|
--- |
|
dataset_info: |
|
features: |
|
- name: image |
|
dtype: image |
|
splits: |
|
- name: train |
|
num_bytes: 4450242498.020249 |
|
num_examples: 287968 |
|
- name: test |
|
num_bytes: 234247797.33875093 |
|
num_examples: 15157 |
|
download_size: 4756942293 |
|
dataset_size: 4684490295.359 |
|
license: mit |
|
--- |
|
|
|
# Dataset Card for "lsun-bedrooms" |
|
|
|
This is a 20% sample of the bedrooms category in [`LSUN`](https://github.com/fyu/lsun), uploaded as a dataset for convenience. |
|
|
|
The license for _this compilation only_ is MIT. The data retains the same license as the original dataset. |
|
|
|
This is (roughly) the code that was used to upload this dataset: |
|
|
|
```Python |
|
import os |
|
import shutil |
|
|
|
from miniai.imports import * |
|
from miniai.diffusion import * |
|
|
|
from datasets import load_dataset |
|
|
|
path_data = Path('data') |
|
path_data.mkdir(exist_ok=True) |
|
path = path_data/'bedroom' |
|
|
|
url = 'https://s3.amazonaws.com/fast-ai-imageclas/bedroom.tgz' |
|
if not path.exists(): |
|
path_zip = fc.urlsave(url, path_data) |
|
shutil.unpack_archive('data/bedroom.tgz', 'data') |
|
|
|
dataset = load_dataset("imagefolder", data_dir="data/bedroom") |
|
dataset = dataset.remove_columns('label') |
|
dataset = dataset['train'].train_test_split(test_size=0.05) |
|
dataset.push_to_hub("pcuenq/lsun-bedrooms") |
|
``` |
|
|