Datasets:
File size: 3,287 Bytes
9c120fb 08a4bc0 9c120fb 64e3c76 763ff6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
"""Magic"""
from typing import List
from functools import partial
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
_BASE_FEATURE_NAMES = [
"major_axis_length",
"minor_axis_length",
"log_of_sum_of_content",
"ratio_of_sum_of_highest_pixels_and_size",
"ratio_of_highest_pixel_and_size",
"projected_distance_highest_to_center_pixel",
"third_root_of_third_moment_along_major_axis",
"third_root_of_third_moment_along_minor_axis",
"angle_major_axis_to_origin",
"distance_origin_to_center",
"class"
]
DESCRIPTION = "Magic dataset from the UCI ML repository."
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Magic"
_URLS = ("https://archive.ics.uci.edu/ml/datasets/Magic")
_CITATION = """
@misc{misc_magic_gamma_telescope_159,
author = {Bock,R.},
title = {{MAGIC Gamma Telescope}},
year = {2007},
howpublished = {UCI Machine Learning Repository},
note = {{DOI}: \\url{10.24432/C52C8B}}
}"""
# Dataset info
urls_per_split = {
"train": "https://huggingface.co/datasets/mstz/magic/raw/main/magic04.data"
}
features_types_per_config = {
"magic": {
"major_axis_length": datasets.Value("float64"),
"minor_axis_length": datasets.Value("float64"),
"log_of_sum_of_content": datasets.Value("float64"),
"ratio_of_sum_of_highest_pixels_and_size": datasets.Value("float64"),
"ratio_of_highest_pixel_and_size": datasets.Value("float64"),
"projected_distance_highest_to_center_pixel": datasets.Value("float64"),
"third_root_of_third_moment_along_major_axis": datasets.Value("float64"),
"third_root_of_third_moment_along_minor_axis": datasets.Value("float64"),
"angle_major_axis_to_origin": datasets.Value("float64"),
"distance_origin_to_center": datasets.Value("float64"),
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
}
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
class MagicConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(MagicConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Magic(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "magic"
BUILDER_CONFIGS = [
MagicConfig(name="magic",
description="Magic for binary classification.")
]
def _info(self):
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
]
def _generate_examples(self, filepath: str):
data = pandas.read_csv(filepath, header=None)
data.columns = _BASE_FEATURE_NAMES
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
|