file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alg.fst | Alg.test_try_with2 | val test_try_with2 (f: (unit -> Alg int [Raise; Write])) : Alg int [Raise; Write] | val test_try_with2 (f: (unit -> Alg int [Raise; Write])) : Alg int [Raise; Write] | let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 14,
"end_line": 363,
"start_col": 0,
"start_line": 361
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg Prims.int) -> Alg.Alg Prims.int | Alg.Alg | [] | [] | [
"Prims.unit",
"Prims.int",
"Prims.Cons",
"Alg.op",
"Alg.Raise",
"Alg.Write",
"Prims.Nil",
"Alg.try_with"
] | [] | false | true | false | false | false | let test_try_with2 (f: (unit -> Alg int [Raise; Write])) : Alg int [Raise; Write] =
| let g () : Alg int [] = 42 in
try_with f g | false |
Alg.fst | Alg.handle_raise | val handle_raise (#a #labs: _) (f: (unit -> Alg a (Raise :: labs))) (g: (unit -> Alg a labs))
: Alg a labs | val handle_raise (#a #labs: _) (f: (unit -> Alg a (Raise :: labs))) (g: (unit -> Alg a labs))
: Alg a labs | let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ()) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 34,
"end_line": 538,
"start_col": 0,
"start_line": 536
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> g: (_: Prims.unit -> Alg.Alg a) -> Alg.Alg a | Alg.Alg | [] | [] | [
"Prims.list",
"Alg.op",
"Prims.unit",
"Prims.Cons",
"Alg.Raise",
"Alg.handle_one",
"Alg.op_inp",
"Alg.op_out"
] | [] | false | true | false | false | false | let handle_raise #a #labs (f: (unit -> Alg a (Raise :: labs))) (g: (unit -> Alg a labs))
: Alg a labs =
| handle_one f (fun _ _ -> g ()) | false |
FStar.FunctionalExtensionality.fsti | FStar.FunctionalExtensionality.arrow | val arrow : a: Type -> b: (_: a -> Type) -> Type | let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x) | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 56,
"end_line": 41,
"start_col": 0,
"start_line": 41
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> b: (_: a -> Type) -> Type | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | true | let arrow (a: Type) (b: (a -> Type)) =
| x: a -> Tot (b x) | false |
|
Alg.fst | Alg.lattice_put_repr | val lattice_put_repr (s: state) : L.repr unit [L.WR] | val lattice_put_repr (s: state) : L.repr unit [L.WR] | let lattice_put_repr (s:state) : L.repr unit [L.WR] =
reify (L.put s) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 764,
"start_col": 0,
"start_line": 763
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs
let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end
(* Easy enough to handle 2 labels at once. Again a special case of
handle_tree too. *)
val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs
let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else begin
let k' o : tree b labs =
handle2 l1 l2 (k o) h1 h2 v
in
Op act i k'
end
let catch0' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle Raise t1 (fun i k -> t2) (fun x -> Return x)
let catch0'' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle_tree t1
(fun x -> Return x)
(function Raise -> (fun i k -> t2)
| act -> (fun i k -> Op act i k))
(*** Connection to Lattice *)
let baseop = o:op{not (Other? o)}
let trlab : o:baseop -> L.eff_label = function
| Read -> L.RD
| Write -> L.WR
| Raise -> L.EXN
let trlab' = function
| L.RD -> Read
| L.WR -> Write
| L.EXN -> Raise
let trlabs = List.Tot.map trlab
let trlabs' = List.Tot.map trlab'
let rec lab_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` ls <==> (trlab l) `mem` (trlabs ls))
[SMTPat (l `memP` ls)] // needed for interp_into_lattice_tree below
= match ls with
| [] -> ()
| l1::ls -> lab_corr l ls
(* Tied to the particular tree of Lattice.fst *)
(* no datatype subtyping *)
let fixup : list baseop -> ops = List.Tot.map #baseop #op (fun x -> x)
let rec fixup_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` (fixup ls) <==> l `memP` ls)
[SMTPat (l `memP` (fixup ls))]
= match ls with
| [] -> ()
| l1::ls -> fixup_corr l ls
let rec fixup_no_other (l:op{Other? l}) (ls:list baseop)
: Lemma (l `memP` (fixup ls) <==> False)
[SMTPat (l `memP` (fixup ls))]
= match ls with
| [] -> ()
| l1::ls -> fixup_no_other l ls
let lattice_get_repr () : L.repr int [L.RD] = reify (L.get ()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Alg.state -> Lattice.repr Prims.unit [Lattice.WR] | Prims.Tot | [
"total"
] | [] | [
"Alg.state",
"Lattice.put",
"Prims.unit",
"Lattice.repr",
"Prims.Cons",
"Lattice.eff_label",
"Lattice.WR",
"Prims.Nil"
] | [] | false | false | false | true | false | let lattice_put_repr (s: state) : L.repr unit [L.WR] =
| reify (L.put s) | false |
Alg.fst | Alg.handler_raise | val handler_raise (#a: _) : handler [Raise; Write; Read] (option a & state) [Write; Read] | val handler_raise (#a: _) : handler [Raise; Write; Read] (option a & state) [Write; Read] | let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 15,
"end_line": 556,
"start_col": 0,
"start_line": 552
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Alg.handler [Alg.Raise; Alg.Write; Alg.Read]
(FStar.Pervasives.Native.option a * Alg.state)
[Alg.Write; Alg.Read] | Prims.Tot | [
"total"
] | [] | [
"Alg.op",
"FStar.List.Tot.Base.memP",
"Prims.Cons",
"Alg.Raise",
"Alg.Write",
"Alg.Read",
"Prims.Nil",
"Alg.op_inp",
"Alg.op_out",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.option",
"Alg.state",
"FStar.Pervasives.Native.Mktuple2",
"Prims.int",
"FStar.Pervasives.Native.None",
"Alg.get",
"Alg.defh",
"Alg.handler_op",
"Alg.handler"
] | [] | false | false | false | true | false | let handler_raise #a : handler [Raise; Write; Read] (option a & state) [Write; Read] =
| function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh | false |
Alg.fst | Alg.handle_read' | val handle_read' (#a #labs: _) (f: (unit -> Alg a (Read :: labs))) (s: state) : Alg a labs | val handle_read' (#a #labs: _) (f: (unit -> Alg a (Read :: labs))) (s: state) : Alg a labs | let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 542,
"start_col": 0,
"start_line": 540
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> s: Alg.state -> Alg.Alg a | Alg.Alg | [] | [] | [
"Prims.list",
"Alg.op",
"Prims.unit",
"Prims.Cons",
"Alg.Read",
"Alg.state",
"Alg.handle_one",
"Alg.op_inp",
"Alg.op_out"
] | [] | false | true | false | false | false | let handle_read' #a #labs (f: (unit -> Alg a (Read :: labs))) (s: state) : Alg a labs =
| handle_one f (fun _ k -> k s) | false |
Alg.fst | Alg.__catchST1_aux | val __catchST1_aux (#a #labs: _) (f: tree a (Read :: Write :: labs))
: tree (state -> tree (a & state) labs) labs | val __catchST1_aux (#a #labs: _) (f: tree a (Read :: Write :: labs))
: tree (state -> tree (a & state) labs) labs | let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 57,
"end_line": 395,
"start_col": 0,
"start_line": 388
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Alg.tree a (Alg.Read :: Alg.Write :: labs)
-> Alg.tree (_: Alg.state -> Alg.tree (a * Alg.state) labs) labs | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"Alg.op",
"Alg.tree",
"Prims.Cons",
"Alg.Read",
"Alg.Write",
"Alg.handle_tree",
"Alg.state",
"FStar.Pervasives.Native.tuple2",
"Alg.Return",
"FStar.Pervasives.Native.Mktuple2",
"FStar.List.Tot.Base.memP",
"Alg.op_inp",
"Alg.op_out",
"Alg.bind",
"Alg.Op",
"Alg.handler_tree_op"
] | [] | false | false | false | false | false | let __catchST1_aux #a #labs (f: tree a (Read :: Write :: labs))
: tree (state -> tree (a & state) labs) labs =
| handle_tree #_
#(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function
| Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k) | false |
FStar.FunctionalExtensionality.fsti | FStar.FunctionalExtensionality.feq | val feq : f: FStar.FunctionalExtensionality.arrow a b -> g: FStar.FunctionalExtensionality.arrow a b
-> Prims.logical | let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 100,
"end_line": 48,
"start_col": 0,
"start_line": 48
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: FStar.FunctionalExtensionality.arrow a b -> g: FStar.FunctionalExtensionality.arrow a b
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"FStar.FunctionalExtensionality.arrow",
"Prims.l_Forall",
"Prims.eq2",
"Prims.logical"
] | [] | false | false | false | false | true | let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) =
| forall x. {:pattern (f x)\/(g x)} f x == g x | false |
|
Alg.fst | Alg.handle_st | val handle_st (a: Type) (labs: ops) (f: (unit -> Alg a (Write :: Read :: labs))) (s0: state)
: Alg a labs | val handle_st (a: Type) (labs: ops) (f: (unit -> Alg a (Write :: Read :: labs))) (s0: state)
: Alg a labs | let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 61,
"end_line": 496,
"start_col": 0,
"start_line": 491
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> labs: Alg.ops -> f: (_: Prims.unit -> Alg.Alg a) -> s0: Alg.state -> Alg.Alg a | Alg.Alg | [] | [] | [
"Alg.ops",
"Prims.unit",
"Prims.Cons",
"Alg.op",
"Alg.Write",
"Alg.Read",
"Alg.state",
"Alg.handle_read",
"Alg.handle_write",
"Alg.op_inp",
"Alg.op_out"
] | [] | false | true | false | false | false | let handle_st (a: Type) (labs: ops) (f: (unit -> Alg a (Write :: Read :: labs))) (s0: state)
: Alg a labs =
| handle_read (fun () -> handle_write f) (fun _ k -> k s0) | false |
FStar.FunctionalExtensionality.fsti | FStar.FunctionalExtensionality.restricted_t | val restricted_t : a: Type -> b: (_: a -> Type) -> Type | let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f} | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 78,
"end_line": 102,
"start_col": 0,
"start_line": 102
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b]. | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> b: (_: a -> Type) -> Type | Prims.Tot | [
"total"
] | [] | [
"FStar.FunctionalExtensionality.arrow",
"FStar.FunctionalExtensionality.is_restricted"
] | [] | false | false | false | true | true | let restricted_t (a: Type) (b: (a -> Type)) =
| f: arrow a b {is_restricted a f} | false |
|
FStar.FunctionalExtensionality.fsti | FStar.FunctionalExtensionality.op_Hat_Subtraction_Greater | val op_Hat_Subtraction_Greater : a: Type -> b: Type -> Type | let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b) | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 72,
"end_line": 111,
"start_col": 0,
"start_line": 111
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> b: Type -> Type | Prims.Tot | [
"total"
] | [] | [
"FStar.FunctionalExtensionality.restricted_t"
] | [] | false | false | false | true | true | let ( ^-> ) (a b: Type) =
| restricted_t a (fun _ -> b) | false |
|
FStar.FunctionalExtensionality.fsti | FStar.FunctionalExtensionality.efun_g | val efun_g : a: Type -> b: (_: a -> Type) -> Type | let efun_g (a: Type) (b: (a -> Type)) = arrow_g a b | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 51,
"end_line": 143,
"start_col": 0,
"start_line": 143
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*)
unfold
let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b)
(** [on_dom a f]:
A convenience function to introduce a restricted, dependent function
*)
unfold
let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b = on_domain a f
(** [on a f]:
A convenience function to introduce a restricted, non-dependent function
*)
unfold
let on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) = on_dom a f
(**** MAIN AXIOM *)
(** [extensionality]:
The main axiom of this module states that functions [f] and [g]
that are pointwise equal on domain [a] are provably equal when
restricted to [a] *)
val extensionality (a: Type) (b: (a -> Type)) (f g: arrow a b)
: Lemma (ensures (feq #a #b f g <==> on_domain a f == on_domain a g)) [SMTPat (feq #a #b f g)]
(**** DUPLICATED FOR GHOST FUNCTIONS *)
(** The type of ghost, total, dependent functions *)
unfold
let arrow_g (a: Type) (b: (a -> Type)) = x: a -> GTot (b x)
(** Use [arrow_g] instead *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> b: (_: a -> Type) -> Type | Prims.Tot | [
"total"
] | [] | [
"FStar.FunctionalExtensionality.arrow_g"
] | [] | false | false | false | true | true | let efun_g (a: Type) (b: (a -> Type)) =
| arrow_g a b | false |
|
FStar.FunctionalExtensionality.fsti | FStar.FunctionalExtensionality.is_restricted | val is_restricted : a: Type -> f: FStar.FunctionalExtensionality.arrow a b -> Prims.logical | let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 81,
"end_line": 94,
"start_col": 0,
"start_line": 94
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> f: FStar.FunctionalExtensionality.arrow a b -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"FStar.FunctionalExtensionality.arrow",
"Prims.eq2",
"FStar.FunctionalExtensionality.on_domain",
"Prims.logical"
] | [] | false | false | false | false | true | let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) =
| on_domain a f == f | false |
|
Alg.fst | Alg.__catchST1 | val __catchST1 (#a #labs: _) (f: tree a (Read :: Write :: labs)) (s0: state) : tree (a & state) labs | val __catchST1 (#a #labs: _) (f: tree a (Read :: Write :: labs)) (s0: state) : tree (a & state) labs | let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 402,
"start_col": 0,
"start_line": 400
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Alg.tree a (Alg.Read :: Alg.Write :: labs) -> s0: Alg.state -> Alg.tree (a * Alg.state) labs | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"Alg.op",
"Alg.tree",
"Prims.Cons",
"Alg.Read",
"Alg.Write",
"Alg.state",
"Alg.bind",
"FStar.Pervasives.Native.tuple2",
"Alg.__catchST1_aux"
] | [] | false | false | false | false | false | let __catchST1 #a #labs (f: tree a (Read :: Write :: labs)) (s0: state) : tree (a & state) labs =
| bind _ _ (__catchST1_aux f) (fun f -> f s0) | false |
FStar.FunctionalExtensionality.fsti | FStar.FunctionalExtensionality.efun | val efun : a: Type -> b: (_: a -> Type) -> Type | let efun (a: Type) (b: (a -> Type)) = arrow a b | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 45,
"start_col": 0,
"start_line": 45
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> b: (_: a -> Type) -> Type | Prims.Tot | [
"total"
] | [] | [
"FStar.FunctionalExtensionality.arrow"
] | [] | false | false | false | true | true | let efun (a: Type) (b: (a -> Type)) =
| arrow a b | false |
|
FStar.FunctionalExtensionality.fsti | FStar.FunctionalExtensionality.feq_g | val feq_g : f: FStar.FunctionalExtensionality.arrow_g a b -> g: FStar.FunctionalExtensionality.arrow_g a b
-> Prims.logical | let feq_g (#a: Type) (#b: (a -> Type)) (f g: arrow_g a b) =
forall x. {:pattern (f x)\/(g x)} f x == g x | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 46,
"end_line": 147,
"start_col": 0,
"start_line": 146
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*)
unfold
let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b)
(** [on_dom a f]:
A convenience function to introduce a restricted, dependent function
*)
unfold
let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b = on_domain a f
(** [on a f]:
A convenience function to introduce a restricted, non-dependent function
*)
unfold
let on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) = on_dom a f
(**** MAIN AXIOM *)
(** [extensionality]:
The main axiom of this module states that functions [f] and [g]
that are pointwise equal on domain [a] are provably equal when
restricted to [a] *)
val extensionality (a: Type) (b: (a -> Type)) (f g: arrow a b)
: Lemma (ensures (feq #a #b f g <==> on_domain a f == on_domain a g)) [SMTPat (feq #a #b f g)]
(**** DUPLICATED FOR GHOST FUNCTIONS *)
(** The type of ghost, total, dependent functions *)
unfold
let arrow_g (a: Type) (b: (a -> Type)) = x: a -> GTot (b x)
(** Use [arrow_g] instead *)
[@@ (deprecated "Use arrow_g instead")]
let efun_g (a: Type) (b: (a -> Type)) = arrow_g a b | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: FStar.FunctionalExtensionality.arrow_g a b -> g: FStar.FunctionalExtensionality.arrow_g a b
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"FStar.FunctionalExtensionality.arrow_g",
"Prims.l_Forall",
"Prims.eq2",
"Prims.logical"
] | [] | false | false | false | false | true | let feq_g (#a: Type) (#b: (a -> Type)) (f g: arrow_g a b) =
| forall x. {:pattern (f x)\/(g x)} f x == g x | false |
|
FStar.FunctionalExtensionality.fsti | FStar.FunctionalExtensionality.on | val on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) | val on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) | let on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) = on_dom a f | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 62,
"end_line": 123,
"start_col": 0,
"start_line": 123
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*)
unfold
let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b)
(** [on_dom a f]:
A convenience function to introduce a restricted, dependent function
*)
unfold
let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b = on_domain a f
(** [on a f]:
A convenience function to introduce a restricted, non-dependent function
*) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> f: (_: a -> b) -> a ^-> b | Prims.Tot | [
"total"
] | [] | [
"FStar.FunctionalExtensionality.on_dom",
"FStar.FunctionalExtensionality.op_Hat_Subtraction_Greater"
] | [] | false | false | false | true | false | let on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) =
| on_dom a f | false |
FStar.FunctionalExtensionality.fsti | FStar.FunctionalExtensionality.arrow_g | val arrow_g : a: Type -> b: (_: a -> Type) -> Type | let arrow_g (a: Type) (b: (a -> Type)) = x: a -> GTot (b x) | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 59,
"end_line": 139,
"start_col": 0,
"start_line": 139
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*)
unfold
let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b)
(** [on_dom a f]:
A convenience function to introduce a restricted, dependent function
*)
unfold
let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b = on_domain a f
(** [on a f]:
A convenience function to introduce a restricted, non-dependent function
*)
unfold
let on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) = on_dom a f
(**** MAIN AXIOM *)
(** [extensionality]:
The main axiom of this module states that functions [f] and [g]
that are pointwise equal on domain [a] are provably equal when
restricted to [a] *)
val extensionality (a: Type) (b: (a -> Type)) (f g: arrow a b)
: Lemma (ensures (feq #a #b f g <==> on_domain a f == on_domain a g)) [SMTPat (feq #a #b f g)]
(**** DUPLICATED FOR GHOST FUNCTIONS *)
(** The type of ghost, total, dependent functions *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> b: (_: a -> Type) -> Type | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | true | let arrow_g (a: Type) (b: (a -> Type)) =
| x: a -> GTot (b x) | false |
|
FStar.FunctionalExtensionality.fsti | FStar.FunctionalExtensionality.is_restricted_g | val is_restricted_g : a: Type -> f: FStar.FunctionalExtensionality.arrow_g a b -> Prims.logical | let is_restricted_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) = on_domain_g a f == f | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 87,
"end_line": 162,
"start_col": 0,
"start_line": 162
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*)
unfold
let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b)
(** [on_dom a f]:
A convenience function to introduce a restricted, dependent function
*)
unfold
let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b = on_domain a f
(** [on a f]:
A convenience function to introduce a restricted, non-dependent function
*)
unfold
let on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) = on_dom a f
(**** MAIN AXIOM *)
(** [extensionality]:
The main axiom of this module states that functions [f] and [g]
that are pointwise equal on domain [a] are provably equal when
restricted to [a] *)
val extensionality (a: Type) (b: (a -> Type)) (f g: arrow a b)
: Lemma (ensures (feq #a #b f g <==> on_domain a f == on_domain a g)) [SMTPat (feq #a #b f g)]
(**** DUPLICATED FOR GHOST FUNCTIONS *)
(** The type of ghost, total, dependent functions *)
unfold
let arrow_g (a: Type) (b: (a -> Type)) = x: a -> GTot (b x)
(** Use [arrow_g] instead *)
[@@ (deprecated "Use arrow_g instead")]
let efun_g (a: Type) (b: (a -> Type)) = arrow_g a b
(** [feq_g #a #b f g]: pointwise equality of [f] and [g] on domain [a] **)
let feq_g (#a: Type) (#b: (a -> Type)) (f g: arrow_g a b) =
forall x. {:pattern (f x)\/(g x)} f x == g x
(** The counterpart of [on_domain] for ghost functions *)
val on_domain_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) : Tot (arrow_g a b)
(** [on_domain_g a f] is pointwise equal to [f] *)
val feq_on_domain_g (#a: Type) (#b: (a -> Type)) (f: arrow_g a b)
: Lemma (feq_g (on_domain_g a f) f) [SMTPat (on_domain_g a f)]
(** on_domain_g is idempotent *)
val idempotence_on_domain_g (#a: Type) (#b: (a -> Type)) (f: arrow_g a b)
: Lemma (on_domain_g a (on_domain_g a f) == on_domain_g a f)
[SMTPat (on_domain_g a (on_domain_g a f))] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> f: FStar.FunctionalExtensionality.arrow_g a b -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"FStar.FunctionalExtensionality.arrow_g",
"Prims.eq2",
"FStar.FunctionalExtensionality.on_domain_g",
"Prims.logical"
] | [] | false | false | false | false | true | let is_restricted_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) =
| on_domain_g a f == f | false |
|
FStar.FunctionalExtensionality.fsti | FStar.FunctionalExtensionality.op_Hat_Subtraction_Greater_Greater | val op_Hat_Subtraction_Greater_Greater : a: Type -> b: Type -> Type | let op_Hat_Subtraction_Greater_Greater (a b: Type) = restricted_g_t a (fun _ -> b) | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 82,
"end_line": 173,
"start_col": 0,
"start_line": 173
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*)
unfold
let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b)
(** [on_dom a f]:
A convenience function to introduce a restricted, dependent function
*)
unfold
let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b = on_domain a f
(** [on a f]:
A convenience function to introduce a restricted, non-dependent function
*)
unfold
let on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) = on_dom a f
(**** MAIN AXIOM *)
(** [extensionality]:
The main axiom of this module states that functions [f] and [g]
that are pointwise equal on domain [a] are provably equal when
restricted to [a] *)
val extensionality (a: Type) (b: (a -> Type)) (f g: arrow a b)
: Lemma (ensures (feq #a #b f g <==> on_domain a f == on_domain a g)) [SMTPat (feq #a #b f g)]
(**** DUPLICATED FOR GHOST FUNCTIONS *)
(** The type of ghost, total, dependent functions *)
unfold
let arrow_g (a: Type) (b: (a -> Type)) = x: a -> GTot (b x)
(** Use [arrow_g] instead *)
[@@ (deprecated "Use arrow_g instead")]
let efun_g (a: Type) (b: (a -> Type)) = arrow_g a b
(** [feq_g #a #b f g]: pointwise equality of [f] and [g] on domain [a] **)
let feq_g (#a: Type) (#b: (a -> Type)) (f g: arrow_g a b) =
forall x. {:pattern (f x)\/(g x)} f x == g x
(** The counterpart of [on_domain] for ghost functions *)
val on_domain_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) : Tot (arrow_g a b)
(** [on_domain_g a f] is pointwise equal to [f] *)
val feq_on_domain_g (#a: Type) (#b: (a -> Type)) (f: arrow_g a b)
: Lemma (feq_g (on_domain_g a f) f) [SMTPat (on_domain_g a f)]
(** on_domain_g is idempotent *)
val idempotence_on_domain_g (#a: Type) (#b: (a -> Type)) (f: arrow_g a b)
: Lemma (on_domain_g a (on_domain_g a f) == on_domain_g a f)
[SMTPat (on_domain_g a (on_domain_g a f))]
(** Counterpart of [is_restricted] for ghost functions *)
let is_restricted_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) = on_domain_g a f == f
(** Counterpart of [restricted_t] for ghost functions *)
let restricted_g_t (a: Type) (b: (a -> Type)) = f: arrow_g a b {is_restricted_g a f}
(** [a ^->> b]:
Notation for ghost, non-dependent restricted functions from [a]
a to [b].
*) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> b: Type -> Type | Prims.Tot | [
"total"
] | [] | [
"FStar.FunctionalExtensionality.restricted_g_t"
] | [] | false | false | false | true | true | let ( ^->> ) (a b: Type) =
| restricted_g_t a (fun _ -> b) | false |
|
FStar.FunctionalExtensionality.fsti | FStar.FunctionalExtensionality.restricted_g_t | val restricted_g_t : a: Type -> b: (_: a -> Type) -> Type | let restricted_g_t (a: Type) (b: (a -> Type)) = f: arrow_g a b {is_restricted_g a f} | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 84,
"end_line": 165,
"start_col": 0,
"start_line": 165
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*)
unfold
let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b)
(** [on_dom a f]:
A convenience function to introduce a restricted, dependent function
*)
unfold
let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b = on_domain a f
(** [on a f]:
A convenience function to introduce a restricted, non-dependent function
*)
unfold
let on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) = on_dom a f
(**** MAIN AXIOM *)
(** [extensionality]:
The main axiom of this module states that functions [f] and [g]
that are pointwise equal on domain [a] are provably equal when
restricted to [a] *)
val extensionality (a: Type) (b: (a -> Type)) (f g: arrow a b)
: Lemma (ensures (feq #a #b f g <==> on_domain a f == on_domain a g)) [SMTPat (feq #a #b f g)]
(**** DUPLICATED FOR GHOST FUNCTIONS *)
(** The type of ghost, total, dependent functions *)
unfold
let arrow_g (a: Type) (b: (a -> Type)) = x: a -> GTot (b x)
(** Use [arrow_g] instead *)
[@@ (deprecated "Use arrow_g instead")]
let efun_g (a: Type) (b: (a -> Type)) = arrow_g a b
(** [feq_g #a #b f g]: pointwise equality of [f] and [g] on domain [a] **)
let feq_g (#a: Type) (#b: (a -> Type)) (f g: arrow_g a b) =
forall x. {:pattern (f x)\/(g x)} f x == g x
(** The counterpart of [on_domain] for ghost functions *)
val on_domain_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) : Tot (arrow_g a b)
(** [on_domain_g a f] is pointwise equal to [f] *)
val feq_on_domain_g (#a: Type) (#b: (a -> Type)) (f: arrow_g a b)
: Lemma (feq_g (on_domain_g a f) f) [SMTPat (on_domain_g a f)]
(** on_domain_g is idempotent *)
val idempotence_on_domain_g (#a: Type) (#b: (a -> Type)) (f: arrow_g a b)
: Lemma (on_domain_g a (on_domain_g a f) == on_domain_g a f)
[SMTPat (on_domain_g a (on_domain_g a f))]
(** Counterpart of [is_restricted] for ghost functions *)
let is_restricted_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) = on_domain_g a f == f | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> b: (_: a -> Type) -> Type | Prims.Tot | [
"total"
] | [] | [
"FStar.FunctionalExtensionality.arrow_g",
"FStar.FunctionalExtensionality.is_restricted_g"
] | [] | false | false | false | true | true | let restricted_g_t (a: Type) (b: (a -> Type)) =
| f: arrow_g a b {is_restricted_g a f} | false |
|
Alg.fst | Alg.run_exnst | val run_exnst (#a: _) (f: (unit -> Alg a [Write; Raise; Read])) (s_0: state) : option a & state | val run_exnst (#a: _) (f: (unit -> Alg a [Write; Raise; Read])) (s_0: state) : option a & state | let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 50,
"end_line": 450,
"start_col": 0,
"start_line": 449
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> s_0: Alg.state -> FStar.Pervasives.Native.option a * Alg.state | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"Prims.Cons",
"Alg.op",
"Alg.Write",
"Alg.Raise",
"Alg.Read",
"Prims.Nil",
"Alg.state",
"Alg.run",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.option",
"Alg.catchST",
"Alg.catchE"
] | [] | false | false | false | false | false | let run_exnst #a (f: (unit -> Alg a [Write; Raise; Read])) (s_0: state) : option a & state =
| run (fun () -> catchST (fun () -> catchE f) s_0) | false |
Alg.fst | Alg.runSTE_pure | val runSTE_pure (#a: _) (f: (unit -> Alg a [Raise; Write; Read])) (s0: state) : option a & state | val runSTE_pure (#a: _) (f: (unit -> Alg a [Raise; Write; Read])) (s0: state) : option a & state | let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 582,
"start_col": 0,
"start_line": 581
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> s0: Alg.state -> FStar.Pervasives.Native.option a * Alg.state | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"Prims.Cons",
"Alg.op",
"Alg.Raise",
"Alg.Write",
"Alg.Read",
"Prims.Nil",
"Alg.state",
"Alg.run",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.option",
"Alg.runSTE"
] | [] | false | false | false | false | false | let runSTE_pure #a (f: (unit -> Alg a [Raise; Write; Read])) (s0: state) : option a & state =
| run (fun () -> runSTE f s0) | false |
FStar.FunctionalExtensionality.fsti | FStar.FunctionalExtensionality.on_g | val on_g (a #b: Type) (f: (a -> GTot b)) : (a ^->> b) | val on_g (a #b: Type) (f: (a -> GTot b)) : (a ^->> b) | let on_g (a #b: Type) (f: (a -> GTot b)) : (a ^->> b) = on_dom_g a f | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 68,
"end_line": 185,
"start_col": 0,
"start_line": 185
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*)
unfold
let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b)
(** [on_dom a f]:
A convenience function to introduce a restricted, dependent function
*)
unfold
let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b = on_domain a f
(** [on a f]:
A convenience function to introduce a restricted, non-dependent function
*)
unfold
let on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) = on_dom a f
(**** MAIN AXIOM *)
(** [extensionality]:
The main axiom of this module states that functions [f] and [g]
that are pointwise equal on domain [a] are provably equal when
restricted to [a] *)
val extensionality (a: Type) (b: (a -> Type)) (f g: arrow a b)
: Lemma (ensures (feq #a #b f g <==> on_domain a f == on_domain a g)) [SMTPat (feq #a #b f g)]
(**** DUPLICATED FOR GHOST FUNCTIONS *)
(** The type of ghost, total, dependent functions *)
unfold
let arrow_g (a: Type) (b: (a -> Type)) = x: a -> GTot (b x)
(** Use [arrow_g] instead *)
[@@ (deprecated "Use arrow_g instead")]
let efun_g (a: Type) (b: (a -> Type)) = arrow_g a b
(** [feq_g #a #b f g]: pointwise equality of [f] and [g] on domain [a] **)
let feq_g (#a: Type) (#b: (a -> Type)) (f g: arrow_g a b) =
forall x. {:pattern (f x)\/(g x)} f x == g x
(** The counterpart of [on_domain] for ghost functions *)
val on_domain_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) : Tot (arrow_g a b)
(** [on_domain_g a f] is pointwise equal to [f] *)
val feq_on_domain_g (#a: Type) (#b: (a -> Type)) (f: arrow_g a b)
: Lemma (feq_g (on_domain_g a f) f) [SMTPat (on_domain_g a f)]
(** on_domain_g is idempotent *)
val idempotence_on_domain_g (#a: Type) (#b: (a -> Type)) (f: arrow_g a b)
: Lemma (on_domain_g a (on_domain_g a f) == on_domain_g a f)
[SMTPat (on_domain_g a (on_domain_g a f))]
(** Counterpart of [is_restricted] for ghost functions *)
let is_restricted_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) = on_domain_g a f == f
(** Counterpart of [restricted_t] for ghost functions *)
let restricted_g_t (a: Type) (b: (a -> Type)) = f: arrow_g a b {is_restricted_g a f}
(** [a ^->> b]:
Notation for ghost, non-dependent restricted functions from [a]
a to [b].
*)
unfold
let op_Hat_Subtraction_Greater_Greater (a b: Type) = restricted_g_t a (fun _ -> b)
(** [on_dom_g a f]:
A convenience function to introduce a restricted, ghost, dependent function
*)
unfold
let on_dom_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) : restricted_g_t a b = on_domain_g a f
(** [on_g a f]:
A convenience function to introduce a restricted, ghost, non-dependent function
*) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> f: (_: a -> Prims.GTot b) -> a ^->> b | Prims.Tot | [
"total"
] | [] | [
"FStar.FunctionalExtensionality.on_dom_g",
"FStar.FunctionalExtensionality.op_Hat_Subtraction_Greater_Greater"
] | [] | false | false | false | false | false | let on_g (a #b: Type) (f: (a -> GTot b)) : (a ^->> b) =
| on_dom_g a f | false |
Alg.fst | Alg.interp_pure_tree | val interp_pure_tree (#a: _) (t: tree a []) : Tot a | val interp_pure_tree (#a: _) (t: tree a []) : Tot a | let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 589,
"start_col": 0,
"start_line": 587
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Alg.tree a [] -> a | Prims.Tot | [
"total"
] | [] | [
"Alg.tree",
"Prims.Nil",
"Alg.op"
] | [] | false | false | false | true | false | let interp_pure_tree #a (t: tree a []) : Tot a =
| match t with | Return x -> x | false |
Alg.fst | Alg.handle | val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs | val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs | let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 7,
"end_line": 678,
"start_col": 0,
"start_line": 667
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
o: Alg.op ->
f: Alg.tree a (o :: labs) ->
h: Alg.handler_tree_op o b labs ->
v: (_: a -> Alg.tree b labs)
-> Alg.tree b labs | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"Alg.op",
"Alg.tree",
"Prims.Cons",
"Alg.handler_tree_op",
"Alg.op_inp",
"Alg.op_out",
"Alg.tree0",
"Prims.op_Equality",
"Alg.handle",
"Prims.bool",
"Alg.Op"
] | [
"recursion"
] | false | false | false | false | false | let rec handle #a #b #labs l f h v =
| match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else
let k' o : tree b labs = handle l (k o) h v in
Op act i k' | false |
FStar.FunctionalExtensionality.fsti | FStar.FunctionalExtensionality.on_dom | val on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b | val on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b | let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b = on_domain a f | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 88,
"end_line": 117,
"start_col": 0,
"start_line": 117
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*)
unfold
let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b)
(** [on_dom a f]:
A convenience function to introduce a restricted, dependent function
*) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> f: FStar.FunctionalExtensionality.arrow a b
-> FStar.FunctionalExtensionality.restricted_t a b | Prims.Tot | [
"total"
] | [] | [
"FStar.FunctionalExtensionality.arrow",
"FStar.FunctionalExtensionality.on_domain",
"FStar.FunctionalExtensionality.restricted_t"
] | [] | false | false | false | false | false | let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b =
| on_domain a f | false |
Alg.fst | Alg.catch0' | val catch0' (#a #labs: _) (t1: tree a (Raise :: labs)) (t2: tree a labs) : tree a labs | val catch0' (#a #labs: _) (t1: tree a (Raise :: labs)) (t2: tree a labs) : tree a labs | let catch0' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle Raise t1 (fun i k -> t2) (fun x -> Return x) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 55,
"end_line": 706,
"start_col": 0,
"start_line": 703
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs
let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end
(* Easy enough to handle 2 labels at once. Again a special case of
handle_tree too. *)
val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs
let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else begin
let k' o : tree b labs =
handle2 l1 l2 (k o) h1 h2 v
in
Op act i k'
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t1: Alg.tree a (Alg.Raise :: labs) -> t2: Alg.tree a labs -> Alg.tree a labs | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"Alg.op",
"Alg.tree",
"Prims.Cons",
"Alg.Raise",
"Alg.handle",
"Alg.op_inp",
"Alg.op_out",
"Alg.Return"
] | [] | false | false | false | false | false | let catch0' #a #labs (t1: tree a (Raise :: labs)) (t2: tree a labs) : tree a labs =
| handle Raise t1 (fun i k -> t2) (fun x -> Return x) | false |
Alg.fst | Alg.lattice_raise_repr | val lattice_raise_repr: #a: Type -> Prims.unit -> L.repr a [L.EXN] | val lattice_raise_repr: #a: Type -> Prims.unit -> L.repr a [L.EXN] | let lattice_raise_repr (#a:Type) () : L.repr a [L.EXN] =
reify (L.raise #a ()) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 23,
"end_line": 767,
"start_col": 0,
"start_line": 766
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs
let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end
(* Easy enough to handle 2 labels at once. Again a special case of
handle_tree too. *)
val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs
let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else begin
let k' o : tree b labs =
handle2 l1 l2 (k o) h1 h2 v
in
Op act i k'
end
let catch0' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle Raise t1 (fun i k -> t2) (fun x -> Return x)
let catch0'' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle_tree t1
(fun x -> Return x)
(function Raise -> (fun i k -> t2)
| act -> (fun i k -> Op act i k))
(*** Connection to Lattice *)
let baseop = o:op{not (Other? o)}
let trlab : o:baseop -> L.eff_label = function
| Read -> L.RD
| Write -> L.WR
| Raise -> L.EXN
let trlab' = function
| L.RD -> Read
| L.WR -> Write
| L.EXN -> Raise
let trlabs = List.Tot.map trlab
let trlabs' = List.Tot.map trlab'
let rec lab_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` ls <==> (trlab l) `mem` (trlabs ls))
[SMTPat (l `memP` ls)] // needed for interp_into_lattice_tree below
= match ls with
| [] -> ()
| l1::ls -> lab_corr l ls
(* Tied to the particular tree of Lattice.fst *)
(* no datatype subtyping *)
let fixup : list baseop -> ops = List.Tot.map #baseop #op (fun x -> x)
let rec fixup_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` (fixup ls) <==> l `memP` ls)
[SMTPat (l `memP` (fixup ls))]
= match ls with
| [] -> ()
| l1::ls -> fixup_corr l ls
let rec fixup_no_other (l:op{Other? l}) (ls:list baseop)
: Lemma (l `memP` (fixup ls) <==> False)
[SMTPat (l `memP` (fixup ls))]
= match ls with
| [] -> ()
| l1::ls -> fixup_no_other l ls
let lattice_get_repr () : L.repr int [L.RD] = reify (L.get ())
let lattice_put_repr (s:state) : L.repr unit [L.WR] =
reify (L.put s) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> Lattice.repr a [Lattice.EXN] | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"Lattice.raise",
"Lattice.repr",
"Prims.Cons",
"Lattice.eff_label",
"Lattice.EXN",
"Prims.Nil"
] | [] | false | false | false | true | false | let lattice_raise_repr (#a: Type) () : L.repr a [L.EXN] =
| reify (L.raise #a ()) | false |
Alg.fst | Alg.lab_corr | val lab_corr (l: baseop) (ls: list baseop)
: Lemma (l `memP` ls <==> (trlab l) `mem` (trlabs ls)) [SMTPat (l `memP` ls)] | val lab_corr (l: baseop) (ls: list baseop)
: Lemma (l `memP` ls <==> (trlab l) `mem` (trlabs ls)) [SMTPat (l `memP` ls)] | let rec lab_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` ls <==> (trlab l) `mem` (trlabs ls))
[SMTPat (l `memP` ls)] // needed for interp_into_lattice_tree below
= match ls with
| [] -> ()
| l1::ls -> lab_corr l ls | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 740,
"start_col": 0,
"start_line": 735
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs
let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end
(* Easy enough to handle 2 labels at once. Again a special case of
handle_tree too. *)
val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs
let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else begin
let k' o : tree b labs =
handle2 l1 l2 (k o) h1 h2 v
in
Op act i k'
end
let catch0' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle Raise t1 (fun i k -> t2) (fun x -> Return x)
let catch0'' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle_tree t1
(fun x -> Return x)
(function Raise -> (fun i k -> t2)
| act -> (fun i k -> Op act i k))
(*** Connection to Lattice *)
let baseop = o:op{not (Other? o)}
let trlab : o:baseop -> L.eff_label = function
| Read -> L.RD
| Write -> L.WR
| Raise -> L.EXN
let trlab' = function
| L.RD -> Read
| L.WR -> Write
| L.EXN -> Raise
let trlabs = List.Tot.map trlab
let trlabs' = List.Tot.map trlab' | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: Alg.baseop -> ls: Prims.list Alg.baseop
-> FStar.Pervasives.Lemma
(ensures
FStar.List.Tot.Base.memP l ls <==> FStar.List.Tot.Base.mem (Alg.trlab l) (Alg.trlabs ls))
[SMTPat (FStar.List.Tot.Base.memP l ls)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Alg.baseop",
"Prims.list",
"Alg.lab_corr",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_iff",
"FStar.List.Tot.Base.memP",
"Prims.b2t",
"FStar.List.Tot.Base.mem",
"Lattice.eff_label",
"Alg.trlab",
"Alg.trlabs",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec lab_corr (l: baseop) (ls: list baseop)
: Lemma (l `memP` ls <==> (trlab l) `mem` (trlabs ls)) [SMTPat (l `memP` ls)] =
| match ls with
| [] -> ()
| l1 :: ls -> lab_corr l ls | false |
Alg.fst | Alg.handler_raise_write | val handler_raise_write (#a: _) : handler [Raise; Write] (option a & state) [Write; Read] | val handler_raise_write (#a: _) : handler [Raise; Write] (option a & state) [Write; Read] | let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 43,
"end_line": 562,
"start_col": 0,
"start_line": 558
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Alg.handler [Alg.Raise; Alg.Write]
(FStar.Pervasives.Native.option a * Alg.state)
[Alg.Write; Alg.Read] | Prims.Tot | [
"total"
] | [] | [
"Alg.op",
"FStar.List.Tot.Base.memP",
"Prims.Cons",
"Alg.Raise",
"Alg.Write",
"Prims.Nil",
"Alg.op_inp",
"Alg.op_out",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.option",
"Alg.state",
"Alg.Read",
"FStar.Pervasives.Native.Mktuple2",
"Prims.int",
"FStar.Pervasives.Native.None",
"Alg.get",
"Alg.handle_write'",
"Alg.handler_op",
"Alg.handler"
] | [] | false | false | false | true | false | let handler_raise_write #a : handler [Raise; Write] (option a & state) [Write; Read] =
| function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k) | false |
Alg.fst | Alg.handle2 | val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs | val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs | let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else begin
let k' o : tree b labs =
handle2 l1 l2 (k o) h1 h2 v
in
Op act i k'
end | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 7,
"end_line": 701,
"start_col": 0,
"start_line": 688
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs
let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end
(* Easy enough to handle 2 labels at once. Again a special case of
handle_tree too. *)
val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
l1: Alg.op ->
l2: Alg.op ->
f: Alg.tree a (l1 :: l2 :: labs) ->
h1: Alg.handler_tree_op l1 b labs ->
h2: Alg.handler_tree_op l2 b labs ->
v: (_: a -> Alg.tree b labs)
-> Alg.tree b labs | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"Alg.op",
"Alg.tree",
"Prims.Cons",
"Alg.handler_tree_op",
"Alg.op_inp",
"Alg.op_out",
"Alg.tree0",
"Prims.op_Equality",
"Alg.handle2",
"Prims.bool",
"Alg.Op"
] | [
"recursion"
] | false | false | false | false | false | let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
| match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else
if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else
let k' o : tree b labs = handle2 l1 l2 (k o) h1 h2 v in
Op act i k' | false |
FStar.FunctionalExtensionality.fsti | FStar.FunctionalExtensionality.on_dom_g | val on_dom_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) : restricted_g_t a b | val on_dom_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) : restricted_g_t a b | let on_dom_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) : restricted_g_t a b = on_domain_g a f | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 96,
"end_line": 179,
"start_col": 0,
"start_line": 179
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*)
unfold
let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b)
(** [on_dom a f]:
A convenience function to introduce a restricted, dependent function
*)
unfold
let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b = on_domain a f
(** [on a f]:
A convenience function to introduce a restricted, non-dependent function
*)
unfold
let on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) = on_dom a f
(**** MAIN AXIOM *)
(** [extensionality]:
The main axiom of this module states that functions [f] and [g]
that are pointwise equal on domain [a] are provably equal when
restricted to [a] *)
val extensionality (a: Type) (b: (a -> Type)) (f g: arrow a b)
: Lemma (ensures (feq #a #b f g <==> on_domain a f == on_domain a g)) [SMTPat (feq #a #b f g)]
(**** DUPLICATED FOR GHOST FUNCTIONS *)
(** The type of ghost, total, dependent functions *)
unfold
let arrow_g (a: Type) (b: (a -> Type)) = x: a -> GTot (b x)
(** Use [arrow_g] instead *)
[@@ (deprecated "Use arrow_g instead")]
let efun_g (a: Type) (b: (a -> Type)) = arrow_g a b
(** [feq_g #a #b f g]: pointwise equality of [f] and [g] on domain [a] **)
let feq_g (#a: Type) (#b: (a -> Type)) (f g: arrow_g a b) =
forall x. {:pattern (f x)\/(g x)} f x == g x
(** The counterpart of [on_domain] for ghost functions *)
val on_domain_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) : Tot (arrow_g a b)
(** [on_domain_g a f] is pointwise equal to [f] *)
val feq_on_domain_g (#a: Type) (#b: (a -> Type)) (f: arrow_g a b)
: Lemma (feq_g (on_domain_g a f) f) [SMTPat (on_domain_g a f)]
(** on_domain_g is idempotent *)
val idempotence_on_domain_g (#a: Type) (#b: (a -> Type)) (f: arrow_g a b)
: Lemma (on_domain_g a (on_domain_g a f) == on_domain_g a f)
[SMTPat (on_domain_g a (on_domain_g a f))]
(** Counterpart of [is_restricted] for ghost functions *)
let is_restricted_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) = on_domain_g a f == f
(** Counterpart of [restricted_t] for ghost functions *)
let restricted_g_t (a: Type) (b: (a -> Type)) = f: arrow_g a b {is_restricted_g a f}
(** [a ^->> b]:
Notation for ghost, non-dependent restricted functions from [a]
a to [b].
*)
unfold
let op_Hat_Subtraction_Greater_Greater (a b: Type) = restricted_g_t a (fun _ -> b)
(** [on_dom_g a f]:
A convenience function to introduce a restricted, ghost, dependent function
*) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> f: FStar.FunctionalExtensionality.arrow_g a b
-> FStar.FunctionalExtensionality.restricted_g_t a b | Prims.Tot | [
"total"
] | [] | [
"FStar.FunctionalExtensionality.arrow_g",
"FStar.FunctionalExtensionality.on_domain_g",
"FStar.FunctionalExtensionality.restricted_g_t"
] | [] | false | false | false | false | false | let on_dom_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) : restricted_g_t a b =
| on_domain_g a f | false |
Alg.fst | Alg.runSTE | val runSTE (#a: _) (f: (unit -> Alg a [Raise; Write; Read])) (s0: state) : Alg (option a & state) [] | val runSTE (#a: _) (f: (unit -> Alg a [Raise; Write; Read])) (s0: state) : Alg (option a & state) [] | let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0 | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 62,
"end_line": 578,
"start_col": 0,
"start_line": 573
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> s0: Alg.state
-> Alg.Alg (FStar.Pervasives.Native.option a * Alg.state) | Alg.Alg | [] | [] | [
"Prims.unit",
"Prims.Cons",
"Alg.op",
"Alg.Raise",
"Alg.Write",
"Alg.Read",
"Prims.Nil",
"Alg.state",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.option",
"Alg.handle_with",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.Some",
"FStar.List.Tot.Base.memP",
"Alg.op_inp",
"Alg.op_out",
"FStar.Pervasives.Native.None",
"Alg.handler_op"
] | [] | false | true | false | false | false | let runSTE #a (f: (unit -> Alg a [Raise; Write; Read])) (s0: state) : Alg (option a & state) [] =
| handle_with #_
#(state -> Alg (option a & state) [])
#[Raise; Write; Read]
#[]
f
(fun x s -> (Some x, s))
(function
| Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s))
s0 | false |
Alg.fst | Alg.interp_rdwr_tree | val interp_rdwr_tree (#a: _) (t: tree a [Read; Write]) (s: state) : Tot (a & state) | val interp_rdwr_tree (#a: _) (t: tree a [Read; Write]) (s: state) : Tot (a & state) | let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 607,
"start_col": 0,
"start_line": 601
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Alg.tree a [Alg.Read; Alg.Write] -> s: Alg.state -> a * Alg.state | Prims.Tot | [
"total"
] | [] | [
"Alg.tree",
"Prims.Cons",
"Alg.op",
"Alg.Read",
"Alg.Write",
"Prims.Nil",
"Alg.state",
"FStar.Pervasives.Native.Mktuple2",
"Alg.op_inp",
"Alg.op_out",
"Alg.tree0",
"Alg.interp_rdwr_tree",
"FStar.Pervasives.Native.tuple2"
] | [
"recursion"
] | false | false | false | true | false | let rec interp_rdwr_tree #a (t: tree a [Read; Write]) (s: state) : Tot (a & state) =
| match t with
| Return x -> (x, s)
| Op Read _ k -> interp_rdwr_tree (k s) s
| Op Write s k -> interp_rdwr_tree (k ()) s | false |
Alg.fst | Alg.interp_rd_tree | val interp_rd_tree (#a: _) (t: tree a [Read]) (s: state) : Tot a | val interp_rd_tree (#a: _) (t: tree a [Read]) (s: state) : Tot a | let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 26,
"end_line": 597,
"start_col": 0,
"start_line": 593
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ())) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Alg.tree a [Alg.Read] -> s: Alg.state -> a | Prims.Tot | [
"total"
] | [] | [
"Alg.tree",
"Prims.Cons",
"Alg.op",
"Alg.Read",
"Prims.Nil",
"Alg.state",
"Alg.op_inp",
"Alg.op_out",
"Alg.tree0",
"Alg.interp_rd_tree"
] | [
"recursion"
] | false | false | false | true | false | let rec interp_rd_tree #a (t: tree a [Read]) (s: state) : Tot a =
| match t with
| Return x -> x
| Op Read _ k -> interp_rd_tree (k s) s | false |
Alg.fst | Alg.catch0'' | val catch0'' (#a #labs: _) (t1: tree a (Raise :: labs)) (t2: tree a labs) : tree a labs | val catch0'' (#a #labs: _) (t1: tree a (Raise :: labs)) (t2: tree a labs) : tree a labs | let catch0'' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle_tree t1
(fun x -> Return x)
(function Raise -> (fun i k -> t2)
| act -> (fun i k -> Op act i k)) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 57,
"end_line": 714,
"start_col": 0,
"start_line": 708
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs
let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end
(* Easy enough to handle 2 labels at once. Again a special case of
handle_tree too. *)
val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs
let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else begin
let k' o : tree b labs =
handle2 l1 l2 (k o) h1 h2 v
in
Op act i k'
end
let catch0' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle Raise t1 (fun i k -> t2) (fun x -> Return x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t1: Alg.tree a (Alg.Raise :: labs) -> t2: Alg.tree a labs -> Alg.tree a labs | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"Alg.op",
"Alg.tree",
"Prims.Cons",
"Alg.Raise",
"Alg.handle_tree",
"Alg.Return",
"FStar.List.Tot.Base.memP",
"Alg.op_inp",
"Alg.op_out",
"Alg.Op",
"Alg.handler_tree_op"
] | [] | false | false | false | false | false | let catch0'' #a #labs (t1: tree a (Raise :: labs)) (t2: tree a labs) : tree a labs =
| handle_tree t1
(fun x -> Return x)
(function
| Raise -> (fun i k -> t2)
| act -> (fun i k -> Op act i k)) | false |
Alg.fst | Alg.trlab' | val trlab' : _: Lattice.eff_label -> Alg.op | let trlab' = function
| L.RD -> Read
| L.WR -> Write
| L.EXN -> Raise | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 18,
"end_line": 730,
"start_col": 0,
"start_line": 727
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs
let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end
(* Easy enough to handle 2 labels at once. Again a special case of
handle_tree too. *)
val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs
let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else begin
let k' o : tree b labs =
handle2 l1 l2 (k o) h1 h2 v
in
Op act i k'
end
let catch0' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle Raise t1 (fun i k -> t2) (fun x -> Return x)
let catch0'' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle_tree t1
(fun x -> Return x)
(function Raise -> (fun i k -> t2)
| act -> (fun i k -> Op act i k))
(*** Connection to Lattice *)
let baseop = o:op{not (Other? o)}
let trlab : o:baseop -> L.eff_label = function
| Read -> L.RD
| Write -> L.WR
| Raise -> L.EXN | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Lattice.eff_label -> Alg.op | Prims.Tot | [
"total"
] | [] | [
"Lattice.eff_label",
"Alg.Read",
"Alg.Write",
"Alg.Raise",
"Alg.op"
] | [] | false | false | false | true | false | let trlab' =
| function
| L.RD -> Read
| L.WR -> Write
| L.EXN -> Raise | false |
|
Alg.fst | Alg.interp_all_tree | val interp_all_tree (#a: _) (t: tree a [Read; Write; Raise]) (s: state) : Tot (option a & state) | val interp_all_tree (#a: _) (t: tree a [Read; Write; Raise]) (s: state) : Tot (option a & state) | let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 13,
"end_line": 630,
"start_col": 0,
"start_line": 622
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Alg.tree a [Alg.Read; Alg.Write; Alg.Raise] -> s: Alg.state
-> FStar.Pervasives.Native.option a * Alg.state | Prims.Tot | [
"total"
] | [] | [
"Alg.tree",
"Prims.Cons",
"Alg.op",
"Alg.Read",
"Alg.Write",
"Alg.Raise",
"Prims.Nil",
"Alg.state",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.Some",
"Alg.op_inp",
"Alg.op_out",
"Alg.tree0",
"Alg.interp_all_tree",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.tuple2"
] | [
"recursion"
] | false | false | false | true | false | let rec interp_all_tree #a (t: tree a [Read; Write; Raise]) (s: state) : Tot (option a & state) =
| match t with
| Return x -> (Some x, s)
| Op Read _ k -> interp_all_tree (k s) s
| Op Write s k -> interp_all_tree (k ()) s
| Op Raise e k -> (None, s) | false |
Alg.fst | Alg.interp_read_raise_tree | val interp_read_raise_tree (#a: _) (t: tree a [Read; Raise]) (s: state) : either exn a | val interp_read_raise_tree (#a: _) (t: tree a [Read; Raise]) (s: state) : either exn a | let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 9,
"end_line": 617,
"start_col": 0,
"start_line": 611
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Alg.tree a [Alg.Read; Alg.Raise] -> s: Alg.state -> FStar.Pervasives.either Prims.exn a | Prims.Tot | [
"total"
] | [] | [
"Alg.tree",
"Prims.Cons",
"Alg.op",
"Alg.Read",
"Alg.Raise",
"Prims.Nil",
"Alg.state",
"FStar.Pervasives.Inr",
"Prims.exn",
"Alg.op_inp",
"Alg.op_out",
"Alg.tree0",
"Alg.interp_read_raise_tree",
"FStar.Pervasives.Inl",
"FStar.Pervasives.either"
] | [
"recursion"
] | false | false | false | true | false | let rec interp_read_raise_tree #a (t: tree a [Read; Raise]) (s: state) : either exn a =
| match t with
| Return x -> Inr x
| Op Read _ k -> interp_read_raise_tree (k s) s
| Op Raise e k -> Inl e | false |
Alg.fst | Alg.fixup_no_other | val fixup_no_other (l: op{Other? l}) (ls: list baseop)
: Lemma (l `memP` (fixup ls) <==> False) [SMTPat (l `memP` (fixup ls))] | val fixup_no_other (l: op{Other? l}) (ls: list baseop)
: Lemma (l `memP` (fixup ls) <==> False) [SMTPat (l `memP` (fixup ls))] | let rec fixup_no_other (l:op{Other? l}) (ls:list baseop)
: Lemma (l `memP` (fixup ls) <==> False)
[SMTPat (l `memP` (fixup ls))]
= match ls with
| [] -> ()
| l1::ls -> fixup_no_other l ls | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 35,
"end_line": 759,
"start_col": 0,
"start_line": 754
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs
let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end
(* Easy enough to handle 2 labels at once. Again a special case of
handle_tree too. *)
val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs
let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else begin
let k' o : tree b labs =
handle2 l1 l2 (k o) h1 h2 v
in
Op act i k'
end
let catch0' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle Raise t1 (fun i k -> t2) (fun x -> Return x)
let catch0'' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle_tree t1
(fun x -> Return x)
(function Raise -> (fun i k -> t2)
| act -> (fun i k -> Op act i k))
(*** Connection to Lattice *)
let baseop = o:op{not (Other? o)}
let trlab : o:baseop -> L.eff_label = function
| Read -> L.RD
| Write -> L.WR
| Raise -> L.EXN
let trlab' = function
| L.RD -> Read
| L.WR -> Write
| L.EXN -> Raise
let trlabs = List.Tot.map trlab
let trlabs' = List.Tot.map trlab'
let rec lab_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` ls <==> (trlab l) `mem` (trlabs ls))
[SMTPat (l `memP` ls)] // needed for interp_into_lattice_tree below
= match ls with
| [] -> ()
| l1::ls -> lab_corr l ls
(* Tied to the particular tree of Lattice.fst *)
(* no datatype subtyping *)
let fixup : list baseop -> ops = List.Tot.map #baseop #op (fun x -> x)
let rec fixup_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` (fixup ls) <==> l `memP` ls)
[SMTPat (l `memP` (fixup ls))]
= match ls with
| [] -> ()
| l1::ls -> fixup_corr l ls | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: Alg.op{Other? l} -> ls: Prims.list Alg.baseop
-> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.memP l (Alg.fixup ls) <==> Prims.l_False)
[SMTPat (FStar.List.Tot.Base.memP l (Alg.fixup ls))] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Alg.op",
"Prims.b2t",
"Alg.uu___is_Other",
"Prims.list",
"Alg.baseop",
"Alg.fixup_no_other",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_iff",
"FStar.List.Tot.Base.memP",
"Alg.fixup",
"Prims.l_False",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec fixup_no_other (l: op{Other? l}) (ls: list baseop)
: Lemma (l `memP` (fixup ls) <==> False) [SMTPat (l `memP` (fixup ls))] =
| match ls with
| [] -> ()
| l1 :: ls -> fixup_no_other l ls | false |
Alg.fst | Alg.fixup_corr | val fixup_corr (l: baseop) (ls: list baseop)
: Lemma (l `memP` (fixup ls) <==> l `memP` ls) [SMTPat (l `memP` (fixup ls))] | val fixup_corr (l: baseop) (ls: list baseop)
: Lemma (l `memP` (fixup ls) <==> l `memP` ls) [SMTPat (l `memP` (fixup ls))] | let rec fixup_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` (fixup ls) <==> l `memP` ls)
[SMTPat (l `memP` (fixup ls))]
= match ls with
| [] -> ()
| l1::ls -> fixup_corr l ls | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 31,
"end_line": 752,
"start_col": 0,
"start_line": 747
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs
let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end
(* Easy enough to handle 2 labels at once. Again a special case of
handle_tree too. *)
val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs
let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else begin
let k' o : tree b labs =
handle2 l1 l2 (k o) h1 h2 v
in
Op act i k'
end
let catch0' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle Raise t1 (fun i k -> t2) (fun x -> Return x)
let catch0'' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle_tree t1
(fun x -> Return x)
(function Raise -> (fun i k -> t2)
| act -> (fun i k -> Op act i k))
(*** Connection to Lattice *)
let baseop = o:op{not (Other? o)}
let trlab : o:baseop -> L.eff_label = function
| Read -> L.RD
| Write -> L.WR
| Raise -> L.EXN
let trlab' = function
| L.RD -> Read
| L.WR -> Write
| L.EXN -> Raise
let trlabs = List.Tot.map trlab
let trlabs' = List.Tot.map trlab'
let rec lab_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` ls <==> (trlab l) `mem` (trlabs ls))
[SMTPat (l `memP` ls)] // needed for interp_into_lattice_tree below
= match ls with
| [] -> ()
| l1::ls -> lab_corr l ls
(* Tied to the particular tree of Lattice.fst *)
(* no datatype subtyping *)
let fixup : list baseop -> ops = List.Tot.map #baseop #op (fun x -> x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: Alg.baseop -> ls: Prims.list Alg.baseop
-> FStar.Pervasives.Lemma
(ensures FStar.List.Tot.Base.memP l (Alg.fixup ls) <==> FStar.List.Tot.Base.memP l ls)
[SMTPat (FStar.List.Tot.Base.memP l (Alg.fixup ls))] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Alg.baseop",
"Prims.list",
"Alg.fixup_corr",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_iff",
"FStar.List.Tot.Base.memP",
"Alg.op",
"Alg.fixup",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec fixup_corr (l: baseop) (ls: list baseop)
: Lemma (l `memP` (fixup ls) <==> l `memP` ls) [SMTPat (l `memP` (fixup ls))] =
| match ls with
| [] -> ()
| l1 :: ls -> fixup_corr l ls | false |
Alg.fst | Alg.trlab | val trlab (o: baseop) : L.eff_label | val trlab (o: baseop) : L.eff_label | let trlab : o:baseop -> L.eff_label = function
| Read -> L.RD
| Write -> L.WR
| Raise -> L.EXN | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 18,
"end_line": 725,
"start_col": 0,
"start_line": 722
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs
let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end
(* Easy enough to handle 2 labels at once. Again a special case of
handle_tree too. *)
val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs
let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else begin
let k' o : tree b labs =
handle2 l1 l2 (k o) h1 h2 v
in
Op act i k'
end
let catch0' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle Raise t1 (fun i k -> t2) (fun x -> Return x)
let catch0'' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle_tree t1
(fun x -> Return x)
(function Raise -> (fun i k -> t2)
| act -> (fun i k -> Op act i k))
(*** Connection to Lattice *)
let baseop = o:op{not (Other? o)} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | o: Alg.baseop -> Lattice.eff_label | Prims.Tot | [
"total"
] | [] | [
"Alg.baseop",
"Lattice.RD",
"Lattice.WR",
"Lattice.EXN",
"Lattice.eff_label"
] | [] | false | false | false | true | false | let trlab: o: baseop -> L.eff_label =
| function
| Read -> L.RD
| Write -> L.WR
| Raise -> L.EXN | false |
Alg.fst | Alg.abides' | val abides' (f: sem0 'a) (labs: list baseop) : prop | val abides' (f: sem0 'a) (labs: list baseop) : prop | let abides' (f : sem0 'a) (labs:list baseop) : prop =
(Read `memP` labs \/ (forall s0 s1. fst (f s0) == fst (f s1)))
/\ (Write `memP` labs \/ (forall s0. snd (f s0) == s0))
/\ (Raise `memP` labs \/ (forall s0. Inr? (fst (f s0)))) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 58,
"end_line": 805,
"start_col": 0,
"start_line": 802
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs
let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end
(* Easy enough to handle 2 labels at once. Again a special case of
handle_tree too. *)
val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs
let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else begin
let k' o : tree b labs =
handle2 l1 l2 (k o) h1 h2 v
in
Op act i k'
end
let catch0' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle Raise t1 (fun i k -> t2) (fun x -> Return x)
let catch0'' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle_tree t1
(fun x -> Return x)
(function Raise -> (fun i k -> t2)
| act -> (fun i k -> Op act i k))
(*** Connection to Lattice *)
let baseop = o:op{not (Other? o)}
let trlab : o:baseop -> L.eff_label = function
| Read -> L.RD
| Write -> L.WR
| Raise -> L.EXN
let trlab' = function
| L.RD -> Read
| L.WR -> Write
| L.EXN -> Raise
let trlabs = List.Tot.map trlab
let trlabs' = List.Tot.map trlab'
let rec lab_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` ls <==> (trlab l) `mem` (trlabs ls))
[SMTPat (l `memP` ls)] // needed for interp_into_lattice_tree below
= match ls with
| [] -> ()
| l1::ls -> lab_corr l ls
(* Tied to the particular tree of Lattice.fst *)
(* no datatype subtyping *)
let fixup : list baseop -> ops = List.Tot.map #baseop #op (fun x -> x)
let rec fixup_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` (fixup ls) <==> l `memP` ls)
[SMTPat (l `memP` (fixup ls))]
= match ls with
| [] -> ()
| l1::ls -> fixup_corr l ls
let rec fixup_no_other (l:op{Other? l}) (ls:list baseop)
: Lemma (l `memP` (fixup ls) <==> False)
[SMTPat (l `memP` (fixup ls))]
= match ls with
| [] -> ()
| l1::ls -> fixup_no_other l ls
let lattice_get_repr () : L.repr int [L.RD] = reify (L.get ())
let lattice_put_repr (s:state) : L.repr unit [L.WR] =
reify (L.put s)
let lattice_raise_repr (#a:Type) () : L.repr a [L.EXN] =
reify (L.raise #a ())
// This would be a lot nicer if it was done in L.EFF itself,
// but the termination proof fails since it has no logical payload.
let rec interp_into_lattice_tree #a (#labs:list baseop)
(t : tree a (fixup labs))
: L.repr a (trlabs labs)
= match t with
| Return x -> L.return _ x
| Op Read i k ->
L.bind _ _ _ _ (lattice_get_repr ())
(fun x -> interp_into_lattice_tree #a #labs (k x))
| Op Write i k ->
L.bind _ _ _ _ (lattice_put_repr i)
(fun x -> interp_into_lattice_tree #a #labs (k x))
| Op Raise i k ->
L.bind _ _ _ _ (lattice_raise_repr ())
(fun x -> interp_into_lattice_tree #a #labs (k x))
let interp_into_lattice #a (#labs:list baseop)
(f : unit -> Alg a (fixup labs))
: Lattice.EFF a (trlabs labs)
= Lattice.EFF?.reflect (interp_into_lattice_tree (reify (f ())))
// This is rather silly: we reflect and then reify. Maybe define interp_into_lattice
// directly?
let interp_full #a (#labs:list baseop)
(f : unit -> Alg a (fixup labs))
: L.repr a (trlabs labs)
= reify (interp_into_lattice #a #labs f)
(* Doing it directly. *)
type sem0 (a:Type) : Type = state -> Tot (either exn a & state) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Alg.sem0 'a -> labs: Prims.list Alg.baseop -> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"Alg.sem0",
"Prims.list",
"Alg.baseop",
"Prims.l_and",
"Prims.l_or",
"FStar.List.Tot.Base.memP",
"Alg.Read",
"Prims.l_Forall",
"Alg.state",
"Prims.eq2",
"FStar.Pervasives.either",
"Prims.exn",
"FStar.Pervasives.Native.fst",
"Alg.Write",
"FStar.Pervasives.Native.snd",
"Alg.Raise",
"Prims.b2t",
"FStar.Pervasives.uu___is_Inr",
"Prims.prop"
] | [] | false | false | false | true | true | let abides' (f: sem0 'a) (labs: list baseop) : prop =
| (Read `memP` labs \/ (forall s0 s1. fst (f s0) == fst (f s1))) /\
(Write `memP` labs \/ (forall s0. snd (f s0) == s0)) /\
(Raise `memP` labs \/ (forall s0. Inr? (fst (f s0)))) | false |
Alg.fst | Alg.interp_full | val interp_full (#a: _) (#labs: list baseop) (f: (unit -> Alg a (fixup labs)))
: L.repr a (trlabs labs) | val interp_full (#a: _) (#labs: list baseop) (f: (unit -> Alg a (fixup labs)))
: L.repr a (trlabs labs) | let interp_full #a (#labs:list baseop)
(f : unit -> Alg a (fixup labs))
: L.repr a (trlabs labs)
= reify (interp_into_lattice #a #labs f) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 42,
"end_line": 796,
"start_col": 0,
"start_line": 793
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs
let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end
(* Easy enough to handle 2 labels at once. Again a special case of
handle_tree too. *)
val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs
let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else begin
let k' o : tree b labs =
handle2 l1 l2 (k o) h1 h2 v
in
Op act i k'
end
let catch0' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle Raise t1 (fun i k -> t2) (fun x -> Return x)
let catch0'' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle_tree t1
(fun x -> Return x)
(function Raise -> (fun i k -> t2)
| act -> (fun i k -> Op act i k))
(*** Connection to Lattice *)
let baseop = o:op{not (Other? o)}
let trlab : o:baseop -> L.eff_label = function
| Read -> L.RD
| Write -> L.WR
| Raise -> L.EXN
let trlab' = function
| L.RD -> Read
| L.WR -> Write
| L.EXN -> Raise
let trlabs = List.Tot.map trlab
let trlabs' = List.Tot.map trlab'
let rec lab_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` ls <==> (trlab l) `mem` (trlabs ls))
[SMTPat (l `memP` ls)] // needed for interp_into_lattice_tree below
= match ls with
| [] -> ()
| l1::ls -> lab_corr l ls
(* Tied to the particular tree of Lattice.fst *)
(* no datatype subtyping *)
let fixup : list baseop -> ops = List.Tot.map #baseop #op (fun x -> x)
let rec fixup_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` (fixup ls) <==> l `memP` ls)
[SMTPat (l `memP` (fixup ls))]
= match ls with
| [] -> ()
| l1::ls -> fixup_corr l ls
let rec fixup_no_other (l:op{Other? l}) (ls:list baseop)
: Lemma (l `memP` (fixup ls) <==> False)
[SMTPat (l `memP` (fixup ls))]
= match ls with
| [] -> ()
| l1::ls -> fixup_no_other l ls
let lattice_get_repr () : L.repr int [L.RD] = reify (L.get ())
let lattice_put_repr (s:state) : L.repr unit [L.WR] =
reify (L.put s)
let lattice_raise_repr (#a:Type) () : L.repr a [L.EXN] =
reify (L.raise #a ())
// This would be a lot nicer if it was done in L.EFF itself,
// but the termination proof fails since it has no logical payload.
let rec interp_into_lattice_tree #a (#labs:list baseop)
(t : tree a (fixup labs))
: L.repr a (trlabs labs)
= match t with
| Return x -> L.return _ x
| Op Read i k ->
L.bind _ _ _ _ (lattice_get_repr ())
(fun x -> interp_into_lattice_tree #a #labs (k x))
| Op Write i k ->
L.bind _ _ _ _ (lattice_put_repr i)
(fun x -> interp_into_lattice_tree #a #labs (k x))
| Op Raise i k ->
L.bind _ _ _ _ (lattice_raise_repr ())
(fun x -> interp_into_lattice_tree #a #labs (k x))
let interp_into_lattice #a (#labs:list baseop)
(f : unit -> Alg a (fixup labs))
: Lattice.EFF a (trlabs labs)
= Lattice.EFF?.reflect (interp_into_lattice_tree (reify (f ())))
// This is rather silly: we reflect and then reify. Maybe define interp_into_lattice | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> Lattice.repr a (Alg.trlabs labs) | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"Alg.baseop",
"Prims.unit",
"Alg.fixup",
"Alg.interp_into_lattice",
"Lattice.repr",
"Alg.trlabs"
] | [] | false | false | false | false | false | let interp_full #a (#labs: list baseop) (f: (unit -> Alg a (fixup labs))) : L.repr a (trlabs labs) =
| reify (interp_into_lattice #a #labs f) | false |
Alg.fst | Alg.interp_into_lattice | val interp_into_lattice (#a: _) (#labs: list baseop) (f: (unit -> Alg a (fixup labs)))
: Lattice.EFF a (trlabs labs) | val interp_into_lattice (#a: _) (#labs: list baseop) (f: (unit -> Alg a (fixup labs)))
: Lattice.EFF a (trlabs labs) | let interp_into_lattice #a (#labs:list baseop)
(f : unit -> Alg a (fixup labs))
: Lattice.EFF a (trlabs labs)
= Lattice.EFF?.reflect (interp_into_lattice_tree (reify (f ()))) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 66,
"end_line": 789,
"start_col": 0,
"start_line": 786
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs
let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end
(* Easy enough to handle 2 labels at once. Again a special case of
handle_tree too. *)
val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs
let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else begin
let k' o : tree b labs =
handle2 l1 l2 (k o) h1 h2 v
in
Op act i k'
end
let catch0' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle Raise t1 (fun i k -> t2) (fun x -> Return x)
let catch0'' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle_tree t1
(fun x -> Return x)
(function Raise -> (fun i k -> t2)
| act -> (fun i k -> Op act i k))
(*** Connection to Lattice *)
let baseop = o:op{not (Other? o)}
let trlab : o:baseop -> L.eff_label = function
| Read -> L.RD
| Write -> L.WR
| Raise -> L.EXN
let trlab' = function
| L.RD -> Read
| L.WR -> Write
| L.EXN -> Raise
let trlabs = List.Tot.map trlab
let trlabs' = List.Tot.map trlab'
let rec lab_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` ls <==> (trlab l) `mem` (trlabs ls))
[SMTPat (l `memP` ls)] // needed for interp_into_lattice_tree below
= match ls with
| [] -> ()
| l1::ls -> lab_corr l ls
(* Tied to the particular tree of Lattice.fst *)
(* no datatype subtyping *)
let fixup : list baseop -> ops = List.Tot.map #baseop #op (fun x -> x)
let rec fixup_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` (fixup ls) <==> l `memP` ls)
[SMTPat (l `memP` (fixup ls))]
= match ls with
| [] -> ()
| l1::ls -> fixup_corr l ls
let rec fixup_no_other (l:op{Other? l}) (ls:list baseop)
: Lemma (l `memP` (fixup ls) <==> False)
[SMTPat (l `memP` (fixup ls))]
= match ls with
| [] -> ()
| l1::ls -> fixup_no_other l ls
let lattice_get_repr () : L.repr int [L.RD] = reify (L.get ())
let lattice_put_repr (s:state) : L.repr unit [L.WR] =
reify (L.put s)
let lattice_raise_repr (#a:Type) () : L.repr a [L.EXN] =
reify (L.raise #a ())
// This would be a lot nicer if it was done in L.EFF itself,
// but the termination proof fails since it has no logical payload.
let rec interp_into_lattice_tree #a (#labs:list baseop)
(t : tree a (fixup labs))
: L.repr a (trlabs labs)
= match t with
| Return x -> L.return _ x
| Op Read i k ->
L.bind _ _ _ _ (lattice_get_repr ())
(fun x -> interp_into_lattice_tree #a #labs (k x))
| Op Write i k ->
L.bind _ _ _ _ (lattice_put_repr i)
(fun x -> interp_into_lattice_tree #a #labs (k x))
| Op Raise i k ->
L.bind _ _ _ _ (lattice_raise_repr ())
(fun x -> interp_into_lattice_tree #a #labs (k x)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> Alg.Alg a) -> Lattice.EFF a | Lattice.EFF | [] | [] | [
"Prims.list",
"Alg.baseop",
"Prims.unit",
"Alg.fixup",
"Alg.interp_into_lattice_tree",
"Alg.trlabs"
] | [] | false | true | false | false | false | let interp_into_lattice #a (#labs: list baseop) (f: (unit -> Alg a (fixup labs)))
: Lattice.EFF a (trlabs labs) =
| Lattice.EFF?.reflect (interp_into_lattice_tree (reify (f ()))) | false |
Alg.fst | Alg.interp_into_lattice_tree | val interp_into_lattice_tree (#a: _) (#labs: list baseop) (t: tree a (fixup labs))
: L.repr a (trlabs labs) | val interp_into_lattice_tree (#a: _) (#labs: list baseop) (t: tree a (fixup labs))
: L.repr a (trlabs labs) | let rec interp_into_lattice_tree #a (#labs:list baseop)
(t : tree a (fixup labs))
: L.repr a (trlabs labs)
= match t with
| Return x -> L.return _ x
| Op Read i k ->
L.bind _ _ _ _ (lattice_get_repr ())
(fun x -> interp_into_lattice_tree #a #labs (k x))
| Op Write i k ->
L.bind _ _ _ _ (lattice_put_repr i)
(fun x -> interp_into_lattice_tree #a #labs (k x))
| Op Raise i k ->
L.bind _ _ _ _ (lattice_raise_repr ())
(fun x -> interp_into_lattice_tree #a #labs (k x)) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 57,
"end_line": 784,
"start_col": 0,
"start_line": 771
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs
let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end
(* Easy enough to handle 2 labels at once. Again a special case of
handle_tree too. *)
val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs
let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else begin
let k' o : tree b labs =
handle2 l1 l2 (k o) h1 h2 v
in
Op act i k'
end
let catch0' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle Raise t1 (fun i k -> t2) (fun x -> Return x)
let catch0'' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle_tree t1
(fun x -> Return x)
(function Raise -> (fun i k -> t2)
| act -> (fun i k -> Op act i k))
(*** Connection to Lattice *)
let baseop = o:op{not (Other? o)}
let trlab : o:baseop -> L.eff_label = function
| Read -> L.RD
| Write -> L.WR
| Raise -> L.EXN
let trlab' = function
| L.RD -> Read
| L.WR -> Write
| L.EXN -> Raise
let trlabs = List.Tot.map trlab
let trlabs' = List.Tot.map trlab'
let rec lab_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` ls <==> (trlab l) `mem` (trlabs ls))
[SMTPat (l `memP` ls)] // needed for interp_into_lattice_tree below
= match ls with
| [] -> ()
| l1::ls -> lab_corr l ls
(* Tied to the particular tree of Lattice.fst *)
(* no datatype subtyping *)
let fixup : list baseop -> ops = List.Tot.map #baseop #op (fun x -> x)
let rec fixup_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` (fixup ls) <==> l `memP` ls)
[SMTPat (l `memP` (fixup ls))]
= match ls with
| [] -> ()
| l1::ls -> fixup_corr l ls
let rec fixup_no_other (l:op{Other? l}) (ls:list baseop)
: Lemma (l `memP` (fixup ls) <==> False)
[SMTPat (l `memP` (fixup ls))]
= match ls with
| [] -> ()
| l1::ls -> fixup_no_other l ls
let lattice_get_repr () : L.repr int [L.RD] = reify (L.get ())
let lattice_put_repr (s:state) : L.repr unit [L.WR] =
reify (L.put s)
let lattice_raise_repr (#a:Type) () : L.repr a [L.EXN] =
reify (L.raise #a ())
// This would be a lot nicer if it was done in L.EFF itself, | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Alg.tree a (Alg.fixup labs) -> Lattice.repr a (Alg.trlabs labs) | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"Alg.baseop",
"Alg.tree",
"Alg.fixup",
"Lattice.return",
"Alg.op_inp",
"Alg.Read",
"Alg.op_out",
"Alg.tree0",
"Lattice.bind",
"Prims.int",
"Prims.Cons",
"Lattice.eff_label",
"Lattice.RD",
"Prims.Nil",
"Alg.trlabs",
"Alg.lattice_get_repr",
"Alg.interp_into_lattice_tree",
"Lattice.repr",
"Alg.Write",
"Prims.unit",
"Lattice.WR",
"Alg.lattice_put_repr",
"Alg.Raise",
"Lattice.EXN",
"Alg.lattice_raise_repr"
] | [
"recursion"
] | false | false | false | false | false | let rec interp_into_lattice_tree #a (#labs: list baseop) (t: tree a (fixup labs))
: L.repr a (trlabs labs) =
| match t with
| Return x -> L.return _ x
| Op Read i k ->
L.bind _ _ _ _ (lattice_get_repr ()) (fun x -> interp_into_lattice_tree #a #labs (k x))
| Op Write i k ->
L.bind _ _ _ _ (lattice_put_repr i) (fun x -> interp_into_lattice_tree #a #labs (k x))
| Op Raise i k ->
L.bind _ _ _ _ (lattice_raise_repr ()) (fun x -> interp_into_lattice_tree #a #labs (k x)) | false |
Alg.fst | Alg.interp_from_lattice_tree | val interp_from_lattice_tree (#a #labs: _) (t: L.repr a labs) : tree a [Read; Raise; Write] | val interp_from_lattice_tree (#a #labs: _) (t: L.repr a labs) : tree a [Read; Raise; Write] | let interp_from_lattice_tree #a #labs
(t : L.repr a labs)
: tree a [Read; Raise; Write] // conservative
= Op Read () (fun s0 ->
let (r, s1) = t s0 in
match r with
| Some x -> Op Write s1 (fun _ -> Return x)
| None -> Op Write s1 (fun _ -> Op Raise (Failure "") (fun x -> match x with))) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 86,
"end_line": 829,
"start_col": 0,
"start_line": 822
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs
let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end
(* Easy enough to handle 2 labels at once. Again a special case of
handle_tree too. *)
val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs
let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else begin
let k' o : tree b labs =
handle2 l1 l2 (k o) h1 h2 v
in
Op act i k'
end
let catch0' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle Raise t1 (fun i k -> t2) (fun x -> Return x)
let catch0'' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle_tree t1
(fun x -> Return x)
(function Raise -> (fun i k -> t2)
| act -> (fun i k -> Op act i k))
(*** Connection to Lattice *)
let baseop = o:op{not (Other? o)}
let trlab : o:baseop -> L.eff_label = function
| Read -> L.RD
| Write -> L.WR
| Raise -> L.EXN
let trlab' = function
| L.RD -> Read
| L.WR -> Write
| L.EXN -> Raise
let trlabs = List.Tot.map trlab
let trlabs' = List.Tot.map trlab'
let rec lab_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` ls <==> (trlab l) `mem` (trlabs ls))
[SMTPat (l `memP` ls)] // needed for interp_into_lattice_tree below
= match ls with
| [] -> ()
| l1::ls -> lab_corr l ls
(* Tied to the particular tree of Lattice.fst *)
(* no datatype subtyping *)
let fixup : list baseop -> ops = List.Tot.map #baseop #op (fun x -> x)
let rec fixup_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` (fixup ls) <==> l `memP` ls)
[SMTPat (l `memP` (fixup ls))]
= match ls with
| [] -> ()
| l1::ls -> fixup_corr l ls
let rec fixup_no_other (l:op{Other? l}) (ls:list baseop)
: Lemma (l `memP` (fixup ls) <==> False)
[SMTPat (l `memP` (fixup ls))]
= match ls with
| [] -> ()
| l1::ls -> fixup_no_other l ls
let lattice_get_repr () : L.repr int [L.RD] = reify (L.get ())
let lattice_put_repr (s:state) : L.repr unit [L.WR] =
reify (L.put s)
let lattice_raise_repr (#a:Type) () : L.repr a [L.EXN] =
reify (L.raise #a ())
// This would be a lot nicer if it was done in L.EFF itself,
// but the termination proof fails since it has no logical payload.
let rec interp_into_lattice_tree #a (#labs:list baseop)
(t : tree a (fixup labs))
: L.repr a (trlabs labs)
= match t with
| Return x -> L.return _ x
| Op Read i k ->
L.bind _ _ _ _ (lattice_get_repr ())
(fun x -> interp_into_lattice_tree #a #labs (k x))
| Op Write i k ->
L.bind _ _ _ _ (lattice_put_repr i)
(fun x -> interp_into_lattice_tree #a #labs (k x))
| Op Raise i k ->
L.bind _ _ _ _ (lattice_raise_repr ())
(fun x -> interp_into_lattice_tree #a #labs (k x))
let interp_into_lattice #a (#labs:list baseop)
(f : unit -> Alg a (fixup labs))
: Lattice.EFF a (trlabs labs)
= Lattice.EFF?.reflect (interp_into_lattice_tree (reify (f ())))
// This is rather silly: we reflect and then reify. Maybe define interp_into_lattice
// directly?
let interp_full #a (#labs:list baseop)
(f : unit -> Alg a (fixup labs))
: L.repr a (trlabs labs)
= reify (interp_into_lattice #a #labs f)
(* Doing it directly. *)
type sem0 (a:Type) : Type = state -> Tot (either exn a & state)
let abides' (f : sem0 'a) (labs:list baseop) : prop =
(Read `memP` labs \/ (forall s0 s1. fst (f s0) == fst (f s1)))
/\ (Write `memP` labs \/ (forall s0. snd (f s0) == s0))
/\ (Raise `memP` labs \/ (forall s0. Inr? (fst (f s0))))
type sem (a:Type) (labs : list baseop) = r:(sem0 a){abides' r labs}
let rec interp_sem #a (#labs:list baseop) (t : tree a (fixup labs)) : sem a labs =
match t with
| Return x -> fun s0 -> (Inr x, s0)
| Op Read _ k ->
let r : sem a labs = fun s0 -> interp_sem #a #labs (k s0) s0 in
r
| Op Write s k ->
fun s0 -> interp_sem #a #labs (k ()) s
| Op Raise e k -> fun s0 -> (Inl e, s0)
(* Way back: from the pure ALG into the free one, necessarily giving
a fully normalized tree *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Lattice.repr a labs -> Alg.tree a [Alg.Read; Alg.Raise; Alg.Write] | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"Lattice.eff_label",
"Lattice.repr",
"Alg.Op",
"Alg.Read",
"Alg.op_out",
"FStar.Pervasives.Native.option",
"Lattice.state",
"Alg.Write",
"Alg.Return",
"Alg.tree0",
"Alg.Raise",
"Alg.Failure",
"FStar.Pervasives.Native.tuple2",
"Alg.tree",
"Prims.Cons",
"Alg.op",
"Prims.Nil"
] | [] | false | false | false | false | false | let interp_from_lattice_tree #a #labs (t: L.repr a labs) : tree a [Read; Raise; Write] =
| Op Read
()
(fun s0 ->
let r, s1 = t s0 in
match r with
| Some x -> Op Write s1 (fun _ -> Return x)
| None -> Op Write s1 (fun _ -> Op Raise (Failure "") (function ))) | false |
Alg.fst | Alg.interp_sem | val interp_sem (#a: _) (#labs: list baseop) (t: tree a (fixup labs)) : sem a labs | val interp_sem (#a: _) (#labs: list baseop) (t: tree a (fixup labs)) : sem a labs | let rec interp_sem #a (#labs:list baseop) (t : tree a (fixup labs)) : sem a labs =
match t with
| Return x -> fun s0 -> (Inr x, s0)
| Op Read _ k ->
let r : sem a labs = fun s0 -> interp_sem #a #labs (k s0) s0 in
r
| Op Write s k ->
fun s0 -> interp_sem #a #labs (k ()) s
| Op Raise e k -> fun s0 -> (Inl e, s0) | {
"file_name": "examples/layeredeffects/Alg.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 41,
"end_line": 817,
"start_col": 0,
"start_line": 809
} | module Alg
(*** Algebraic effects. ***)
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.Universe
//module WF = FStar.WellFounded
module L = Lattice
type state = int
type empty =
(* The set of operations. We keep an uninterpreted infinite set
of `Other` so we never rely on knowing all operations. *)
type op =
| Read
| Write
| Raise
| Other of int
assume val other_inp : int -> Type
let op_inp : op -> Type =
function
| Read -> unit
| Write -> state
| Raise -> exn
| Other i -> other_inp i
assume val other_out : int -> Type
let op_out : op -> Type =
function
| Read -> state
| Write -> unit
| Raise -> empty
| Other i -> other_out i
(* Free monad over `op` *)
noeq
type tree0 (a:Type) : Type =
| Return : a -> tree0 a
| Op : op:op -> i:(op_inp op) -> k:(op_out op -> tree0 a) -> tree0 a
type ops = list op
let sublist (l1 l2 : ops) = forall x. memP x l1 ==> memP x l2
(* Limiting the operations allowed in a tree *)
let rec abides #a (labs:ops) (f : tree0 a) : prop =
begin match f with
| Op a i k -> a `memP` labs /\ (forall o. abides labs (k o))
| Return _ -> True
end
(* Refined free monad *)
type tree (a:Type) (labs : list op) : Type =
r:(tree0 a){abides labs r}
(***** Some boring list lemmas *****)
let rec memP_at (l1 l2 : ops) (l : op)
: Lemma (memP l (l1@l2) <==> (memP l l1 \/ memP l l2))
[SMTPat (memP l (l1@l2))]
= match l1 with
| [] -> ()
| _::l1 -> memP_at l1 l2 l
let rec sublist_at
(l1 l2 : ops)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let sublist_at_self (l : ops)
: Lemma (sublist l (l@l))
[SMTPat (sublist l (l@l))]
= ()
let rec abides_sublist_nopat #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2) c)
= match c with
| Return _ -> ()
| Op a i k ->
let sub o : Lemma (abides l2 (k o)) =
abides_sublist_nopat l1 l2 (k o)
in
Classical.forall_intro sub
let abides_sublist #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c) /\ sublist l1 l2)
(ensures (abides l2 c))
[SMTPat (abides l2 c); SMTPat (sublist l1 l2)]
= abides_sublist_nopat l1 l2 c
let abides_at_self #a
(l : ops)
(c : tree0 a)
: Lemma (abides (l@l) c <==> abides l c)
[SMTPat (abides (l@l) c)]
= (* Trigger some patterns *)
assert (sublist l (l@l));
assert (sublist (l@l) l)
let abides_app #a (l1 l2 : ops) (c : tree0 a)
: Lemma (requires (abides l1 c \/ abides l2 c))
(ensures (abides (l1@l2) c))
[SMTPat (abides (l1@l2) c)]
= sublist_at l1 l2
(***** / boring list lemmas *****)
(* Folding a computation tree. The folding operation `h` need only be
defined for the operations in the tree. We also take a value case
so this essentially has a builtin 'map' as well. *)
val fold_with (#a #b:_) (#labs : ops)
(f:tree a labs)
(v : a -> b)
(h: (o:op{o `memP` labs} -> op_inp o -> (op_out o -> b) -> b))
: b
let rec fold_with #a #b #labs f v h =
match f with
| Return x -> v x
| Op act i k ->
let k' (o : op_out act) : b =
fold_with #_ #_ #labs (k o) v h
in
h act i k'
(* A (tree) handler for a single operation *)
let handler_tree_op (o:op) (b:Type) (labs:ops) =
op_inp o -> (op_out o -> tree b labs) -> tree b labs
(* A (tree) handler for an operation set *)
let handler_tree (labs0 : ops) (b:Type) (labs1 : ops) : Type =
o:op{o `memP` labs0} -> handler_tree_op o b labs1
(* The most generic handling construct, we use it to implement bind.
It is actually just a special case of folding. *)
val handle_tree (#a #b:_) (#labs0 #labs1 : ops)
($f : tree a labs0)
(v : a -> tree b labs1)
(h : handler_tree labs0 b labs1)
: tree b labs1
let handle_tree f v h = fold_with f v h
let return (a:Type) (x:a)
: tree a []
= Return x
let bind (a b : Type)
(#labs1 #labs2 : ops)
(c : tree a labs1)
(f : (x:a -> tree b labs2))
: Tot (tree b (labs1@labs2))
= handle_tree #_ #_ #_ #(labs1@labs2) c f (fun act i k -> Op act i k)
let subcomp (a:Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
: Pure (tree a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let if_then_else
(a : Type)
(#labs1 #labs2 : ops)
(f : tree a labs1)
(g : tree a labs2)
(p : bool)
: Type
= tree a (labs1@labs2)
total
reifiable
reflectable
effect {
Alg (a:Type) (_:ops)
with {repr = tree; return; bind; subcomp; if_then_else}
}
let lift_pure_alg
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (tree a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= let v = FStar.Monotonic.Pure.elim_pure f (fun _ -> True) in
Return v
sub_effect PURE ~> Alg = lift_pure_alg
(* Mapping an algebraic operation into an effectful computation. *)
let geneff (o : op) (i : op_inp o)
: Alg (op_out o) [o]
= Alg?.reflect (Op o i Return)
let get : unit -> Alg int [Read] = geneff Read
let put : state -> Alg unit [Write] = geneff Write
let raise : #a:_ -> exn -> Alg a [Raise] = fun e -> match geneff Raise e with
let another_raise #a (e:exn) : Alg a [Raise] =
// Funnily enough, the version below succeeds from concluding `a ==
// empty` under the lambda since the context becomes inconsistent. All
// good, just surprising.
Alg?.reflect (Op Raise e Return)
let rec listmap #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) labs =
match l with
| [] -> []
| x::xs -> f x :: listmap #_ #_ #labs f xs
let rec listmap_read #a #b #labs
(f : a -> Alg b labs) (l : list a) : Alg (list b) (Read::labs) =
match l with
| [] -> let x = get () in []
| x::xs -> let _ = get () in f x :: listmap_read #_ #_ #labs f xs
(* Running pure trees *)
let frompure #a (t : tree a []) : a = match t with | Return x -> x
(* Running pure computations *)
let run #a (f : unit -> Alg a []) : a = frompure (reify (f ()))
exception Failure of string
let test0 (x y : int) : Alg int [Read; Raise] =
let z = get () in
if z < 0 then raise (Failure "error");
x + y + z
let test1 (x y : int) : Alg int [Raise; Read; Write] =
let z = get () in
if x + z > 0
then raise (Failure "asd")
else (put 42; y - z)
(* A simple operation-polymorphic add in direct style *)
let labpoly #labs (f g : unit -> Alg int labs) : Alg int labs = f () + g ()
// FIXME: putting this definition inside catch causes a blowup:
//
// Unexpected error
// Failure("Empty option")
// Raised at file "stdlib.ml", line 29, characters 17-33
// Called from file "ulib/ml/FStar_All.ml" (inlined), line 4, characters 21-24
// Called from file "src/ocaml-output/FStar_TypeChecker_Util.ml", line 874, characters 18-65
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 675, characters 34-38
// Called from file "src/ocaml-output/FStar_TypeChecker_Common.ml", line 657, characters 25-33
// Called from file "src/ocaml-output/FStar_TypeChecker_TcTerm.ml", line 2048, characters 30-68
// Called from file "src/basic/ml/FStar_Util.ml", line 24, characters 14-18
// ....
(* Explicitly defining catch on trees *)
let rec __catch0 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= match t1 with
| Op Raise e _ -> t2
| Op act i k ->
let k' o : tree a labs =
__catch0 (k o) t2
in
Op act i k'
| Return v -> Return v
(* Equivalently via handle_tree *)
let __catch1 #a #labs (t1 : tree a (Raise::labs)) (t2 : tree a labs)
: tree a labs
= handle_tree t1 (fun x -> Return x)
(function Raise -> fun i k -> t2
| op -> fun i k -> Op op i k)
(* Lifting it into the effect *)
let catch #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= Alg?.reflect (__catch1 (reify (f ())) (reify (g ())))
(* Example: get rid of the Raise *)
let test_catch #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
catch f g
(* Or keep it... Koka-style *)
let test_catch2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
catch f g
(* But of course, we have to handle if it is not in the output. *)
[@@expect_failure [19]]
let test_catch3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
catch f g
(***** Now for the effectful version *****)
(* An (effectful) handler for a single operation *)
let handler_op (o:op) (b:Type) (labs:ops) = op_inp o -> (op_out o -> Alg b labs) -> Alg b labs
(* An (effectful) handler for an operation set *)
let handler (labs0 : ops) (b:Type) (labs1 : ops) : Type = o:op{o `memP` labs0} -> handler_op o b labs1
(* The generic effectful handling operation, defined simply by massaging
handle_tree into the Alg effect. *)
let handle_with (#a #b:_) (#labs0 #labs1 : ops)
($f : unit -> Alg a labs0)
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
(* Looking at v and h together, they basically represent
* a handler type [ a<labs0> ->> b<labs1> ] *)
: Alg b labs1
= Alg?.reflect (handle_tree (reify (f ()))
(fun x -> reify (v x))
(fun a i k -> reify (h a i (fun o -> Alg?.reflect (k o)))))
(* A default case for handlers. With the side condition that the
operation we're defaulting will remain in the tree, so it has to be in
`labs`. All arguments are implicit, F* can usually figure `op` out. *)
let defh #b #labs (#o:op{o `memP` labs})
: handler_op o b labs
= fun i k -> k (geneff o i)
(* The version taking the operation explicitly. *)
let exp_defh #b #labs
: handler labs b labs
= fun o i k -> k (geneff o i)
// Or: = fun _ -> defh
(* Of course this can also be done for trees *)
let defh_tree #b #labs (#o:op{o `memP` labs})
: handler_tree_op o b labs
= fun i k -> Op o i k
(* Another version of catch, but directly in the effect. Note that we do
not build Op nor Return nodes, but work in a more direct style. For the
default case, we just call the operation op with the input it received
and then call the continuation with the result. *)
let try_with #a #labs (f : (unit -> Alg a (Raise::labs))) (g:unit -> Alg a labs)
: Alg a labs
= handle_with f
(fun x -> x)
(function Raise -> fun _ _ -> g ()
| _ -> defh)
let some_as_alg (#a:Type) #labs : a -> Alg (option a) labs =
fun x -> Some x
let catchE #a #labs (f : unit -> Alg a (Raise::labs)) : Alg (option a) labs =
handle_with f some_as_alg (function Raise -> fun _ _ -> None
| _ -> defh)
(* Repeating the examples above *)
let test_try_with #labs (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [] = 42 in
try_with f g
let test_try_with2 (f : unit -> Alg int [Raise; Write]) : Alg int [Raise; Write] =
let g () : Alg int [] = 42 in
try_with f g
[@@expect_failure [19]]
let test_try_with3 (f : unit -> Alg int [Raise; Write]) : Alg int [Write] =
let g () : Alg int [Raise] = raise (Failure "hmm") in
try_with f g
(***** The payoff is best seen with handling state *****)
(* Explcitly catching state *)
let rec __catchST0 #a #labs (t1 : tree a (Read::Write::labs)) (s0:state) : tree (a & int) labs =
match t1 with
| Return v -> Return (v, s0)
| Op Write s k -> __catchST0 (k ()) s
| Op Read _ k -> __catchST0 (k s0) s0
| Op act i k ->
(* default case *)
let k' o : tree (a & int) labs =
__catchST0 #a #labs (k o) s0
in
Op act i k'
(* An alternative: handling Read/Write into the state monad. The handler
is basically interpreting [Read () k] as [\s -> k s s] and similarly for
Write. Note the stacking of effects: we return a labs-tree that
contains a function which returns a labs-tree. *)
let __catchST1_aux #a #labs (f : tree a (Read::Write::labs))
: tree (state -> tree (a & state) labs) labs
= handle_tree #_ #(state -> tree (a & state) labs)
f
(fun x -> Return (fun s0 -> Return (x, s0)))
(function Read -> fun _ k -> Return (fun s -> bind _ _ (k s) (fun f -> f s))
| Write -> fun s k -> Return (fun _ -> bind _ _ (k ()) (fun f -> f s))
| act -> fun i k -> Op act i k)
(* Since tree is a monad, however, we can apply the internal function
join the two layers via the multiplication, and recover a more sane
shape. *)
let __catchST1 #a #labs (f : tree a (Read::Write::labs)) (s0:state)
: tree (a & state) labs
= bind _ _ (__catchST1_aux f) (fun f -> f s0)
// = join (fmap (fun f -> f s0) (__catchST1_aux f))
(* Reflecting it into the effect *)
let _catchST #a #labs
(f : unit -> Alg a (Read::Write::labs))
(s0 : state)
: Alg (a & state) labs
= Alg?.reflect (__catchST1 (reify (f ())) s0)
(* Instead of that cumbersome encoding with the explicitly monadic
handler, we can leverage handle_with and it in direct style. The version
below is essentially the same, but without any need to write binds,
returns, and Op nodes. Note how the layering of the effects is seamlessly
handled except for the need of a small annotation. To apply the handled
stacked computation to the initial state, there is no bind or fmap+join,
just application to s0. *)
let catchST #a #labs (f: unit -> Alg a (Read::Write::labs)) (s0:state)
: Alg (a & state) labs
= handle_with #_ #(state -> Alg _ labs) #_ #labs
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| _ -> defh) s0
(* Of course, we can also fully run computations into pure functions if
no labels remain *)
let runST #a
(f : unit -> Alg a (Read::Write::[]))
: state -> a & state
= fun s0 -> run (fun () -> catchST f s0)
(* We could also handle it directly if no labels remain, without
providing a default case. F* can prove the match is complete. Note the
minimal superficial differences to catchST. *)
let runST2 #a #labs (f: unit -> Alg a (Read::Write::[])) (s0:state)
: Alg (a & state) []
= handle_with #_ #(state -> Alg _ []) #_ #[]
f (fun x s -> (x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s) s0
(* We can interpret state+exceptions as monadic computations in the two usual ways: *)
let run_stexn #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option (a & state) =
run (fun () -> catchE (fun () -> catchST f s_0))
let run_exnst #a (f : unit -> Alg a [Write; Raise; Read]) (s_0:state) : option a & state =
run (fun () -> catchST (fun () -> catchE f) s_0)
(***** There are many other ways in which to program with
handlers, we show a few in what follows. *)
(* Unary read handler which just provides s0 *)
let read_handler (#b:Type)
(#labs:ops)
(s0:state)
: handler_op Read b labs
= fun _ k -> k s0
(* Handling only Read *)
let handle_read (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Read::labs))
(h : handler_op Read a labs)
: Alg a labs
= handle_with f (fun x -> x) (function Read -> h
| _ -> defh)
(* A handler for write which handles Reads in the continuation with the
state at hand. Note that `k` is automatically subcomped to ignore a
label. *)
let write_handler (#a:Type)
(#labs:ops)
: handler_op Write a labs
= fun s k -> handle_read k (read_handler s)
(* Handling writes with the handler above *)
let handle_write (#a:Type)
(#labs:ops)
(f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_with f (fun x -> x)
(function Write -> write_handler
| _ -> defh)
(* Handling state by 1) handling writes and all the reads
under them via the write handler above 2) handling the initial
Reads. *)
let handle_st (a:Type)
(labs: ops)
(f : unit -> Alg a (Write::Read::labs))
(s0:state)
: Alg a labs
= handle_read (fun () -> handle_write f) (fun _ k -> k s0)
(* Widening the domain of a handler by leaving some operations in labs0)
(untouched. Requires being able to compare labels. *)
let widen_handler (#b:_) (#labs0 #labs1:_)
(h:handler labs0 b labs1)
: handler (labs0@labs1) b labs1
= fun op ->
(* This relies on decidable equality of operation labels,
* or at least on being able to decide whether `op` is in `labs0`
* or not. Since currently they are an `eqtype`, `mem` will do it. *)
mem_memP op labs0; // "mem decides memP"
if op `mem` labs0
then h op
else defh
(* Partial handling *)
let handle_sub (#a #b:_) (#labs0 #labs1:_)
(f : unit -> Alg a (labs0@labs1))
(v : a -> Alg b labs1)
(h : handler labs0 b labs1)
: Alg b labs1
= handle_with f v (widen_handler h)
let widen_handler_1 (#b:_) (#o:op) (#labs1:_)
(h:handler_op o b labs1)
: handler (o::labs1) b labs1
= widen_handler #_ #[o] (fun _ -> h)
let handle_one (#a:_) (#o:op) (#labs1:_)
($f : unit -> Alg a (o::labs1))
(h : handler_op o a labs1)
: Alg a labs1
= handle_with f (fun x -> x) (widen_handler_1 h)
let append_single (a:Type) (x:a) (l:list a)
: Lemma (x::l == [x]@l)
[SMTPat (x::l)]
= ()
let handle_raise #a #labs (f : unit -> Alg a (Raise::labs)) (g : unit -> Alg a labs)
: Alg a labs
= handle_one f (fun _ _ -> g ())
let handle_read' #a #labs (f : unit -> Alg a (Read::labs)) (s:state)
: Alg a labs
= handle_one f (fun _ k -> k s)
let handle_write' #a #labs (f : unit -> Alg a (Write::labs))
: Alg a labs
= handle_one f (fun s k -> handle_read' k s)
let handle_return #a (x:a)
: Alg (option a & state) [Write; Read]
= (Some x, get ())
let handler_raise #a
: handler [Raise; Write; Read] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| _ -> defh
let handler_raise_write #a
: handler [Raise; Write] (option a & state) [Write; Read]
= function
| Raise -> (fun i k -> (None, get ()))
| Write -> (fun i k -> handle_write' k)
(* Running by handling one operation at a time *)
let run_tree #a (f : unit -> Alg a [Raise; Write; Read]) (s0:state)
: option a & state
= run (fun () ->
handle_read' (fun () ->
handle_write' (fun () ->
handle_with f handle_return handler_raise)) s0)
(* Running state+exceptions *)
let runSTE #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : Alg (option a & state) [] =
handle_with #_ #(state -> Alg (option a & state) []) #[Raise; Write; Read] #[]
f (fun x s -> (Some x, s))
(function Read -> fun _ k s -> k s s
| Write -> fun s k _ -> k () s
| Raise -> fun e k s -> (None, s)) s0
(* And into pure *)
let runSTE_pure #a (f: unit -> Alg a [Raise; Write; Read]) (s0:state) : option a & state =
run (fun () -> runSTE f s0)
(*** Interps into other effects *)
let interp_pure_tree #a (t : tree a []) : Tot a =
match t with
| Return x -> x
let interp_pure #a (f : unit -> Alg a []) : Tot a = interp_pure_tree (reify (f ()))
let rec interp_rd_tree #a (t : tree a [Read]) (s:state) : Tot a =
match t with
| Return x -> x
| Op Read _ k ->
interp_rd_tree (k s) s
let interp_rd #a (f : unit -> Alg a [Read]) (s:state) : Tot a = interp_rd_tree (reify (f ())) s
let rec interp_rdwr_tree #a (t : tree a [Read; Write]) (s:state) : Tot (a & state) =
match t with
| Return x -> (x, s)
| Op Read _ k ->
interp_rdwr_tree (k s) s
| Op Write s k ->
interp_rdwr_tree (k ()) s
let interp_rdwr #a (f : unit -> Alg a [Read; Write]) (s:state) : Tot (a & state) = interp_rdwr_tree (reify (f ())) s
let rec interp_read_raise_tree #a (t : tree a [Read; Raise]) (s:state) : either exn a =
match t with
| Return x -> Inr x
| Op Read _ k ->
interp_read_raise_tree (k s) s
| Op Raise e k ->
Inl e
let interp_read_raise_exn #a (f : unit -> Alg a [Read; Raise]) (s:state) : either exn a =
interp_read_raise_tree (reify (f ())) s
let rec interp_all_tree #a (t : tree a [Read; Write; Raise]) (s:state) : Tot (option a & state) =
match t with
| Return x -> (Some x, s)
| Op Read _ k ->
interp_all_tree (k s) s
| Op Write s k ->
interp_all_tree (k ()) s
| Op Raise e k ->
(None, s)
let interp_all #a (f : unit -> Alg a [Read; Write; Raise]) (s:state) : Tot (option a & state) = interp_all_tree (reify (f ())) s
//let action_input (a:action 'i 'o) = 'i
//let action_output (a:action 'i 'o) = 'o
//
//let handler_ty (a:action _ _) (b:Type) (labs:list eff_label) =
// action_input a ->
// (action_output a -> tree b labs) -> tree b labs
//
//let dpi31 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : a =
// let (| x, y, z |) = t in x
//
//let dpi32 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : b (dpi31 t) =
// let (| x, y, z |) = t in y
//
//let dpi33 (#a:Type) (#b:a->Type) (#c:(x:a->b x->Type)) (t : (x:a & y:b x & c x y)) : c (dpi31 t) (dpi32 t) =
// let (| x, y, z |) = t in z
//handler_ty (dpi33 (action_of l)) b labs
//F* complains this is not a function
//let (| _, _, a |) = action_of l in
//handler_ty a b labs
(*** Other ways to define handlers *)
(* A generic handler for a (single) label l. Anyway a special case of
handle_tree. *)
val handle (#a #b:_) (#labs:_) (o:op)
(f:tree a (o::labs))
(h:handler_tree_op o b labs)
(v: a -> tree b labs)
: tree b labs
let rec handle #a #b #labs l f h v =
match f with
| Return x -> v x
| Op act i k ->
if act = l
then h i (fun o -> handle l (k o) h v)
else begin
let k' o : tree b labs =
handle l (k o) h v
in
Op act i k'
end
(* Easy enough to handle 2 labels at once. Again a special case of
handle_tree too. *)
val handle2 (#a #b:_) (#labs:_) (l1 l2 : op)
(f:tree a (l1::l2::labs))
(h1:handler_tree_op l1 b labs)
(h2:handler_tree_op l2 b labs)
(v : a -> tree b labs)
: tree b labs
let rec handle2 #a #b #labs l1 l2 f h1 h2 v =
match f with
| Return x -> v x
| Op act i k ->
if act = l1
then h1 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else if act = l2
then h2 i (fun o -> handle2 l1 l2 (k o) h1 h2 v)
else begin
let k' o : tree b labs =
handle2 l1 l2 (k o) h1 h2 v
in
Op act i k'
end
let catch0' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle Raise t1 (fun i k -> t2) (fun x -> Return x)
let catch0'' #a #labs (t1 : tree a (Raise::labs))
(t2 : tree a labs)
: tree a labs
= handle_tree t1
(fun x -> Return x)
(function Raise -> (fun i k -> t2)
| act -> (fun i k -> Op act i k))
(*** Connection to Lattice *)
let baseop = o:op{not (Other? o)}
let trlab : o:baseop -> L.eff_label = function
| Read -> L.RD
| Write -> L.WR
| Raise -> L.EXN
let trlab' = function
| L.RD -> Read
| L.WR -> Write
| L.EXN -> Raise
let trlabs = List.Tot.map trlab
let trlabs' = List.Tot.map trlab'
let rec lab_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` ls <==> (trlab l) `mem` (trlabs ls))
[SMTPat (l `memP` ls)] // needed for interp_into_lattice_tree below
= match ls with
| [] -> ()
| l1::ls -> lab_corr l ls
(* Tied to the particular tree of Lattice.fst *)
(* no datatype subtyping *)
let fixup : list baseop -> ops = List.Tot.map #baseop #op (fun x -> x)
let rec fixup_corr (l:baseop) (ls:list baseop)
: Lemma (l `memP` (fixup ls) <==> l `memP` ls)
[SMTPat (l `memP` (fixup ls))]
= match ls with
| [] -> ()
| l1::ls -> fixup_corr l ls
let rec fixup_no_other (l:op{Other? l}) (ls:list baseop)
: Lemma (l `memP` (fixup ls) <==> False)
[SMTPat (l `memP` (fixup ls))]
= match ls with
| [] -> ()
| l1::ls -> fixup_no_other l ls
let lattice_get_repr () : L.repr int [L.RD] = reify (L.get ())
let lattice_put_repr (s:state) : L.repr unit [L.WR] =
reify (L.put s)
let lattice_raise_repr (#a:Type) () : L.repr a [L.EXN] =
reify (L.raise #a ())
// This would be a lot nicer if it was done in L.EFF itself,
// but the termination proof fails since it has no logical payload.
let rec interp_into_lattice_tree #a (#labs:list baseop)
(t : tree a (fixup labs))
: L.repr a (trlabs labs)
= match t with
| Return x -> L.return _ x
| Op Read i k ->
L.bind _ _ _ _ (lattice_get_repr ())
(fun x -> interp_into_lattice_tree #a #labs (k x))
| Op Write i k ->
L.bind _ _ _ _ (lattice_put_repr i)
(fun x -> interp_into_lattice_tree #a #labs (k x))
| Op Raise i k ->
L.bind _ _ _ _ (lattice_raise_repr ())
(fun x -> interp_into_lattice_tree #a #labs (k x))
let interp_into_lattice #a (#labs:list baseop)
(f : unit -> Alg a (fixup labs))
: Lattice.EFF a (trlabs labs)
= Lattice.EFF?.reflect (interp_into_lattice_tree (reify (f ())))
// This is rather silly: we reflect and then reify. Maybe define interp_into_lattice
// directly?
let interp_full #a (#labs:list baseop)
(f : unit -> Alg a (fixup labs))
: L.repr a (trlabs labs)
= reify (interp_into_lattice #a #labs f)
(* Doing it directly. *)
type sem0 (a:Type) : Type = state -> Tot (either exn a & state)
let abides' (f : sem0 'a) (labs:list baseop) : prop =
(Read `memP` labs \/ (forall s0 s1. fst (f s0) == fst (f s1)))
/\ (Write `memP` labs \/ (forall s0. snd (f s0) == s0))
/\ (Raise `memP` labs \/ (forall s0. Inr? (fst (f s0))))
type sem (a:Type) (labs : list baseop) = r:(sem0 a){abides' r labs} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lattice.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Alg.fst"
} | [
{
"abbrev": true,
"full_module": "Lattice",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Universe",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Alg.tree a (Alg.fixup labs) -> Alg.sem a labs | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"Alg.baseop",
"Alg.tree",
"Alg.fixup",
"Alg.state",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.either",
"Prims.exn",
"FStar.Pervasives.Inr",
"FStar.Pervasives.Native.tuple2",
"Alg.op_inp",
"Alg.Read",
"Alg.op_out",
"Alg.tree0",
"Alg.sem",
"Prims.int",
"Alg.interp_sem",
"Alg.Write",
"Alg.Raise",
"FStar.Pervasives.Inl"
] | [
"recursion"
] | false | false | false | false | false | let rec interp_sem #a (#labs: list baseop) (t: tree a (fixup labs)) : sem a labs =
| match t with
| Return x -> fun s0 -> (Inr x, s0)
| Op Read _ k ->
let r:sem a labs = fun s0 -> interp_sem #a #labs (k s0) s0 in
r
| Op Write s k -> fun s0 -> interp_sem #a #labs (k ()) s
| Op Raise e k -> fun s0 -> (Inl e, s0) | false |
EverCrypt.DRBG.fst | EverCrypt.DRBG.mk_generate | val mk_generate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> generate_st a | val mk_generate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> generate_st a | let mk_generate #a hmac output st n additional_input additional_input_len =
if additional_input_len >. max_additional_input_length || n >. max_output_length then
false
else (
push_frame();
let ok = mk_reseed hmac st additional_input additional_input_len in
let result =
if not ok then
false
else
begin
let st_s = !*st in
let b = mk_generate hmac
output (p st_s) n additional_input_len additional_input in
b (* This used to be true, which is fishy *)
end
in
let h1 = get () in
pop_frame();
let h2 = get () in
frame_invariant (B.loc_all_regions_from false (HS.get_tip h1)) st h1 h2;
result ) | {
"file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 10,
"end_line": 222,
"start_col": 0,
"start_line": 201
} | module EverCrypt.DRBG
open FStar.HyperStack.ST
open Lib.IntTypes
open Spec.Hash.Definitions
module HS = FStar.HyperStack
module B = LowStar.Buffer
module S = Spec.HMAC_DRBG
open Hacl.HMAC_DRBG
open Lib.RandomBuffer.System
open LowStar.BufferOps
friend Hacl.HMAC_DRBG
friend EverCrypt.HMAC
#set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50"
/// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it
///
/// Respects EverCrypt convention and reverses order of buf_len, buf arguments
[@CAbstractStruct]
noeq
type state_s: supported_alg -> Type0 =
| SHA1_s : state SHA1 -> state_s SHA1
| SHA2_256_s: state SHA2_256 -> state_s SHA2_256
| SHA2_384_s: state SHA2_384 -> state_s SHA2_384
| SHA2_512_s: state SHA2_512 -> state_s SHA2_512
let invert_state_s (a:supported_alg): Lemma
(requires True)
(ensures inversion (state_s a))
[ SMTPat (state_s a) ]
=
allow_inversion (state_s a)
/// Only call this function in extracted code with a known `a`
inline_for_extraction noextract
let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a =
match a with
| SHA1 -> let SHA1_s p = s in p
| SHA2_256 -> let SHA2_256_s p = s in p
| SHA2_384 -> let SHA2_384_s p = s in p
| SHA2_512 -> let SHA2_512_s p = s in p
let freeable_s #a st = freeable (p st)
let footprint_s #a st = footprint (p st)
let invariant_s #a st h = invariant (p st) h
let repr #a st h =
let st = B.get h st 0 in
repr (p st) h
let loc_includes_union_l_footprint_s #a l1 l2 st =
B.loc_includes_union_l l1 l2 (footprint_s st)
let invariant_loc_in_footprint #a st m = ()
let frame_invariant #a l st h0 h1 = ()
/// State allocation
// Would like to specialize alloca in each branch, but two calls to StackInline
// functions in the same block lead to variable redefinitions at extraction.
let alloca a =
let st =
match a with
| SHA1 -> SHA1_s (alloca a)
| SHA2_256 -> SHA2_256_s (alloca a)
| SHA2_384 -> SHA2_384_s (alloca a)
| SHA2_512 -> SHA2_512_s (alloca a)
in
B.alloca st 1ul
let create_in a r =
let st =
match a with
| SHA1 -> SHA1_s (create_in SHA1 r)
| SHA2_256 -> SHA2_256_s (create_in SHA2_256 r)
| SHA2_384 -> SHA2_384_s (create_in SHA2_384 r)
| SHA2_512 -> SHA2_512_s (create_in SHA2_512 r)
in
B.malloc r st 1ul
let create a = create_in a HS.root
/// Instantiate function
inline_for_extraction noextract
val mk_instantiate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> instantiate_st a
let mk_instantiate #a hmac st personalization_string personalization_string_len =
if personalization_string_len >. max_personalization_string_length then
false
else
let entropy_input_len = min_length a in
let nonce_len = min_length a /. 2ul in
let min_entropy = entropy_input_len +! nonce_len in
push_frame();
assert_norm (range (v min_entropy) U32);
let entropy = B.alloca (u8 0) min_entropy in
let ok = randombytes entropy min_entropy in
let result =
if not ok then
false
else
begin
let entropy_input = B.sub entropy 0ul entropy_input_len in
let nonce = B.sub entropy entropy_input_len nonce_len in
S.hmac_input_bound a;
let st_s = !*st in
mk_instantiate hmac (p st_s)
entropy_input_len entropy_input
nonce_len nonce
personalization_string_len personalization_string;
true
end
in
pop_frame();
result
(** @type: true
*)
val instantiate_sha1 : instantiate_st SHA1
(** @type: true
*)
val instantiate_sha2_256: instantiate_st SHA2_256
(** @type: true
*)
val instantiate_sha2_384: instantiate_st SHA2_384
(** @type: true
*)
val instantiate_sha2_512: instantiate_st SHA2_512
let instantiate_sha1 = mk_instantiate EverCrypt.HMAC.compute_sha1
let instantiate_sha2_256 = mk_instantiate EverCrypt.HMAC.compute_sha2_256
let instantiate_sha2_384 = mk_instantiate EverCrypt.HMAC.compute_sha2_384
let instantiate_sha2_512 = mk_instantiate EverCrypt.HMAC.compute_sha2_512
/// Reseed function
inline_for_extraction noextract
val mk_reseed: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> reseed_st a
let mk_reseed #a hmac st additional_input additional_input_len =
if additional_input_len >. max_additional_input_length then
false
else
let entropy_input_len = min_length a in
push_frame();
let entropy_input = B.alloca (u8 0) entropy_input_len in
let ok = randombytes entropy_input entropy_input_len in
let result =
if not ok then
false
else
begin
S.hmac_input_bound a;
let st_s = !*st in
mk_reseed hmac (p st_s)
entropy_input_len entropy_input
additional_input_len additional_input;
true
end
in
pop_frame();
result
(** @type: true
*)
val reseed_sha1 : reseed_st SHA1
(** @type: true
*)
val reseed_sha2_256: reseed_st SHA2_256
(** @type: true
*)
val reseed_sha2_384: reseed_st SHA2_384
(** @type: true
*)
val reseed_sha2_512: reseed_st SHA2_512
let reseed_sha1 = mk_reseed EverCrypt.HMAC.compute_sha1
let reseed_sha2_256 = mk_reseed EverCrypt.HMAC.compute_sha2_256
let reseed_sha2_384 = mk_reseed EverCrypt.HMAC.compute_sha2_384
let reseed_sha2_512 = mk_reseed EverCrypt.HMAC.compute_sha2_512
/// Generate function
inline_for_extraction noextract | {
"checked_file": "/",
"dependencies": [
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.RandomBuffer.System.fsti.checked",
"Lib.Memzero0.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.HMAC_DRBG.fst.checked",
"Hacl.HMAC_DRBG.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"EverCrypt.HMAC.fst.checked"
],
"interface_file": true,
"source_file": "EverCrypt.DRBG.fst"
} | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RandomBuffer.System",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HMAC_DRBG",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | hmac: EverCrypt.HMAC.compute_st a -> EverCrypt.DRBG.generate_st a | Prims.Tot | [
"total"
] | [] | [
"Hacl.HMAC_DRBG.supported_alg",
"EverCrypt.HMAC.compute_st",
"LowStar.Buffer.buffer",
"Lib.IntTypes.uint8",
"EverCrypt.DRBG.state",
"Lib.IntTypes.size_t",
"Prims.op_BarBar",
"Lib.IntTypes.op_Greater_Dot",
"Lib.IntTypes.U32",
"Hacl.HMAC_DRBG.max_additional_input_length",
"Hacl.HMAC_DRBG.max_output_length",
"Prims.bool",
"Prims.unit",
"EverCrypt.DRBG.frame_invariant",
"LowStar.Monotonic.Buffer.loc_all_regions_from",
"FStar.Monotonic.HyperStack.get_tip",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"FStar.HyperStack.ST.pop_frame",
"Prims.op_Negation",
"Hacl.HMAC_DRBG.mk_generate",
"EverCrypt.DRBG.p",
"EverCrypt.DRBG.state_s",
"LowStar.BufferOps.op_Bang_Star",
"LowStar.Buffer.trivial_preorder",
"EverCrypt.DRBG.mk_reseed",
"FStar.HyperStack.ST.push_frame"
] | [] | false | false | false | false | false | let mk_generate #a hmac output st n additional_input additional_input_len =
| if additional_input_len >. max_additional_input_length || n >. max_output_length
then false
else
(push_frame ();
let ok = mk_reseed hmac st additional_input additional_input_len in
let result =
if not ok
then false
else
let st_s = !*st in
let b = mk_generate hmac output (p st_s) n additional_input_len additional_input in
b
in
let h1 = get () in
pop_frame ();
let h2 = get () in
frame_invariant (B.loc_all_regions_from false (HS.get_tip h1)) st h1 h2;
result) | false |
LowParse.Spec.Tac.Enum.fst | LowParse.Spec.Tac.Enum.forall_maybe_enum_key_unknown_tac | val forall_maybe_enum_key_unknown_tac: Prims.unit -> T.Tac unit | val forall_maybe_enum_key_unknown_tac: Prims.unit -> T.Tac unit | let forall_maybe_enum_key_unknown_tac () : T.Tac unit =
let open T in
let x = intro () in
norm [delta; iota; zeta; primops];
trivial ();
qed () | {
"file_name": "src/lowparse/LowParse.Spec.Tac.Enum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 12,
"end_line": 84,
"start_col": 0,
"start_line": 79
} | module LowParse.Spec.Tac.Enum
include LowParse.Spec.Enum
module T = LowParse.TacLib
//
// The enum tactic solves goals of type ?u:eqtype with enum types that are
// in the environment at type Type0
// So typechecking such uvars fails since F* 2635 bug fix
// (since uvar solutions are checked with smt off)
//
// To circumvent that, we use t_apply with tc_resolve_uvars flag on,
// so that ?u will be typechecked as soon as it is resolved,
// resulting in an smt guard that will be added to the proofstate
//
let apply (t:T.term) : T.Tac unit =
T.t_apply true false true t
noextract
let rec enum_tac_gen
(t_cons_nil: T.term)
(t_cons: T.term)
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= match e with
| [] -> T.fail "enum_tac_gen: e must be cons"
| [_] ->
apply t_cons_nil;
T.iseq [
T.solve_vc;
T.solve_vc;
];
T.qed ()
| _ :: e_ ->
apply t_cons;
T.iseq [
T.solve_vc;
(fun () -> enum_tac_gen t_cons_nil t_cons e_);
];
T.qed ()
noextract
let maybe_enum_key_of_repr_tac
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= enum_tac_gen (quote maybe_enum_key_of_repr'_t_cons_nil') (quote maybe_enum_key_of_repr'_t_cons') e
noextract
let enum_repr_of_key_tac
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= enum_tac_gen (quote enum_repr_of_key_cons_nil') (quote enum_repr_of_key_cons') e
noextract
let synth_maybe_enum_key_inv_unknown_tac (#key: Type) (x: key) : T.Tac unit =
let open T in
destruct (quote x);
to_all_goals (fun () ->
let breq = intros_until_squash () in
rewrite breq;
norm [delta; iota; zeta; primops];
trivial ();
qed ()
);
qed ()
noextract
let forall_maybe_enum_key_known_tac () : T.Tac unit =
let open T in
norm [delta; iota; zeta; primops];
trivial ();
qed () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.TacLib.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Tac.Enum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.TacLib",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.qed",
"FStar.Tactics.V1.Derived.trivial",
"FStar.Stubs.Tactics.V1.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.delta",
"FStar.Pervasives.iota",
"FStar.Pervasives.zeta",
"FStar.Pervasives.primops",
"Prims.Nil",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Stubs.Tactics.V1.Builtins.intro"
] | [] | false | true | false | false | false | let forall_maybe_enum_key_unknown_tac () : T.Tac unit =
| let open T in
let x = intro () in
norm [delta; iota; zeta; primops];
trivial ();
qed () | false |
LowParse.Spec.Tac.Enum.fst | LowParse.Spec.Tac.Enum.apply | val apply (t: T.term) : T.Tac unit | val apply (t: T.term) : T.Tac unit | let apply (t:T.term) : T.Tac unit =
T.t_apply true false true t | {
"file_name": "src/lowparse/LowParse.Spec.Tac.Enum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 29,
"end_line": 18,
"start_col": 0,
"start_line": 17
} | module LowParse.Spec.Tac.Enum
include LowParse.Spec.Enum
module T = LowParse.TacLib
//
// The enum tactic solves goals of type ?u:eqtype with enum types that are
// in the environment at type Type0
// So typechecking such uvars fails since F* 2635 bug fix
// (since uvar solutions are checked with smt off)
//
// To circumvent that, we use t_apply with tc_resolve_uvars flag on,
// so that ?u will be typechecked as soon as it is resolved,
// resulting in an smt guard that will be added to the proofstate
// | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.TacLib.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Tac.Enum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.TacLib",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Tactics.V1.Builtins.t_apply",
"Prims.unit"
] | [] | false | true | false | false | false | let apply (t: T.term) : T.Tac unit =
| T.t_apply true false true t | false |
LowParse.Spec.Tac.Enum.fst | LowParse.Spec.Tac.Enum.synth_maybe_enum_key_inv_unknown_tac | val synth_maybe_enum_key_inv_unknown_tac (#key: Type) (x: key) : T.Tac unit | val synth_maybe_enum_key_inv_unknown_tac (#key: Type) (x: key) : T.Tac unit | let synth_maybe_enum_key_inv_unknown_tac (#key: Type) (x: key) : T.Tac unit =
let open T in
destruct (quote x);
to_all_goals (fun () ->
let breq = intros_until_squash () in
rewrite breq;
norm [delta; iota; zeta; primops];
trivial ();
qed ()
);
qed () | {
"file_name": "src/lowparse/LowParse.Spec.Tac.Enum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 10,
"end_line": 69,
"start_col": 0,
"start_line": 59
} | module LowParse.Spec.Tac.Enum
include LowParse.Spec.Enum
module T = LowParse.TacLib
//
// The enum tactic solves goals of type ?u:eqtype with enum types that are
// in the environment at type Type0
// So typechecking such uvars fails since F* 2635 bug fix
// (since uvar solutions are checked with smt off)
//
// To circumvent that, we use t_apply with tc_resolve_uvars flag on,
// so that ?u will be typechecked as soon as it is resolved,
// resulting in an smt guard that will be added to the proofstate
//
let apply (t:T.term) : T.Tac unit =
T.t_apply true false true t
noextract
let rec enum_tac_gen
(t_cons_nil: T.term)
(t_cons: T.term)
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= match e with
| [] -> T.fail "enum_tac_gen: e must be cons"
| [_] ->
apply t_cons_nil;
T.iseq [
T.solve_vc;
T.solve_vc;
];
T.qed ()
| _ :: e_ ->
apply t_cons;
T.iseq [
T.solve_vc;
(fun () -> enum_tac_gen t_cons_nil t_cons e_);
];
T.qed ()
noextract
let maybe_enum_key_of_repr_tac
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= enum_tac_gen (quote maybe_enum_key_of_repr'_t_cons_nil') (quote maybe_enum_key_of_repr'_t_cons') e
noextract
let enum_repr_of_key_tac
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= enum_tac_gen (quote enum_repr_of_key_cons_nil') (quote enum_repr_of_key_cons') e | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.TacLib.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Tac.Enum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.TacLib",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: key -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Tactics.V1.Derived.qed",
"Prims.unit",
"LowParse.TacLib.to_all_goals",
"FStar.Tactics.V1.Derived.trivial",
"FStar.Stubs.Tactics.V1.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.delta",
"FStar.Pervasives.iota",
"FStar.Pervasives.zeta",
"FStar.Pervasives.primops",
"Prims.Nil",
"FStar.Stubs.Tactics.V1.Builtins.rewrite",
"FStar.Stubs.Reflection.Types.binder",
"LowParse.TacLib.intros_until_squash",
"FStar.Tactics.V1.Derived.destruct",
"FStar.Stubs.Reflection.Types.term"
] | [] | false | true | false | false | false | let synth_maybe_enum_key_inv_unknown_tac (#key: Type) (x: key) : T.Tac unit =
| let open T in
destruct (quote x);
to_all_goals (fun () ->
let breq = intros_until_squash () in
rewrite breq;
norm [delta; iota; zeta; primops];
trivial ();
qed ());
qed () | false |
LowParse.Spec.Tac.Enum.fst | LowParse.Spec.Tac.Enum.enum_repr_of_key_tac | val enum_repr_of_key_tac (#key #repr: Type) (e: list (key * repr)) : T.Tac unit | val enum_repr_of_key_tac (#key #repr: Type) (e: list (key * repr)) : T.Tac unit | let enum_repr_of_key_tac
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= enum_tac_gen (quote enum_repr_of_key_cons_nil') (quote enum_repr_of_key_cons') e | {
"file_name": "src/lowparse/LowParse.Spec.Tac.Enum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 82,
"end_line": 56,
"start_col": 0,
"start_line": 52
} | module LowParse.Spec.Tac.Enum
include LowParse.Spec.Enum
module T = LowParse.TacLib
//
// The enum tactic solves goals of type ?u:eqtype with enum types that are
// in the environment at type Type0
// So typechecking such uvars fails since F* 2635 bug fix
// (since uvar solutions are checked with smt off)
//
// To circumvent that, we use t_apply with tc_resolve_uvars flag on,
// so that ?u will be typechecked as soon as it is resolved,
// resulting in an smt guard that will be added to the proofstate
//
let apply (t:T.term) : T.Tac unit =
T.t_apply true false true t
noextract
let rec enum_tac_gen
(t_cons_nil: T.term)
(t_cons: T.term)
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= match e with
| [] -> T.fail "enum_tac_gen: e must be cons"
| [_] ->
apply t_cons_nil;
T.iseq [
T.solve_vc;
T.solve_vc;
];
T.qed ()
| _ :: e_ ->
apply t_cons;
T.iseq [
T.solve_vc;
(fun () -> enum_tac_gen t_cons_nil t_cons e_);
];
T.qed ()
noextract
let maybe_enum_key_of_repr_tac
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= enum_tac_gen (quote maybe_enum_key_of_repr'_t_cons_nil') (quote maybe_enum_key_of_repr'_t_cons') e | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.TacLib.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Tac.Enum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.TacLib",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: Prims.list (key * repr) -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Tac.Enum.enum_tac_gen",
"Prims.unit",
"FStar.Stubs.Reflection.Types.term",
"LowParse.Spec.Enum.enum_repr_of_key_cons'",
"LowParse.Spec.Enum.enum_repr_of_key_cons_nil'"
] | [] | false | true | false | false | false | let enum_repr_of_key_tac (#key #repr: Type) (e: list (key * repr)) : T.Tac unit =
| enum_tac_gen (quote enum_repr_of_key_cons_nil') (quote enum_repr_of_key_cons') e | false |
LowParse.Spec.Tac.Enum.fst | LowParse.Spec.Tac.Enum.forall_maybe_enum_key_known_tac | val forall_maybe_enum_key_known_tac: Prims.unit -> T.Tac unit | val forall_maybe_enum_key_known_tac: Prims.unit -> T.Tac unit | let forall_maybe_enum_key_known_tac () : T.Tac unit =
let open T in
norm [delta; iota; zeta; primops];
trivial ();
qed () | {
"file_name": "src/lowparse/LowParse.Spec.Tac.Enum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 12,
"end_line": 76,
"start_col": 0,
"start_line": 72
} | module LowParse.Spec.Tac.Enum
include LowParse.Spec.Enum
module T = LowParse.TacLib
//
// The enum tactic solves goals of type ?u:eqtype with enum types that are
// in the environment at type Type0
// So typechecking such uvars fails since F* 2635 bug fix
// (since uvar solutions are checked with smt off)
//
// To circumvent that, we use t_apply with tc_resolve_uvars flag on,
// so that ?u will be typechecked as soon as it is resolved,
// resulting in an smt guard that will be added to the proofstate
//
let apply (t:T.term) : T.Tac unit =
T.t_apply true false true t
noextract
let rec enum_tac_gen
(t_cons_nil: T.term)
(t_cons: T.term)
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= match e with
| [] -> T.fail "enum_tac_gen: e must be cons"
| [_] ->
apply t_cons_nil;
T.iseq [
T.solve_vc;
T.solve_vc;
];
T.qed ()
| _ :: e_ ->
apply t_cons;
T.iseq [
T.solve_vc;
(fun () -> enum_tac_gen t_cons_nil t_cons e_);
];
T.qed ()
noextract
let maybe_enum_key_of_repr_tac
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= enum_tac_gen (quote maybe_enum_key_of_repr'_t_cons_nil') (quote maybe_enum_key_of_repr'_t_cons') e
noextract
let enum_repr_of_key_tac
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= enum_tac_gen (quote enum_repr_of_key_cons_nil') (quote enum_repr_of_key_cons') e
noextract
let synth_maybe_enum_key_inv_unknown_tac (#key: Type) (x: key) : T.Tac unit =
let open T in
destruct (quote x);
to_all_goals (fun () ->
let breq = intros_until_squash () in
rewrite breq;
norm [delta; iota; zeta; primops];
trivial ();
qed ()
);
qed () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.TacLib.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Tac.Enum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.TacLib",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.qed",
"FStar.Tactics.V1.Derived.trivial",
"FStar.Stubs.Tactics.V1.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.delta",
"FStar.Pervasives.iota",
"FStar.Pervasives.zeta",
"FStar.Pervasives.primops",
"Prims.Nil"
] | [] | false | true | false | false | false | let forall_maybe_enum_key_known_tac () : T.Tac unit =
| let open T in
norm [delta; iota; zeta; primops];
trivial ();
qed () | false |
LowParse.Spec.Tac.Enum.fst | LowParse.Spec.Tac.Enum.maybe_enum_key_of_repr_tac | val maybe_enum_key_of_repr_tac (#key #repr: Type) (e: list (key * repr)) : T.Tac unit | val maybe_enum_key_of_repr_tac (#key #repr: Type) (e: list (key * repr)) : T.Tac unit | let maybe_enum_key_of_repr_tac
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= enum_tac_gen (quote maybe_enum_key_of_repr'_t_cons_nil') (quote maybe_enum_key_of_repr'_t_cons') e | {
"file_name": "src/lowparse/LowParse.Spec.Tac.Enum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 100,
"end_line": 49,
"start_col": 0,
"start_line": 45
} | module LowParse.Spec.Tac.Enum
include LowParse.Spec.Enum
module T = LowParse.TacLib
//
// The enum tactic solves goals of type ?u:eqtype with enum types that are
// in the environment at type Type0
// So typechecking such uvars fails since F* 2635 bug fix
// (since uvar solutions are checked with smt off)
//
// To circumvent that, we use t_apply with tc_resolve_uvars flag on,
// so that ?u will be typechecked as soon as it is resolved,
// resulting in an smt guard that will be added to the proofstate
//
let apply (t:T.term) : T.Tac unit =
T.t_apply true false true t
noextract
let rec enum_tac_gen
(t_cons_nil: T.term)
(t_cons: T.term)
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= match e with
| [] -> T.fail "enum_tac_gen: e must be cons"
| [_] ->
apply t_cons_nil;
T.iseq [
T.solve_vc;
T.solve_vc;
];
T.qed ()
| _ :: e_ ->
apply t_cons;
T.iseq [
T.solve_vc;
(fun () -> enum_tac_gen t_cons_nil t_cons e_);
];
T.qed () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.TacLib.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Tac.Enum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.TacLib",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: Prims.list (key * repr) -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Tac.Enum.enum_tac_gen",
"Prims.unit",
"FStar.Stubs.Reflection.Types.term",
"LowParse.Spec.Enum.maybe_enum_key_of_repr'_t_cons'",
"LowParse.Spec.Enum.maybe_enum_key_of_repr'_t_cons_nil'"
] | [] | false | true | false | false | false | let maybe_enum_key_of_repr_tac (#key #repr: Type) (e: list (key * repr)) : T.Tac unit =
| enum_tac_gen (quote maybe_enum_key_of_repr'_t_cons_nil') (quote maybe_enum_key_of_repr'_t_cons') e | false |
LowParse.Spec.Tac.Enum.fst | LowParse.Spec.Tac.Enum.enum_tac_gen | val enum_tac_gen (t_cons_nil t_cons: T.term) (#key #repr: Type) (e: list (key * repr)) : T.Tac unit | val enum_tac_gen (t_cons_nil t_cons: T.term) (#key #repr: Type) (e: list (key * repr)) : T.Tac unit | let rec enum_tac_gen
(t_cons_nil: T.term)
(t_cons: T.term)
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= match e with
| [] -> T.fail "enum_tac_gen: e must be cons"
| [_] ->
apply t_cons_nil;
T.iseq [
T.solve_vc;
T.solve_vc;
];
T.qed ()
| _ :: e_ ->
apply t_cons;
T.iseq [
T.solve_vc;
(fun () -> enum_tac_gen t_cons_nil t_cons e_);
];
T.qed () | {
"file_name": "src/lowparse/LowParse.Spec.Tac.Enum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 12,
"end_line": 42,
"start_col": 0,
"start_line": 21
} | module LowParse.Spec.Tac.Enum
include LowParse.Spec.Enum
module T = LowParse.TacLib
//
// The enum tactic solves goals of type ?u:eqtype with enum types that are
// in the environment at type Type0
// So typechecking such uvars fails since F* 2635 bug fix
// (since uvar solutions are checked with smt off)
//
// To circumvent that, we use t_apply with tc_resolve_uvars flag on,
// so that ?u will be typechecked as soon as it is resolved,
// resulting in an smt guard that will be added to the proofstate
//
let apply (t:T.term) : T.Tac unit =
T.t_apply true false true t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.TacLib.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Tac.Enum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.TacLib",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
t_cons_nil: FStar.Stubs.Reflection.Types.term ->
t_cons: FStar.Stubs.Reflection.Types.term ->
e: Prims.list (key * repr)
-> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.V1.Derived.fail",
"Prims.unit",
"FStar.Tactics.V1.Derived.qed",
"FStar.Tactics.V1.Derived.iseq",
"Prims.Cons",
"LowParse.TacLib.solve_vc",
"Prims.Nil",
"LowParse.Spec.Tac.Enum.apply",
"LowParse.Spec.Tac.Enum.enum_tac_gen"
] | [
"recursion"
] | false | true | false | false | false | let rec enum_tac_gen (t_cons_nil t_cons: T.term) (#key #repr: Type) (e: list (key * repr))
: T.Tac unit =
| match e with
| [] -> T.fail "enum_tac_gen: e must be cons"
| [_] ->
apply t_cons_nil;
T.iseq [T.solve_vc; T.solve_vc];
T.qed ()
| _ :: e_ ->
apply t_cons;
T.iseq [T.solve_vc; (fun () -> enum_tac_gen t_cons_nil t_cons e_)];
T.qed () | false |
Pulse.C.Types.Array.Base.fst | Pulse.C.Types.Array.Base.array_domain | val array_domain (n: Ghost.erased SZ.t) : Tot eqtype | val array_domain (n: Ghost.erased SZ.t) : Tot eqtype | let array_domain
(n: Ghost.erased SZ.t)
: Tot eqtype
= (i: SZ.t { SZ.v i < SZ.v n }) | {
"file_name": "share/steel/examples/pulse/lib/c/Pulse.C.Types.Array.Base.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 31,
"end_line": 8,
"start_col": 0,
"start_line": 5
} | module Pulse.C.Types.Array.Base
module SZ = FStar.SizeT | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.C.Types.Array.Base.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "SZ"
},
{
"abbrev": false,
"full_module": "Pulse.C.Types.Array",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.C.Types.Array",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: FStar.Ghost.erased FStar.SizeT.t -> Prims.eqtype | Prims.Tot | [
"total"
] | [] | [
"FStar.Ghost.erased",
"FStar.SizeT.t",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.SizeT.v",
"FStar.Ghost.reveal",
"Prims.eqtype"
] | [] | false | false | false | true | false | let array_domain (n: Ghost.erased SZ.t) : Tot eqtype =
| (i: SZ.t{SZ.v i < SZ.v n}) | false |
HyE.Ideal.fsti | HyE.Ideal.conf | val conf : Prims.bool | let conf = ind_cca | {
"file_name": "examples/crypto/HyE.Ideal.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 18,
"end_line": 25,
"start_col": 0,
"start_line": 25
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module HyE.Ideal
val ind_cca : bool
val int_ctxt : b:bool{ ind_cca ==> b }
val int_cpa : b:bool{ ind_cca ==> b } | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "HyE.Ideal.fsti"
} | [
{
"abbrev": false,
"full_module": "HyE",
"short_module": null
},
{
"abbrev": false,
"full_module": "HyE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.bool | Prims.Tot | [
"total"
] | [] | [
"HyE.Ideal.ind_cca"
] | [] | false | false | false | true | false | let conf =
| ind_cca | false |
|
LowParse.Tot.Combinators.fst | LowParse.Tot.Combinators.fail_parser | val fail_parser : k: LowParse.Spec.Base.parser_kind -> t: Type -> Prims.Pure (LowParse.Spec.Base.tot_parser k t) | let fail_parser = tot_fail_parser | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 33,
"end_line": 6,
"start_col": 0,
"start_line": 6
} | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | k: LowParse.Spec.Base.parser_kind -> t: Type -> Prims.Pure (LowParse.Spec.Base.tot_parser k t) | Prims.Pure | [] | [] | [
"LowParse.Spec.Combinators.tot_fail_parser"
] | [] | false | false | false | false | false | let fail_parser =
| tot_fail_parser | false |
|
LowParse.Tot.Combinators.fst | LowParse.Tot.Combinators.parse_ret | val parse_ret : v: _ -> LowParse.Spec.Base.tot_parser LowParse.Spec.Combinators.parse_ret_kind _ | let parse_ret = tot_parse_ret | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 29,
"end_line": 9,
"start_col": 0,
"start_line": 9
} | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | v: _ -> LowParse.Spec.Base.tot_parser LowParse.Spec.Combinators.parse_ret_kind _ | Prims.Tot | [
"total"
] | [] | [
"LowParse.Spec.Combinators.tot_parse_ret",
"LowParse.Spec.Base.tot_parser",
"LowParse.Spec.Combinators.parse_ret_kind"
] | [] | false | false | false | true | false | let parse_ret =
| tot_parse_ret | false |
|
LowParse.Tot.Combinators.fst | LowParse.Tot.Combinators.parse_empty | val parse_empty:parser parse_ret_kind unit | val parse_empty:parser parse_ret_kind unit | let parse_empty : parser parse_ret_kind unit =
parse_ret () | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 14,
"end_line": 13,
"start_col": 0,
"start_line": 12
} | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | LowParse.Tot.Base.parser LowParse.Spec.Combinators.parse_ret_kind Prims.unit | Prims.Tot | [
"total"
] | [] | [
"LowParse.Tot.Combinators.parse_ret",
"Prims.unit"
] | [] | false | false | false | true | false | let parse_empty:parser parse_ret_kind unit =
| parse_ret () | false |
LowParse.Tot.Combinators.fst | LowParse.Tot.Combinators.parse_tagged_union_payload | val parse_tagged_union_payload
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(tg: tag_t)
: Tot (parser k data_t) | val parse_tagged_union_payload
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(tg: tag_t)
: Tot (parser k data_t) | let parse_tagged_union_payload #tag_t #data_t = tot_parse_tagged_union_payload #tag_t #data_t | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 93,
"end_line": 113,
"start_col": 0,
"start_line": 113
} | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
))
let parse_filter_eq #k #t = tot_parse_filter_eq #k #t
let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f))
= Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _
inline_for_extraction
let and_then #k #t = tot_and_then #k #t
val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input))
let and_then_eq #k #t p #k' #t' p' input = and_then_eq #k #t p #k' #t' p' input
inline_for_extraction
val parse_tagged_union_payload
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(tg: tag_t)
: Tot (parser k data_t) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
tag_of_data: (_: data_t -> tag_t) ->
p: (t: tag_t -> LowParse.Tot.Base.parser k (LowParse.Spec.Base.refine_with_tag tag_of_data t)) ->
tg: tag_t
-> LowParse.Tot.Base.parser k data_t | Prims.Tot | [
"total"
] | [] | [
"LowParse.Spec.Combinators.tot_parse_tagged_union_payload",
"LowParse.Spec.Base.parser_kind",
"LowParse.Tot.Base.parser",
"LowParse.Spec.Base.refine_with_tag"
] | [] | false | false | false | false | false | let parse_tagged_union_payload #tag_t #data_t =
| tot_parse_tagged_union_payload #tag_t #data_t | false |
LowParse.Tot.Combinators.fst | LowParse.Tot.Combinators.parse_tagged_union | val parse_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Tot (parser (and_then_kind kt k) data_t) | val parse_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Tot (parser (and_then_kind kt k) data_t) | let parse_tagged_union #kt #tag_t = tot_parse_tagged_union #kt #tag_t | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 69,
"end_line": 126,
"start_col": 0,
"start_line": 126
} | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
))
let parse_filter_eq #k #t = tot_parse_filter_eq #k #t
let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f))
= Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _
inline_for_extraction
let and_then #k #t = tot_and_then #k #t
val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input))
let and_then_eq #k #t p #k' #t' p' input = and_then_eq #k #t p #k' #t' p' input
inline_for_extraction
val parse_tagged_union_payload
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(tg: tag_t)
: Tot (parser k data_t)
let parse_tagged_union_payload #tag_t #data_t = tot_parse_tagged_union_payload #tag_t #data_t
inline_for_extraction
val parse_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Tot (parser (and_then_kind kt k) data_t) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
pt: LowParse.Tot.Base.parser kt tag_t ->
tag_of_data: (_: data_t -> tag_t) ->
p: (t: tag_t -> LowParse.Tot.Base.parser k (LowParse.Spec.Base.refine_with_tag tag_of_data t))
-> LowParse.Tot.Base.parser (LowParse.Spec.Combinators.and_then_kind kt k) data_t | Prims.Tot | [
"total"
] | [] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Combinators.tot_parse_tagged_union",
"LowParse.Tot.Base.parser",
"LowParse.Spec.Base.refine_with_tag",
"LowParse.Spec.Combinators.and_then_kind"
] | [] | false | false | false | false | false | let parse_tagged_union #kt #tag_t =
| tot_parse_tagged_union #kt #tag_t | false |
LowParse.Tot.Combinators.fst | LowParse.Tot.Combinators.nondep_then | val nondep_then
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
: Tot (parser (and_then_kind k1 k2) (t1 * t2)) | val nondep_then
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
: Tot (parser (and_then_kind k1 k2) (t1 * t2)) | let nondep_then #k1 = tot_nondep_then #k1 | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 41,
"end_line": 186,
"start_col": 0,
"start_line": 186
} | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
))
let parse_filter_eq #k #t = tot_parse_filter_eq #k #t
let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f))
= Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _
inline_for_extraction
let and_then #k #t = tot_and_then #k #t
val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input))
let and_then_eq #k #t p #k' #t' p' input = and_then_eq #k #t p #k' #t' p' input
inline_for_extraction
val parse_tagged_union_payload
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(tg: tag_t)
: Tot (parser k data_t)
let parse_tagged_union_payload #tag_t #data_t = tot_parse_tagged_union_payload #tag_t #data_t
inline_for_extraction
val parse_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Tot (parser (and_then_kind kt k) data_t)
let parse_tagged_union #kt #tag_t = tot_parse_tagged_union #kt #tag_t
let parse_tagged_union_payload_and_then_cases_injective
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Lemma
(and_then_cases_injective (parse_tagged_union_payload tag_of_data p))
= parse_tagged_union_payload_and_then_cases_injective tag_of_data #k p
val parse_tagged_union_eq
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(input: bytes)
: Lemma
(parse (parse_tagged_union pt tag_of_data p) input == (match parse pt input with
| None -> None
| Some (tg, consumed_tg) ->
let input_tg = Seq.slice input consumed_tg (Seq.length input) in
begin match parse (p tg) input_tg with
| Some (x, consumed_x) -> Some ((x <: data_t), consumed_tg + consumed_x)
| None -> None
end
))
let parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input =
parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input
val serialize_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(#pt: parser kt tag_t)
(st: serializer pt)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(#p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(s: (t: tag_t) -> Tot (serializer (p t)))
: Pure (serializer (parse_tagged_union pt tag_of_data p))
(requires (kt.parser_kind_subkind == Some ParserStrong))
(ensures (fun _ -> True))
let serialize_tagged_union #kt st tag_of_data #k s = serialize_tot_tagged_union #kt st tag_of_data #k s
val nondep_then
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
: Tot (parser (and_then_kind k1 k2) (t1 * t2)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p1: LowParse.Tot.Base.parser k1 t1 -> p2: LowParse.Tot.Base.parser k2 t2
-> LowParse.Tot.Base.parser (LowParse.Spec.Combinators.and_then_kind k1 k2) (t1 * t2) | Prims.Tot | [
"total"
] | [] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Combinators.tot_nondep_then",
"LowParse.Tot.Base.parser",
"LowParse.Spec.Combinators.and_then_kind",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | false | false | let nondep_then #k1 =
| tot_nondep_then #k1 | false |
LowParse.Tot.Combinators.fst | LowParse.Tot.Combinators.parse_synth_eq | val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b)) | val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b)) | let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2 | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 61,
"end_line": 29,
"start_col": 0,
"start_line": 29
} | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p1: LowParse.Tot.Base.parser k t1 -> f2: (_: t1 -> t2) -> b: LowParse.Bytes.bytes
-> FStar.Pervasives.Lemma (requires LowParse.Spec.Combinators.synth_injective f2)
(ensures
LowParse.Spec.Base.parse (LowParse.Tot.Combinators.parse_synth p1 f2) b ==
LowParse.Spec.Combinators.parse_synth' p1 f2 b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Combinators.tot_parse_synth_eq",
"LowParse.Tot.Base.parser",
"LowParse.Bytes.bytes",
"Prims.unit",
"LowParse.Spec.Combinators.synth_injective",
"Prims.squash",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Base.consumed_length",
"LowParse.Spec.Base.parse",
"LowParse.Tot.Combinators.parse_synth",
"LowParse.Spec.Combinators.parse_synth'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let parse_synth_eq #k #t1 #t2 =
| tot_parse_synth_eq #k #t1 #t2 | false |
LowParse.Tot.Combinators.fst | LowParse.Tot.Combinators.serialize_synth | val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2)) | val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2)) | let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2 | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 63,
"end_line": 45,
"start_col": 0,
"start_line": 45
} | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p1: LowParse.Spec.Base.tot_parser k t1 ->
f2: (_: t1 -> t2) ->
s1: LowParse.Tot.Base.serializer p1 ->
g1: (_: t2 -> Prims.GTot t1) ->
u70:
u73:
Prims.unit
{ LowParse.Spec.Combinators.synth_inverse f2 g1 /\
LowParse.Spec.Combinators.synth_injective f2 }
-> LowParse.Tot.Base.serializer (LowParse.Spec.Combinators.tot_parse_synth p1 f2) | Prims.Tot | [
"total"
] | [] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Combinators.serialize_tot_synth",
"LowParse.Spec.Base.tot_parser",
"LowParse.Tot.Base.serializer",
"Prims.unit",
"Prims.l_and",
"LowParse.Spec.Combinators.synth_inverse",
"LowParse.Spec.Combinators.synth_injective",
"LowParse.Spec.Combinators.tot_parse_synth"
] | [] | false | false | false | false | false | let serialize_synth #k #t1 #t2 =
| serialize_tot_synth #k #t1 #t2 | false |
LowParse.Tot.Combinators.fst | LowParse.Tot.Combinators.serialize_weaken | val serialize_weaken
(#k: parser_kind)
(#t: Type)
(k': parser_kind)
(#p: parser k t)
(s: serializer p {k' `is_weaker_than` k})
: Tot (serializer (weaken k' p)) | val serialize_weaken
(#k: parser_kind)
(#t: Type)
(k': parser_kind)
(#p: parser k t)
(s: serializer p {k' `is_weaker_than` k})
: Tot (serializer (weaken k' p)) | let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 26,
"end_line": 54,
"start_col": 0,
"start_line": 47
} | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
k': LowParse.Spec.Base.parser_kind ->
s: LowParse.Tot.Base.serializer p {LowParse.Spec.Base.is_weaker_than k' k}
-> LowParse.Tot.Base.serializer (LowParse.Tot.Base.weaken k' p) | Prims.Tot | [
"total"
] | [] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Tot.Base.parser",
"LowParse.Tot.Base.serializer",
"LowParse.Spec.Base.is_weaker_than",
"LowParse.Spec.Combinators.serialize_weaken",
"LowParse.Tot.Base.weaken"
] | [] | false | false | false | false | false | let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k': parser_kind)
(#p: parser k t)
(s: serializer p {k' `is_weaker_than` k})
: Tot (serializer (weaken k' p)) =
| serialize_weaken #k k' s | false |
Lib.IntVector.Transpose.fsti | Lib.IntVector.Transpose.vec_t4 | val vec_t4 : t: Lib.IntVector.v_inttype -> Type0 | let vec_t4 (t:v_inttype) = vec_t t 4 & vec_t t 4 & vec_t t 4 & vec_t t 4 | {
"file_name": "lib/Lib.IntVector.Transpose.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 72,
"end_line": 11,
"start_col": 0,
"start_line": 11
} | module Lib.IntVector.Transpose
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.IntVector
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Lib.IntVector.Transpose.fsti"
} | [
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Lib.IntVector.v_inttype -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Lib.IntVector.v_inttype",
"FStar.Pervasives.Native.tuple4",
"Lib.IntVector.vec_t"
] | [] | false | false | false | true | true | let vec_t4 (t: v_inttype) =
| vec_t t 4 & vec_t t 4 & vec_t t 4 & vec_t t 4 | false |
|
Lib.IntVector.Transpose.fsti | Lib.IntVector.Transpose.vec_t8 | val vec_t8 : t: Lib.IntVector.v_inttype -> Type0 | let vec_t8 (t:v_inttype) = vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 | {
"file_name": "lib/Lib.IntVector.Transpose.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 120,
"end_line": 14,
"start_col": 0,
"start_line": 14
} | module Lib.IntVector.Transpose
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.IntVector
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction
let vec_t4 (t:v_inttype) = vec_t t 4 & vec_t t 4 & vec_t t 4 & vec_t t 4 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Lib.IntVector.Transpose.fsti"
} | [
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Lib.IntVector.v_inttype -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Lib.IntVector.v_inttype",
"FStar.Pervasives.Native.tuple8",
"Lib.IntVector.vec_t"
] | [] | false | false | false | true | true | let vec_t8 (t: v_inttype) =
| vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 | false |
|
LowParse.Tot.Combinators.fst | LowParse.Tot.Combinators.parse_filter_eq | val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
)) | val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
)) | let parse_filter_eq #k #t = tot_parse_filter_eq #k #t | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 53,
"end_line": 74,
"start_col": 0,
"start_line": 74
} | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: LowParse.Tot.Base.parser k t -> f: (_: t -> Prims.bool) -> input: LowParse.Bytes.bytes
-> FStar.Pervasives.Lemma
(ensures
LowParse.Spec.Base.parse (LowParse.Tot.Combinators.parse_filter p f) input ==
((match LowParse.Spec.Base.parse p input with
| FStar.Pervasives.Native.None #_ -> FStar.Pervasives.Native.None
| FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ x consumed) ->
(match f x with
| true -> FStar.Pervasives.Native.Some (x, consumed)
| _ -> FStar.Pervasives.Native.None)
<:
FStar.Pervasives.Native.option (LowParse.Spec.Combinators.parse_filter_refine f *
LowParse.Spec.Base.consumed_length input))
<:
FStar.Pervasives.Native.option (LowParse.Spec.Combinators.parse_filter_refine f *
LowParse.Spec.Base.consumed_length input))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Combinators.tot_parse_filter_eq",
"LowParse.Tot.Base.parser",
"Prims.bool",
"LowParse.Bytes.bytes",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.Base.consumed_length",
"LowParse.Spec.Base.parse",
"LowParse.Tot.Combinators.parse_filter",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.Mktuple2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let parse_filter_eq #k #t =
| tot_parse_filter_eq #k #t | false |
LowParse.Tot.Combinators.fst | LowParse.Tot.Combinators.serialize_filter | val serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f)) | val serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f)) | let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f))
= Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _ | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 42,
"end_line": 84,
"start_col": 0,
"start_line": 76
} | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
))
let parse_filter_eq #k #t = tot_parse_filter_eq #k #t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: LowParse.Tot.Base.serializer p -> f: (_: t -> Prims.bool)
-> LowParse.Tot.Base.serializer (LowParse.Tot.Combinators.parse_filter p f) | Prims.Tot | [
"total"
] | [] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Tot.Base.parser",
"LowParse.Tot.Base.serializer",
"Prims.bool",
"LowParse.Spec.Base.serialize_ext",
"LowParse.Spec.Combinators.parse_filter_kind",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.Combinators.parse_filter",
"LowParse.Spec.Combinators.serialize_filter",
"LowParse.Tot.Combinators.parse_filter",
"Prims.unit",
"FStar.Classical.forall_intro",
"LowParse.Bytes.bytes",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Base.consumed_length",
"LowParse.Spec.Base.parse",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.Mktuple2",
"LowParse.Tot.Combinators.parse_filter_eq"
] | [] | false | false | false | false | false | let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f)) =
| Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _ | false |
LowParse.Tot.Combinators.fst | LowParse.Tot.Combinators.make_constant_size_parser | val make_constant_size_parser
(sz: nat)
(t: Type)
(f: (s: bytes{Seq.length s == sz} -> Tot (option t)))
: Pure (tot_parser (constant_size_parser_kind sz) t)
(requires (make_constant_size_parser_precond sz t f))
(ensures (fun _ -> True)) | val make_constant_size_parser
(sz: nat)
(t: Type)
(f: (s: bytes{Seq.length s == sz} -> Tot (option t)))
: Pure (tot_parser (constant_size_parser_kind sz) t)
(requires (make_constant_size_parser_precond sz t f))
(ensures (fun _ -> True)) | let make_constant_size_parser
(sz: nat)
(t: Type)
(f: ((s: bytes {Seq.length s == sz}) -> Tot (option t)))
: Pure (
tot_parser
(constant_size_parser_kind sz)
t
)
(requires (
make_constant_size_parser_precond sz t f
))
(ensures (fun _ -> True))
= tot_make_constant_size_parser sz t f | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 38,
"end_line": 224,
"start_col": 0,
"start_line": 211
} | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
))
let parse_filter_eq #k #t = tot_parse_filter_eq #k #t
let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f))
= Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _
inline_for_extraction
let and_then #k #t = tot_and_then #k #t
val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input))
let and_then_eq #k #t p #k' #t' p' input = and_then_eq #k #t p #k' #t' p' input
inline_for_extraction
val parse_tagged_union_payload
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(tg: tag_t)
: Tot (parser k data_t)
let parse_tagged_union_payload #tag_t #data_t = tot_parse_tagged_union_payload #tag_t #data_t
inline_for_extraction
val parse_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Tot (parser (and_then_kind kt k) data_t)
let parse_tagged_union #kt #tag_t = tot_parse_tagged_union #kt #tag_t
let parse_tagged_union_payload_and_then_cases_injective
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Lemma
(and_then_cases_injective (parse_tagged_union_payload tag_of_data p))
= parse_tagged_union_payload_and_then_cases_injective tag_of_data #k p
val parse_tagged_union_eq
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(input: bytes)
: Lemma
(parse (parse_tagged_union pt tag_of_data p) input == (match parse pt input with
| None -> None
| Some (tg, consumed_tg) ->
let input_tg = Seq.slice input consumed_tg (Seq.length input) in
begin match parse (p tg) input_tg with
| Some (x, consumed_x) -> Some ((x <: data_t), consumed_tg + consumed_x)
| None -> None
end
))
let parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input =
parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input
val serialize_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(#pt: parser kt tag_t)
(st: serializer pt)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(#p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(s: (t: tag_t) -> Tot (serializer (p t)))
: Pure (serializer (parse_tagged_union pt tag_of_data p))
(requires (kt.parser_kind_subkind == Some ParserStrong))
(ensures (fun _ -> True))
let serialize_tagged_union #kt st tag_of_data #k s = serialize_tot_tagged_union #kt st tag_of_data #k s
val nondep_then
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
: Tot (parser (and_then_kind k1 k2) (t1 * t2))
let nondep_then #k1 = tot_nondep_then #k1
val nondep_then_eq
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(b: bytes)
: Lemma
(parse (nondep_then p1 p2) b == (match parse p1 b with
| Some (x1, consumed1) ->
let b' = Seq.slice b consumed1 (Seq.length b) in
begin match parse p2 b' with
| Some (x2, consumed2) ->
Some ((x1, x2), consumed1 + consumed2)
| _ -> None
end
| _ -> None
))
let nondep_then_eq #k1 #t1 p1 #k2 #t2 p2 b =
nondep_then_eq #k1 p1 #k2 p2 b | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
sz: Prims.nat ->
t: Type ->
f: (s: LowParse.Bytes.bytes{FStar.Seq.Base.length s == sz} -> FStar.Pervasives.Native.option t)
-> Prims.Pure
(LowParse.Spec.Base.tot_parser (LowParse.Spec.Combinators.constant_size_parser_kind sz) t) | Prims.Pure | [] | [] | [
"Prims.nat",
"LowParse.Bytes.bytes",
"Prims.eq2",
"FStar.Seq.Base.length",
"LowParse.Bytes.byte",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Combinators.tot_make_constant_size_parser",
"LowParse.Spec.Base.tot_parser",
"LowParse.Spec.Combinators.constant_size_parser_kind",
"LowParse.Spec.Combinators.make_constant_size_parser_precond",
"Prims.l_True"
] | [] | false | false | false | false | false | let make_constant_size_parser
(sz: nat)
(t: Type)
(f: (s: bytes{Seq.length s == sz} -> Tot (option t)))
: Pure (tot_parser (constant_size_parser_kind sz) t)
(requires (make_constant_size_parser_precond sz t f))
(ensures (fun _ -> True)) =
| tot_make_constant_size_parser sz t f | false |
LowParse.Tot.Combinators.fst | LowParse.Tot.Combinators.serialize_tagged_union | val serialize_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(#pt: parser kt tag_t)
(st: serializer pt)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(#p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(s: (t: tag_t) -> Tot (serializer (p t)))
: Pure (serializer (parse_tagged_union pt tag_of_data p))
(requires (kt.parser_kind_subkind == Some ParserStrong))
(ensures (fun _ -> True)) | val serialize_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(#pt: parser kt tag_t)
(st: serializer pt)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(#p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(s: (t: tag_t) -> Tot (serializer (p t)))
: Pure (serializer (parse_tagged_union pt tag_of_data p))
(requires (kt.parser_kind_subkind == Some ParserStrong))
(ensures (fun _ -> True)) | let serialize_tagged_union #kt st tag_of_data #k s = serialize_tot_tagged_union #kt st tag_of_data #k s | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 103,
"end_line": 175,
"start_col": 0,
"start_line": 175
} | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
))
let parse_filter_eq #k #t = tot_parse_filter_eq #k #t
let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f))
= Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _
inline_for_extraction
let and_then #k #t = tot_and_then #k #t
val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input))
let and_then_eq #k #t p #k' #t' p' input = and_then_eq #k #t p #k' #t' p' input
inline_for_extraction
val parse_tagged_union_payload
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(tg: tag_t)
: Tot (parser k data_t)
let parse_tagged_union_payload #tag_t #data_t = tot_parse_tagged_union_payload #tag_t #data_t
inline_for_extraction
val parse_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Tot (parser (and_then_kind kt k) data_t)
let parse_tagged_union #kt #tag_t = tot_parse_tagged_union #kt #tag_t
let parse_tagged_union_payload_and_then_cases_injective
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Lemma
(and_then_cases_injective (parse_tagged_union_payload tag_of_data p))
= parse_tagged_union_payload_and_then_cases_injective tag_of_data #k p
val parse_tagged_union_eq
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(input: bytes)
: Lemma
(parse (parse_tagged_union pt tag_of_data p) input == (match parse pt input with
| None -> None
| Some (tg, consumed_tg) ->
let input_tg = Seq.slice input consumed_tg (Seq.length input) in
begin match parse (p tg) input_tg with
| Some (x, consumed_x) -> Some ((x <: data_t), consumed_tg + consumed_x)
| None -> None
end
))
let parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input =
parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input
val serialize_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(#pt: parser kt tag_t)
(st: serializer pt)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(#p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(s: (t: tag_t) -> Tot (serializer (p t)))
: Pure (serializer (parse_tagged_union pt tag_of_data p))
(requires (kt.parser_kind_subkind == Some ParserStrong))
(ensures (fun _ -> True)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
st: LowParse.Tot.Base.serializer pt ->
tag_of_data: (_: data_t -> tag_t) ->
s: (t: tag_t -> LowParse.Tot.Base.serializer (p t))
-> Prims.Pure
(LowParse.Tot.Base.serializer (LowParse.Tot.Combinators.parse_tagged_union pt tag_of_data p)) | Prims.Pure | [] | [] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Tot.Base.parser",
"LowParse.Tot.Base.serializer",
"LowParse.Spec.Base.refine_with_tag",
"LowParse.Spec.Combinators.serialize_tot_tagged_union",
"LowParse.Spec.Combinators.and_then_kind",
"LowParse.Tot.Combinators.parse_tagged_union"
] | [] | false | false | false | false | false | let serialize_tagged_union #kt st tag_of_data #k s =
| serialize_tot_tagged_union #kt st tag_of_data #k s | false |
LowParse.Tot.Combinators.fst | LowParse.Tot.Combinators.and_then_eq | val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input)) | val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input)) | let and_then_eq #k #t p #k' #t' p' input = and_then_eq #k #t p #k' #t' p' input | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 79,
"end_line": 101,
"start_col": 0,
"start_line": 101
} | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
))
let parse_filter_eq #k #t = tot_parse_filter_eq #k #t
let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f))
= Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _
inline_for_extraction
let and_then #k #t = tot_and_then #k #t
val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: LowParse.Tot.Base.parser k t ->
p': (_: t -> LowParse.Tot.Base.parser k' t') ->
input: LowParse.Bytes.bytes
-> FStar.Pervasives.Lemma (requires LowParse.Spec.Combinators.and_then_cases_injective p')
(ensures
LowParse.Spec.Base.parse (LowParse.Tot.Combinators.and_then p p') input ==
LowParse.Spec.Combinators.and_then_bare p p' input) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Tot.Base.parser",
"LowParse.Bytes.bytes",
"LowParse.Spec.Combinators.and_then_eq",
"Prims.unit"
] | [] | true | false | true | false | false | let and_then_eq #k #t p #k' #t' p' input =
| and_then_eq #k #t p #k' #t' p' input | false |
LowParse.Tot.Combinators.fst | LowParse.Tot.Combinators.parse_tagged_union_payload_and_then_cases_injective | val parse_tagged_union_payload_and_then_cases_injective
(#tag_t #data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t -> Tot (parser k (refine_with_tag tag_of_data t))))
: Lemma (and_then_cases_injective (parse_tagged_union_payload tag_of_data p)) | val parse_tagged_union_payload_and_then_cases_injective
(#tag_t #data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t -> Tot (parser k (refine_with_tag tag_of_data t))))
: Lemma (and_then_cases_injective (parse_tagged_union_payload tag_of_data p)) | let parse_tagged_union_payload_and_then_cases_injective
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Lemma
(and_then_cases_injective (parse_tagged_union_payload tag_of_data p))
= parse_tagged_union_payload_and_then_cases_injective tag_of_data #k p | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 70,
"end_line": 136,
"start_col": 0,
"start_line": 128
} | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
))
let parse_filter_eq #k #t = tot_parse_filter_eq #k #t
let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f))
= Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _
inline_for_extraction
let and_then #k #t = tot_and_then #k #t
val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input))
let and_then_eq #k #t p #k' #t' p' input = and_then_eq #k #t p #k' #t' p' input
inline_for_extraction
val parse_tagged_union_payload
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(tg: tag_t)
: Tot (parser k data_t)
let parse_tagged_union_payload #tag_t #data_t = tot_parse_tagged_union_payload #tag_t #data_t
inline_for_extraction
val parse_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Tot (parser (and_then_kind kt k) data_t)
let parse_tagged_union #kt #tag_t = tot_parse_tagged_union #kt #tag_t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
tag_of_data: (_: data_t -> tag_t) ->
p: (t: tag_t -> LowParse.Tot.Base.parser k (LowParse.Spec.Base.refine_with_tag tag_of_data t))
-> FStar.Pervasives.Lemma
(ensures
LowParse.Spec.Combinators.and_then_cases_injective (LowParse.Tot.Combinators.parse_tagged_union_payload
tag_of_data
p)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Tot.Base.parser",
"LowParse.Spec.Base.refine_with_tag",
"LowParse.Spec.Combinators.parse_tagged_union_payload_and_then_cases_injective",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"LowParse.Spec.Combinators.and_then_cases_injective",
"LowParse.Tot.Combinators.parse_tagged_union_payload",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let parse_tagged_union_payload_and_then_cases_injective
(#tag_t #data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t -> Tot (parser k (refine_with_tag tag_of_data t))))
: Lemma (and_then_cases_injective (parse_tagged_union_payload tag_of_data p)) =
| parse_tagged_union_payload_and_then_cases_injective tag_of_data #k p | false |
LowParse.Tot.Combinators.fst | LowParse.Tot.Combinators.parse_tagged_union_eq | val parse_tagged_union_eq
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(input: bytes)
: Lemma
(parse (parse_tagged_union pt tag_of_data p) input == (match parse pt input with
| None -> None
| Some (tg, consumed_tg) ->
let input_tg = Seq.slice input consumed_tg (Seq.length input) in
begin match parse (p tg) input_tg with
| Some (x, consumed_x) -> Some ((x <: data_t), consumed_tg + consumed_x)
| None -> None
end
)) | val parse_tagged_union_eq
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(input: bytes)
: Lemma
(parse (parse_tagged_union pt tag_of_data p) input == (match parse pt input with
| None -> None
| Some (tg, consumed_tg) ->
let input_tg = Seq.slice input consumed_tg (Seq.length input) in
begin match parse (p tg) input_tg with
| Some (x, consumed_x) -> Some ((x <: data_t), consumed_tg + consumed_x)
| None -> None
end
)) | let parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input =
parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 68,
"end_line": 159,
"start_col": 0,
"start_line": 158
} | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
))
let parse_filter_eq #k #t = tot_parse_filter_eq #k #t
let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f))
= Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _
inline_for_extraction
let and_then #k #t = tot_and_then #k #t
val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input))
let and_then_eq #k #t p #k' #t' p' input = and_then_eq #k #t p #k' #t' p' input
inline_for_extraction
val parse_tagged_union_payload
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(tg: tag_t)
: Tot (parser k data_t)
let parse_tagged_union_payload #tag_t #data_t = tot_parse_tagged_union_payload #tag_t #data_t
inline_for_extraction
val parse_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Tot (parser (and_then_kind kt k) data_t)
let parse_tagged_union #kt #tag_t = tot_parse_tagged_union #kt #tag_t
let parse_tagged_union_payload_and_then_cases_injective
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Lemma
(and_then_cases_injective (parse_tagged_union_payload tag_of_data p))
= parse_tagged_union_payload_and_then_cases_injective tag_of_data #k p
val parse_tagged_union_eq
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(input: bytes)
: Lemma
(parse (parse_tagged_union pt tag_of_data p) input == (match parse pt input with
| None -> None
| Some (tg, consumed_tg) ->
let input_tg = Seq.slice input consumed_tg (Seq.length input) in
begin match parse (p tg) input_tg with
| Some (x, consumed_x) -> Some ((x <: data_t), consumed_tg + consumed_x)
| None -> None
end
)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
pt: LowParse.Tot.Base.parser kt tag_t ->
tag_of_data: (_: data_t -> tag_t) ->
p: (t: tag_t -> LowParse.Tot.Base.parser k (LowParse.Spec.Base.refine_with_tag tag_of_data t)) ->
input: LowParse.Bytes.bytes
-> FStar.Pervasives.Lemma
(ensures
LowParse.Spec.Base.parse (LowParse.Tot.Combinators.parse_tagged_union pt tag_of_data p) input ==
((match LowParse.Spec.Base.parse pt input with
| FStar.Pervasives.Native.None #_ -> FStar.Pervasives.Native.None
| FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ tg consumed_tg) ->
let input_tg = FStar.Seq.Base.slice input consumed_tg (FStar.Seq.Base.length input) in
(match LowParse.Spec.Base.parse (p tg) input_tg with
| FStar.Pervasives.Native.Some
#_
(FStar.Pervasives.Native.Mktuple2 #_ #_ x consumed_x) ->
FStar.Pervasives.Native.Some (x, consumed_tg + consumed_x)
| FStar.Pervasives.Native.None #_ -> FStar.Pervasives.Native.None)
<:
FStar.Pervasives.Native.option (data_t * LowParse.Spec.Base.consumed_length input))
<:
FStar.Pervasives.Native.option (data_t * LowParse.Spec.Base.consumed_length input))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Tot.Base.parser",
"LowParse.Spec.Base.refine_with_tag",
"LowParse.Bytes.bytes",
"LowParse.Spec.Combinators.parse_tagged_union_eq",
"Prims.unit"
] | [] | true | false | true | false | false | let parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input =
| parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input | false |
Lib.IntVector.Transpose.fsti | Lib.IntVector.Transpose.transpose4x4_lseq | val transpose4x4_lseq (#t: v_inttype{t = U32 \/ t = U64}) (vs: lseq (vec_t t 4) 4)
: lseq (vec_t t 4) 4 | val transpose4x4_lseq (#t: v_inttype{t = U32 \/ t = U64}) (vs: lseq (vec_t t 4) 4)
: lseq (vec_t t 4) 4 | let transpose4x4_lseq (#t:v_inttype{t = U32 \/ t = U64}) (vs:lseq (vec_t t 4) 4) : lseq (vec_t t 4) 4 =
let (v0,v1,v2,v3) = (vs.[0],vs.[1],vs.[2],vs.[3]) in
let (r0,r1,r2,r3) = transpose4x4 (v0,v1,v2,v3) in
create4 r0 r1 r2 r3 | {
"file_name": "lib/Lib.IntVector.Transpose.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 21,
"end_line": 28,
"start_col": 0,
"start_line": 25
} | module Lib.IntVector.Transpose
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.IntVector
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction
let vec_t4 (t:v_inttype) = vec_t t 4 & vec_t t 4 & vec_t t 4 & vec_t t 4
inline_for_extraction
let vec_t8 (t:v_inttype) = vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8
inline_for_extraction
val transpose4x4: #t:v_inttype{t = U32 \/ t = U64} -> vec_t4 t -> vec_t4 t
inline_for_extraction
val transpose8x8: #t:v_inttype{t = U32} -> vec_t8 t -> vec_t8 t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Lib.IntVector.Transpose.fsti"
} | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | vs: Lib.Sequence.lseq (Lib.IntVector.vec_t t 4) 4 -> Lib.Sequence.lseq (Lib.IntVector.vec_t t 4) 4 | Prims.Tot | [
"total"
] | [] | [
"Lib.IntVector.v_inttype",
"Prims.l_or",
"Prims.b2t",
"Prims.op_Equality",
"Lib.IntTypes.inttype",
"Lib.IntTypes.U32",
"Lib.IntTypes.U64",
"Lib.Sequence.lseq",
"Lib.IntVector.vec_t",
"Lib.Sequence.create4",
"Lib.IntVector.Transpose.vec_t4",
"Lib.IntVector.Transpose.transpose4x4",
"FStar.Pervasives.Native.Mktuple4",
"FStar.Pervasives.Native.tuple4",
"Lib.Sequence.op_String_Access"
] | [] | false | false | false | false | false | let transpose4x4_lseq (#t: v_inttype{t = U32 \/ t = U64}) (vs: lseq (vec_t t 4) 4)
: lseq (vec_t t 4) 4 =
| let v0, v1, v2, v3 = (vs.[ 0 ], vs.[ 1 ], vs.[ 2 ], vs.[ 3 ]) in
let r0, r1, r2, r3 = transpose4x4 (v0, v1, v2, v3) in
create4 r0 r1 r2 r3 | false |
LowParse.Tot.Combinators.fst | LowParse.Tot.Combinators.nondep_then_eq | val nondep_then_eq
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(b: bytes)
: Lemma
(parse (nondep_then p1 p2) b == (match parse p1 b with
| Some (x1, consumed1) ->
let b' = Seq.slice b consumed1 (Seq.length b) in
begin match parse p2 b' with
| Some (x2, consumed2) ->
Some ((x1, x2), consumed1 + consumed2)
| _ -> None
end
| _ -> None
)) | val nondep_then_eq
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(b: bytes)
: Lemma
(parse (nondep_then p1 p2) b == (match parse p1 b with
| Some (x1, consumed1) ->
let b' = Seq.slice b consumed1 (Seq.length b) in
begin match parse p2 b' with
| Some (x2, consumed2) ->
Some ((x1, x2), consumed1 + consumed2)
| _ -> None
end
| _ -> None
)) | let nondep_then_eq #k1 #t1 p1 #k2 #t2 p2 b =
nondep_then_eq #k1 p1 #k2 p2 b | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 32,
"end_line": 209,
"start_col": 0,
"start_line": 208
} | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
))
let parse_filter_eq #k #t = tot_parse_filter_eq #k #t
let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f))
= Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _
inline_for_extraction
let and_then #k #t = tot_and_then #k #t
val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input))
let and_then_eq #k #t p #k' #t' p' input = and_then_eq #k #t p #k' #t' p' input
inline_for_extraction
val parse_tagged_union_payload
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(tg: tag_t)
: Tot (parser k data_t)
let parse_tagged_union_payload #tag_t #data_t = tot_parse_tagged_union_payload #tag_t #data_t
inline_for_extraction
val parse_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Tot (parser (and_then_kind kt k) data_t)
let parse_tagged_union #kt #tag_t = tot_parse_tagged_union #kt #tag_t
let parse_tagged_union_payload_and_then_cases_injective
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Lemma
(and_then_cases_injective (parse_tagged_union_payload tag_of_data p))
= parse_tagged_union_payload_and_then_cases_injective tag_of_data #k p
val parse_tagged_union_eq
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(input: bytes)
: Lemma
(parse (parse_tagged_union pt tag_of_data p) input == (match parse pt input with
| None -> None
| Some (tg, consumed_tg) ->
let input_tg = Seq.slice input consumed_tg (Seq.length input) in
begin match parse (p tg) input_tg with
| Some (x, consumed_x) -> Some ((x <: data_t), consumed_tg + consumed_x)
| None -> None
end
))
let parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input =
parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input
val serialize_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(#pt: parser kt tag_t)
(st: serializer pt)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(#p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(s: (t: tag_t) -> Tot (serializer (p t)))
: Pure (serializer (parse_tagged_union pt tag_of_data p))
(requires (kt.parser_kind_subkind == Some ParserStrong))
(ensures (fun _ -> True))
let serialize_tagged_union #kt st tag_of_data #k s = serialize_tot_tagged_union #kt st tag_of_data #k s
val nondep_then
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
: Tot (parser (and_then_kind k1 k2) (t1 * t2))
let nondep_then #k1 = tot_nondep_then #k1
val nondep_then_eq
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(b: bytes)
: Lemma
(parse (nondep_then p1 p2) b == (match parse p1 b with
| Some (x1, consumed1) ->
let b' = Seq.slice b consumed1 (Seq.length b) in
begin match parse p2 b' with
| Some (x2, consumed2) ->
Some ((x1, x2), consumed1 + consumed2)
| _ -> None
end
| _ -> None
)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p1: LowParse.Tot.Base.parser k1 t1 -> p2: LowParse.Tot.Base.parser k2 t2 -> b: LowParse.Bytes.bytes
-> FStar.Pervasives.Lemma
(ensures
LowParse.Spec.Base.parse (LowParse.Tot.Combinators.nondep_then p1 p2) b ==
((match LowParse.Spec.Base.parse p1 b with
| FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ x1 consumed1) ->
let b' = FStar.Seq.Base.slice b consumed1 (FStar.Seq.Base.length b) in
(match LowParse.Spec.Base.parse p2 b' with
| FStar.Pervasives.Native.Some
#_
(FStar.Pervasives.Native.Mktuple2 #_ #_ x2 consumed2) ->
FStar.Pervasives.Native.Some ((x1, x2), consumed1 + consumed2)
| _ -> FStar.Pervasives.Native.None)
<:
FStar.Pervasives.Native.option ((t1 * t2) * LowParse.Spec.Base.consumed_length b)
| _ -> FStar.Pervasives.Native.None)
<:
FStar.Pervasives.Native.option ((t1 * t2) * LowParse.Spec.Base.consumed_length b))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Tot.Base.parser",
"LowParse.Bytes.bytes",
"LowParse.Spec.Combinators.nondep_then_eq",
"Prims.unit"
] | [] | true | false | true | false | false | let nondep_then_eq #k1 #t1 p1 #k2 #t2 p2 b =
| nondep_then_eq #k1 p1 #k2 p2 b | false |
Lib.IntVector.Transpose.fsti | Lib.IntVector.Transpose.transpose8x8_lseq | val transpose8x8_lseq (#t: v_inttype{t = U32}) (vs: lseq (vec_t t 8) 8) : lseq (vec_t t 8) 8 | val transpose8x8_lseq (#t: v_inttype{t = U32}) (vs: lseq (vec_t t 8) 8) : lseq (vec_t t 8) 8 | let transpose8x8_lseq (#t:v_inttype{t = U32}) (vs:lseq (vec_t t 8) 8) : lseq (vec_t t 8) 8 =
let (v0,v1,v2,v3,v4,v5,v6,v7) = (vs.[0],vs.[1],vs.[2],vs.[3],vs.[4],vs.[5],vs.[6],vs.[7]) in
let (r0,r1,r2,r3,r4,r5,r6,r7) = transpose8x8 (v0,v1,v2,v3,v4,v5,v6,v7) in
create8 r0 r1 r2 r3 r4 r5 r6 r7 | {
"file_name": "lib/Lib.IntVector.Transpose.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 33,
"end_line": 34,
"start_col": 0,
"start_line": 31
} | module Lib.IntVector.Transpose
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.IntVector
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction
let vec_t4 (t:v_inttype) = vec_t t 4 & vec_t t 4 & vec_t t 4 & vec_t t 4
inline_for_extraction
let vec_t8 (t:v_inttype) = vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8
inline_for_extraction
val transpose4x4: #t:v_inttype{t = U32 \/ t = U64} -> vec_t4 t -> vec_t4 t
inline_for_extraction
val transpose8x8: #t:v_inttype{t = U32} -> vec_t8 t -> vec_t8 t
inline_for_extraction
let transpose4x4_lseq (#t:v_inttype{t = U32 \/ t = U64}) (vs:lseq (vec_t t 4) 4) : lseq (vec_t t 4) 4 =
let (v0,v1,v2,v3) = (vs.[0],vs.[1],vs.[2],vs.[3]) in
let (r0,r1,r2,r3) = transpose4x4 (v0,v1,v2,v3) in
create4 r0 r1 r2 r3 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Lib.IntVector.Transpose.fsti"
} | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | vs: Lib.Sequence.lseq (Lib.IntVector.vec_t t 8) 8 -> Lib.Sequence.lseq (Lib.IntVector.vec_t t 8) 8 | Prims.Tot | [
"total"
] | [] | [
"Lib.IntVector.v_inttype",
"Prims.b2t",
"Prims.op_Equality",
"Lib.IntTypes.inttype",
"Lib.IntTypes.U32",
"Lib.Sequence.lseq",
"Lib.IntVector.vec_t",
"Lib.Sequence.create8",
"Lib.IntVector.Transpose.vec_t8",
"Lib.IntVector.Transpose.transpose8x8",
"FStar.Pervasives.Native.Mktuple8",
"FStar.Pervasives.Native.tuple8",
"Lib.Sequence.op_String_Access"
] | [] | false | false | false | false | false | let transpose8x8_lseq (#t: v_inttype{t = U32}) (vs: lseq (vec_t t 8) 8) : lseq (vec_t t 8) 8 =
| let v0, v1, v2, v3, v4, v5, v6, v7 =
(vs.[ 0 ], vs.[ 1 ], vs.[ 2 ], vs.[ 3 ], vs.[ 4 ], vs.[ 5 ], vs.[ 6 ], vs.[ 7 ])
in
let r0, r1, r2, r3, r4, r5, r6, r7 = transpose8x8 (v0, v1, v2, v3, v4, v5, v6, v7) in
create8 r0 r1 r2 r3 r4 r5 r6 r7 | false |
Hacl.Spec.K256.GLV.fst | Hacl.Spec.K256.GLV.aff_point_mul_lambda | val aff_point_mul_lambda (p: S.aff_point) : S.aff_point | val aff_point_mul_lambda (p: S.aff_point) : S.aff_point | let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py) | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 42,
"end_line": 55,
"start_col": 0,
"start_line": 54
} | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Spec.K256.PointOps.aff_point -> Spec.K256.PointOps.aff_point | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.aff_point",
"Spec.K256.PointOps.felem",
"FStar.Pervasives.Native.Mktuple2",
"Spec.K256.PointOps.op_Star_Percent",
"Hacl.Spec.K256.GLV.beta"
] | [] | false | false | false | true | false | let aff_point_mul_lambda (p: S.aff_point) : S.aff_point =
| let px, py = p in
(S.(beta *% px), py) | false |
Hacl.Spec.K256.GLV.fst | Hacl.Spec.K256.GLV.aff_point_mul | val aff_point_mul : a: Prims.nat -> p: Spec.K256.PointOps.aff_point -> Spec.K256.PointOps.aff_point | let aff_point_mul = S.aff_point_mul | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 35,
"end_line": 51,
"start_col": 0,
"start_line": 51
} | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Prims.nat -> p: Spec.K256.PointOps.aff_point -> Spec.K256.PointOps.aff_point | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.aff_point_mul"
] | [] | false | false | false | true | false | let aff_point_mul =
| S.aff_point_mul | false |
|
Hacl.Spec.K256.GLV.fst | Hacl.Spec.K256.GLV.point_mul_lambda | val point_mul_lambda (p: S.proj_point) : S.proj_point | val point_mul_lambda (p: S.proj_point) : S.proj_point | let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z) | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 50,
"end_line": 59,
"start_col": 0,
"start_line": 58
} | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Spec.K256.PointOps.proj_point -> Spec.K256.PointOps.proj_point | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.proj_point",
"Spec.K256.PointOps.felem",
"FStar.Pervasives.Native.Mktuple3",
"Spec.K256.PointOps.op_Star_Percent",
"Hacl.Spec.K256.GLV.beta"
] | [] | false | false | false | true | false | let point_mul_lambda (p: S.proj_point) : S.proj_point =
| let _X, _Y, _Z = p in
(S.(beta *% _X), _Y, _Z) | false |
Hacl.Spec.K256.GLV.fst | Hacl.Spec.K256.GLV.aff_point_negate_cond | val aff_point_negate_cond (p: S.aff_point) (is_negate: bool) : S.aff_point | val aff_point_negate_cond (p: S.aff_point) (is_negate: bool) : S.aff_point | let aff_point_negate_cond (p:S.aff_point) (is_negate:bool) : S.aff_point =
if is_negate then S.aff_point_negate p else p | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 47,
"end_line": 129,
"start_col": 0,
"start_line": 128
} | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x
let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x
let g1 : S.qelem =
let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x
let g2 : S.qelem =
let x = 0xE4437ED6010E88286F547FA90ABFE4C4221208AC9DF506C61571B4AE8AC47F71 in
assert_norm (pow2 384 * minus_b1 / S.q = x);
x
let qmul_shift_384 a b =
a * b / pow2 384 + (a * b / pow2 383 % 2)
val qmul_shift_384_lemma (a b:S.qelem) : Lemma (qmul_shift_384 a b < S.q)
let qmul_shift_384_lemma a b =
assert_norm (S.q < pow2 256);
Math.Lemmas.lemma_mult_lt_sqr a b (pow2 256);
Math.Lemmas.pow2_plus 256 256;
assert (a * b < pow2 512);
Math.Lemmas.lemma_div_lt_nat (a * b) 512 384;
assert (a * b / pow2 384 < pow2 128);
assert_norm (pow2 128 < S.q)
let scalar_split_lambda (k:S.qelem) : S.qelem & S.qelem =
qmul_shift_384_lemma k g1;
qmul_shift_384_lemma k g2;
let c1 : S.qelem = qmul_shift_384 k g1 in
let c2 : S.qelem = qmul_shift_384 k g2 in
let c1 = S.(c1 *^ minus_b1) in
let c2 = S.(c2 *^ minus_b2) in
let r2 = S.(c1 +^ c2) in
let r1 = S.(k +^ r2 *^ minus_lambda) in
r1, r2
(**
Fast computation of [k]P in affine coordinates
*) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Spec.K256.PointOps.aff_point -> is_negate: Prims.bool -> Spec.K256.PointOps.aff_point | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.aff_point",
"Prims.bool",
"Spec.K256.PointOps.aff_point_negate"
] | [] | false | false | false | true | false | let aff_point_negate_cond (p: S.aff_point) (is_negate: bool) : S.aff_point =
| if is_negate then S.aff_point_negate p else p | false |
Hacl.Spec.K256.GLV.fst | Hacl.Spec.K256.GLV.aff_negate_point_and_scalar_cond | val aff_negate_point_and_scalar_cond (k: S.qelem) (p: S.aff_point) : S.qelem & S.aff_point | val aff_negate_point_and_scalar_cond (k: S.qelem) (p: S.aff_point) : S.qelem & S.aff_point | let aff_negate_point_and_scalar_cond (k:S.qelem) (p:S.aff_point) : S.qelem & S.aff_point =
if S.scalar_is_high k then begin
let k_neg = S.qnegate k in
let p_neg = S.aff_point_negate p in
k_neg, p_neg end
else k, p | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 11,
"end_line": 136,
"start_col": 0,
"start_line": 131
} | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x
let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x
let g1 : S.qelem =
let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x
let g2 : S.qelem =
let x = 0xE4437ED6010E88286F547FA90ABFE4C4221208AC9DF506C61571B4AE8AC47F71 in
assert_norm (pow2 384 * minus_b1 / S.q = x);
x
let qmul_shift_384 a b =
a * b / pow2 384 + (a * b / pow2 383 % 2)
val qmul_shift_384_lemma (a b:S.qelem) : Lemma (qmul_shift_384 a b < S.q)
let qmul_shift_384_lemma a b =
assert_norm (S.q < pow2 256);
Math.Lemmas.lemma_mult_lt_sqr a b (pow2 256);
Math.Lemmas.pow2_plus 256 256;
assert (a * b < pow2 512);
Math.Lemmas.lemma_div_lt_nat (a * b) 512 384;
assert (a * b / pow2 384 < pow2 128);
assert_norm (pow2 128 < S.q)
let scalar_split_lambda (k:S.qelem) : S.qelem & S.qelem =
qmul_shift_384_lemma k g1;
qmul_shift_384_lemma k g2;
let c1 : S.qelem = qmul_shift_384 k g1 in
let c2 : S.qelem = qmul_shift_384 k g2 in
let c1 = S.(c1 *^ minus_b1) in
let c2 = S.(c2 *^ minus_b2) in
let r2 = S.(c1 +^ c2) in
let r1 = S.(k +^ r2 *^ minus_lambda) in
r1, r2
(**
Fast computation of [k]P in affine coordinates
*)
let aff_point_negate_cond (p:S.aff_point) (is_negate:bool) : S.aff_point =
if is_negate then S.aff_point_negate p else p | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | k: Spec.K256.PointOps.qelem -> p: Spec.K256.PointOps.aff_point
-> Spec.K256.PointOps.qelem * Spec.K256.PointOps.aff_point | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.qelem",
"Spec.K256.PointOps.aff_point",
"Spec.K256.PointOps.scalar_is_high",
"FStar.Pervasives.Native.Mktuple2",
"Spec.K256.PointOps.aff_point_negate",
"Spec.K256.PointOps.qnegate",
"Prims.bool",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | true | false | let aff_negate_point_and_scalar_cond (k: S.qelem) (p: S.aff_point) : S.qelem & S.aff_point =
| if S.scalar_is_high k
then
let k_neg = S.qnegate k in
let p_neg = S.aff_point_negate p in
k_neg, p_neg
else k, p | false |
Hacl.Spec.K256.GLV.fst | Hacl.Spec.K256.GLV.point_negate_cond | val point_negate_cond (p: S.proj_point) (is_negate: bool) : S.proj_point | val point_negate_cond (p: S.proj_point) (is_negate: bool) : S.proj_point | let point_negate_cond (p:S.proj_point) (is_negate:bool) : S.proj_point =
if is_negate then S.point_negate p else p | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 43,
"end_line": 160,
"start_col": 0,
"start_line": 159
} | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x
let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x
let g1 : S.qelem =
let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x
let g2 : S.qelem =
let x = 0xE4437ED6010E88286F547FA90ABFE4C4221208AC9DF506C61571B4AE8AC47F71 in
assert_norm (pow2 384 * minus_b1 / S.q = x);
x
let qmul_shift_384 a b =
a * b / pow2 384 + (a * b / pow2 383 % 2)
val qmul_shift_384_lemma (a b:S.qelem) : Lemma (qmul_shift_384 a b < S.q)
let qmul_shift_384_lemma a b =
assert_norm (S.q < pow2 256);
Math.Lemmas.lemma_mult_lt_sqr a b (pow2 256);
Math.Lemmas.pow2_plus 256 256;
assert (a * b < pow2 512);
Math.Lemmas.lemma_div_lt_nat (a * b) 512 384;
assert (a * b / pow2 384 < pow2 128);
assert_norm (pow2 128 < S.q)
let scalar_split_lambda (k:S.qelem) : S.qelem & S.qelem =
qmul_shift_384_lemma k g1;
qmul_shift_384_lemma k g2;
let c1 : S.qelem = qmul_shift_384 k g1 in
let c2 : S.qelem = qmul_shift_384 k g2 in
let c1 = S.(c1 *^ minus_b1) in
let c2 = S.(c2 *^ minus_b2) in
let r2 = S.(c1 +^ c2) in
let r1 = S.(k +^ r2 *^ minus_lambda) in
r1, r2
(**
Fast computation of [k]P in affine coordinates
*)
let aff_point_negate_cond (p:S.aff_point) (is_negate:bool) : S.aff_point =
if is_negate then S.aff_point_negate p else p
let aff_negate_point_and_scalar_cond (k:S.qelem) (p:S.aff_point) : S.qelem & S.aff_point =
if S.scalar_is_high k then begin
let k_neg = S.qnegate k in
let p_neg = S.aff_point_negate p in
k_neg, p_neg end
else k, p
// https://github.com/bitcoin-core/secp256k1/blob/master/src/ecmult_impl.h
// [k]P = [r1 + r2 * lambda]P = [r1]P + [r2]([lambda]P) = [r1](x,y) + [r2](beta*x,y)
let aff_ecmult_endo_split (k:S.qelem) (p:S.aff_point) :
S.qelem & S.aff_point & S.qelem & S.aff_point
=
let r1, r2 = scalar_split_lambda k in
let lambda_p = aff_point_mul_lambda p in
let r1, p1 = aff_negate_point_and_scalar_cond r1 p in
let r2, p2 = aff_negate_point_and_scalar_cond r2 lambda_p in
(r1, p1, r2, p2)
// [k]P = [r1 + r2 * lambda]P = [r1]P + [r2]([lambda]P) = [r1](x,y) + [r2](beta*x,y)
// which can be computed as a double exponentiation ([a]P + [b]Q)
let aff_point_mul_endo_split (k:S.qelem) (p:S.aff_point) : S.aff_point =
let r1, p1, r2, p2 = aff_ecmult_endo_split k p in
S.aff_point_add (aff_point_mul r1 p1) (aff_point_mul r2 p2)
(**
Fast computation of [k]P in projective coordinates
*) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Spec.K256.PointOps.proj_point -> is_negate: Prims.bool -> Spec.K256.PointOps.proj_point | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.proj_point",
"Prims.bool",
"Spec.K256.PointOps.point_negate"
] | [] | false | false | false | true | false | let point_negate_cond (p: S.proj_point) (is_negate: bool) : S.proj_point =
| if is_negate then S.point_negate p else p | false |
Hacl.Spec.K256.GLV.fst | Hacl.Spec.K256.GLV.aff_ecmult_endo_split | val aff_ecmult_endo_split (k: S.qelem) (p: S.aff_point)
: S.qelem & S.aff_point & S.qelem & S.aff_point | val aff_ecmult_endo_split (k: S.qelem) (p: S.aff_point)
: S.qelem & S.aff_point & S.qelem & S.aff_point | let aff_ecmult_endo_split (k:S.qelem) (p:S.aff_point) :
S.qelem & S.aff_point & S.qelem & S.aff_point
=
let r1, r2 = scalar_split_lambda k in
let lambda_p = aff_point_mul_lambda p in
let r1, p1 = aff_negate_point_and_scalar_cond r1 p in
let r2, p2 = aff_negate_point_and_scalar_cond r2 lambda_p in
(r1, p1, r2, p2) | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 18,
"end_line": 147,
"start_col": 0,
"start_line": 140
} | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x
let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x
let g1 : S.qelem =
let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x
let g2 : S.qelem =
let x = 0xE4437ED6010E88286F547FA90ABFE4C4221208AC9DF506C61571B4AE8AC47F71 in
assert_norm (pow2 384 * minus_b1 / S.q = x);
x
let qmul_shift_384 a b =
a * b / pow2 384 + (a * b / pow2 383 % 2)
val qmul_shift_384_lemma (a b:S.qelem) : Lemma (qmul_shift_384 a b < S.q)
let qmul_shift_384_lemma a b =
assert_norm (S.q < pow2 256);
Math.Lemmas.lemma_mult_lt_sqr a b (pow2 256);
Math.Lemmas.pow2_plus 256 256;
assert (a * b < pow2 512);
Math.Lemmas.lemma_div_lt_nat (a * b) 512 384;
assert (a * b / pow2 384 < pow2 128);
assert_norm (pow2 128 < S.q)
let scalar_split_lambda (k:S.qelem) : S.qelem & S.qelem =
qmul_shift_384_lemma k g1;
qmul_shift_384_lemma k g2;
let c1 : S.qelem = qmul_shift_384 k g1 in
let c2 : S.qelem = qmul_shift_384 k g2 in
let c1 = S.(c1 *^ minus_b1) in
let c2 = S.(c2 *^ minus_b2) in
let r2 = S.(c1 +^ c2) in
let r1 = S.(k +^ r2 *^ minus_lambda) in
r1, r2
(**
Fast computation of [k]P in affine coordinates
*)
let aff_point_negate_cond (p:S.aff_point) (is_negate:bool) : S.aff_point =
if is_negate then S.aff_point_negate p else p
let aff_negate_point_and_scalar_cond (k:S.qelem) (p:S.aff_point) : S.qelem & S.aff_point =
if S.scalar_is_high k then begin
let k_neg = S.qnegate k in
let p_neg = S.aff_point_negate p in
k_neg, p_neg end
else k, p
// https://github.com/bitcoin-core/secp256k1/blob/master/src/ecmult_impl.h | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | k: Spec.K256.PointOps.qelem -> p: Spec.K256.PointOps.aff_point
-> ((Spec.K256.PointOps.qelem * Spec.K256.PointOps.aff_point) * Spec.K256.PointOps.qelem) *
Spec.K256.PointOps.aff_point | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.qelem",
"Spec.K256.PointOps.aff_point",
"FStar.Pervasives.Native.Mktuple4",
"FStar.Pervasives.Native.tuple4",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.K256.GLV.aff_negate_point_and_scalar_cond",
"Hacl.Spec.K256.GLV.aff_point_mul_lambda",
"Hacl.Spec.K256.GLV.scalar_split_lambda"
] | [] | false | false | false | true | false | let aff_ecmult_endo_split (k: S.qelem) (p: S.aff_point)
: S.qelem & S.aff_point & S.qelem & S.aff_point =
| let r1, r2 = scalar_split_lambda k in
let lambda_p = aff_point_mul_lambda p in
let r1, p1 = aff_negate_point_and_scalar_cond r1 p in
let r2, p2 = aff_negate_point_and_scalar_cond r2 lambda_p in
(r1, p1, r2, p2) | false |
Hacl.Spec.K256.GLV.fst | Hacl.Spec.K256.GLV.aff_point_mul_endo_split | val aff_point_mul_endo_split (k: S.qelem) (p: S.aff_point) : S.aff_point | val aff_point_mul_endo_split (k: S.qelem) (p: S.aff_point) : S.aff_point | let aff_point_mul_endo_split (k:S.qelem) (p:S.aff_point) : S.aff_point =
let r1, p1, r2, p2 = aff_ecmult_endo_split k p in
S.aff_point_add (aff_point_mul r1 p1) (aff_point_mul r2 p2) | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 61,
"end_line": 153,
"start_col": 0,
"start_line": 151
} | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x
let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x
let g1 : S.qelem =
let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x
let g2 : S.qelem =
let x = 0xE4437ED6010E88286F547FA90ABFE4C4221208AC9DF506C61571B4AE8AC47F71 in
assert_norm (pow2 384 * minus_b1 / S.q = x);
x
let qmul_shift_384 a b =
a * b / pow2 384 + (a * b / pow2 383 % 2)
val qmul_shift_384_lemma (a b:S.qelem) : Lemma (qmul_shift_384 a b < S.q)
let qmul_shift_384_lemma a b =
assert_norm (S.q < pow2 256);
Math.Lemmas.lemma_mult_lt_sqr a b (pow2 256);
Math.Lemmas.pow2_plus 256 256;
assert (a * b < pow2 512);
Math.Lemmas.lemma_div_lt_nat (a * b) 512 384;
assert (a * b / pow2 384 < pow2 128);
assert_norm (pow2 128 < S.q)
let scalar_split_lambda (k:S.qelem) : S.qelem & S.qelem =
qmul_shift_384_lemma k g1;
qmul_shift_384_lemma k g2;
let c1 : S.qelem = qmul_shift_384 k g1 in
let c2 : S.qelem = qmul_shift_384 k g2 in
let c1 = S.(c1 *^ minus_b1) in
let c2 = S.(c2 *^ minus_b2) in
let r2 = S.(c1 +^ c2) in
let r1 = S.(k +^ r2 *^ minus_lambda) in
r1, r2
(**
Fast computation of [k]P in affine coordinates
*)
let aff_point_negate_cond (p:S.aff_point) (is_negate:bool) : S.aff_point =
if is_negate then S.aff_point_negate p else p
let aff_negate_point_and_scalar_cond (k:S.qelem) (p:S.aff_point) : S.qelem & S.aff_point =
if S.scalar_is_high k then begin
let k_neg = S.qnegate k in
let p_neg = S.aff_point_negate p in
k_neg, p_neg end
else k, p
// https://github.com/bitcoin-core/secp256k1/blob/master/src/ecmult_impl.h
// [k]P = [r1 + r2 * lambda]P = [r1]P + [r2]([lambda]P) = [r1](x,y) + [r2](beta*x,y)
let aff_ecmult_endo_split (k:S.qelem) (p:S.aff_point) :
S.qelem & S.aff_point & S.qelem & S.aff_point
=
let r1, r2 = scalar_split_lambda k in
let lambda_p = aff_point_mul_lambda p in
let r1, p1 = aff_negate_point_and_scalar_cond r1 p in
let r2, p2 = aff_negate_point_and_scalar_cond r2 lambda_p in
(r1, p1, r2, p2)
// [k]P = [r1 + r2 * lambda]P = [r1]P + [r2]([lambda]P) = [r1](x,y) + [r2](beta*x,y) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | k: Spec.K256.PointOps.qelem -> p: Spec.K256.PointOps.aff_point -> Spec.K256.PointOps.aff_point | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.qelem",
"Spec.K256.PointOps.aff_point",
"Spec.K256.PointOps.aff_point_add",
"Hacl.Spec.K256.GLV.aff_point_mul",
"FStar.Pervasives.Native.tuple4",
"Hacl.Spec.K256.GLV.aff_ecmult_endo_split"
] | [] | false | false | false | true | false | let aff_point_mul_endo_split (k: S.qelem) (p: S.aff_point) : S.aff_point =
| let r1, p1, r2, p2 = aff_ecmult_endo_split k p in
S.aff_point_add (aff_point_mul r1 p1) (aff_point_mul r2 p2) | false |
Hacl.Spec.K256.GLV.fst | Hacl.Spec.K256.GLV.ecmult_endo_split | val ecmult_endo_split (k: S.qelem) (p: S.proj_point)
: S.qelem & S.proj_point & S.qelem & S.proj_point | val ecmult_endo_split (k: S.qelem) (p: S.proj_point)
: S.qelem & S.proj_point & S.qelem & S.proj_point | let ecmult_endo_split (k:S.qelem) (p:S.proj_point) :
S.qelem & S.proj_point & S.qelem & S.proj_point
=
let r1, r2 = scalar_split_lambda k in
let lambda_p = point_mul_lambda p in
let r1, p1 = negate_point_and_scalar_cond r1 p in
let r2, p2 = negate_point_and_scalar_cond r2 lambda_p in
(r1, p1, r2, p2) | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 18,
"end_line": 177,
"start_col": 0,
"start_line": 170
} | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x
let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x
let g1 : S.qelem =
let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x
let g2 : S.qelem =
let x = 0xE4437ED6010E88286F547FA90ABFE4C4221208AC9DF506C61571B4AE8AC47F71 in
assert_norm (pow2 384 * minus_b1 / S.q = x);
x
let qmul_shift_384 a b =
a * b / pow2 384 + (a * b / pow2 383 % 2)
val qmul_shift_384_lemma (a b:S.qelem) : Lemma (qmul_shift_384 a b < S.q)
let qmul_shift_384_lemma a b =
assert_norm (S.q < pow2 256);
Math.Lemmas.lemma_mult_lt_sqr a b (pow2 256);
Math.Lemmas.pow2_plus 256 256;
assert (a * b < pow2 512);
Math.Lemmas.lemma_div_lt_nat (a * b) 512 384;
assert (a * b / pow2 384 < pow2 128);
assert_norm (pow2 128 < S.q)
let scalar_split_lambda (k:S.qelem) : S.qelem & S.qelem =
qmul_shift_384_lemma k g1;
qmul_shift_384_lemma k g2;
let c1 : S.qelem = qmul_shift_384 k g1 in
let c2 : S.qelem = qmul_shift_384 k g2 in
let c1 = S.(c1 *^ minus_b1) in
let c2 = S.(c2 *^ minus_b2) in
let r2 = S.(c1 +^ c2) in
let r1 = S.(k +^ r2 *^ minus_lambda) in
r1, r2
(**
Fast computation of [k]P in affine coordinates
*)
let aff_point_negate_cond (p:S.aff_point) (is_negate:bool) : S.aff_point =
if is_negate then S.aff_point_negate p else p
let aff_negate_point_and_scalar_cond (k:S.qelem) (p:S.aff_point) : S.qelem & S.aff_point =
if S.scalar_is_high k then begin
let k_neg = S.qnegate k in
let p_neg = S.aff_point_negate p in
k_neg, p_neg end
else k, p
// https://github.com/bitcoin-core/secp256k1/blob/master/src/ecmult_impl.h
// [k]P = [r1 + r2 * lambda]P = [r1]P + [r2]([lambda]P) = [r1](x,y) + [r2](beta*x,y)
let aff_ecmult_endo_split (k:S.qelem) (p:S.aff_point) :
S.qelem & S.aff_point & S.qelem & S.aff_point
=
let r1, r2 = scalar_split_lambda k in
let lambda_p = aff_point_mul_lambda p in
let r1, p1 = aff_negate_point_and_scalar_cond r1 p in
let r2, p2 = aff_negate_point_and_scalar_cond r2 lambda_p in
(r1, p1, r2, p2)
// [k]P = [r1 + r2 * lambda]P = [r1]P + [r2]([lambda]P) = [r1](x,y) + [r2](beta*x,y)
// which can be computed as a double exponentiation ([a]P + [b]Q)
let aff_point_mul_endo_split (k:S.qelem) (p:S.aff_point) : S.aff_point =
let r1, p1, r2, p2 = aff_ecmult_endo_split k p in
S.aff_point_add (aff_point_mul r1 p1) (aff_point_mul r2 p2)
(**
Fast computation of [k]P in projective coordinates
*)
let point_negate_cond (p:S.proj_point) (is_negate:bool) : S.proj_point =
if is_negate then S.point_negate p else p
let negate_point_and_scalar_cond (k:S.qelem) (p:S.proj_point) : S.qelem & S.proj_point =
if S.scalar_is_high k then begin
let k_neg = S.qnegate k in
let p_neg = S.point_negate p in
k_neg, p_neg end
else k, p | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | k: Spec.K256.PointOps.qelem -> p: Spec.K256.PointOps.proj_point
-> ((Spec.K256.PointOps.qelem * Spec.K256.PointOps.proj_point) * Spec.K256.PointOps.qelem) *
Spec.K256.PointOps.proj_point | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.qelem",
"Spec.K256.PointOps.proj_point",
"FStar.Pervasives.Native.Mktuple4",
"FStar.Pervasives.Native.tuple4",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.K256.GLV.negate_point_and_scalar_cond",
"Hacl.Spec.K256.GLV.point_mul_lambda",
"Hacl.Spec.K256.GLV.scalar_split_lambda"
] | [] | false | false | false | true | false | let ecmult_endo_split (k: S.qelem) (p: S.proj_point)
: S.qelem & S.proj_point & S.qelem & S.proj_point =
| let r1, r2 = scalar_split_lambda k in
let lambda_p = point_mul_lambda p in
let r1, p1 = negate_point_and_scalar_cond r1 p in
let r2, p2 = negate_point_and_scalar_cond r2 lambda_p in
(r1, p1, r2, p2) | false |
Hacl.Spec.K256.GLV.fst | Hacl.Spec.K256.GLV.negate_point_and_scalar_cond | val negate_point_and_scalar_cond (k: S.qelem) (p: S.proj_point) : S.qelem & S.proj_point | val negate_point_and_scalar_cond (k: S.qelem) (p: S.proj_point) : S.qelem & S.proj_point | let negate_point_and_scalar_cond (k:S.qelem) (p:S.proj_point) : S.qelem & S.proj_point =
if S.scalar_is_high k then begin
let k_neg = S.qnegate k in
let p_neg = S.point_negate p in
k_neg, p_neg end
else k, p | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 11,
"end_line": 167,
"start_col": 0,
"start_line": 162
} | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x
let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x
let g1 : S.qelem =
let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x
let g2 : S.qelem =
let x = 0xE4437ED6010E88286F547FA90ABFE4C4221208AC9DF506C61571B4AE8AC47F71 in
assert_norm (pow2 384 * minus_b1 / S.q = x);
x
let qmul_shift_384 a b =
a * b / pow2 384 + (a * b / pow2 383 % 2)
val qmul_shift_384_lemma (a b:S.qelem) : Lemma (qmul_shift_384 a b < S.q)
let qmul_shift_384_lemma a b =
assert_norm (S.q < pow2 256);
Math.Lemmas.lemma_mult_lt_sqr a b (pow2 256);
Math.Lemmas.pow2_plus 256 256;
assert (a * b < pow2 512);
Math.Lemmas.lemma_div_lt_nat (a * b) 512 384;
assert (a * b / pow2 384 < pow2 128);
assert_norm (pow2 128 < S.q)
let scalar_split_lambda (k:S.qelem) : S.qelem & S.qelem =
qmul_shift_384_lemma k g1;
qmul_shift_384_lemma k g2;
let c1 : S.qelem = qmul_shift_384 k g1 in
let c2 : S.qelem = qmul_shift_384 k g2 in
let c1 = S.(c1 *^ minus_b1) in
let c2 = S.(c2 *^ minus_b2) in
let r2 = S.(c1 +^ c2) in
let r1 = S.(k +^ r2 *^ minus_lambda) in
r1, r2
(**
Fast computation of [k]P in affine coordinates
*)
let aff_point_negate_cond (p:S.aff_point) (is_negate:bool) : S.aff_point =
if is_negate then S.aff_point_negate p else p
let aff_negate_point_and_scalar_cond (k:S.qelem) (p:S.aff_point) : S.qelem & S.aff_point =
if S.scalar_is_high k then begin
let k_neg = S.qnegate k in
let p_neg = S.aff_point_negate p in
k_neg, p_neg end
else k, p
// https://github.com/bitcoin-core/secp256k1/blob/master/src/ecmult_impl.h
// [k]P = [r1 + r2 * lambda]P = [r1]P + [r2]([lambda]P) = [r1](x,y) + [r2](beta*x,y)
let aff_ecmult_endo_split (k:S.qelem) (p:S.aff_point) :
S.qelem & S.aff_point & S.qelem & S.aff_point
=
let r1, r2 = scalar_split_lambda k in
let lambda_p = aff_point_mul_lambda p in
let r1, p1 = aff_negate_point_and_scalar_cond r1 p in
let r2, p2 = aff_negate_point_and_scalar_cond r2 lambda_p in
(r1, p1, r2, p2)
// [k]P = [r1 + r2 * lambda]P = [r1]P + [r2]([lambda]P) = [r1](x,y) + [r2](beta*x,y)
// which can be computed as a double exponentiation ([a]P + [b]Q)
let aff_point_mul_endo_split (k:S.qelem) (p:S.aff_point) : S.aff_point =
let r1, p1, r2, p2 = aff_ecmult_endo_split k p in
S.aff_point_add (aff_point_mul r1 p1) (aff_point_mul r2 p2)
(**
Fast computation of [k]P in projective coordinates
*)
let point_negate_cond (p:S.proj_point) (is_negate:bool) : S.proj_point =
if is_negate then S.point_negate p else p | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | k: Spec.K256.PointOps.qelem -> p: Spec.K256.PointOps.proj_point
-> Spec.K256.PointOps.qelem * Spec.K256.PointOps.proj_point | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.qelem",
"Spec.K256.PointOps.proj_point",
"Spec.K256.PointOps.scalar_is_high",
"FStar.Pervasives.Native.Mktuple2",
"Spec.K256.PointOps.point_negate",
"Spec.K256.PointOps.qnegate",
"Prims.bool",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | true | false | let negate_point_and_scalar_cond (k: S.qelem) (p: S.proj_point) : S.qelem & S.proj_point =
| if S.scalar_is_high k
then
let k_neg = S.qnegate k in
let p_neg = S.point_negate p in
k_neg, p_neg
else k, p | false |
Hacl.Spec.K256.GLV.fst | Hacl.Spec.K256.GLV.lambda | val lambda:S.qelem | val lambda:S.qelem | let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72 | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 89,
"end_line": 46,
"start_col": 0,
"start_line": 46
} | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Spec.K256.PointOps.qelem | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | false | let lambda:S.qelem =
| 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72 | false |
Hacl.Spec.K256.GLV.fst | Hacl.Spec.K256.GLV.minus_b1 | val minus_b1:S.qelem | val minus_b1:S.qelem | let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3 | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 59,
"end_line": 67,
"start_col": 0,
"start_line": 67
} | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Spec.K256.PointOps.qelem | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | false | let minus_b1:S.qelem =
| 0xe4437ed6010e88286f547fa90abfe4c3 | false |
Hacl.Spec.K256.GLV.fst | Hacl.Spec.K256.GLV.a1 | val a1:S.qelem | val a1:S.qelem | let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15 | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 53,
"end_line": 66,
"start_col": 0,
"start_line": 66
} | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Spec.K256.PointOps.qelem | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | false | let a1:S.qelem =
| 0x3086d221a7d46bcde86c90e49284eb15 | false |
Hacl.Spec.K256.GLV.fst | Hacl.Spec.K256.GLV.minus_lambda | val minus_lambda:S.qelem | val minus_lambda:S.qelem | let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 74,
"start_col": 0,
"start_line": 71
} | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Spec.K256.PointOps.qelem | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Minus",
"Hacl.Spec.K256.GLV.lambda",
"Spec.K256.PointOps.q"
] | [] | false | false | false | true | false | let minus_lambda:S.qelem =
| let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x | false |
Hacl.Spec.K256.GLV.fst | Hacl.Spec.K256.GLV.a2 | val a2:S.qelem | val a2:S.qelem | let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8 | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 54,
"end_line": 68,
"start_col": 0,
"start_line": 68
} | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Spec.K256.PointOps.qelem | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | false | let a2:S.qelem =
| 0x114ca50f7a8e2f3f657c1108d9d44cfd8 | false |
Hacl.Spec.K256.GLV.fst | Hacl.Spec.K256.GLV.beta | val beta:S.felem | val beta:S.felem | let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 87,
"end_line": 48,
"start_col": 0,
"start_line": 48
} | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Spec.K256.PointOps.felem | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | false | let beta:S.felem =
| 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee | false |
Hacl.Spec.K256.GLV.fst | Hacl.Spec.K256.GLV.minus_b2 | val minus_b2:S.qelem | val minus_b2:S.qelem | let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 84,
"start_col": 0,
"start_line": 81
} | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Spec.K256.PointOps.qelem | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Minus",
"Hacl.Spec.K256.GLV.b2",
"Spec.K256.PointOps.q"
] | [] | false | false | false | true | false | let minus_b2:S.qelem =
| let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x | false |
Hacl.Spec.K256.GLV.fst | Hacl.Spec.K256.GLV.b1 | val b1:S.qelem | val b1:S.qelem | let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 79,
"start_col": 0,
"start_line": 76
} | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Spec.K256.PointOps.qelem | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Minus",
"Hacl.Spec.K256.GLV.minus_b1",
"Spec.K256.PointOps.q"
] | [] | false | false | false | true | false | let b1:S.qelem =
| let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x | false |
Hacl.Spec.K256.GLV.fst | Hacl.Spec.K256.GLV.g2 | val g2:S.qelem | val g2:S.qelem | let g2 : S.qelem =
let x = 0xE4437ED6010E88286F547FA90ABFE4C4221208AC9DF506C61571B4AE8AC47F71 in
assert_norm (pow2 384 * minus_b1 / S.q = x);
x | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 94,
"start_col": 0,
"start_line": 91
} | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x
let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x
let g1 : S.qelem =
let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Spec.K256.PointOps.qelem | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Division",
"FStar.Mul.op_Star",
"Prims.pow2",
"Hacl.Spec.K256.GLV.minus_b1",
"Spec.K256.PointOps.q"
] | [] | false | false | false | true | false | let g2:S.qelem =
| let x = 0xE4437ED6010E88286F547FA90ABFE4C4221208AC9DF506C61571B4AE8AC47F71 in
assert_norm (pow2 384 * minus_b1 / S.q = x);
x | false |
Hacl.Spec.K256.GLV.fst | Hacl.Spec.K256.GLV.g1 | val g1:S.qelem | val g1:S.qelem | let g1 : S.qelem =
let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 89,
"start_col": 0,
"start_line": 86
} | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x
let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Spec.K256.PointOps.qelem | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Addition",
"Prims.op_Division",
"FStar.Mul.op_Star",
"Prims.pow2",
"Hacl.Spec.K256.GLV.b2",
"Spec.K256.PointOps.q"
] | [] | false | false | false | true | false | let g1:S.qelem =
| let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x | false |