse_u8 input with
| None -> ()
| Some (y, _) ->
if U8.v y >= 128
then begin
log256_unique (U8.v y) 1
end else ()
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len))
`parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input;
parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input;
assert (len > 1);
let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in
match res with
| None -> ()
| Some (y, _) ->
if y >= pow2 (8 * (len - 1))
then begin
let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in
Math.pow2_le_compat (8 * 126) (8 * len);
Math.pow2_le_compat (8 * (len - 1)) 7;
log256_unique y len
end else ()
end
inline_for_extraction
let parse_der_length_payload_kind_weak : parser_kind =
strong_parser_kind 0 126 None
inline_for_extraction
let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak
let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t
= parse_tagged_union
parse_u8
tag_of_der_length
(fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x))
[@@(noextract_to "krml")]
let parse_bounded_der_length_payload_kind
(min: der_length_t)
(max: der_length_t { min <= max } )
: Tot parser_kind =
[@inline_let] let _ = der_length_payload_size_le min max in
strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None
let bounded_int
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot Type
= (x: int { min <= x /\ x <= max })
let parse_bounded_der_length_tag_cond
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t)
: Tot bool
= let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max
inline_for_extraction // for parser_kind
let tag_of_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
(x: bounded_int min max)
: Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } )
= [@inline_let]
let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in
tag_of_der_length x
let parse_bounded_der_length_payload
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
: Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x))
= weaken (parse_bounded_der_length_payload_kind min max)
(parse_der_length_payload x
`parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)
`parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)))
[@@(noextract_to "krml")]
let parse_bounded_der_length_kind
(min: der_length_t)
(max: der_length_t { min <= max } )
: Tot parser_kind
= and_then_kind
(parse_filter_kind parse_u8_kind)
(parse_bounded_der_length_payload_kind min max)
let parse_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max))
= parse_tagged_union
(parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max)
(tag_of_bounded_der_length min max)
(parse_bounded_der_length_payload min max)
(* equality *)
let parse_bounded_der_length_payload_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
(input' : bytes)
: Lemma
(parse (parse_bounded_der_length_payload min max x) input' == (
match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_y)
else None
))
=
parse_synth_eq
(parse_der_length_payload x
`parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max))
(fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))
input' ;
parse_filter_eq
(parse_der_length_payload x)
(fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)
input'
let parse_bounded_der_length_unfold_aux
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
match parse (parse_bounded_der_length_payload min max x) input'
with
| Some (y, consumed_y) -> Some (y, consumed_x + consumed_y)
| None -> None
else None
))
= parse_tagged_union_eq
(parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max)
(tag_of_bounded_der_length min max)
(parse_bounded_der_length_payload min max)
input;
parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input
let parse_bounded_der_length_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_x + consumed_y)
else None
else None
))
= parse_bounded_der_length_unfold_aux min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
) input'
else ()
let parse_bounded_der_length_weak
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max))
= parse_der_length_weak
`parse_filter` (fun y -> min <= y && y <= max)
`parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
let parse_bounded_der_length_weak_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length_weak min max) input == (
match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let input' = Seq.slice input consumed_x (Seq.length input) in
begin match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_x + consumed_y)
else None
end
))
= parse_synth_eq
(parse_der_length_weak
`parse_filter` (fun y -> min <= y && y <= max))
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
input;
parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input;
parse_tagged_union_eq
parse_u8
tag_of_der_length
(fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x))
input
let parse_bounded_der_length_eq
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input))
= parse_bounded_der_length_unfold min max input;
parse_bounded_der_length_weak_unfold min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let input' = Seq.slice input consumed_x (Seq.length input) in
begin match parse (parse_der_length_payload x) input' with
| None -> ()
| Some (y, consumed_y) ->
if min <= y && y <= max
then (der_length_payload_size_le min y; der_length_payload_size_le y max)
else ()
end
(* serializer *)
let tag_of_der_length_lt_128
(x: der_length_t)
: Lemma
(requires (U8.v (tag_of_der_length x) < 128))
(ensures (x == U8.v (tag_of_der_length x)))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let tag_of_der_length_invalid
(x: der_length_t)
: Lemma
(requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255))
(ensures False)
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let tag_of_der_length_eq_129
(x: der_length_t)
: Lemma
(requires (U8.v (tag_of_der_length x) == 129))
(ensures (x >= 128 /\ x < 256))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let synth_der_length_129_recip
(x: U8.t { x == 129uy })
(y: refine_with_tag tag_of_der_length x)
: GTot (y: U8.t {U8.v y >= 128})
= tag_of_der_length_eq_129 y;
U8.uint_to_t y
let synth_be_int_recip
(len: nat)
(x: lint len)
: GTot (b: Seq.lseq byte len)
= E.n_to_be len x
let synth_be_int_inverse
(len: nat)
: Lemma
(synth_inverse (synth_be_int len) (synth_be_int_recip len))
= ()
let synth_der_length_greater_recip
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x % 128 } )
(y: refine_with_tag tag_of_der_length x)
: Tot (y: lint len { y >= pow2 (8 * (len - 1)) } )
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
y
let synth_der_length_greater_inverse
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x % 128 } )
: Lemma
(synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len))
= ()
private
let serialize_der_length_payload_greater
(x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } )
(len: nat { len == U8.v x - 128 } )
=
(serialize_synth
#_
#(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
#(refine_with_tag tag_of_der_length x)
_
(synth_der_length_greater x len)
(serialize_filter
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(fun (y: lint len) -> y >= pow2 (8 * (len - 1)))
)
(synth_der_length_greater_recip x len)
()
)
let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y)
let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False
let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y)
let serialize_der_length_payload
(x: U8.t)
: Tot (serializer (parse_der_length_payload x))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x))
end else
if x = 128uy || x = 255uy
then
fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x)
else if x = 129uy
then begin
serialize_weaken
(parse_der_length_payload_kind x)
(serialize_synth
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))
)
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
serialize_weaken
(parse_der_length_payload_kind x)
(serialize_der_length_payload_greater x len)
end
let serialize_der_length_weak : serializer parse_der_length_weak =
serialize_tagged_union
serialize_u8
tag_of_der_length
(fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x))
#push-options "--max_ifuel 6 --z3rlimit 64"
let serialize_der_length_weak_unfold
(y: der_length_t)
: Lemma
(let res = serialize serialize_der_length_weak y in
let x = tag_of_der_length y in
let s1 = Seq.create 1 x in
if x `U8.lt` 128uy
then res `Seq.equal` s1
else if x = 129uy
then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y))
else
let len = log256 y in
res `Seq.equal` (s1 `Seq.append` E.n_to_be len y)
)
= let x = tag_of_der_length y in
serialize_u8_spec x;
assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
()
end else
if x = 128uy || x = 255uy
then
tag_of_der_length_invalid y
else if x = 129uy
then begin
tag_of_der_length_eq_129 y;
assert (U8.v (synth_der_length_129_recip x y) == y);
let s1 = serialize ( serialize_synth #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x)
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)))
y
in
serialize_synth_eq'
#_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128))
#(refine_with_tag tag_of_der_length x)
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))
y
s1
()
(serialize serialize_u8 (synth_der_length_129_recip x y))
()
;
serialize_u8_spec (U8.uint_to_t y);
()
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
assert (
serialize (serialize_der_length_payload x) y == serialize (serialize_der_length_payload_greater x len) y
);
serialize_synth_eq'
#_
#(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
#(refine_with_tag tag_of_der_length x)
_
(synth_der_length_greater x len)
(serialize_filter
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(fun (y: lint len) -> y >= pow2 (8 * (len - 1)))
)
(synth_der_length_greater_recip x len)
()
y
(serialize (serialize_der_length_payload_greater x len) y)
(_ by (FStar.Tactics.trefl ()))
(serialize
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(synth_der_length_greater_recip x len y)
)
()
;
serialize_synth_eq
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
(synth_der_length_greater_recip x len y);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
()
end;
()
#pop-options
let serialize_bounded_der_length_weak
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (serializer (parse_bounded_der_length_weak min max))
= serialize_synth
_
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
(serialize_filter
serialize_der_length_weak
(fun y -> min <= y && y <= max)
)
(fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max})))
()
let serialize_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (serializer (parse_bounded_der_length min max))
= Classical.forall_intro (parse_bounded_der_length_eq min max);
serialize_ext
_
(serialize_bounded_der_length_weak min max)
(parse_bounded_der_length min max)
let serialize_bounded_der_length_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(y: bounded_int min max)
: Lemma
(let res = serialize (serialize_bounded_der_length min max) y in
let x = tag_of_der_length y in
let s1 = Seq.create 1 x in
if x `U8.lt` 128uy
then res `Seq.equal` s1
else if x = 129uy
then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y))
else
let len = log256 y in
res `Seq.equal` (s1 `Seq.append` E.n_to_be len y)
)
= serialize_synth_eq
_
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
(serialize_filter
serialize_der_length_weak
(fun y -> min <= y && y <= max)
)
(fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max})))
()
y;
serialize_der_length_weak_unfold y
(* 32-bit spec *)
module U32 = FStar.UInt32
let der_length_payload_size_of_tag_inv32
(x: der_length_t)
: Lemma
(requires (x < 4294967296))
(ensures (
tag_of_der_length x == (
if x < 128
then U8.uint_to_t x
else if x < 256
then 129uy
else if x < 65536
then 130uy
else if x < 16777216
then 131uy
else 132uy
)))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126);
assert_norm (pow2 (8 * 1) == 256);
assert_norm (pow2 (8 * 2) == 65536);
assert_norm (pow2 (8 * 3) == 16777216);
assert_norm (pow2 (8 * 4) == 4294967296);
if x < 256
then
log256_unique x 1
else if x < 65536
then
log256_unique x 2
else if x < 16777216
then
log256_unique x 3
else
log256_unique x 4
let synth_der_length_payload32
(x: U8.t { der_length_payload_size_of_tag x <= 4 } )
(y: refine_with_tag tag_of_der_length x)
: GTot (refine_with_tag tag_of_der_length32 x)
= let _ =
assert_norm (der_length_max == pow2 (8 * 126) - 1);
let _ = assert_norm (pow2 (8 * 2) == 65536) in
let _ = assert_norm (pow2 (8 * 3) == 16777216) in
let _ = assert_norm (pow2 (8 * 4) == 4294967296) in
if y >= 128 then begin
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y) == 128 + log256 y)
end
in
U32.uint_to_t y
let synth_der_length_payload32_injective
(x: U8.t { der_length_payload_size_of_tag x <= 4 } )
: Lemma
(synth_injective (synth_der_length_payload32 x))
[SMTPat (synth_injective (synth_der_length_payload32 x))]
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
let _ = assert_norm (pow2 (8 * 2) == 65536) in
let _ = assert_norm (pow2 (8 * 3) == 16777216) in
let _ = assert_norm (pow2 (8 * 4) == 4294967296) in
synth_injective_intro' (synth_der_length_payload32 x) (fun (y1 y2: refine_with_tag tag_of_der_length x) ->
if y1 >= 128 then begin
Math.pow2_lt_recip (8 * (log256 y1 - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y1) == 128 + log256 y1)
end;
if y2 >= 128 then begin
Math.pow2_lt_recip (8 * (log256 y2 - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y2) == 128 + log256 y2)
end
)
let parse_der_length_payload32
x
: Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length32 x))
= parse_der_length_payload x `parse_synth` synth_der_length_payload32 x
let be_int_of_bounded_integer
(len: integer_size)
(x: nat { x < pow2 (8 * len) } )
: GTot (bounded_integer len)
= integer_size_values len;
assert_norm (pow2 (8 * 1) == 256);
assert_norm (pow2 (8 * 2) == 65536);
assert_norm (pow2 (8 * 3) == 16777216);
assert_norm (pow2 (8 * 4) == 4294967296);
U32.uint_to_t x
let be_int_of_bounded_integer_injective
(len: integer_size)
: Lemma
(synth_injective (be_int_of_bounded_integer len))
[SMTPat (synth_injective (be_int_of_bounded_integer len))] // FIXME: WHY WHY WHY does this pattern NEVER trigger?
= integer_size_values len;
assert_norm (pow2 (8 * 1) == 256);
assert_norm (pow2 (8 * 2) == 65536);
assert_norm (pow2 (8 * 3) == 16777216);
assert_norm (pow2 (8 * 4) == 4294967296)
#push-options "--max_ifuel 4 --z3rlimit 16"
let parse_seq_flbytes_synth_be_int_eq
(len: integer_size)
(input: bytes)
: Lemma
(
let _ = synth_be_int_injective len in
let _ = be_int_of_bounded_integer_injective len in
parse (
parse_synth #_ #(lint len) #(bounded_integer len)
(parse_synth #_ #(Seq.lseq byte len) #(lint len)
(parse_seq_flbytes len)
(synth_be_int len)
)
(be_int_of_bounded_integer len)
) input == parse (parse_bounded_integer len) input)
=
let _ = synth_be_int_injective len in
let _ = be_int_of_bounded_integer_injective len in
parse_synth_eq (parse_seq_flbytes len `parse_synth` synth_be_int len) (be_int_of_bounded_integer len) input;
parse_synth_eq (parse_seq_flbytes len) (synth_be_int len) input;
parser_kind_prop_equiv (parse_bounded_integer_kind len) (parse_bounded_integer len);
parse_bounded_integer_spec len input
let parse_der_length_payload32_unfold
x
input
= parse_synth_eq (parse_der_length_payload x) (synth_der_length_payload32 x) input;
assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 (8 * 1) == 256);
let _ = assert_norm (pow2 (8 * 2) == 65536) in
let _ = assert_norm (pow2 (8 * 3) == 16777216) in
let _ = assert_norm (pow2 (8 * 4) == 4294967296) in
begin match parse (parse_der_length_payload x) input with
| None -> ()
| Some (y, _) ->
if y >= 128 then begin
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y) == 128 + log256 y)
end
end;
parse_der_length_payload_unfold x input;
if U8.v x < 128
then () // tag_of_der_length (U8.v x) == x /\ y == Some (Cast.uint8_to_uint32 x, 0)
else if x = 128uy || x = 255uy
then () // y == None
else if x = 129uy
then ()
else begin
let len : nat = U8.v x - 128 in
assert (2 <= len /\ len <= 4);
let _ = synth_be_int_injective len in
let _ = be_int_of_bounded_integer_injective len in
parse_seq_flbytes_synth_be_int_eq len input;
integer_size_values len;
parse_synth_eq
#_
#(lint len)
#(bounded_integer len)
(parse_synth #_ #(Seq.lseq byte len) #(lint len) (parse_seq_flbytes len) (synth_be_int len))
(be_int_of_bounded_integer len)
input
end
#pop-options
let log256_eq
x
= log256_unique x (log256' x)
let synth_bounded_der_length32
(min: der_length_t)
(max: der_length_t { min <= max /\ max < 4294967296 })
(x: bounded_int min max)
: Tot (bounded_int32 min max)
= U32.uint_to_t x
let parse_bounded_der_length32
(min: der_length_t)
(max: der_length_t { min <= max /\ max < 4294967296 })
: Tot (parser (parse_bounded_der_length32_kind min max) (bounded_int32 min max))
= parse_bounded_der_length min max `parse_synth` synth_bounded_der_length32 min max
#push-options "--z3rlimit 50"
let parse_bounded_der_length32_unfold
min
max
input
= parse_synth_eq (parse_bounded_der_length min max) (synth_bounded_der_length32 min max) input;
parse_bounded_der_length_unfold min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
assert_norm (4294967296 <= der_length_max);
der_length_payload_size_le max 4294967295;
assert_norm (pow2 (8 * 3) == 16777216);
assert_norm (pow2 (8 * 4) == 4294967296);
log256_unique 4294967295 4;
parse_synth_eq (parse_der_length_payload x) (synth_der_length_payload32 x) input' ;
match parse (parse_der_length_payload x) input' with
| None -> ()
| Some (y, _) ->
if y >= 128 then begin
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y) == 128 + log256 y)
end
else ()
#pop-options
let synth_bounded_der_length32_recip
(min: der_length_t)
(max: der_length_t { min <= max /\ max < 4294967296 })
(x: bounded_int32 min max)
: GTot (bounded_int min max)
= U32.v x
let serialize_bounded_der_length32
(min: der_length_t)
(max: der_length_t { min <= max /\ max < 4294967296 })
: Tot (serializer (parse_bounded_der_length32 min max))
= serialize_synth
_
(synth_bounded_der_length32 min max)
(serialize_bounded_der_length min max)
(synth_bounded_der_length32_recip min max)
()
let serialize_bounded_der_length32_unfold
min max y'
= serialize_synth_eq
_
(synth_bounded_der_length32 min max)
(serialize_bounded_der_length min max)
(synth_bounded_der_length32_recip min max)
()
y';
serialize_bounded_der_length_unfold min max (U32.v y');
let x = tag_of_der_length32_impl y' in
if x `U8.lt` 128uy
then ()
else if x = 129uy
then FStar.Math.Lemmas.small_modulo_lemma_1 (U32.v y') 256
else begin
assert (x <> 128uy /\ x <> 255uy);
let len = log256' (U32.v y') in
log256_eq (U32.v y');
serialize_bounded_integer_spec len y'
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.SeqBytes.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.DER.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.SeqBytes.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: LowParse.Spec.DER.der_length_t ->
max: LowParse.Spec.DER.der_length_t{min <= max /\ max < 4294967296} ->
y': LowParse.Spec.BoundedInt.bounded_int32 min max
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.length (LowParse.Spec.Base.serialize (LowParse.Spec.DER.serialize_bounded_der_length32
min
max)
y') ==
(match FStar.UInt32.lt y' 128ul with
| true -> 1
| _ ->
(match FStar.UInt32.lt y' 256ul with
| true -> 2
| _ ->
(match FStar.UInt32.lt y' 65536ul with
| true -> 3
| _ ->
(match FStar.UInt32.lt y' 16777216ul with
| true -> 4
| _ -> 5)
<:
Prims.int)
<:
Prims.int)
<:
Prims.int)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"LowParse.Spec.DER.der_length_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"LowParse.Spec.BoundedInt.bounded_int32",
"LowParse.Spec.DER.serialize_bounded_der_length32_unfold",
"Prims.unit"
] | [] | true | false | true | false | false | let serialize_bounded_der_length32_size min max y' =
| serialize_bounded_der_length32_unfold min max y' | false |
Alg.fst | Alg.abides_sublist | val abides_sublist (#a: _) (l1 l2: ops) (c: tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)] | val abides_sublist (#a: _) (l1 l2: ops) (c: tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)] | let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 97,
"start_col": 0,
"start_line": 93
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l1: Alg.ops -> l2: Alg.ops -> c: Alg.tree0 a
-> FStar.Pervasives.Lemma (requires Alg.abides l1 c /\ Alg.sublist l1 l2)
(ensures Alg.abides l2 c)
[SMTPat (Alg.abides l2 c); SMTPat (Alg.sublist l1 l2)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Alg.ops",
"Alg.tree0",
"Alg.abides_sublist_nopat",
"Prims.unit",
"Prims.l_and",
"Alg.abides",
"Alg.sublist",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.prop",
"Prims.logical",
"Prims.Nil"
] | [] | true | false | true | false | false | let abides_sublist #a (l1: ops) (l2: ops) (c: tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)] =
| abides_sublist_nopat l1 l2 c | false |
Alg.fst | Alg.handle_tree | val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1 | val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1 | let handle_tree f v h = fold_with f v h | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 39,
"end_line": 148,
"start_col": 0,
"start_line": 148
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: Alg.tree a labs0 -> v: (_: a -> Alg.tree b labs1) -> h: Alg.handler_tree labs0 b labs1
-> Alg.tree b labs1 | Prims.Tot | [
"total"
] | [] | [
"Alg.ops",
"Alg.tree",
"Alg.handler_tree",
"Alg.fold_with"
] | [] | false | false | false | false | false | let handle_tree f v h =
| fold_with f v h | false |
Alg.fst | Alg.handler_tree_op | val handler_tree_op : o: Alg.op -> b: Type -> labs: Alg.ops -> Type | let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 54,
"end_line": 135,
"start_col": 0,
"start_line": 134
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k' | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | o: Alg.op -> b: Type -> labs: Alg.ops -> Type | Prims.Tot | [
"total"
] | [] | [
"Alg.op",
"Alg.ops",
"Alg.op_inp",
"Alg.op_out",
"Alg.tree"
] | [] | false | false | false | true | true | let handler_tree_op (o: op) (b: Type) (labs: ops) =
| op_inp o -> (op_out o -> tree b labs) -> tree b labs | false |
|
Pulse.Elaborate.Pure.fst | Pulse.Elaborate.Pure.elab_comp | val elab_comp (c: comp) : R.term | val elab_comp (c: comp) : R.term | let elab_comp (c:comp)
: R.term
= match c with
| C_Tot t ->
elab_term t
| C_ST c ->
let u, res, pre, post = elab_st_comp c in
mk_stt_comp u res pre (mk_abs res R.Q_Explicit post)
| C_STAtomic inames obs c ->
let inames = elab_term inames in
let u, res, pre, post = elab_st_comp c in
let post = mk_abs res R.Q_Explicit post in
mk_stt_atomic_comp (elab_observability obs) u res inames pre post
| C_STGhost c ->
let u, res, pre, post = elab_st_comp c in
mk_stt_ghost_comp u res pre (mk_abs res R.Q_Explicit post) | {
"file_name": "lib/steel/pulse/Pulse.Elaborate.Pure.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 64,
"end_line": 140,
"start_col": 0,
"start_line": 122
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Elaborate.Pure
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module RU = Pulse.RuntimeUtils
open FStar.List.Tot
open Pulse.Syntax.Base
open Pulse.Reflection.Util
let (let!) (f:option 'a) (g: 'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let elab_qual = function
| None -> R.Q_Explicit
| Some Implicit -> R.Q_Implicit
let elab_observability =
let open R in
function
| Neutral -> pack_ln (Tv_FVar (pack_fv neutral_lid))
| Unobservable -> pack_ln (Tv_FVar (pack_fv unobservable_lid))
| Observable -> pack_ln (Tv_FVar (pack_fv observable_lid))
let rec elab_term (top:term)
: R.term
= let open R in
let w t' = RU.set_range t' top.range in
match top.t with
| Tm_VProp ->
w (pack_ln (Tv_FVar (pack_fv vprop_lid)))
| Tm_Emp ->
w (pack_ln (Tv_FVar (pack_fv emp_lid)))
| Tm_Inv p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv inv_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Pure p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv pure_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Star l r ->
let l = elab_term l in
let r = elab_term r in
w (mk_star l r)
| Tm_ExistsSL u b body
| Tm_ForallSL u b body ->
let t = elab_term b.binder_ty in
let body = elab_term body in
let t = set_range_of t b.binder_ppname.range in
if Tm_ExistsSL? top.t
then w (mk_exists u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
else w (mk_forall u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
| Tm_Inames ->
w (pack_ln (Tv_FVar (pack_fv inames_lid)))
| Tm_EmpInames ->
w (emp_inames_tm)
| Tm_AddInv i is ->
let i = elab_term i in
let is = elab_term is in
w (add_inv_tm (`_) is i) // Careful on the order flip
| Tm_Unknown ->
w (pack_ln R.Tv_Unknown)
| Tm_FStar t ->
w t
let rec elab_pat (p:pattern) : Tot R.pattern =
let elab_fv (f:fv) : R.fv =
R.pack_fv f.fv_name
in
match p with
| Pat_Constant c -> R.Pat_Constant c
| Pat_Var v ty -> R.Pat_Var RT.sort_default v
| Pat_Cons fv vs ->
R.Pat_Cons (elab_fv fv) None (Pulse.Common.map_dec p vs elab_sub_pat)
| Pat_Dot_Term None ->
R.Pat_Dot_Term None
| Pat_Dot_Term (Some t) ->
R.Pat_Dot_Term (Some (elab_term t))
and elab_sub_pat (pi : pattern & bool) : R.pattern & bool =
let (p, i) = pi in
elab_pat p, i
let elab_pats (ps:list pattern) : Tot (list R.pattern) = L.map elab_pat ps
let elab_st_comp (c:st_comp)
: R.universe & R.term & R.term & R.term
= let res = elab_term c.res in
let pre = elab_term c.pre in
let post = elab_term c.post in
c.u, res, pre, post | {
"checked_file": "/",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Common.fst.checked",
"prims.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Elaborate.Pure.fst"
} | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Pulse.Syntax.Base.comp -> FStar.Stubs.Reflection.Types.term | Prims.Tot | [
"total"
] | [] | [
"Pulse.Syntax.Base.comp",
"Pulse.Syntax.Base.term",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Syntax.Base.st_comp",
"FStar.Stubs.Reflection.Types.universe",
"FStar.Stubs.Reflection.Types.term",
"Pulse.Reflection.Util.mk_stt_comp",
"Pulse.Reflection.Util.mk_abs",
"FStar.Stubs.Reflection.V2.Data.Q_Explicit",
"FStar.Pervasives.Native.tuple4",
"Pulse.Elaborate.Pure.elab_st_comp",
"Pulse.Syntax.Base.observability",
"Pulse.Reflection.Util.mk_stt_atomic_comp",
"Pulse.Elaborate.Pure.elab_observability",
"Pulse.Reflection.Util.mk_stt_ghost_comp"
] | [] | false | false | false | true | false | let elab_comp (c: comp) : R.term =
| match c with
| C_Tot t -> elab_term t
| C_ST c ->
let u, res, pre, post = elab_st_comp c in
mk_stt_comp u res pre (mk_abs res R.Q_Explicit post)
| C_STAtomic inames obs c ->
let inames = elab_term inames in
let u, res, pre, post = elab_st_comp c in
let post = mk_abs res R.Q_Explicit post in
mk_stt_atomic_comp (elab_observability obs) u res inames pre post
| C_STGhost c ->
let u, res, pre, post = elab_st_comp c in
mk_stt_ghost_comp u res pre (mk_abs res R.Q_Explicit post) | false |
Pulse.Typing.Metatheory.Base.fsti | Pulse.Typing.Metatheory.Base.inames_of_comp_st | val inames_of_comp_st : c: Pulse.Syntax.Base.comp_st -> Pulse.Syntax.Base.term | let inames_of_comp_st (c:comp_st) =
match c with
| C_STAtomic _ _ _ -> comp_inames c
| _ -> tm_emp_inames | {
"file_name": "lib/steel/pulse/Pulse.Typing.Metatheory.Base.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 22,
"end_line": 41,
"start_col": 0,
"start_line": 38
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.Metatheory.Base
open Pulse.Syntax
open Pulse.Syntax.Naming
open Pulse.Typing
module RU = Pulse.RuntimeUtils
module T = FStar.Tactics.V2
val admit_comp_typing (g:env) (c:comp_st)
: comp_typing_u g c
module RT = FStar.Reflection.Typing
let rt_equiv_typing (#g:_) (#t0 #t1:_) (d:RT.equiv g t0 t1)
(#k:_)
(d1:Ghost.erased (RT.tot_typing g t0 k))
: Ghost.erased (RT.tot_typing g t1 k)
= admit()
val st_typing_correctness_ctot (#g:env) (#t:st_term) (#c:comp{C_Tot? c})
(_:st_typing g t c)
: (u:Ghost.erased universe & universe_of g (comp_res c) u) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.Naming.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.TypeChecker.Core.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Typing.Metatheory.Base.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Metatheory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Metatheory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Pulse.Syntax.Base.comp_st -> Pulse.Syntax.Base.term | Prims.Tot | [
"total"
] | [] | [
"Pulse.Syntax.Base.comp_st",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.observability",
"Pulse.Syntax.Base.st_comp",
"Pulse.Syntax.Base.comp_inames",
"Pulse.Syntax.Base.comp",
"Pulse.Syntax.Base.tm_emp_inames"
] | [] | false | false | false | true | false | let inames_of_comp_st (c: comp_st) =
| match c with
| C_STAtomic _ _ _ -> comp_inames c
| _ -> tm_emp_inames | false |
|
Pulse.Elaborate.Pure.fst | Pulse.Elaborate.Pure.elab_pat | val elab_pat (p: pattern) : Tot R.pattern | val elab_pat (p: pattern) : Tot R.pattern | let rec elab_pat (p:pattern) : Tot R.pattern =
let elab_fv (f:fv) : R.fv =
R.pack_fv f.fv_name
in
match p with
| Pat_Constant c -> R.Pat_Constant c
| Pat_Var v ty -> R.Pat_Var RT.sort_default v
| Pat_Cons fv vs ->
R.Pat_Cons (elab_fv fv) None (Pulse.Common.map_dec p vs elab_sub_pat)
| Pat_Dot_Term None ->
R.Pat_Dot_Term None
| Pat_Dot_Term (Some t) ->
R.Pat_Dot_Term (Some (elab_term t))
and elab_sub_pat (pi : pattern & bool) : R.pattern & bool =
let (p, i) = pi in
elab_pat p, i | {
"file_name": "lib/steel/pulse/Pulse.Elaborate.Pure.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 15,
"end_line": 111,
"start_col": 0,
"start_line": 96
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Elaborate.Pure
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module RU = Pulse.RuntimeUtils
open FStar.List.Tot
open Pulse.Syntax.Base
open Pulse.Reflection.Util
let (let!) (f:option 'a) (g: 'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let elab_qual = function
| None -> R.Q_Explicit
| Some Implicit -> R.Q_Implicit
let elab_observability =
let open R in
function
| Neutral -> pack_ln (Tv_FVar (pack_fv neutral_lid))
| Unobservable -> pack_ln (Tv_FVar (pack_fv unobservable_lid))
| Observable -> pack_ln (Tv_FVar (pack_fv observable_lid))
let rec elab_term (top:term)
: R.term
= let open R in
let w t' = RU.set_range t' top.range in
match top.t with
| Tm_VProp ->
w (pack_ln (Tv_FVar (pack_fv vprop_lid)))
| Tm_Emp ->
w (pack_ln (Tv_FVar (pack_fv emp_lid)))
| Tm_Inv p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv inv_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Pure p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv pure_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Star l r ->
let l = elab_term l in
let r = elab_term r in
w (mk_star l r)
| Tm_ExistsSL u b body
| Tm_ForallSL u b body ->
let t = elab_term b.binder_ty in
let body = elab_term body in
let t = set_range_of t b.binder_ppname.range in
if Tm_ExistsSL? top.t
then w (mk_exists u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
else w (mk_forall u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
| Tm_Inames ->
w (pack_ln (Tv_FVar (pack_fv inames_lid)))
| Tm_EmpInames ->
w (emp_inames_tm)
| Tm_AddInv i is ->
let i = elab_term i in
let is = elab_term is in
w (add_inv_tm (`_) is i) // Careful on the order flip
| Tm_Unknown ->
w (pack_ln R.Tv_Unknown)
| Tm_FStar t ->
w t | {
"checked_file": "/",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Common.fst.checked",
"prims.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Elaborate.Pure.fst"
} | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Pulse.Syntax.Base.pattern -> FStar.Stubs.Reflection.V2.Data.pattern | Prims.Tot | [
"total"
] | [
"elab_pat",
"elab_sub_pat"
] | [
"Pulse.Syntax.Base.pattern",
"Pulse.Syntax.Base.constant",
"FStar.Stubs.Reflection.V2.Data.Pat_Constant",
"FStar.Reflection.Typing.pp_name_t",
"FStar.Reflection.Typing.sort_t",
"FStar.Stubs.Reflection.V2.Data.Pat_Var",
"FStar.Reflection.Typing.sort_default",
"Pulse.Syntax.Base.fv",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.bool",
"FStar.Stubs.Reflection.V2.Data.Pat_Cons",
"FStar.Pervasives.Native.None",
"FStar.Stubs.Reflection.V2.Data.universes",
"Pulse.Common.map_dec",
"FStar.Stubs.Reflection.V2.Data.pattern",
"Pulse.Elaborate.Pure.elab_sub_pat",
"FStar.Stubs.Reflection.V2.Data.Pat_Dot_Term",
"FStar.Stubs.Reflection.Types.term",
"Pulse.Syntax.Base.term",
"FStar.Pervasives.Native.Some",
"Pulse.Elaborate.Pure.elab_term",
"FStar.Stubs.Reflection.Types.fv",
"FStar.Stubs.Reflection.V2.Builtins.pack_fv",
"Pulse.Syntax.Base.__proj__Mkfv__item__fv_name"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec elab_pat (p: pattern) : Tot R.pattern =
| let elab_fv (f: fv) : R.fv = R.pack_fv f.fv_name in
match p with
| Pat_Constant c -> R.Pat_Constant c
| Pat_Var v ty -> R.Pat_Var RT.sort_default v
| Pat_Cons fv vs -> R.Pat_Cons (elab_fv fv) None (Pulse.Common.map_dec p vs elab_sub_pat)
| Pat_Dot_Term None -> R.Pat_Dot_Term None
| Pat_Dot_Term (Some t) -> R.Pat_Dot_Term (Some (elab_term t)) | false |
Hacl.Streaming.Blake2s_32.fst | Hacl.Streaming.Blake2s_32.free | val free : Hacl.Streaming.Functor.free_st (Hacl.Streaming.Blake2s_32.blake2s_32 0)
(FStar.Ghost.reveal (FStar.Ghost.hide ()))
(Hacl.Streaming.Blake2.Common.s Spec.Blake2.Definitions.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.Common.empty_key Spec.Blake2.Definitions.Blake2S) | let free =
F.free (blake2s_32 0) (G.hide ()) (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S) | {
"file_name": "code/streaming/Hacl.Streaming.Blake2s_32.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 100,
"end_line": 48,
"start_col": 0,
"start_line": 47
} | module Hacl.Streaming.Blake2s_32
module Blake2s32 = Hacl.Blake2s_32
module Common = Hacl.Streaming.Blake2.Common
module Core = Hacl.Impl.Blake2.Core
module F = Hacl.Streaming.Functor
module G = FStar.Ghost
module Impl = Hacl.Impl.Blake2.Generic
module Spec = Spec.Blake2
inline_for_extraction noextract
let blake2s_32 kk =
Common.blake2 Spec.Blake2S Core.M32 kk Blake2s32.init Blake2s32.update_multi
Blake2s32.update_last Blake2s32.finish
/// Type abbreviations - makes Karamel use pretty names in the generated code
let block_state_t = Common.s Spec.Blake2S Core.M32
let state_t = F.state_s (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
/// The incremental hash functions instantiations. Note that we can't write a
/// generic one, because the normalization then performed by KaRaMeL explodes.
/// All those implementations are for non-keyed hash.
inline_for_extraction noextract
let alloca =
F.alloca (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
[@ (Comment " State allocation function when there is no key")]
let malloc =
F.malloc (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
[@ (Comment " Re-initialization function when there is no key")]
let reset =
F.reset (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
[@ (Comment " Update function when there is no key; 0 = success, 1 = max length exceeded")]
let update =
F.update (blake2s_32 0) (G.hide ()) (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
[@ (Comment " Finish function when there is no key")]
let digest =
F.digest (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S) | {
"checked_file": "/",
"dependencies": [
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Streaming.Blake2.Common.fst.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2s_32.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": "Impl"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Blake2.Common",
"short_module": "Common"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Streaming.Functor.free_st (Hacl.Streaming.Blake2s_32.blake2s_32 0)
(FStar.Ghost.reveal (FStar.Ghost.hide ()))
(Hacl.Streaming.Blake2.Common.s Spec.Blake2.Definitions.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.Common.empty_key Spec.Blake2.Definitions.Blake2S) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Functor.free",
"Prims.unit",
"Hacl.Streaming.Blake2s_32.blake2s_32",
"FStar.Ghost.hide",
"Hacl.Streaming.Blake2.Common.s",
"Spec.Blake2.Definitions.Blake2S",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Streaming.Blake2.Common.empty_key"
] | [] | false | false | false | false | false | let free =
| F.free (blake2s_32 0) (G.hide ()) (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S) | false |
|
Hacl.Streaming.Blake2s_32.fst | Hacl.Streaming.Blake2s_32.state_t | val state_t : Type0 | let state_t = F.state_s (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S) | {
"file_name": "code/streaming/Hacl.Streaming.Blake2s_32.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 106,
"end_line": 19,
"start_col": 0,
"start_line": 19
} | module Hacl.Streaming.Blake2s_32
module Blake2s32 = Hacl.Blake2s_32
module Common = Hacl.Streaming.Blake2.Common
module Core = Hacl.Impl.Blake2.Core
module F = Hacl.Streaming.Functor
module G = FStar.Ghost
module Impl = Hacl.Impl.Blake2.Generic
module Spec = Spec.Blake2
inline_for_extraction noextract
let blake2s_32 kk =
Common.blake2 Spec.Blake2S Core.M32 kk Blake2s32.init Blake2s32.update_multi
Blake2s32.update_last Blake2s32.finish
/// Type abbreviations - makes Karamel use pretty names in the generated code | {
"checked_file": "/",
"dependencies": [
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Streaming.Blake2.Common.fst.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2s_32.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": "Impl"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Blake2.Common",
"short_module": "Common"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Functor.state_s",
"Prims.unit",
"Hacl.Streaming.Blake2s_32.blake2s_32",
"Hacl.Streaming.Blake2.Common.s",
"Spec.Blake2.Definitions.Blake2S",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Streaming.Blake2.Common.empty_key"
] | [] | false | false | false | true | true | let state_t =
| F.state_s (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S) | false |
|
Pulse.Elaborate.Pure.fst | Pulse.Elaborate.Pure.elab_qual | val elab_qual : _: FStar.Pervasives.Native.option Pulse.Syntax.Base.qualifier
-> FStar.Stubs.Reflection.V2.Data.aqualv | let elab_qual = function
| None -> R.Q_Explicit
| Some Implicit -> R.Q_Implicit | {
"file_name": "lib/steel/pulse/Pulse.Elaborate.Pure.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 33,
"end_line": 34,
"start_col": 0,
"start_line": 32
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Elaborate.Pure
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module RU = Pulse.RuntimeUtils
open FStar.List.Tot
open Pulse.Syntax.Base
open Pulse.Reflection.Util
let (let!) (f:option 'a) (g: 'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x | {
"checked_file": "/",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Common.fst.checked",
"prims.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Elaborate.Pure.fst"
} | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: FStar.Pervasives.Native.option Pulse.Syntax.Base.qualifier
-> FStar.Stubs.Reflection.V2.Data.aqualv | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.Native.option",
"Pulse.Syntax.Base.qualifier",
"FStar.Stubs.Reflection.V2.Data.Q_Explicit",
"FStar.Stubs.Reflection.V2.Data.Q_Implicit",
"FStar.Stubs.Reflection.V2.Data.aqualv"
] | [] | false | false | false | true | false | let elab_qual =
| function
| None -> R.Q_Explicit
| Some Implicit -> R.Q_Implicit | false |
|
Alg.fst | Alg.abides | val abides (#a: _) (labs: ops) (f: tree0 a) : prop | val abides (#a: _) (labs: ops) (f: tree0 a) : prop | let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 53,
"start_col": 0,
"start_line": 49
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | labs: Alg.ops -> f: Alg.tree0 a -> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"Alg.ops",
"Alg.tree0",
"Alg.op",
"Alg.op_inp",
"Alg.op_out",
"Prims.l_and",
"FStar.List.Tot.Base.memP",
"Prims.l_Forall",
"Alg.abides",
"Prims.l_True",
"Prims.prop"
] | [
"recursion"
] | false | false | false | true | true | let rec abides #a (labs: ops) (f: tree0 a) : prop =
| match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True | false |
Pulse.Elaborate.Pure.fst | Pulse.Elaborate.Pure.elab_observability | val elab_observability : _: Pulse.Syntax.Base.observability -> FStar.Stubs.Reflection.Types.term | let elab_observability =
let open R in
function
| Neutral -> pack_ln (Tv_FVar (pack_fv neutral_lid))
| Unobservable -> pack_ln (Tv_FVar (pack_fv unobservable_lid))
| Observable -> pack_ln (Tv_FVar (pack_fv observable_lid)) | {
"file_name": "lib/steel/pulse/Pulse.Elaborate.Pure.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 61,
"end_line": 41,
"start_col": 0,
"start_line": 36
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Elaborate.Pure
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module RU = Pulse.RuntimeUtils
open FStar.List.Tot
open Pulse.Syntax.Base
open Pulse.Reflection.Util
let (let!) (f:option 'a) (g: 'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let elab_qual = function
| None -> R.Q_Explicit
| Some Implicit -> R.Q_Implicit | {
"checked_file": "/",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Common.fst.checked",
"prims.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Elaborate.Pure.fst"
} | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Pulse.Syntax.Base.observability -> FStar.Stubs.Reflection.Types.term | Prims.Tot | [
"total"
] | [] | [
"Pulse.Syntax.Base.observability",
"FStar.Stubs.Reflection.V2.Builtins.pack_ln",
"FStar.Stubs.Reflection.V2.Data.Tv_FVar",
"FStar.Stubs.Reflection.V2.Builtins.pack_fv",
"Pulse.Reflection.Util.neutral_lid",
"Pulse.Reflection.Util.unobservable_lid",
"Pulse.Reflection.Util.observable_lid",
"FStar.Stubs.Reflection.Types.term"
] | [] | false | false | false | true | false | let elab_observability =
| let open R in
function
| Neutral -> pack_ln (Tv_FVar (pack_fv neutral_lid))
| Unobservable -> pack_ln (Tv_FVar (pack_fv unobservable_lid))
| Observable -> pack_ln (Tv_FVar (pack_fv observable_lid)) | false |
|
Pulse.Elaborate.Pure.fst | Pulse.Elaborate.Pure.elab_term | val elab_term (top: term) : R.term | val elab_term (top: term) : R.term | let rec elab_term (top:term)
: R.term
= let open R in
let w t' = RU.set_range t' top.range in
match top.t with
| Tm_VProp ->
w (pack_ln (Tv_FVar (pack_fv vprop_lid)))
| Tm_Emp ->
w (pack_ln (Tv_FVar (pack_fv emp_lid)))
| Tm_Inv p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv inv_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Pure p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv pure_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Star l r ->
let l = elab_term l in
let r = elab_term r in
w (mk_star l r)
| Tm_ExistsSL u b body
| Tm_ForallSL u b body ->
let t = elab_term b.binder_ty in
let body = elab_term body in
let t = set_range_of t b.binder_ppname.range in
if Tm_ExistsSL? top.t
then w (mk_exists u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
else w (mk_forall u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
| Tm_Inames ->
w (pack_ln (Tv_FVar (pack_fv inames_lid)))
| Tm_EmpInames ->
w (emp_inames_tm)
| Tm_AddInv i is ->
let i = elab_term i in
let is = elab_term is in
w (add_inv_tm (`_) is i) // Careful on the order flip
| Tm_Unknown ->
w (pack_ln R.Tv_Unknown)
| Tm_FStar t ->
w t | {
"file_name": "lib/steel/pulse/Pulse.Elaborate.Pure.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 9,
"end_line": 93,
"start_col": 0,
"start_line": 43
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Elaborate.Pure
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module RU = Pulse.RuntimeUtils
open FStar.List.Tot
open Pulse.Syntax.Base
open Pulse.Reflection.Util
let (let!) (f:option 'a) (g: 'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let elab_qual = function
| None -> R.Q_Explicit
| Some Implicit -> R.Q_Implicit
let elab_observability =
let open R in
function
| Neutral -> pack_ln (Tv_FVar (pack_fv neutral_lid))
| Unobservable -> pack_ln (Tv_FVar (pack_fv unobservable_lid))
| Observable -> pack_ln (Tv_FVar (pack_fv observable_lid)) | {
"checked_file": "/",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Common.fst.checked",
"prims.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Elaborate.Pure.fst"
} | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | top: Pulse.Syntax.Base.term -> FStar.Stubs.Reflection.Types.term | Prims.Tot | [
"total"
] | [] | [
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.__proj__Mkterm__item__t",
"FStar.Stubs.Reflection.V2.Builtins.pack_ln",
"FStar.Stubs.Reflection.V2.Data.Tv_FVar",
"FStar.Stubs.Reflection.V2.Builtins.pack_fv",
"Pulse.Reflection.Util.vprop_lid",
"Pulse.Reflection.Util.emp_lid",
"FStar.Stubs.Reflection.V2.Data.Tv_App",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Reflection.V2.Data.aqualv",
"FStar.Stubs.Reflection.V2.Data.Q_Explicit",
"Pulse.Reflection.Util.inv_lid",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Reflection.Util.pure_lid",
"Pulse.Reflection.Util.mk_star",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.binder",
"Pulse.Syntax.Base.uu___is_Tm_ExistsSL",
"Pulse.Reflection.Util.mk_exists",
"Pulse.Reflection.Util.mk_abs_with_name_and_range",
"Pulse.Syntax.Base.__proj__Mkppname__item__name",
"Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ppname",
"Pulse.Syntax.Base.__proj__Mkppname__item__range",
"Prims.bool",
"Pulse.Reflection.Util.mk_forall",
"range",
"binder_ppname",
"Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ty",
"Pulse.Reflection.Util.inames_lid",
"Pulse.Reflection.Util.emp_inames_tm",
"Pulse.Reflection.Util.add_inv_tm",
"FStar.Stubs.Reflection.V2.Data.Tv_Unknown",
"Pulse.Syntax.Base.host_term",
"Prims.eq2",
"Pulse.RuntimeUtils.set_range",
"Pulse.Syntax.Base.__proj__Mkterm__item__range"
] | [
"recursion"
] | false | false | false | true | false | let rec elab_term (top: term) : R.term =
| let open R in
let w t' = RU.set_range t' top.range in
match top.t with
| Tm_VProp -> w (pack_ln (Tv_FVar (pack_fv vprop_lid)))
| Tm_Emp -> w (pack_ln (Tv_FVar (pack_fv emp_lid)))
| Tm_Inv p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv inv_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Pure p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv pure_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Star l r ->
let l = elab_term l in
let r = elab_term r in
w (mk_star l r)
| Tm_ExistsSL u b body
| Tm_ForallSL u b body ->
let t = elab_term b.binder_ty in
let body = elab_term body in
let t = set_range_of t b.binder_ppname.range in
if Tm_ExistsSL? top.t
then
w (mk_exists u
t
(mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body
))
else
w (mk_forall u
t
(mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body
))
| Tm_Inames -> w (pack_ln (Tv_FVar (pack_fv inames_lid)))
| Tm_EmpInames -> w (emp_inames_tm)
| Tm_AddInv i is ->
let i = elab_term i in
let is = elab_term is in
w (add_inv_tm (`_) is i)
| Tm_Unknown -> w (pack_ln R.Tv_Unknown)
| Tm_FStar t -> w t | false |
Hacl.Streaming.Blake2s_32.fst | Hacl.Streaming.Blake2s_32.blake2s_32 | val blake2s_32 : kk: Hacl.Streaming.Blake2.Common.key_size Spec.Blake2.Definitions.Blake2S
-> Hacl.Streaming.Interface.block Prims.unit | let blake2s_32 kk =
Common.blake2 Spec.Blake2S Core.M32 kk Blake2s32.init Blake2s32.update_multi
Blake2s32.update_last Blake2s32.finish | {
"file_name": "code/streaming/Hacl.Streaming.Blake2s_32.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 47,
"end_line": 14,
"start_col": 0,
"start_line": 12
} | module Hacl.Streaming.Blake2s_32
module Blake2s32 = Hacl.Blake2s_32
module Common = Hacl.Streaming.Blake2.Common
module Core = Hacl.Impl.Blake2.Core
module F = Hacl.Streaming.Functor
module G = FStar.Ghost
module Impl = Hacl.Impl.Blake2.Generic
module Spec = Spec.Blake2 | {
"checked_file": "/",
"dependencies": [
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Streaming.Blake2.Common.fst.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2s_32.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": "Impl"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Blake2.Common",
"short_module": "Common"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | kk: Hacl.Streaming.Blake2.Common.key_size Spec.Blake2.Definitions.Blake2S
-> Hacl.Streaming.Interface.block Prims.unit | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Blake2.Common.key_size",
"Spec.Blake2.Definitions.Blake2S",
"Hacl.Streaming.Blake2.Common.blake2",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Blake2s_32.init",
"Hacl.Blake2s_32.update_multi",
"Hacl.Blake2s_32.update_last",
"Hacl.Blake2s_32.finish",
"Hacl.Streaming.Interface.block",
"Prims.unit"
] | [] | false | false | false | true | false | let blake2s_32 kk =
| Common.blake2 Spec.Blake2S
Core.M32
kk
Blake2s32.init
Blake2s32.update_multi
Blake2s32.update_last
Blake2s32.finish | false |
|
Pulse.Elaborate.Pure.fst | Pulse.Elaborate.Pure.elab_sub_pat | val elab_sub_pat (pi: pattern & bool) : R.pattern & bool | val elab_sub_pat (pi: pattern & bool) : R.pattern & bool | let rec elab_pat (p:pattern) : Tot R.pattern =
let elab_fv (f:fv) : R.fv =
R.pack_fv f.fv_name
in
match p with
| Pat_Constant c -> R.Pat_Constant c
| Pat_Var v ty -> R.Pat_Var RT.sort_default v
| Pat_Cons fv vs ->
R.Pat_Cons (elab_fv fv) None (Pulse.Common.map_dec p vs elab_sub_pat)
| Pat_Dot_Term None ->
R.Pat_Dot_Term None
| Pat_Dot_Term (Some t) ->
R.Pat_Dot_Term (Some (elab_term t))
and elab_sub_pat (pi : pattern & bool) : R.pattern & bool =
let (p, i) = pi in
elab_pat p, i | {
"file_name": "lib/steel/pulse/Pulse.Elaborate.Pure.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 15,
"end_line": 111,
"start_col": 0,
"start_line": 96
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Elaborate.Pure
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module RU = Pulse.RuntimeUtils
open FStar.List.Tot
open Pulse.Syntax.Base
open Pulse.Reflection.Util
let (let!) (f:option 'a) (g: 'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let elab_qual = function
| None -> R.Q_Explicit
| Some Implicit -> R.Q_Implicit
let elab_observability =
let open R in
function
| Neutral -> pack_ln (Tv_FVar (pack_fv neutral_lid))
| Unobservable -> pack_ln (Tv_FVar (pack_fv unobservable_lid))
| Observable -> pack_ln (Tv_FVar (pack_fv observable_lid))
let rec elab_term (top:term)
: R.term
= let open R in
let w t' = RU.set_range t' top.range in
match top.t with
| Tm_VProp ->
w (pack_ln (Tv_FVar (pack_fv vprop_lid)))
| Tm_Emp ->
w (pack_ln (Tv_FVar (pack_fv emp_lid)))
| Tm_Inv p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv inv_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Pure p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv pure_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Star l r ->
let l = elab_term l in
let r = elab_term r in
w (mk_star l r)
| Tm_ExistsSL u b body
| Tm_ForallSL u b body ->
let t = elab_term b.binder_ty in
let body = elab_term body in
let t = set_range_of t b.binder_ppname.range in
if Tm_ExistsSL? top.t
then w (mk_exists u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
else w (mk_forall u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
| Tm_Inames ->
w (pack_ln (Tv_FVar (pack_fv inames_lid)))
| Tm_EmpInames ->
w (emp_inames_tm)
| Tm_AddInv i is ->
let i = elab_term i in
let is = elab_term is in
w (add_inv_tm (`_) is i) // Careful on the order flip
| Tm_Unknown ->
w (pack_ln R.Tv_Unknown)
| Tm_FStar t ->
w t | {
"checked_file": "/",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Common.fst.checked",
"prims.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Elaborate.Pure.fst"
} | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | pi: (Pulse.Syntax.Base.pattern * Prims.bool) -> FStar.Stubs.Reflection.V2.Data.pattern * Prims.bool | Prims.Tot | [
"total"
] | [
"elab_pat",
"elab_sub_pat"
] | [
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.pattern",
"Prims.bool",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Stubs.Reflection.V2.Data.pattern",
"Pulse.Elaborate.Pure.elab_pat"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec elab_sub_pat (pi: pattern & bool) : R.pattern & bool =
| let p, i = pi in
elab_pat p, i | false |
Pulse.Elaborate.Pure.fst | Pulse.Elaborate.Pure.elab_statomic_equiv | val elab_statomic_equiv
(g: R.env)
(c: comp{C_STAtomic? c})
(pre post: R.term)
(eq_pre: RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:
RT.equiv g post (mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STAtomic inames obs { u = u ; res = res } = c in
mk_stt_atomic_comp (elab_observability obs) u (elab_term res) (elab_term inames) pre post)
(elab_comp c) | val elab_statomic_equiv
(g: R.env)
(c: comp{C_STAtomic? c})
(pre post: R.term)
(eq_pre: RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:
RT.equiv g post (mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STAtomic inames obs { u = u ; res = res } = c in
mk_stt_atomic_comp (elab_observability obs) u (elab_term res) (elab_term inames) pre post)
(elab_comp c) | let elab_statomic_equiv (g:R.env) (c:comp{C_STAtomic? c}) (pre:R.term) (post:R.term)
(eq_pre:RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:RT.equiv g post
(mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STAtomic inames obs {u;res} = c in
mk_stt_atomic_comp (elab_observability obs) u
(elab_term res)
(elab_term inames)
pre
post)
(elab_comp c) =
let C_STAtomic inames obs {u;res} = c in
let c' =
mk_stt_atomic_comp (elab_observability obs) u
(elab_term res)
(elab_term inames)
pre
post
in
mk_stt_atomic_comp_equiv _ (elab_observability obs)
(comp_u c)
(elab_term (comp_res c))
(elab_term inames)
_ _ _ _ eq_pre eq_post | {
"file_name": "lib/steel/pulse/Pulse.Elaborate.Pure.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 28,
"end_line": 184,
"start_col": 0,
"start_line": 159
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Elaborate.Pure
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module RU = Pulse.RuntimeUtils
open FStar.List.Tot
open Pulse.Syntax.Base
open Pulse.Reflection.Util
let (let!) (f:option 'a) (g: 'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let elab_qual = function
| None -> R.Q_Explicit
| Some Implicit -> R.Q_Implicit
let elab_observability =
let open R in
function
| Neutral -> pack_ln (Tv_FVar (pack_fv neutral_lid))
| Unobservable -> pack_ln (Tv_FVar (pack_fv unobservable_lid))
| Observable -> pack_ln (Tv_FVar (pack_fv observable_lid))
let rec elab_term (top:term)
: R.term
= let open R in
let w t' = RU.set_range t' top.range in
match top.t with
| Tm_VProp ->
w (pack_ln (Tv_FVar (pack_fv vprop_lid)))
| Tm_Emp ->
w (pack_ln (Tv_FVar (pack_fv emp_lid)))
| Tm_Inv p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv inv_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Pure p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv pure_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Star l r ->
let l = elab_term l in
let r = elab_term r in
w (mk_star l r)
| Tm_ExistsSL u b body
| Tm_ForallSL u b body ->
let t = elab_term b.binder_ty in
let body = elab_term body in
let t = set_range_of t b.binder_ppname.range in
if Tm_ExistsSL? top.t
then w (mk_exists u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
else w (mk_forall u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
| Tm_Inames ->
w (pack_ln (Tv_FVar (pack_fv inames_lid)))
| Tm_EmpInames ->
w (emp_inames_tm)
| Tm_AddInv i is ->
let i = elab_term i in
let is = elab_term is in
w (add_inv_tm (`_) is i) // Careful on the order flip
| Tm_Unknown ->
w (pack_ln R.Tv_Unknown)
| Tm_FStar t ->
w t
let rec elab_pat (p:pattern) : Tot R.pattern =
let elab_fv (f:fv) : R.fv =
R.pack_fv f.fv_name
in
match p with
| Pat_Constant c -> R.Pat_Constant c
| Pat_Var v ty -> R.Pat_Var RT.sort_default v
| Pat_Cons fv vs ->
R.Pat_Cons (elab_fv fv) None (Pulse.Common.map_dec p vs elab_sub_pat)
| Pat_Dot_Term None ->
R.Pat_Dot_Term None
| Pat_Dot_Term (Some t) ->
R.Pat_Dot_Term (Some (elab_term t))
and elab_sub_pat (pi : pattern & bool) : R.pattern & bool =
let (p, i) = pi in
elab_pat p, i
let elab_pats (ps:list pattern) : Tot (list R.pattern) = L.map elab_pat ps
let elab_st_comp (c:st_comp)
: R.universe & R.term & R.term & R.term
= let res = elab_term c.res in
let pre = elab_term c.pre in
let post = elab_term c.post in
c.u, res, pre, post
let elab_comp (c:comp)
: R.term
= match c with
| C_Tot t ->
elab_term t
| C_ST c ->
let u, res, pre, post = elab_st_comp c in
mk_stt_comp u res pre (mk_abs res R.Q_Explicit post)
| C_STAtomic inames obs c ->
let inames = elab_term inames in
let u, res, pre, post = elab_st_comp c in
let post = mk_abs res R.Q_Explicit post in
mk_stt_atomic_comp (elab_observability obs) u res inames pre post
| C_STGhost c ->
let u, res, pre, post = elab_st_comp c in
mk_stt_ghost_comp u res pre (mk_abs res R.Q_Explicit post)
let elab_stt_equiv (g:R.env) (c:comp{C_ST? c}) (pre:R.term) (post:R.term)
(eq_pre:RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:RT.equiv g post
(mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_ST {u;res} = c in
mk_stt_comp u
(elab_term res)
pre
post)
(elab_comp c) =
mk_stt_comp_equiv _
(comp_u c)
(elab_term (comp_res c))
_ _ _ _ _ (RT.Rel_refl _ _ _) eq_pre eq_post | {
"checked_file": "/",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Common.fst.checked",
"prims.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Elaborate.Pure.fst"
} | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
g: FStar.Stubs.Reflection.Types.env ->
c: Pulse.Syntax.Base.comp{C_STAtomic? c} ->
pre: FStar.Stubs.Reflection.Types.term ->
post: FStar.Stubs.Reflection.Types.term ->
eq_pre:
FStar.Reflection.Typing.equiv g
pre
(Pulse.Elaborate.Pure.elab_term (Pulse.Syntax.Base.comp_pre c)) ->
eq_post:
FStar.Reflection.Typing.equiv g
post
(Pulse.Reflection.Util.mk_abs (Pulse.Elaborate.Pure.elab_term (Pulse.Syntax.Base.comp_res c)
)
FStar.Stubs.Reflection.V2.Data.Q_Explicit
(Pulse.Elaborate.Pure.elab_term (Pulse.Syntax.Base.comp_post c)))
-> FStar.Reflection.Typing.equiv g
(let _ = c in
(let Pulse.Syntax.Base.C_STAtomic inames obs { u = u60 ; res = res ; pre = _ ; post = _ } =
_
in
Pulse.Reflection.Util.mk_stt_atomic_comp (Pulse.Elaborate.Pure.elab_observability obs)
u60
(Pulse.Elaborate.Pure.elab_term res)
(Pulse.Elaborate.Pure.elab_term inames)
pre
post)
<:
FStar.Stubs.Reflection.Types.term)
(Pulse.Elaborate.Pure.elab_comp c) | Prims.Tot | [
"total"
] | [] | [
"FStar.Stubs.Reflection.Types.env",
"Pulse.Syntax.Base.comp",
"Prims.b2t",
"Pulse.Syntax.Base.uu___is_C_STAtomic",
"FStar.Stubs.Reflection.Types.term",
"FStar.Reflection.Typing.equiv",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Syntax.Base.comp_pre",
"Pulse.Reflection.Util.mk_abs",
"Pulse.Syntax.Base.comp_res",
"FStar.Stubs.Reflection.V2.Data.Q_Explicit",
"Pulse.Syntax.Base.comp_post",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.observability",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.vprop",
"Pulse.Reflection.Util.mk_stt_atomic_comp_equiv",
"Pulse.Elaborate.Pure.elab_observability",
"Pulse.Syntax.Base.comp_u",
"Pulse.Reflection.Util.mk_stt_atomic_comp",
"Pulse.Elaborate.Pure.elab_comp"
] | [] | false | false | false | false | false | let elab_statomic_equiv
(g: R.env)
(c: comp{C_STAtomic? c})
(pre post: R.term)
(eq_pre: RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:
RT.equiv g post (mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STAtomic inames obs { u = u ; res = res } = c in
mk_stt_atomic_comp (elab_observability obs) u (elab_term res) (elab_term inames) pre post)
(elab_comp c) =
| let C_STAtomic inames obs { u = u ; res = res } = c in
let c' =
mk_stt_atomic_comp (elab_observability obs) u (elab_term res) (elab_term inames) pre post
in
mk_stt_atomic_comp_equiv _ (elab_observability obs) (comp_u c) (elab_term (comp_res c))
(elab_term inames) _ _ _ _ eq_pre eq_post | false |
Hacl.Streaming.Blake2s_32.fst | Hacl.Streaming.Blake2s_32.reset | val reset : Hacl.Streaming.Functor.reset_st (Hacl.Streaming.Blake2s_32.blake2s_32 0)
(FStar.Ghost.hide (FStar.Ghost.reveal (FStar.Ghost.hide ())))
(Hacl.Streaming.Blake2.Common.s Spec.Blake2.Definitions.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.Common.empty_key Spec.Blake2.Definitions.Blake2S) | let reset =
F.reset (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S) | {
"file_name": "code/streaming/Hacl.Streaming.Blake2s_32.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 92,
"end_line": 36,
"start_col": 0,
"start_line": 35
} | module Hacl.Streaming.Blake2s_32
module Blake2s32 = Hacl.Blake2s_32
module Common = Hacl.Streaming.Blake2.Common
module Core = Hacl.Impl.Blake2.Core
module F = Hacl.Streaming.Functor
module G = FStar.Ghost
module Impl = Hacl.Impl.Blake2.Generic
module Spec = Spec.Blake2
inline_for_extraction noextract
let blake2s_32 kk =
Common.blake2 Spec.Blake2S Core.M32 kk Blake2s32.init Blake2s32.update_multi
Blake2s32.update_last Blake2s32.finish
/// Type abbreviations - makes Karamel use pretty names in the generated code
let block_state_t = Common.s Spec.Blake2S Core.M32
let state_t = F.state_s (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
/// The incremental hash functions instantiations. Note that we can't write a
/// generic one, because the normalization then performed by KaRaMeL explodes.
/// All those implementations are for non-keyed hash.
inline_for_extraction noextract
let alloca =
F.alloca (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
[@ (Comment " State allocation function when there is no key")]
let malloc =
F.malloc (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S) | {
"checked_file": "/",
"dependencies": [
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Streaming.Blake2.Common.fst.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2s_32.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": "Impl"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Blake2.Common",
"short_module": "Common"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Streaming.Functor.reset_st (Hacl.Streaming.Blake2s_32.blake2s_32 0)
(FStar.Ghost.hide (FStar.Ghost.reveal (FStar.Ghost.hide ())))
(Hacl.Streaming.Blake2.Common.s Spec.Blake2.Definitions.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.Common.empty_key Spec.Blake2.Definitions.Blake2S) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Functor.reset",
"Prims.unit",
"Hacl.Streaming.Blake2s_32.blake2s_32",
"FStar.Ghost.hide",
"Hacl.Streaming.Blake2.Common.s",
"Spec.Blake2.Definitions.Blake2S",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Streaming.Blake2.Common.empty_key"
] | [] | false | false | false | false | false | let reset =
| F.reset (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S) | false |
|
Alg.fst | Alg.abides_app | val abides_app (#a: _) (l1 l2: ops) (c: tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1 @ l2) c))
[SMTPat (abides (l1 @ l2) c)] | val abides_app (#a: _) (l1 l2: ops) (c: tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1 @ l2) c))
[SMTPat (abides (l1 @ l2) c)] | let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2 | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 20,
"end_line": 112,
"start_col": 0,
"start_line": 108
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l1: Alg.ops -> l2: Alg.ops -> c: Alg.tree0 a
-> FStar.Pervasives.Lemma (requires Alg.abides l1 c \/ Alg.abides l2 c)
(ensures Alg.abides (l1 @ l2) c)
[SMTPat (Alg.abides (l1 @ l2) c)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Alg.ops",
"Alg.tree0",
"Alg.sublist_at",
"Prims.unit",
"Prims.l_or",
"Alg.abides",
"Prims.squash",
"FStar.List.Tot.Base.op_At",
"Alg.op",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.prop",
"Prims.Nil"
] | [] | true | false | true | false | false | let abides_app #a (l1: ops) (l2: ops) (c: tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1 @ l2) c))
[SMTPat (abides (l1 @ l2) c)] =
| sublist_at l1 l2 | false |
Hacl.Streaming.Blake2s_32.fst | Hacl.Streaming.Blake2s_32.malloc | val malloc : Hacl.Streaming.Functor.malloc_st (Hacl.Streaming.Blake2s_32.blake2s_32 0)
()
(Hacl.Streaming.Blake2.Common.s Spec.Blake2.Definitions.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.Common.empty_key Spec.Blake2.Definitions.Blake2S) | let malloc =
F.malloc (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S) | {
"file_name": "code/streaming/Hacl.Streaming.Blake2s_32.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 93,
"end_line": 32,
"start_col": 0,
"start_line": 31
} | module Hacl.Streaming.Blake2s_32
module Blake2s32 = Hacl.Blake2s_32
module Common = Hacl.Streaming.Blake2.Common
module Core = Hacl.Impl.Blake2.Core
module F = Hacl.Streaming.Functor
module G = FStar.Ghost
module Impl = Hacl.Impl.Blake2.Generic
module Spec = Spec.Blake2
inline_for_extraction noextract
let blake2s_32 kk =
Common.blake2 Spec.Blake2S Core.M32 kk Blake2s32.init Blake2s32.update_multi
Blake2s32.update_last Blake2s32.finish
/// Type abbreviations - makes Karamel use pretty names in the generated code
let block_state_t = Common.s Spec.Blake2S Core.M32
let state_t = F.state_s (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
/// The incremental hash functions instantiations. Note that we can't write a
/// generic one, because the normalization then performed by KaRaMeL explodes.
/// All those implementations are for non-keyed hash.
inline_for_extraction noextract
let alloca =
F.alloca (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S) | {
"checked_file": "/",
"dependencies": [
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Streaming.Blake2.Common.fst.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2s_32.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": "Impl"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Blake2.Common",
"short_module": "Common"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Streaming.Functor.malloc_st (Hacl.Streaming.Blake2s_32.blake2s_32 0)
()
(Hacl.Streaming.Blake2.Common.s Spec.Blake2.Definitions.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.Common.empty_key Spec.Blake2.Definitions.Blake2S) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Functor.malloc",
"Prims.unit",
"Hacl.Streaming.Blake2s_32.blake2s_32",
"Hacl.Streaming.Blake2.Common.s",
"Spec.Blake2.Definitions.Blake2S",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Streaming.Blake2.Common.empty_key"
] | [] | false | false | false | false | false | let malloc =
| F.malloc (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S) | false |
|
Alg.fst | Alg.abides_sublist_nopat | val abides_sublist_nopat (#a: _) (l1 l2: ops) (c: tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2) (ensures (abides l2) c) | val abides_sublist_nopat (#a: _) (l1 l2: ops) (c: tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2) (ensures (abides l2) c) | let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 91,
"start_col": 0,
"start_line": 82
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l1: Alg.ops -> l2: Alg.ops -> c: Alg.tree0 a
-> FStar.Pervasives.Lemma (requires Alg.abides l1 c /\ Alg.sublist l1 l2)
(ensures Alg.abides l2 c) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Alg.ops",
"Alg.tree0",
"Alg.op",
"Alg.op_inp",
"Alg.op_out",
"FStar.Classical.forall_intro",
"Alg.abides",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Alg.abides_sublist_nopat",
"Prims.l_and",
"Alg.sublist"
] | [
"recursion"
] | false | false | true | false | false | let rec abides_sublist_nopat #a (l1: ops) (l2: ops) (c: tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2) (ensures (abides l2) c) =
| match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) = abides_sublist_nopat l1 l2 (k o) in
Classical.forall_intro sub | false |
Pulse.Elaborate.Pure.fst | Pulse.Elaborate.Pure.elab_stghost_equiv | val elab_stghost_equiv
(g: R.env)
(c: comp{C_STGhost? c})
(pre post: R.term)
(eq_pre: RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:
RT.equiv g post (mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STGhost { u = u ; res = res } = c in
mk_stt_ghost_comp u (elab_term res) pre post)
(elab_comp c) | val elab_stghost_equiv
(g: R.env)
(c: comp{C_STGhost? c})
(pre post: R.term)
(eq_pre: RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:
RT.equiv g post (mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STGhost { u = u ; res = res } = c in
mk_stt_ghost_comp u (elab_term res) pre post)
(elab_comp c) | let elab_stghost_equiv (g:R.env) (c:comp{C_STGhost? c}) (pre:R.term) (post:R.term)
(eq_pre:RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:RT.equiv g post
(mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STGhost {u;res} = c in
mk_stt_ghost_comp u
(elab_term res)
pre
post)
(elab_comp c) =
let C_STGhost _ = c in
mk_stt_ghost_comp_equiv _
(comp_u c)
(elab_term (comp_res c))
_ _ _ _ eq_pre eq_post | {
"file_name": "lib/steel/pulse/Pulse.Elaborate.Pure.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 26,
"end_line": 202,
"start_col": 0,
"start_line": 186
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Elaborate.Pure
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module RU = Pulse.RuntimeUtils
open FStar.List.Tot
open Pulse.Syntax.Base
open Pulse.Reflection.Util
let (let!) (f:option 'a) (g: 'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let elab_qual = function
| None -> R.Q_Explicit
| Some Implicit -> R.Q_Implicit
let elab_observability =
let open R in
function
| Neutral -> pack_ln (Tv_FVar (pack_fv neutral_lid))
| Unobservable -> pack_ln (Tv_FVar (pack_fv unobservable_lid))
| Observable -> pack_ln (Tv_FVar (pack_fv observable_lid))
let rec elab_term (top:term)
: R.term
= let open R in
let w t' = RU.set_range t' top.range in
match top.t with
| Tm_VProp ->
w (pack_ln (Tv_FVar (pack_fv vprop_lid)))
| Tm_Emp ->
w (pack_ln (Tv_FVar (pack_fv emp_lid)))
| Tm_Inv p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv inv_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Pure p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv pure_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Star l r ->
let l = elab_term l in
let r = elab_term r in
w (mk_star l r)
| Tm_ExistsSL u b body
| Tm_ForallSL u b body ->
let t = elab_term b.binder_ty in
let body = elab_term body in
let t = set_range_of t b.binder_ppname.range in
if Tm_ExistsSL? top.t
then w (mk_exists u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
else w (mk_forall u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
| Tm_Inames ->
w (pack_ln (Tv_FVar (pack_fv inames_lid)))
| Tm_EmpInames ->
w (emp_inames_tm)
| Tm_AddInv i is ->
let i = elab_term i in
let is = elab_term is in
w (add_inv_tm (`_) is i) // Careful on the order flip
| Tm_Unknown ->
w (pack_ln R.Tv_Unknown)
| Tm_FStar t ->
w t
let rec elab_pat (p:pattern) : Tot R.pattern =
let elab_fv (f:fv) : R.fv =
R.pack_fv f.fv_name
in
match p with
| Pat_Constant c -> R.Pat_Constant c
| Pat_Var v ty -> R.Pat_Var RT.sort_default v
| Pat_Cons fv vs ->
R.Pat_Cons (elab_fv fv) None (Pulse.Common.map_dec p vs elab_sub_pat)
| Pat_Dot_Term None ->
R.Pat_Dot_Term None
| Pat_Dot_Term (Some t) ->
R.Pat_Dot_Term (Some (elab_term t))
and elab_sub_pat (pi : pattern & bool) : R.pattern & bool =
let (p, i) = pi in
elab_pat p, i
let elab_pats (ps:list pattern) : Tot (list R.pattern) = L.map elab_pat ps
let elab_st_comp (c:st_comp)
: R.universe & R.term & R.term & R.term
= let res = elab_term c.res in
let pre = elab_term c.pre in
let post = elab_term c.post in
c.u, res, pre, post
let elab_comp (c:comp)
: R.term
= match c with
| C_Tot t ->
elab_term t
| C_ST c ->
let u, res, pre, post = elab_st_comp c in
mk_stt_comp u res pre (mk_abs res R.Q_Explicit post)
| C_STAtomic inames obs c ->
let inames = elab_term inames in
let u, res, pre, post = elab_st_comp c in
let post = mk_abs res R.Q_Explicit post in
mk_stt_atomic_comp (elab_observability obs) u res inames pre post
| C_STGhost c ->
let u, res, pre, post = elab_st_comp c in
mk_stt_ghost_comp u res pre (mk_abs res R.Q_Explicit post)
let elab_stt_equiv (g:R.env) (c:comp{C_ST? c}) (pre:R.term) (post:R.term)
(eq_pre:RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:RT.equiv g post
(mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_ST {u;res} = c in
mk_stt_comp u
(elab_term res)
pre
post)
(elab_comp c) =
mk_stt_comp_equiv _
(comp_u c)
(elab_term (comp_res c))
_ _ _ _ _ (RT.Rel_refl _ _ _) eq_pre eq_post
#push-options "--query_stats"
let elab_statomic_equiv (g:R.env) (c:comp{C_STAtomic? c}) (pre:R.term) (post:R.term)
(eq_pre:RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:RT.equiv g post
(mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STAtomic inames obs {u;res} = c in
mk_stt_atomic_comp (elab_observability obs) u
(elab_term res)
(elab_term inames)
pre
post)
(elab_comp c) =
let C_STAtomic inames obs {u;res} = c in
let c' =
mk_stt_atomic_comp (elab_observability obs) u
(elab_term res)
(elab_term inames)
pre
post
in
mk_stt_atomic_comp_equiv _ (elab_observability obs)
(comp_u c)
(elab_term (comp_res c))
(elab_term inames)
_ _ _ _ eq_pre eq_post | {
"checked_file": "/",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Common.fst.checked",
"prims.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Elaborate.Pure.fst"
} | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
g: FStar.Stubs.Reflection.Types.env ->
c: Pulse.Syntax.Base.comp{C_STGhost? c} ->
pre: FStar.Stubs.Reflection.Types.term ->
post: FStar.Stubs.Reflection.Types.term ->
eq_pre:
FStar.Reflection.Typing.equiv g
pre
(Pulse.Elaborate.Pure.elab_term (Pulse.Syntax.Base.comp_pre c)) ->
eq_post:
FStar.Reflection.Typing.equiv g
post
(Pulse.Reflection.Util.mk_abs (Pulse.Elaborate.Pure.elab_term (Pulse.Syntax.Base.comp_res c)
)
FStar.Stubs.Reflection.V2.Data.Q_Explicit
(Pulse.Elaborate.Pure.elab_term (Pulse.Syntax.Base.comp_post c)))
-> FStar.Reflection.Typing.equiv g
(let _ = c in
(let Pulse.Syntax.Base.C_STGhost { u = u70 ; res = res ; pre = _ ; post = _ } = _ in
Pulse.Reflection.Util.mk_stt_ghost_comp u70 (Pulse.Elaborate.Pure.elab_term res) pre post)
<:
FStar.Stubs.Reflection.Types.term)
(Pulse.Elaborate.Pure.elab_comp c) | Prims.Tot | [
"total"
] | [] | [
"FStar.Stubs.Reflection.Types.env",
"Pulse.Syntax.Base.comp",
"Prims.b2t",
"Pulse.Syntax.Base.uu___is_C_STGhost",
"FStar.Stubs.Reflection.Types.term",
"FStar.Reflection.Typing.equiv",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Syntax.Base.comp_pre",
"Pulse.Reflection.Util.mk_abs",
"Pulse.Syntax.Base.comp_res",
"FStar.Stubs.Reflection.V2.Data.Q_Explicit",
"Pulse.Syntax.Base.comp_post",
"Pulse.Syntax.Base.st_comp",
"Pulse.Reflection.Util.mk_stt_ghost_comp_equiv",
"Pulse.Syntax.Base.comp_u",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.vprop",
"Pulse.Reflection.Util.mk_stt_ghost_comp",
"Pulse.Elaborate.Pure.elab_comp"
] | [] | false | false | false | false | false | let elab_stghost_equiv
(g: R.env)
(c: comp{C_STGhost? c})
(pre post: R.term)
(eq_pre: RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:
RT.equiv g post (mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STGhost { u = u ; res = res } = c in
mk_stt_ghost_comp u (elab_term res) pre post)
(elab_comp c) =
| let C_STGhost _ = c in
mk_stt_ghost_comp_equiv _ (comp_u c) (elab_term (comp_res c)) _ _ _ _ eq_pre eq_post | false |
LowParse.Spec.DER.fst | LowParse.Spec.DER.serialize_bounded_der_length32_unfold | val serialize_bounded_der_length32_unfold
(min: der_length_t)
(max: der_length_t { min <= max /\ max < 4294967296 })
(y': bounded_int32 min max)
: Lemma
(
let res = serialize (serialize_bounded_der_length32 min max) y' in
let x = tag_of_der_length32_impl y' in
let s1 = Seq.create 1 x in
if x `U8.lt` 128uy
then res `Seq.equal` s1
else if x = 129uy
then U32.v y' <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (Cast.uint32_to_uint8 y'))
else
let len = log256' (U32.v y') in
res `Seq.equal` (s1 `Seq.append` serialize (serialize_bounded_integer len) y')
) | val serialize_bounded_der_length32_unfold
(min: der_length_t)
(max: der_length_t { min <= max /\ max < 4294967296 })
(y': bounded_int32 min max)
: Lemma
(
let res = serialize (serialize_bounded_der_length32 min max) y' in
let x = tag_of_der_length32_impl y' in
let s1 = Seq.create 1 x in
if x `U8.lt` 128uy
then res `Seq.equal` s1
else if x = 129uy
then U32.v y' <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (Cast.uint32_to_uint8 y'))
else
let len = log256' (U32.v y') in
res `Seq.equal` (s1 `Seq.append` serialize (serialize_bounded_integer len) y')
) | let serialize_bounded_der_length32_unfold
min max y'
= serialize_synth_eq
_
(synth_bounded_der_length32 min max)
(serialize_bounded_der_length min max)
(synth_bounded_der_length32_recip min max)
()
y';
serialize_bounded_der_length_unfold min max (U32.v y');
let x = tag_of_der_length32_impl y' in
if x `U8.lt` 128uy
then ()
else if x = 129uy
then FStar.Math.Lemmas.small_modulo_lemma_1 (U32.v y') 256
else begin
assert (x <> 128uy /\ x <> 255uy);
let len = log256' (U32.v y') in
log256_eq (U32.v y');
serialize_bounded_integer_spec len y'
end | {
"file_name": "src/lowparse/LowParse.Spec.DER.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 7,
"end_line": 1003,
"start_col": 0,
"start_line": 983
} | module LowParse.Spec.DER
open LowParse.Spec.Combinators
open LowParse.Spec.SeqBytes.Base
// include LowParse.Spec.VLData // for in_bounds
open FStar.Mul
module U8 = FStar.UInt8
module UInt = FStar.UInt
module Math = LowParse.Math
module E = FStar.Endianness
module Seq = FStar.Seq
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0"
// let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`())))
let der_length_max_eq =
assert_norm (der_length_max == pow2 (8 * 126) - 1)
let rec log256
(x: nat { x > 0 })
: Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)})
= assert_norm (pow2 8 == 256);
if x < 256
then 1
else begin
let n = log256 (x / 256) in
Math.pow2_plus (8 * (n - 1)) 8;
Math.pow2_plus (8 * n) 8;
n + 1
end
let log256_unique
x
y
= Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x);
Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y)
let log256_le
x1
x2
= Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2)
let der_length_payload_size_le
x1
x2
= if x1 < 128 || x2 < 128
then ()
else
let len_len2 = log256 x2 in
let len_len1 = log256 x1 in
log256_le x1 x2;
assert_norm (pow2 7 == 128);
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126)
let synth_be_int
(len: nat)
(b: Seq.lseq byte len)
: Tot (lint len)
= E.lemma_be_to_n_is_bounded b;
E.be_to_n b
let synth_be_int_injective
(len: nat)
: Lemma
(synth_injective (synth_be_int len))
[SMTPat (synth_injective (synth_be_int len))]
=
synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) ->
E.be_to_n_inj x x'
)
let synth_der_length_129
(x: U8.t { x == 129uy } )
(y: U8.t { U8.v y >= 128 } )
: Tot (refine_with_tag tag_of_der_length x)
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
log256_unique (U8.v y) 1;
U8.v y
let synth_der_length_greater
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x - 128 } )
(y: lint len { y >= pow2 (8 * (len - 1)) } )
: Tot (refine_with_tag tag_of_der_length x)
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
Math.pow2_le_compat (8 * 126) (8 * len);
Math.pow2_le_compat (8 * (len - 1)) 7;
log256_unique y len;
y
let parse_der_length_payload
(x: U8.t)
: Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x))
end else
if x = 128uy
then
fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case
else if x = 255uy
then
fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already
else if x = 129uy
then
weaken (parse_der_length_payload_kind x)
((parse_u8 `parse_filter` (fun y -> U8.v y >= 128))
`parse_synth` synth_der_length_129 x)
else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
weaken (parse_der_length_payload_kind x)
(((parse_seq_flbytes len `parse_synth` (synth_be_int len))
`parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
`parse_synth` synth_der_length_greater x len)
end
let parse_der_length_payload_unfold
(x: U8.t)
(input: bytes)
: Lemma
(
let y = parse (parse_der_length_payload x) input in
(256 < der_length_max) /\ (
if U8.v x < 128
then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0)
else if x = 128uy || x = 255uy
then y == None
else if x = 129uy
then
match parse parse_u8 input with
| None -> y == None
| Some (z, consumed) ->
if U8.v z < 128
then y == None
else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed)
else
let len : nat = U8.v x - 128 in
synth_injective (synth_be_int len) /\ (
let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in
match res with
| None -> y == None
| Some (z, consumed) ->
len > 0 /\ (
if z >= pow2 (8 * (len - 1))
then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed)
else y == None
))))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
()
end else
if x = 128uy
then
()
else if x = 255uy
then
()
else if x = 129uy
then begin
parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input;
parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input;
match parse parse_u8 input with
| None -> ()
| Some (y, _) ->
if U8.v y >= 128
then begin
log256_unique (U8.v y) 1
end else ()
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len))
`parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input;
parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input;
assert (len > 1);
let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in
match res with
| None -> ()
| Some (y, _) ->
if y >= pow2 (8 * (len - 1))
then begin
let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in
Math.pow2_le_compat (8 * 126) (8 * len);
Math.pow2_le_compat (8 * (len - 1)) 7;
log256_unique y len
end else ()
end
inline_for_extraction
let parse_der_length_payload_kind_weak : parser_kind =
strong_parser_kind 0 126 None
inline_for_extraction
let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak
let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t
= parse_tagged_union
parse_u8
tag_of_der_length
(fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x))
[@@(noextract_to "krml")]
let parse_bounded_der_length_payload_kind
(min: der_length_t)
(max: der_length_t { min <= max } )
: Tot parser_kind =
[@inline_let] let _ = der_length_payload_size_le min max in
strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None
let bounded_int
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot Type
= (x: int { min <= x /\ x <= max })
let parse_bounded_der_length_tag_cond
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t)
: Tot bool
= let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max
inline_for_extraction // for parser_kind
let tag_of_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
(x: bounded_int min max)
: Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } )
= [@inline_let]
let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in
tag_of_der_length x
let parse_bounded_der_length_payload
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
: Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x))
= weaken (parse_bounded_der_length_payload_kind min max)
(parse_der_length_payload x
`parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)
`parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)))
[@@(noextract_to "krml")]
let parse_bounded_der_length_kind
(min: der_length_t)
(max: der_length_t { min <= max } )
: Tot parser_kind
= and_then_kind
(parse_filter_kind parse_u8_kind)
(parse_bounded_der_length_payload_kind min max)
let parse_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max))
= parse_tagged_union
(parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max)
(tag_of_bounded_der_length min max)
(parse_bounded_der_length_payload min max)
(* equality *)
let parse_bounded_der_length_payload_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
(input' : bytes)
: Lemma
(parse (parse_bounded_der_length_payload min max x) input' == (
match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_y)
else None
))
=
parse_synth_eq
(parse_der_length_payload x
`parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max))
(fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))
input' ;
parse_filter_eq
(parse_der_length_payload x)
(fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)
input'
let parse_bounded_der_length_unfold_aux
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
match parse (parse_bounded_der_length_payload min max x) input'
with
| Some (y, consumed_y) -> Some (y, consumed_x + consumed_y)
| None -> None
else None
))
= parse_tagged_union_eq
(parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max)
(tag_of_bounded_der_length min max)
(parse_bounded_der_length_payload min max)
input;
parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input
let parse_bounded_der_length_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_x + consumed_y)
else None
else None
))
= parse_bounded_der_length_unfold_aux min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
) input'
else ()
let parse_bounded_der_length_weak
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max))
= parse_der_length_weak
`parse_filter` (fun y -> min <= y && y <= max)
`parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
let parse_bounded_der_length_weak_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length_weak min max) input == (
match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let input' = Seq.slice input consumed_x (Seq.length input) in
begin match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_x + consumed_y)
else None
end
))
= parse_synth_eq
(parse_der_length_weak
`parse_filter` (fun y -> min <= y && y <= max))
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
input;
parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input;
parse_tagged_union_eq
parse_u8
tag_of_der_length
(fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x))
input
let parse_bounded_der_length_eq
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input))
= parse_bounded_der_length_unfold min max input;
parse_bounded_der_length_weak_unfold min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let input' = Seq.slice input consumed_x (Seq.length input) in
begin match parse (parse_der_length_payload x) input' with
| None -> ()
| Some (y, consumed_y) ->
if min <= y && y <= max
then (der_length_payload_size_le min y; der_length_payload_size_le y max)
else ()
end
(* serializer *)
let tag_of_der_length_lt_128
(x: der_length_t)
: Lemma
(requires (U8.v (tag_of_der_length x) < 128))
(ensures (x == U8.v (tag_of_der_length x)))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let tag_of_der_length_invalid
(x: der_length_t)
: Lemma
(requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255))
(ensures False)
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let tag_of_der_length_eq_129
(x: der_length_t)
: Lemma
(requires (U8.v (tag_of_der_length x) == 129))
(ensures (x >= 128 /\ x < 256))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let synth_der_length_129_recip
(x: U8.t { x == 129uy })
(y: refine_with_tag tag_of_der_length x)
: GTot (y: U8.t {U8.v y >= 128})
= tag_of_der_length_eq_129 y;
U8.uint_to_t y
let synth_be_int_recip
(len: nat)
(x: lint len)
: GTot (b: Seq.lseq byte len)
= E.n_to_be len x
let synth_be_int_inverse
(len: nat)
: Lemma
(synth_inverse (synth_be_int len) (synth_be_int_recip len))
= ()
let synth_der_length_greater_recip
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x % 128 } )
(y: refine_with_tag tag_of_der_length x)
: Tot (y: lint len { y >= pow2 (8 * (len - 1)) } )
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
y
let synth_der_length_greater_inverse
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x % 128 } )
: Lemma
(synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len))
= ()
private
let serialize_der_length_payload_greater
(x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } )
(len: nat { len == U8.v x - 128 } )
=
(serialize_synth
#_
#(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
#(refine_with_tag tag_of_der_length x)
_
(synth_der_length_greater x len)
(serialize_filter
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(fun (y: lint len) -> y >= pow2 (8 * (len - 1)))
)
(synth_der_length_greater_recip x len)
()
)
let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y)
let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False
let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y)
let serialize_der_length_payload
(x: U8.t)
: Tot (serializer (parse_der_length_payload x))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x))
end else
if x = 128uy || x = 255uy
then
fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x)
else if x = 129uy
then begin
serialize_weaken
(parse_der_length_payload_kind x)
(serialize_synth
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))
)
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
serialize_weaken
(parse_der_length_payload_kind x)
(serialize_der_length_payload_greater x len)
end
let serialize_der_length_weak : serializer parse_der_length_weak =
serialize_tagged_union
serialize_u8
tag_of_der_length
(fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x))
#push-options "--max_ifuel 6 --z3rlimit 64"
let serialize_der_length_weak_unfold
(y: der_length_t)
: Lemma
(let res = serialize serialize_der_length_weak y in
let x = tag_of_der_length y in
let s1 = Seq.create 1 x in
if x `U8.lt` 128uy
then res `Seq.equal` s1
else if x = 129uy
then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y))
else
let len = log256 y in
res `Seq.equal` (s1 `Seq.append` E.n_to_be len y)
)
= let x = tag_of_der_length y in
serialize_u8_spec x;
assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
()
end else
if x = 128uy || x = 255uy
then
tag_of_der_length_invalid y
else if x = 129uy
then begin
tag_of_der_length_eq_129 y;
assert (U8.v (synth_der_length_129_recip x y) == y);
let s1 = serialize ( serialize_synth #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x)
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)))
y
in
serialize_synth_eq'
#_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128))
#(refine_with_tag tag_of_der_length x)
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))
y
s1
()
(serialize serialize_u8 (synth_der_length_129_recip x y))
()
;
serialize_u8_spec (U8.uint_to_t y);
()
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
assert (
serialize (serialize_der_length_payload x) y == serialize (serialize_der_length_payload_greater x len) y
);
serialize_synth_eq'
#_
#(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
#(refine_with_tag tag_of_der_length x)
_
(synth_der_length_greater x len)
(serialize_filter
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(fun (y: lint len) -> y >= pow2 (8 * (len - 1)))
)
(synth_der_length_greater_recip x len)
()
y
(serialize (serialize_der_length_payload_greater x len) y)
(_ by (FStar.Tactics.trefl ()))
(serialize
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(synth_der_length_greater_recip x len y)
)
()
;
serialize_synth_eq
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
(synth_der_length_greater_recip x len y);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
()
end;
()
#pop-options
let serialize_bounded_der_length_weak
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (serializer (parse_bounded_der_length_weak min max))
= serialize_synth
_
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
(serialize_filter
serialize_der_length_weak
(fun y -> min <= y && y <= max)
)
(fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max})))
()
let serialize_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (serializer (parse_bounded_der_length min max))
= Classical.forall_intro (parse_bounded_der_length_eq min max);
serialize_ext
_
(serialize_bounded_der_length_weak min max)
(parse_bounded_der_length min max)
let serialize_bounded_der_length_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(y: bounded_int min max)
: Lemma
(let res = serialize (serialize_bounded_der_length min max) y in
let x = tag_of_der_length y in
let s1 = Seq.create 1 x in
if x `U8.lt` 128uy
then res `Seq.equal` s1
else if x = 129uy
then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y))
else
let len = log256 y in
res `Seq.equal` (s1 `Seq.append` E.n_to_be len y)
)
= serialize_synth_eq
_
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
(serialize_filter
serialize_der_length_weak
(fun y -> min <= y && y <= max)
)
(fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max})))
()
y;
serialize_der_length_weak_unfold y
(* 32-bit spec *)
module U32 = FStar.UInt32
let der_length_payload_size_of_tag_inv32
(x: der_length_t)
: Lemma
(requires (x < 4294967296))
(ensures (
tag_of_der_length x == (
if x < 128
then U8.uint_to_t x
else if x < 256
then 129uy
else if x < 65536
then 130uy
else if x < 16777216
then 131uy
else 132uy
)))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126);
assert_norm (pow2 (8 * 1) == 256);
assert_norm (pow2 (8 * 2) == 65536);
assert_norm (pow2 (8 * 3) == 16777216);
assert_norm (pow2 (8 * 4) == 4294967296);
if x < 256
then
log256_unique x 1
else if x < 65536
then
log256_unique x 2
else if x < 16777216
then
log256_unique x 3
else
log256_unique x 4
let synth_der_length_payload32
(x: U8.t { der_length_payload_size_of_tag x <= 4 } )
(y: refine_with_tag tag_of_der_length x)
: GTot (refine_with_tag tag_of_der_length32 x)
= let _ =
assert_norm (der_length_max == pow2 (8 * 126) - 1);
let _ = assert_norm (pow2 (8 * 2) == 65536) in
let _ = assert_norm (pow2 (8 * 3) == 16777216) in
let _ = assert_norm (pow2 (8 * 4) == 4294967296) in
if y >= 128 then begin
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y) == 128 + log256 y)
end
in
U32.uint_to_t y
let synth_der_length_payload32_injective
(x: U8.t { der_length_payload_size_of_tag x <= 4 } )
: Lemma
(synth_injective (synth_der_length_payload32 x))
[SMTPat (synth_injective (synth_der_length_payload32 x))]
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
let _ = assert_norm (pow2 (8 * 2) == 65536) in
let _ = assert_norm (pow2 (8 * 3) == 16777216) in
let _ = assert_norm (pow2 (8 * 4) == 4294967296) in
synth_injective_intro' (synth_der_length_payload32 x) (fun (y1 y2: refine_with_tag tag_of_der_length x) ->
if y1 >= 128 then begin
Math.pow2_lt_recip (8 * (log256 y1 - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y1) == 128 + log256 y1)
end;
if y2 >= 128 then begin
Math.pow2_lt_recip (8 * (log256 y2 - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y2) == 128 + log256 y2)
end
)
let parse_der_length_payload32
x
: Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length32 x))
= parse_der_length_payload x `parse_synth` synth_der_length_payload32 x
let be_int_of_bounded_integer
(len: integer_size)
(x: nat { x < pow2 (8 * len) } )
: GTot (bounded_integer len)
= integer_size_values len;
assert_norm (pow2 (8 * 1) == 256);
assert_norm (pow2 (8 * 2) == 65536);
assert_norm (pow2 (8 * 3) == 16777216);
assert_norm (pow2 (8 * 4) == 4294967296);
U32.uint_to_t x
let be_int_of_bounded_integer_injective
(len: integer_size)
: Lemma
(synth_injective (be_int_of_bounded_integer len))
[SMTPat (synth_injective (be_int_of_bounded_integer len))] // FIXME: WHY WHY WHY does this pattern NEVER trigger?
= integer_size_values len;
assert_norm (pow2 (8 * 1) == 256);
assert_norm (pow2 (8 * 2) == 65536);
assert_norm (pow2 (8 * 3) == 16777216);
assert_norm (pow2 (8 * 4) == 4294967296)
#push-options "--max_ifuel 4 --z3rlimit 16"
let parse_seq_flbytes_synth_be_int_eq
(len: integer_size)
(input: bytes)
: Lemma
(
let _ = synth_be_int_injective len in
let _ = be_int_of_bounded_integer_injective len in
parse (
parse_synth #_ #(lint len) #(bounded_integer len)
(parse_synth #_ #(Seq.lseq byte len) #(lint len)
(parse_seq_flbytes len)
(synth_be_int len)
)
(be_int_of_bounded_integer len)
) input == parse (parse_bounded_integer len) input)
=
let _ = synth_be_int_injective len in
let _ = be_int_of_bounded_integer_injective len in
parse_synth_eq (parse_seq_flbytes len `parse_synth` synth_be_int len) (be_int_of_bounded_integer len) input;
parse_synth_eq (parse_seq_flbytes len) (synth_be_int len) input;
parser_kind_prop_equiv (parse_bounded_integer_kind len) (parse_bounded_integer len);
parse_bounded_integer_spec len input
let parse_der_length_payload32_unfold
x
input
= parse_synth_eq (parse_der_length_payload x) (synth_der_length_payload32 x) input;
assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 (8 * 1) == 256);
let _ = assert_norm (pow2 (8 * 2) == 65536) in
let _ = assert_norm (pow2 (8 * 3) == 16777216) in
let _ = assert_norm (pow2 (8 * 4) == 4294967296) in
begin match parse (parse_der_length_payload x) input with
| None -> ()
| Some (y, _) ->
if y >= 128 then begin
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y) == 128 + log256 y)
end
end;
parse_der_length_payload_unfold x input;
if U8.v x < 128
then () // tag_of_der_length (U8.v x) == x /\ y == Some (Cast.uint8_to_uint32 x, 0)
else if x = 128uy || x = 255uy
then () // y == None
else if x = 129uy
then ()
else begin
let len : nat = U8.v x - 128 in
assert (2 <= len /\ len <= 4);
let _ = synth_be_int_injective len in
let _ = be_int_of_bounded_integer_injective len in
parse_seq_flbytes_synth_be_int_eq len input;
integer_size_values len;
parse_synth_eq
#_
#(lint len)
#(bounded_integer len)
(parse_synth #_ #(Seq.lseq byte len) #(lint len) (parse_seq_flbytes len) (synth_be_int len))
(be_int_of_bounded_integer len)
input
end
#pop-options
let log256_eq
x
= log256_unique x (log256' x)
let synth_bounded_der_length32
(min: der_length_t)
(max: der_length_t { min <= max /\ max < 4294967296 })
(x: bounded_int min max)
: Tot (bounded_int32 min max)
= U32.uint_to_t x
let parse_bounded_der_length32
(min: der_length_t)
(max: der_length_t { min <= max /\ max < 4294967296 })
: Tot (parser (parse_bounded_der_length32_kind min max) (bounded_int32 min max))
= parse_bounded_der_length min max `parse_synth` synth_bounded_der_length32 min max
#push-options "--z3rlimit 50"
let parse_bounded_der_length32_unfold
min
max
input
= parse_synth_eq (parse_bounded_der_length min max) (synth_bounded_der_length32 min max) input;
parse_bounded_der_length_unfold min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
assert_norm (4294967296 <= der_length_max);
der_length_payload_size_le max 4294967295;
assert_norm (pow2 (8 * 3) == 16777216);
assert_norm (pow2 (8 * 4) == 4294967296);
log256_unique 4294967295 4;
parse_synth_eq (parse_der_length_payload x) (synth_der_length_payload32 x) input' ;
match parse (parse_der_length_payload x) input' with
| None -> ()
| Some (y, _) ->
if y >= 128 then begin
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y) == 128 + log256 y)
end
else ()
#pop-options
let synth_bounded_der_length32_recip
(min: der_length_t)
(max: der_length_t { min <= max /\ max < 4294967296 })
(x: bounded_int32 min max)
: GTot (bounded_int min max)
= U32.v x
let serialize_bounded_der_length32
(min: der_length_t)
(max: der_length_t { min <= max /\ max < 4294967296 })
: Tot (serializer (parse_bounded_der_length32 min max))
= serialize_synth
_
(synth_bounded_der_length32 min max)
(serialize_bounded_der_length min max)
(synth_bounded_der_length32_recip min max)
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.SeqBytes.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.DER.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.SeqBytes.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: LowParse.Spec.DER.der_length_t ->
max: LowParse.Spec.DER.der_length_t{min <= max /\ max < 4294967296} ->
y': LowParse.Spec.BoundedInt.bounded_int32 min max
-> FStar.Pervasives.Lemma
(ensures
(let res =
LowParse.Spec.Base.serialize (LowParse.Spec.DER.serialize_bounded_der_length32 min max) y'
in
let x = LowParse.Spec.DER.tag_of_der_length32_impl y' in
let s1 = FStar.Seq.Base.create 1 x in
(match FStar.UInt8.lt x 128uy with
| true -> FStar.Seq.Base.equal res s1
| _ ->
(match x = 129uy with
| true ->
FStar.UInt32.v y' <= 255 /\
FStar.Seq.Base.equal res
(FStar.Seq.Base.append s1
(FStar.Seq.Base.create 1 (FStar.Int.Cast.uint32_to_uint8 y')))
| _ ->
let len = LowParse.Spec.BoundedInt.log256' (FStar.UInt32.v y') in
FStar.Seq.Base.equal res
(FStar.Seq.Base.append s1
(LowParse.Spec.Base.serialize (LowParse.Spec.BoundedInt.serialize_bounded_integer
len)
y')))
<:
Type0)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"LowParse.Spec.DER.der_length_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"LowParse.Spec.BoundedInt.bounded_int32",
"FStar.UInt8.lt",
"FStar.UInt8.__uint_to_t",
"Prims.bool",
"Prims.op_Equality",
"FStar.UInt8.t",
"FStar.Math.Lemmas.small_modulo_lemma_1",
"FStar.UInt32.v",
"LowParse.Spec.BoundedInt.serialize_bounded_integer_spec",
"Prims.unit",
"LowParse.Spec.DER.log256_eq",
"LowParse.Spec.BoundedInt.integer_size",
"LowParse.Spec.BoundedInt.log256'",
"Prims._assert",
"Prims.op_disEquality",
"LowParse.Spec.DER.der_length_max",
"Prims.eq2",
"LowParse.Spec.DER.tag_of_der_length",
"LowParse.Spec.DER.tag_of_der_length32_impl",
"LowParse.Spec.DER.serialize_bounded_der_length_unfold",
"LowParse.Spec.Combinators.serialize_synth_eq",
"LowParse.Spec.DER.parse_bounded_der_length_kind",
"LowParse.Spec.DER.bounded_int",
"LowParse.Spec.DER.parse_bounded_der_length",
"LowParse.Spec.DER.synth_bounded_der_length32",
"LowParse.Spec.DER.serialize_bounded_der_length",
"LowParse.Spec.DER.synth_bounded_der_length32_recip"
] | [] | false | false | true | false | false | let serialize_bounded_der_length32_unfold min max y' =
| serialize_synth_eq _
(synth_bounded_der_length32 min max)
(serialize_bounded_der_length min max)
(synth_bounded_der_length32_recip min max)
()
y';
serialize_bounded_der_length_unfold min max (U32.v y');
let x = tag_of_der_length32_impl y' in
if x `U8.lt` 128uy
then ()
else
if x = 129uy
then FStar.Math.Lemmas.small_modulo_lemma_1 (U32.v y') 256
else
(assert (x <> 128uy /\ x <> 255uy);
let len = log256' (U32.v y') in
log256_eq (U32.v y');
serialize_bounded_integer_spec len y') | false |
Hacl.Streaming.Blake2s_32.fst | Hacl.Streaming.Blake2s_32.update | val update : Hacl.Streaming.Functor.update_st (Hacl.Streaming.Blake2s_32.blake2s_32 0)
(FStar.Ghost.reveal (FStar.Ghost.hide ()))
(Hacl.Streaming.Blake2.Common.s Spec.Blake2.Definitions.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.Common.empty_key Spec.Blake2.Definitions.Blake2S) | let update =
F.update (blake2s_32 0) (G.hide ()) (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S) | {
"file_name": "code/streaming/Hacl.Streaming.Blake2s_32.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 102,
"end_line": 40,
"start_col": 0,
"start_line": 39
} | module Hacl.Streaming.Blake2s_32
module Blake2s32 = Hacl.Blake2s_32
module Common = Hacl.Streaming.Blake2.Common
module Core = Hacl.Impl.Blake2.Core
module F = Hacl.Streaming.Functor
module G = FStar.Ghost
module Impl = Hacl.Impl.Blake2.Generic
module Spec = Spec.Blake2
inline_for_extraction noextract
let blake2s_32 kk =
Common.blake2 Spec.Blake2S Core.M32 kk Blake2s32.init Blake2s32.update_multi
Blake2s32.update_last Blake2s32.finish
/// Type abbreviations - makes Karamel use pretty names in the generated code
let block_state_t = Common.s Spec.Blake2S Core.M32
let state_t = F.state_s (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
/// The incremental hash functions instantiations. Note that we can't write a
/// generic one, because the normalization then performed by KaRaMeL explodes.
/// All those implementations are for non-keyed hash.
inline_for_extraction noextract
let alloca =
F.alloca (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
[@ (Comment " State allocation function when there is no key")]
let malloc =
F.malloc (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
[@ (Comment " Re-initialization function when there is no key")]
let reset =
F.reset (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S) | {
"checked_file": "/",
"dependencies": [
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Streaming.Blake2.Common.fst.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2s_32.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": "Impl"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Blake2.Common",
"short_module": "Common"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Streaming.Functor.update_st (Hacl.Streaming.Blake2s_32.blake2s_32 0)
(FStar.Ghost.reveal (FStar.Ghost.hide ()))
(Hacl.Streaming.Blake2.Common.s Spec.Blake2.Definitions.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.Common.empty_key Spec.Blake2.Definitions.Blake2S) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Functor.update",
"Prims.unit",
"Hacl.Streaming.Blake2s_32.blake2s_32",
"FStar.Ghost.hide",
"Hacl.Streaming.Blake2.Common.s",
"Spec.Blake2.Definitions.Blake2S",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Streaming.Blake2.Common.empty_key"
] | [] | false | false | false | false | false | let update =
| F.update (blake2s_32 0) (G.hide ()) (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S) | false |
|
Alg.fst | Alg.abides_at_self | val abides_at_self (#a: _) (l: ops) (c: tree0 a)
: Lemma (abides (l @ l) c <==> abides l c) [SMTPat (abides (l @ l) c)] | val abides_at_self (#a: _) (l: ops) (c: tree0 a)
: Lemma (abides (l @ l) c <==> abides l c) [SMTPat (abides (l @ l) c)] | let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 28,
"end_line": 106,
"start_col": 0,
"start_line": 99
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: Alg.ops -> c: Alg.tree0 a
-> FStar.Pervasives.Lemma (ensures Alg.abides (l @ l) c <==> Alg.abides l c)
[SMTPat (Alg.abides (l @ l) c)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Alg.ops",
"Alg.tree0",
"Prims._assert",
"Alg.sublist",
"FStar.List.Tot.Base.op_At",
"Alg.op",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_iff",
"Alg.abides",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.prop",
"Prims.Nil"
] | [] | true | false | true | false | false | let abides_at_self #a (l: ops) (c: tree0 a)
: Lemma (abides (l @ l) c <==> abides l c) [SMTPat (abides (l @ l) c)] =
| assert (sublist l (l @ l));
assert (sublist (l @ l) l) | false |
Alg.fst | Alg.sublist_at | val sublist_at (l1 l2: ops)
: Lemma (sublist l1 (l1 @ l2) /\ sublist l2 (l1 @ l2))
[SMTPatOr [[SMTPat (sublist l1 (l1 @ l2))]; [SMTPat (sublist l2 (l1 @ l2))]]] | val sublist_at (l1 l2: ops)
: Lemma (sublist l1 (l1 @ l2) /\ sublist l2 (l1 @ l2))
[SMTPatOr [[SMTPat (sublist l1 (l1 @ l2))]; [SMTPat (sublist l2 (l1 @ l2))]]] | let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2 | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 31,
"end_line": 75,
"start_col": 0,
"start_line": 68
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l1: Alg.ops -> l2: Alg.ops
-> FStar.Pervasives.Lemma (ensures Alg.sublist l1 (l1 @ l2) /\ Alg.sublist l2 (l1 @ l2))
[SMTPatOr [[SMTPat (Alg.sublist l1 (l1 @ l2))]; [SMTPat (Alg.sublist l2 (l1 @ l2))]]] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Alg.ops",
"Alg.op",
"Prims.list",
"Alg.sublist_at",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Alg.sublist",
"FStar.List.Tot.Base.op_At",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat_or",
"FStar.Pervasives.smt_pat",
"Prims.logical",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec sublist_at (l1 l2: ops)
: Lemma (sublist l1 (l1 @ l2) /\ sublist l2 (l1 @ l2))
[SMTPatOr [[SMTPat (sublist l1 (l1 @ l2))]; [SMTPat (sublist l2 (l1 @ l2))]]] =
| match l1 with
| [] -> ()
| _ :: l1 -> sublist_at l1 l2 | false |
Alg.fst | Alg.bind | val bind (a b: Type) (#labs1 #labs2: ops) (c: tree a labs1) (f: (x: a -> tree b labs2))
: Tot (tree b (labs1 @ labs2)) | val bind (a b: Type) (#labs1 #labs2: ops) (c: tree a labs1) (f: (x: a -> tree b labs2))
: Tot (tree b (labs1 @ labs2)) | let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 71,
"end_line": 159,
"start_col": 0,
"start_line": 154
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> b: Type -> c: Alg.tree a labs1 -> f: (x: a -> Alg.tree b labs2)
-> Alg.tree b (labs1 @ labs2) | Prims.Tot | [
"total"
] | [] | [
"Alg.ops",
"Alg.tree",
"Alg.handle_tree",
"FStar.List.Tot.Base.op_At",
"Alg.op",
"FStar.List.Tot.Base.memP",
"Alg.op_inp",
"Alg.op_out",
"Alg.Op"
] | [] | false | false | false | false | false | let bind (a b: Type) (#labs1 #labs2: ops) (c: tree a labs1) (f: (x: a -> tree b labs2))
: Tot (tree b (labs1 @ labs2)) =
| handle_tree #_ #_ #_ #(labs1 @ labs2) c f (fun act i k -> Op act i k) | false |
Hacl.Streaming.Blake2s_32.fst | Hacl.Streaming.Blake2s_32.digest | val digest : Hacl.Streaming.Functor.digest_st (Hacl.Streaming.Blake2s_32.blake2s_32 0)
()
(Hacl.Streaming.Blake2.Common.s Spec.Blake2.Definitions.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.Common.empty_key Spec.Blake2.Definitions.Blake2S) | let digest =
F.digest (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S) | {
"file_name": "code/streaming/Hacl.Streaming.Blake2s_32.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 93,
"end_line": 44,
"start_col": 0,
"start_line": 43
} | module Hacl.Streaming.Blake2s_32
module Blake2s32 = Hacl.Blake2s_32
module Common = Hacl.Streaming.Blake2.Common
module Core = Hacl.Impl.Blake2.Core
module F = Hacl.Streaming.Functor
module G = FStar.Ghost
module Impl = Hacl.Impl.Blake2.Generic
module Spec = Spec.Blake2
inline_for_extraction noextract
let blake2s_32 kk =
Common.blake2 Spec.Blake2S Core.M32 kk Blake2s32.init Blake2s32.update_multi
Blake2s32.update_last Blake2s32.finish
/// Type abbreviations - makes Karamel use pretty names in the generated code
let block_state_t = Common.s Spec.Blake2S Core.M32
let state_t = F.state_s (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
/// The incremental hash functions instantiations. Note that we can't write a
/// generic one, because the normalization then performed by KaRaMeL explodes.
/// All those implementations are for non-keyed hash.
inline_for_extraction noextract
let alloca =
F.alloca (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
[@ (Comment " State allocation function when there is no key")]
let malloc =
F.malloc (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
[@ (Comment " Re-initialization function when there is no key")]
let reset =
F.reset (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
[@ (Comment " Update function when there is no key; 0 = success, 1 = max length exceeded")]
let update =
F.update (blake2s_32 0) (G.hide ()) (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S) | {
"checked_file": "/",
"dependencies": [
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Streaming.Blake2.Common.fst.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2s_32.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": "Impl"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Blake2.Common",
"short_module": "Common"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Streaming.Functor.digest_st (Hacl.Streaming.Blake2s_32.blake2s_32 0)
()
(Hacl.Streaming.Blake2.Common.s Spec.Blake2.Definitions.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.Common.empty_key Spec.Blake2.Definitions.Blake2S) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Functor.digest",
"Prims.unit",
"Hacl.Streaming.Blake2s_32.blake2s_32",
"Hacl.Streaming.Blake2.Common.s",
"Spec.Blake2.Definitions.Blake2S",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Streaming.Blake2.Common.empty_key"
] | [] | false | false | false | false | false | let digest =
| F.digest (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S) | false |
|
Alg.fst | Alg.fold_with | val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b | val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b | let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k' | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 14,
"end_line": 131,
"start_col": 0,
"start_line": 124
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f: Alg.tree a labs ->
v: (_: a -> b) ->
h:
(o: Alg.op{FStar.List.Tot.Base.memP o labs} -> _: Alg.op_inp o -> _: (_: Alg.op_out o -> b)
-> b)
-> b | Prims.Tot | [
"total"
] | [] | [
"Alg.ops",
"Alg.tree",
"Alg.op",
"FStar.List.Tot.Base.memP",
"Alg.op_inp",
"Alg.op_out",
"Alg.tree0",
"Alg.fold_with"
] | [
"recursion"
] | false | false | false | false | false | let rec fold_with #a #b #labs f v h =
| match f with
| Return x -> v x
| Op act i k ->
let k' (o: op_out act) : b = fold_with #_ #_ #labs (k o) v h in
h act i k' | false |
Alg.fst | Alg.subcomp | val subcomp (a: Type) (#labs1 #labs2: ops) (f: tree a labs1)
: Pure (tree a labs2) (requires (sublist labs1 labs2)) (ensures (fun _ -> True)) | val subcomp (a: Type) (#labs1 #labs2: ops) (f: tree a labs1)
: Pure (tree a labs2) (requires (sublist labs1 labs2)) (ensures (fun _ -> True)) | let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 167,
"start_col": 0,
"start_line": 161
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> f: Alg.tree a labs1 -> Prims.Pure (Alg.tree a labs2) | Prims.Pure | [] | [] | [
"Alg.ops",
"Alg.tree",
"Alg.sublist",
"Prims.l_True"
] | [] | false | false | false | false | false | let subcomp (a: Type) (#labs1 #labs2: ops) (f: tree a labs1)
: Pure (tree a labs2) (requires (sublist labs1 labs2)) (ensures (fun _ -> True)) =
| f | false |
Alg.fst | Alg.run | val run (#a: _) (f: (unit -> Alg a [])) : a | val run (#a: _) (f: (unit -> Alg a [])) : a | let run #a (f : unit -> Alg a []) : a = frompure (reify (f ())) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 63,
"end_line": 229,
"start_col": 0,
"start_line": 229
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> a | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"Prims.Nil",
"Alg.op",
"Alg.frompure"
] | [] | false | false | false | false | false | let run #a (f: (unit -> Alg a [])) : a =
| frompure (reify (f ())) | false |
Alg.fst | Alg.return | val return (a: Type) (x: a) : tree a [] | val return (a: Type) (x: a) : tree a [] | let return (a:Type) (x:a)
: tree a []
= Return x | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 12,
"end_line": 152,
"start_col": 0,
"start_line": 150
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> x: a -> Alg.tree a [] | Prims.Tot | [
"total"
] | [] | [
"Alg.Return",
"Alg.tree",
"Prims.Nil",
"Alg.op"
] | [] | false | false | false | true | false | let return (a: Type) (x: a) : tree a [] =
| Return x | false |
Alg.fst | Alg.memP_at | val memP_at (l1 l2: ops) (l: op)
: Lemma (memP l (l1 @ l2) <==> (memP l l1 \/ memP l l2)) [SMTPat (memP l (l1 @ l2))] | val memP_at (l1 l2: ops) (l: op)
: Lemma (memP l (l1 @ l2) <==> (memP l l1 \/ memP l l2)) [SMTPat (memP l (l1 @ l2))] | let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 66,
"start_col": 0,
"start_line": 61
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l1: Alg.ops -> l2: Alg.ops -> l: Alg.op
-> FStar.Pervasives.Lemma
(ensures
FStar.List.Tot.Base.memP l (l1 @ l2) <==>
FStar.List.Tot.Base.memP l l1 \/ FStar.List.Tot.Base.memP l l2)
[SMTPat (FStar.List.Tot.Base.memP l (l1 @ l2))] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Alg.ops",
"Alg.op",
"Prims.list",
"Alg.memP_at",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_iff",
"FStar.List.Tot.Base.memP",
"FStar.List.Tot.Base.op_At",
"Prims.l_or",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec memP_at (l1 l2: ops) (l: op)
: Lemma (memP l (l1 @ l2) <==> (memP l l1 \/ memP l l2)) [SMTPat (memP l (l1 @ l2))] =
| match l1 with
| [] -> ()
| _ :: l1 -> memP_at l1 l2 l | false |
Pulse.Elaborate.Pure.fst | Pulse.Elaborate.Pure.elab_stt_equiv | val elab_stt_equiv
(g: R.env)
(c: comp{C_ST? c})
(pre post: R.term)
(eq_pre: RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:
RT.equiv g post (mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_ST { u = u ; res = res } = c in
mk_stt_comp u (elab_term res) pre post)
(elab_comp c) | val elab_stt_equiv
(g: R.env)
(c: comp{C_ST? c})
(pre post: R.term)
(eq_pre: RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:
RT.equiv g post (mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_ST { u = u ; res = res } = c in
mk_stt_comp u (elab_term res) pre post)
(elab_comp c) | let elab_stt_equiv (g:R.env) (c:comp{C_ST? c}) (pre:R.term) (post:R.term)
(eq_pre:RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:RT.equiv g post
(mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_ST {u;res} = c in
mk_stt_comp u
(elab_term res)
pre
post)
(elab_comp c) =
mk_stt_comp_equiv _
(comp_u c)
(elab_term (comp_res c))
_ _ _ _ _ (RT.Rel_refl _ _ _) eq_pre eq_post | {
"file_name": "lib/steel/pulse/Pulse.Elaborate.Pure.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 48,
"end_line": 157,
"start_col": 0,
"start_line": 142
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Elaborate.Pure
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module RU = Pulse.RuntimeUtils
open FStar.List.Tot
open Pulse.Syntax.Base
open Pulse.Reflection.Util
let (let!) (f:option 'a) (g: 'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let elab_qual = function
| None -> R.Q_Explicit
| Some Implicit -> R.Q_Implicit
let elab_observability =
let open R in
function
| Neutral -> pack_ln (Tv_FVar (pack_fv neutral_lid))
| Unobservable -> pack_ln (Tv_FVar (pack_fv unobservable_lid))
| Observable -> pack_ln (Tv_FVar (pack_fv observable_lid))
let rec elab_term (top:term)
: R.term
= let open R in
let w t' = RU.set_range t' top.range in
match top.t with
| Tm_VProp ->
w (pack_ln (Tv_FVar (pack_fv vprop_lid)))
| Tm_Emp ->
w (pack_ln (Tv_FVar (pack_fv emp_lid)))
| Tm_Inv p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv inv_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Pure p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv pure_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Star l r ->
let l = elab_term l in
let r = elab_term r in
w (mk_star l r)
| Tm_ExistsSL u b body
| Tm_ForallSL u b body ->
let t = elab_term b.binder_ty in
let body = elab_term body in
let t = set_range_of t b.binder_ppname.range in
if Tm_ExistsSL? top.t
then w (mk_exists u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
else w (mk_forall u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
| Tm_Inames ->
w (pack_ln (Tv_FVar (pack_fv inames_lid)))
| Tm_EmpInames ->
w (emp_inames_tm)
| Tm_AddInv i is ->
let i = elab_term i in
let is = elab_term is in
w (add_inv_tm (`_) is i) // Careful on the order flip
| Tm_Unknown ->
w (pack_ln R.Tv_Unknown)
| Tm_FStar t ->
w t
let rec elab_pat (p:pattern) : Tot R.pattern =
let elab_fv (f:fv) : R.fv =
R.pack_fv f.fv_name
in
match p with
| Pat_Constant c -> R.Pat_Constant c
| Pat_Var v ty -> R.Pat_Var RT.sort_default v
| Pat_Cons fv vs ->
R.Pat_Cons (elab_fv fv) None (Pulse.Common.map_dec p vs elab_sub_pat)
| Pat_Dot_Term None ->
R.Pat_Dot_Term None
| Pat_Dot_Term (Some t) ->
R.Pat_Dot_Term (Some (elab_term t))
and elab_sub_pat (pi : pattern & bool) : R.pattern & bool =
let (p, i) = pi in
elab_pat p, i
let elab_pats (ps:list pattern) : Tot (list R.pattern) = L.map elab_pat ps
let elab_st_comp (c:st_comp)
: R.universe & R.term & R.term & R.term
= let res = elab_term c.res in
let pre = elab_term c.pre in
let post = elab_term c.post in
c.u, res, pre, post
let elab_comp (c:comp)
: R.term
= match c with
| C_Tot t ->
elab_term t
| C_ST c ->
let u, res, pre, post = elab_st_comp c in
mk_stt_comp u res pre (mk_abs res R.Q_Explicit post)
| C_STAtomic inames obs c ->
let inames = elab_term inames in
let u, res, pre, post = elab_st_comp c in
let post = mk_abs res R.Q_Explicit post in
mk_stt_atomic_comp (elab_observability obs) u res inames pre post
| C_STGhost c ->
let u, res, pre, post = elab_st_comp c in
mk_stt_ghost_comp u res pre (mk_abs res R.Q_Explicit post) | {
"checked_file": "/",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Common.fst.checked",
"prims.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Elaborate.Pure.fst"
} | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
g: FStar.Stubs.Reflection.Types.env ->
c: Pulse.Syntax.Base.comp{C_ST? c} ->
pre: FStar.Stubs.Reflection.Types.term ->
post: FStar.Stubs.Reflection.Types.term ->
eq_pre:
FStar.Reflection.Typing.equiv g
pre
(Pulse.Elaborate.Pure.elab_term (Pulse.Syntax.Base.comp_pre c)) ->
eq_post:
FStar.Reflection.Typing.equiv g
post
(Pulse.Reflection.Util.mk_abs (Pulse.Elaborate.Pure.elab_term (Pulse.Syntax.Base.comp_res c)
)
FStar.Stubs.Reflection.V2.Data.Q_Explicit
(Pulse.Elaborate.Pure.elab_term (Pulse.Syntax.Base.comp_post c)))
-> FStar.Reflection.Typing.equiv g
(let _ = c in
(let Pulse.Syntax.Base.C_ST { u = u46 ; res = res ; pre = _ ; post = _ } = _ in
Pulse.Reflection.Util.mk_stt_comp u46 (Pulse.Elaborate.Pure.elab_term res) pre post)
<:
FStar.Stubs.Reflection.Types.term)
(Pulse.Elaborate.Pure.elab_comp c) | Prims.Tot | [
"total"
] | [] | [
"FStar.Stubs.Reflection.Types.env",
"Pulse.Syntax.Base.comp",
"Prims.b2t",
"Pulse.Syntax.Base.uu___is_C_ST",
"FStar.Stubs.Reflection.Types.term",
"FStar.Reflection.Typing.equiv",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Syntax.Base.comp_pre",
"Pulse.Reflection.Util.mk_abs",
"Pulse.Syntax.Base.comp_res",
"FStar.Stubs.Reflection.V2.Data.Q_Explicit",
"Pulse.Syntax.Base.comp_post",
"Pulse.Reflection.Util.mk_stt_comp_equiv",
"Pulse.Syntax.Base.comp_u",
"FStar.Reflection.Typing.Rel_refl",
"FStar.Reflection.Typing.R_Eq",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.vprop",
"Pulse.Reflection.Util.mk_stt_comp",
"Pulse.Elaborate.Pure.elab_comp"
] | [] | false | false | false | false | false | let elab_stt_equiv
(g: R.env)
(c: comp{C_ST? c})
(pre post: R.term)
(eq_pre: RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:
RT.equiv g post (mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_ST { u = u ; res = res } = c in
mk_stt_comp u (elab_term res) pre post)
(elab_comp c) =
| mk_stt_comp_equiv _ (comp_u c) (elab_term (comp_res c)) _ _ _ _ _ (RT.Rel_refl _ _ _) eq_pre eq_post | false |
Pulse.Typing.Metatheory.Base.fsti | Pulse.Typing.Metatheory.Base.veq_weakening | val veq_weakening:
g: env ->
g': env{disjoint g g'} ->
#v1: vprop ->
#v2: vprop ->
vprop_equiv (push_env g g') v1 v2 ->
g1: env{pairwise_disjoint g g1 g'}
-> vprop_equiv (push_env (push_env g g1) g') v1 v2 | val veq_weakening:
g: env ->
g': env{disjoint g g'} ->
#v1: vprop ->
#v2: vprop ->
vprop_equiv (push_env g g') v1 v2 ->
g1: env{pairwise_disjoint g g1 g'}
-> vprop_equiv (push_env (push_env g g1) g') v1 v2 | let veq_weakening
(g:env) (g':env { disjoint g g' })
(#v1 #v2:vprop) (_:vprop_equiv (push_env g g') v1 v2)
(g1:env { pairwise_disjoint g g1 g' })
: vprop_equiv (push_env (push_env g g1) g') v1 v2 = RU.magic () | {
"file_name": "lib/steel/pulse/Pulse.Typing.Metatheory.Base.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 65,
"end_line": 111,
"start_col": 0,
"start_line": 107
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.Metatheory.Base
open Pulse.Syntax
open Pulse.Syntax.Naming
open Pulse.Typing
module RU = Pulse.RuntimeUtils
module T = FStar.Tactics.V2
val admit_comp_typing (g:env) (c:comp_st)
: comp_typing_u g c
module RT = FStar.Reflection.Typing
let rt_equiv_typing (#g:_) (#t0 #t1:_) (d:RT.equiv g t0 t1)
(#k:_)
(d1:Ghost.erased (RT.tot_typing g t0 k))
: Ghost.erased (RT.tot_typing g t1 k)
= admit()
val st_typing_correctness_ctot (#g:env) (#t:st_term) (#c:comp{C_Tot? c})
(_:st_typing g t c)
: (u:Ghost.erased universe & universe_of g (comp_res c) u)
let inames_of_comp_st (c:comp_st) =
match c with
| C_STAtomic _ _ _ -> comp_inames c
| _ -> tm_emp_inames
let iname_typing (g:env) (c:comp_st) = tot_typing g (inames_of_comp_st c) tm_inames
val st_typing_correctness (#g:env) (#t:st_term) (#c:comp_st)
(d:st_typing g t c)
: comp_typing_u g c
val comp_typing_inversion (#g:env) (#c:comp_st) (ct:comp_typing_u g c)
: st_comp_typing g (st_comp_of_comp c) & iname_typing g c
val st_comp_typing_inversion_cofinite (#g:env) (#st:_) (ct:st_comp_typing g st)
: (universe_of g st.res st.u &
tot_typing g st.pre tm_vprop &
(x:var{fresh_wrt x g (freevars st.post)} -> //this part is tricky, to get the quantification on x
tot_typing (push_binding g x ppname_default st.res) (open_term st.post x) tm_vprop))
val st_comp_typing_inversion (#g:env) (#st:_) (ct:st_comp_typing g st)
: (universe_of g st.res st.u &
tot_typing g st.pre tm_vprop &
x:var{fresh_wrt x g (freevars st.post)} &
tot_typing (push_binding g x ppname_default st.res) (open_term st.post x) tm_vprop)
val tm_exists_inversion (#g:env) (#u:universe) (#ty:term) (#p:term)
(_:tot_typing g (tm_exists_sl u (as_binder ty) p) tm_vprop)
(x:var { fresh_wrt x g (freevars p) } )
: universe_of g ty u &
tot_typing (push_binding g x ppname_default ty) p tm_vprop
val pure_typing_inversion (#g:env) (#p:term) (_:tot_typing g (tm_pure p) tm_vprop)
: tot_typing g p (tm_fstar FStar.Reflection.Typing.tm_prop Range.range_0)
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module C = FStar.Stubs.TypeChecker.Core
open FStar.Ghost
val typing_correctness
(#g:R.env)
(#t:R.term)
(#ty:R.typ)
(#eff:_)
(_:erased (RT.typing g t (eff, ty)))
: erased (u:R.universe & RT.typing g ty (C.E_Total, RT.tm_type u))
let renaming x y = [NT x (tm_var {nm_index=y; nm_ppname=ppname_default})]
val tot_typing_renaming1
(g:env) (x:var {None? (lookup g x)}) (tx e ty:term)
(_:tot_typing (push_binding g x ppname_default tx) e ty)
(y:var { None? (lookup g y) /\ x <> y })
: tot_typing (push_binding g y ppname_default tx)
(subst_term e (renaming x y))
(subst_term ty (renaming x y))
val tot_typing_weakening
(g:env) (g':env { disjoint g g' })
(t:term) (ty:typ) (_:tot_typing (push_env g g') t ty)
(g1:env { pairwise_disjoint g g1 g' })
: tot_typing (push_env (push_env g g1) g') t ty
val st_typing_weakening
(g:env) (g':env { disjoint g g' })
(t:st_term) (c:comp) (_:st_typing (push_env g g') t c)
(g1:env { pairwise_disjoint g g1 g' })
: st_typing (push_env (push_env g g1) g') t c | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.Naming.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.TypeChecker.Core.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Typing.Metatheory.Base.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Stubs.TypeChecker.Core",
"short_module": "C"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Metatheory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Metatheory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
g: Pulse.Typing.Env.env ->
g': Pulse.Typing.Env.env{Pulse.Typing.Env.disjoint g g'} ->
_: Pulse.Typing.vprop_equiv (Pulse.Typing.Env.push_env g g') v1 v2 ->
g1: Pulse.Typing.Env.env{Pulse.Typing.Env.pairwise_disjoint g g1 g'}
-> Pulse.Typing.vprop_equiv (Pulse.Typing.Env.push_env (Pulse.Typing.Env.push_env g g1) g') v1 v2 | Prims.Tot | [
"total"
] | [] | [
"Pulse.Typing.Env.env",
"Pulse.Typing.Env.disjoint",
"Pulse.Syntax.Base.vprop",
"Pulse.Typing.vprop_equiv",
"Pulse.Typing.Env.push_env",
"Pulse.Typing.Env.pairwise_disjoint",
"Pulse.RuntimeUtils.magic"
] | [] | false | false | false | false | false | let veq_weakening
(g: env)
(g': env{disjoint g g'})
(#v1: vprop)
(#v2: vprop)
(_: vprop_equiv (push_env g g') v1 v2)
(g1: env{pairwise_disjoint g g1 g'})
: vprop_equiv (push_env (push_env g g1) g') v1 v2 =
| RU.magic () | false |
Alg.fst | Alg.handler_op | val handler_op : o: Alg.op -> b: Type -> labs: Alg.ops -> Type | let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 94,
"end_line": 303,
"start_col": 0,
"start_line": 303
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | o: Alg.op -> b: Type -> labs: Alg.ops -> Type | Prims.Tot | [
"total"
] | [] | [
"Alg.op",
"Alg.ops",
"Alg.op_inp",
"Alg.op_out"
] | [] | false | false | false | true | true | let handler_op (o: op) (b: Type) (labs: ops) =
| op_inp o -> (op_out o -> Alg b labs) -> Alg b labs | false |
|
Alg.fst | Alg.lift_pure_alg | val lift_pure_alg (a: Type) (wp: pure_wp a) (f: (unit -> PURE a wp))
: Pure (tree a []) (requires (wp (fun _ -> True))) (ensures (fun _ -> True)) | val lift_pure_alg (a: Type) (wp: pure_wp a) (f: (unit -> PURE a wp))
: Pure (tree a []) (requires (wp (fun _ -> True))) (ensures (fun _ -> True)) | let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 11,
"end_line": 194,
"start_col": 0,
"start_line": 186
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> wp: Prims.pure_wp a -> f: (_: Prims.unit -> Prims.PURE a) -> Prims.Pure (Alg.tree a []) | Prims.Pure | [] | [] | [
"Prims.pure_wp",
"Prims.unit",
"Alg.Return",
"FStar.Monotonic.Pure.elim_pure",
"Prims.l_True",
"Alg.tree",
"Prims.Nil",
"Alg.op"
] | [] | false | false | false | false | false | let lift_pure_alg (a: Type) (wp: pure_wp a) (f: (unit -> PURE a wp))
: Pure (tree a []) (requires (wp (fun _ -> True))) (ensures (fun _ -> True)) =
| let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v | false |
LowParse.Spec.DER.fst | LowParse.Spec.DER.serialize_der_length_weak_unfold | val serialize_der_length_weak_unfold (y: der_length_t)
: Lemma
(let res = serialize serialize_der_length_weak y in
let x = tag_of_der_length y in
let s1 = Seq.create 1 x in
if x `U8.lt` 128uy
then res `Seq.equal` s1
else
if x = 129uy
then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` (Seq.create 1 (U8.uint_to_t y)))
else
let len = log256 y in
res `Seq.equal` (s1 `Seq.append` (E.n_to_be len y))) | val serialize_der_length_weak_unfold (y: der_length_t)
: Lemma
(let res = serialize serialize_der_length_weak y in
let x = tag_of_der_length y in
let s1 = Seq.create 1 x in
if x `U8.lt` 128uy
then res `Seq.equal` s1
else
if x = 129uy
then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` (Seq.create 1 (U8.uint_to_t y)))
else
let len = log256 y in
res `Seq.equal` (s1 `Seq.append` (E.n_to_be len y))) | let serialize_der_length_weak_unfold
(y: der_length_t)
: Lemma
(let res = serialize serialize_der_length_weak y in
let x = tag_of_der_length y in
let s1 = Seq.create 1 x in
if x `U8.lt` 128uy
then res `Seq.equal` s1
else if x = 129uy
then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y))
else
let len = log256 y in
res `Seq.equal` (s1 `Seq.append` E.n_to_be len y)
)
= let x = tag_of_der_length y in
serialize_u8_spec x;
assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
()
end else
if x = 128uy || x = 255uy
then
tag_of_der_length_invalid y
else if x = 129uy
then begin
tag_of_der_length_eq_129 y;
assert (U8.v (synth_der_length_129_recip x y) == y);
let s1 = serialize ( serialize_synth #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x)
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)))
y
in
serialize_synth_eq'
#_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128))
#(refine_with_tag tag_of_der_length x)
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))
y
s1
()
(serialize serialize_u8 (synth_der_length_129_recip x y))
()
;
serialize_u8_spec (U8.uint_to_t y);
()
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
assert (
serialize (serialize_der_length_payload x) y == serialize (serialize_der_length_payload_greater x len) y
);
serialize_synth_eq'
#_
#(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
#(refine_with_tag tag_of_der_length x)
_
(synth_der_length_greater x len)
(serialize_filter
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(fun (y: lint len) -> y >= pow2 (8 * (len - 1)))
)
(synth_der_length_greater_recip x len)
()
y
(serialize (serialize_der_length_payload_greater x len) y)
(_ by (FStar.Tactics.trefl ()))
(serialize
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(synth_der_length_greater_recip x len y)
)
()
;
serialize_synth_eq
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
(synth_der_length_greater_recip x len y);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
()
end;
() | {
"file_name": "src/lowparse/LowParse.Spec.DER.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 4,
"end_line": 689,
"start_col": 0,
"start_line": 577
} | module LowParse.Spec.DER
open LowParse.Spec.Combinators
open LowParse.Spec.SeqBytes.Base
// include LowParse.Spec.VLData // for in_bounds
open FStar.Mul
module U8 = FStar.UInt8
module UInt = FStar.UInt
module Math = LowParse.Math
module E = FStar.Endianness
module Seq = FStar.Seq
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0"
// let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`())))
let der_length_max_eq =
assert_norm (der_length_max == pow2 (8 * 126) - 1)
let rec log256
(x: nat { x > 0 })
: Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)})
= assert_norm (pow2 8 == 256);
if x < 256
then 1
else begin
let n = log256 (x / 256) in
Math.pow2_plus (8 * (n - 1)) 8;
Math.pow2_plus (8 * n) 8;
n + 1
end
let log256_unique
x
y
= Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x);
Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y)
let log256_le
x1
x2
= Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2)
let der_length_payload_size_le
x1
x2
= if x1 < 128 || x2 < 128
then ()
else
let len_len2 = log256 x2 in
let len_len1 = log256 x1 in
log256_le x1 x2;
assert_norm (pow2 7 == 128);
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126)
let synth_be_int
(len: nat)
(b: Seq.lseq byte len)
: Tot (lint len)
= E.lemma_be_to_n_is_bounded b;
E.be_to_n b
let synth_be_int_injective
(len: nat)
: Lemma
(synth_injective (synth_be_int len))
[SMTPat (synth_injective (synth_be_int len))]
=
synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) ->
E.be_to_n_inj x x'
)
let synth_der_length_129
(x: U8.t { x == 129uy } )
(y: U8.t { U8.v y >= 128 } )
: Tot (refine_with_tag tag_of_der_length x)
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
log256_unique (U8.v y) 1;
U8.v y
let synth_der_length_greater
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x - 128 } )
(y: lint len { y >= pow2 (8 * (len - 1)) } )
: Tot (refine_with_tag tag_of_der_length x)
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
Math.pow2_le_compat (8 * 126) (8 * len);
Math.pow2_le_compat (8 * (len - 1)) 7;
log256_unique y len;
y
let parse_der_length_payload
(x: U8.t)
: Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x))
end else
if x = 128uy
then
fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case
else if x = 255uy
then
fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already
else if x = 129uy
then
weaken (parse_der_length_payload_kind x)
((parse_u8 `parse_filter` (fun y -> U8.v y >= 128))
`parse_synth` synth_der_length_129 x)
else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
weaken (parse_der_length_payload_kind x)
(((parse_seq_flbytes len `parse_synth` (synth_be_int len))
`parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
`parse_synth` synth_der_length_greater x len)
end
let parse_der_length_payload_unfold
(x: U8.t)
(input: bytes)
: Lemma
(
let y = parse (parse_der_length_payload x) input in
(256 < der_length_max) /\ (
if U8.v x < 128
then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0)
else if x = 128uy || x = 255uy
then y == None
else if x = 129uy
then
match parse parse_u8 input with
| None -> y == None
| Some (z, consumed) ->
if U8.v z < 128
then y == None
else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed)
else
let len : nat = U8.v x - 128 in
synth_injective (synth_be_int len) /\ (
let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in
match res with
| None -> y == None
| Some (z, consumed) ->
len > 0 /\ (
if z >= pow2 (8 * (len - 1))
then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed)
else y == None
))))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
()
end else
if x = 128uy
then
()
else if x = 255uy
then
()
else if x = 129uy
then begin
parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input;
parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input;
match parse parse_u8 input with
| None -> ()
| Some (y, _) ->
if U8.v y >= 128
then begin
log256_unique (U8.v y) 1
end else ()
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len))
`parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input;
parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input;
assert (len > 1);
let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in
match res with
| None -> ()
| Some (y, _) ->
if y >= pow2 (8 * (len - 1))
then begin
let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in
Math.pow2_le_compat (8 * 126) (8 * len);
Math.pow2_le_compat (8 * (len - 1)) 7;
log256_unique y len
end else ()
end
inline_for_extraction
let parse_der_length_payload_kind_weak : parser_kind =
strong_parser_kind 0 126 None
inline_for_extraction
let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak
let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t
= parse_tagged_union
parse_u8
tag_of_der_length
(fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x))
[@@(noextract_to "krml")]
let parse_bounded_der_length_payload_kind
(min: der_length_t)
(max: der_length_t { min <= max } )
: Tot parser_kind =
[@inline_let] let _ = der_length_payload_size_le min max in
strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None
let bounded_int
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot Type
= (x: int { min <= x /\ x <= max })
let parse_bounded_der_length_tag_cond
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t)
: Tot bool
= let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max
inline_for_extraction // for parser_kind
let tag_of_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
(x: bounded_int min max)
: Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } )
= [@inline_let]
let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in
tag_of_der_length x
let parse_bounded_der_length_payload
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
: Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x))
= weaken (parse_bounded_der_length_payload_kind min max)
(parse_der_length_payload x
`parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)
`parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)))
[@@(noextract_to "krml")]
let parse_bounded_der_length_kind
(min: der_length_t)
(max: der_length_t { min <= max } )
: Tot parser_kind
= and_then_kind
(parse_filter_kind parse_u8_kind)
(parse_bounded_der_length_payload_kind min max)
let parse_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max))
= parse_tagged_union
(parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max)
(tag_of_bounded_der_length min max)
(parse_bounded_der_length_payload min max)
(* equality *)
let parse_bounded_der_length_payload_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
(input' : bytes)
: Lemma
(parse (parse_bounded_der_length_payload min max x) input' == (
match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_y)
else None
))
=
parse_synth_eq
(parse_der_length_payload x
`parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max))
(fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))
input' ;
parse_filter_eq
(parse_der_length_payload x)
(fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)
input'
let parse_bounded_der_length_unfold_aux
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
match parse (parse_bounded_der_length_payload min max x) input'
with
| Some (y, consumed_y) -> Some (y, consumed_x + consumed_y)
| None -> None
else None
))
= parse_tagged_union_eq
(parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max)
(tag_of_bounded_der_length min max)
(parse_bounded_der_length_payload min max)
input;
parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input
let parse_bounded_der_length_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_x + consumed_y)
else None
else None
))
= parse_bounded_der_length_unfold_aux min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
) input'
else ()
let parse_bounded_der_length_weak
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max))
= parse_der_length_weak
`parse_filter` (fun y -> min <= y && y <= max)
`parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
let parse_bounded_der_length_weak_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length_weak min max) input == (
match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let input' = Seq.slice input consumed_x (Seq.length input) in
begin match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_x + consumed_y)
else None
end
))
= parse_synth_eq
(parse_der_length_weak
`parse_filter` (fun y -> min <= y && y <= max))
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
input;
parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input;
parse_tagged_union_eq
parse_u8
tag_of_der_length
(fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x))
input
let parse_bounded_der_length_eq
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input))
= parse_bounded_der_length_unfold min max input;
parse_bounded_der_length_weak_unfold min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let input' = Seq.slice input consumed_x (Seq.length input) in
begin match parse (parse_der_length_payload x) input' with
| None -> ()
| Some (y, consumed_y) ->
if min <= y && y <= max
then (der_length_payload_size_le min y; der_length_payload_size_le y max)
else ()
end
(* serializer *)
let tag_of_der_length_lt_128
(x: der_length_t)
: Lemma
(requires (U8.v (tag_of_der_length x) < 128))
(ensures (x == U8.v (tag_of_der_length x)))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let tag_of_der_length_invalid
(x: der_length_t)
: Lemma
(requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255))
(ensures False)
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let tag_of_der_length_eq_129
(x: der_length_t)
: Lemma
(requires (U8.v (tag_of_der_length x) == 129))
(ensures (x >= 128 /\ x < 256))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let synth_der_length_129_recip
(x: U8.t { x == 129uy })
(y: refine_with_tag tag_of_der_length x)
: GTot (y: U8.t {U8.v y >= 128})
= tag_of_der_length_eq_129 y;
U8.uint_to_t y
let synth_be_int_recip
(len: nat)
(x: lint len)
: GTot (b: Seq.lseq byte len)
= E.n_to_be len x
let synth_be_int_inverse
(len: nat)
: Lemma
(synth_inverse (synth_be_int len) (synth_be_int_recip len))
= ()
let synth_der_length_greater_recip
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x % 128 } )
(y: refine_with_tag tag_of_der_length x)
: Tot (y: lint len { y >= pow2 (8 * (len - 1)) } )
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
y
let synth_der_length_greater_inverse
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x % 128 } )
: Lemma
(synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len))
= ()
private
let serialize_der_length_payload_greater
(x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } )
(len: nat { len == U8.v x - 128 } )
=
(serialize_synth
#_
#(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
#(refine_with_tag tag_of_der_length x)
_
(synth_der_length_greater x len)
(serialize_filter
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(fun (y: lint len) -> y >= pow2 (8 * (len - 1)))
)
(synth_der_length_greater_recip x len)
()
)
let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y)
let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False
let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y)
let serialize_der_length_payload
(x: U8.t)
: Tot (serializer (parse_der_length_payload x))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x))
end else
if x = 128uy || x = 255uy
then
fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x)
else if x = 129uy
then begin
serialize_weaken
(parse_der_length_payload_kind x)
(serialize_synth
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))
)
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
serialize_weaken
(parse_der_length_payload_kind x)
(serialize_der_length_payload_greater x len)
end
let serialize_der_length_weak : serializer parse_der_length_weak =
serialize_tagged_union
serialize_u8
tag_of_der_length
(fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x))
#push-options "--max_ifuel 6 --z3rlimit 64" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.SeqBytes.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.DER.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.SeqBytes.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 6,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 64,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | y: LowParse.Spec.DER.der_length_t
-> FStar.Pervasives.Lemma
(ensures
(let res = LowParse.Spec.Base.serialize LowParse.Spec.DER.serialize_der_length_weak y in
let x = LowParse.Spec.DER.tag_of_der_length y in
let s1 = FStar.Seq.Base.create 1 x in
(match FStar.UInt8.lt x 128uy with
| true -> FStar.Seq.Base.equal res s1
| _ ->
(match x = 129uy with
| true ->
y <= 255 /\
FStar.Seq.Base.equal res
(FStar.Seq.Base.append s1 (FStar.Seq.Base.create 1 (FStar.UInt8.uint_to_t y)))
| _ ->
let len = LowParse.Spec.DER.log256 y in
FStar.Seq.Base.equal res (FStar.Seq.Base.append s1 (FStar.Endianness.n_to_be len y))
)
<:
Type0)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"LowParse.Spec.DER.der_length_t",
"Prims.unit",
"Prims.op_LessThan",
"Prims.bool",
"Prims.op_BarBar",
"Prims.op_Equality",
"FStar.UInt8.t",
"FStar.UInt8.__uint_to_t",
"LowParse.Spec.DER.tag_of_der_length_invalid",
"LowParse.Spec.Int.serialize_u8_spec",
"FStar.UInt8.uint_to_t",
"LowParse.Spec.Combinators.serialize_synth_eq'",
"LowParse.Spec.Combinators.parse_filter_kind",
"LowParse.Spec.Int.parse_u8_kind",
"LowParse.Spec.Combinators.parse_filter_refine",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt8.v",
"LowParse.Spec.Base.refine_with_tag",
"LowParse.Spec.DER.tag_of_der_length",
"LowParse.Spec.Combinators.parse_filter",
"LowParse.Spec.Int.parse_u8",
"LowParse.Spec.DER.synth_der_length_129",
"LowParse.Spec.Combinators.serialize_filter",
"LowParse.Spec.Int.serialize_u8",
"LowParse.Spec.DER.synth_der_length_129_recip",
"LowParse.Spec.Combinators.synth_inverse_intro'",
"Prims.b2t",
"LowParse.Spec.DER.tag_of_der_length_eq_129_eta",
"LowParse.Spec.Base.serialize",
"LowParse.Bytes.bytes",
"LowParse.Spec.Combinators.parse_synth",
"LowParse.Spec.Combinators.serialize_synth",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.DER.der_length_max",
"FStar.UInt.size",
"FStar.UInt8.n",
"LowParse.Spec.DER.tag_of_der_length_eq_129",
"LowParse.Math.pow2_lt_recip",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"LowParse.Spec.DER.log256",
"LowParse.Spec.Combinators.serialize_synth_eq",
"LowParse.Spec.Base.total_constant_size_parser_kind",
"FStar.Seq.Properties.lseq",
"LowParse.Bytes.byte",
"LowParse.Spec.DER.lint",
"LowParse.Spec.SeqBytes.Base.parse_seq_flbytes",
"LowParse.Spec.DER.synth_be_int",
"LowParse.Spec.SeqBytes.Base.serialize_seq_flbytes",
"LowParse.Spec.DER.synth_be_int_recip",
"LowParse.Spec.DER.synth_der_length_greater_recip",
"Prims.pow2",
"LowParse.Spec.DER.synth_der_length_greater",
"LowParse.Spec.DER.serialize_der_length_payload_greater",
"LowParse.Spec.DER.parse_der_length_payload_kind",
"LowParse.Spec.DER.parse_der_length_payload",
"LowParse.Spec.DER.serialize_der_length_payload",
"LowParse.Spec.DER.synth_be_int_injective",
"Prims.nat",
"FStar.Pervasives.assert_norm",
"Prims.l_True",
"Prims.squash",
"FStar.UInt8.lt",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.append",
"FStar.Seq.Base.create",
"FStar.Endianness.n_to_be",
"Prims.op_GreaterThan",
"Prims.op_Multiply",
"FStar.Seq.Base.seq",
"LowParse.Spec.DER.parse_der_length_weak_kind",
"LowParse.Spec.DER.parse_der_length_weak",
"LowParse.Spec.DER.serialize_der_length_weak",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let serialize_der_length_weak_unfold (y: der_length_t)
: Lemma
(let res = serialize serialize_der_length_weak y in
let x = tag_of_der_length y in
let s1 = Seq.create 1 x in
if x `U8.lt` 128uy
then res `Seq.equal` s1
else
if x = 129uy
then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` (Seq.create 1 (U8.uint_to_t y)))
else
let len = log256 y in
res `Seq.equal` (s1 `Seq.append` (E.n_to_be len y))) =
| let x = tag_of_der_length y in
serialize_u8_spec x;
assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let x':der_length_t = U8.v x in
if x' < 128
then ()
else
if x = 128uy || x = 255uy
then tag_of_der_length_invalid y
else
if x = 129uy
then
(tag_of_der_length_eq_129 y;
assert (U8.v (synth_der_length_129_recip x y) == y);
let s1 =
serialize (serialize_synth #_
#(parse_filter_refine #U8.t (fun y -> U8.v y >= 128))
#(refine_with_tag tag_of_der_length x)
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x)
(synth_der_length_129_recip x)
(tag_of_der_length_eq_129_eta x)))
y
in
serialize_synth_eq' #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128))
#(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x)
(synth_der_length_129_recip x)
(tag_of_der_length_eq_129_eta x)) y s1 ()
(serialize serialize_u8 (synth_der_length_129_recip x y)) ();
serialize_u8_spec (U8.uint_to_t y);
())
else
(let len:nat = U8.v x - 128 in
synth_be_int_injective len;
assert (serialize (serialize_der_length_payload x) y ==
serialize (serialize_der_length_payload_greater x len) y);
serialize_synth_eq' #_
#(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
#(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len)
(serialize_filter (serialize_synth #_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
())
(fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
(synth_der_length_greater_recip x len) () y
(serialize (serialize_der_length_payload_greater x len) y)
(FStar.Tactics.Effect.synth_by_tactic (fun _ -> (FStar.Tactics.trefl ())))
(serialize (serialize_synth #_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
())
(synth_der_length_greater_recip x len y)) ();
serialize_synth_eq _
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
(synth_der_length_greater_recip x len y);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
());
() | false |
LowParse.Spec.DER.fst | LowParse.Spec.DER.parse_bounded_der_length32_unfold | val parse_bounded_der_length32_unfold
(min: der_length_t)
(max: der_length_t { min <= max /\ max < 4294967296 })
(input: bytes)
: Lemma
(let res = parse (parse_bounded_der_length32 min max) input in
match parse parse_u8 input with
| None -> res == None
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
len <= 4 /\ (
match parse (parse_der_length_payload32 x) input' with
| Some (y, consumed_y) ->
if min <= U32.v y && U32.v y <= max
then res == Some (y, consumed_x + consumed_y)
else res == None
| None -> res == None
) else
res == None
) | val parse_bounded_der_length32_unfold
(min: der_length_t)
(max: der_length_t { min <= max /\ max < 4294967296 })
(input: bytes)
: Lemma
(let res = parse (parse_bounded_der_length32 min max) input in
match parse parse_u8 input with
| None -> res == None
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
len <= 4 /\ (
match parse (parse_der_length_payload32 x) input' with
| Some (y, consumed_y) ->
if min <= U32.v y && U32.v y <= max
then res == Some (y, consumed_x + consumed_y)
else res == None
| None -> res == None
) else
res == None
) | let parse_bounded_der_length32_unfold
min
max
input
= parse_synth_eq (parse_bounded_der_length min max) (synth_bounded_der_length32 min max) input;
parse_bounded_der_length_unfold min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
assert_norm (4294967296 <= der_length_max);
der_length_payload_size_le max 4294967295;
assert_norm (pow2 (8 * 3) == 16777216);
assert_norm (pow2 (8 * 4) == 4294967296);
log256_unique 4294967295 4;
parse_synth_eq (parse_der_length_payload x) (synth_der_length_payload32 x) input' ;
match parse (parse_der_length_payload x) input' with
| None -> ()
| Some (y, _) ->
if y >= 128 then begin
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y) == 128 + log256 y)
end
else () | {
"file_name": "src/lowparse/LowParse.Spec.DER.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 12,
"end_line": 962,
"start_col": 0,
"start_line": 936
} | module LowParse.Spec.DER
open LowParse.Spec.Combinators
open LowParse.Spec.SeqBytes.Base
// include LowParse.Spec.VLData // for in_bounds
open FStar.Mul
module U8 = FStar.UInt8
module UInt = FStar.UInt
module Math = LowParse.Math
module E = FStar.Endianness
module Seq = FStar.Seq
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0"
// let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`())))
let der_length_max_eq =
assert_norm (der_length_max == pow2 (8 * 126) - 1)
let rec log256
(x: nat { x > 0 })
: Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)})
= assert_norm (pow2 8 == 256);
if x < 256
then 1
else begin
let n = log256 (x / 256) in
Math.pow2_plus (8 * (n - 1)) 8;
Math.pow2_plus (8 * n) 8;
n + 1
end
let log256_unique
x
y
= Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x);
Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y)
let log256_le
x1
x2
= Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2)
let der_length_payload_size_le
x1
x2
= if x1 < 128 || x2 < 128
then ()
else
let len_len2 = log256 x2 in
let len_len1 = log256 x1 in
log256_le x1 x2;
assert_norm (pow2 7 == 128);
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126)
let synth_be_int
(len: nat)
(b: Seq.lseq byte len)
: Tot (lint len)
= E.lemma_be_to_n_is_bounded b;
E.be_to_n b
let synth_be_int_injective
(len: nat)
: Lemma
(synth_injective (synth_be_int len))
[SMTPat (synth_injective (synth_be_int len))]
=
synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) ->
E.be_to_n_inj x x'
)
let synth_der_length_129
(x: U8.t { x == 129uy } )
(y: U8.t { U8.v y >= 128 } )
: Tot (refine_with_tag tag_of_der_length x)
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
log256_unique (U8.v y) 1;
U8.v y
let synth_der_length_greater
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x - 128 } )
(y: lint len { y >= pow2 (8 * (len - 1)) } )
: Tot (refine_with_tag tag_of_der_length x)
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
Math.pow2_le_compat (8 * 126) (8 * len);
Math.pow2_le_compat (8 * (len - 1)) 7;
log256_unique y len;
y
let parse_der_length_payload
(x: U8.t)
: Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x))
end else
if x = 128uy
then
fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case
else if x = 255uy
then
fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already
else if x = 129uy
then
weaken (parse_der_length_payload_kind x)
((parse_u8 `parse_filter` (fun y -> U8.v y >= 128))
`parse_synth` synth_der_length_129 x)
else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
weaken (parse_der_length_payload_kind x)
(((parse_seq_flbytes len `parse_synth` (synth_be_int len))
`parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
`parse_synth` synth_der_length_greater x len)
end
let parse_der_length_payload_unfold
(x: U8.t)
(input: bytes)
: Lemma
(
let y = parse (parse_der_length_payload x) input in
(256 < der_length_max) /\ (
if U8.v x < 128
then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0)
else if x = 128uy || x = 255uy
then y == None
else if x = 129uy
then
match parse parse_u8 input with
| None -> y == None
| Some (z, consumed) ->
if U8.v z < 128
then y == None
else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed)
else
let len : nat = U8.v x - 128 in
synth_injective (synth_be_int len) /\ (
let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in
match res with
| None -> y == None
| Some (z, consumed) ->
len > 0 /\ (
if z >= pow2 (8 * (len - 1))
then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed)
else y == None
))))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
()
end else
if x = 128uy
then
()
else if x = 255uy
then
()
else if x = 129uy
then begin
parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input;
parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input;
match parse parse_u8 input with
| None -> ()
| Some (y, _) ->
if U8.v y >= 128
then begin
log256_unique (U8.v y) 1
end else ()
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len))
`parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input;
parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input;
assert (len > 1);
let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in
match res with
| None -> ()
| Some (y, _) ->
if y >= pow2 (8 * (len - 1))
then begin
let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in
Math.pow2_le_compat (8 * 126) (8 * len);
Math.pow2_le_compat (8 * (len - 1)) 7;
log256_unique y len
end else ()
end
inline_for_extraction
let parse_der_length_payload_kind_weak : parser_kind =
strong_parser_kind 0 126 None
inline_for_extraction
let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak
let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t
= parse_tagged_union
parse_u8
tag_of_der_length
(fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x))
[@@(noextract_to "krml")]
let parse_bounded_der_length_payload_kind
(min: der_length_t)
(max: der_length_t { min <= max } )
: Tot parser_kind =
[@inline_let] let _ = der_length_payload_size_le min max in
strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None
let bounded_int
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot Type
= (x: int { min <= x /\ x <= max })
let parse_bounded_der_length_tag_cond
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t)
: Tot bool
= let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max
inline_for_extraction // for parser_kind
let tag_of_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
(x: bounded_int min max)
: Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } )
= [@inline_let]
let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in
tag_of_der_length x
let parse_bounded_der_length_payload
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
: Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x))
= weaken (parse_bounded_der_length_payload_kind min max)
(parse_der_length_payload x
`parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)
`parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)))
[@@(noextract_to "krml")]
let parse_bounded_der_length_kind
(min: der_length_t)
(max: der_length_t { min <= max } )
: Tot parser_kind
= and_then_kind
(parse_filter_kind parse_u8_kind)
(parse_bounded_der_length_payload_kind min max)
let parse_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max))
= parse_tagged_union
(parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max)
(tag_of_bounded_der_length min max)
(parse_bounded_der_length_payload min max)
(* equality *)
let parse_bounded_der_length_payload_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
(input' : bytes)
: Lemma
(parse (parse_bounded_der_length_payload min max x) input' == (
match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_y)
else None
))
=
parse_synth_eq
(parse_der_length_payload x
`parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max))
(fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))
input' ;
parse_filter_eq
(parse_der_length_payload x)
(fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)
input'
let parse_bounded_der_length_unfold_aux
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
match parse (parse_bounded_der_length_payload min max x) input'
with
| Some (y, consumed_y) -> Some (y, consumed_x + consumed_y)
| None -> None
else None
))
= parse_tagged_union_eq
(parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max)
(tag_of_bounded_der_length min max)
(parse_bounded_der_length_payload min max)
input;
parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input
let parse_bounded_der_length_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_x + consumed_y)
else None
else None
))
= parse_bounded_der_length_unfold_aux min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
) input'
else ()
let parse_bounded_der_length_weak
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max))
= parse_der_length_weak
`parse_filter` (fun y -> min <= y && y <= max)
`parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
let parse_bounded_der_length_weak_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length_weak min max) input == (
match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let input' = Seq.slice input consumed_x (Seq.length input) in
begin match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_x + consumed_y)
else None
end
))
= parse_synth_eq
(parse_der_length_weak
`parse_filter` (fun y -> min <= y && y <= max))
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
input;
parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input;
parse_tagged_union_eq
parse_u8
tag_of_der_length
(fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x))
input
let parse_bounded_der_length_eq
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input))
= parse_bounded_der_length_unfold min max input;
parse_bounded_der_length_weak_unfold min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let input' = Seq.slice input consumed_x (Seq.length input) in
begin match parse (parse_der_length_payload x) input' with
| None -> ()
| Some (y, consumed_y) ->
if min <= y && y <= max
then (der_length_payload_size_le min y; der_length_payload_size_le y max)
else ()
end
(* serializer *)
let tag_of_der_length_lt_128
(x: der_length_t)
: Lemma
(requires (U8.v (tag_of_der_length x) < 128))
(ensures (x == U8.v (tag_of_der_length x)))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let tag_of_der_length_invalid
(x: der_length_t)
: Lemma
(requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255))
(ensures False)
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let tag_of_der_length_eq_129
(x: der_length_t)
: Lemma
(requires (U8.v (tag_of_der_length x) == 129))
(ensures (x >= 128 /\ x < 256))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let synth_der_length_129_recip
(x: U8.t { x == 129uy })
(y: refine_with_tag tag_of_der_length x)
: GTot (y: U8.t {U8.v y >= 128})
= tag_of_der_length_eq_129 y;
U8.uint_to_t y
let synth_be_int_recip
(len: nat)
(x: lint len)
: GTot (b: Seq.lseq byte len)
= E.n_to_be len x
let synth_be_int_inverse
(len: nat)
: Lemma
(synth_inverse (synth_be_int len) (synth_be_int_recip len))
= ()
let synth_der_length_greater_recip
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x % 128 } )
(y: refine_with_tag tag_of_der_length x)
: Tot (y: lint len { y >= pow2 (8 * (len - 1)) } )
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
y
let synth_der_length_greater_inverse
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x % 128 } )
: Lemma
(synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len))
= ()
private
let serialize_der_length_payload_greater
(x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } )
(len: nat { len == U8.v x - 128 } )
=
(serialize_synth
#_
#(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
#(refine_with_tag tag_of_der_length x)
_
(synth_der_length_greater x len)
(serialize_filter
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(fun (y: lint len) -> y >= pow2 (8 * (len - 1)))
)
(synth_der_length_greater_recip x len)
()
)
let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y)
let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False
let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y)
let serialize_der_length_payload
(x: U8.t)
: Tot (serializer (parse_der_length_payload x))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x))
end else
if x = 128uy || x = 255uy
then
fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x)
else if x = 129uy
then begin
serialize_weaken
(parse_der_length_payload_kind x)
(serialize_synth
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))
)
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
serialize_weaken
(parse_der_length_payload_kind x)
(serialize_der_length_payload_greater x len)
end
let serialize_der_length_weak : serializer parse_der_length_weak =
serialize_tagged_union
serialize_u8
tag_of_der_length
(fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x))
#push-options "--max_ifuel 6 --z3rlimit 64"
let serialize_der_length_weak_unfold
(y: der_length_t)
: Lemma
(let res = serialize serialize_der_length_weak y in
let x = tag_of_der_length y in
let s1 = Seq.create 1 x in
if x `U8.lt` 128uy
then res `Seq.equal` s1
else if x = 129uy
then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y))
else
let len = log256 y in
res `Seq.equal` (s1 `Seq.append` E.n_to_be len y)
)
= let x = tag_of_der_length y in
serialize_u8_spec x;
assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
()
end else
if x = 128uy || x = 255uy
then
tag_of_der_length_invalid y
else if x = 129uy
then begin
tag_of_der_length_eq_129 y;
assert (U8.v (synth_der_length_129_recip x y) == y);
let s1 = serialize ( serialize_synth #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x)
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)))
y
in
serialize_synth_eq'
#_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128))
#(refine_with_tag tag_of_der_length x)
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))
y
s1
()
(serialize serialize_u8 (synth_der_length_129_recip x y))
()
;
serialize_u8_spec (U8.uint_to_t y);
()
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
assert (
serialize (serialize_der_length_payload x) y == serialize (serialize_der_length_payload_greater x len) y
);
serialize_synth_eq'
#_
#(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
#(refine_with_tag tag_of_der_length x)
_
(synth_der_length_greater x len)
(serialize_filter
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(fun (y: lint len) -> y >= pow2 (8 * (len - 1)))
)
(synth_der_length_greater_recip x len)
()
y
(serialize (serialize_der_length_payload_greater x len) y)
(_ by (FStar.Tactics.trefl ()))
(serialize
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(synth_der_length_greater_recip x len y)
)
()
;
serialize_synth_eq
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
(synth_der_length_greater_recip x len y);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
()
end;
()
#pop-options
let serialize_bounded_der_length_weak
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (serializer (parse_bounded_der_length_weak min max))
= serialize_synth
_
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
(serialize_filter
serialize_der_length_weak
(fun y -> min <= y && y <= max)
)
(fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max})))
()
let serialize_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (serializer (parse_bounded_der_length min max))
= Classical.forall_intro (parse_bounded_der_length_eq min max);
serialize_ext
_
(serialize_bounded_der_length_weak min max)
(parse_bounded_der_length min max)
let serialize_bounded_der_length_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(y: bounded_int min max)
: Lemma
(let res = serialize (serialize_bounded_der_length min max) y in
let x = tag_of_der_length y in
let s1 = Seq.create 1 x in
if x `U8.lt` 128uy
then res `Seq.equal` s1
else if x = 129uy
then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y))
else
let len = log256 y in
res `Seq.equal` (s1 `Seq.append` E.n_to_be len y)
)
= serialize_synth_eq
_
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
(serialize_filter
serialize_der_length_weak
(fun y -> min <= y && y <= max)
)
(fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max})))
()
y;
serialize_der_length_weak_unfold y
(* 32-bit spec *)
module U32 = FStar.UInt32
let der_length_payload_size_of_tag_inv32
(x: der_length_t)
: Lemma
(requires (x < 4294967296))
(ensures (
tag_of_der_length x == (
if x < 128
then U8.uint_to_t x
else if x < 256
then 129uy
else if x < 65536
then 130uy
else if x < 16777216
then 131uy
else 132uy
)))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126);
assert_norm (pow2 (8 * 1) == 256);
assert_norm (pow2 (8 * 2) == 65536);
assert_norm (pow2 (8 * 3) == 16777216);
assert_norm (pow2 (8 * 4) == 4294967296);
if x < 256
then
log256_unique x 1
else if x < 65536
then
log256_unique x 2
else if x < 16777216
then
log256_unique x 3
else
log256_unique x 4
let synth_der_length_payload32
(x: U8.t { der_length_payload_size_of_tag x <= 4 } )
(y: refine_with_tag tag_of_der_length x)
: GTot (refine_with_tag tag_of_der_length32 x)
= let _ =
assert_norm (der_length_max == pow2 (8 * 126) - 1);
let _ = assert_norm (pow2 (8 * 2) == 65536) in
let _ = assert_norm (pow2 (8 * 3) == 16777216) in
let _ = assert_norm (pow2 (8 * 4) == 4294967296) in
if y >= 128 then begin
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y) == 128 + log256 y)
end
in
U32.uint_to_t y
let synth_der_length_payload32_injective
(x: U8.t { der_length_payload_size_of_tag x <= 4 } )
: Lemma
(synth_injective (synth_der_length_payload32 x))
[SMTPat (synth_injective (synth_der_length_payload32 x))]
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
let _ = assert_norm (pow2 (8 * 2) == 65536) in
let _ = assert_norm (pow2 (8 * 3) == 16777216) in
let _ = assert_norm (pow2 (8 * 4) == 4294967296) in
synth_injective_intro' (synth_der_length_payload32 x) (fun (y1 y2: refine_with_tag tag_of_der_length x) ->
if y1 >= 128 then begin
Math.pow2_lt_recip (8 * (log256 y1 - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y1) == 128 + log256 y1)
end;
if y2 >= 128 then begin
Math.pow2_lt_recip (8 * (log256 y2 - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y2) == 128 + log256 y2)
end
)
let parse_der_length_payload32
x
: Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length32 x))
= parse_der_length_payload x `parse_synth` synth_der_length_payload32 x
let be_int_of_bounded_integer
(len: integer_size)
(x: nat { x < pow2 (8 * len) } )
: GTot (bounded_integer len)
= integer_size_values len;
assert_norm (pow2 (8 * 1) == 256);
assert_norm (pow2 (8 * 2) == 65536);
assert_norm (pow2 (8 * 3) == 16777216);
assert_norm (pow2 (8 * 4) == 4294967296);
U32.uint_to_t x
let be_int_of_bounded_integer_injective
(len: integer_size)
: Lemma
(synth_injective (be_int_of_bounded_integer len))
[SMTPat (synth_injective (be_int_of_bounded_integer len))] // FIXME: WHY WHY WHY does this pattern NEVER trigger?
= integer_size_values len;
assert_norm (pow2 (8 * 1) == 256);
assert_norm (pow2 (8 * 2) == 65536);
assert_norm (pow2 (8 * 3) == 16777216);
assert_norm (pow2 (8 * 4) == 4294967296)
#push-options "--max_ifuel 4 --z3rlimit 16"
let parse_seq_flbytes_synth_be_int_eq
(len: integer_size)
(input: bytes)
: Lemma
(
let _ = synth_be_int_injective len in
let _ = be_int_of_bounded_integer_injective len in
parse (
parse_synth #_ #(lint len) #(bounded_integer len)
(parse_synth #_ #(Seq.lseq byte len) #(lint len)
(parse_seq_flbytes len)
(synth_be_int len)
)
(be_int_of_bounded_integer len)
) input == parse (parse_bounded_integer len) input)
=
let _ = synth_be_int_injective len in
let _ = be_int_of_bounded_integer_injective len in
parse_synth_eq (parse_seq_flbytes len `parse_synth` synth_be_int len) (be_int_of_bounded_integer len) input;
parse_synth_eq (parse_seq_flbytes len) (synth_be_int len) input;
parser_kind_prop_equiv (parse_bounded_integer_kind len) (parse_bounded_integer len);
parse_bounded_integer_spec len input
let parse_der_length_payload32_unfold
x
input
= parse_synth_eq (parse_der_length_payload x) (synth_der_length_payload32 x) input;
assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 (8 * 1) == 256);
let _ = assert_norm (pow2 (8 * 2) == 65536) in
let _ = assert_norm (pow2 (8 * 3) == 16777216) in
let _ = assert_norm (pow2 (8 * 4) == 4294967296) in
begin match parse (parse_der_length_payload x) input with
| None -> ()
| Some (y, _) ->
if y >= 128 then begin
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y) == 128 + log256 y)
end
end;
parse_der_length_payload_unfold x input;
if U8.v x < 128
then () // tag_of_der_length (U8.v x) == x /\ y == Some (Cast.uint8_to_uint32 x, 0)
else if x = 128uy || x = 255uy
then () // y == None
else if x = 129uy
then ()
else begin
let len : nat = U8.v x - 128 in
assert (2 <= len /\ len <= 4);
let _ = synth_be_int_injective len in
let _ = be_int_of_bounded_integer_injective len in
parse_seq_flbytes_synth_be_int_eq len input;
integer_size_values len;
parse_synth_eq
#_
#(lint len)
#(bounded_integer len)
(parse_synth #_ #(Seq.lseq byte len) #(lint len) (parse_seq_flbytes len) (synth_be_int len))
(be_int_of_bounded_integer len)
input
end
#pop-options
let log256_eq
x
= log256_unique x (log256' x)
let synth_bounded_der_length32
(min: der_length_t)
(max: der_length_t { min <= max /\ max < 4294967296 })
(x: bounded_int min max)
: Tot (bounded_int32 min max)
= U32.uint_to_t x
let parse_bounded_der_length32
(min: der_length_t)
(max: der_length_t { min <= max /\ max < 4294967296 })
: Tot (parser (parse_bounded_der_length32_kind min max) (bounded_int32 min max))
= parse_bounded_der_length min max `parse_synth` synth_bounded_der_length32 min max | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.SeqBytes.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.DER.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.SeqBytes.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: LowParse.Spec.DER.der_length_t ->
max: LowParse.Spec.DER.der_length_t{min <= max /\ max < 4294967296} ->
input: LowParse.Bytes.bytes
-> FStar.Pervasives.Lemma
(ensures
(let res =
LowParse.Spec.Base.parse (LowParse.Spec.DER.parse_bounded_der_length32 min max) input
in
(match LowParse.Spec.Base.parse LowParse.Spec.Int.parse_u8 input with
| FStar.Pervasives.Native.None #_ -> res == FStar.Pervasives.Native.None
| FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ x consumed_x) ->
let len = LowParse.Spec.DER.der_length_payload_size_of_tag x in
(match
LowParse.Spec.DER.der_length_payload_size min <= len &&
len <= LowParse.Spec.DER.der_length_payload_size max
with
| true ->
let input' = FStar.Seq.Base.slice input consumed_x (FStar.Seq.Base.length input) in
len <= 4 /\
(match
LowParse.Spec.Base.parse (LowParse.Spec.DER.parse_der_length_payload32 x) input'
with
| FStar.Pervasives.Native.Some
#_
(FStar.Pervasives.Native.Mktuple2 #_ #_ y consumed_y) ->
(match min <= FStar.UInt32.v y && FStar.UInt32.v y <= max with
| true -> res == FStar.Pervasives.Native.Some (y, consumed_x + consumed_y)
| _ -> res == FStar.Pervasives.Native.None)
<:
Prims.logical
| FStar.Pervasives.Native.None #_ -> res == FStar.Pervasives.Native.None)
| _ -> res == FStar.Pervasives.Native.None)
<:
Type0)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"LowParse.Spec.DER.der_length_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"LowParse.Bytes.bytes",
"LowParse.Spec.Base.parse",
"FStar.UInt8.t",
"LowParse.Spec.Int.parse_u8",
"LowParse.Spec.Base.consumed_length",
"Prims.op_AmpAmp",
"LowParse.Spec.DER.der_length_payload_size",
"LowParse.Spec.Base.refine_with_tag",
"LowParse.Spec.DER.tag_of_der_length",
"LowParse.Spec.DER.parse_der_length_payload",
"Prims.op_GreaterThanOrEqual",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"FStar.UInt8.v",
"Prims.op_Addition",
"LowParse.Spec.DER.log256",
"Prims.unit",
"LowParse.Math.pow2_lt_recip",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"FStar.Pervasives.assert_norm",
"LowParse.Spec.DER.der_length_max",
"Prims.pow2",
"Prims.bool",
"LowParse.Spec.Combinators.parse_synth_eq",
"LowParse.Spec.DER.parse_der_length_payload_kind",
"FStar.UInt32.t",
"LowParse.Spec.DER.tag_of_der_length32",
"LowParse.Spec.DER.synth_der_length_payload32",
"LowParse.Spec.DER.log256_unique",
"LowParse.Spec.DER.der_length_payload_size_le",
"FStar.Seq.Base.seq",
"LowParse.Bytes.byte",
"FStar.Seq.Base.slice",
"FStar.Seq.Base.length",
"Prims.nat",
"LowParse.Spec.DER.der_length_payload_size_of_tag",
"LowParse.Spec.DER.parse_bounded_der_length_unfold",
"LowParse.Spec.DER.parse_bounded_der_length_kind",
"LowParse.Spec.DER.bounded_int",
"LowParse.Spec.BoundedInt.bounded_int32",
"LowParse.Spec.DER.parse_bounded_der_length",
"LowParse.Spec.DER.synth_bounded_der_length32"
] | [] | false | false | true | false | false | let parse_bounded_der_length32_unfold min max input =
| parse_synth_eq (parse_bounded_der_length min max) (synth_bounded_der_length32 min max) input;
parse_bounded_der_length_unfold min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max
then
let input' = Seq.slice input consumed_x (Seq.length input) in
assert_norm (4294967296 <= der_length_max);
der_length_payload_size_le max 4294967295;
assert_norm (pow2 (8 * 3) == 16777216);
assert_norm (pow2 (8 * 4) == 4294967296);
log256_unique 4294967295 4;
parse_synth_eq (parse_der_length_payload x) (synth_der_length_payload32 x) input';
match parse (parse_der_length_payload x) input' with
| None -> ()
| Some (y, _) ->
if y >= 128
then
(assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y) == 128 + log256 y)) | false |
EverCrypt.DRBG.fst | EverCrypt.DRBG.mk_instantiate | val mk_instantiate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> instantiate_st a | val mk_instantiate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> instantiate_st a | let mk_instantiate #a hmac st personalization_string personalization_string_len =
if personalization_string_len >. max_personalization_string_length then
false
else
let entropy_input_len = min_length a in
let nonce_len = min_length a /. 2ul in
let min_entropy = entropy_input_len +! nonce_len in
push_frame();
assert_norm (range (v min_entropy) U32);
let entropy = B.alloca (u8 0) min_entropy in
let ok = randombytes entropy min_entropy in
let result =
if not ok then
false
else
begin
let entropy_input = B.sub entropy 0ul entropy_input_len in
let nonce = B.sub entropy entropy_input_len nonce_len in
S.hmac_input_bound a;
let st_s = !*st in
mk_instantiate hmac (p st_s)
entropy_input_len entropy_input
nonce_len nonce
personalization_string_len personalization_string;
true
end
in
pop_frame();
result | {
"file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 10,
"end_line": 124,
"start_col": 0,
"start_line": 96
} | module EverCrypt.DRBG
open FStar.HyperStack.ST
open Lib.IntTypes
open Spec.Hash.Definitions
module HS = FStar.HyperStack
module B = LowStar.Buffer
module S = Spec.HMAC_DRBG
open Hacl.HMAC_DRBG
open Lib.RandomBuffer.System
open LowStar.BufferOps
friend Hacl.HMAC_DRBG
friend EverCrypt.HMAC
#set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50"
/// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it
///
/// Respects EverCrypt convention and reverses order of buf_len, buf arguments
[@CAbstractStruct]
noeq
type state_s: supported_alg -> Type0 =
| SHA1_s : state SHA1 -> state_s SHA1
| SHA2_256_s: state SHA2_256 -> state_s SHA2_256
| SHA2_384_s: state SHA2_384 -> state_s SHA2_384
| SHA2_512_s: state SHA2_512 -> state_s SHA2_512
let invert_state_s (a:supported_alg): Lemma
(requires True)
(ensures inversion (state_s a))
[ SMTPat (state_s a) ]
=
allow_inversion (state_s a)
/// Only call this function in extracted code with a known `a`
inline_for_extraction noextract
let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a =
match a with
| SHA1 -> let SHA1_s p = s in p
| SHA2_256 -> let SHA2_256_s p = s in p
| SHA2_384 -> let SHA2_384_s p = s in p
| SHA2_512 -> let SHA2_512_s p = s in p
let freeable_s #a st = freeable (p st)
let footprint_s #a st = footprint (p st)
let invariant_s #a st h = invariant (p st) h
let repr #a st h =
let st = B.get h st 0 in
repr (p st) h
let loc_includes_union_l_footprint_s #a l1 l2 st =
B.loc_includes_union_l l1 l2 (footprint_s st)
let invariant_loc_in_footprint #a st m = ()
let frame_invariant #a l st h0 h1 = ()
/// State allocation
// Would like to specialize alloca in each branch, but two calls to StackInline
// functions in the same block lead to variable redefinitions at extraction.
let alloca a =
let st =
match a with
| SHA1 -> SHA1_s (alloca a)
| SHA2_256 -> SHA2_256_s (alloca a)
| SHA2_384 -> SHA2_384_s (alloca a)
| SHA2_512 -> SHA2_512_s (alloca a)
in
B.alloca st 1ul
let create_in a r =
let st =
match a with
| SHA1 -> SHA1_s (create_in SHA1 r)
| SHA2_256 -> SHA2_256_s (create_in SHA2_256 r)
| SHA2_384 -> SHA2_384_s (create_in SHA2_384 r)
| SHA2_512 -> SHA2_512_s (create_in SHA2_512 r)
in
B.malloc r st 1ul
let create a = create_in a HS.root
/// Instantiate function
inline_for_extraction noextract | {
"checked_file": "/",
"dependencies": [
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.RandomBuffer.System.fsti.checked",
"Lib.Memzero0.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.HMAC_DRBG.fst.checked",
"Hacl.HMAC_DRBG.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"EverCrypt.HMAC.fst.checked"
],
"interface_file": true,
"source_file": "EverCrypt.DRBG.fst"
} | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RandomBuffer.System",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HMAC_DRBG",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | hmac: EverCrypt.HMAC.compute_st a -> EverCrypt.DRBG.instantiate_st a | Prims.Tot | [
"total"
] | [] | [
"Hacl.HMAC_DRBG.supported_alg",
"EverCrypt.HMAC.compute_st",
"EverCrypt.DRBG.state",
"LowStar.Buffer.buffer",
"Lib.IntTypes.uint8",
"Lib.IntTypes.size_t",
"Lib.IntTypes.op_Greater_Dot",
"Lib.IntTypes.U32",
"Hacl.HMAC_DRBG.max_personalization_string_length",
"Prims.bool",
"Prims.unit",
"FStar.HyperStack.ST.pop_frame",
"Prims.op_Negation",
"Hacl.HMAC_DRBG.mk_instantiate",
"EverCrypt.DRBG.p",
"EverCrypt.DRBG.state_s",
"LowStar.BufferOps.op_Bang_Star",
"LowStar.Buffer.trivial_preorder",
"Spec.HMAC_DRBG.hmac_input_bound",
"LowStar.Monotonic.Buffer.mbuffer",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"LowStar.Buffer.sub",
"FStar.Ghost.hide",
"FStar.UInt32.t",
"FStar.UInt32.__uint_to_t",
"Lib.RandomBuffer.System.randombytes",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.UInt32.v",
"Prims.b2t",
"LowStar.Monotonic.Buffer.g_is_null",
"LowStar.Buffer.alloca",
"Lib.IntTypes.u8",
"FStar.Pervasives.assert_norm",
"Lib.IntTypes.range",
"Lib.IntTypes.v",
"Lib.IntTypes.PUB",
"FStar.HyperStack.ST.push_frame",
"Lib.IntTypes.op_Plus_Bang",
"Lib.IntTypes.op_Slash_Dot",
"Hacl.HMAC_DRBG.min_length",
"Prims.int",
"Spec.HMAC_DRBG.min_length"
] | [] | false | false | false | false | false | let mk_instantiate #a hmac st personalization_string personalization_string_len =
| if personalization_string_len >. max_personalization_string_length
then false
else
let entropy_input_len = min_length a in
let nonce_len = min_length a /. 2ul in
let min_entropy = entropy_input_len +! nonce_len in
push_frame ();
assert_norm (range (v min_entropy) U32);
let entropy = B.alloca (u8 0) min_entropy in
let ok = randombytes entropy min_entropy in
let result =
if not ok
then false
else
let entropy_input = B.sub entropy 0ul entropy_input_len in
let nonce = B.sub entropy entropy_input_len nonce_len in
S.hmac_input_bound a;
let st_s = !*st in
mk_instantiate hmac
(p st_s)
entropy_input_len
entropy_input
nonce_len
nonce
personalization_string_len
personalization_string;
true
in
pop_frame ();
result | false |
Alg.fst | Alg.geneff | val geneff (o: op) (i: op_inp o) : Alg (op_out o) [o] | val geneff (o: op) (i: op_inp o) : Alg (op_out o) [o] | let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 201,
"start_col": 0,
"start_line": 199
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | o: Alg.op -> i: Alg.op_inp o -> Alg.Alg (Alg.op_out o) | Alg.Alg | [] | [] | [
"Alg.op",
"Alg.op_inp",
"Alg.Op",
"Alg.op_out",
"Alg.Return",
"Prims.Cons",
"Prims.Nil"
] | [] | false | true | false | false | false | let geneff (o: op) (i: op_inp o) : Alg (op_out o) [o] =
| Alg?.reflect (Op o i Return) | false |
Hacl.Streaming.Blake2s_32.fst | Hacl.Streaming.Blake2s_32.alloca | val alloca : Hacl.Streaming.Functor.alloca_st (Hacl.Streaming.Blake2s_32.blake2s_32 0)
()
(Hacl.Streaming.Blake2.Common.s Spec.Blake2.Definitions.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.Common.empty_key Spec.Blake2.Definitions.Blake2S) | let alloca =
F.alloca (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S) | {
"file_name": "code/streaming/Hacl.Streaming.Blake2s_32.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 93,
"end_line": 28,
"start_col": 0,
"start_line": 27
} | module Hacl.Streaming.Blake2s_32
module Blake2s32 = Hacl.Blake2s_32
module Common = Hacl.Streaming.Blake2.Common
module Core = Hacl.Impl.Blake2.Core
module F = Hacl.Streaming.Functor
module G = FStar.Ghost
module Impl = Hacl.Impl.Blake2.Generic
module Spec = Spec.Blake2
inline_for_extraction noextract
let blake2s_32 kk =
Common.blake2 Spec.Blake2S Core.M32 kk Blake2s32.init Blake2s32.update_multi
Blake2s32.update_last Blake2s32.finish
/// Type abbreviations - makes Karamel use pretty names in the generated code
let block_state_t = Common.s Spec.Blake2S Core.M32
let state_t = F.state_s (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S)
/// The incremental hash functions instantiations. Note that we can't write a
/// generic one, because the normalization then performed by KaRaMeL explodes.
/// All those implementations are for non-keyed hash. | {
"checked_file": "/",
"dependencies": [
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Streaming.Blake2.Common.fst.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2s_32.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": "Impl"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Blake2.Common",
"short_module": "Common"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Streaming.Functor.alloca_st (Hacl.Streaming.Blake2s_32.blake2s_32 0)
()
(Hacl.Streaming.Blake2.Common.s Spec.Blake2.Definitions.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.Common.empty_key Spec.Blake2.Definitions.Blake2S) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Functor.alloca",
"Prims.unit",
"Hacl.Streaming.Blake2s_32.blake2s_32",
"Hacl.Streaming.Blake2.Common.s",
"Spec.Blake2.Definitions.Blake2S",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Streaming.Blake2.Common.empty_key"
] | [] | false | false | false | false | false | let alloca =
| F.alloca (blake2s_32 0) () (Common.s Spec.Blake2S Core.M32) (Common.empty_key Spec.Blake2S) | false |
|
Alg.fst | Alg.put | val put: state -> Alg unit [Write] | val put: state -> Alg unit [Write] | let put : state -> Alg unit [Write] = geneff Write | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 57,
"end_line": 204,
"start_col": 0,
"start_line": 204
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Alg.state -> Alg.Alg Prims.unit | Alg.Alg | [] | [] | [
"Alg.geneff",
"Alg.Write"
] | [] | false | true | false | false | false | let put: state -> Alg unit [Write] =
| geneff Write | false |
Alg.fst | Alg.listmap | val listmap (#a #b #labs: _) (f: (a -> Alg b labs)) (l: list a) : Alg (list b) labs | val listmap (#a #b #labs: _) (f: (a -> Alg b labs)) (l: list a) : Alg (list b) labs | let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 44,
"end_line": 217,
"start_col": 0,
"start_line": 213
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: a -> Alg.Alg b) -> l: Prims.list a -> Alg.Alg (Prims.list b) | Alg.Alg | [] | [] | [
"Alg.ops",
"Prims.list",
"Prims.Nil",
"Prims.Cons",
"Alg.listmap"
] | [
"recursion"
] | false | true | false | false | false | let rec listmap #a #b #labs (f: (a -> Alg b labs)) (l: list a) : Alg (list b) labs =
| match l with
| [] -> []
| x :: xs -> f x :: listmap #_ #_ #labs f xs | false |
LowParse.Spec.DER.fst | LowParse.Spec.DER.parse_der_length_payload32_unfold | val parse_der_length_payload32_unfold
(x: U8.t { der_length_payload_size_of_tag x <= 4 } )
(input: bytes)
: Lemma
(
let y = parse (parse_der_length_payload32 x) input in
(256 < der_length_max) /\ (
if U8.v x < 128
then tag_of_der_length (U8.v x) == x /\ y == Some (Cast.uint8_to_uint32 x, 0)
else if x = 128uy || x = 255uy
then y == None
else if x = 129uy
then
match parse parse_u8 input with
| None -> y == None
| Some (z, consumed) ->
if U8.v z < 128
then y == None
else tag_of_der_length (U8.v z) == x /\ y == Some (Cast.uint8_to_uint32 z, consumed)
else
let len : nat = U8.v x - 128 in
2 <= len /\ len <= 4 /\
(
let res : option (bounded_integer len & consumed_length input) = parse (parse_bounded_integer len) input in
match res with
| None -> y == None
| Some (z, consumed) ->
len > 0 /\ (
if U32.v z >= pow2 (8 * (len - 1))
then U32.v z <= der_length_max /\ tag_of_der_length32 z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length32 x), consumed)
else y == None
)))) | val parse_der_length_payload32_unfold
(x: U8.t { der_length_payload_size_of_tag x <= 4 } )
(input: bytes)
: Lemma
(
let y = parse (parse_der_length_payload32 x) input in
(256 < der_length_max) /\ (
if U8.v x < 128
then tag_of_der_length (U8.v x) == x /\ y == Some (Cast.uint8_to_uint32 x, 0)
else if x = 128uy || x = 255uy
then y == None
else if x = 129uy
then
match parse parse_u8 input with
| None -> y == None
| Some (z, consumed) ->
if U8.v z < 128
then y == None
else tag_of_der_length (U8.v z) == x /\ y == Some (Cast.uint8_to_uint32 z, consumed)
else
let len : nat = U8.v x - 128 in
2 <= len /\ len <= 4 /\
(
let res : option (bounded_integer len & consumed_length input) = parse (parse_bounded_integer len) input in
match res with
| None -> y == None
| Some (z, consumed) ->
len > 0 /\ (
if U32.v z >= pow2 (8 * (len - 1))
then U32.v z <= der_length_max /\ tag_of_der_length32 z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length32 x), consumed)
else y == None
)))) | let parse_der_length_payload32_unfold
x
input
= parse_synth_eq (parse_der_length_payload x) (synth_der_length_payload32 x) input;
assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 (8 * 1) == 256);
let _ = assert_norm (pow2 (8 * 2) == 65536) in
let _ = assert_norm (pow2 (8 * 3) == 16777216) in
let _ = assert_norm (pow2 (8 * 4) == 4294967296) in
begin match parse (parse_der_length_payload x) input with
| None -> ()
| Some (y, _) ->
if y >= 128 then begin
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y) == 128 + log256 y)
end
end;
parse_der_length_payload_unfold x input;
if U8.v x < 128
then () // tag_of_der_length (U8.v x) == x /\ y == Some (Cast.uint8_to_uint32 x, 0)
else if x = 128uy || x = 255uy
then () // y == None
else if x = 129uy
then ()
else begin
let len : nat = U8.v x - 128 in
assert (2 <= len /\ len <= 4);
let _ = synth_be_int_injective len in
let _ = be_int_of_bounded_integer_injective len in
parse_seq_flbytes_synth_be_int_eq len input;
integer_size_values len;
parse_synth_eq
#_
#(lint len)
#(bounded_integer len)
(parse_synth #_ #(Seq.lseq byte len) #(lint len) (parse_seq_flbytes len) (synth_be_int len))
(be_int_of_bounded_integer len)
input
end | {
"file_name": "src/lowparse/LowParse.Spec.DER.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 7,
"end_line": 914,
"start_col": 0,
"start_line": 876
} | module LowParse.Spec.DER
open LowParse.Spec.Combinators
open LowParse.Spec.SeqBytes.Base
// include LowParse.Spec.VLData // for in_bounds
open FStar.Mul
module U8 = FStar.UInt8
module UInt = FStar.UInt
module Math = LowParse.Math
module E = FStar.Endianness
module Seq = FStar.Seq
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0"
// let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`())))
let der_length_max_eq =
assert_norm (der_length_max == pow2 (8 * 126) - 1)
let rec log256
(x: nat { x > 0 })
: Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)})
= assert_norm (pow2 8 == 256);
if x < 256
then 1
else begin
let n = log256 (x / 256) in
Math.pow2_plus (8 * (n - 1)) 8;
Math.pow2_plus (8 * n) 8;
n + 1
end
let log256_unique
x
y
= Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x);
Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y)
let log256_le
x1
x2
= Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2)
let der_length_payload_size_le
x1
x2
= if x1 < 128 || x2 < 128
then ()
else
let len_len2 = log256 x2 in
let len_len1 = log256 x1 in
log256_le x1 x2;
assert_norm (pow2 7 == 128);
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126)
let synth_be_int
(len: nat)
(b: Seq.lseq byte len)
: Tot (lint len)
= E.lemma_be_to_n_is_bounded b;
E.be_to_n b
let synth_be_int_injective
(len: nat)
: Lemma
(synth_injective (synth_be_int len))
[SMTPat (synth_injective (synth_be_int len))]
=
synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) ->
E.be_to_n_inj x x'
)
let synth_der_length_129
(x: U8.t { x == 129uy } )
(y: U8.t { U8.v y >= 128 } )
: Tot (refine_with_tag tag_of_der_length x)
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
log256_unique (U8.v y) 1;
U8.v y
let synth_der_length_greater
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x - 128 } )
(y: lint len { y >= pow2 (8 * (len - 1)) } )
: Tot (refine_with_tag tag_of_der_length x)
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
Math.pow2_le_compat (8 * 126) (8 * len);
Math.pow2_le_compat (8 * (len - 1)) 7;
log256_unique y len;
y
let parse_der_length_payload
(x: U8.t)
: Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x))
end else
if x = 128uy
then
fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case
else if x = 255uy
then
fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already
else if x = 129uy
then
weaken (parse_der_length_payload_kind x)
((parse_u8 `parse_filter` (fun y -> U8.v y >= 128))
`parse_synth` synth_der_length_129 x)
else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
weaken (parse_der_length_payload_kind x)
(((parse_seq_flbytes len `parse_synth` (synth_be_int len))
`parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
`parse_synth` synth_der_length_greater x len)
end
let parse_der_length_payload_unfold
(x: U8.t)
(input: bytes)
: Lemma
(
let y = parse (parse_der_length_payload x) input in
(256 < der_length_max) /\ (
if U8.v x < 128
then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0)
else if x = 128uy || x = 255uy
then y == None
else if x = 129uy
then
match parse parse_u8 input with
| None -> y == None
| Some (z, consumed) ->
if U8.v z < 128
then y == None
else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed)
else
let len : nat = U8.v x - 128 in
synth_injective (synth_be_int len) /\ (
let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in
match res with
| None -> y == None
| Some (z, consumed) ->
len > 0 /\ (
if z >= pow2 (8 * (len - 1))
then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed)
else y == None
))))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
()
end else
if x = 128uy
then
()
else if x = 255uy
then
()
else if x = 129uy
then begin
parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input;
parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input;
match parse parse_u8 input with
| None -> ()
| Some (y, _) ->
if U8.v y >= 128
then begin
log256_unique (U8.v y) 1
end else ()
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len))
`parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input;
parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input;
assert (len > 1);
let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in
match res with
| None -> ()
| Some (y, _) ->
if y >= pow2 (8 * (len - 1))
then begin
let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in
Math.pow2_le_compat (8 * 126) (8 * len);
Math.pow2_le_compat (8 * (len - 1)) 7;
log256_unique y len
end else ()
end
inline_for_extraction
let parse_der_length_payload_kind_weak : parser_kind =
strong_parser_kind 0 126 None
inline_for_extraction
let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak
let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t
= parse_tagged_union
parse_u8
tag_of_der_length
(fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x))
[@@(noextract_to "krml")]
let parse_bounded_der_length_payload_kind
(min: der_length_t)
(max: der_length_t { min <= max } )
: Tot parser_kind =
[@inline_let] let _ = der_length_payload_size_le min max in
strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None
let bounded_int
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot Type
= (x: int { min <= x /\ x <= max })
let parse_bounded_der_length_tag_cond
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t)
: Tot bool
= let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max
inline_for_extraction // for parser_kind
let tag_of_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
(x: bounded_int min max)
: Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } )
= [@inline_let]
let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in
tag_of_der_length x
let parse_bounded_der_length_payload
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
: Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x))
= weaken (parse_bounded_der_length_payload_kind min max)
(parse_der_length_payload x
`parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)
`parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)))
[@@(noextract_to "krml")]
let parse_bounded_der_length_kind
(min: der_length_t)
(max: der_length_t { min <= max } )
: Tot parser_kind
= and_then_kind
(parse_filter_kind parse_u8_kind)
(parse_bounded_der_length_payload_kind min max)
let parse_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max))
= parse_tagged_union
(parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max)
(tag_of_bounded_der_length min max)
(parse_bounded_der_length_payload min max)
(* equality *)
let parse_bounded_der_length_payload_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
(input' : bytes)
: Lemma
(parse (parse_bounded_der_length_payload min max x) input' == (
match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_y)
else None
))
=
parse_synth_eq
(parse_der_length_payload x
`parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max))
(fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))
input' ;
parse_filter_eq
(parse_der_length_payload x)
(fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)
input'
let parse_bounded_der_length_unfold_aux
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
match parse (parse_bounded_der_length_payload min max x) input'
with
| Some (y, consumed_y) -> Some (y, consumed_x + consumed_y)
| None -> None
else None
))
= parse_tagged_union_eq
(parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max)
(tag_of_bounded_der_length min max)
(parse_bounded_der_length_payload min max)
input;
parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input
let parse_bounded_der_length_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_x + consumed_y)
else None
else None
))
= parse_bounded_der_length_unfold_aux min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let len = der_length_payload_size_of_tag x in
if der_length_payload_size min <= len && len <= der_length_payload_size max then
let input' = Seq.slice input consumed_x (Seq.length input) in
parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } )
) input'
else ()
let parse_bounded_der_length_weak
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max))
= parse_der_length_weak
`parse_filter` (fun y -> min <= y && y <= max)
`parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
let parse_bounded_der_length_weak_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(parse (parse_bounded_der_length_weak min max) input == (
match parse parse_u8 input with
| None -> None
| Some (x, consumed_x) ->
let input' = Seq.slice input consumed_x (Seq.length input) in
begin match parse (parse_der_length_payload x) input' with
| None -> None
| Some (y, consumed_y) ->
if min <= y && y <= max
then Some (y, consumed_x + consumed_y)
else None
end
))
= parse_synth_eq
(parse_der_length_weak
`parse_filter` (fun y -> min <= y && y <= max))
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
input;
parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input;
parse_tagged_union_eq
parse_u8
tag_of_der_length
(fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x))
input
let parse_bounded_der_length_eq
(min: der_length_t)
(max: der_length_t { min <= max })
(input: bytes)
: Lemma
(ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input))
= parse_bounded_der_length_unfold min max input;
parse_bounded_der_length_weak_unfold min max input;
match parse parse_u8 input with
| None -> ()
| Some (x, consumed_x) ->
let input' = Seq.slice input consumed_x (Seq.length input) in
begin match parse (parse_der_length_payload x) input' with
| None -> ()
| Some (y, consumed_y) ->
if min <= y && y <= max
then (der_length_payload_size_le min y; der_length_payload_size_le y max)
else ()
end
(* serializer *)
let tag_of_der_length_lt_128
(x: der_length_t)
: Lemma
(requires (U8.v (tag_of_der_length x) < 128))
(ensures (x == U8.v (tag_of_der_length x)))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let tag_of_der_length_invalid
(x: der_length_t)
: Lemma
(requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255))
(ensures False)
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let tag_of_der_length_eq_129
(x: der_length_t)
: Lemma
(requires (U8.v (tag_of_der_length x) == 129))
(ensures (x >= 128 /\ x < 256))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
let synth_der_length_129_recip
(x: U8.t { x == 129uy })
(y: refine_with_tag tag_of_der_length x)
: GTot (y: U8.t {U8.v y >= 128})
= tag_of_der_length_eq_129 y;
U8.uint_to_t y
let synth_be_int_recip
(len: nat)
(x: lint len)
: GTot (b: Seq.lseq byte len)
= E.n_to_be len x
let synth_be_int_inverse
(len: nat)
: Lemma
(synth_inverse (synth_be_int len) (synth_be_int_recip len))
= ()
let synth_der_length_greater_recip
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x % 128 } )
(y: refine_with_tag tag_of_der_length x)
: Tot (y: lint len { y >= pow2 (8 * (len - 1)) } )
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
y
let synth_der_length_greater_inverse
(x: U8.t { U8.v x > 129 /\ U8.v x < 255 } )
(len: nat { len == U8.v x % 128 } )
: Lemma
(synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len))
= ()
private
let serialize_der_length_payload_greater
(x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } )
(len: nat { len == U8.v x - 128 } )
=
(serialize_synth
#_
#(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
#(refine_with_tag tag_of_der_length x)
_
(synth_der_length_greater x len)
(serialize_filter
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(fun (y: lint len) -> y >= pow2 (8 * (len - 1)))
)
(synth_der_length_greater_recip x len)
()
)
let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y)
let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False
let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y)
let serialize_der_length_payload
(x: U8.t)
: Tot (serializer (parse_der_length_payload x))
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x))
end else
if x = 128uy || x = 255uy
then
fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x)
else if x = 129uy
then begin
serialize_weaken
(parse_der_length_payload_kind x)
(serialize_synth
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))
)
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
serialize_weaken
(parse_der_length_payload_kind x)
(serialize_der_length_payload_greater x len)
end
let serialize_der_length_weak : serializer parse_der_length_weak =
serialize_tagged_union
serialize_u8
tag_of_der_length
(fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x))
#push-options "--max_ifuel 6 --z3rlimit 64"
let serialize_der_length_weak_unfold
(y: der_length_t)
: Lemma
(let res = serialize serialize_der_length_weak y in
let x = tag_of_der_length y in
let s1 = Seq.create 1 x in
if x `U8.lt` 128uy
then res `Seq.equal` s1
else if x = 129uy
then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y))
else
let len = log256 y in
res `Seq.equal` (s1 `Seq.append` E.n_to_be len y)
)
= let x = tag_of_der_length y in
serialize_u8_spec x;
assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 7 == 128);
assert_norm (pow2 8 == 256);
assert_norm (256 < der_length_max);
assert (U8.v x <= der_length_max);
let (x' : der_length_t) = U8.v x in
if x' < 128
then begin
()
end else
if x = 128uy || x = 255uy
then
tag_of_der_length_invalid y
else if x = 129uy
then begin
tag_of_der_length_eq_129 y;
assert (U8.v (synth_der_length_129_recip x y) == y);
let s1 = serialize ( serialize_synth #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x)
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)))
y
in
serialize_synth_eq'
#_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128))
#(refine_with_tag tag_of_der_length x)
(parse_filter parse_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129 x)
(serialize_filter serialize_u8 (fun y -> U8.v y >= 128))
(synth_der_length_129_recip x)
(synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))
y
s1
()
(serialize serialize_u8 (synth_der_length_129_recip x y))
()
;
serialize_u8_spec (U8.uint_to_t y);
()
end else begin
let len : nat = U8.v x - 128 in
synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit?
assert (
serialize (serialize_der_length_payload x) y == serialize (serialize_der_length_payload_greater x len) y
);
serialize_synth_eq'
#_
#(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))))
#(refine_with_tag tag_of_der_length x)
_
(synth_der_length_greater x len)
(serialize_filter
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(fun (y: lint len) -> y >= pow2 (8 * (len - 1)))
)
(synth_der_length_greater_recip x len)
()
y
(serialize (serialize_der_length_payload_greater x len) y)
(_ by (FStar.Tactics.trefl ()))
(serialize
(serialize_synth
#_
#(Seq.lseq byte len)
#(lint len)
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
)
(synth_der_length_greater_recip x len y)
)
()
;
serialize_synth_eq
_
(synth_be_int len)
(serialize_seq_flbytes len)
(synth_be_int_recip len)
()
(synth_der_length_greater_recip x len y);
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
()
end;
()
#pop-options
let serialize_bounded_der_length_weak
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (serializer (parse_bounded_der_length_weak min max))
= serialize_synth
_
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
(serialize_filter
serialize_der_length_weak
(fun y -> min <= y && y <= max)
)
(fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max})))
()
let serialize_bounded_der_length
(min: der_length_t)
(max: der_length_t { min <= max })
: Tot (serializer (parse_bounded_der_length min max))
= Classical.forall_intro (parse_bounded_der_length_eq min max);
serialize_ext
_
(serialize_bounded_der_length_weak min max)
(parse_bounded_der_length min max)
let serialize_bounded_der_length_unfold
(min: der_length_t)
(max: der_length_t { min <= max })
(y: bounded_int min max)
: Lemma
(let res = serialize (serialize_bounded_der_length min max) y in
let x = tag_of_der_length y in
let s1 = Seq.create 1 x in
if x `U8.lt` 128uy
then res `Seq.equal` s1
else if x = 129uy
then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y))
else
let len = log256 y in
res `Seq.equal` (s1 `Seq.append` E.n_to_be len y)
)
= serialize_synth_eq
_
(fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
(serialize_filter
serialize_der_length_weak
(fun y -> min <= y && y <= max)
)
(fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max})))
()
y;
serialize_der_length_weak_unfold y
(* 32-bit spec *)
module U32 = FStar.UInt32
let der_length_payload_size_of_tag_inv32
(x: der_length_t)
: Lemma
(requires (x < 4294967296))
(ensures (
tag_of_der_length x == (
if x < 128
then U8.uint_to_t x
else if x < 256
then 129uy
else if x < 65536
then 130uy
else if x < 16777216
then 131uy
else 132uy
)))
= if x < 128
then ()
else
let len_len = log256 x in
assert_norm (der_length_max == pow2 (8 * 126) - 1);
Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126);
assert_norm (pow2 (8 * 1) == 256);
assert_norm (pow2 (8 * 2) == 65536);
assert_norm (pow2 (8 * 3) == 16777216);
assert_norm (pow2 (8 * 4) == 4294967296);
if x < 256
then
log256_unique x 1
else if x < 65536
then
log256_unique x 2
else if x < 16777216
then
log256_unique x 3
else
log256_unique x 4
let synth_der_length_payload32
(x: U8.t { der_length_payload_size_of_tag x <= 4 } )
(y: refine_with_tag tag_of_der_length x)
: GTot (refine_with_tag tag_of_der_length32 x)
= let _ =
assert_norm (der_length_max == pow2 (8 * 126) - 1);
let _ = assert_norm (pow2 (8 * 2) == 65536) in
let _ = assert_norm (pow2 (8 * 3) == 16777216) in
let _ = assert_norm (pow2 (8 * 4) == 4294967296) in
if y >= 128 then begin
Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y) == 128 + log256 y)
end
in
U32.uint_to_t y
let synth_der_length_payload32_injective
(x: U8.t { der_length_payload_size_of_tag x <= 4 } )
: Lemma
(synth_injective (synth_der_length_payload32 x))
[SMTPat (synth_injective (synth_der_length_payload32 x))]
= assert_norm (der_length_max == pow2 (8 * 126) - 1);
let _ = assert_norm (pow2 (8 * 2) == 65536) in
let _ = assert_norm (pow2 (8 * 3) == 16777216) in
let _ = assert_norm (pow2 (8 * 4) == 4294967296) in
synth_injective_intro' (synth_der_length_payload32 x) (fun (y1 y2: refine_with_tag tag_of_der_length x) ->
if y1 >= 128 then begin
Math.pow2_lt_recip (8 * (log256 y1 - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y1) == 128 + log256 y1)
end;
if y2 >= 128 then begin
Math.pow2_lt_recip (8 * (log256 y2 - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y2) == 128 + log256 y2)
end
)
let parse_der_length_payload32
x
: Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length32 x))
= parse_der_length_payload x `parse_synth` synth_der_length_payload32 x
let be_int_of_bounded_integer
(len: integer_size)
(x: nat { x < pow2 (8 * len) } )
: GTot (bounded_integer len)
= integer_size_values len;
assert_norm (pow2 (8 * 1) == 256);
assert_norm (pow2 (8 * 2) == 65536);
assert_norm (pow2 (8 * 3) == 16777216);
assert_norm (pow2 (8 * 4) == 4294967296);
U32.uint_to_t x
let be_int_of_bounded_integer_injective
(len: integer_size)
: Lemma
(synth_injective (be_int_of_bounded_integer len))
[SMTPat (synth_injective (be_int_of_bounded_integer len))] // FIXME: WHY WHY WHY does this pattern NEVER trigger?
= integer_size_values len;
assert_norm (pow2 (8 * 1) == 256);
assert_norm (pow2 (8 * 2) == 65536);
assert_norm (pow2 (8 * 3) == 16777216);
assert_norm (pow2 (8 * 4) == 4294967296)
#push-options "--max_ifuel 4 --z3rlimit 16"
let parse_seq_flbytes_synth_be_int_eq
(len: integer_size)
(input: bytes)
: Lemma
(
let _ = synth_be_int_injective len in
let _ = be_int_of_bounded_integer_injective len in
parse (
parse_synth #_ #(lint len) #(bounded_integer len)
(parse_synth #_ #(Seq.lseq byte len) #(lint len)
(parse_seq_flbytes len)
(synth_be_int len)
)
(be_int_of_bounded_integer len)
) input == parse (parse_bounded_integer len) input)
=
let _ = synth_be_int_injective len in
let _ = be_int_of_bounded_integer_injective len in
parse_synth_eq (parse_seq_flbytes len `parse_synth` synth_be_int len) (be_int_of_bounded_integer len) input;
parse_synth_eq (parse_seq_flbytes len) (synth_be_int len) input;
parser_kind_prop_equiv (parse_bounded_integer_kind len) (parse_bounded_integer len);
parse_bounded_integer_spec len input | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.SeqBytes.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.DER.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.SeqBytes.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 4,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
x: FStar.UInt8.t{LowParse.Spec.DER.der_length_payload_size_of_tag x <= 4} ->
input: LowParse.Bytes.bytes
-> FStar.Pervasives.Lemma
(ensures
(let y = LowParse.Spec.Base.parse (LowParse.Spec.DER.parse_der_length_payload32 x) input in
256 < LowParse.Spec.DER.der_length_max /\
(match FStar.UInt8.v x < 128 with
| true ->
LowParse.Spec.DER.tag_of_der_length (FStar.UInt8.v x) == x /\
y == FStar.Pervasives.Native.Some (FStar.Int.Cast.uint8_to_uint32 x, 0)
| _ ->
(match x = 128uy || x = 255uy with
| true -> y == FStar.Pervasives.Native.None
| _ ->
(match x = 129uy with
| true ->
(match LowParse.Spec.Base.parse LowParse.Spec.Int.parse_u8 input with
| FStar.Pervasives.Native.None #_ -> y == FStar.Pervasives.Native.None
| FStar.Pervasives.Native.Some
#_
(FStar.Pervasives.Native.Mktuple2 #_ #_ z consumed) ->
(match FStar.UInt8.v z < 128 with
| true -> y == FStar.Pervasives.Native.None
| _ ->
LowParse.Spec.DER.tag_of_der_length (FStar.UInt8.v z) == x /\
y ==
FStar.Pervasives.Native.Some
(FStar.Int.Cast.uint8_to_uint32 z,
consumed))
<:
Prims.logical)
<:
Prims.logical
| _ ->
let len = FStar.UInt8.v x - 128 in
2 <= len /\ len <= 4 /\
(let res =
LowParse.Spec.Base.parse (LowParse.Spec.BoundedInt.parse_bounded_integer len
)
input
in
(match res with
| FStar.Pervasives.Native.None #_ -> y == FStar.Pervasives.Native.None
| FStar.Pervasives.Native.Some
#_
(FStar.Pervasives.Native.Mktuple2 #_ #_ z consumed) ->
len > 0 /\
(match FStar.UInt32.v z >= Prims.pow2 (8 * (len - 1)) with
| true ->
FStar.UInt32.v z <= LowParse.Spec.DER.der_length_max /\
LowParse.Spec.DER.tag_of_der_length32 z == x /\
y == FStar.Pervasives.Native.Some (z, consumed)
| _ -> y == FStar.Pervasives.Native.None))
<:
Prims.logical))
<:
Prims.logical)
<:
Prims.logical))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt8.t",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.DER.der_length_payload_size_of_tag",
"LowParse.Bytes.bytes",
"Prims.op_LessThan",
"FStar.UInt8.v",
"Prims.bool",
"Prims.op_BarBar",
"Prims.op_Equality",
"FStar.UInt8.__uint_to_t",
"LowParse.Spec.Combinators.parse_synth_eq",
"LowParse.Spec.Base.total_constant_size_parser_kind",
"LowParse.Spec.DER.lint",
"LowParse.Spec.BoundedInt.bounded_integer",
"LowParse.Spec.Combinators.parse_synth",
"FStar.Seq.Properties.lseq",
"LowParse.Bytes.byte",
"LowParse.Spec.SeqBytes.Base.parse_seq_flbytes",
"LowParse.Spec.DER.synth_be_int",
"LowParse.Spec.DER.be_int_of_bounded_integer",
"Prims.unit",
"LowParse.Spec.BoundedInt.integer_size_values",
"LowParse.Spec.DER.parse_seq_flbytes_synth_be_int_eq",
"LowParse.Spec.DER.be_int_of_bounded_integer_injective",
"LowParse.Spec.DER.synth_be_int_injective",
"Prims._assert",
"Prims.l_and",
"Prims.nat",
"Prims.op_Subtraction",
"LowParse.Spec.DER.parse_der_length_payload_unfold",
"LowParse.Spec.Base.parse",
"LowParse.Spec.Base.refine_with_tag",
"LowParse.Spec.DER.der_length_t",
"LowParse.Spec.DER.tag_of_der_length",
"LowParse.Spec.DER.parse_der_length_payload",
"LowParse.Spec.Base.consumed_length",
"Prims.op_GreaterThanOrEqual",
"Prims.eq2",
"Prims.int",
"Prims.op_Addition",
"LowParse.Spec.DER.log256",
"LowParse.Math.pow2_lt_recip",
"FStar.Mul.op_Star",
"FStar.Pervasives.assert_norm",
"Prims.pow2",
"LowParse.Spec.DER.der_length_max",
"LowParse.Spec.DER.parse_der_length_payload_kind",
"FStar.UInt32.t",
"LowParse.Spec.DER.tag_of_der_length32",
"LowParse.Spec.DER.synth_der_length_payload32"
] | [] | false | false | true | false | false | let parse_der_length_payload32_unfold x input =
| parse_synth_eq (parse_der_length_payload x) (synth_der_length_payload32 x) input;
assert_norm (der_length_max == pow2 (8 * 126) - 1);
assert_norm (pow2 (8 * 1) == 256);
let _ = assert_norm (pow2 (8 * 2) == 65536) in
let _ = assert_norm (pow2 (8 * 3) == 16777216) in
let _ = assert_norm (pow2 (8 * 4) == 4294967296) in
(match parse (parse_der_length_payload x) input with
| None -> ()
| Some (y, _) ->
if y >= 128
then
(Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126);
assert (U8.v (tag_of_der_length y) == 128 + log256 y)));
parse_der_length_payload_unfold x input;
if U8.v x < 128
then ()
else
if x = 128uy || x = 255uy
then ()
else
if x = 129uy
then ()
else
let len:nat = U8.v x - 128 in
assert (2 <= len /\ len <= 4);
let _ = synth_be_int_injective len in
let _ = be_int_of_bounded_integer_injective len in
parse_seq_flbytes_synth_be_int_eq len input;
integer_size_values len;
parse_synth_eq #_
#(lint len)
#(bounded_integer len)
(parse_synth #_ #(Seq.lseq byte len) #(lint len) (parse_seq_flbytes len) (synth_be_int len))
(be_int_of_bounded_integer len)
input | false |
Alg.fst | Alg.another_raise | val another_raise (#a: _) (e: exn) : Alg a [Raise] | val another_raise (#a: _) (e: exn) : Alg a [Raise] | let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 34,
"end_line": 211,
"start_col": 0,
"start_line": 207
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: Prims.exn -> Alg.Alg a | Alg.Alg | [] | [] | [
"Prims.exn",
"Alg.Op",
"Alg.Raise",
"Alg.Return",
"Prims.Cons",
"Alg.op",
"Prims.Nil"
] | [] | false | true | false | false | false | let another_raise #a (e: exn) : Alg a [Raise] =
| Alg?.reflect (Op Raise e Return) | false |
Alg.fst | Alg.raise | val raise: #a: _ -> exn -> Alg a [Raise] | val raise: #a: _ -> exn -> Alg a [Raise] | let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 80,
"end_line": 205,
"start_col": 0,
"start_line": 205
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: Prims.exn -> Alg.Alg a | Alg.Alg | [] | [] | [
"Prims.exn",
"Alg.op_out",
"Alg.Raise",
"Alg.geneff"
] | [] | false | true | false | false | false | let raise: #a: _ -> exn -> Alg a [Raise] =
| fun e -> match geneff Raise e with | false |
Alg.fst | Alg.interp_pure | val interp_pure (#a: _) (f: (unit -> Alg a [])) : Tot a | val interp_pure (#a: _) (f: (unit -> Alg a [])) : Tot a | let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ())) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 83,
"end_line": 591,
"start_col": 0,
"start_line": 591
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> a | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"Prims.Nil",
"Alg.op",
"Alg.interp_pure_tree"
] | [] | false | false | false | false | false | let interp_pure #a (f: (unit -> Alg a [])) : Tot a =
| interp_pure_tree (reify (f ())) | false |
Alg.fst | Alg.get | val get: unit -> Alg int [Read] | val get: unit -> Alg int [Read] | let get : unit -> Alg int [Read] = geneff Read | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 58,
"end_line": 203,
"start_col": 0,
"start_line": 203
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> Alg.Alg Prims.int | Alg.Alg | [] | [] | [
"Alg.geneff",
"Alg.Read"
] | [] | false | true | false | false | false | let get: unit -> Alg int [Read] =
| geneff Read | false |
Alg.fst | Alg.interp_rd | val interp_rd (#a: _) (f: (unit -> Alg a [Read])) (s: state) : Tot a | val interp_rd (#a: _) (f: (unit -> Alg a [Read])) (s: state) : Tot a | let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 95,
"end_line": 599,
"start_col": 0,
"start_line": 599
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> s: Alg.state -> a | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"Prims.Cons",
"Alg.op",
"Alg.Read",
"Prims.Nil",
"Alg.state",
"Alg.interp_rd_tree"
] | [] | false | false | false | false | false | let interp_rd #a (f: (unit -> Alg a [Read])) (s: state) : Tot a =
| interp_rd_tree (reify (f ())) s | false |
Alg.fst | Alg.interp_rdwr | val interp_rdwr (#a: _) (f: (unit -> Alg a [Read; Write])) (s: state) : Tot (a & state) | val interp_rdwr (#a: _) (f: (unit -> Alg a [Read; Write])) (s: state) : Tot (a & state) | let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 116,
"end_line": 609,
"start_col": 0,
"start_line": 609
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> s: Alg.state -> a * Alg.state | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"Prims.Cons",
"Alg.op",
"Alg.Read",
"Alg.Write",
"Prims.Nil",
"Alg.state",
"Alg.interp_rdwr_tree",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | false | false | let interp_rdwr #a (f: (unit -> Alg a [Read; Write])) (s: state) : Tot (a & state) =
| interp_rdwr_tree (reify (f ())) s | false |
Alg.fst | Alg.frompure | val frompure (#a: _) (t: tree a []) : a | val frompure (#a: _) (t: tree a []) : a | let frompure #a (t : tree a []) : a = match t with | Return x -> x | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 66,
"end_line": 226,
"start_col": 0,
"start_line": 226
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Alg.tree a [] -> a | Prims.Tot | [
"total"
] | [] | [
"Alg.tree",
"Prims.Nil",
"Alg.op"
] | [] | false | false | false | true | false | let frompure #a (t: tree a []) : a =
| match t with | Return x -> x | false |
Alg.fst | Alg.defh_tree | val defh_tree (#b #labs: _) (#o: op{o `memP` labs}) : handler_tree_op o b labs | val defh_tree (#b #labs: _) (#o: op{o `memP` labs}) : handler_tree_op o b labs | let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 23,
"end_line": 337,
"start_col": 0,
"start_line": 335
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Alg.handler_tree_op o b labs | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"Alg.op",
"FStar.List.Tot.Base.memP",
"Alg.op_inp",
"Alg.op_out",
"Alg.tree",
"Alg.Op",
"Alg.handler_tree_op"
] | [] | false | false | false | false | false | let defh_tree #b #labs (#o: op{o `memP` labs}) : handler_tree_op o b labs =
| fun i k -> Op o i k | false |
Alg.fst | Alg.try_with | val try_with (#a #labs: _) (f: (unit -> Alg a (Raise :: labs))) (g: (unit -> Alg a labs))
: Alg a labs | val try_with (#a #labs: _) (f: (unit -> Alg a (Raise :: labs))) (g: (unit -> Alg a labs))
: Alg a labs | let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 40,
"end_line": 348,
"start_col": 0,
"start_line": 343
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> g: (_: Prims.unit -> Alg.Alg a) -> Alg.Alg a | Alg.Alg | [] | [] | [
"Prims.list",
"Alg.op",
"Prims.unit",
"Prims.Cons",
"Alg.Raise",
"Alg.handle_with",
"FStar.List.Tot.Base.memP",
"Alg.op_inp",
"Alg.op_out",
"Alg.defh",
"Alg.handler_op"
] | [] | false | true | false | false | false | let try_with #a #labs (f: (unit -> Alg a (Raise :: labs))) (g: (unit -> Alg a labs)) : Alg a labs =
| handle_with f
(fun x -> x)
(function
| Raise -> fun _ _ -> g ()
| _ -> defh) | false |
Alg.fst | Alg.__catch1 | val __catch1 (#a #labs: _) (t1: tree a (Raise :: labs)) (t2: tree a labs) : tree a labs | val __catch1 (#a #labs: _) (t1: tree a (Raise :: labs)) (t2: tree a labs) : tree a labs | let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 56,
"end_line": 277,
"start_col": 0,
"start_line": 273
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t1: Alg.tree a (Alg.Raise :: labs) -> t2: Alg.tree a labs -> Alg.tree a labs | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"Alg.op",
"Alg.tree",
"Prims.Cons",
"Alg.Raise",
"Alg.handle_tree",
"Alg.Return",
"FStar.List.Tot.Base.memP",
"Alg.op_inp",
"Alg.op_out",
"Alg.Op",
"Alg.handler_tree_op"
] | [] | false | false | false | false | false | let __catch1 #a #labs (t1: tree a (Raise :: labs)) (t2: tree a labs) : tree a labs =
| handle_tree t1
(fun x -> Return x)
(function
| Raise -> fun i k -> t2
| op -> fun i k -> Op op i k) | false |
Alg.fst | Alg.interp_read_raise_exn | val interp_read_raise_exn (#a: _) (f: (unit -> Alg a [Read; Raise])) (s: state) : either exn a | val interp_read_raise_exn (#a: _) (f: (unit -> Alg a [Read; Raise])) (s: state) : either exn a | let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 41,
"end_line": 620,
"start_col": 0,
"start_line": 619
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> s: Alg.state -> FStar.Pervasives.either Prims.exn a | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"Prims.Cons",
"Alg.op",
"Alg.Read",
"Alg.Raise",
"Prims.Nil",
"Alg.state",
"Alg.interp_read_raise_tree",
"FStar.Pervasives.either",
"Prims.exn"
] | [] | false | false | false | false | false | let interp_read_raise_exn #a (f: (unit -> Alg a [Read; Raise])) (s: state) : either exn a =
| interp_read_raise_tree (reify (f ())) s | false |
Alg.fst | Alg.test_catch2 | val test_catch2 (f: (unit -> Alg int [Raise; Write])) : Alg int [Raise; Write] | val test_catch2 (f: (unit -> Alg int [Raise; Write])) : Alg int [Raise; Write] | let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 11,
"end_line": 292,
"start_col": 0,
"start_line": 290
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg Prims.int) -> Alg.Alg Prims.int | Alg.Alg | [] | [] | [
"Prims.unit",
"Prims.int",
"Prims.Cons",
"Alg.op",
"Alg.Raise",
"Alg.Write",
"Prims.Nil",
"Alg.catch"
] | [] | false | true | false | false | false | let test_catch2 (f: (unit -> Alg int [Raise; Write])) : Alg int [Raise; Write] =
| let g () : Alg int [] = 42 in
catch f g | false |
Alg.fst | Alg.test0 | val test0 (x y: int) : Alg int [Read; Raise] | val test0 (x y: int) : Alg int [Read; Raise] | let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 11,
"end_line": 236,
"start_col": 0,
"start_line": 233
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.int -> y: Prims.int -> Alg.Alg Prims.int | Alg.Alg | [] | [] | [
"Prims.int",
"Prims.op_Addition",
"Prims.unit",
"Prims.op_LessThan",
"Alg.raise",
"Alg.Failure",
"Prims.bool",
"Alg.get",
"Prims.Cons",
"Alg.op",
"Alg.Read",
"Alg.Raise",
"Prims.Nil"
] | [] | false | true | false | false | false | let test0 (x y: int) : Alg int [Read; Raise] =
| let z = get () in
if z < 0 then raise (Failure "error");
x + y + z | false |
Alg.fst | Alg.interp_all | val interp_all (#a: _) (f: (unit -> Alg a [Read; Write; Raise])) (s: state) : Tot (option a & state) | val interp_all (#a: _) (f: (unit -> Alg a [Read; Write; Raise])) (s: state) : Tot (option a & state) | let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 128,
"end_line": 632,
"start_col": 0,
"start_line": 632
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> s: Alg.state -> FStar.Pervasives.Native.option a * Alg.state | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"Prims.Cons",
"Alg.op",
"Alg.Read",
"Alg.Write",
"Alg.Raise",
"Prims.Nil",
"Alg.state",
"Alg.interp_all_tree",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.option"
] | [] | false | false | false | false | false | let interp_all #a (f: (unit -> Alg a [Read; Write; Raise])) (s: state) : Tot (option a & state) =
| interp_all_tree (reify (f ())) s | false |
Alg.fst | Alg.defh | val defh (#b #labs: _) (#o: op{o `memP` labs}) : handler_op o b labs | val defh (#b #labs: _) (#o: op{o `memP` labs}) : handler_op o b labs | let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 326,
"start_col": 0,
"start_line": 324
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Alg.handler_op o b labs | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"Alg.op",
"FStar.List.Tot.Base.memP",
"Alg.op_inp",
"Alg.op_out",
"Alg.geneff",
"Alg.handler_op"
] | [] | false | false | false | false | false | let defh #b #labs (#o: op{o `memP` labs}) : handler_op o b labs =
| fun i k -> k (geneff o i) | false |
Alg.fst | Alg.__catch0 | val __catch0 (#a #labs: _) (t1: tree a (Raise :: labs)) (t2: tree a labs) : tree a labs | val __catch0 (#a #labs: _) (t1: tree a (Raise :: labs)) (t2: tree a labs) : tree a labs | let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 26,
"end_line": 270,
"start_col": 0,
"start_line": 261
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// .... | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t1: Alg.tree a (Alg.Raise :: labs) -> t2: Alg.tree a labs -> Alg.tree a labs | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"Alg.op",
"Alg.tree",
"Prims.Cons",
"Alg.Raise",
"Alg.op_inp",
"Alg.op_out",
"Alg.tree0",
"Alg.Op",
"Alg.__catch0",
"Alg.Return"
] | [
"recursion"
] | false | false | false | false | false | let rec __catch0 #a #labs (t1: tree a (Raise :: labs)) (t2: tree a labs) : tree a labs =
| match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs = __catch0 (k o) t2 in
Op act i k'
| Return v -> Return v | false |
Alg.fst | Alg.handle_with | val handle_with
(#a #b: _)
(#labs0 #labs1: ops)
($f: (unit -> Alg a labs0))
(v: (a -> Alg b labs1))
(h: handler labs0 b labs1)
: Alg b labs1 | val handle_with
(#a #b: _)
(#labs0 #labs1: ops)
($f: (unit -> Alg a labs0))
(v: (a -> Alg b labs1))
(h: handler labs0 b labs1)
: Alg b labs1 | let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o))))) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 89,
"end_line": 319,
"start_col": 0,
"start_line": 310
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: (_: Prims.unit -> Alg.Alg a) -> v: (_: a -> Alg.Alg b) -> h: Alg.handler labs0 b labs1
-> Alg.Alg b | Alg.Alg | [] | [] | [
"Alg.ops",
"Prims.unit",
"Alg.handler",
"Alg.handle_tree",
"Alg.tree",
"Alg.op",
"FStar.List.Tot.Base.memP",
"Alg.op_inp",
"Alg.op_out"
] | [] | false | true | false | false | false | let handle_with
(#a #b: _)
(#labs0 #labs1: ops)
($f: (unit -> Alg a labs0))
(v: (a -> Alg b labs1))
(h: handler labs0 b labs1)
: Alg b labs1 =
| Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o))))) | false |
Alg.fst | Alg.listmap_read | val listmap_read (#a #b #labs: _) (f: (a -> Alg b labs)) (l: list a) : Alg (list b) (Read :: labs) | val listmap_read (#a #b #labs: _) (f: (a -> Alg b labs)) (l: list a) : Alg (list b) (Read :: labs) | let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 67,
"end_line": 223,
"start_col": 0,
"start_line": 219
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: a -> Alg.Alg b) -> l: Prims.list a -> Alg.Alg (Prims.list b) | Alg.Alg | [] | [] | [
"Alg.ops",
"Prims.list",
"Prims.Nil",
"Prims.int",
"Alg.get",
"Prims.Cons",
"Alg.listmap_read",
"Alg.op",
"Alg.Read"
] | [
"recursion"
] | false | true | false | false | false | let rec listmap_read #a #b #labs (f: (a -> Alg b labs)) (l: list a) : Alg (list b) (Read :: labs) =
| match l with
| [] ->
let x = get () in
[]
| x :: xs ->
let _ = get () in
f x :: listmap_read #_ #_ #labs f xs | false |
Alg.fst | Alg.some_as_alg | val some_as_alg: #a: Type -> #labs: _ -> a -> Alg (option a) labs | val some_as_alg: #a: Type -> #labs: _ -> a -> Alg (option a) labs | let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 351,
"start_col": 0,
"start_line": 350
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: a -> Alg.Alg (FStar.Pervasives.Native.option a) | Alg.Alg | [] | [] | [
"Alg.ops",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.option"
] | [] | false | true | false | false | false | let some_as_alg (#a: Type) #labs : a -> Alg (option a) labs =
| fun x -> Some x | false |
Alg.fst | Alg.exp_defh | val exp_defh (#b #labs: _) : handler labs b labs | val exp_defh (#b #labs: _) : handler labs b labs | let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 31,
"end_line": 331,
"start_col": 0,
"start_line": 329
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Alg.handler labs b labs | Prims.Tot | [
"total"
] | [] | [
"Alg.ops",
"Alg.op",
"FStar.List.Tot.Base.memP",
"Alg.op_inp",
"Alg.op_out",
"Alg.geneff",
"Alg.handler"
] | [] | false | false | false | false | false | let exp_defh #b #labs : handler labs b labs =
| fun o i k -> k (geneff o i) | false |
Alg.fst | Alg.test1 | val test1 (x y: int) : Alg int [Raise; Read; Write] | val test1 (x y: int) : Alg int [Raise; Read; Write] | let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 22,
"end_line": 242,
"start_col": 0,
"start_line": 238
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.int -> y: Prims.int -> Alg.Alg Prims.int | Alg.Alg | [] | [] | [
"Prims.int",
"Prims.op_GreaterThan",
"Prims.op_Addition",
"Alg.raise",
"Alg.Failure",
"Prims.bool",
"Prims.op_Subtraction",
"Prims.unit",
"Alg.put",
"Alg.get",
"Prims.Cons",
"Alg.op",
"Alg.Raise",
"Alg.Read",
"Alg.Write",
"Prims.Nil"
] | [] | false | true | false | false | false | let test1 (x y: int) : Alg int [Raise; Read; Write] =
| let z = get () in
if x + z > 0
then raise (Failure "asd")
else
(put 42;
y - z) | false |
Alg.fst | Alg.catchE | val catchE (#a #labs: _) (f: (unit -> Alg a (Raise :: labs))) : Alg (option a) labs | val catchE (#a #labs: _) (f: (unit -> Alg a (Raise :: labs))) : Alg (option a) labs | let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 51,
"end_line": 355,
"start_col": 0,
"start_line": 353
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> Alg.Alg (FStar.Pervasives.Native.option a) | Alg.Alg | [] | [] | [
"Prims.list",
"Alg.op",
"Prims.unit",
"Prims.Cons",
"Alg.Raise",
"Alg.handle_with",
"FStar.Pervasives.Native.option",
"Alg.some_as_alg",
"FStar.List.Tot.Base.memP",
"Alg.op_inp",
"Alg.op_out",
"FStar.Pervasives.Native.None",
"Alg.defh",
"Alg.handler_op"
] | [] | false | true | false | false | false | let catchE #a #labs (f: (unit -> Alg a (Raise :: labs))) : Alg (option a) labs =
| handle_with f
some_as_alg
(function
| Raise -> fun _ _ -> None
| _ -> defh) | false |
Alg.fst | Alg.handle_sub | val handle_sub
(#a #b #labs0 #labs1: _)
(f: (unit -> Alg a (labs0 @ labs1)))
(v: (a -> Alg b labs1))
(h: handler labs0 b labs1)
: Alg b labs1 | val handle_sub
(#a #b #labs0 #labs1: _)
(f: (unit -> Alg a (labs0 @ labs1)))
(v: (a -> Alg b labs1))
(h: handler labs0 b labs1)
: Alg b labs1 | let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 518,
"start_col": 0,
"start_line": 513
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> v: (_: a -> Alg.Alg b) -> h: Alg.handler labs0 b labs1
-> Alg.Alg b | Alg.Alg | [] | [] | [
"Prims.list",
"Alg.op",
"Prims.unit",
"FStar.List.Tot.Base.op_At",
"Alg.handler",
"Alg.handle_with",
"Alg.widen_handler"
] | [] | false | true | false | false | false | let handle_sub
(#a #b #labs0 #labs1: _)
(f: (unit -> Alg a (labs0 @ labs1)))
(v: (a -> Alg b labs1))
(h: handler labs0 b labs1)
: Alg b labs1 =
| handle_with f v (widen_handler h) | false |
Alg.fst | Alg.labpoly | val labpoly (#labs: _) (f g: (unit -> Alg int labs)) : Alg int labs | val labpoly (#labs: _) (f g: (unit -> Alg int labs)) : Alg int labs | let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g () | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 75,
"end_line": 245,
"start_col": 0,
"start_line": 245
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg Prims.int) -> g: (_: Prims.unit -> Alg.Alg Prims.int)
-> Alg.Alg Prims.int | Alg.Alg | [] | [] | [
"Alg.ops",
"Prims.unit",
"Prims.int",
"Prims.op_Addition"
] | [] | false | true | false | false | false | let labpoly #labs (f: (unit -> Alg int labs)) (g: (unit -> Alg int labs)) : Alg int labs =
| f () + g () | false |
Alg.fst | Alg.__catchST0 | val __catchST0 (#a #labs: _) (t1: tree a (Read :: Write :: labs)) (s0: state) : tree (a & int) labs | val __catchST0 (#a #labs: _) (t1: tree a (Read :: Write :: labs)) (s0: state) : tree (a & int) labs | let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k' | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 16,
"end_line": 382,
"start_col": 0,
"start_line": 372
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t1: Alg.tree a (Alg.Read :: Alg.Write :: labs) -> s0: Alg.state -> Alg.tree (a * Prims.int) labs | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"Alg.op",
"Alg.tree",
"Prims.Cons",
"Alg.Read",
"Alg.Write",
"Alg.state",
"Alg.Return",
"FStar.Pervasives.Native.tuple2",
"Prims.int",
"FStar.Pervasives.Native.Mktuple2",
"Alg.op_inp",
"Alg.op_out",
"Alg.tree0",
"Alg.__catchST0",
"Alg.Op"
] | [
"recursion"
] | false | false | false | false | false | let rec __catchST0 #a #labs (t1: tree a (Read :: Write :: labs)) (s0: state) : tree (a & int) labs =
| match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
let k' o : tree (a & int) labs = __catchST0 #a #labs (k o) s0 in
Op act i k' | false |
Alg.fst | Alg.widen_handler | val widen_handler (#b #labs0 #labs1: _) (h: handler labs0 b labs1) : handler (labs0 @ labs1) b labs1 | val widen_handler (#b #labs0 #labs1: _) (h: handler labs0 b labs1) : handler (labs0 @ labs1) b labs1 | let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 16,
"end_line": 510,
"start_col": 0,
"start_line": 500
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: Alg.handler labs0 b labs1 -> Alg.handler (labs0 @ labs1) b labs1 | Prims.Tot | [
"total"
] | [] | [
"Alg.ops",
"Alg.handler",
"Alg.op",
"FStar.List.Tot.Base.memP",
"FStar.List.Tot.Base.op_At",
"FStar.List.Tot.Base.mem",
"Prims.bool",
"Alg.defh",
"Alg.handler_op",
"Prims.unit",
"FStar.List.Tot.Properties.mem_memP"
] | [] | false | false | false | false | false | let widen_handler (#b #labs0 #labs1: _) (h: handler labs0 b labs1) : handler (labs0 @ labs1) b labs1 =
| fun op ->
mem_memP op labs0;
if op `mem` labs0 then h op else defh | false |
Alg.fst | Alg.widen_handler_1 | val widen_handler_1 (#b: _) (#o: op) (#labs1: _) (h: handler_op o b labs1)
: handler (o :: labs1) b labs1 | val widen_handler_1 (#b: _) (#o: op) (#labs1: _) (h: handler_op o b labs1)
: handler (o :: labs1) b labs1 | let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 38,
"end_line": 523,
"start_col": 0,
"start_line": 520
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: Alg.handler_op o b labs1 -> Alg.handler (o :: labs1) b labs1 | Prims.Tot | [
"total"
] | [] | [
"Alg.op",
"Alg.ops",
"Alg.handler_op",
"Alg.widen_handler",
"Prims.Cons",
"Prims.Nil",
"FStar.List.Tot.Base.memP",
"Alg.handler"
] | [] | false | false | false | false | false | let widen_handler_1 (#b: _) (#o: op) (#labs1: _) (h: handler_op o b labs1)
: handler (o :: labs1) b labs1 =
| widen_handler #_ #[o] (fun _ -> h) | false |
Alg.fst | Alg.handle_read | val handle_read
(#a: Type)
(#labs: ops)
(f: (unit -> Alg a (Read :: labs)))
(h: handler_op Read a labs)
: Alg a labs | val handle_read
(#a: Type)
(#labs: ops)
(f: (unit -> Alg a (Read :: labs)))
(h: handler_op Read a labs)
: Alg a labs | let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 469,
"start_col": 0,
"start_line": 463
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> h: Alg.handler_op Alg.Read a labs -> Alg.Alg a | Alg.Alg | [] | [] | [
"Alg.ops",
"Prims.unit",
"Prims.Cons",
"Alg.op",
"Alg.Read",
"Alg.handler_op",
"Alg.handle_with",
"FStar.List.Tot.Base.memP",
"Alg.defh"
] | [] | false | true | false | false | false | let handle_read
(#a: Type)
(#labs: ops)
(f: (unit -> Alg a (Read :: labs)))
(h: handler_op Read a labs)
: Alg a labs =
| handle_with f
(fun x -> x)
(function
| Read -> h
| _ -> defh) | false |
Alg.fst | Alg.handle_return | val handle_return (#a: _) (x: a) : Alg (option a & state) [Write; Read] | val handle_return (#a: _) (x: a) : Alg (option a & state) [Write; Read] | let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ()) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 20,
"end_line": 550,
"start_col": 0,
"start_line": 548
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: a -> Alg.Alg (FStar.Pervasives.Native.option a * Alg.state) | Alg.Alg | [] | [] | [
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.option",
"Prims.int",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.tuple2",
"Alg.state",
"Alg.get",
"Prims.Cons",
"Alg.op",
"Alg.Write",
"Alg.Read",
"Prims.Nil"
] | [] | false | true | false | false | false | let handle_return #a (x: a) : Alg (option a & state) [Write; Read] =
| (Some x, get ()) | false |
Alg.fst | Alg.catch | val catch (#a #labs: _) (f: (unit -> Alg a (Raise :: labs))) (g: (unit -> Alg a labs)) : Alg a labs | val catch (#a #labs: _) (f: (unit -> Alg a (Raise :: labs))) (g: (unit -> Alg a labs)) : Alg a labs | let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ()))) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 57,
"end_line": 282,
"start_col": 0,
"start_line": 280
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> g: (_: Prims.unit -> Alg.Alg a) -> Alg.Alg a | Alg.Alg | [] | [] | [
"Prims.list",
"Alg.op",
"Prims.unit",
"Prims.Cons",
"Alg.Raise",
"Alg.__catch1"
] | [] | false | true | false | false | false | let catch #a #labs (f: (unit -> Alg a (Raise :: labs))) (g: (unit -> Alg a labs)) : Alg a labs =
| Alg?.reflect (__catch1 (reify (f ())) (reify (g ()))) | false |
Alg.fst | Alg.baseop | val baseop : Type0 | let baseop = o:op{not (Other? o)} | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 720,
"start_col": 0,
"start_line": 720
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs
let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end
(* Easy enough to handle 2 labels at once. Again a special case of
handle_tree too. *)
val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs
let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else begin
let k' o : tree b labs =
handle2 l1 l2 (k o) h1 h2 v
in
Op act i k'
end
let catch0' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle Raise t1 (fun i k -> t2) (fun x -> Return x)
let catch0'' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle_tree t1
(fun x -> Return x)
(function Raise -> (fun i k -> t2)
| act -> (fun i k -> Op act i k))
(*** Connection to Lattice *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Alg.op",
"Prims.b2t",
"Prims.op_Negation",
"Alg.uu___is_Other"
] | [] | false | false | false | true | true | let baseop =
| o: op{not (Other? o)} | false |
|
Alg.fst | Alg.trlabs' | val trlabs' : x: Prims.list Lattice.eff_label -> Prims.list Alg.op | let trlabs' = List.Tot.map trlab' | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 733,
"start_col": 0,
"start_line": 733
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs
let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end
(* Easy enough to handle 2 labels at once. Again a special case of
handle_tree too. *)
val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs
let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else begin
let k' o : tree b labs =
handle2 l1 l2 (k o) h1 h2 v
in
Op act i k'
end
let catch0' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle Raise t1 (fun i k -> t2) (fun x -> Return x)
let catch0'' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle_tree t1
(fun x -> Return x)
(function Raise -> (fun i k -> t2)
| act -> (fun i k -> Op act i k))
(*** Connection to Lattice *)
let baseop = o:op{not (Other? o)}
let trlab : o:baseop -> L.eff_label = function
| Read -> L.RD
| Write -> L.WR
| Raise -> L.EXN
let trlab' = function
| L.RD -> Read
| L.WR -> Write
| L.EXN -> Raise | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.list Lattice.eff_label -> Prims.list Alg.op | Prims.Tot | [
"total"
] | [] | [
"FStar.List.Tot.Base.map",
"Lattice.eff_label",
"Alg.op",
"Alg.trlab'"
] | [] | false | false | false | true | false | let trlabs' =
| List.Tot.map trlab' | false |
|
Alg.fst | Alg.trlabs | val trlabs : x: Prims.list Alg.baseop -> Prims.list Lattice.eff_label | let trlabs = List.Tot.map trlab | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 732,
"start_col": 0,
"start_line": 732
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs
let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end
(* Easy enough to handle 2 labels at once. Again a special case of
handle_tree too. *)
val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs
let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else begin
let k' o : tree b labs =
handle2 l1 l2 (k o) h1 h2 v
in
Op act i k'
end
let catch0' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle Raise t1 (fun i k -> t2) (fun x -> Return x)
let catch0'' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle_tree t1
(fun x -> Return x)
(function Raise -> (fun i k -> t2)
| act -> (fun i k -> Op act i k))
(*** Connection to Lattice *)
let baseop = o:op{not (Other? o)}
let trlab : o:baseop -> L.eff_label = function
| Read -> L.RD
| Write -> L.WR
| Raise -> L.EXN
let trlab' = function
| L.RD -> Read
| L.WR -> Write
| L.EXN -> Raise | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.list Alg.baseop -> Prims.list Lattice.eff_label | Prims.Tot | [
"total"
] | [] | [
"FStar.List.Tot.Base.map",
"Alg.baseop",
"Lattice.eff_label",
"Alg.trlab"
] | [] | false | false | false | true | false | let trlabs =
| List.Tot.map trlab | false |
|
Alg.fst | Alg._catchST | val _catchST (#a #labs: _) (f: (unit -> Alg a (Read :: Write :: labs))) (s0: state)
: Alg (a & state) labs | val _catchST (#a #labs: _) (f: (unit -> Alg a (Read :: Write :: labs))) (s0: state)
: Alg (a & state) labs | let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 410,
"start_col": 0,
"start_line": 406
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> s0: Alg.state -> Alg.Alg (a * Alg.state) | Alg.Alg | [] | [] | [
"Prims.list",
"Alg.op",
"Prims.unit",
"Prims.Cons",
"Alg.Read",
"Alg.Write",
"Alg.state",
"Alg.__catchST1",
"FStar.Pervasives.Native.tuple2"
] | [] | false | true | false | false | false | let _catchST #a #labs (f: (unit -> Alg a (Read :: Write :: labs))) (s0: state)
: Alg (a & state) labs =
| Alg?.reflect (__catchST1 (reify (f ())) s0) | false |
Alg.fst | Alg.catchST | val catchST (#a #labs: _) (f: (unit -> Alg a (Read :: Write :: labs))) (s0: state)
: Alg (a & state) labs | val catchST (#a #labs: _) (f: (unit -> Alg a (Read :: Write :: labs))) (s0: state)
: Alg (a & state) labs | let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0 | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 45,
"end_line": 425,
"start_col": 0,
"start_line": 419
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join, | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> s0: Alg.state -> Alg.Alg (a * Alg.state) | Alg.Alg | [] | [] | [
"Prims.list",
"Alg.op",
"Prims.unit",
"Prims.Cons",
"Alg.Read",
"Alg.Write",
"Alg.state",
"FStar.Pervasives.Native.tuple2",
"Alg.handle_with",
"FStar.Pervasives.Native.Mktuple2",
"FStar.List.Tot.Base.memP",
"Alg.op_inp",
"Alg.op_out",
"Alg.defh",
"Alg.handler_op"
] | [] | false | true | false | false | false | let catchST #a #labs (f: (unit -> Alg a (Read :: Write :: labs))) (s0: state) : Alg (a & state) labs =
| handle_with #_
#(state -> Alg _ labs)
#_
#labs
f
(fun x s -> (x, s))
(function
| Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh)
s0 | false |
Alg.fst | Alg.read_handler | val read_handler (#b: Type) (#labs: ops) (s0: state) : handler_op Read b labs | val read_handler (#b: Type) (#labs: ops) (s0: state) : handler_op Read b labs | let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0 | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 19,
"end_line": 460,
"start_col": 0,
"start_line": 456
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s0: Alg.state -> Alg.handler_op Alg.Read b labs | Prims.Tot | [
"total"
] | [] | [
"Alg.ops",
"Alg.state",
"Alg.op_inp",
"Alg.Read",
"Alg.op_out",
"Alg.handler_op"
] | [] | false | false | false | false | false | let read_handler (#b: Type) (#labs: ops) (s0: state) : handler_op Read b labs =
| fun _ k -> k s0 | false |
Alg.fst | Alg.handle_write | val handle_write (#a: Type) (#labs: ops) (f: (unit -> Alg a (Write :: labs))) : Alg a labs | val handle_write (#a: Type) (#labs: ops) (f: (unit -> Alg a (Write :: labs))) : Alg a labs | let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 39,
"end_line": 486,
"start_col": 0,
"start_line": 480
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> Alg.Alg a | Alg.Alg | [] | [] | [
"Alg.ops",
"Prims.unit",
"Prims.Cons",
"Alg.op",
"Alg.Write",
"Alg.handle_with",
"FStar.List.Tot.Base.memP",
"Alg.write_handler",
"Alg.defh",
"Alg.handler_op"
] | [] | false | true | false | false | false | let handle_write (#a: Type) (#labs: ops) (f: (unit -> Alg a (Write :: labs))) : Alg a labs =
| handle_with f
(fun x -> x)
(function
| Write -> write_handler
| _ -> defh) | false |
Alg.fst | Alg.write_handler | val write_handler (#a: Type) (#labs: ops) : handler_op Write a labs | val write_handler (#a: Type) (#labs: ops) : handler_op Write a labs | let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 45,
"end_line": 477,
"start_col": 0,
"start_line": 474
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Alg.handler_op Alg.Write a labs | Prims.Tot | [
"total"
] | [] | [
"Alg.ops",
"Alg.op_inp",
"Alg.Write",
"Alg.op_out",
"Alg.handle_read",
"Alg.read_handler",
"Alg.handler_op"
] | [] | false | false | false | false | false | let write_handler (#a: Type) (#labs: ops) : handler_op Write a labs =
| fun s k -> handle_read k (read_handler s) | false |
Alg.fst | Alg.fixup | val fixup: list baseop -> ops | val fixup: list baseop -> ops | let fixup : list baseop -> ops = List.Tot.map #baseop #op (fun x -> x) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 70,
"end_line": 745,
"start_col": 0,
"start_line": 745
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs
let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end
(* Easy enough to handle 2 labels at once. Again a special case of
handle_tree too. *)
val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs
let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else begin
let k' o : tree b labs =
handle2 l1 l2 (k o) h1 h2 v
in
Op act i k'
end
let catch0' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle Raise t1 (fun i k -> t2) (fun x -> Return x)
let catch0'' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle_tree t1
(fun x -> Return x)
(function Raise -> (fun i k -> t2)
| act -> (fun i k -> Op act i k))
(*** Connection to Lattice *)
let baseop = o:op{not (Other? o)}
let trlab : o:baseop -> L.eff_label = function
| Read -> L.RD
| Write -> L.WR
| Raise -> L.EXN
let trlab' = function
| L.RD -> Read
| L.WR -> Write
| L.EXN -> Raise
let trlabs = List.Tot.map trlab
let trlabs' = List.Tot.map trlab'
let rec lab_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` ls <==> (trlab l) `mem` (trlabs ls))
[SMTPat (l `memP` ls)] // needed for interp_into_lattice_tree below
= match ls with
| [] -> ()
| l1::ls -> lab_corr l ls
(* Tied to the particular tree of Lattice.fst *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.list Alg.baseop -> Alg.ops | Prims.Tot | [
"total"
] | [] | [
"FStar.List.Tot.Base.map",
"Alg.baseop",
"Alg.op"
] | [] | false | false | false | true | false | let fixup: list baseop -> ops =
| List.Tot.map #baseop #op (fun x -> x) | false |
Alg.fst | Alg.runST | val runST: #a: _ -> f: (unit -> Alg a ([Read; Write])) -> state -> a & state | val runST: #a: _ -> f: (unit -> Alg a ([Read; Write])) -> state -> a & state | let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 42,
"end_line": 432,
"start_col": 0,
"start_line": 429
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> _: Alg.state -> a * Alg.state | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"Prims.Cons",
"Alg.op",
"Alg.Read",
"Alg.Write",
"Prims.Nil",
"Alg.state",
"Alg.run",
"FStar.Pervasives.Native.tuple2",
"Alg.catchST"
] | [] | false | false | false | false | false | let runST #a (f: (unit -> Alg a ([Read; Write]))) : state -> a & state =
| fun s0 -> run (fun () -> catchST f s0) | false |
Alg.fst | Alg.run_stexn | val run_stexn (#a: _) (f: (unit -> Alg a [Write; Raise; Read])) (s_0: state) : option (a & state) | val run_stexn (#a: _) (f: (unit -> Alg a [Write; Raise; Read])) (s_0: state) : option (a & state) | let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0)) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 50,
"end_line": 447,
"start_col": 0,
"start_line": 446
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> s_0: Alg.state -> FStar.Pervasives.Native.option (a * Alg.state) | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"Prims.Cons",
"Alg.op",
"Alg.Write",
"Alg.Raise",
"Alg.Read",
"Prims.Nil",
"Alg.state",
"Alg.run",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"Alg.catchE",
"Alg.catchST"
] | [] | false | false | false | false | false | let run_stexn #a (f: (unit -> Alg a [Write; Raise; Read])) (s_0: state) : option (a & state) =
| run (fun () -> catchE (fun () -> catchST f s_0)) | false |
Alg.fst | Alg.run_tree | val run_tree (#a: _) (f: (unit -> Alg a [Raise; Write; Read])) (s0: state) : option a & state | val run_tree (#a: _) (f: (unit -> Alg a [Raise; Write; Read])) (s0: state) : option a & state | let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 54,
"end_line": 570,
"start_col": 0,
"start_line": 565
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> s0: Alg.state -> FStar.Pervasives.Native.option a * Alg.state | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"Prims.Cons",
"Alg.op",
"Alg.Raise",
"Alg.Write",
"Alg.Read",
"Prims.Nil",
"Alg.state",
"Alg.run",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.option",
"Alg.handle_read'",
"Alg.handle_write'",
"Alg.handle_with",
"Alg.handle_return",
"Alg.handler_raise"
] | [] | false | false | false | false | false | let run_tree #a (f: (unit -> Alg a [Raise; Write; Read])) (s0: state) : option a & state =
| run (fun () ->
handle_read' (fun () -> handle_write' (fun () -> handle_with f handle_return handler_raise))
s0) | false |
Alg.fst | Alg.lattice_get_repr | val lattice_get_repr: Prims.unit -> L.repr int [L.RD] | val lattice_get_repr: Prims.unit -> L.repr int [L.RD] | let lattice_get_repr () : L.repr int [L.RD] = reify (L.get ()) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 62,
"end_line": 761,
"start_col": 0,
"start_line": 761
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs
let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end
(* Easy enough to handle 2 labels at once. Again a special case of
handle_tree too. *)
val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs
let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else begin
let k' o : tree b labs =
handle2 l1 l2 (k o) h1 h2 v
in
Op act i k'
end
let catch0' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle Raise t1 (fun i k -> t2) (fun x -> Return x)
let catch0'' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle_tree t1
(fun x -> Return x)
(function Raise -> (fun i k -> t2)
| act -> (fun i k -> Op act i k))
(*** Connection to Lattice *)
let baseop = o:op{not (Other? o)}
let trlab : o:baseop -> L.eff_label = function
| Read -> L.RD
| Write -> L.WR
| Raise -> L.EXN
let trlab' = function
| L.RD -> Read
| L.WR -> Write
| L.EXN -> Raise
let trlabs = List.Tot.map trlab
let trlabs' = List.Tot.map trlab'
let rec lab_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` ls <==> (trlab l) `mem` (trlabs ls))
[SMTPat (l `memP` ls)] // needed for interp_into_lattice_tree below
= match ls with
| [] -> ()
| l1::ls -> lab_corr l ls
(* Tied to the particular tree of Lattice.fst *)
(* no datatype subtyping *)
let fixup : list baseop -> ops = List.Tot.map #baseop #op (fun x -> x)
let rec fixup_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` (fixup ls) <==> l `memP` ls)
[SMTPat (l `memP` (fixup ls))]
= match ls with
| [] -> ()
| l1::ls -> fixup_corr l ls
let rec fixup_no_other (l:op{Other? l}) (ls:list baseop)
: Lemma (l `memP` (fixup ls) <==> False)
[SMTPat (l `memP` (fixup ls))]
= match ls with
| [] -> ()
| l1::ls -> fixup_no_other l ls | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> Lattice.repr Prims.int [Lattice.RD] | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"Lattice.get",
"Prims.int",
"Lattice.repr",
"Prims.Cons",
"Lattice.eff_label",
"Lattice.RD",
"Prims.Nil"
] | [] | false | false | false | true | false | let lattice_get_repr () : L.repr int [L.RD] =
| reify (L.get ()) | false |
Alg.fst | Alg.handle_one | val handle_one
(#a: _)
(#o: op)
(#labs1: _)
($f: (unit -> Alg a (o :: labs1)))
(h: handler_op o a labs1)
: Alg a labs1 | val handle_one
(#a: _)
(#o: op)
(#labs1: _)
($f: (unit -> Alg a (o :: labs1)))
(h: handler_op o a labs1)
: Alg a labs1 | let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 50,
"end_line": 529,
"start_col": 0,
"start_line": 525
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: (_: Prims.unit -> Alg.Alg a) -> h: Alg.handler_op o a labs1 -> Alg.Alg a | Alg.Alg | [] | [] | [
"Alg.op",
"Prims.list",
"Prims.unit",
"Prims.Cons",
"Alg.handler_op",
"Alg.handle_with",
"Alg.widen_handler_1"
] | [] | false | true | false | false | false | let handle_one
(#a: _)
(#o: op)
(#labs1: _)
($f: (unit -> Alg a (o :: labs1)))
(h: handler_op o a labs1)
: Alg a labs1 =
| handle_with f (fun x -> x) (widen_handler_1 h) | false |
Alg.fst | Alg.handle_write' | val handle_write' (#a #labs: _) (f: (unit -> Alg a (Write :: labs))) : Alg a labs | val handle_write' (#a #labs: _) (f: (unit -> Alg a (Write :: labs))) : Alg a labs | let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 46,
"end_line": 546,
"start_col": 0,
"start_line": 544
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> Alg.Alg a | Alg.Alg | [] | [] | [
"Prims.list",
"Alg.op",
"Prims.unit",
"Prims.Cons",
"Alg.Write",
"Alg.handle_one",
"Alg.op_inp",
"Alg.op_out",
"Alg.handle_read'"
] | [] | false | true | false | false | false | let handle_write' #a #labs (f: (unit -> Alg a (Write :: labs))) : Alg a labs =
| handle_one f (fun s k -> handle_read' k s) | false |