metadata
dataset_info:
features:
- name: image
dtype: image
splits:
- name: train
num_bytes: 4450242498.020249
num_examples: 287968
- name: test
num_bytes: 234247797.33875093
num_examples: 15157
download_size: 4756942293
dataset_size: 4684490295.359
license: mit
Dataset Card for "lsun-bedrooms"
This is a 20% sample of the bedrooms category in LSUN
, uploaded as a dataset for convenience.
The license for this compilation only is MIT. The data retains the same license as the original dataset.
This is (roughly) the code that was used to upload this dataset:
import os
import shutil
from miniai.imports import *
from miniai.diffusion import *
from datasets import load_dataset
path_data = Path('data')
path_data.mkdir(exist_ok=True)
path = path_data/'bedroom'
url = 'https://s3.amazonaws.com/fast-ai-imageclas/bedroom.tgz'
if not path.exists():
path_zip = fc.urlsave(url, path_data)
shutil.unpack_archive('data/bedroom.tgz', 'data')
dataset = load_dataset("imagefolder", data_dir="data/bedroom")
dataset = dataset.remove_columns('label')
dataset = dataset['train'].train_test_split(test_size=0.05)
dataset.push_to_hub("pcuenq/lsun-bedrooms")