magic / magic.py
mstz's picture
Upload 3 files
9c120fb
raw
history blame
6.17 kB
"""Magic"""
from typing import List
from functools import partial
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
_BASE_FEATURE_NAMES = [
"major_axis_length"
"minor_axis_length"
"log_of_sum_of_content"
"ratio_of_sum_of_highest_pixels_and_size"
"ratio_of_highest_pixel_and_size"
"projected_distance_highest_to_center_pixel"
"third_root_of_third_moment_along_major_axis"
"third_root_of_third_moment_along_minor_axis"
"angle_major_axis_to_origin"
"distance_origin_to_center"
"class"
]
DESCRIPTION = "Magic dataset from the UCI ML repository."
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Magic"
_URLS = ("https://archive.ics.uci.edu/ml/datasets/Magic")
_CITATION = """
@misc{misc_magic_gamma_telescope_159,
author = {Bock,R.},
title = {{MAGIC Gamma Telescope}},
year = {2007},
howpublished = {UCI Machine Learning Repository},
note = {{DOI}: \\url{10.24432/C52C8B}}
}"""
# Dataset info
urls_per_split = {
"train": "https://huggingface.co/datasets/mstz/magic/raw/main/magic04.data"
}
features_types_per_config = {
"magic": {
"major_axis_length": datasets.Value("float64"),
"minor_axis_length": datasets.Value("float64"),
"log_of_sum_of_content": datasets.Value("float64"),
"ratio_of_sum_of_highest_pixels_and_size": datasets.Value("float64"),
"ratio_of_highest_pixel_and_size": datasets.Value("float64"),
"projected_distance_highest_to_center_pixel": datasets.Value("float64"),
"third_root_of_third_moment_along_major_axis": datasets.Value("float64"),
"third_root_of_third_moment_along_minor_axis": datasets.Value("float64"),
"angle_major_axis_to_origin": datasets.Value("float64"),
"distance_origin_to_center": datasets.Value("float64"),
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
}
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
class MagicConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(MagicConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Magic(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "magic"
BUILDER_CONFIGS = [
MagicConfig(name="magic",
description="Magic for binary classification.")
]
def _info(self):
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
]
def _generate_examples(self, filepath: str):
if self.config.name == "encoding":
data = self.encodings()
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
elif self.config.name in ["magic", "magic-no race", "race"]:
data = pandas.read_csv(filepath)
data = self.preprocess(data, config=self.config.name)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
else:
raise ValueError(f"Unknown config: {self.config.name}")
def encodings(self):
data = [pandas.DataFrame([(feature, original_value, encoded_value)
for original_value, encoded_value in d.items()],
columns=["feature", "original_value", "encoded_value"])
for feature, d in _ENCODING_DICS.items()]
data.append(pandas.DataFrame([("race", original_value, encoded_value)
for original_value, encoded_value in _RACE_ENCODING.items()],
columns=["feature", "original_value", "encoded_value"]))
data.append(pandas.DataFrame([("education", original_value, encoded_value)
for original_value, encoded_value in _EDUCATION_ENCODING.items()],
columns=["feature", "original_value", "encoded_value"]))
data = pandas.concat(data, axis="rows").reset_index()
data.drop("index", axis="columns", inplace=True)
return data
def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
data.drop("education", axis="columns", inplace=True)
data = data.rename(columns={"threshold": "over_threshold", "sex": "is_male"})
data = data[["age", "capital_gain", "capital_loss", "education-num", "final_weight",
"hours_per_week", "marital_status", "native_country", "occupation",
"race", "relationship", "is_male", "workclass", "over_threshold"]]
data.columns = _BASE_FEATURE_NAMES
for feature in _ENCODING_DICS:
encoding_function = partial(self.encode, feature)
data.loc[:, feature] = data[feature].apply(encoding_function)
if config == "magic":
return data[list(features_types_per_config["magic"].keys())]
elif config == "magic-no race":
return data[list(features_types_per_config["magic-no race"].keys())]
elif config =="race":
data.loc[:, "race"] = data.race.apply(self.encode_race)
data = data[list(features_types_per_config["race"].keys())]
return data
else:
raise ValueError(f"Unknown config: {config}")
def encode(self, feature, value):
if feature in _ENCODING_DICS:
return _ENCODING_DICS[feature][value]
raise ValueError(f"Unknown feature: {feature}")
def encode_race(self, race):
return _RACE_ENCODING[race]