file_path
stringlengths
22
162
content
stringlengths
19
501k
size
int64
19
501k
lang
stringclasses
1 value
avg_line_length
float64
6.33
100
max_line_length
int64
18
935
alphanum_fraction
float64
0.34
0.93
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/woofer/HardwareInterface.py
import odrive from odrive.enums import * from woofer.Config import RobotConfig from woofer.HardwareConfig import ( ODRIVE_SERIAL_NUMBERS, ACTUATOR_DIRECTIONS, ANGLE_OFFSETS, map_actuators_to_axes, ) import time import threading import numpy as np class HardwareInterface: def __init__(self): self.config = RobotConfig() assert len(ODRIVE_SERIAL_NUMBERS) == self.config.NUM_ODRIVES self.odrives = [None for _ in range(self.config.NUM_ODRIVES)] threads = [] for i in range(self.config.NUM_ODRIVES): t = threading.Thread(target=find_odrive, args=(i, self.odrives)) threads.append(t) t.start() for t in threads: t.join() input("Press enter to calibrate odrives...") calibrate_odrives(self.odrives) set_position_control(self.odrives) self.axes = assign_axes(self.odrives) def set_actuator_postions(self, joint_angles): set_all_odrive_positions(self.axes, joint_angles, self.config) def deactivate_actuators(self): set_odrives_idle(self.odrives) def find_odrive(i, odrives): o = odrive.find_any(serial_number=ODRIVE_SERIAL_NUMBERS[i]) print("Found odrive: ", i) odrives[i] = o def calibrate_odrives(odrives): for odrv in odrives: odrv.axis0.requested_state = AXIS_STATE_FULL_CALIBRATION_SEQUENCE odrv.axis1.requested_state = AXIS_STATE_FULL_CALIBRATION_SEQUENCE for odrv in odrives: while ( odrv.axis0.current_state != AXIS_STATE_IDLE or odrv.axis1.current_state != AXIS_STATE_IDLE ): time.sleep(0.1) # busy waiting - not ideal def set_position_control(odrives): for odrv in odrives: for axis in [odrv.axis0, odrv.axis1]: axis.controller.config.pos_gain = 60 axis.controller.config.vel_gain = 0.002 axis.controller.config.vel_limit_tolerance = 0 axis.controller.config.vel_integrator_gain = 0 axis.motor.config.current_lim = 15 print("Updated gains") odrv.axis0.requested_state = AXIS_STATE_CLOSED_LOOP_CONTROL odrv.axis1.requested_state = AXIS_STATE_CLOSED_LOOP_CONTROL def set_odrives_idle(odrives): for odrv in odrives: odrv.axis0.requested_state = AXIS_STATE_IDLE odrv.axis1.requested_state = AXIS_STATE_IDLE def assign_axes(odrives): return map_actuators_to_axes(odrives) def set_all_odrive_positions(axes, joint_angles, config): for i in range(joint_angles.shape[0]): for j in range(joint_angles.shape[1]): axes[i][j].controller.pos_setpoint = actuator_angle_to_odrive( joint_angles, i, j, config ) def radians_to_encoder_count(angle, config): return (angle / (2 * np.pi)) * config.ENCODER_CPR * config.MOTOR_REDUCTION def actuator_angle_to_odrive(joint_angles, i, j, config): offset_angle = joint_angles[i][j] + ANGLE_OFFSETS[i][j] odrive_radians = offset_angle * ACTUATOR_DIRECTIONS[i][j] return radians_to_encoder_count(odrive_radians, config)
3,118
Python
30.82653
78
0.652341
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/woofer/Kinematics.py
import numpy as np def leg_forward_kinematics(alpha, leg_index, config): """Find the body-centric coordinates of a given foot given the joint angles. Parameters ---------- alpha : Numpy array (3) Joint angles ordered as (abduction, hip, knee) leg_index : int Leg index. config : Config object Robot parameters object Returns ------- Numpy array (3) Body-centric coordinates of the specified foot """ pass def leg_explicit_inverse_kinematics(r_body_foot, leg_index, config): """Find the joint angles corresponding to the given body-relative foot position for a given leg and configuration Parameters ---------- r_body_foot : [type] [description] leg_index : [type] [description] config : [type] [description] Returns ------- numpy array (3) Array of corresponding joint angles. """ (x, y, z) = r_body_foot # Distance from the leg origin to the foot, projected into the y-z plane R_body_foot_yz = (y ** 2 + z ** 2) ** 0.5 # Distance from the leg's forward/back point of rotation to the foot R_hip_foot_yz = (R_body_foot_yz ** 2 - config.ABDUCTION_OFFSET ** 2) ** 0.5 # Interior angle of the right triangle formed in the y-z plane by the leg that is coincident to the ab/adduction axis # For feet 2 (front left) and 4 (back left), the abduction offset is positive, for the right feet, the abduction offset is negative. cos_param = config.ABDUCTION_OFFSETS[leg_index] / R_body_foot_yz if abs(cos_param) > 0.9: print("Clipping 1st cos param") cos_param = np.clip(cos_param, -0.9, 0.9) phi = np.arccos(cos_param) # Angle of the y-z projection of the hip-to-foot vector, relative to the positive y-axis hip_foot_angle = np.arctan2(z, y) # Ab/adduction angle, relative to the positive y-axis abduction_angle = phi + hip_foot_angle # theta: Angle between the tilted negative z-axis and the hip-to-foot vector theta = np.arctan2(-x, R_hip_foot_yz) # Distance between the hip and foot R_hip_foot = (R_hip_foot_yz ** 2 + x ** 2) ** 0.5 # Using law of cosines to determine the angle between upper leg links cos_param = (config.UPPER_LEG ** 2 + R_hip_foot ** 2 - config.LOWER_LEG ** 2) / (2.0*config.UPPER_LEG*R_hip_foot) # Ensure that the leg isn't over or under extending cos_param = np.clip(cos_param, -0.9, 0.9) if abs(cos_param) > 0.9: print("Clipping 2nd cos param") # gamma: Angle between upper leg links and the center of the leg gamma = np.arccos(cos_param) return np.array([abduction_angle, theta - gamma, theta + gamma]) def four_legs_inverse_kinematics(r_body_foot, config): """Find the joint angles for all twelve DOF correspoinding to the given matrix of body-relative foot positions. Parameters ---------- r_body_foot : numpy array (3,4) Matrix of the body-frame foot positions. Each column corresponds to a separate foot. config : Config object Object of robot configuration parameters. Returns ------- numpy array (3,4) Matrix of corresponding joint angles. """ alpha = np.zeros((3, 4)) for i in range(4): body_offset = config.LEG_ORIGINS[:, i] alpha[:, i] = leg_explicit_inverse_kinematics( r_body_foot[:, i] - body_offset, i, config ) return alpha
3,449
Python
34.204081
136
0.636416
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/woofer/HardwareConfig.py
""" Per-robot configuration file that is particular to each individual robot, not just the type of robot. """ import numpy as np ODRIVE_SERIAL_NUMBERS = [ "2065339F304B", "208F3384304B", "365833753037", "207E35753748", "208F3385304B", "208E3387304B", ] ACTUATOR_DIRECTIONS = np.array([[1, 1, -1, -1], [-1, -1, -1, -1], [1, 1, 1, 1]]) ANGLE_OFFSETS = np.array( [ [0, 0, 0, 0], [np.pi / 2, np.pi / 2, np.pi / 2, np.pi / 2], [-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2], ] ) def map_actuators_to_axes(odrives): axes = [[None for _ in range(4)] for _ in range(3)] axes[0][0] = odrives[1].axis1 axes[1][0] = odrives[0].axis0 axes[2][0] = odrives[0].axis1 axes[0][1] = odrives[1].axis0 axes[1][1] = odrives[2].axis1 axes[2][1] = odrives[2].axis0 axes[0][2] = odrives[4].axis1 axes[1][2] = odrives[5].axis0 axes[2][2] = odrives[5].axis1 axes[0][3] = odrives[4].axis0 axes[1][3] = odrives[3].axis1 axes[2][3] = odrives[3].axis0 return axes
1,057
Python
22.511111
101
0.553453
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/woofer/Config.py
import numpy as np from scipy.linalg import solve class BehaviorState(Enum): REST = 0 TROT = 1 HOP = 2 FINISHHOP = 3 class UserInputParams: def __init__(self): self.max_x_velocity = 0.5 self.max_y_velocity = 0.24 self.max_yaw_rate = 0.2 self.max_pitch = 30.0 * np.pi / 180.0 class MovementReference: """Stores movement reference """ def __init__(self): self.v_xy_ref = np.array([0, 0]) self.wz_ref = 0.0 self.z_ref = -0.265 self.pitch = 0.0 self.roll = 0.0 class SwingParams: """Swing Parameters """ def __init__(self): self.z_coeffs = None self.z_clearance = 0.05 self.alpha = ( 0.5 ) # Ratio between touchdown distance and total horizontal stance movement self.beta = ( 0.5 ) # Ratio between touchdown distance and total horizontal stance movement @property def z_clearance(self): return self.__z_clearance @z_clearance.setter def z_clearance(self, z): self.__z_clearance = z b_z = np.array([0, 0, 0, 0, self.__z_clearance]) A_z = np.array( [ [0, 0, 0, 0, 1], [1, 1, 1, 1, 1], [0, 0, 0, 1, 0], [4, 3, 2, 1, 0], [0.5 ** 4, 0.5 ** 3, 0.5 ** 2, 0.5 ** 1, 0.5 ** 0], ] ) self.z_coeffs = solve(A_z, b_z) class StanceParams: """Stance parameters """ def __init__(self): self.z_time_constant = 0.02 self.z_speed = 0.03 # maximum speed [m/s] self.pitch_deadband = 0.02 self.pitch_time_constant = 0.25 self.max_pitch_rate = 0.15 self.roll_speed = 0.16 # maximum roll rate [rad/s] self.delta_x = 0.23 self.delta_y = 0.173 self.x_shift = -0.01 @property def default_stance(self): return np.array( [ [ self.delta_x + self.x_shift, self.delta_x + self.x_shift, -self.delta_x + self.x_shift, -self.delta_x + self.x_shift, ], [-self.delta_y, self.delta_y, -self.delta_y, self.delta_y], [0, 0, 0, 0], ] ) class GaitParams: """Gait Parameters """ def __init__(self): self.dt = 0.01 self.num_phases = 4 self.contact_phases = np.array( [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]] ) self.overlap_time = ( 0.5 # duration of the phase where all four feet are on the ground ) self.swing_time = ( 0.5 # duration of the phase when only two feet are on the ground ) @property def overlap_ticks(self): return int(self.overlap_time / self.dt) @property def swing_ticks(self): return int(self.swing_time / self.dt) @property def stance_ticks(self): return 2 * self.overlap_ticks + self.swing_ticks @property def phase_times(self): return np.array( [self.overlap_ticks, self.swing_ticks, self.overlap_ticks, self.swing_ticks] ) @property def phase_length(self): return 2 * self.overlap_ticks + 2 * self.swing_ticks class RobotConfig: """Woofer hardware parameters """ def __init__(self): # Robot geometry self.LEG_FB = 0.23 # front-back distance from center line to leg axis self.LEG_LR = 0.109 # left-right distance from center line to leg plane self.ABDUCTION_OFFSET = 0.064 # distance from abduction axis to leg self.FOOT_RADIUS = 0.02 self.UPPER_LEG = 0.18 self.LOWER_LEG = 0.32 # Update hip geometry self.HIP_L = 0.0394 self.HIP_W = 0.0744 self.HIP_T = 0.0214 self.HIP_OFFSET = 0.0132 self.L = 0.66 self.W = 0.176 self.T = 0.092 self.LEG_ORIGINS = np.array( [ [self.LEG_FB, self.LEG_FB, -self.LEG_FB, -self.LEG_FB], [-self.LEG_LR, self.LEG_LR, -self.LEG_LR, self.LEG_LR], [0, 0, 0, 0], ] ) self.ABDUCTION_OFFSETS = np.array( [ -self.ABDUCTION_OFFSET, self.ABDUCTION_OFFSET, -self.ABDUCTION_OFFSET, self.ABDUCTION_OFFSET, ] ) self.START_HEIGHT = 0.3 # Robot inertia params self.FRAME_MASS = 3.0 # kg self.MODULE_MASS = 1.033 # kg self.LEG_MASS = 0.15 # kg self.MASS = self.FRAME_MASS + (self.MODULE_MASS + self.LEG_MASS) * 4 # Compensation factor of 3 because the inertia measurement was just # of the carbon fiber and plastic parts of the frame and did not # include the hip servos and electronics self.FRAME_INERTIA = tuple( map(lambda x: 3.0 * x, (1.844e-4, 1.254e-3, 1.337e-3)) ) self.MODULE_INERTIA = (3.698e-5, 7.127e-6, 4.075e-5) leg_z = 1e-6 leg_mass = 0.010 leg_x = 1 / 12 * self.LOWER_LEG ** 2 * leg_mass leg_y = leg_x self.LEG_INERTIA = (leg_x, leg_y, leg_z) # Joint params G = 220 # Servo gear ratio m_rotor = 0.016 # Servo rotor mass r_rotor = 0.005 # Rotor radius self.ARMATURE = G ** 2 * m_rotor * r_rotor ** 2 # Inertia of rotational joints # print("Servo armature", self.ARMATURE) NATURAL_DAMPING = 1.0 # Damping resulting from friction ELECTRICAL_DAMPING = 0.049 # Damping resulting from back-EMF self.REV_DAMPING = ( NATURAL_DAMPING + ELECTRICAL_DAMPING ) # Damping torque on the revolute joints # Force limits self.MAX_JOINT_TORQUE = 12.0 self.REVOLUTE_RANGE = 3 self.NUM_ODRIVES = 6 self.ENCODER_CPR = 2000 self.MOTOR_REDUCTION = 4 class EnvironmentConfig: """Environmental parameters """ def __init__(self): self.MU = 1.5 # coeff friction self.DT = 0.001 # seconds between simulation steps class SolverConfig: """MuJoCo solver parameters """ def __init__(self): self.JOINT_SOLREF = "0.001 1" # time constant and damping ratio for joints self.JOINT_SOLIMP = "0.9 0.95 0.001" # joint constraint parameters self.GEOM_SOLREF = "0.01 1" # time constant and damping ratio for geom contacts self.GEOM_SOLIMP = "0.9 0.95 0.001" # geometry contact parameters
6,661
Python
26.643153
88
0.523945
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/UDPComms/rover.py
#!/usr/bin/env python3 import sys import argparse import json import time import select import pexpect import UDPComms import msgpack def peek_func(port): sub = UDPComms.Subscriber(port, timeout = 10) while 1: try: data = sub.recv() print( json.dumps(data) ) except UDPComms.timeout: exit() def poke_func(port, rate): pub = UDPComms.Publisher(port) data = None while 1: if select.select([sys.stdin], [], [], 0)[0]: line = sys.stdin.readline() # detailed behaviour # reading from file: -ignores empty lines -repeats last line forever # reading from terminal: -repeats last command if line.rstrip(): data = line.rstrip() elif len(line) == 0: # exit() #uncomment to quit on end of file pass else: continue if data != None: pub.send( json.loads(data) ) time.sleep( rate/1000 ) def call_func(command, ssh = True): child = pexpect.spawn(command) if ssh: i = 1 while i == 1: try: i = child.expect(['password:', 'Are you sure you want to continue connecting', 'Welcome'], timeout=20) except pexpect.EOF: print("Can't connect to device") exit() except pexpect.TIMEOUT: print("Interaction with device failed") exit() if i == 1: child.sendline('yes') if i == 0: child.sendline('raspberry') else: try: child.expect('robot:', timeout=1) child.sendline('hello') except pexpect.TIMEOUT: pass child.interact() if __name__ == '__main__': parser = argparse.ArgumentParser() subparsers = parser.add_subparsers(dest='subparser') peek = subparsers.add_parser("peek") peek.add_argument('port', help="UDP port to subscribe to", type=int) poke = subparsers.add_parser("poke") poke.add_argument('port', help="UDP port to publish the data to", type=int) poke.add_argument('rate', help="how often to republish (ms)", type=float) peek = subparsers.add_parser("discover") commands = ['status', 'log', 'start', 'stop', 'restart', 'enable', 'disable'] for command in commands: status = subparsers.add_parser(command) status.add_argument('host', help="Which device to look for this program on") status.add_argument('unit', help="The unit whose status we want to know", nargs='?', default=None) connect = subparsers.add_parser('connect') connect.add_argument('host', help="Which device to log into") args = parser.parse_args() if args.subparser == 'peek': peek_func(args.port) elif args.subparser == 'poke': poke_func(args.port, args.rate) elif args.subparser == 'connect': call_func("ssh pi@"+args.host+".local") elif args.subparser == 'discover': call_func("nmap -sP 10.0.0.0/24", ssh=False) elif args.subparser in commands: if args.unit is None: args.unit = args.host if args.host == 'local': prefix = "" ssh = False else: prefix = "ssh pi@"+args.host+".local " ssh = True if args.subparser == 'status': call_func(prefix + "sudo systemctl status "+args.unit, ssh) elif args.subparser == 'log': call_func(prefix + "sudo journalctl -f -u "+args.unit, ssh) elif args.subparser == 'start': call_func(prefix + "sudo systemctl start "+args.unit, ssh) elif args.subparser == 'stop': call_func(prefix + "sudo systemctl stop "+args.unit, ssh) elif args.subparser == 'restart': call_func(prefix + "sudo systemctl restart "+args.unit, ssh) elif args.subparser == 'enable': call_func(prefix + "sudo systemctl enable "+args.unit, ssh) elif args.subparser == 'disable': call_func(prefix + "sudo systemctl disable "+args.unit, ssh) else: parser.print_help()
4,329
Python
30.838235
84
0.546778
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/UDPComms/__init__.py
from .UDPComms import Publisher from .UDPComms import Subscriber from .UDPComms import timeout
95
Python
22.999994
32
0.842105
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/UDPComms/setup.py
#!/usr/bin/env python from distutils.core import setup setup(name='UDPComms', version='1.1dev', py_modules=['UDPComms'], description='Simple library for sending messages over UDP', author='Michal Adamkiewicz', author_email='[email protected]', url='https://github.com/stanfordroboticsclub/UDP-Comms', )
349
Python
25.923075
65
0.673352
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/UDPComms/UDPComms.py
import socket import struct from collections import namedtuple from time import monotonic import msgpack import time timeout = socket.timeout MAX_SIZE = 65507 class Publisher: def __init__(self, port_tx,port): """ Create a Publisher Object Arguments: port -- the port to publish the messages on """ self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.des_address = ("127.0.0.1",port_tx) self.sock.bind(("127.0.0.1", port)) self.sock.settimeout(0.2) def send(self, obj): """ Publish a message. The obj can be any nesting of standard python types """ msg = msgpack.dumps(obj, use_bin_type=False) assert len(msg) < MAX_SIZE, "Encoded message too big!" self.sock.sendto(msg,self.des_address) def __del__(self): self.sock.close() class Subscriber: def __init__(self, port_rx, timeout=0.2): """ Create a Subscriber Object Arguments: port -- the port to listen to messages on timeout -- how long to wait before a message is considered out of date """ self.max_size = MAX_SIZE self.timeout = timeout self.last_data = None self.last_time = float('-inf') self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.sock.settimeout(timeout) self.sock.bind(("127.0.0.1", port_rx)) def recv(self): """ Receive a single message from the socket buffer. It blocks for up to timeout seconds. If no message is received before timeout it raises a UDPComms.timeout exception""" try: self.last_data, address = self.sock.recvfrom(3) except BlockingIOError: raise socket.timeout("no messages in buffer and called with timeout = 0") print(self.last_data) self.last_time = monotonic() return msgpack.loads(self.last_data, raw=False) def get(self): """ Returns the latest message it can without blocking. If the latest massage is older then timeout seconds it raises a UDPComms.timeout exception""" try: self.sock.settimeout(0) while True: self.last_data, address = self.sock.recvfrom(self.max_size) self.last_time = monotonic() except socket.error: pass finally: self.sock.settimeout(self.timeout) current_time = monotonic() if (current_time - self.last_time) < self.timeout: return msgpack.loads(self.last_data, raw=False) else: raise socket.timeout("timeout=" + str(self.timeout) + \ ", last message time=" + str(self.last_time) + \ ", current time=" + str(current_time)) def get_list(self): """ Returns list of messages, in the order they were received""" msg_bufer = [] try: self.sock.settimeout(0) while True: self.last_data, address = self.sock.recvfrom(self.max_size) self.last_time = monotonic() msg = msgpack.loads(self.last_data, raw=False) msg_bufer.append(msg) except socket.error: pass finally: self.sock.settimeout(self.timeout) return msg_bufer def __del__(self): self.sock.close() class Subscriber: def __init__(self, port, timeout=0.2): """ Create a Subscriber Object Arguments: port -- the port to listen to messages on timeout -- how long to wait before a message is considered out of date """ self.max_size = MAX_SIZE self.port = port self.timeout = timeout self.last_data = None self.last_time = float('-inf') self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # UDP self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) if hasattr(socket, "SO_REUSEPORT"): self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1) self.sock.settimeout(timeout) self.sock.bind(("", port)) def recv(self): """ Receive a single message from the socket buffer. It blocks for up to timeout seconds. If no message is received before timeout it raises a UDPComms.timeout exception""" try: self.last_data, address = self.sock.recvfrom(self.max_size) except BlockingIOError: raise socket.timeout("no messages in buffer and called with timeout = 0") self.last_time = monotonic() return msgpack.loads(self.last_data, raw=False) def get(self): """ Returns the latest message it can without blocking. If the latest massage is older then timeout seconds it raises a UDPComms.timeout exception""" try: self.sock.settimeout(0) while True: self.last_data, address = self.sock.recvfrom(self.max_size) self.last_time = monotonic() except socket.error: pass finally: self.sock.settimeout(self.timeout) current_time = monotonic() if (current_time - self.last_time) < self.timeout: return msgpack.loads(self.last_data, raw=False) else: raise socket.timeout("timeout=" + str(self.timeout) + \ ", last message time=" + str(self.last_time) + \ ", current time=" + str(current_time)) def get_list(self): """ Returns list of messages, in the order they were received""" msg_bufer = [] try: self.sock.settimeout(0) while True: self.last_data, address = self.sock.recvfrom(self.max_size) self.last_time = monotonic() msg = msgpack.loads(self.last_data, raw=False) msg_bufer.append(msg) except socket.error: pass finally: self.sock.settimeout(self.timeout) return msg_bufer def __del__(self): self.sock.close() if __name__ == "__main__": msg = 'very important data' a = Publisher(1000) a.send( {"text": "magic", "number":5.5, "bool":False} )
6,463
Python
33.021052
97
0.573727
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/Example/display/demo.py
import os import sys from PIL import Image sys.path.append("/home/ubuntu/Robotics/QuadrupedRobot") sys.path.extend([os.path.join(root, name) for root, dirs, _ in os.walk("/home/ubuntu/Robotics/QuadrupedRobot") for name in dirs]) from Mangdang.LCD.ST7789 import ST7789 def main(): """ The demo for picture show """ # init st7789 device disp = ST7789() disp.begin() disp.clear() # show exaple picture image=Image.open("./dog.png") image.resize((320,240)) disp.display(image) main()
527
Python
20.119999
129
0.671727
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/Adafruit_GPIO/__init__.py
from __future__ import absolute_import from Mangdang.Adafruit_GPIO.GPIO import *
82
Python
19.749995
41
0.780488
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/Adafruit_GPIO/Platform.py
# Copyright (c) 2014 Adafruit Industries # Author: Tony DiCola # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import platform import re # Platform identification constants. UNKNOWN = 0 RASPBERRY_PI = 1 BEAGLEBONE_BLACK = 2 MINNOWBOARD = 3 JETSON_NANO = 4 def platform_detect(): """Detect if running on the Raspberry Pi or Beaglebone Black and return the platform type. Will return RASPBERRY_PI, BEAGLEBONE_BLACK, or UNKNOWN.""" # Handle Raspberry Pi pi = pi_version() if pi is not None: return RASPBERRY_PI # Handle Beaglebone Black # TODO: Check the Beaglebone Black /proc/cpuinfo value instead of reading # the platform. plat = platform.platform() if plat.lower().find('armv7l-with-debian') > -1: return BEAGLEBONE_BLACK elif plat.lower().find('armv7l-with-ubuntu') > -1: return BEAGLEBONE_BLACK elif plat.lower().find('armv7l-with-glibc2.4') > -1: return BEAGLEBONE_BLACK elif plat.lower().find('tegra-aarch64-with-ubuntu') > -1: return JETSON_NANO # Handle Minnowboard # Assumption is that mraa is installed try: import mraa if mraa.getPlatformName()=='MinnowBoard MAX': return MINNOWBOARD except ImportError: pass # Couldn't figure out the platform, just return unknown. return UNKNOWN def pi_revision(): """Detect the revision number of a Raspberry Pi, useful for changing functionality like default I2C bus based on revision.""" # Revision list available at: http://elinux.org/RPi_HardwareHistory#Board_Revision_History with open('/proc/cpuinfo', 'r') as infile: for line in infile: # Match a line of the form "Revision : 0002" while ignoring extra # info in front of the revsion (like 1000 when the Pi was over-volted). match = re.match('Revision\s+:\s+.*(\w{4})$', line, flags=re.IGNORECASE) if match and match.group(1) in ['0000', '0002', '0003']: # Return revision 1 if revision ends with 0000, 0002 or 0003. return 1 elif match: # Assume revision 2 if revision ends with any other 4 chars. return 2 # Couldn't find the revision, throw an exception. raise RuntimeError('Could not determine Raspberry Pi revision.') def pi_version(): """Detect the version of the Raspberry Pi. Returns either 1, 2 or None depending on if it's a Raspberry Pi 1 (model A, B, A+, B+), Raspberry Pi 2 (model B+), or not a Raspberry Pi. """ # Check /proc/cpuinfo for the Hardware field value. # 2708 is pi 1 # 2709 is pi 2 # 2835 is pi 3 on 4.9.x kernel # Anything else is not a pi. with open('/proc/cpuinfo', 'r') as infile: cpuinfo = infile.read() # Match a line like 'Hardware : BCM2709' match = re.search('^Hardware\s+:\s+(\w+)$', cpuinfo, flags=re.MULTILINE | re.IGNORECASE) if not match: # Couldn't find the hardware, assume it isn't a pi. return None if match.group(1) == 'BCM2708': # Pi 1 return 1 elif match.group(1) == 'BCM2709': # Pi 2 return 2 elif match.group(1) == 'BCM2835': # Pi 3 / Pi on 4.9.x kernel return 3 else: # Something else, not a pi. return None
4,413
Python
37.719298
94
0.65375
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/Adafruit_GPIO/GPIO.py
# Copyright (c) 2014 Adafruit Industries # Author: Tony DiCola # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import Adafruit_GPIO.Platform as Platform OUT = 0 IN = 1 HIGH = True LOW = False RISING = 1 FALLING = 2 BOTH = 3 PUD_OFF = 0 PUD_DOWN = 1 PUD_UP = 2 class BaseGPIO(object): """Base class for implementing simple digital IO for a platform. Implementors are expected to subclass from this and provide an implementation of the setup, output, and input functions.""" def setup(self, pin, mode, pull_up_down=PUD_OFF): """Set the input or output mode for a specified pin. Mode should be either OUT or IN.""" raise NotImplementedError def output(self, pin, value): """Set the specified pin the provided high/low value. Value should be either HIGH/LOW or a boolean (true = high).""" raise NotImplementedError def input(self, pin): """Read the specified pin and return HIGH/true if the pin is pulled high, or LOW/false if pulled low.""" raise NotImplementedError def set_high(self, pin): """Set the specified pin HIGH.""" self.output(pin, HIGH) def set_low(self, pin): """Set the specified pin LOW.""" self.output(pin, LOW) def is_high(self, pin): """Return true if the specified pin is pulled high.""" return self.input(pin) == HIGH def is_low(self, pin): """Return true if the specified pin is pulled low.""" return self.input(pin) == LOW # Basic implementation of multiple pin methods just loops through pins and # processes each one individually. This is not optimal, but derived classes can # provide a more optimal implementation that deals with groups of pins # simultaneously. # See MCP230xx or PCF8574 classes for examples of optimized implementations. def output_pins(self, pins): """Set multiple pins high or low at once. Pins should be a dict of pin name to pin value (HIGH/True for 1, LOW/False for 0). All provided pins will be set to the given values. """ # General implementation just loops through pins and writes them out # manually. This is not optimized, but subclasses can choose to implement # a more optimal batch output implementation. See the MCP230xx class for # example of optimized implementation. for pin, value in iter(pins.items()): self.output(pin, value) def setup_pins(self, pins): """Setup multiple pins as inputs or outputs at once. Pins should be a dict of pin name to pin type (IN or OUT). """ # General implementation that can be optimized by derived classes. for pin, value in iter(pins.items()): self.setup(pin, value) def input_pins(self, pins): """Read multiple pins specified in the given list and return list of pin values GPIO.HIGH/True if the pin is pulled high, or GPIO.LOW/False if pulled low. """ # General implementation that can be optimized by derived classes. return [self.input(pin) for pin in pins] def add_event_detect(self, pin, edge): """Enable edge detection events for a particular GPIO channel. Pin should be type IN. Edge must be RISING, FALLING or BOTH. """ raise NotImplementedError def remove_event_detect(self, pin): """Remove edge detection for a particular GPIO channel. Pin should be type IN. """ raise NotImplementedError def add_event_callback(self, pin, callback): """Add a callback for an event already defined using add_event_detect(). Pin should be type IN. """ raise NotImplementedError def event_detected(self, pin): """Returns True if an edge has occured on a given GPIO. You need to enable edge detection using add_event_detect() first. Pin should be type IN. """ raise NotImplementedError def wait_for_edge(self, pin, edge): """Wait for an edge. Pin should be type IN. Edge must be RISING, FALLING or BOTH.""" raise NotImplementedError def cleanup(self, pin=None): """Clean up GPIO event detection for specific pin, or all pins if none is specified. """ raise NotImplementedError # helper functions useful to derived classes def _validate_pin(self, pin): # Raise an exception if pin is outside the range of allowed values. if pin < 0 or pin >= self.NUM_GPIO: raise ValueError('Invalid GPIO value, must be between 0 and {0}.'.format(self.NUM_GPIO)) def _bit2(self, src, bit, val): bit = 1 << bit return (src | bit) if val else (src & ~bit) class RPiGPIOAdapter(BaseGPIO): """GPIO implementation for the Raspberry Pi using the RPi.GPIO library.""" def __init__(self, rpi_gpio, mode=None): self.rpi_gpio = rpi_gpio # Suppress warnings about GPIO in use. rpi_gpio.setwarnings(False) # Setup board pin mode. if mode == rpi_gpio.BOARD or mode == rpi_gpio.BCM: rpi_gpio.setmode(mode) elif mode is not None: raise ValueError('Unexpected value for mode. Must be BOARD or BCM.') else: # Default to BCM numbering if not told otherwise. rpi_gpio.setmode(rpi_gpio.BCM) # Define mapping of Adafruit GPIO library constants to RPi.GPIO constants. self._dir_mapping = { OUT: rpi_gpio.OUT, IN: rpi_gpio.IN } self._pud_mapping = { PUD_OFF: rpi_gpio.PUD_OFF, PUD_DOWN: rpi_gpio.PUD_DOWN, PUD_UP: rpi_gpio.PUD_UP } self._edge_mapping = { RISING: rpi_gpio.RISING, FALLING: rpi_gpio.FALLING, BOTH: rpi_gpio.BOTH } def setup(self, pin, mode, pull_up_down=PUD_OFF): """Set the input or output mode for a specified pin. Mode should be either OUTPUT or INPUT. """ self.rpi_gpio.setup(pin, self._dir_mapping[mode], pull_up_down=self._pud_mapping[pull_up_down]) def output(self, pin, value): """Set the specified pin the provided high/low value. Value should be either HIGH/LOW or a boolean (true = high). """ self.rpi_gpio.output(pin, value) def input(self, pin): """Read the specified pin and return HIGH/true if the pin is pulled high, or LOW/false if pulled low. """ return self.rpi_gpio.input(pin) def input_pins(self, pins): """Read multiple pins specified in the given list and return list of pin values GPIO.HIGH/True if the pin is pulled high, or GPIO.LOW/False if pulled low. """ # maybe rpi has a mass read... it would be more efficient to use it if it exists return [self.rpi_gpio.input(pin) for pin in pins] def add_event_detect(self, pin, edge, callback=None, bouncetime=-1): """Enable edge detection events for a particular GPIO channel. Pin should be type IN. Edge must be RISING, FALLING or BOTH. Callback is a function for the event. Bouncetime is switch bounce timeout in ms for callback """ kwargs = {} if callback: kwargs['callback']=callback if bouncetime > 0: kwargs['bouncetime']=bouncetime self.rpi_gpio.add_event_detect(pin, self._edge_mapping[edge], **kwargs) def remove_event_detect(self, pin): """Remove edge detection for a particular GPIO channel. Pin should be type IN. """ self.rpi_gpio.remove_event_detect(pin) def add_event_callback(self, pin, callback): """Add a callback for an event already defined using add_event_detect(). Pin should be type IN. """ self.rpi_gpio.add_event_callback(pin, callback) def event_detected(self, pin): """Returns True if an edge has occured on a given GPIO. You need to enable edge detection using add_event_detect() first. Pin should be type IN. """ return self.rpi_gpio.event_detected(pin) def wait_for_edge(self, pin, edge): """Wait for an edge. Pin should be type IN. Edge must be RISING, FALLING or BOTH. """ self.rpi_gpio.wait_for_edge(pin, self._edge_mapping[edge]) def cleanup(self, pin=None): """Clean up GPIO event detection for specific pin, or all pins if none is specified. """ if pin is None: self.rpi_gpio.cleanup() else: self.rpi_gpio.cleanup(pin) class AdafruitBBIOAdapter(BaseGPIO): """GPIO implementation for the Beaglebone Black using the Adafruit_BBIO library. """ def __init__(self, bbio_gpio): self.bbio_gpio = bbio_gpio # Define mapping of Adafruit GPIO library constants to RPi.GPIO constants. self._dir_mapping = { OUT: bbio_gpio.OUT, IN: bbio_gpio.IN } self._pud_mapping = { PUD_OFF: bbio_gpio.PUD_OFF, PUD_DOWN: bbio_gpio.PUD_DOWN, PUD_UP: bbio_gpio.PUD_UP } self._edge_mapping = { RISING: bbio_gpio.RISING, FALLING: bbio_gpio.FALLING, BOTH: bbio_gpio.BOTH } def setup(self, pin, mode, pull_up_down=PUD_OFF): """Set the input or output mode for a specified pin. Mode should be either OUTPUT or INPUT. """ self.bbio_gpio.setup(pin, self._dir_mapping[mode], pull_up_down=self._pud_mapping[pull_up_down]) def output(self, pin, value): """Set the specified pin the provided high/low value. Value should be either HIGH/LOW or a boolean (true = high). """ self.bbio_gpio.output(pin, value) def input(self, pin): """Read the specified pin and return HIGH/true if the pin is pulled high, or LOW/false if pulled low. """ return self.bbio_gpio.input(pin) def input_pins(self, pins): """Read multiple pins specified in the given list and return list of pin values GPIO.HIGH/True if the pin is pulled high, or GPIO.LOW/False if pulled low. """ # maybe bbb has a mass read... it would be more efficient to use it if it exists return [self.bbio_gpio.input(pin) for pin in pins] def add_event_detect(self, pin, edge, callback=None, bouncetime=-1): """Enable edge detection events for a particular GPIO channel. Pin should be type IN. Edge must be RISING, FALLING or BOTH. Callback is a function for the event. Bouncetime is switch bounce timeout in ms for callback """ kwargs = {} if callback: kwargs['callback']=callback if bouncetime > 0: kwargs['bouncetime']=bouncetime self.bbio_gpio.add_event_detect(pin, self._edge_mapping[edge], **kwargs) def remove_event_detect(self, pin): """Remove edge detection for a particular GPIO channel. Pin should be type IN. """ self.bbio_gpio.remove_event_detect(pin) def add_event_callback(self, pin, callback, bouncetime=-1): """Add a callback for an event already defined using add_event_detect(). Pin should be type IN. Bouncetime is switch bounce timeout in ms for callback """ kwargs = {} if bouncetime > 0: kwargs['bouncetime']=bouncetime self.bbio_gpio.add_event_callback(pin, callback, **kwargs) def event_detected(self, pin): """Returns True if an edge has occured on a given GPIO. You need to enable edge detection using add_event_detect() first. Pin should be type IN. """ return self.bbio_gpio.event_detected(pin) def wait_for_edge(self, pin, edge): """Wait for an edge. Pin should be type IN. Edge must be RISING, FALLING or BOTH. """ self.bbio_gpio.wait_for_edge(pin, self._edge_mapping[edge]) def cleanup(self, pin=None): """Clean up GPIO event detection for specific pin, or all pins if none is specified. """ if pin is None: self.bbio_gpio.cleanup() else: self.bbio_gpio.cleanup(pin) class AdafruitMinnowAdapter(BaseGPIO): """GPIO implementation for the Minnowboard + MAX using the mraa library""" def __init__(self,mraa_gpio): self.mraa_gpio = mraa_gpio # Define mapping of Adafruit GPIO library constants to mraa constants self._dir_mapping = { OUT: self.mraa_gpio.DIR_OUT, IN: self.mraa_gpio.DIR_IN } self._pud_mapping = { PUD_OFF: self.mraa_gpio.MODE_STRONG, PUD_UP: self.mraa_gpio.MODE_HIZ, PUD_DOWN: self.mraa_gpio.MODE_PULLDOWN } self._edge_mapping = { RISING: self.mraa_gpio.EDGE_RISING, FALLING: self.mraa_gpio.EDGE_FALLING, BOTH: self.mraa_gpio.EDGE_BOTH } def setup(self,pin,mode): """Set the input or output mode for a specified pin. Mode should be either DIR_IN or DIR_OUT. """ self.mraa_gpio.Gpio.dir(self.mraa_gpio.Gpio(pin),self._dir_mapping[mode]) def output(self,pin,value): """Set the specified pin the provided high/low value. Value should be either 1 (ON or HIGH), or 0 (OFF or LOW) or a boolean. """ self.mraa_gpio.Gpio.write(self.mraa_gpio.Gpio(pin), value) def input(self,pin): """Read the specified pin and return HIGH/true if the pin is pulled high, or LOW/false if pulled low. """ return self.mraa_gpio.Gpio.read(self.mraa_gpio.Gpio(pin)) def add_event_detect(self, pin, edge, callback=None, bouncetime=-1): """Enable edge detection events for a particular GPIO channel. Pin should be type IN. Edge must be RISING, FALLING or BOTH. Callback is a function for the event. Bouncetime is switch bounce timeout in ms for callback """ kwargs = {} if callback: kwargs['callback']=callback if bouncetime > 0: kwargs['bouncetime']=bouncetime self.mraa_gpio.Gpio.isr(self.mraa_gpio.Gpio(pin), self._edge_mapping[edge], **kwargs) def remove_event_detect(self, pin): """Remove edge detection for a particular GPIO channel. Pin should be type IN. """ self.mraa_gpio.Gpio.isrExit(self.mraa_gpio.Gpio(pin)) def wait_for_edge(self, pin, edge): """Wait for an edge. Pin should be type IN. Edge must be RISING, FALLING or BOTH. """ self.bbio_gpio.wait_for_edge(self.mraa_gpio.Gpio(pin), self._edge_mapping[edge]) def get_platform_gpio(**keywords): """Attempt to return a GPIO instance for the platform which the code is being executed on. Currently supports only the Raspberry Pi using the RPi.GPIO library and Beaglebone Black using the Adafruit_BBIO library. Will throw an exception if a GPIO instance can't be created for the current platform. The returned GPIO object is an instance of BaseGPIO. """ plat = Platform.platform_detect() if plat == Platform.RASPBERRY_PI: import RPi.GPIO return RPiGPIOAdapter(RPi.GPIO, **keywords) elif plat == Platform.BEAGLEBONE_BLACK: import Adafruit_BBIO.GPIO return AdafruitBBIOAdapter(Adafruit_BBIO.GPIO, **keywords) elif plat == Platform.MINNOWBOARD: import mraa return AdafruitMinnowAdapter(mraa, **keywords) elif plat == Platform.JETSON_NANO: import Jetson.GPIO return RPiGPIOAdapter(Jetson.GPIO, **keywords) elif plat == Platform.UNKNOWN: raise RuntimeError('Could not determine platform.')
17,268
Python
39.160465
100
0.618253
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/Adafruit_GPIO/SPI.py
# Copyright (c) 2014 Adafruit Industries # Author: Tony DiCola # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import operator import time import Mangdang.Adafruit_GPIO as GPIO MSBFIRST = 0 LSBFIRST = 1 class SpiDev(object): """Hardware-based SPI implementation using the spidev interface.""" def __init__(self, port, device, max_speed_hz=500000): """Initialize an SPI device using the SPIdev interface. Port and device identify the device, for example the device /dev/spidev1.0 would be port 1 and device 0. """ import spidev self._device = spidev.SpiDev() self._device.open(port, device) self._device.max_speed_hz=max_speed_hz # Default to mode 0, and make sure CS is active low. self._device.mode = 0 #self._device.cshigh = False def set_clock_hz(self, hz): """Set the speed of the SPI clock in hertz. Note that not all speeds are supported and a lower speed might be chosen by the hardware. """ self._device.max_speed_hz=hz def set_mode(self, mode): """Set SPI mode which controls clock polarity and phase. Should be a numeric value 0, 1, 2, or 3. See wikipedia page for details on meaning: http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus """ if mode < 0 or mode > 3: raise ValueError('Mode must be a value 0, 1, 2, or 3.') self._device.mode = mode def set_bit_order(self, order): """Set order of bits to be read/written over serial lines. Should be either MSBFIRST for most-significant first, or LSBFIRST for least-signifcant first. """ if order == MSBFIRST: self._device.lsbfirst = False elif order == LSBFIRST: self._device.lsbfirst = True else: raise ValueError('Order must be MSBFIRST or LSBFIRST.') def close(self): """Close communication with the SPI device.""" self._device.close() def write(self, data): """Half-duplex SPI write. The specified array of bytes will be clocked out the MOSI line. """ self._device.writebytes(data) def read(self, length): """Half-duplex SPI read. The specified length of bytes will be clocked in the MISO line and returned as a bytearray object. """ return bytearray(self._device.readbytes(length)) def transfer(self, data): """Full-duplex SPI read and write. The specified array of bytes will be clocked out the MOSI line, while simultaneously bytes will be read from the MISO line. Read bytes will be returned as a bytearray object. """ return bytearray(self._device.xfer2(data)) class SpiDevMraa(object): """Hardware SPI implementation with the mraa library on Minnowboard""" def __init__(self, port, device, max_speed_hz=500000): import mraa self._device = mraa.Spi(0) self._device.mode(0) def set_clock_hz(self, hz): """Set the speed of the SPI clock in hertz. Note that not all speeds are supported and a lower speed might be chosen by the hardware. """ self._device.frequency(hz) def set_mode(self,mode): """Set SPI mode which controls clock polarity and phase. Should be a numeric value 0, 1, 2, or 3. See wikipedia page for details on meaning: http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus """ if mode < 0 or mode > 3: raise ValueError('Mode must be a value 0, 1, 2, or 3.') self._device.mode(mode) def set_bit_order(self, order): """Set order of bits to be read/written over serial lines. Should be either MSBFIRST for most-significant first, or LSBFIRST for least-signifcant first. """ if order == MSBFIRST: self._device.lsbmode(False) elif order == LSBFIRST: self._device.lsbmode(True) else: raise ValueError('Order must be MSBFIRST or LSBFIRST.') def close(self): """Close communication with the SPI device.""" self._device.Spi() def write(self, data): """Half-duplex SPI write. The specified array of bytes will be clocked out the MOSI line. """ self._device.write(bytearray(data)) class BitBang(object): """Software-based implementation of the SPI protocol over GPIO pins.""" def __init__(self, gpio, sclk, mosi=None, miso=None, ss=None): """Initialize bit bang (or software) based SPI. Must provide a BaseGPIO class, the SPI clock, and optionally MOSI, MISO, and SS (slave select) pin numbers. If MOSI is set to None then writes will be disabled and fail with an error, likewise for MISO reads will be disabled. If SS is set to None then SS will not be asserted high/low by the library when transfering data. """ self._gpio = gpio self._sclk = sclk self._mosi = mosi self._miso = miso self._ss = ss # Set pins as outputs/inputs. gpio.setup(sclk, GPIO.OUT) if mosi is not None: gpio.setup(mosi, GPIO.OUT) if miso is not None: gpio.setup(miso, GPIO.IN) if ss is not None: gpio.setup(ss, GPIO.OUT) # Assert SS high to start with device communication off. gpio.set_high(ss) # Assume mode 0. self.set_mode(0) # Assume most significant bit first order. self.set_bit_order(MSBFIRST) def set_clock_hz(self, hz): """Set the speed of the SPI clock. This is unsupported with the bit bang SPI class and will be ignored. """ pass def set_mode(self, mode): """Set SPI mode which controls clock polarity and phase. Should be a numeric value 0, 1, 2, or 3. See wikipedia page for details on meaning: http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus """ if mode < 0 or mode > 3: raise ValueError('Mode must be a value 0, 1, 2, or 3.') if mode & 0x02: # Clock is normally high in mode 2 and 3. self._clock_base = GPIO.HIGH else: # Clock is normally low in mode 0 and 1. self._clock_base = GPIO.LOW if mode & 0x01: # Read on trailing edge in mode 1 and 3. self._read_leading = False else: # Read on leading edge in mode 0 and 2. self._read_leading = True # Put clock into its base state. self._gpio.output(self._sclk, self._clock_base) def set_bit_order(self, order): """Set order of bits to be read/written over serial lines. Should be either MSBFIRST for most-significant first, or LSBFIRST for least-signifcant first. """ # Set self._mask to the bitmask which points at the appropriate bit to # read or write, and appropriate left/right shift operator function for # reading/writing. if order == MSBFIRST: self._mask = 0x80 self._write_shift = operator.lshift self._read_shift = operator.rshift elif order == LSBFIRST: self._mask = 0x01 self._write_shift = operator.rshift self._read_shift = operator.lshift else: raise ValueError('Order must be MSBFIRST or LSBFIRST.') def close(self): """Close the SPI connection. Unused in the bit bang implementation.""" pass def write(self, data, assert_ss=True, deassert_ss=True): """Half-duplex SPI write. If assert_ss is True, the SS line will be asserted low, the specified bytes will be clocked out the MOSI line, and if deassert_ss is True the SS line be put back high. """ # Fail MOSI is not specified. if self._mosi is None: raise RuntimeError('Write attempted with no MOSI pin specified.') if assert_ss and self._ss is not None: self._gpio.set_low(self._ss) for byte in data: for i in range(8): # Write bit to MOSI. if self._write_shift(byte, i) & self._mask: self._gpio.set_high(self._mosi) else: self._gpio.set_low(self._mosi) # Flip clock off base. self._gpio.output(self._sclk, not self._clock_base) # Return clock to base. self._gpio.output(self._sclk, self._clock_base) if deassert_ss and self._ss is not None: self._gpio.set_high(self._ss) def read(self, length, assert_ss=True, deassert_ss=True): """Half-duplex SPI read. If assert_ss is true, the SS line will be asserted low, the specified length of bytes will be clocked in the MISO line, and if deassert_ss is true the SS line will be put back high. Bytes which are read will be returned as a bytearray object. """ if self._miso is None: raise RuntimeError('Read attempted with no MISO pin specified.') if assert_ss and self._ss is not None: self._gpio.set_low(self._ss) result = bytearray(length) for i in range(length): for j in range(8): # Flip clock off base. self._gpio.output(self._sclk, not self._clock_base) # Handle read on leading edge of clock. if self._read_leading: if self._gpio.is_high(self._miso): # Set bit to 1 at appropriate location. result[i] |= self._read_shift(self._mask, j) else: # Set bit to 0 at appropriate location. result[i] &= ~self._read_shift(self._mask, j) # Return clock to base. self._gpio.output(self._sclk, self._clock_base) # Handle read on trailing edge of clock. if not self._read_leading: if self._gpio.is_high(self._miso): # Set bit to 1 at appropriate location. result[i] |= self._read_shift(self._mask, j) else: # Set bit to 0 at appropriate location. result[i] &= ~self._read_shift(self._mask, j) if deassert_ss and self._ss is not None: self._gpio.set_high(self._ss) return result def transfer(self, data, assert_ss=True, deassert_ss=True): """Full-duplex SPI read and write. If assert_ss is true, the SS line will be asserted low, the specified bytes will be clocked out the MOSI line while bytes will also be read from the MISO line, and if deassert_ss is true the SS line will be put back high. Bytes which are read will be returned as a bytearray object. """ if self._mosi is None: raise RuntimeError('Write attempted with no MOSI pin specified.') if self._miso is None: raise RuntimeError('Read attempted with no MISO pin specified.') if assert_ss and self._ss is not None: self._gpio.set_low(self._ss) result = bytearray(len(data)) for i in range(len(data)): for j in range(8): # Write bit to MOSI. if self._write_shift(data[i], j) & self._mask: self._gpio.set_high(self._mosi) else: self._gpio.set_low(self._mosi) # Flip clock off base. self._gpio.output(self._sclk, not self._clock_base) # Handle read on leading edge of clock. if self._read_leading: if self._gpio.is_high(self._miso): # Set bit to 1 at appropriate location. result[i] |= self._read_shift(self._mask, j) else: # Set bit to 0 at appropriate location. result[i] &= ~self._read_shift(self._mask, j) # Return clock to base. self._gpio.output(self._sclk, self._clock_base) # Handle read on trailing edge of clock. if not self._read_leading: if self._gpio.is_high(self._miso): # Set bit to 1 at appropriate location. result[i] |= self._read_shift(self._mask, j) else: # Set bit to 0 at appropriate location. result[i] &= ~self._read_shift(self._mask, j) if deassert_ss and self._ss is not None: self._gpio.set_high(self._ss) return result
13,970
Python
41.465045
81
0.585827
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/LCD/ST7789.py
# ST7789 IPS LCD (320x240) driver import numbers import time import numpy as np import sys import os from PIL import Image from PIL import ImageDraw sys.path.append("/home/ubuntu/Robotics/QuadrupedRobot") sys.path.extend([os.path.join(root, name) for root, dirs, _ in os.walk("/home/ubuntu/Robotics/QuadrupedRobot") for name in dirs]) import Mangdang.Adafruit_GPIO as GPIO import Mangdang.Adafruit_GPIO.SPI as SPI from Mangdang.LCD.gif import AnimatedGif SPI_CLOCK_HZ = 31200000 # 31.2 MHz # Constants for interacting with display registers. ST7789_TFTWIDTH = 320 ST7789_TFTHEIGHT = 240 ST7789_NOP = 0x00 ST7789_SWRESET = 0x01 ST7789_RDDID = 0x04 ST7789_RDDST = 0x09 ST7789_RDDPM = 0x0A ST7789_RDDMADCTL = 0x0B ST7789_RDDCOLMOD = 0x0C ST7789_RDDIM = 0x0D ST7789_RDDSM = 0x0E ST7789_RDDSDR = 0x0F ST7789_SLPIN = 0x10 ST7789_SLPOUT = 0x11 ST7789_PTLON = 0x12 ST7789_NORON = 0x13 ST7789_INVOFF = 0x20 ST7789_INVON = 0x21 ST7789_GAMSET = 0x26 ST7789_DISPOFF = 0x28 ST7789_DISPON = 0x29 ST7789_CASET = 0x2A ST7789_RASET = 0x2B ST7789_RAMWR = 0x2C ST7789_RAMRD = 0x2E ST7789_PTLAR = 0x30 ST7789_VSCRDEF = 0x33 ST7789_TEOFF = 0x34 ST7789_TEON = 0x35 ST7789_MADCTL = 0x36 ST7789_VSCRSADD = 0x37 ST7789_IDMOFF = 0x38 ST7789_IDMON = 0x39 ST7789_COLMOD = 0x3A ST7789_RAMWRC = 0x3C ST7789_RAMRDC = 0x3E ST7789_TESCAN = 0x44 ST7789_RDTESCAN = 0x45 ST7789_WRDISBV = 0x51 ST7789_RDDISBV = 0x52 ST7789_WRCTRLD = 0x53 ST7789_RDCTRLD = 0x54 ST7789_WRCACE = 0x55 ST7789_RDCABC = 0x56 ST7789_WRCABCMB = 0x5E ST7789_RDCABCMB = 0x5F ST7789_RDABCSDR = 0x68 ST7789_RDID1 = 0xDA ST7789_RDID2 = 0xDB ST7789_RDID3 = 0xDC ST7789_RAMCTRL = 0xB0 ST7789_RGBCTRL = 0xB1 ST7789_PORCTRL = 0xB2 ST7789_FRCTRL1 = 0xB3 ST7789_GCTRL = 0xB7 ST7789_DGMEN = 0xBA ST7789_VCOMS = 0xBB ST7789_LCMCTRL = 0xC0 ST7789_IDSET = 0xC1 ST7789_VDVVRHEN = 0xC2 ST7789_VRHS = 0xC3 ST7789_VDVSET = 0xC4 ST7789_VCMOFSET = 0xC5 ST7789_FRCTR2 = 0xC6 ST7789_CABCCTRL = 0xC7 ST7789_REGSEL1 = 0xC8 ST7789_REGSEL2 = 0xCA ST7789_PWMFRSEL = 0xCC ST7789_PWCTRL1 = 0xD0 ST7789_VAPVANEN = 0xD2 ST7789_CMD2EN = 0xDF5A6902 ST7789_PVGAMCTRL = 0xE0 ST7789_NVGAMCTRL = 0xE1 ST7789_DGMLUTR = 0xE2 ST7789_DGMLUTB = 0xE3 ST7789_GATECTRL = 0xE4 ST7789_PWCTRL2 = 0xE8 ST7789_EQCTRL = 0xE9 ST7789_PROMCTRL = 0xEC ST7789_PROMEN = 0xFA ST7789_NVMSET = 0xFC ST7789_PROMACT = 0xFE # Colours for convenience ST7789_BLACK = 0x0000 # 0b 00000 000000 00000 ST7789_BLUE = 0x001F # 0b 00000 000000 11111 ST7789_GREEN = 0x07E0 # 0b 00000 111111 00000 ST7789_RED = 0xF800 # 0b 11111 000000 00000 ST7789_CYAN = 0x07FF # 0b 00000 111111 11111 ST7789_MAGENTA = 0xF81F # 0b 11111 000000 11111 ST7789_YELLOW = 0xFFE0 # 0b 11111 111111 00000 ST7789_WHITE = 0xFFFF # 0b 11111 111111 11111 def color565(r, g, b): """Convert red, green, blue components to a 16-bit 565 RGB value. Components should be values 0 to 255. """ return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3) def image_to_data(image): """Generator function to convert a PIL image to 16-bit 565 RGB bytes.""" # NumPy is much faster at doing this. NumPy code provided by: # Keith (https://www.blogger.com/profile/02555547344016007163) pb = np.array(image.convert('RGB')).astype('uint16') color = ((pb[:,:,0] & 0xF8) << 8) | ((pb[:,:,1] & 0xFC) << 3) | (pb[:,:,2] >> 3) return np.dstack(((color >> 8) & 0xFF, color & 0xFF)).flatten().tolist() class ST7789(object): """Representation of an ST7789 IPS LCD.""" def __init__(self, rst, dc, led): """Create an instance of the display using SPI communication. Must provide the GPIO pin number for the D/C pin and the SPI driver. Can optionally provide the GPIO pin number for the reset pin as the rst parameter. """ SPI_PORT = 0 SPI_DEVICE = 0 SPI_MODE = 0b11 SPI_SPEED_HZ = 40000000 self._spi = SPI.SpiDev(SPI_PORT, SPI_DEVICE, max_speed_hz=SPI_SPEED_HZ) self._rst = rst self._dc = dc self._led = led self._gpio = None self.width = ST7789_TFTWIDTH self.height = ST7789_TFTHEIGHT if self._gpio is None: self._gpio = GPIO.get_platform_gpio() # Set DC as output. self._gpio.setup(self._dc, GPIO.OUT) # Setup reset as output (if provided). if self._rst is not None: self._gpio.setup(self._rst, GPIO.OUT) # Turn on the backlight LED self._gpio.setup(self._led, GPIO.OUT) # Set SPI to mode 0, MSB first. self._spi.set_mode(SPI_MODE) self._spi.set_bit_order(SPI.MSBFIRST) self._spi.set_clock_hz(SPI_CLOCK_HZ) # Create an image buffer. self.buffer = Image.new('RGB', (self.width, self.height)) def send(self, data, is_data=True, chunk_size=4096): """Write a byte or array of bytes to the display. Is_data parameter controls if byte should be interpreted as display data (True) or command data (False). Chunk_size is an optional size of bytes to write in a single SPI transaction, with a default of 4096. """ # Set DC low for command, high for data. self._gpio.output(self._dc, is_data) # Convert scalar argument to list so either can be passed as parameter. if isinstance(data, numbers.Number): data = [data & 0xFF] # Write data a chunk at a time. for start in range(0, len(data), chunk_size): end = min(start+chunk_size, len(data)) self._spi.write(data[start:end]) def command(self, data): """Write a byte or array of bytes to the display as command data.""" self.send(data, False) def data(self, data): """Write a byte or array of bytes to the display as display data.""" self.send(data, True) def reset(self): """Reset the display, if reset pin is connected.""" if self._rst is not None: self._gpio.set_high(self._rst) time.sleep(0.100) self._gpio.set_low(self._rst) time.sleep(0.100) self._gpio.set_high(self._rst) time.sleep(0.100) def _init(self): # Initialize the display. Broken out as a separate function so it can # be overridden by other displays in the future. time.sleep(0.012) self.command(0x11) time.sleep(0.150) self.command(0x36) self.data(0xA0) self.data(0x00) self.command(0x3A) self.data(0x05) self.command(0xB2) self.data(0x0C) self.data(0x0C) self.data(0x00) self.data(0x33) self.data(0x33) self.command(0xB7) self.data(0x35) ## ---------------------------------ST7789S Power setting - ---------------------------- self.command(0xBB) self.data(0x29) # self.command(0xC0) # self.data(0x2C) self.command(0xC2) self.data(0x01) self.command(0xC3) self.data(0x19) self.command(0xC4) self.data(0x20) self.command(0xC5) self.data(0x1A) self.command(0xC6) self.data(0x1F) ## 0x0F:60Hz # self.command(0xCA) # self.data(0x0F) # # self.command(0xC8) # self.data(0x08) # # self.command(0x55) # self.data(0x90) self.command(0xD0) self.data(0xA4) self.data(0xA1) ## --------------------------------ST7789S gamma setting - ----------------------------- self.command(0xE0) self.data(0xD0) self.data(0x08) self.data(0x0E) self.data(0x09) self.data(0x09) self.data(0x05) self.data(0x31) self.data(0x33) self.data(0x48) self.data(0x17) self.data(0x14) self.data(0x15) self.data(0x31) self.data(0x34) self.command(0xE1) self.data(0xD0) self.data(0x08) self.data(0x0E) self.data(0x09) self.data(0x09) self.data(0x15) self.data(0x31) self.data(0x33) self.data(0x48) self.data(0x17) self.data(0x14) self.data(0x15) self.data(0x31) self.data(0x34) self.command(0x21) self.command(0x29) time.sleep(0.100) # 100 ms self._gpio.set_high(self._led) def begin(self): """Initialize the display. Should be called once before other calls that interact with the display are called. """ self.reset() self._init() def set_window(self, x0=0, y0=0, x1=None, y1=None): """Set the pixel address window for proceeding drawing commands. x0 and x1 should define the minimum and maximum x pixel bounds. y0 and y1 should define the minimum and maximum y pixel bound. If no parameters are specified the default will be to update the entire display from 0,0 to width-1,height-1. """ if x1 is None: x1 = self.width-1 if y1 is None: y1 = self.height-1 self.command(ST7789_CASET) # Column addr set self.data(x0 >> 8) self.data(x0) # XSTART self.data(x1 >> 8) self.data(x1) # XEND self.command(ST7789_RASET) # Row addr set self.data(y0 >> 8) self.data(y0) # YSTART self.data(y1 >> 8) self.data(y1) # YEND self.command(ST7789_RAMWR) # write to RAM #def display(self, image=None): def display(self, image=None, x0=0, y0=0, x1=None, y1=None): """Write the display buffer or provided image to the hardware. If no image parameter is provided the display buffer will be written to the hardware. If an image is provided, it should be RGB format and the same dimensions as the display hardware. """ # By default write the internal buffer to the display. if image is None: image = self.buffer # Set address bounds to entire display. #self.set_window() if x1 is None: x1 = self.width-1 if y1 is None: y1 = self.height-1 self.set_window(x0, y0, x1, y1) #image.thumbnail((x1-x0+1, y1-y0+1), Image.ANTIALIAS) # Convert image to array of 16bit 565 RGB data bytes. # Unfortunate that this copy has to occur, but the SPI byte writing # function needs to take an array of bytes and PIL doesn't natively # store images in 16-bit 565 RGB format. pixelbytes = list(image_to_data(image)) # Write data to hardware. self.data(pixelbytes) def clear(self, color=(0,0,0)): """Clear the image buffer to the specified RGB color (default black).""" width, height = self.buffer.size self.buffer.putdata([color]*(width*height)) def draw(self): """Return a PIL ImageDraw instance for 2D drawing on the image buffer.""" return ImageDraw.Draw(self.buffer)
11,573
Python
29.781915
129
0.584723
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/LCD/gif.py
import os import time from PIL import Image from PIL import ImageOps class Frame: def __init__(self, duration=0): self.duration = duration self.image = None class AnimatedGif: def __init__(self, display, width=None, height=None, folder=None): self._frame_count = 0 self._loop = 0 self._index = 0 self._duration = 0 self._gif_files = [] self._frames = [] self._gif_folder = folder if width is not None: self._width = width else: self._width = display.width if height is not None: self._height = height else: self._height = display.height self.display = display if folder is not None: self.load_files(folder) self.preload() def advance(self): self._index = (self._index + 1) % len(self._gif_files) def back(self): self._index = (self._index - 1 + len(self._gif_files)) % len(self._gif_files) def load_files(self, folder): gif_files = [f for f in os.listdir(folder) if f.endswith(".gif")] for gif_file in gif_files: image = Image.open(folder + gif_file) # Only add animated Gifs if image.is_animated: self._gif_files.append(gif_file) #print("Found", self._gif_files) if not self._gif_files: print("No Gif files found in current folder") exit() # pylint: disable=consider-using-sys-exit def preload(self): image = Image.open(self._gif_folder + self._gif_files[self._index]) #print("Loading {}...".format(self._gif_files[self._index])) if "duration" in image.info: self._duration = image.info["duration"] else: self._duration = 0 if "loop" in image.info: self._loop = image.info["loop"] else: self._loop = 1 self._frame_count = image.n_frames del self._frames[:] for frame in range(self._frame_count): image.seek(frame) # Create blank image for drawing. # Make sure to create image with mode 'RGB' for full color. frame_object = Frame(duration=self._duration) if "duration" in image.info: frame_object.duration = image.info["duration"] frame_object.image = ImageOps.pad( # pylint: disable=no-member image.convert("RGB"), (self._width, self._height), method=Image.NEAREST, color=(0, 0, 0), centering=(0.5, 0.5), ) self._frames.append(frame_object) def play(self): # Check if we have loaded any files first if not self._gif_files: print("There are no Gif Images loaded to Play") return False #while True: for frame_object in self._frames: start_time = time.time() self.display.display(frame_object.image) while time.time() < (start_time + frame_object.duration / 1000): pass if self._loop == 1: return True if self._loop > 0: self._loop -= 1 def run(self): while True: auto_advance = self.play() if auto_advance: self.advance()
3,404
Python
31.740384
85
0.529083
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/PupperCommand/joystick.py
from UDPComms import Publisher, Subscriber, timeout from PS4Joystick import Joystick import time ## you need to git clone the PS4Joystick repo and run `sudo bash install.sh` ## Configurable ## MESSAGE_RATE = 20 PUPPER_COLOR = {"red":0, "blue":0, "green":255} joystick_pub = Publisher(8830,65530) joystick_subcriber = Subscriber(8840, timeout=0.01) joystick = Joystick() joystick.led_color(**PUPPER_COLOR) while True: values = joystick.get_input() left_y = -values["left_analog_y"] right_y = -values["right_analog_y"] right_x = values["right_analog_x"] left_x = values["left_analog_x"] L2 = values["l2_analog"] R2 = values["r2_analog"] R1 = values["button_r1"] L1 = values["button_l1"] square = values["button_square"] x = values["button_cross"] circle = values["button_circle"] triangle = values["button_triangle"] dpadx = values["dpad_right"] - values["dpad_left"] dpady = values["dpad_up"] - values["dpad_down"] msg = { "ly": left_y, "lx": left_x, "rx": right_x, "ry": right_y, "L2": L2, "R2": R2, "R1": R1, "L1": L1, "dpady": dpady, "dpadx": dpadx, "x": x, "square": square, "circle": circle, "triangle": triangle, "message_rate": MESSAGE_RATE, } joystick_pub.send(msg) try: msg = joystick_subcriber.get() joystick.led_color(**msg["ps4_color"]) except timeout: pass time.sleep(1 / MESSAGE_RATE)
1,539
Python
22.692307
76
0.581546
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Legacy/ImageOps.py
# # The Python Imaging Library. # $Id$ # # standard image operations # # History: # 2001-10-20 fl Created # 2001-10-23 fl Added autocontrast operator # 2001-12-18 fl Added Kevin's fit operator # 2004-03-14 fl Fixed potential division by zero in equalize # 2005-05-05 fl Fixed equalize for low number of values # # Copyright (c) 2001-2004 by Secret Labs AB # Copyright (c) 2001-2004 by Fredrik Lundh # # See the README file for information on usage and redistribution. # from . import Image import operator import functools import warnings # # helpers def _border(border): if isinstance(border, tuple): if len(border) == 2: left, top = right, bottom = border elif len(border) == 4: left, top, right, bottom = border else: left = top = right = bottom = border return left, top, right, bottom def _color(color, mode): if isStringType(color): from . import ImageColor color = ImageColor.getcolor(color, mode) return color def _lut(image, lut): if image.mode == "P": # FIXME: apply to lookup table, not image data raise NotImplementedError("mode P support coming soon") elif image.mode in ("L", "RGB"): if image.mode == "RGB" and len(lut) == 256: lut = lut + lut + lut return image.point(lut) else: raise IOError("not supported for this image mode") # # actions def autocontrast(image, cutoff=0, ignore=None): """ Maximize (normalize) image contrast. This function calculates a histogram of the input image, removes **cutoff** percent of the lightest and darkest pixels from the histogram, and remaps the image so that the darkest pixel becomes black (0), and the lightest becomes white (255). :param image: The image to process. :param cutoff: How many percent to cut off from the histogram. :param ignore: The background pixel value (use None for no background). :return: An image. """ histogram = image.histogram() lut = [] for layer in range(0, len(histogram), 256): h = histogram[layer:layer+256] if ignore is not None: # get rid of outliers try: h[ignore] = 0 except TypeError: # assume sequence for ix in ignore: h[ix] = 0 if cutoff: # cut off pixels from both ends of the histogram # get number of pixels n = 0 for ix in range(256): n = n + h[ix] # remove cutoff% pixels from the low end cut = n * cutoff // 100 for lo in range(256): if cut > h[lo]: cut = cut - h[lo] h[lo] = 0 else: h[lo] -= cut cut = 0 if cut <= 0: break # remove cutoff% samples from the hi end cut = n * cutoff // 100 for hi in range(255, -1, -1): if cut > h[hi]: cut = cut - h[hi] h[hi] = 0 else: h[hi] -= cut cut = 0 if cut <= 0: break # find lowest/highest samples after preprocessing for lo in range(256): if h[lo]: break for hi in range(255, -1, -1): if h[hi]: break if hi <= lo: # don't bother lut.extend(list(range(256))) else: scale = 255.0 / (hi - lo) offset = -lo * scale for ix in range(256): ix = int(ix * scale + offset) if ix < 0: ix = 0 elif ix > 255: ix = 255 lut.append(ix) return _lut(image, lut) def colorize(image, black, white, mid=None, blackpoint=0, whitepoint=255, midpoint=127): """ Colorize grayscale image. This function calculates a color wedge which maps all black pixels in the source image to the first color and all white pixels to the second color. If **mid** is specified, it uses three-color mapping. The **black** and **white** arguments should be RGB tuples or color names; optionally you can use three-color mapping by also specifying **mid**. Mapping positions for any of the colors can be specified (e.g. **blackpoint**), where these parameters are the integer value corresponding to where the corresponding color should be mapped. These parameters must have logical order, such that **blackpoint** <= **midpoint** <= **whitepoint** (if **mid** is specified). :param image: The image to colorize. :param black: The color to use for black input pixels. :param white: The color to use for white input pixels. :param mid: The color to use for midtone input pixels. :param blackpoint: an int value [0, 255] for the black mapping. :param whitepoint: an int value [0, 255] for the white mapping. :param midpoint: an int value [0, 255] for the midtone mapping. :return: An image. """ # Initial asserts assert image.mode == "L" if mid is None: assert 0 <= blackpoint <= whitepoint <= 255 else: assert 0 <= blackpoint <= midpoint <= whitepoint <= 255 # Define colors from arguments black = _color(black, "RGB") white = _color(white, "RGB") if mid is not None: mid = _color(mid, "RGB") # Empty lists for the mapping red = [] green = [] blue = [] # Create the low-end values for i in range(0, blackpoint): red.append(black[0]) green.append(black[1]) blue.append(black[2]) # Create the mapping (2-color) if mid is None: range_map = range(0, whitepoint - blackpoint) for i in range_map: red.append(black[0] + i * (white[0] - black[0]) // len(range_map)) green.append(black[1] + i * (white[1] - black[1]) // len(range_map)) blue.append(black[2] + i * (white[2] - black[2]) // len(range_map)) # Create the mapping (3-color) else: range_map1 = range(0, midpoint - blackpoint) range_map2 = range(0, whitepoint - midpoint) for i in range_map1: red.append(black[0] + i * (mid[0] - black[0]) // len(range_map1)) green.append(black[1] + i * (mid[1] - black[1]) // len(range_map1)) blue.append(black[2] + i * (mid[2] - black[2]) // len(range_map1)) for i in range_map2: red.append(mid[0] + i * (white[0] - mid[0]) // len(range_map2)) green.append(mid[1] + i * (white[1] - mid[1]) // len(range_map2)) blue.append(mid[2] + i * (white[2] - mid[2]) // len(range_map2)) # Create the high-end values for i in range(0, 256 - whitepoint): red.append(white[0]) green.append(white[1]) blue.append(white[2]) # Return converted image image = image.convert("RGB") return _lut(image, red + green + blue) def pad(image, size, method=Image.NEAREST, color=None, centering=(0.5, 0.5)): """ Returns a sized and padded version of the image, expanded to fill the requested aspect ratio and size. :param image: The image to size and crop. :param size: The requested output size in pixels, given as a (width, height) tuple. :param method: What resampling method to use. Default is :py:attr:`PIL.Image.NEAREST`. :param color: The background color of the padded image. :param centering: Control the position of the original image within the padded version. (0.5, 0.5) will keep the image centered (0, 0) will keep the image aligned to the top left (1, 1) will keep the image aligned to the bottom right :return: An image. """ im_ratio = image.width / image.height dest_ratio = float(size[0]) / size[1] if im_ratio == dest_ratio: out = image.resize(size, resample=method) else: out = Image.new(image.mode, size, color) if im_ratio > dest_ratio: new_height = int(image.height / image.width * size[0]) if new_height != size[1]: image = image.resize((size[0], new_height), resample=method) y = int((size[1] - new_height) * max(0, min(centering[1], 1))) out.paste(image, (0, y)) else: new_width = int(image.width / image.height * size[1]) if new_width != size[0]: image = image.resize((new_width, size[1]), resample=method) x = int((size[0] - new_width) * max(0, min(centering[0], 1))) out.paste(image, (x, 0)) return out def crop(image, border=0): """ Remove border from image. The same amount of pixels are removed from all four sides. This function works on all image modes. .. seealso:: :py:meth:`~PIL.Image.Image.crop` :param image: The image to crop. :param border: The number of pixels to remove. :return: An image. """ left, top, right, bottom = _border(border) return image.crop( (left, top, image.size[0]-right, image.size[1]-bottom) ) def scale(image, factor, resample=Image.NEAREST): """ Returns a rescaled image by a specific factor given in parameter. A factor greater than 1 expands the image, between 0 and 1 contracts the image. :param image: The image to rescale. :param factor: The expansion factor, as a float. :param resample: An optional resampling filter. Same values possible as in the PIL.Image.resize function. :returns: An :py:class:`~PIL.Image.Image` object. """ if factor == 1: return image.copy() elif factor <= 0: raise ValueError("the factor must be greater than 0") else: size = (int(round(factor * image.width)), int(round(factor * image.height))) return image.resize(size, resample) def deform(image, deformer, resample=Image.BILINEAR): """ Deform the image. :param image: The image to deform. :param deformer: A deformer object. Any object that implements a **getmesh** method can be used. :param resample: An optional resampling filter. Same values possible as in the PIL.Image.transform function. :return: An image. """ return image.transform( image.size, Image.MESH, deformer.getmesh(image), resample ) def equalize(image, mask=None): """ Equalize the image histogram. This function applies a non-linear mapping to the input image, in order to create a uniform distribution of grayscale values in the output image. :param image: The image to equalize. :param mask: An optional mask. If given, only the pixels selected by the mask are included in the analysis. :return: An image. """ if image.mode == "P": image = image.convert("RGB") h = image.histogram(mask) lut = [] for b in range(0, len(h), 256): histo = [_f for _f in h[b:b+256] if _f] if len(histo) <= 1: lut.extend(list(range(256))) else: step = (functools.reduce(operator.add, histo) - histo[-1]) // 255 if not step: lut.extend(list(range(256))) else: n = step // 2 for i in range(256): lut.append(n // step) n = n + h[i+b] return _lut(image, lut) def expand(image, border=0, fill=0): """ Add border to the image :param image: The image to expand. :param border: Border width, in pixels. :param fill: Pixel fill value (a color value). Default is 0 (black). :return: An image. """ left, top, right, bottom = _border(border) width = left + image.size[0] + right height = top + image.size[1] + bottom out = Image.new(image.mode, (width, height), _color(fill, image.mode)) out.paste(image, (left, top)) return out def fit(image, size, method=Image.NEAREST, bleed=0.0, centering=(0.5, 0.5)): """ Returns a sized and cropped version of the image, cropped to the requested aspect ratio and size. This function was contributed by Kevin Cazabon. :param image: The image to size and crop. :param size: The requested output size in pixels, given as a (width, height) tuple. :param method: What resampling method to use. Default is :py:attr:`PIL.Image.NEAREST`. :param bleed: Remove a border around the outside of the image from all four edges. The value is a decimal percentage (use 0.01 for one percent). The default value is 0 (no border). Cannot be greater than or equal to 0.5. :param centering: Control the cropping position. Use (0.5, 0.5) for center cropping (e.g. if cropping the width, take 50% off of the left side, and therefore 50% off the right side). (0.0, 0.0) will crop from the top left corner (i.e. if cropping the width, take all of the crop off of the right side, and if cropping the height, take all of it off the bottom). (1.0, 0.0) will crop from the bottom left corner, etc. (i.e. if cropping the width, take all of the crop off the left side, and if cropping the height take none from the top, and therefore all off the bottom). :return: An image. """ # by Kevin Cazabon, Feb 17/2000 # [email protected] # http://www.cazabon.com # ensure centering is mutable centering = list(centering) if not 0.0 <= centering[0] <= 1.0: centering[0] = 0.5 if not 0.0 <= centering[1] <= 1.0: centering[1] = 0.5 if not 0.0 <= bleed < 0.5: bleed = 0.0 # calculate the area to use for resizing and cropping, subtracting # the 'bleed' around the edges # number of pixels to trim off on Top and Bottom, Left and Right bleed_pixels = (bleed * image.size[0], bleed * image.size[1]) live_size = (image.size[0] - bleed_pixels[0] * 2, image.size[1] - bleed_pixels[1] * 2) # calculate the aspect ratio of the live_size live_size_ratio = float(live_size[0]) / live_size[1] # calculate the aspect ratio of the output image output_ratio = float(size[0]) / size[1] # figure out if the sides or top/bottom will be cropped off if live_size_ratio >= output_ratio: # live_size is wider than what's needed, crop the sides crop_width = output_ratio * live_size[1] crop_height = live_size[1] else: # live_size is taller than what's needed, crop the top and bottom crop_width = live_size[0] crop_height = live_size[0] / output_ratio # make the crop crop_left = bleed_pixels[0] + (live_size[0]-crop_width) * centering[0] crop_top = bleed_pixels[1] + (live_size[1]-crop_height) * centering[1] crop = ( crop_left, crop_top, crop_left + crop_width, crop_top + crop_height ) # resize the image and return it return image.resize(size, method, box=crop) def flip(image): """ Flip the image vertically (top to bottom). :param image: The image to flip. :return: An image. """ return image.transpose(Image.FLIP_TOP_BOTTOM) def grayscale(image): """ Convert the image to grayscale. :param image: The image to convert. :return: An image. """ return image.convert("L") def invert(image): """ Invert (negate) the image. :param image: The image to invert. :return: An image. """ lut = [] for i in range(256): lut.append(255-i) return _lut(image, lut) def mirror(image): """ Flip image horizontally (left to right). :param image: The image to mirror. :return: An image. """ return image.transpose(Image.FLIP_LEFT_RIGHT) def posterize(image, bits): """ Reduce the number of bits for each color channel. :param image: The image to posterize. :param bits: The number of bits to keep for each channel (1-8). :return: An image. """ lut = [] mask = ~(2**(8-bits)-1) for i in range(256): lut.append(i & mask) return _lut(image, lut) def solarize(image, threshold=128): """ Invert all pixel values above a threshold. :param image: The image to solarize. :param threshold: All pixels above this greyscale level are inverted. :return: An image. """ lut = [] for i in range(256): if i < threshold: lut.append(i) else: lut.append(255-i) return _lut(image, lut) # -------------------------------------------------------------------- # PIL USM components, from Kevin Cazabon. def gaussian_blur(im, radius=None): """ PIL_usm.gblur(im, [radius])""" warnings.warn( 'PIL.ImageOps.gaussian_blur is deprecated. ' 'Use PIL.ImageFilter.GaussianBlur instead. ' 'This function will be removed in a future version.', DeprecationWarning ) if radius is None: radius = 5.0 im.load() return im.im.gaussian_blur(radius) def gblur(im, radius=None): """ PIL_usm.gblur(im, [radius])""" warnings.warn( 'PIL.ImageOps.gblur is deprecated. ' 'Use PIL.ImageFilter.GaussianBlur instead. ' 'This function will be removed in a future version.', DeprecationWarning ) return gaussian_blur(im, radius) def unsharp_mask(im, radius=None, percent=None, threshold=None): """ PIL_usm.usm(im, [radius, percent, threshold])""" warnings.warn( 'PIL.ImageOps.unsharp_mask is deprecated. ' 'Use PIL.ImageFilter.UnsharpMask instead. ' 'This function will be removed in a future version.', DeprecationWarning ) if radius is None: radius = 5.0 if percent is None: percent = 150 if threshold is None: threshold = 3 im.load() return im.im.unsharp_mask(radius, percent, threshold) def usm(im, radius=None, percent=None, threshold=None): """ PIL_usm.usm(im, [radius, percent, threshold])""" warnings.warn( 'PIL.ImageOps.usm is deprecated. ' 'Use PIL.ImageFilter.UnsharpMask instead. ' 'This function will be removed in a future version.', DeprecationWarning ) return unsharp_mask(im, radius, percent, threshold) def box_blur(image, radius): """ Blur the image by setting each pixel to the average value of the pixels in a square box extending radius pixels in each direction. Supports float radius of arbitrary size. Uses an optimized implementation which runs in linear time relative to the size of the image for any radius value. :param image: The image to blur. :param radius: Size of the box in one direction. Radius 0 does not blur, returns an identical image. Radius 1 takes 1 pixel in each direction, i.e. 9 pixels in total. :return: An image. """ warnings.warn( 'PIL.ImageOps.box_blur is deprecated. ' 'Use PIL.ImageFilter.BoxBlur instead. ' 'This function will be removed in a future version.', DeprecationWarning ) image.load() return image._new(image.im.box_blur(radius))
19,772
Python
30.891935
80
0.581732
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/calibrate_tool.py
import re import tkinter as tk import tkinter.messagebox from tkinter import * import _thread import time import os import sys import numpy as np from pupper.HardwareInterface import HardwareInterface ################################################################### OverLoadCurrentMax = 1500000 OverLoadHoldCounterMax = 100 # almost 3s ServoCalibrationFilePath = '/sys/bus/i2c/devices/3-0050/eeprom' servo1_en = 25 servo2_en = 21 hw_version="" ################################################################### class LegPositionScale: def __init__(self,root,location_x,location_y,leg_name): self.LocationX = location_x self.LocationY = location_y delt_x = 40 delt_y = 45 self.Value1 = DoubleVar() self.Value2 = DoubleVar() self.Value3 = DoubleVar() self.title = Label(root,text = leg_name,font = ('bold',16)) self.label1 = Label(root,text = 'Hip') self.slider1 = Scale(root,from_=-100,to=100,variable = self.Value1,length = 120,orient = HORIZONTAL) self.label2 = Label(root,text = 'Thigh') self.slider2 = Scale(root,from_=-55,to=145,variable = self.Value2,length = 120,orient = HORIZONTAL) self.label3 = Label(root,text = 'Calf') self.slider3 = Scale(root,from_=-145,to=55,variable = self.Value3,length = 120,orient = HORIZONTAL) self.label1.place(x=location_x, y=location_y + 20) self.label2.place(x=location_x, y=location_y + delt_y*1+ 20) self.label3.place(x=location_x, y=location_y + delt_y*2+ 20) self.slider1.place(x=location_x + delt_x, y=location_y ) self.slider2.place(x=location_x + delt_x, y=location_y + delt_y*1) self.slider3.place(x=location_x + delt_x, y=location_y + delt_y*2) self.title.place(x=location_x + 70, y=location_y + delt_y*3) def setValue(self,value): self.slider1.set(value[0]) self.slider2.set(value[1]) self.slider3.set(value[2]) return True def getValue(self): value = [] value.append(self.Value1.get()) value.append(self.Value2.get()) value.append(self.Value3.get()) return value class CalibrationTool: def __init__(self,title, width, height): self.Run = True self.FileAllLines = [] #leg slider value self.Leg1SlidersValue = [0,0,0] self.Leg2SlidersValue = [0,0,0] self.Leg3SlidersValue = [0,0,0] self.Leg4SlidersValue = [0,0,0] # calibration data self.Matrix_EEPROM = np.array([[0, 0, 0, 0], [45, 45, 45, 45], [-45, -45, -45, -45]]) self.ServoStandardLAngle = [[0,0,0,0],[45,45,45,45],[-45,-45,-45,-45]] self.ServoNeutralLAngle = [[0,0,0,0],[45,45,45,45],[-45,-45,-45,-45]] self.NocalibrationServoAngle = [[0,0,0,0],[45,45,45,45],[-45,-45,-45,-45]] self.CalibrationServoAngle = [[0,0,0,0],[45,45,45,45],[-45,-45,-45,-45]] #build main window self.MainWindow = tk.Tk() screenwidth = self.MainWindow.winfo_screenwidth() screenheight = self.MainWindow.winfo_screenheight() size = '%dx%d+%d+%d' % (width, height, (screenwidth - width) / 2, (screenheight - height) / 2) self.MainWindow.geometry(size) self.MainWindow.title('MiniPupper') #Mini Pupper Calibration Tool self.MainWindow.update() #init title self.Title = Label(self.MainWindow,text = title,font = ('bold',30)) self.Title.place(x=140,y=15) #init robot image self.photo = tk.PhotoImage(file= '/home/ubuntu/Robotics/QuadrupedRobot/Doc/imgs/MiniPupper.Calibration.png') self.MainImg = Label(self.MainWindow,image = self.photo) self.MainImg.place(x=230,y=60) #init read update button self.ResetButton = Button(self.MainWindow,text = ' Reset ',font = ('bold',20),command=self.ResetButtonEvent) self.UpdateButton = Button(self.MainWindow,text = 'Update',font = ('bold',20),command=self.updateButtonEvent) self.RestoreButton = Button(self.MainWindow,text = 'Restore',font = ('bold',7),command=self.RestoreButtonEvent) self.ResetButton.place(x=600,y=100) self.UpdateButton.place(x=600,y=200) self.RestoreButton.place(x=160,y=80) #build 4 legs sliders self.Leg1Calibration = LegPositionScale(self.MainWindow,20,300, 'Leg 1') self.Leg2Calibration = LegPositionScale(self.MainWindow,220,300,'Leg 2') self.Leg3Calibration = LegPositionScale(self.MainWindow,420,300,'Leg 3') self.Leg4Calibration = LegPositionScale(self.MainWindow,620,300,'Leg 4') self.Leg1Calibration.setValue([self.ServoNeutralLAngle[0][0],self.ServoNeutralLAngle[1][0],self.ServoNeutralLAngle[2][0]]) self.Leg2Calibration.setValue([self.ServoNeutralLAngle[0][1],self.ServoNeutralLAngle[1][1],self.ServoNeutralLAngle[2][1]]) self.Leg3Calibration.setValue([self.ServoNeutralLAngle[0][2],self.ServoNeutralLAngle[1][2],self.ServoNeutralLAngle[2][2]]) self.Leg4Calibration.setValue([self.ServoNeutralLAngle[0][3],self.ServoNeutralLAngle[1][3],self.ServoNeutralLAngle[2][3]]) def setLegSlidersValue(self,value): self.Leg1Calibration.setValue(value[0]) self.Leg2Calibration.setValue(value[1]) self.Leg3Calibration.setValue(value[2]) self.Leg4Calibration.setValue(value[3]) return value def readCalibrationFile(self): #read all lines text from EEPROM try: with open(ServoCalibrationFilePath, "rb") as nv_f: arr1 = np.array(eval(nv_f.readline())) arr2 = np.array(eval(nv_f.readline())) matrix = np.append(arr1, arr2) arr3 = np.array(eval(nv_f.readline())) matrix = np.append(matrix, arr3) matrix.resize(3,4) self.Matrix_EEPROM = matrix print("Get nv calibration params: \n" , self.Matrix_EEPROM) except: matrix = np.array([[0, 0, 0, 0], [45, 45, 45, 45], [-45, -45, -45, -45]]) self.Matrix_EEPROM = matrix #update for i in range(3): for j in range(4): self.NocalibrationServoAngle[i][j] = self.Matrix_EEPROM[i,j] self.CalibrationServoAngle[i][j] = self.Matrix_EEPROM[i,j] return True def updateCalibrationMatrix(self,angle): for i in range(3): for j in range(4): self.Matrix_EEPROM[i,j] = angle[i][j] return True def writeCalibrationFile(self): #write matrix to EEPROM buf_matrix = np.zeros((3, 4)) for i in range(3): for j in range(4): buf_matrix[i,j]= self.Matrix_EEPROM[i,j] # Format array object string for np.array p1 = re.compile("([0-9]\.) ( *)") # pattern to replace the space that follows each number with a comma partially_formatted_matrix = p1.sub(r"\1,\2", str(buf_matrix)) p2 = re.compile("(\]\n)") # pattern to add a comma at the end of the first two lines formatted_matrix_with_required_commas = p2.sub("],\n", partially_formatted_matrix) with open(ServoCalibrationFilePath, "w") as nv_f: _tmp = str(buf_matrix) _tmp = _tmp.replace('.' , ',') _tmp = _tmp.replace('[' , '') _tmp = _tmp.replace(']' , '') print(_tmp, file = nv_f) nv_f.close() return True def getLegSlidersValue(self): value = [[0,0,0,0],[0,0,0,0],[0,0,0,0]] self.Leg1SlidersValue = self.Leg1Calibration.getValue() self.Leg2SlidersValue = self.Leg2Calibration.getValue() self.Leg3SlidersValue = self.Leg3Calibration.getValue() self.Leg4SlidersValue = self.Leg4Calibration.getValue() value[0] = [self.Leg1SlidersValue[0],self.Leg2SlidersValue[0],self.Leg3SlidersValue[0],self.Leg4SlidersValue[0]] value[1] = [self.Leg1SlidersValue[1],self.Leg2SlidersValue[1],self.Leg3SlidersValue[1],self.Leg4SlidersValue[1]] value[2] = [self.Leg1SlidersValue[2],self.Leg2SlidersValue[2],self.Leg3SlidersValue[2],self.Leg4SlidersValue[2]] self.ServoNeutralLAngle = value return value def ResetButtonEvent(self): value = [[0,0,0],[0,0,0],[0,0,0],[0,0,0]] for i in range(3): for j in range(4): value[j][i] = self.ServoStandardLAngle[i][j] self.setLegSlidersValue(value) return True def updateButtonEvent(self): # update angle matrix value = self.getLegSlidersValue() angle = [[0,0,0,0],[0,0,0,0],[0,0,0,0]] for i in range(3): for j in range(4): angle[i][j] = self.ServoStandardLAngle[i][j] - value[i][j] +MainWindow.NocalibrationServoAngle[i][j] # limit angle for i in range(3): for j in range(4): if angle[i][j] > 90: angle[i][j] = 90 elif angle[i][j] < -90: angle[i][j] = -90 # popup message box result = tk.messagebox.askquestion('Info:','****** Angle Matrix ******\n' +str(angle[0])+'\n' +str(angle[1])+'\n' +str(angle[2])+'\n' +'****************************\n' +' Update Matrix?') # update matrix if result == 'yes': self.updateCalibrationMatrix(angle) self.writeCalibrationFile() print('******** Angle Matrix ********') print(angle[0]) print(angle[1]) print(angle[2]) print('******************************') return True def RestoreButtonEvent(self): # update angle matrix value = self.getLegSlidersValue() angle = [[0,0,0,0],[45,45,45,45],[-45,-45,-45,-45]] # popup message box result = tk.messagebox.askquestion('Warning','Are you sure you want to Restore Factory Setting!?') # update matrix if result == 'yes': self.updateCalibrationMatrix(angle) self.writeCalibrationFile() print('******** Angle Matrix ********') print(angle[0]) print(angle[1]) print(angle[2]) print('******************************') sys.exit() for i in range(3): for j in range(4): self.NocalibrationServoAngle[i][j] = angle[i][j] #self.CalibrationServoAngle[i][j] = angle[i][j] value = [[0,0,0],[0,0,0],[0,0,0],[0,0,0]] for i in range(3): for j in range(4): value[j][i] = self.ServoStandardLAngle[i][j] self.setLegSlidersValue(value) return True def runMainWindow(self): self.MainWindow.mainloop() return True def stopMainWindow(self): self.Run = False return True OverLoadHoldCounter = 0 def OverLoadDetection(): overload = False global OverLoadHoldCounter r = os.popen("cat /sys/class/power_supply/max1720x_battery/current_now") feedback = str(r.readlines()) current_now = int(feedback[3:len(feedback)-4]) if (current_now > OverLoadCurrentMax): OverLoadHoldCounter = OverLoadHoldCounter + 1 if (OverLoadHoldCounter > OverLoadHoldCounterMax): OverLoadHoldCounter = OverLoadHoldCounterMax os.popen("echo 0 > /sys/class/gpio/gpio"+ str(servo1_en) + "/value") os.popen("echo 0 > /sys/class/gpio/gpio"+ str(servo2_en) + "/value") overload = True else: overload = False else: OverLoadHoldCounter = OverLoadHoldCounter - 10 if (OverLoadHoldCounter < 0): OverLoadHoldCounter = 0 os.popen("echo 1 > /sys/class/gpio/gpio" + str(servo1_en) + "/value") os.popen("echo 1 > /sys/class/gpio/gpio" + str(servo2_en) + "/value") overload = False return overload def updateServoValue(MainWindow,servo): while MainWindow.Run: #update leg slider value value = MainWindow.getLegSlidersValue() # overload detection overload = OverLoadDetection() if overload == True: tk.messagebox.showwarning('Warning','Servos overload, please check !!!') else: #control servo joint_angles = np.zeros((3, 4)) joint_angles2 = np.zeros((3, 4)) for i in range(3): for j in range(4): joint_angles[i,j] = (value[i][j] - (MainWindow.NocalibrationServoAngle[i][j] - MainWindow.CalibrationServoAngle[i][j]))*0.01745 servo.set_actuator_postions(joint_angles) time.sleep(0.01) ############################################## with open("/home/ubuntu/.hw_version", "r") as hw_f: hw_version = hw_f.readline() if hw_version == 'P1\n': ServoCalibrationFilePath = "/home/ubuntu/.nv_fle" servo1_en = 19 servo2_en = 26 else: servo1_en = 25 servo2_en = 21 os.system("sudo systemctl stop robot") os.system("echo 1 > /sys/class/gpio/gpio" + str(servo1_en) + "/value") os.system("echo 1 > /sys/class/gpio/gpio" + str(servo2_en) + "/value") MainWindow = CalibrationTool('MiniPupper Calibration Tool',800,500) MainWindow.readCalibrationFile() hardware_interface = HardwareInterface() try: _thread.start_new_thread( updateServoValue, ( MainWindow, hardware_interface,) ) except: print ('Thread Error') MainWindow.runMainWindow() MainWindow.stopMainWindow() os.system("sudo systemctl start robot") os.system("echo 1 > /sys/class/gpio/gpio"+ str(servo1_en) + "/value") os.system("echo 1 > /sys/class/gpio/gpio"+ str(servo2_en) + "/value")
14,538
Python
34.987624
147
0.554684
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/run_robot.py
import os import sys import threading import time import numpy as np from PIL import Image from multiprocessing import Process import multiprocessing sys.path.append("/home/ubuntu/Robotics/QuadrupedRobot") sys.path.extend([os.path.join(root, name) for root, dirs, _ in os.walk("/home/ubuntu/Robotics/QuadrupedRobot") for name in dirs]) from Mangdang.LCD.ST7789 import ST7789 from Mangdang.LCD.gif import AnimatedGif from src.Controller import Controller from src.JoystickInterface import JoystickInterface from src.State import State from pupper.MovementGroup import MovementLib from src.MovementScheme import MovementScheme from pupper.HardwareInterface import HardwareInterface from pupper.Config import Configuration from pupper.Kinematics import four_legs_inverse_kinematics quat_orientation = np.array([1, 0, 0, 0]) cartoons_folder = "/home/ubuntu/Robotics/QuadrupedRobot/Mangdang/LCD/cartoons/" current_show = "" with open("/home/ubuntu/.hw_version", "r") as hw_f: hw_version = hw_f.readline() if hw_version == 'P1\n': disp = ST7789(14, 15, 47) else : disp = ST7789(27, 24, 26) def pic_show(disp, pic_name, _lock): """ Show the specify picture Parameter: disp : display instance pic_name : picture name to show Return : None """ if pic_name == "": return global current_show if pic_name == current_show: return image=Image.open(cartoons_folder + pic_name) image.resize((320,240)) _lock.acquire() disp.display(image) _lock.release() current_show = pic_name def animated_thr_fun(_disp, duration, is_connect, current_leg, _lock): """ The thread funcation to show sleep animated gif Parameter: None Returen: None """ try: gif_player = AnimatedGif(_disp, width=320, height=240, folder=cartoons_folder) last_time = time.time() last_joint_angles = np.zeros(3) while True: if is_connect.value == 1 : #if ((current_leg[0]==last_joint_angles[0]) and (current_leg[1]==last_joint_angles[1]) and (current_leg[2]==last_joint_angles[2])) == False : if ((current_leg[0]==last_joint_angles[0]) and (current_leg[1]==last_joint_angles[1])) == False : last_time = time.time() last_joint_angles[0] = current_leg[0] last_joint_angles[1] = current_leg[1] #last_joint_angles[2] = current_leg[2] if (time.time() - last_time) > duration : _lock.acquire() gif_player.play() _lock.release() time.sleep(0.5) else : last_time = time.time() time.sleep(1.5) except KeyboardInterrupt: _lock.release() pass def cmd_dump(cmd): """ debug interface to show all info about PS4 command Parameter: None return : None """ print("\nGet PS4 command :") print("horizontal_velocity: ", cmd.horizontal_velocity) print("yaw_rate ", cmd.yaw_rate) print("height", cmd.height) print("pitch ", cmd.pitch) print("roll ", cmd.roll) print("activation ", cmd.activation) print("hop_event ", cmd.hop_event) print("trot_event ", cmd.trot_event) print("activate_event ", cmd.activate_event) def main(): """Main program """ # Create config config = Configuration() hardware_interface = HardwareInterface() # show logo global disp disp.begin() disp.clear() image=Image.open(cartoons_folder + "logo.png") image.resize((320,240)) disp.display(image) shutdown_counter = 0 # counter for shuudown cmd # Start animated process duration = 10 is_connect = multiprocessing.Value('l', 0) current_leg = multiprocessing.Array('d', [0, 0, 0]) lock = multiprocessing.Lock() animated_process = Process(target=animated_thr_fun, args=(disp, duration, is_connect, current_leg, lock)) #animated_process.start() #Create movement group scheme movement_ctl = MovementScheme(MovementLib) # Create controller and user input handles controller = Controller( config, four_legs_inverse_kinematics, ) state = State() print("Creating joystick listener...") joystick_interface = JoystickInterface(config) print("Done.") last_loop = time.time() print("Summary of gait parameters:") print("overlap time: ", config.overlap_time) print("swing time: ", config.swing_time) print("z clearance: ", config.z_clearance) print("x shift: ", config.x_shift) # Wait until the activate button has been pressed while True: print("Waiting for L1 to activate robot.") while True: command = joystick_interface.get_command(state) joystick_interface.set_color(config.ps4_deactivated_color) if command.activate_event == 1: break time.sleep(0.1) print("Robot activated.") is_connect.value = 1 joystick_interface.set_color(config.ps4_color) pic_show(disp, "walk.png", lock) while True: now = time.time() if now - last_loop < config.dt: continue last_loop = time.time() # Parse the udp joystick commands and then update the robot controller's parameters command = joystick_interface.get_command(state) #cmd_dump(command) _pic = "walk.png" if command.yaw_rate ==0 else "turnaround.png" if command.trot_event == True: _pic = "walk_r1.png" pic_show(disp, _pic, lock) if command.activate_event == 1: is_connect.value = 0 pic_show(disp, "notconnect.png", lock) print("Deactivating Robot") break state.quat_orientation = quat_orientation # movement scheme movement_switch = command.dance_switch_event gait_state = command.trot_event dance_state = command.dance_activate_event shutdown_signal = command.shutdown_signal #shutdown counter if shutdown_signal == True: shutdown_counter = shutdown_counter + 1 # press shut dow button more 3s(0.015*200), shut down system if shutdown_counter >= 200: print('shutdown system now') os.system('systemctl stop robot') os.system('shutdown -h now') # gait and movement control if gait_state == True or dance_state == True: # if triger tort event, reset the movement number to 0 movement_ctl.resetMovementNumber() movement_ctl.runMovementScheme(movement_switch) food_location = movement_ctl.getMovemenLegsLocation() attitude_location = movement_ctl.getMovemenAttitude() robot_speed = movement_ctl.getMovemenSpeed() controller.run(state,command,food_location,attitude_location,robot_speed) # Update the pwm widths going to the servos hardware_interface.set_actuator_postions(state.joint_angles) current_leg[0]= state.joint_angles[0][0] current_leg[1]= state.joint_angles[1][0] #current_leg[2]= state.joint_angles[2][0] try: main() except KeyboardInterrupt: pass
7,553
Python
33.81106
158
0.60572
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/src/MovementScheme.py
from ActuatorControl import ActuatorControl LocationStanding = [[ 0.06,0.06,-0.06,-0.06],[-0.05, 0.05,-0.05,0.05],[ -0.07,-0.07,-0.07,-0.07]] DeltLocationMax = 0.001 AttitudeMinMax = [[-20,20],[-20,20],[-100,100]] class SequenceInterpolation: def __init__(self,name,dimension): self.Name = name self.Dimension = dimension self.InterpolationNumber = 1 self.ExecuteTick = 0 self.SequenceExecuteCounter = 0 self.PhaseNumberMax = 1 self.SequencePoint = [[0,0,0]] # interpolation point data self.PointPhaseStart = 0 self.PointPhaseStop = 1 self.TnterpolationDelt = [0,0,0] self.PointNow = [0,0,0] self.PointPrevious = [0,0,0] def setCycleType(self,cycle_type,cycle_index): if cycle_type == 'Forever': self.SequenceExecuteCounter = 9999 elif cycle_type == 'Multiple': self.SequenceExecuteCounter = cycle_index else: self.SequenceExecuteCounter = 1 return True def setInterpolationNumber(self,interpolation_number): self.InterpolationNumber = interpolation_number return True def setSequencePoint(self,sequence): self.SequencePoint = sequence self.PhaseNumberMax = len(sequence) # init now and pre point phase for xyz in range(self.Dimension): self.PointNow[xyz] = sequence[0][xyz] self.PointPrevious[xyz] = sequence[0][xyz] # init start point phase self.PointPhaseStart = 0 # init stop point phase self.PointPhaseStop = self.PointPhaseStart + 1 if self.PointPhaseStop >= len(sequence): self.PointPhaseStop = self.PointPhaseStart return True def updatePointPhase(self): # update start point phase self.PointPhaseStart = self.PointPhaseStart + 1 if self.PointPhaseStart >= self.PhaseNumberMax: if self.SequenceExecuteCounter >0: self.PointPhaseStart = 0 else: self.SequenceExecuteCounter = 0 self.PointPhaseStart = self.PointPhaseStart - 1 # update stop point phase self.PointPhaseStop = self.PointPhaseStart + 1 if self.PointPhaseStop >= self.PhaseNumberMax: self.SequenceExecuteCounter = self.SequenceExecuteCounter - 1 if self.SequenceExecuteCounter >0: self.PointPhaseStop = 0 else: self.SequenceExecuteCounter = 0 self.PointPhaseStop = self.PointPhaseStop - 1 self.PointPhaseStop = 0 return True def updateInterpolationDelt(self): #get start and stop point point_start = self.SequencePoint[self.PointPhaseStart] point_stop = self.SequencePoint[self.PointPhaseStop] for xyz in range(self.Dimension): diff = point_stop[xyz] - point_start[xyz] self.TnterpolationDelt[xyz] = - diff/self.InterpolationNumber return True def getNewPoint(self): #update movement tick self.ExecuteTick = self.ExecuteTick + 1 if self.ExecuteTick >= self.InterpolationNumber: self.ExecuteTick = 0 self.updatePointPhase() self.updateInterpolationDelt() self.PointNow[0] = self.PointPrevious[0] + self.TnterpolationDelt[0] self.PointNow[1] = self.PointPrevious[1] + self.TnterpolationDelt[1] self.PointNow[2] = self.PointPrevious[2] + self.TnterpolationDelt[2] self.PointPrevious = self.PointNow return self.PointNow class Movements: def __init__(self,name,speed_enable,attitude_enable,legs_enable,actuator_enable): self.MovementName = name self.SpeedEnable = speed_enable self.AttitudeEnable = attitude_enable self.LegsEnable = legs_enable self.ActuatorEnable = actuator_enable self.ExitToStand = True self.SpeedMovements = SequenceInterpolation('speed',2) self.AttitudeMovements = SequenceInterpolation('attitude',3) self.LegsMovements = [] self.LegsMovements.append(SequenceInterpolation('leg1',3)) self.LegsMovements.append(SequenceInterpolation('leg2',3)) self.LegsMovements.append(SequenceInterpolation('leg3',3)) self.LegsMovements.append(SequenceInterpolation('leg4',3)) self.ActuatorsMovements = SequenceInterpolation('actuators',1) # init state value self.SpeedInit = [0,0,0] # x, y speed self.AttitudeInit = [0,0,0] # roll pitch yaw rate self.LegsLocationInit = [[0,0,0,0],[0,0,0,0],[0,0,0,0]] # x,y,z for 4 legs self.ActuatorsAngleInit = [0,0,0] # angle for 3 actuators # output self.SpeedOutput = [0,0,0] # x, y speed self.AttitudeOutput = [0,0,0] # roll pitch yaw rate self.LegsLocationOutput = [[0,0,0,0],[0,0,0,0],[0,0,0,0]] # x,y,z for 4 legs self.ActuatorsAngleOutput = [0,0,0] # angle for 3 actuators def setInterpolationNumber(self,number): self.ActuatorsMovements.setInterpolationNumber(number) for leg in range(4): self.LegsMovements[leg].setInterpolationNumber(number) self.AttitudeMovements.setInterpolationNumber(number) self.SpeedMovements.setInterpolationNumber(number) return True def setExitstate(self,state): if state != 'Stand': self.ExitToStand = False return True def setSpeedSequence(self,sequence,cycle_type,cycle_index): self.SpeedMovements.setSequencePoint(sequence) self.SpeedMovements.setCycleType(cycle_type,cycle_index) self.SpeedInit = sequence[0] def setAttitudeSequence(self,sequence,cycle_type,cycle_index): self.AttitudeMovements.setSequencePoint(sequence) self.AttitudeMovements.setCycleType(cycle_type,cycle_index) self.AttitudeInit = sequence[0] def setLegsSequence(self,sequence,cycle_type,cycle_index): for leg in range(4): self.LegsMovements[leg].setSequencePoint(sequence[leg]) self.LegsMovements[leg].setCycleType(cycle_type,cycle_index) # init location self.LegsLocationInit[0][leg] = sequence[leg][0][0] self.LegsLocationInit[1][leg] = sequence[leg][0][1] self.LegsLocationInit[2][leg] = sequence[leg][0][2] def setActuatorsSequence(self,sequence,cycle_type,cycle_index): self.ActuatorsMovements.setSequencePoint(sequence) self.ActuatorsMovements.setCycleType(cycle_type,cycle_index) self.ActuatorsAngleInit = sequence[0] def runMovementSequence(self): if self.SpeedEnable == 'SpeedEnable': self.SpeedOutput = self.SpeedMovements.getNewPoint() if self.AttitudeEnable == 'AttitudeEnable': self.AttitudeOutput = self.AttitudeMovements.getNewPoint() if self.LegsEnable == 'LegsEnable': for leg in range(4): leg_loaction = self.LegsMovements[leg].getNewPoint() for xyz in range(3): self.LegsLocationOutput[xyz][leg] = leg_loaction[xyz] if self.ActuatorEnable == 'ActuatorEnable': self.ActuatorsAngleOutput = self.ActuatorsMovements.getNewPoint() def getSpeedOutput(self, state = 'Normal'): if state == 'Init': return self.SpeedInit else: return self.SpeedOutput def getAttitudeOutput(self, state = 'Normal'): if state == 'Init': return self.AttitudeInit else: return self.AttitudeOutput def getLegsLocationOutput(self, state = 'Normal'): if state == 'Init': return self.LegsLocationInit else: return self.LegsLocationOutput def getActuatorsAngleOutput(self, state = 'Normal'): if state == 'Init': return self.ActuatorsAngleInit else: return self.ActuatorsAngleOutput def getMovementName(self): return self.MovementName class MovementScheme: def __init__(self,movements_lib): self.movements_lib = movements_lib self.movements_now = movements_lib[0] self.movements_pre = movements_lib[0] self.movement_now_name = movements_lib[0].getMovementName() self.movement_now_number = 0 self.ststus = 'Movement' # 'Entry' 'Movement' 'Exit' self.entry_down = False self.exit_down = False self.tick = 0 self.legs_location_pre = LocationStanding self.legs_location_now = LocationStanding self.attitude_pre = [0,0,0] self.attitude_now = [0,0,0] self.speed_pre = [0,0,0] self.speed_now = [0,0,0] self.actuators_pre = [0,0,0] self.actuators_now = [0,0,0] self.actuator = [] self.actuator.append(ActuatorControl(1)) self.actuator.append(ActuatorControl(2)) self.actuator.append(ActuatorControl(3)) def updateMovementType(self): self.movements_pre = self.movements_lib[self.movement_now_number] self.movement_now_number = self.movement_now_number + 1 if self.movement_now_number>= len(self.movements_lib): self.movement_now_number = 0 self.entry_down = False self.exit_down = False self.movements_now = self.movements_lib[self.movement_now_number] return self.movements_now.getMovementName() def resetMovementNumber(self): self.movements_pre = self.movements_lib[self.movement_now_number] self.movement_now_number = 0 self.entry_down = False self.exit_down = False self.movements_now = self.movements_lib[0] return True def updateMovement(self,movement_type): # movement state transition if movement_type != self.movement_now_name: self.ststus = 'Exit' elif(self.entry_down): self.ststus = 'Movement' elif(self.exit_down): self.ststus = 'Entry' self.movement_now_name = movement_type # update system tick self.tick = self.tick+ 1 # movement execute if self.ststus == 'Entry': location_ready = self.movements_now.getLegsLocationOutput('Init') self.legs_location_now,self.entry_down = self.updateMovementGradient(self.legs_location_pre,location_ready) self.legs_location_pre = self.legs_location_now if self.ststus == 'Exit': if self.movements_pre.ExitToStand == False: self.legs_location_now,self.exit_down = self.updateMovementGradient(self.location_pre,LocationStanding) self.legs_location_pre = self.legs_location_now else: self.legs_location_now = self.legs_location_pre self.exit_down = True elif self.ststus == 'Movement': self.updateMovemenScheme(self.tick) self.legs_location_pre = self.legs_location_now self.attitude_pre = self.attitude_now return self.legs_location_now def updateMovementGradient(self,location_now,location_target): loaction_gradient = location_now gradient_done = False gradient_done_counter = 0 #legs gradient for xyz_index in range(3): for leg_index in range(4): diff = location_now[xyz_index][leg_index] - location_target[xyz_index][leg_index] if diff > DeltLocationMax: loaction_gradient[xyz_index][leg_index] = location_now[xyz_index][leg_index] - DeltLocationMax elif diff < -DeltLocationMax: loaction_gradient[xyz_index][leg_index] = location_now[xyz_index][leg_index] + DeltLocationMax else : loaction_gradient[xyz_index][leg_index] = location_target[xyz_index][leg_index] gradient_done_counter = gradient_done_counter + 1 # movement gradient is down if gradient_done_counter == 12: gradient_done = True return loaction_gradient, gradient_done def updateMovemenScheme(self,tick): # run movement self.movements_now.runMovementSequence() # legs movement self.legs_location_now = self.movements_now.getLegsLocationOutput('normal') # speed movement self.speed_now = self.movements_now.getSpeedOutput('normal') # attitude movement self.attitude_now = self.movements_now.getAttitudeOutput('normal') # attitude movement self.actuators_now = self.movements_now.getActuatorsAngleOutput('normal') # attitude process ''' for rpy in range(3): #limite attitude angle if attitude_now[rpy] < AttitudeMinMax[rpy][0]: attitude_now[rpy] = AttitudeMinMax[rpy][0] elif attitude_now[rpy] > AttitudeMinMax[rpy][1]: attitude_now[rpy] = AttitudeMinMax[rpy][1] ''' # speed process return True def runMovementScheme(self,transition): # update movement movement_name = '' if transition == True: movement_name = self.updateMovementType() self.updateMovement(movement_name) return True def getMovemenSpeed(self): speed_now = [0,0,0] for xyz in range(3): speed_now[xyz] = -self.speed_now[xyz] return speed_now def getMovemenLegsLocation(self): return self.legs_location_now def getMovemenAttitude(self): attitude_now_rad = [0,0,0] for rpy in range(3): #angle to radin attitude_now_rad[rpy] = -self.attitude_now[rpy] / 57.3 return attitude_now_rad def getMovemenActuators(self): return self.actuators_now
14,291
Python
31.930876
130
0.607865
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/src/ActuatorControl.py
import os import sys import time class ActuatorControl: def __init__(self,pwm_number): self.pwm_number = pwm_number def updateDutyCycle(self,angle): duty_cycle = int((1.11*angle+50)*10000) return duty_cycle def updateActuatorAngle(self,angle): if self.pwm_number == 1: actuator_name = 'pwm1' elif self.pwm_number == 2: actuator_name = 'pwm2' elif self.pwm_number == 3: actuator_name = 'pwm3' duty_cycle = self.updateDutyCycle(angle) file_node = '/sys/class/pwm/pwmchip0/' + actuator_name+ '/duty_cycle' f = open(file_node, "w") f.write(str(duty_cycle)) #test = ActuatorControl(3) #time.sleep(10) #for index in range(30): # test.updateActuatorAngle(index*3) # time.sleep(0.1) # test.updateActuatorAngle(0)
856
Python
22.162162
77
0.600467
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/pupper/ServoCalibration.py
# WARNING: This file is machine generated. Edit at your own risk. import numpy as np MICROS_PER_RAD = 11.111 * 180.0 / np.pi
128
Python
17.428569
65
0.703125
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/pupper/MovementGroup.py
from src.MovementScheme import Movements def appendDanceMovement(): ''' #demo 1 dance_scheme = Movements('stand','SpeedDisable','AttitudeDisable','LegsEnable','ActuatorDisable') dance_scheme.setExitstate('Stand') dance_all_legs = [] dance_all_legs.append([[ 0.06,-0.05,-0.065]]) # leg1 dance_all_legs.append([[ 0.06, 0.05,-0.065]]) # leg2 dance_all_legs.append([[-0.06,-0.05,-0.065]]) # leg3 dance_all_legs.append([[-0.06, 0.05,-0.065]]) # leg4 dance_scheme.setInterpolationNumber(50) dance_scheme.setLegsSequence(dance_all_legs,'Forever',5) MovementLib.append(dance_scheme) # append dance ''' #demo 2 dance_scheme = Movements('push-up','SpeedEnable','AttitudeDisable','LegsEnable','ActuatorDisable') dance_scheme.setExitstate('Stand') dance_all_legs = [] dance_all_legs.append([[ 0.06,-0.05,-0.04],[ 0.06,-0.05,-0.07],[ 0.06,-0.05,-0.04],[ 0.06,-0.05,-0.04],[ 0.06,-0.05,-0.04]]) # leg1 dance_all_legs.append([[ 0.06, 0.05,-0.04],[ 0.06, 0.05,-0.07],[ 0.06, 0.05,-0.04],[ 0.06, 0.05,-0.04],[ 0.06, 0.05,-0.04]]) # leg2 dance_all_legs.append([[-0.06,-0.05,-0.04],[-0.06,-0.05,-0.07],[-0.06,-0.05,-0.04],[-0.06,-0.05,-0.04],[-0.06,-0.05,-0.04]]) # leg3 dance_all_legs.append([[-0.06, 0.05,-0.04],[-0.06, 0.05,-0.07],[-0.06, 0.05,-0.04],[-0.06, 0.05,-0.04],[-0.06, 0.05,-0.04]]) # leg4 dance_speed = [[0,0,0],[0,0,0],[0,0,0],[0.25,0,0,0],[0.25,0,0,0]] # speed_, speed_y, no_use dance_attitude = [[0,0,0],[10,0,0],[0,0,0]] # roll, pitch, yaw rate dance_scheme.setInterpolationNumber(70) dance_scheme.setLegsSequence(dance_all_legs,'Forever',1) dance_scheme.setSpeedSequence(dance_speed,'Forever',1) dance_scheme.setAttitudeSequence(dance_attitude,'Forever',1) MovementLib.append(dance_scheme) # append dance MovementLib = [] appendDanceMovement()
1,955
Python
38.918367
137
0.588235
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/pupper/HardwareInterface.py
import os import sys sys.path.append("/home/ubuntu/Robotics/QuadrupedRobot/") sys.path.extend([os.path.join(root, name) for root, dirs, _ in os.walk("/home/ubuntu/Robotics/QuadrupedRobot") for name in dirs]) from Mangdang import PWMController from pupper.Config import ServoParams, PWMParams #from __future__ import division import numpy as np class HardwareInterface: def __init__(self): self.pwm_params = PWMParams() self.servo_params = ServoParams() def set_actuator_postions(self, joint_angles): send_servo_commands(self.pwm_params, self.servo_params, joint_angles) def set_actuator_position(self, joint_angle, axis, leg): send_servo_command(self.pwm_params, self.servo_params, joint_angle, axis, leg) def pwm_to_duty_cycle(pulsewidth_micros, pwm_params): """Converts a pwm signal (measured in microseconds) to a corresponding duty cycle on the gpio pwm pin Parameters ---------- pulsewidth_micros : float Width of the pwm signal in microseconds pwm_params : PWMParams PWMParams object Returns ------- float PWM duty cycle corresponding to the pulse width """ pulsewidth_micros = int(pulsewidth_micros / 1e6 * pwm_params.freq * pwm_params.range) if np.isnan(pulsewidth_micros): return 0 return int(np.clip(pulsewidth_micros, 0, 4096)) def angle_to_pwm(angle, servo_params, axis_index, leg_index): """Converts a desired servo angle into the corresponding PWM command Parameters ---------- angle : float Desired servo angle, relative to the vertical (z) axis servo_params : ServoParams ServoParams object axis_index : int Specifies which joint of leg to control. 0 is abduction servo, 1 is inner hip servo, 2 is outer hip servo. leg_index : int Specifies which leg to control. 0 is front-right, 1 is front-left, 2 is back-right, 3 is back-left. Returns ------- float PWM width in microseconds """ angle_deviation = ( angle - servo_params.neutral_angles[axis_index, leg_index] ) * servo_params.servo_multipliers[axis_index, leg_index] pulse_width_micros = ( servo_params.neutral_position_pwm + servo_params.micros_per_rad * angle_deviation ) return pulse_width_micros def angle_to_duty_cycle(angle, pwm_params, servo_params, axis_index, leg_index): duty_cycle_f = angle_to_pwm(angle, servo_params, axis_index, leg_index) * 1e3 if np.isnan(duty_cycle_f): return 0 return int(duty_cycle_f) def initialize_pwm(pi, pwm_params): pi.set_pwm_freq(pwm_params.freq) def send_servo_commands(pwm_params, servo_params, joint_angles): for leg_index in range(4): for axis_index in range(3): duty_cycle = angle_to_duty_cycle( joint_angles[axis_index, leg_index], pwm_params, servo_params, axis_index, leg_index, ) # write duty_cycle to pwm linux kernel node file_node = "/sys/class/pwm/pwmchip0/pwm" + str(pwm_params.pins[axis_index, leg_index]) + "/duty_cycle" f = open(file_node, "w") f.write(str(duty_cycle)) def send_servo_command(pwm_params, servo_params, joint_angle, axis, leg): duty_cycle = angle_to_duty_cycle(joint_angle, pwm_params, servo_params, axis, leg) file_node = "/sys/class/pwm/pwmchip0/pwm" + str(pwm_params.pins[axis, leg]) + "/duty_cycle" f = open(file_node, "w") f.write(str(duty_cycle)) def deactivate_servos(pi, pwm_params): for leg_index in range(4): for axis_index in range(3): pi.set_pwm(pwm_params.pins[axis_index, leg_index], 0, 0)
3,798
Python
33.225225
129
0.639547
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/PS4Joystick/PS4Joystick.py
import sys import time import subprocess import math from threading import Thread from collections import OrderedDict, deque from ds4drv.actions import ActionRegistry from ds4drv.backends import BluetoothBackend, HidrawBackend from ds4drv.config import load_options from ds4drv.daemon import Daemon from ds4drv.eventloop import EventLoop from ds4drv.exceptions import BackendError from ds4drv.action import ReportAction from ds4drv.__main__ import create_controller_thread class ActionShim(ReportAction): """ intercepts the joystick report""" def __init__(self, *args, **kwargs): super(ActionShim, self).__init__(*args, **kwargs) self.timer = self.create_timer(0.02, self.intercept) self.values = None self.timestamps = deque(range(10), maxlen=10) def enable(self): self.timer.start() def disable(self): self.timer.stop() self.values = None def load_options(self, options): pass def deadzones(self,values): deadzone = 0.14 if math.sqrt( values['left_analog_x'] ** 2 + values['left_analog_y'] ** 2) < deadzone: values['left_analog_y'] = 0.0 values['left_analog_x'] = 0.0 if math.sqrt( values['right_analog_x'] ** 2 + values['right_analog_y'] ** 2) < deadzone: values['right_analog_y'] = 0.0 values['right_analog_x'] = 0.0 return values def intercept(self, report): new_out = OrderedDict() for key in report.__slots__: value = getattr(report, key) new_out[key] = value for key in ["left_analog_x", "left_analog_y", "right_analog_x", "right_analog_y", "l2_analog", "r2_analog"]: new_out[key] = 2*( new_out[key]/255 ) - 1 new_out = self.deadzones(new_out) self.timestamps.append(new_out['timestamp']) if len(set(self.timestamps)) <= 1: self.values = None else: self.values = new_out return True class Joystick: def __init__(self): self.thread = None options = load_options() if options.hidraw: raise ValueError("HID mode not supported") backend = HidrawBackend(Daemon.logger) else: subprocess.run(["hciconfig", "hciX", "up"]) backend = BluetoothBackend(Daemon.logger) backend.setup() self.thread = create_controller_thread(1, options.controllers[0]) self.thread.controller.setup_device(next(backend.devices)) self.shim = ActionShim(self.thread.controller) self.thread.controller.actions.append(self.shim) self.shim.enable() self._color = (None, None, None) self._rumble = (None, None) self._flash = (None, None) # ensure we get a value before returning while self.shim.values is None: pass def close(self): if self.thread is None: return self.thread.controller.exit("Cleaning up...") self.thread.controller.loop.stop() def __del__(self): self.close() @staticmethod def map(val, in_min, in_max, out_min, out_max): """ helper static method that helps with rescaling """ in_span = in_max - in_min out_span = out_max - out_min value_scaled = float(val - in_min) / float(in_span) value_mapped = (value_scaled * out_span) + out_min if value_mapped < out_min: value_mapped = out_min if value_mapped > out_max: value_mapped = out_max return value_mapped def get_input(self): """ returns ordered dict with state of all inputs """ if self.thread.controller.error: raise IOError("Encountered error with controller") if self.shim.values is None: raise TimeoutError("Joystick hasn't updated values in last 200ms") return self.shim.values def led_color(self, red=0, green=0, blue=0): """ set RGB color in range 0-255""" color = (int(red),int(green),int(blue)) if( self._color == color ): return self._color = color self.thread.controller.device.set_led( *self._color ) def rumble(self, small=0, big=0): """ rumble in range 0-255 """ rumble = (int(small),int(big)) if( self._rumble == rumble ): return self._rumble = rumble self.thread.controller.device.rumble( *self._rumble ) def led_flash(self, on=0, off=0): """ flash led: on and off times in range 0 - 255 """ flash = (int(on),int(off)) if( self._flash == flash ): return self._flash = flash if( self._flash == (0,0) ): self.thread.controller.device.stop_led_flash() else: self.thread.controller.device.start_led_flash( *self._flash ) if __name__ == "__main__": j = Joystick() while 1: for key, value in j.get_input().items(): print(key,value) print() time.sleep(0.1)
5,123
Python
28.28
96
0.579934
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/PS4Joystick/mac_joystick.py
import os import pygame from UDPComms import Publisher os.environ["SDL_VIDEODRIVER"] = "dummy" drive_pub = Publisher(8830) arm_pub = Publisher(8410) pygame.display.init() pygame.joystick.init() # wait until joystick is connected while 1: try: pygame.joystick.Joystick(0).init() break except pygame.error: pygame.time.wait(500) # Prints the joystick's name JoyName = pygame.joystick.Joystick(0).get_name() print("Name of the joystick:") print(JoyName) # Gets the number of axes JoyAx = pygame.joystick.Joystick(0).get_numaxes() print("Number of axis:") print(JoyAx) while True: pygame.event.pump() forward = (pygame.joystick.Joystick(0).get_axis(3)) twist = (pygame.joystick.Joystick(0).get_axis(2)) on = (pygame.joystick.Joystick(0).get_button(5)) if on: print({'f':-150*forward,'t':-80*twist}) drive_pub.send({'f':-150*forward,'t':-80*twist}) else: drive_pub.send({'f':0,'t':0}) pygame.time.wait(100)
994
Python
22.139534
56
0.662978
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/PS4Joystick/setup.py
#!/usr/bin/env python from distutils.core import setup setup(name='PS4Joystick', version='2.0', py_modules=['PS4Joystick'], description='Interfaces with a PS4 joystick over Bluetooth', author='Michal Adamkiewicz', author_email='[email protected]', url='https://github.com/stanfordroboticsclub/JoystickUDP', )
356
Python
24.499998
66
0.679775
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/PS4Joystick/local_or_remote.py
import os import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BCM) # Broadcom pin-numbering scheme GPIO.setup(21, GPIO.IN, pull_up_down=GPIO.PUD_UP) while 1: if not GPIO.input(21): print("eanbling joystick") os.system("sudo systemctl start ds4drv") os.system("sudo systemctl start joystick") #os.system("screen sudo python3 /home/pi/RoverCommand/joystick.py") else: os.system("sudo systemctl stop ds4drv") os.system("sudo systemctl stop joystick") print("not eanbling joystick") time.sleep(5)
566
Python
27.349999
75
0.673145
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/PS4Joystick/rover_example.py
from UDPComms import Publisher from PS4Joystick import Joystick import time from enum import Enum drive_pub = Publisher(8830) arm_pub = Publisher(8410) j=Joystick() MODES = Enum('MODES', 'SAFE DRIVE ARM') mode = MODES.SAFE while True: values = j.get_input() if( values['button_ps'] ): if values['dpad_up']: mode = MODES.DRIVE j.led_color(red=255) elif values['dpad_right']: mode = MODES.ARM j.led_color(blue=255) elif values['dpad_down']: mode = MODES.SAFE j.led_color(green=255) # overwrite when swiching modes to prevent phantom motions values['dpad_down'] = 0 values['dpad_up'] = 0 values['dpad_right'] = 0 values['dpad_left'] = 0 if mode == MODES.DRIVE: forward_left = - values['left_analog_y'] forward_right = - values['right_analog_y'] twist = values['right_analog_x'] on_right = values['button_r1'] on_left = values['button_l1'] l_trigger = values['l2_analog'] if on_left or on_right: if on_right: forward = forward_right else: forward = forward_left slow = 150 fast = 500 max_speed = (fast+slow)/2 + l_trigger*(fast-slow)/2 out = {'f':(max_speed*forward),'t':-150*twist} drive_pub.send(out) print(out) else: drive_pub.send({'f':0,'t':0}) elif mode == MODES.ARM: r_forward = - values['right_analog_y'] r_side = values['right_analog_x'] l_forward = - values['left_analog_y'] l_side = values['left_analog_x'] r_shoulder = values['button_r1'] l_shoulder = values['button_l1'] r_trigger = values['r2_analog'] l_trigger = values['l2_analog'] square = values['button_square'] cross = values['button_cross'] circle = values['button_circle'] triangle = values['button_triangle'] PS = values['button_ps'] # hat directions could be reversed from previous version hat = [ values["dpad_up"] - values["dpad_down"], values["dpad_right"] - values["dpad_left"] ] reset = (PS == 1) and (triangle == 1) reset_dock = (PS==1) and (square ==1) target_vel = {"x": l_side, "y": l_forward, "z": (r_trigger - l_trigger)/2, "yaw": r_side, "pitch": r_forward, "roll": (r_shoulder - l_shoulder), "grip": cross - square, "hat": hat, "reset": reset, "resetdock":reset_dock, "trueXYZ": circle, "dock": triangle} print(target_vel) arm_pub.send(target_vel) elif mode == MODES.SAFE: # random stuff to demo color features triangle = values['button_triangle'] square = values['button_square'] j.rumble(small = 255*triangle, big = 255*square) r2 = values['r2_analog'] r2 = j.map( r2, -1, 1, 0 ,255) j.led_color( green = 255, blue = r2) else: pass time.sleep(0.1)
3,285
Python
26.847457
66
0.506849
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/spot_ars.py
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import sys sys.path.append('../../') from spotmicro.util.gui import GUI from spotmicro.GymEnvs.spot_bezier_env import spotBezierEnv from spotmicro.Kinematics.SpotKinematics import SpotModel from spotmicro.GaitGenerator.Bezier import BezierGait from spotmicro.OpenLoopSM.SpotOL import BezierStepper from spotmicro.spot_env_randomizer import SpotEnvRandomizer import time from ars_lib.ars import ARSAgent, Normalizer, Policy, ParallelWorker # Multiprocessing package for python # Parallelization improvements based on: # https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/gym/pybullet_envs/ARS/ars.py import multiprocessing as mp from multiprocessing import Pipe import os import argparse # ARGUMENTS descr = "Spot Mini Mini ARS Agent Trainer." parser = argparse.ArgumentParser(description=descr) parser.add_argument("-hf", "--HeightField", help="Use HeightField", action='store_true') parser.add_argument("-nc", "--NoContactSensing", help="Disable Contact Sensing", action='store_true') parser.add_argument("-dr", "--DontRandomize", help="Do NOT Randomize State and Environment.", action='store_true') parser.add_argument("-s", "--Seed", help="Seed (Default: 0).") ARGS = parser.parse_args() # Messages for Pipe _RESET = 1 _CLOSE = 2 _EXPLORE = 3 def main(): """ The main() function. """ # Hold mp pipes mp.freeze_support() print("STARTING SPOT TRAINING ENV") seed = 0 if ARGS.Seed: seed = int(ARGS.Seed) print("SEED: {}".format(seed)) max_timesteps = 4e6 eval_freq = 1e1 save_model = True file_name = "spot_ars_" if ARGS.HeightField: height_field = True else: height_field = False if ARGS.NoContactSensing: contacts = False else: contacts = True if ARGS.DontRandomize: env_randomizer = None rand_name = "norand_" else: env_randomizer = SpotEnvRandomizer() rand_name = "rand_" # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") if contacts: models_path = os.path.join(my_path, "../models/contact") else: models_path = os.path.join(my_path, "../models/no_contact") if not os.path.exists(results_path): os.makedirs(results_path) if not os.path.exists(models_path): os.makedirs(models_path) env = spotBezierEnv(render=False, on_rack=False, height_field=height_field, draw_foot_path=False, contacts=contacts, env_randomizer=env_randomizer) # Set seeds env.seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] print("STATE DIM: {}".format(state_dim)) action_dim = env.action_space.shape[0] print("ACTION DIM: {}".format(action_dim)) max_action = float(env.action_space.high[0]) env.reset() g_u_i = GUI(env.spot.quadruped) spot = SpotModel() T_bf = spot.WorldToFoot bz_step = BezierStepper(dt=env._time_step) bzg = BezierGait(dt=env._time_step) # Initialize Normalizer normalizer = Normalizer(state_dim) # Initialize Policy policy = Policy(state_dim, action_dim, seed=seed) # Initialize Agent with normalizer, policy and gym env agent = ARSAgent(normalizer, policy, env, bz_step, bzg, spot) agent_num = 0 if os.path.exists(models_path + "/" + file_name + str(agent_num) + "_policy"): print("Loading Existing agent") agent.load(models_path + "/" + file_name + str(agent_num)) env.reset(agent.desired_velocity, agent.desired_rate) episode_reward = 0 episode_timesteps = 0 episode_num = 0 # Create mp pipes num_processes = policy.num_deltas processes = [] childPipes = [] parentPipes = [] # Store mp pipes for pr in range(num_processes): parentPipe, childPipe = Pipe() parentPipes.append(parentPipe) childPipes.append(childPipe) # Start multiprocessing # Start multiprocessing for proc_num in range(num_processes): p = mp.Process(target=ParallelWorker, args=(childPipes[proc_num], env, state_dim)) p.start() processes.append(p) print("STARTED SPOT TRAINING ENV") t = 0 while t < (int(max_timesteps)): # Maximum timesteps per rollout episode_reward, episode_timesteps = agent.train_parallel(parentPipes) t += episode_timesteps # episode_reward = agent.train() # +1 to account for 0 indexing. # +0 on ep_timesteps since it will increment +1 even if done=True print( "Total T: {} Episode Num: {} Episode T: {} Reward: {:.2f} REWARD PER STEP: {:.2f}" .format(t + 1, episode_num, episode_timesteps, episode_reward, episode_reward / float(episode_timesteps))) # Store Results (concat) if episode_num == 0: res = np.array( [[episode_reward, episode_reward / float(episode_timesteps)]]) else: new_res = np.array( [[episode_reward, episode_reward / float(episode_timesteps)]]) res = np.concatenate((res, new_res)) # Also Save Results So Far (Overwrite) # Results contain 2D numpy array of total reward for each ep # and reward per timestep for each ep np.save( results_path + "/" + str(file_name) + rand_name + "seed" + str(seed), res) # Evaluate episode if (episode_num + 1) % eval_freq == 0: if save_model: agent.save(models_path + "/" + str(file_name) + str(episode_num)) episode_num += 1 # Close pipes and hence envs for parentPipe in parentPipes: parentPipe.send([_CLOSE, "pay2"]) for p in processes: p.join() if __name__ == '__main__': main()
6,299
Python
28.166667
101
0.600572
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/env_tester.py
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import copy import sys sys.path.append('../../') from spotmicro.GymEnvs.spot_bezier_env import spotBezierEnv from spotmicro.util.gui import GUI from spotmicro.Kinematics.SpotKinematics import SpotModel from spotmicro.Kinematics.LieAlgebra import RPY from spotmicro.GaitGenerator.Bezier import BezierGait from spotmicro.spot_env_randomizer import SpotEnvRandomizer # TESTING from spotmicro.OpenLoopSM.SpotOL import BezierStepper import time import os import argparse # ARGUMENTS descr = "Spot Mini Mini Environment Tester (No Joystick)." parser = argparse.ArgumentParser(description=descr) parser.add_argument("-hf", "--HeightField", help="Use HeightField", action='store_true') parser.add_argument("-r", "--DebugRack", help="Put Spot on an Elevated Rack", action='store_true') parser.add_argument("-p", "--DebugPath", help="Draw Spot's Foot Path", action='store_true') parser.add_argument("-ay", "--AutoYaw", help="Automatically Adjust Spot's Yaw", action='store_true') parser.add_argument("-ar", "--AutoReset", help="Automatically Reset Environment When Spot Falls", action='store_true') parser.add_argument("-dr", "--DontRandomize", help="Do NOT Randomize State and Environment.", action='store_true') ARGS = parser.parse_args() def main(): """ The main() function. """ print("STARTING SPOT TEST ENV") seed = 0 max_timesteps = 4e6 # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") models_path = os.path.join(my_path, "../models") if not os.path.exists(results_path): os.makedirs(results_path) if not os.path.exists(models_path): os.makedirs(models_path) if ARGS.DebugRack: on_rack = True else: on_rack = False if ARGS.DebugPath: draw_foot_path = True else: draw_foot_path = False if ARGS.HeightField: height_field = True else: height_field = False if ARGS.DontRandomize: env_randomizer = None else: env_randomizer = SpotEnvRandomizer() env = spotBezierEnv(render=True, on_rack=on_rack, height_field=height_field, draw_foot_path=draw_foot_path, env_randomizer=env_randomizer) # Set seeds env.seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] print("STATE DIM: {}".format(state_dim)) action_dim = env.action_space.shape[0] print("ACTION DIM: {}".format(action_dim)) max_action = float(env.action_space.high[0]) state = env.reset() g_u_i = GUI(env.spot.quadruped) spot = SpotModel() T_bf0 = spot.WorldToFoot T_bf = copy.deepcopy(T_bf0) bzg = BezierGait(dt=env._time_step) bz_step = BezierStepper(dt=env._time_step, mode=0) action = env.action_space.sample() FL_phases = [] FR_phases = [] BL_phases = [] BR_phases = [] FL_Elbow = [] yaw = 0.0 print("STARTED SPOT TEST ENV") t = 0 while t < (int(max_timesteps)): bz_step.ramp_up() pos, orn, StepLength, LateralFraction, YawRate, StepVelocity, ClearanceHeight, PenetrationDepth = bz_step.StateMachine( ) pos, orn, StepLength, LateralFraction, YawRate, StepVelocity, ClearanceHeight, PenetrationDepth, SwingPeriod = g_u_i.UserInput( ) # Update Swing Period bzg.Tswing = SwingPeriod yaw = env.return_yaw() P_yaw = 5.0 if ARGS.AutoYaw: YawRate += -yaw * P_yaw # print("YAW RATE: {}".format(YawRate)) # TEMP bz_step.StepLength = StepLength bz_step.LateralFraction = LateralFraction bz_step.YawRate = YawRate bz_step.StepVelocity = StepVelocity contacts = state[-4:] FL_phases.append(env.spot.LegPhases[0]) FR_phases.append(env.spot.LegPhases[1]) BL_phases.append(env.spot.LegPhases[2]) BR_phases.append(env.spot.LegPhases[3]) # Get Desired Foot Poses T_bf = bzg.GenerateTrajectory(StepLength, LateralFraction, YawRate, StepVelocity, T_bf0, T_bf, ClearanceHeight, PenetrationDepth, contacts) joint_angles = spot.IK(orn, pos, T_bf) FL_Elbow.append(np.degrees(joint_angles[0][-1])) # for i, (key, Tbf_in) in enumerate(T_bf.items()): # print("{}: \t Angle: {}".format(key, np.degrees(joint_angles[i]))) # print("-------------------------") env.pass_joint_angles(joint_angles.reshape(-1)) # Get External Observations env.spot.GetExternalObservations(bzg, bz_step) # Step state, reward, done, _ = env.step(action) # print("IMU Roll: {}".format(state[0])) # print("IMU Pitch: {}".format(state[1])) # print("IMU GX: {}".format(state[2])) # print("IMU GY: {}".format(state[3])) # print("IMU GZ: {}".format(state[4])) # print("IMU AX: {}".format(state[5])) # print("IMU AY: {}".format(state[6])) # print("IMU AZ: {}".format(state[7])) # print("-------------------------") if done: print("DONE") if ARGS.AutoReset: env.reset() # plt.plot() # # plt.plot(FL_phases, label="FL") # # plt.plot(FR_phases, label="FR") # # plt.plot(BL_phases, label="BL") # # plt.plot(BR_phases, label="BR") # plt.plot(FL_Elbow, label="FL ELbow (Deg)") # plt.xlabel("dt") # plt.ylabel("value") # plt.title("Leg Phases") # plt.legend() # plt.show() # time.sleep(1.0) t += 1 env.close() print(joint_angles) if __name__ == '__main__': main()
6,407
Python
27.864865
135
0.547214
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/spot_ars_eval.py
#!/usr/bin/env python import numpy as np import sys sys.path.append('../../') from ars_lib.ars import ARSAgent, Normalizer, Policy from spotmicro.util.gui import GUI from spotmicro.Kinematics.SpotKinematics import SpotModel from spotmicro.GaitGenerator.Bezier import BezierGait from spotmicro.OpenLoopSM.SpotOL import BezierStepper from spotmicro.GymEnvs.spot_bezier_env import spotBezierEnv from spotmicro.spot_env_randomizer import SpotEnvRandomizer import matplotlib.pyplot as plt import seaborn as sns sns.set() import os import argparse # ARGUMENTS descr = "Spot Mini Mini ARS Agent Evaluator." parser = argparse.ArgumentParser(description=descr) parser.add_argument("-hf", "--HeightField", help="Use HeightField", action='store_true') parser.add_argument("-nr", "--DontRender", help="Don't Render environment", action='store_true') parser.add_argument("-r", "--DebugRack", help="Put Spot on an Elevated Rack", action='store_true') parser.add_argument("-p", "--DebugPath", help="Draw Spot's Foot Path", action='store_true') parser.add_argument("-gui", "--GUI", help="Control The Robot Yourself With a GUI", action='store_true') parser.add_argument("-nc", "--NoContactSensing", help="Disable Contact Sensing", action='store_true') parser.add_argument("-a", "--AgentNum", help="Agent Number To Load") parser.add_argument("-dr", "--DontRandomize", help="Do NOT Randomize State and Environment.", action='store_true') parser.add_argument("-pp", "--PlotPolicy", help="Plot Policy Output after each Episode.", action='store_true') parser.add_argument("-ta", "--TrueAction", help="Plot Action as seen by the Robot.", action='store_true') parser.add_argument( "-save", "--SaveData", help="Save the Policy Output to a .npy file in the results folder.", action='store_true') parser.add_argument("-s", "--Seed", help="Seed (Default: 0).") ARGS = parser.parse_args() def main(): """ The main() function. """ print("STARTING MINITAUR ARS") # TRAINING PARAMETERS # env_name = "MinitaurBulletEnv-v0" seed = 0 if ARGS.Seed: seed = ARGS.Seed max_timesteps = 4e6 file_name = "spot_ars_" if ARGS.DebugRack: on_rack = True else: on_rack = False if ARGS.DebugPath: draw_foot_path = True else: draw_foot_path = False if ARGS.HeightField: height_field = True else: height_field = False if ARGS.NoContactSensing: contacts = False else: contacts = True if ARGS.DontRender: render = False else: render = True if ARGS.DontRandomize: env_randomizer = None else: env_randomizer = SpotEnvRandomizer() # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") if contacts: models_path = os.path.join(my_path, "../models/contact") else: models_path = os.path.join(my_path, "../models/no_contact") if not os.path.exists(results_path): os.makedirs(results_path) if not os.path.exists(models_path): os.makedirs(models_path) env = spotBezierEnv(render=render, on_rack=on_rack, height_field=height_field, draw_foot_path=draw_foot_path, contacts=contacts, env_randomizer=env_randomizer) # Set seeds env.seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] print("STATE DIM: {}".format(state_dim)) action_dim = env.action_space.shape[0] print("ACTION DIM: {}".format(action_dim)) max_action = float(env.action_space.high[0]) env.reset() spot = SpotModel() bz_step = BezierStepper(dt=env._time_step) bzg = BezierGait(dt=env._time_step) # Initialize Normalizer normalizer = Normalizer(state_dim) # Initialize Policy policy = Policy(state_dim, action_dim) # to GUI or not to GUI if ARGS.GUI: gui = True else: gui = False # Initialize Agent with normalizer, policy and gym env agent = ARSAgent(normalizer, policy, env, bz_step, bzg, spot, gui) agent_num = 0 if ARGS.AgentNum: agent_num = ARGS.AgentNum if os.path.exists(models_path + "/" + file_name + str(agent_num) + "_policy"): print("Loading Existing agent") agent.load(models_path + "/" + file_name + str(agent_num)) agent.policy.episode_steps = np.inf policy = agent.policy env.reset() episode_reward = 0 episode_timesteps = 0 episode_num = 0 print("STARTED MINITAUR TEST SCRIPT") t = 0 while t < (int(max_timesteps)): episode_reward, episode_timesteps = agent.deployTG() t += episode_timesteps # episode_reward = agent.train() # +1 to account for 0 indexing. # +0 on ep_timesteps since it will increment +1 even if done=True print("Total T: {} Episode Num: {} Episode T: {} Reward: {}".format( t, episode_num, episode_timesteps, episode_reward)) episode_num += 1 # Plot Policy Output if ARGS.PlotPolicy or ARGS.TrueAction or ARGS.SaveData: if ARGS.TrueAction: action_name = "robot_act" action = np.array(agent.true_action_history) else: action_name = "agent_act" action = np.array(agent.action_history) if ARGS.SaveData: if height_field: terrain_name = "rough_" else: terrain_name = "flat_" np.save( results_path + "/" + "policy_out_" + terrain_name + action_name, action) print("SAVED DATA") ClearHeight_act = action[:, 0] BodyHeight_act = action[:, 1] Residuals_act = action[:, 2:] plt.plot(ClearHeight_act, label='Clearance Height Mod', color='black') plt.plot(BodyHeight_act, label='Body Height Mod', color='darkviolet') # FL plt.plot(Residuals_act[:, 0], label='Residual: FL (x)', color='limegreen') plt.plot(Residuals_act[:, 1], label='Residual: FL (y)', color='lime') plt.plot(Residuals_act[:, 2], label='Residual: FL (z)', color='green') # FR plt.plot(Residuals_act[:, 3], label='Residual: FR (x)', color='lightskyblue') plt.plot(Residuals_act[:, 4], label='Residual: FR (y)', color='dodgerblue') plt.plot(Residuals_act[:, 5], label='Residual: FR (z)', color='blue') # BL plt.plot(Residuals_act[:, 6], label='Residual: BL (x)', color='firebrick') plt.plot(Residuals_act[:, 7], label='Residual: BL (y)', color='crimson') plt.plot(Residuals_act[:, 8], label='Residual: BL (z)', color='red') # BR plt.plot(Residuals_act[:, 9], label='Residual: BR (x)', color='gold') plt.plot(Residuals_act[:, 10], label='Residual: BR (y)', color='orange') plt.plot(Residuals_act[:, 11], label='Residual: BR (z)', color='coral') plt.xlabel("Epoch Iteration") plt.ylabel("Action Value") plt.title("Policy Output") plt.legend() plt.show() env.close() if __name__ == '__main__': main()
8,583
Python
29.119298
96
0.518467
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/old_eval_scripts/sac_eval.py
#!/usr/bin/env python import numpy as np from sac_lib import SoftActorCritic, NormalizedActions, ReplayBuffer, PolicyNetwork from mini_bullet.minitaur_gym_env import MinitaurBulletEnv import gym import torch import os import time def main(): """ The main() function. """ print("STARTING MINITAUR TD3") # TRAINING PARAMETERS # env_name = "MinitaurBulletEnv-v0" seed = 0 max_timesteps = 4e6 file_name = "mini_td3_" # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") models_path = os.path.join(my_path, "../models") if not os.path.exists(results_path): os.makedirs(results_path) if not os.path.exists(models_path): os.makedirs(models_path) env = NormalizedActions(MinitaurBulletEnv(render=True)) # Set seeds env.seed(seed) torch.manual_seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] print("STATE DIM: {}".format(state_dim)) action_dim = env.action_space.shape[0] print("ACTION DIM: {}".format(action_dim)) max_action = float(env.action_space.high[0]) print("RECORDED MAX ACTION: {}".format(max_action)) hidden_dim = 256 policy = PolicyNetwork(state_dim, action_dim, hidden_dim) replay_buffer_size = 1000000 replay_buffer = ReplayBuffer(replay_buffer_size) sac = SoftActorCritic(policy=policy, state_dim=state_dim, action_dim=action_dim, replay_buffer=replay_buffer) policy_num = 2239999 if os.path.exists(models_path + "/" + file_name + str(policy_num) + "_critic"): print("Loading Existing Policy") sac.load(models_path + "/" + file_name + str(policy_num)) policy = sac.policy_net # Evaluate untrained policy and init list for storage evaluations = [] state = env.reset() done = False episode_reward = 0 episode_timesteps = 0 episode_num = 0 print("STARTED MINITAUR TEST SCRIPT") for t in range(int(max_timesteps)): episode_timesteps += 1 # Deterministic Policy Action action = np.clip(policy.get_action(np.array(state)), -max_action, max_action) # rospy.logdebug("Selected Acton: {}".format(action)) # Perform action next_state, reward, done, _ = env.step(action) state = next_state episode_reward += reward # print("DT REWARD: {}".format(reward)) if done: # +1 to account for 0 indexing. # +0 on ep_timesteps since it will increment +1 even if done=True print( "Total T: {} Episode Num: {} Episode T: {} Reward: {}".format( t + 1, episode_num, episode_timesteps, episode_reward)) # Reset environment state, done = env.reset(), False evaluations.append(episode_reward) episode_reward = 0 episode_timesteps = 0 episode_num += 1 if __name__ == '__main__': main()
3,153
Python
26.911504
83
0.595623
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/old_eval_scripts/ars_eval.py
#!/usr/bin/env python import numpy as np from ars_lib.ars import ARSAgent, Normalizer, Policy, ParallelWorker from mini_bullet.minitaur_gym_env import MinitaurBulletEnv import torch import os def main(): """ The main() function. """ print("STARTING MINITAUR ARS") # TRAINING PARAMETERS # env_name = "MinitaurBulletEnv-v0" seed = 0 max_timesteps = 4e6 file_name = "mini_ars_" # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") models_path = os.path.join(my_path, "../models") if not os.path.exists(results_path): os.makedirs(results_path) if not os.path.exists(models_path): os.makedirs(models_path) env = MinitaurBulletEnv(render=True) # Set seeds env.seed(seed) torch.manual_seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] print("STATE DIM: {}".format(state_dim)) action_dim = env.action_space.shape[0] print("ACTION DIM: {}".format(action_dim)) max_action = float(env.action_space.high[0]) print("RECORDED MAX ACTION: {}".format(max_action)) # Initialize Normalizer normalizer = Normalizer(state_dim) # Initialize Policy policy = Policy(state_dim, action_dim) # Initialize Agent with normalizer, policy and gym env agent = ARSAgent(normalizer, policy, env) agent_num = raw_input("Policy Number: ") if os.path.exists(models_path + "/" + file_name + str(agent_num) + "_policy"): print("Loading Existing agent") agent.load(models_path + "/" + file_name + str(agent_num)) agent.policy.episode_steps = 3000 policy = agent.policy # Evaluate untrained agent and init list for storage evaluations = [] env.reset() episode_reward = 0 episode_timesteps = 0 episode_num = 0 print("STARTED MINITAUR TEST SCRIPT") t = 0 while t < (int(max_timesteps)): # Maximum timesteps per rollout t += policy.episode_steps episode_timesteps += 1 episode_reward = agent.deploy() # episode_reward = agent.train() # +1 to account for 0 indexing. # +0 on ep_timesteps since it will increment +1 even if done=True print("Total T: {} Episode Num: {} Episode T: {} Reward: {}".format( t, episode_num, policy.episode_steps, episode_reward)) # Reset environment evaluations.append(episode_reward) episode_reward = 0 episode_timesteps = 0 episode_num += 1 env.close() if __name__ == '__main__': main()
2,662
Python
25.63
76
0.622089
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/old_eval_scripts/spot_sac_eval.py
#!/usr/bin/env python import numpy as np from sac_lib import SoftActorCritic, NormalizedActions, ReplayBuffer, PolicyNetwork import copy from gym import spaces import sys sys.path.append('../../') from spotmicro.GymEnvs.spot_bezier_env import spotBezierEnv from spotmicro.Kinematics.SpotKinematics import SpotModel from spotmicro.GaitGenerator.Bezier import BezierGait # TESTING from spotmicro.OpenLoopSM.SpotOL import BezierStepper import time import torch import os def main(): """ The main() function. """ print("STARTING SPOT SAC") # TRAINING PARAMETERS seed = 0 max_timesteps = 4e6 batch_size = 256 eval_freq = 1e4 save_model = True file_name = "spot_sac_" # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") models_path = os.path.join(my_path, "../models") if not os.path.exists(results_path): os.makedirs(results_path) if not os.path.exists(models_path): os.makedirs(models_path) env = spotBezierEnv(render=True, on_rack=False, height_field=False, draw_foot_path=False) env = NormalizedActions(env) # Set seeds env.seed(seed) torch.manual_seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] print("STATE DIM: {}".format(state_dim)) action_dim = env.action_space.shape[0] print("ACTION DIM: {}".format(action_dim)) max_action = float(env.action_space.high[0]) print("RECORDED MAX ACTION: {}".format(max_action)) hidden_dim = 256 policy = PolicyNetwork(state_dim, action_dim, hidden_dim) replay_buffer_size = 1000000 replay_buffer = ReplayBuffer(replay_buffer_size) sac = SoftActorCritic(policy=policy, state_dim=state_dim, action_dim=action_dim, replay_buffer=replay_buffer) policy_num = raw_input("Policy Number: ") if os.path.exists(models_path + "/" + file_name + str(policy_num) + "_policy_net"): print("Loading Existing Policy") sac.load(models_path + "/" + file_name + str(policy_num)) policy = sac.policy_net # Evaluate untrained policy and init list for storage evaluations = [] state = env.reset() done = False episode_reward = 0 episode_timesteps = 0 episode_num = 0 max_t_per_ep = 5000 # State Machine for Random Controller Commands bz_step = BezierStepper(dt=0.01, mode=0) # Bezier Gait Generator bzg = BezierGait(dt=0.01) # Spot Model spot = SpotModel() T_bf0 = spot.WorldToFoot T_bf = copy.deepcopy(T_bf0) BaseClearanceHeight = bz_step.ClearanceHeight BasePenetrationDepth = bz_step.PenetrationDepth print("STARTED SPOT SAC") for t in range(int(max_timesteps)): contacts = state[-4:] t += 1 episode_timesteps += 1 pos, orn, StepLength, LateralFraction, YawRate, StepVelocity, ClearanceHeight, PenetrationDepth = bz_step.StateMachine( ) env.spot.GetExternalObservations(bzg, bz_step) # Read UPDATED state based on controls and phase state = env.return_state() action = sac.policy_net.get_action(state) # Bezier params specced by action CD_SCALE = 0.002 SLV_SCALE = 0.01 StepLength += action[0] * CD_SCALE StepVelocity += action[1] * SLV_SCALE LateralFraction += action[2] * SLV_SCALE YawRate = action[3] ClearanceHeight += action[4] * CD_SCALE PenetrationDepth += action[5] * CD_SCALE # CLIP EVERYTHING StepLength = np.clip(StepLength, bz_step.StepLength_LIMITS[0], bz_step.StepLength_LIMITS[1]) StepVelocity = np.clip(StepVelocity, bz_step.StepVelocity_LIMITS[0], bz_step.StepVelocity_LIMITS[1]) LateralFraction = np.clip(LateralFraction, bz_step.LateralFraction_LIMITS[0], bz_step.LateralFraction_LIMITS[1]) YawRate = np.clip(YawRate, bz_step.YawRate_LIMITS[0], bz_step.YawRate_LIMITS[1]) ClearanceHeight = np.clip(ClearanceHeight, bz_step.ClearanceHeight_LIMITS[0], bz_step.ClearanceHeight_LIMITS[1]) PenetrationDepth = np.clip(PenetrationDepth, bz_step.PenetrationDepth_LIMITS[0], bz_step.PenetrationDepth_LIMITS[1]) contacts = state[-4:] # Get Desired Foot Poses T_bf = bzg.GenerateTrajectory(StepLength, LateralFraction, YawRate, StepVelocity, T_bf0, T_bf, ClearanceHeight, PenetrationDepth, contacts) # Add DELTA to XYZ Foot Poses RESIDUALS_SCALE = 0.05 # T_bf["FL"][3, :3] += action[6:9] * RESIDUALS_SCALE # T_bf["FR"][3, :3] += action[9:12] * RESIDUALS_SCALE # T_bf["BL"][3, :3] += action[12:15] * RESIDUALS_SCALE # T_bf["BR"][3, :3] += action[15:18] * RESIDUALS_SCALE T_bf["FL"][3, 2] += action[6] * RESIDUALS_SCALE T_bf["FR"][3, 2] += action[7] * RESIDUALS_SCALE T_bf["BL"][3, 2] += action[8] * RESIDUALS_SCALE T_bf["BR"][3, 2] += action[9] * RESIDUALS_SCALE joint_angles = spot.IK(orn, pos, T_bf) # Pass Joint Angles env.pass_joint_angles(joint_angles.reshape(-1)) # Perform action state, reward, done, _ = env.step(action) episode_reward += reward # print("DT REWARD: {}".format(reward)) if done: # +1 to account for 0 indexing. # +0 on ep_timesteps since it will increment +1 even if done=True print( "Total T: {} Episode Num: {} Episode T: {} Reward: {}".format( t + 1, episode_num, episode_timesteps, episode_reward)) # Reset environment state, done = env.reset(), False evaluations.append(episode_reward) episode_reward = 0 episode_timesteps = 0 episode_num += 1 env.close() if __name__ == '__main__': main()
6,449
Python
31.089552
127
0.575748
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/old_eval_scripts/tg_eval.py
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt from ars_lib.ars import ARSAgent, Normalizer, Policy, ParallelWorker from mini_bullet.minitaur_gym_env import MinitaurBulletEnv from tg_lib.tg_policy import TGPolicy import time import torch import os def main(): """ The main() function. """ print("STARTING MINITAUR ARS") # TRAINING PARAMETERS # env_name = "MinitaurBulletEnv-v0" seed = 0 max_timesteps = 1e6 file_name = "mini_tg_ars_" # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") models_path = os.path.join(my_path, "../models") if not os.path.exists(results_path): os.makedirs(results_path) if not os.path.exists(models_path): os.makedirs(models_path) env = MinitaurBulletEnv(render=True, on_rack=False) dt = env._time_step # TRAJECTORY GENERATOR movetype = "walk" # movetype = "trot" # movetype = "bound" # movetype = "pace" # movetype = "pronk" TG = TGPolicy(movetype=movetype, center_swing=0.0, amplitude_extension=0.2, amplitude_lift=0.4) TG_state_dim = len(TG.get_TG_state()) TG_action_dim = 5 # f_tg, Beta, alpha_tg, h_tg, intensity state_dim = env.observation_space.shape[0] + TG_state_dim print("STATE DIM: {}".format(state_dim)) action_dim = env.action_space.shape[0] + TG_action_dim print("ACTION DIM: {}".format(action_dim)) max_action = float(env.action_space.high[0]) print("RECORDED MAX ACTION: {}".format(max_action)) # Initialize Normalizer normalizer = Normalizer(state_dim) # Initialize Policy policy = Policy(state_dim, action_dim) # Initialize Agent with normalizer, policy and gym env agent = ARSAgent(normalizer, policy, env, TGP=TG) agent_num = raw_input("Policy Number: ") if os.path.exists(models_path + "/" + file_name + str(agent_num) + "_policy"): print("Loading Existing agent") agent.load(models_path + "/" + file_name + str(agent_num)) agent.policy.episode_steps = 1000 policy = agent.policy # Set seeds env.seed(seed) torch.manual_seed(seed) np.random.seed(seed) env.reset() episode_reward = 0 episode_timesteps = 0 episode_num = 0 print("STARTED MINITAUR TEST SCRIPT") # Just to store correct action space action = env.action_space.sample() # Record extends for plot # LF_ext = [] # LB_ext = [] # RF_ext = [] # RB_ext = [] LF_tp = [] LB_tp = [] RF_tp = [] RB_tp = [] t = 0 while t < (int(max_timesteps)): action[:] = 0.0 # # Get Action from TG [no policies here] # action = TG.get_utg(action, alpha_tg, h_tg, intensity, # env.minitaur.num_motors) # LF_ext.append(action[env.minitaur.num_motors / 2]) # LB_ext.append(action[1 + env.minitaur.num_motors / 2]) # RF_ext.append(action[2 + env.minitaur.num_motors / 2]) # RB_ext.append(action[3 + env.minitaur.num_motors / 2]) # # Perform action # next_state, reward, done, _ = env.step(action) obs = agent.TGP.get_TG_state() # LF_tp.append(obs[0]) # LB_tp.append(obs[1]) # RF_tp.append(obs[2]) # RB_tp.append(obs[3]) # # Increment phase # TG.increment(dt, f_tg, Beta) # # time.sleep(1.0) # t += 1 # Maximum timesteps per rollout t += policy.episode_steps episode_timesteps += 1 episode_reward = agent.deployTG() # episode_reward = agent.train() # +1 to account for 0 indexing. # +0 on ep_timesteps since it will increment +1 even if done=True print("Total T: {} Episode Num: {} Episode T: {} Reward: {}".format( t, episode_num, policy.episode_steps, episode_reward)) # Reset environment episode_reward = 0 episode_timesteps = 0 episode_num += 1 plt.plot(0) plt.plot(LF_tp, label="LF") plt.plot(LB_tp, label="LB") plt.plot(RF_tp, label="RF") plt.plot(RB_tp, label="RB") plt.xlabel("t") plt.ylabel("EXT") plt.title("Leg Extensions") plt.legend() plt.show() env.close() if __name__ == '__main__': main()
4,424
Python
25.981707
76
0.583635
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/td3_lib/td3.py
#!/usr/bin/env python import copy import pickle import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import gym import os # Twin Delayed Deterministic Policy Gradient # Algorithm Steps # 1. Initiailize Networks class Actor(nn.Module): """Initialize parameters and build model. An nn.Module contains layers, and a method forward(input)that returns the output. Weights (learnable params) are inherently defined here. Args: state_dim (int): Dimension of each state action_dim (int): Dimension of each action max_action (float): highest action to take Return: action output of network with tanh activation """ def __init__(self, state_dim, action_dim, max_action): # Super calls the nn.Module Constructor super(Actor, self).__init__() # input layer self.fc1 = nn.Linear(state_dim, 256) # hidden layer self.fc2 = nn.Linear(256, 256) # output layer self.fc3 = nn.Linear(256, action_dim) # wrap from -max to +max self.max_action = max_action def forward(self, state): # You just have to define the forward function, # and the backward function (where gradients are computed) # is automatically defined for you using autograd. # Learnable params can be accessed using Actor.parameters # Here, we create the tensor architecture # state into layer 1 a = F.relu(self.fc1(state)) # layer 1 output into layer 2 a = F.relu(self.fc2(a)) # layer 2 output into layer 3 into tanh activation return self.max_action * torch.tanh(self.fc3(a)) class Critic(nn.Module): """Initialize parameters and build model. Args: state_dim (int): Dimension of each state action_dim (int): Dimension of each action Return: value output of network """ def __init__(self, state_dim, action_dim): # Super calls the nn.Module Constructor super(Critic, self).__init__() # Q1 architecture self.fc1 = nn.Linear(state_dim + action_dim, 256) self.fc2 = nn.Linear(256, 256) self.fc3 = nn.Linear(256, 1) # Q2 architecture self.fc4 = nn.Linear(state_dim + action_dim, 256) self.fc5 = nn.Linear(256, 256) self.fc6 = nn.Linear(256, 1) def forward(self, state, action): # concatenate state and actions by adding rows # to form 1D input layer sa = torch.cat([state, action], 1) # s,a into input layer into relu activation q1 = F.relu(self.fc1(sa)) # l1 output into l2 into relu activation q1 = F.relu(self.fc2(q1)) # l2 output into l3 q1 = self.fc3(q1) # s,a into input layer into relu activation q2 = F.relu(self.fc4(sa)) # l4 output into l5 into relu activation q2 = F.relu(self.fc5(q2)) # l5 output into l6 q2 = self.fc6(q2) return q1, q2 def Q1(self, state, action): # Return Q1 for gradient Ascent on Actor # Note that only Q1 is used for Actor Update # concatenate state and actions by adding rows # to form 1D input layer sa = torch.cat([state, action], 1) # s,a into input layer into relu activation q1 = F.relu(self.fc1(sa)) # l1 output into l2 into relu activation q1 = F.relu(self.fc2(q1)) # l2 output into l3 q1 = self.fc3(q1) return q1 # https://github.com/openai/baselines/blob/master/baselines/deepq/replay_buffer.py # Expects tuples of (state, next_state, action, reward, done) class ReplayBuffer(object): """Buffer to store tuples of experience replay""" def __init__(self, max_size=1000000): """ Args: max_size (int): total amount of tuples to store """ self.storage = [] self.max_size = max_size self.ptr = 0 my_path = os.path.abspath(os.path.dirname(__file__)) self.buffer_path = os.path.join(my_path, "../../replay_buffer") def add(self, data): """Add experience tuples to buffer Args: data (tuple): experience replay tuple """ if len(self.storage) == self.max_size: self.storage[int(self.ptr)] = data self.ptr = (self.ptr + 1) % self.max_size else: self.storage.append(data) def save(self, iterations): if not os.path.exists(self.buffer_path): os.makedirs(self.buffer_path) with open( self.buffer_path + '/' + 'replay_buffer_' + str(iterations) + '.data', 'wb') as filehandle: pickle.dump(self.storage, filehandle) def load(self, iterations): with open( self.buffer_path + '/' + 'replay_buffer_' + str(iterations) + '.data', 'rb') as filehandle: self.storage = pickle.load(filehandle) def sample(self, batch_size): """Samples a random amount of experiences from buffer of batch size NOTE: We don't delete samples here, only overwrite when max_size Args: batch_size (int): size of sample """ device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu") ind = np.random.randint(0, len(self.storage), size=batch_size) states, actions, next_states, rewards, dones = [], [], [], [], [] for i in ind: s, a, s_, r, d = self.storage[i] states.append(np.array(s, copy=False)) state = torch.FloatTensor(np.array(states)).to(device) actions.append(np.array(a, copy=False)) action = torch.FloatTensor(np.array(actions)).to(device) next_states.append(np.array(s_, copy=False)) next_state = torch.FloatTensor(np.array(next_states)).to(device) rewards.append(np.array(r, copy=False)) reward = torch.FloatTensor(np.array(rewards).reshape(-1, 1)).to(device) dones.append(np.array(d, copy=False)) not_done = torch.FloatTensor( 1. - (np.array(dones).reshape(-1, 1))).to(device) return state, action, next_state, reward, not_done class TD3Agent(object): """Agent class that handles the training of the networks and provides outputs as actions Args: state_dim (int): state size action_dim (int): action size max_action (float): highest action to take device (device): cuda or cpu to process tensors env (env): gym environment to use batch_size(int): batch size to sample from replay buffer discount (float): discount factor tau (float): soft update for main networks to target networks """ def __init__(self, state_dim, action_dim, max_action, discount=0.99, tau=0.005, policy_noise=0.2, noise_clip=0.5, policy_freq=2): self.device = torch.device( "cuda:1" if torch.cuda.is_available() else "cpu") self.actor = Actor(state_dim, action_dim, max_action).to(self.device) self.actor_target = copy.deepcopy(self.actor) self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=3e-4) self.critic = Critic(state_dim, action_dim).to(self.device) self.critic_target = copy.deepcopy(self.critic) self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=3e-4) self.max_action = max_action self.discount = discount self.tau = tau self.policy_noise = policy_noise self.noise_clip = noise_clip self.policy_freq = policy_freq self.total_it = 0 def select_action(self, state): """Select an appropriate action from the agent policy Args: state (array): current state of environment Returns: action (float): action clipped within action range """ # Turn float value into a CUDA Float Tensor state = torch.FloatTensor(state.reshape(1, -1)).to(self.device) action = self.actor(state).cpu().data.numpy().flatten() return action def train(self, replay_buffer, batch_size=100): """Train and update actor and critic networks Args: replay_buffer (ReplayBuffer): buffer for experience replay batch_size(int): batch size to sample from replay buffer\ Return: actor_loss (float): loss from actor network critic_loss (float): loss from critic network """ self.total_it += 1 # Sample replay buffer state, action, next_state, reward, not_done = replay_buffer.sample( batch_size) with torch.no_grad(): """ Autograd: if you set its attribute .requires_gras as True, (DEFAULT) it tracks all operations on it. When you finish your computation, call .backward() to have all gradients computed automatically. The gradient for this tensor is then accumulated into the .grad attribute. To prevent tracking history and using memory, wrap the code block in "with torch.no_grad()". This is heplful when evaluating a model as it may have trainable params with requires_grad=True (DEFAULT), but for which we don't need the gradients. Here, we don't want to track the acyclic graph's history when getting our next action because we DON'T want to train our actor in this step. We train our actor ONLY when we perform the periodic policy update. Could have done .detach() at target_Q = reward + not_done * self.discount * target_Q for the same effect """ # Select action according to policy and add clipped noise noise = (torch.randn_like(action) * self.policy_noise).clamp( -self.noise_clip, self.noise_clip) next_action = (self.actor_target(next_state) + noise).clamp( -self.max_action, self.max_action) # Compute the target Q value target_Q1, target_Q2 = self.critic_target(next_state, next_action) target_Q = torch.min(target_Q1, target_Q2) target_Q = reward + not_done * self.discount * target_Q # Get current Q estimates current_Q1, current_Q2 = self.critic(state, action) # Compute critic loss # A loss function takes the (output, target) pair of inputs, # and computes a value that estimates how far away the output # is from the target. critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss( current_Q2, target_Q) # Optimize the critic # Zero the gradient buffers of all parameters self.critic_optimizer.zero_grad() # Backprops with random gradients # When we call loss.backward(), the whole graph is differentiated # w.r.t. the loss, and all Tensors in the graph that has # requires_grad=True (DEFAULT) will have their .grad Tensor # accumulated with the gradient. critic_loss.backward() # Does the update self.critic_optimizer.step() # Delayed policy updates if self.total_it % self.policy_freq == 0: # Compute actor losse actor_loss = -self.critic.Q1(state, self.actor(state)).mean() # Optimize the actor # Zero the gradient buffers self.actor_optimizer.zero_grad() # Differentiate the whole graph wrt loss actor_loss.backward() # Does the update self.actor_optimizer.step() # Update target networks (Critic 1, Critic 2, Actor) for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) def save(self, filename): torch.save(self.critic.state_dict(), filename + "_critic") torch.save(self.critic_optimizer.state_dict(), filename + "_critic_optimizer") torch.save(self.actor.state_dict(), filename + "_actor") torch.save(self.actor_optimizer.state_dict(), filename + "_actor_optimizer") def load(self, filename): self.critic.load_state_dict( torch.load(filename + "_critic", map_location=self.device)) self.critic_optimizer.load_state_dict( torch.load(filename + "_critic_optimizer", map_location=self.device)) self.actor.load_state_dict( torch.load(filename + "_actor", map_location=self.device)) self.actor_optimizer.load_state_dict( torch.load(filename + "_actor_optimizer", map_location=self.device)) # Runs policy for X episodes and returns average reward # A fixed seed is used for the eval environment def evaluate_policy(policy, env_name, seed, eval_episodes=10, render=False): """run several episodes using the best agent policy Args: policy (agent): agent to evaluate env (env): gym environment eval_episodes (int): how many test episodes to run render (bool): show training Returns: avg_reward (float): average reward over the number of evaluations """ eval_env = gym.make(env_name, render=render) eval_env.seed(seed + 100) avg_reward = 0. for _ in range(eval_episodes): state, done = eval_env.reset(), False while not done: # if render: # eval_env.render() # sleep(0.01) action = policy.select_action(np.array(state)) state, reward, done, _ = eval_env.step(action) avg_reward += reward avg_reward /= eval_episodes print("---------------------------------------") print("Evaluation over {} episodes: {}".format(eval_episodes, avg_reward)) print("---------------------------------------") if render: eval_env.close() return avg_reward def trainer(env_name, seed, max_timesteps, start_timesteps, expl_noise, batch_size, eval_freq, save_model, file_name="best_avg"): """ Test Script on stock OpenAI Gym Envs """ if not os.path.exists("../results"): os.makedirs("../results") if not os.path.exists("../models"): os.makedirs("../models") env = gym.make(env_name) # Set seeds env.seed(seed) torch.manual_seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] action_dim = env.action_space.shape[0] max_action = float(env.action_space.high[0]) policy = TD3Agent(state_dim, action_dim, max_action) replay_buffer = ReplayBuffer() # Evaluate untrained policy and init list for storage evaluations = [evaluate_policy(policy, env_name, seed, 1)] state = env.reset() done = False episode_reward = 0 episode_timesteps = 0 episode_num = 0 for t in range(int(max_timesteps)): episode_timesteps += 1 # Select action randomly or according to policy # Random Action - no training yet, just storing in buffer if t < start_timesteps: action = env.action_space.sample() else: # According to policy + Exploraton Noise action = (policy.select_action(np.array(state)) + np.random.normal( 0, max_action * expl_noise, size=action_dim)).clip( -max_action, max_action) # Perform action next_state, reward, done, _ = env.step(action) done_bool = float( done) if episode_timesteps < env._max_episode_steps else 0 # Store data in replay buffer replay_buffer.add((state, action, next_state, reward, done_bool)) state = next_state episode_reward += reward # Train agent after collecting sufficient data for buffer if t >= start_timesteps: policy.train(replay_buffer, batch_size) if done: # +1 to account for 0 indexing. # +0 on ep_timesteps since it will increment +1 even if done=True print( "Total T: {} Episode Num: {} Episode T: {} Reward: {}".format( t + 1, episode_num, episode_timesteps, episode_reward)) # Reset environment state, done = env.reset(), False episode_reward = 0 episode_timesteps = 0 episode_num += 1 # Evaluate episode if (t + 1) % eval_freq == 0: evaluations.append(evaluate_policy(policy, env_name, seed, 1)) np.save("../results/" + str(file_name) + str(t), evaluations) if save_model: policy.save("../models/" + str(file_name) + str(t)) if __name__ == "__main__": """ The Main Function """ trainer("BipedalWalker-v2", 0, 1e6, 1e4, 0.1, 100, 15e3, True)
18,049
Python
34.392157
82
0.57017
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/td3_lib/plot_reward.py
#!/usr/bin/env python import matplotlib.pyplot as plt import numpy as np if __name__ == '__main__': reward = np.load("../../results/plen_walk_gazebo_.npy") plt.figure(0) plt.autoscale(enable=True, axis='both', tight=None) plt.title('Dominant Foot Trajectories - SS') plt.ylabel('positon (mm)') plt.xlabel('timestep') plt.plot(reward, color='b', label="Reward") plt.legend() plt.show()
426
Python
21.473683
59
0.626761
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/ars_lib/ars.py
# from tg_lib.tg_policy import TGPolicy import pickle import numpy as np from scipy.signal import butter, filtfilt from spotmicro.GaitGenerator.Bezier import BezierGait from spotmicro.OpenLoopSM.SpotOL import BezierStepper from spotmicro.Kinematics.SpotKinematics import SpotModel from spotmicro.Kinematics.LieAlgebra import TransToRp import copy from spotmicro.util.gui import GUI np.random.seed(0) # Multiprocessing package for python # Parallelization improvements based on: # https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/gym/pybullet_envs/ARS/ars.py # Messages for Pipes _RESET = 1 _CLOSE = 2 _EXPLORE = 3 _EXPLORE_TG = 4 # Params for TG CD_SCALE = 0.05 SLV_SCALE = 0.05 RESIDUALS_SCALE = 0.015 Z_SCALE = 0.05 # Filter actions alpha = 0.7 # Added this to avoid filtering residuals # -1 for all actions_to_filter = 14 # For auto yaw control P_yaw = 5.0 # Cummulative timestep exponential reward # cum_dt_exp = 1.1 cum_dt_exp = 0.0 def butter_lowpass_filter(data, cutoff, fs, order=2): """ Pass two subsequent datapoints in here to be filtered """ nyq = 0.5 * fs # Nyquist Frequency normal_cutoff = cutoff / nyq # Get the filter coefficients b, a = butter(order, normal_cutoff, btype='low', analog=False) y = filtfilt(b, a, data) return y def ParallelWorker(childPipe, env, nb_states): """ Function to deploy multiple ARS agents in parallel """ # nb_states = env.observation_space.shape[0] # common normalizer normalizer = Normalizer(nb_states) max_action = float(env.action_space.high[0]) _ = env.reset() n = 0 while True: n += 1 try: # Only block for short times to have keyboard exceptions be raised. if not childPipe.poll(0.001): continue message, payload = childPipe.recv() except (EOFError, KeyboardInterrupt): break if message == _RESET: _ = env.reset() childPipe.send(["reset ok"]) continue if message == _EXPLORE: # Payloads received by parent in ARSAgent.train() # [0]: normalizer, [1]: policy, [2]: direction, [3]: delta # we use local normalizer so no need for [0] (optional) # normalizer = payload[0] policy = payload[1] direction = payload[2] delta = payload[3] desired_velocity = payload[4] desired_rate = payload[5] state = env.reset(desired_velocity, desired_rate) sum_rewards = 0.0 timesteps = 0 done = False while not done and timesteps < policy.episode_steps: normalizer.observe(state) # Normalize State state = normalizer.normalize(state) action = policy.evaluate(state, delta, direction) # # Clip action between +-1 for execution in env # for a in range(len(action)): # action[a] = np.clip(action[a], -max_action, max_action) state, reward, done, _ = env.step(action) reward = max(min(reward, 1), -1) sum_rewards += reward timesteps += 1 childPipe.send([sum_rewards]) continue if message == _EXPLORE_TG: # Payloads received by parent in ARSAgent.train() # [0]: normalizer, [1]: policy, [2]: direction, [3]: delta # [4]: desired_velocity, [5]: desired_rate, [6]: Trajectory Gen # we use local normalizer so no need for [0] (optional) # normalizer = payload[0] policy = payload[1] direction = payload[2] delta = payload[3] desired_velocity = payload[4] desired_rate = payload[5] TGP = payload[6] smach = payload[7] spot = payload[8] state = env.reset() sum_rewards = 0.0 timesteps = 0 done = False T_bf = copy.deepcopy(spot.WorldToFoot) T_b0 = copy.deepcopy(spot.WorldToFoot) action = env.action_space.sample() action[:] = 0.0 old_act = action[:actions_to_filter] # For auto yaw control yaw = 0.0 while not done and timesteps < policy.episode_steps: # smach.ramp_up() pos, orn, StepLength, LateralFraction, YawRate, StepVelocity, ClearanceHeight, PenetrationDepth = smach.StateMachine( ) env.spot.GetExternalObservations(TGP, smach) # Read UPDATED state based on controls and phase state = env.return_state() normalizer.observe(state) # NOTE: Don't normalize contacts - must stay 0/1 state = normalizer.normalize(state) action = policy.evaluate(state, delta, direction) contacts = state[-4:] action = np.tanh(action) # EXP FILTER action[:actions_to_filter] = alpha * old_act + ( 1.0 - alpha) * action[:actions_to_filter] old_act = action[:actions_to_filter] ClearanceHeight += action[0] * CD_SCALE # CLIP EVERYTHING StepLength = np.clip(StepLength, smach.StepLength_LIMITS[0], smach.StepLength_LIMITS[1]) StepVelocity = np.clip(StepVelocity, smach.StepVelocity_LIMITS[0], smach.StepVelocity_LIMITS[1]) LateralFraction = np.clip(LateralFraction, smach.LateralFraction_LIMITS[0], smach.LateralFraction_LIMITS[1]) YawRate = np.clip(YawRate, smach.YawRate_LIMITS[0], smach.YawRate_LIMITS[1]) ClearanceHeight = np.clip(ClearanceHeight, smach.ClearanceHeight_LIMITS[0], smach.ClearanceHeight_LIMITS[1]) PenetrationDepth = np.clip(PenetrationDepth, smach.PenetrationDepth_LIMITS[0], smach.PenetrationDepth_LIMITS[1]) # For auto yaw control yaw = env.return_yaw() YawRate += -yaw * P_yaw # Get Desired Foot Poses if timesteps > 20: T_bf = TGP.GenerateTrajectory(StepLength, LateralFraction, YawRate, StepVelocity, T_b0, T_bf, ClearanceHeight, PenetrationDepth, contacts) else: T_bf = TGP.GenerateTrajectory(0.0, 0.0, 0.0, 0.1, T_b0, T_bf, ClearanceHeight, PenetrationDepth, contacts) action[:] = 0.0 action[2:] *= RESIDUALS_SCALE # Add DELTA to XYZ Foot Poses T_bf_copy = copy.deepcopy(T_bf) T_bf_copy["FL"][:3, 3] += action[2:5] T_bf_copy["FR"][:3, 3] += action[5:8] T_bf_copy["BL"][:3, 3] += action[8:11] T_bf_copy["BR"][:3, 3] += action[11:14] # Adjust Body Height with action! pos[2] += abs(action[1]) * Z_SCALE joint_angles = spot.IK(orn, pos, T_bf_copy) # Pass Joint Angles env.pass_joint_angles(joint_angles.reshape(-1)) # Perform action next_state, reward, done, _ = env.step(action) sum_rewards += reward timesteps += 1 # Divide reward by timesteps for normalized reward + add exponential surival reward childPipe.send([(sum_rewards + timesteps**cum_dt_exp) / timesteps]) continue if message == _CLOSE: childPipe.send(["close ok"]) break childPipe.close() class Policy(): """ state --> action """ def __init__( self, state_dim, action_dim, # how much weights are changed each step learning_rate=0.03, # number of random expl_noise variations generated # each step # each one will be run for 2 epochs, + and - num_deltas=16, # used to update weights, sorted by highest rwrd num_best_deltas=16, # number of timesteps per episode per rollout episode_steps=5000, # weight of sampled exploration noise expl_noise=0.05, # for seed gen seed=0): # Tunable Hyperparameters self.learning_rate = learning_rate self.num_deltas = num_deltas self.num_best_deltas = num_best_deltas # there cannot be more best_deltas than there are deltas assert self.num_best_deltas <= self.num_deltas self.episode_steps = episode_steps self.expl_noise = expl_noise self.seed = seed np.random.seed(seed) self.state_dim = state_dim self.action_dim = action_dim # input/ouput matrix with weights set to zero # this is the perception matrix (policy) self.theta = np.zeros((action_dim, state_dim)) def evaluate(self, state, delta=None, direction=None): """ state --> action """ # if direction is None, deployment mode: takes dot product # to directly sample from (use) policy if direction is None: return self.theta.dot(state) # otherwise, add (+-) directed expl_noise before taking dot product (policy) # this is where the 2*num_deltas rollouts comes from elif direction == "+": return (self.theta + self.expl_noise * delta).dot(state) elif direction == "-": return (self.theta - self.expl_noise * delta).dot(state) def sample_deltas(self): """ generate array of random expl_noise matrices. Length of array = num_deltas matrix dimension: pxn where p=observation dim and n=action dim """ deltas = [] # print("SHAPE THING with *: {}".format(*self.theta.shape)) # print("SHAPE THING NORMALLY: ({}, {})".format(self.theta.shape[0], # self.theta.shape[1])) # print("ACTUAL SHAPE: {}".format(self.theta.shape)) # print("SHAPE OF EXAMPLE DELTA WITH *: {}".format( # np.random.randn(*self.theta.shape).shape)) # print("SHAPE OF EXAMPLE DELTA NOMRALLY: {}".format( # np.random.randn(self.theta.shape[0], self.theta.shape[1]).shape)) for _ in range(self.num_deltas): deltas.append( np.random.randn(self.theta.shape[0], self.theta.shape[1])) return deltas def update(self, rollouts, std_dev_rewards): """ Update policy weights (theta) based on rewards from 2*num_deltas rollouts """ step = np.zeros(self.theta.shape) for r_pos, r_neg, delta in rollouts: # how much to deviate from policy step += (r_pos - r_neg) * delta self.theta += self.learning_rate / (self.num_best_deltas * std_dev_rewards) * step class Normalizer(): """ this ensures that the policy puts equal weight upon each state component. """ # Normalizes the states def __init__(self, state_dim): """ Initialize state space (all zero) """ self.state = np.zeros(state_dim) self.mean = np.zeros(state_dim) self.mean_diff = np.zeros(state_dim) self.var = np.zeros(state_dim) def observe(self, x): """ Compute running average and variance clip variance >0 to avoid division by zero """ self.state += 1.0 last_mean = self.mean.copy() # running avg self.mean += (x - self.mean) / self.state # used to compute variance self.mean_diff += (x - last_mean) * (x - self.mean) # variance self.var = (self.mean_diff / self.state).clip(min=1e-2) def normalize(self, states): """ subtract mean state value from current state and divide by standard deviation (sqrt(var)) to normalize """ state_mean = self.mean state_std = np.sqrt(self.var) return (states - state_mean) / state_std class ARSAgent(): def __init__(self, normalizer, policy, env, smach=None, TGP=None, spot=None, gui=False): self.normalizer = normalizer self.policy = policy self.state_dim = self.policy.state_dim self.action_dim = self.policy.action_dim self.env = env self.max_action = float(self.env.action_space.high[0]) self.successes = 0 self.phase = 0 self.desired_velocity = 0.5 self.desired_rate = 0.0 self.flip = 0 self.increment = 0 self.scaledown = True self.type = "Stop" self.smach = smach if smach is not None: self.BaseClearanceHeight = self.smach.ClearanceHeight self.BasePenetrationDepth = self.smach.PenetrationDepth self.TGP = TGP self.spot = spot if gui: self.g_u_i = GUI(self.env.spot.quadruped) else: self.g_u_i = None self.action_history = [] self.true_action_history = [] # Deploy Policy in one direction over one whole episode # DO THIS ONCE PER ROLLOUT OR DURING DEPLOYMENT def deploy(self, direction=None, delta=None): state = self.env.reset(self.desired_velocity, self.desired_rate) sum_rewards = 0.0 timesteps = 0 done = False while not done and timesteps < self.policy.episode_steps: # print("STATE: ", state) # print("dt: {}".format(timesteps)) self.normalizer.observe(state) # Normalize State state = self.normalizer.normalize(state) action = self.policy.evaluate(state, delta, direction) # Clip action between +-1 for execution in env for a in range(len(action)): action[a] = np.clip(action[a], -self.max_action, self.max_action) # print("ACTION: ", action) state, reward, done, _ = self.env.step(action) # print("STATE: ", state) # Clip reward between -1 and 1 to prevent outliers from # distorting weights reward = np.clip(reward, -self.max_action, self.max_action) sum_rewards += reward timesteps += 1 # Divide rewards by timesteps for reward-per-step + exp survive rwd return (sum_rewards + timesteps**cum_dt_exp) / timesteps # Deploy Policy in one direction over one whole episode # DO THIS ONCE PER ROLLOUT OR DURING DEPLOYMENT def deployTG(self, direction=None, delta=None): state = self.env.reset() sum_rewards = 0.0 timesteps = 0 done = False # alpha = [] # h = [] # f = [] T_bf = copy.deepcopy(self.spot.WorldToFoot) T_b0 = copy.deepcopy(self.spot.WorldToFoot) self.action_history = [] self.true_action_history = [] action = self.env.action_space.sample() action[:] = 0.0 old_act = action[:actions_to_filter] # For auto yaw correction yaw = 0.0 while not done and timesteps < self.policy.episode_steps: # self.smach.ramp_up() pos, orn, StepLength, LateralFraction, YawRate, StepVelocity, ClearanceHeight, PenetrationDepth = self.smach.StateMachine( ) if self.g_u_i: pos, orn, StepLength, LateralFraction, YawRate, StepVelocity, ClearanceHeight, PenetrationDepth, SwingPeriod = self.g_u_i.UserInput( ) self.TGP.Tswing = SwingPeriod self.env.spot.GetExternalObservations(self.TGP, self.smach) # Read UPDATED state based on controls and phase state = self.env.return_state() self.normalizer.observe(state) # Don't normalize contacts state = self.normalizer.normalize(state) action = self.policy.evaluate(state, delta, direction) # Action History self.action_history.append(np.tanh(action)) # Action History true_action = copy.deepcopy(np.tanh(action)) true_action[0] *= CD_SCALE true_action[1] = abs(true_action[1]) * Z_SCALE true_action[2:] *= RESIDUALS_SCALE self.true_action_history.append(true_action) action = np.tanh(action) # EXP FILTER action[:actions_to_filter] = alpha * old_act + ( 1.0 - alpha) * action[:actions_to_filter] old_act = action[:actions_to_filter] ClearanceHeight += action[0] * CD_SCALE # CLIP EVERYTHING StepLength = np.clip(StepLength, self.smach.StepLength_LIMITS[0], self.smach.StepLength_LIMITS[1]) StepVelocity = np.clip(StepVelocity, self.smach.StepVelocity_LIMITS[0], self.smach.StepVelocity_LIMITS[1]) LateralFraction = np.clip(LateralFraction, self.smach.LateralFraction_LIMITS[0], self.smach.LateralFraction_LIMITS[1]) YawRate = np.clip(YawRate, self.smach.YawRate_LIMITS[0], self.smach.YawRate_LIMITS[1]) ClearanceHeight = np.clip(ClearanceHeight, self.smach.ClearanceHeight_LIMITS[0], self.smach.ClearanceHeight_LIMITS[1]) PenetrationDepth = np.clip(PenetrationDepth, self.smach.PenetrationDepth_LIMITS[0], self.smach.PenetrationDepth_LIMITS[1]) contacts = copy.deepcopy(state[-4:]) # contacts = [0, 0, 0, 0] # print("CONTACTS: {}".format(contacts)) yaw = self.env.return_yaw() if not self.g_u_i: YawRate += -yaw * P_yaw # Get Desired Foot Poses if timesteps > 20: T_bf = self.TGP.GenerateTrajectory(StepLength, LateralFraction, YawRate, StepVelocity, T_b0, T_bf, ClearanceHeight, PenetrationDepth, contacts) else: T_bf = self.TGP.GenerateTrajectory(0.0, 0.0, 0.0, 0.1, T_b0, T_bf, ClearanceHeight, PenetrationDepth, contacts) action[:] = 0.0 action[2:] *= RESIDUALS_SCALE # Add DELTA to XYZ Foot Poses T_bf_copy = copy.deepcopy(T_bf) T_bf_copy["FL"][:3, 3] += action[2:5] T_bf_copy["FR"][:3, 3] += action[5:8] T_bf_copy["BL"][:3, 3] += action[8:11] T_bf_copy["BR"][:3, 3] += action[11:14] # Adjust Height! pos[2] += abs(action[1]) * Z_SCALE joint_angles = self.spot.IK(orn, pos, T_bf_copy) # Pass Joint Angles self.env.pass_joint_angles(joint_angles.reshape(-1)) # Perform action next_state, reward, done, _ = self.env.step(action) sum_rewards += reward timesteps += 1 self.TGP.reset() self.smach.reshuffle() self.smach.PenetrationDepth = self.BasePenetrationDepth self.smach.ClearanceHeight = self.BaseClearanceHeight return sum_rewards, timesteps def returnPose(self): return self.env.spot.GetBasePosition() def train(self): # Sample random expl_noise deltas print("-------------------------------") # print("Sampling Deltas") deltas = self.policy.sample_deltas() # Initialize +- reward list of size num_deltas positive_rewards = [0] * self.policy.num_deltas negative_rewards = [0] * self.policy.num_deltas # Execute 2*num_deltas rollouts and store +- rewards print("Deploying Rollouts") for i in range(self.policy.num_deltas): print("Rollout #{}".format(i + 1)) positive_rewards[i] = self.deploy(direction="+", delta=deltas[i]) negative_rewards[i] = self.deploy(direction="-", delta=deltas[i]) # Calculate std dev std_dev_rewards = np.array(positive_rewards + negative_rewards).std() # Order rollouts in decreasing list using cum reward as criterion unsorted_rollouts = [(positive_rewards[i], negative_rewards[i], deltas[i]) for i in range(self.policy.num_deltas)] # When sorting, take the max between the reward for +- disturbance sorted_rollouts = sorted( unsorted_rollouts, key=lambda x: max(unsorted_rollouts[0], unsorted_rollouts[1]), reverse=True) # Only take first best_num_deltas rollouts rollouts = sorted_rollouts[:self.policy.num_best_deltas] # Update Policy self.policy.update(rollouts, std_dev_rewards) # Execute Current Policy eval_reward = self.deploy() return eval_reward def train_parallel(self, parentPipes): """ Execute rollouts in parallel using multiprocessing library based on: # https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/gym/pybullet_envs/ARS/ars.py """ # USE VANILLA OR TG POLICY if self.TGP is None: exploration = _EXPLORE else: exploration = _EXPLORE_TG # Initializing the perturbations deltas and the positive/negative rewards deltas = self.policy.sample_deltas() # Initialize +- reward list of size num_deltas positive_rewards = [0] * self.policy.num_deltas negative_rewards = [0] * self.policy.num_deltas smach = copy.deepcopy(self.smach) smach.ClearanceHeight = self.BaseClearanceHeight smach.PenetrationDepth = self.BasePenetrationDepth smach.reshuffle() if parentPipes: for i in range(self.policy.num_deltas): # Execute each rollout on a separate thread parentPipe = parentPipes[i] # NOTE: target for parentPipe specified in main_ars.py # (target is ParallelWorker fcn defined up top) parentPipe.send([ exploration, [ self.normalizer, self.policy, "+", deltas[i], self.desired_velocity, self.desired_rate, self.TGP, smach, self.spot ] ]) for i in range(self.policy.num_deltas): # Receive cummulative reward from each rollout positive_rewards[i] = parentPipes[i].recv()[0] for i in range(self.policy.num_deltas): # Execute each rollout on a separate thread parentPipe = parentPipes[i] parentPipe.send([ exploration, [ self.normalizer, self.policy, "-", deltas[i], self.desired_velocity, self.desired_rate, self.TGP, smach, self.spot ] ]) for i in range(self.policy.num_deltas): # Receive cummulative reward from each rollout negative_rewards[i] = parentPipes[i].recv()[0] else: raise ValueError( "Select 'train' method if you are not using multiprocessing!") # Calculate std dev std_dev_rewards = np.array(positive_rewards + negative_rewards).std() # Order rollouts in decreasing list using cum reward as criterion # take max between reward for +- disturbance as that rollout's reward # Store max between positive and negative reward as key for sort scores = { k: max(r_pos, r_neg) for k, ( r_pos, r_neg) in enumerate(zip(positive_rewards, negative_rewards)) } indeces = sorted(scores.keys(), key=lambda x: scores[x], reverse=True)[:self.policy.num_deltas] # print("INDECES: ", indeces) rollouts = [(positive_rewards[k], negative_rewards[k], deltas[k]) for k in indeces] # Update Policy self.policy.update(rollouts, std_dev_rewards) # Execute Current Policy USING VANILLA OR TG if self.TGP is None: return self.deploy() else: return self.deployTG() def save(self, filename): """ Save the Policy :param filename: the name of the file where the policy is saved """ with open(filename + '_policy', 'wb') as filehandle: pickle.dump(self.policy.theta, filehandle) def load(self, filename): """ Load the Policy :param filename: the name of the file where the policy is saved """ with open(filename + '_policy', 'rb') as filehandle: self.policy.theta = pickle.load(filehandle)
26,330
Python
37.836283
148
0.536308
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/mini_bullet/terrain_env_randomizer.py
"""Generates a random terrain at Minitaur gym environment reset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random import os, inspect currentdir = os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(os.path.dirname(currentdir)) parentdir = os.path.dirname(os.path.dirname(parentdir)) os.sys.path.insert(0, parentdir) import itertools import math import enum import numpy as np from pybullet_envs.minitaur.envs import env_randomizer_base _GRID_LENGTH = 15 _GRID_WIDTH = 10 _MAX_SAMPLE_SIZE = 30 _MIN_BLOCK_DISTANCE = 0.7 _MAX_BLOCK_LENGTH = _MIN_BLOCK_DISTANCE _MIN_BLOCK_LENGTH = _MAX_BLOCK_LENGTH / 2 _MAX_BLOCK_HEIGHT = 0.05 _MIN_BLOCK_HEIGHT = _MAX_BLOCK_HEIGHT / 2 class PoissonDisc2D(object): """Generates 2D points using Poisson disk sampling method. Implements the algorithm described in: http://www.cs.ubc.ca/~rbridson/docs/bridson-siggraph07-poissondisk.pdf Unlike the uniform sampling method that creates small clusters of points, Poisson disk method enforces the minimum distance between points and is more suitable for generating a spatial distribution of non-overlapping objects. """ def __init__(self, grid_length, grid_width, min_radius, max_sample_size): """Initializes the algorithm. Args: grid_length: The length of the bounding square in which points are sampled. grid_width: The width of the bounding square in which points are sampled. min_radius: The minimum distance between any pair of points. max_sample_size: The maximum number of sample points around a active site. See details in the algorithm description. """ self._cell_length = min_radius / math.sqrt(2) self._grid_length = grid_length self._grid_width = grid_width self._grid_size_x = int(grid_length / self._cell_length) + 1 self._grid_size_y = int(grid_width / self._cell_length) + 1 self._min_radius = min_radius self._max_sample_size = max_sample_size # Flattern the 2D grid as an 1D array. The grid is used for fast nearest # point searching. self._grid = [None] * self._grid_size_x * self._grid_size_y # Generate the first sample point and set it as an active site. first_sample = np.array( np.random.random_sample(2)) * [grid_length, grid_width] self._active_list = [first_sample] # Also store the sample point in the grid. self._grid[self._point_to_index_1d(first_sample)] = first_sample def _point_to_index_1d(self, point): """Computes the index of a point in the grid array. Args: point: A 2D point described by its coordinates (x, y). Returns: The index of the point within the self._grid array. """ return self._index_2d_to_1d(self._point_to_index_2d(point)) def _point_to_index_2d(self, point): """Computes the 2D index (aka cell ID) of a point in the grid. Args: point: A 2D point (list) described by its coordinates (x, y). Returns: x_index: The x index of the cell the point belongs to. y_index: The y index of the cell the point belongs to. """ x_index = int(point[0] / self._cell_length) y_index = int(point[1] / self._cell_length) return x_index, y_index def _index_2d_to_1d(self, index2d): """Converts the 2D index to the 1D position in the grid array. Args: index2d: The 2D index of a point (aka the cell ID) in the grid. Returns: The 1D position of the cell within the self._grid array. """ return index2d[0] + index2d[1] * self._grid_size_x def _is_in_grid(self, point): """Checks if the point is inside the grid boundary. Args: point: A 2D point (list) described by its coordinates (x, y). Returns: Whether the point is inside the grid. """ return (0 <= point[0] < self._grid_length) and (0 <= point[1] < self._grid_width) def _is_in_range(self, index2d): """Checks if the cell ID is within the grid. Args: index2d: The 2D index of a point (aka the cell ID) in the grid. Returns: Whether the cell (2D index) is inside the grid. """ return (0 <= index2d[0] < self._grid_size_x) and (0 <= index2d[1] < self._grid_size_y) def _is_close_to_existing_points(self, point): """Checks if the point is close to any already sampled (and stored) points. Args: point: A 2D point (list) described by its coordinates (x, y). Returns: True iff the distance of the point to any existing points is smaller than the min_radius """ px, py = self._point_to_index_2d(point) # Now we can check nearby cells for existing points for neighbor_cell in itertools.product(xrange(px - 1, px + 2), xrange(py - 1, py + 2)): if not self._is_in_range(neighbor_cell): continue maybe_a_point = self._grid[self._index_2d_to_1d(neighbor_cell)] if maybe_a_point is not None and np.linalg.norm( maybe_a_point - point) < self._min_radius: return True return False def sample(self): """Samples new points around some existing point. Removes the sampling base point and also stores the new jksampled points if they are far enough from all existing points. """ active_point = self._active_list.pop() for _ in xrange(self._max_sample_size): # Generate random points near the current active_point between the radius random_radius = np.random.uniform(self._min_radius, 2 * self._min_radius) random_angle = np.random.uniform(0, 2 * math.pi) # The sampled 2D points near the active point sample = random_radius * np.array( [np.cos(random_angle), np.sin(random_angle)]) + active_point if not self._is_in_grid(sample): continue if self._is_close_to_existing_points(sample): continue self._active_list.append(sample) self._grid[self._point_to_index_1d(sample)] = sample def generate(self): """Generates the Poisson disc distribution of 2D points. Although the while loop looks scary, the algorithm is in fact O(N), where N is the number of cells within the grid. When we sample around a base point (in some base cell), new points will not be pushed into the base cell because of the minimum distance constraint. Once the current base point is removed, all future searches cannot start from within the same base cell. Returns: All sampled points. The points are inside the quare [0, grid_length] x [0, grid_width] """ while self._active_list: self.sample() all_sites = [] for p in self._grid: if p is not None: all_sites.append(p) return all_sites class TerrainType(enum.Enum): """The randomzied terrain types we can use in the gym env.""" RANDOM_BLOCKS = 1 TRIANGLE_MESH = 2 class MinitaurTerrainRandomizer(env_randomizer_base.EnvRandomizerBase): """Generates an uneven terrain in the gym env.""" def __init__(self, terrain_type=TerrainType.TRIANGLE_MESH, mesh_filename="terrain9735.obj", mesh_scale=None): """Initializes the randomizer. Args: terrain_type: Whether to generate random blocks or load a triangle mesh. mesh_filename: The mesh file to be used. The mesh will only be loaded if terrain_type is set to TerrainType.TRIANGLE_MESH. mesh_scale: the scaling factor for the triangles in the mesh file. """ self._terrain_type = terrain_type self._mesh_filename = mesh_filename self._mesh_scale = mesh_scale if mesh_scale else [1.0, 1.0, 0.3] def randomize_env(self, env): """Generate a random terrain for the current env. Args: env: A minitaur gym environment. """ if self._terrain_type is TerrainType.TRIANGLE_MESH: self._load_triangle_mesh(env) if self._terrain_type is TerrainType.RANDOM_BLOCKS: self._generate_convex_blocks(env) def _load_triangle_mesh(self, env): """Represents the random terrain using a triangle mesh. It is possible for Minitaur leg to stuck at the common edge of two triangle pieces. To prevent this from happening, we recommend using hard contacts (or high stiffness values) for Minitaur foot in sim. Args: env: A minitaur gym environment. """ env.pybullet_client.removeBody(env.ground_id) terrain_collision_shape_id = env.pybullet_client.createCollisionShape( shapeType=env.pybullet_client.GEOM_MESH, fileName=self._mesh_filename, flags=1, meshScale=self._mesh_scale) env.ground_id = env.pybullet_client.createMultiBody( baseMass=0, baseCollisionShapeIndex=terrain_collision_shape_id, basePosition=[0, 0, 0]) def _generate_convex_blocks(self, env): """Adds random convex blocks to the flat ground. We use the Possion disk algorithm to add some random blocks on the ground. Possion disk algorithm sets the minimum distance between two sampling points, thus voiding the clustering effect in uniform N-D distribution. Args: env: A minitaur gym environment. """ poisson_disc = PoissonDisc2D(_GRID_LENGTH, _GRID_WIDTH, _MIN_BLOCK_DISTANCE, _MAX_SAMPLE_SIZE) block_centers = poisson_disc.generate() for center in block_centers: # We want the blocks to be in front of the robot. shifted_center = np.array(center) - [2, _GRID_WIDTH / 2] # Do not place blocks near the point [0, 0], where the robot will start. if abs(shifted_center[0]) < 1.0 and abs(shifted_center[1]) < 1.0: continue half_length = np.random.uniform( _MIN_BLOCK_LENGTH, _MAX_BLOCK_LENGTH) / (2 * math.sqrt(2)) half_height = np.random.uniform(_MIN_BLOCK_HEIGHT, _MAX_BLOCK_HEIGHT) / 2 box_id = env.pybullet_client.createCollisionShape( env.pybullet_client.GEOM_BOX, halfExtents=[half_length, half_length, half_height]) env.pybullet_client.createMultiBody(baseMass=0, baseCollisionShapeIndex=box_id, basePosition=[ shifted_center[0], shifted_center[1], half_height ]) def _generate_height_field(self, env): random.seed(10) env.pybullet_client.configureDebugVisualizer( env.pybullet_client.COV_ENABLE_RENDERING, 0) terrainShape = env.pybullet_client.createCollisionShape( shapeType=env.pybullet_client.GEOM_HEIGHTFIELD, meshScale=[.1, .1, 24], fileName="heightmaps/wm_height_out.png") textureId = env.pybullet_client.loadTexture("gimp_overlay_out.png") terrain = env.pybullet_client.createMultiBody(0, terrainShape) env.pybullet_client.changeVisualShape(terrain, -1, textureUniqueId=textureId) env.pybullet_client.changeVisualShape(terrain, -1, rgbaColor=[1, 1, 1, 1])
12,192
Python
39.916107
85
0.602116
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/mini_bullet/env_randomizer_base.py
"""Abstract base class for environment randomizer.""" import abc class EnvRandomizerBase(object): """Abstract base class for environment randomizer. An EnvRandomizer is called in environment.reset(). It will randomize physical parameters of the objects in the simulation. The physical parameters will be fixed for that episode and be randomized again in the next environment.reset(). """ __metaclass__ = abc.ABCMeta @abc.abstractmethod def randomize_env(self, env): """Randomize the simulated_objects in the environment. Args: env: The environment to be randomized. """ pass
622
Python
23.919999
65
0.726688
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/mini_bullet/minitaur.py
"""This file implements the functionalities of a minitaur using pybullet. """ import copy import math import numpy as np from . import motor import os INIT_POSITION = [0, 0, .2] INIT_ORIENTATION = [0, 0, 0, 1] KNEE_CONSTRAINT_POINT_RIGHT = [0, 0.005, 0.2] KNEE_CONSTRAINT_POINT_LEFT = [0, 0.01, 0.2] OVERHEAT_SHUTDOWN_TORQUE = 2.45 OVERHEAT_SHUTDOWN_TIME = 1.0 LEG_POSITION = ["front_left", "back_left", "front_right", "back_right"] MOTOR_NAMES = [ "motor_front_leftL_joint", "motor_front_leftR_joint", "motor_back_leftL_joint", "motor_back_leftR_joint", "motor_front_rightL_joint", "motor_front_rightR_joint", "motor_back_rightL_joint", "motor_back_rightR_joint" ] LEG_LINK_ID = [2, 3, 5, 6, 8, 9, 11, 12, 15, 16, 18, 19, 21, 22, 24, 25] MOTOR_LINK_ID = [1, 4, 7, 10, 14, 17, 20, 23] FOOT_LINK_ID = [3, 6, 9, 12, 16, 19, 22, 25] BASE_LINK_ID = -1 class Minitaur(object): """The minitaur class that simulates a quadruped robot from Ghost Robotics. """ def __init__(self, pybullet_client, urdf_root=os.path.join(os.path.dirname(__file__), "../data"), time_step=0.01, self_collision_enabled=False, motor_velocity_limit=np.inf, pd_control_enabled=False, accurate_motor_model_enabled=False, motor_kp=0.7, motor_kd=0.02, torque_control_enabled=False, motor_overheat_protection=False, on_rack=False, kd_for_pd_controllers=0.3, desired_velocity=0.5, desired_rate=0.0): """Constructs a minitaur and reset it to the initial states. Args: pybullet_client: The instance of BulletClient to manage different simulations. urdf_root: The path to the urdf folder. time_step: The time step of the simulation. self_collision_enabled: Whether to enable self collision. motor_velocity_limit: The upper limit of the motor velocity. pd_control_enabled: Whether to use PD control for the motors. accurate_motor_model_enabled: Whether to use the accurate DC motor model. motor_kp: proportional gain for the accurate motor model motor_kd: derivative gain for the acurate motor model torque_control_enabled: Whether to use the torque control, if set to False, pose control will be used. motor_overheat_protection: Whether to shutdown the motor that has exerted large torque (OVERHEAT_SHUTDOWN_TORQUE) for an extended amount of time (OVERHEAT_SHUTDOWN_TIME). See ApplyAction() in minitaur.py for more details. on_rack: Whether to place the minitaur on rack. This is only used to debug the walking gait. In this mode, the minitaur's base is hanged midair so that its walking gait is clearer to visualize. kd_for_pd_controllers: kd value for the pd controllers of the motors. desired_velocity: additional observation space dimension for policy desired_rate: additional observation space dimension for policy """ # used to calculate minitaur acceleration self.prev_lin_twist = np.array([0, 0, 0]) self.prev_lin_acc = np.array([0, 0, 0]) self.num_motors = 8 self.num_legs = int(self.num_motors / 2) self._pybullet_client = pybullet_client self._urdf_root = urdf_root self._self_collision_enabled = self_collision_enabled self._motor_velocity_limit = motor_velocity_limit self._pd_control_enabled = pd_control_enabled self._motor_direction = [-1, -1, -1, -1, 1, 1, 1, 1] self._observed_motor_torques = np.zeros(self.num_motors) self._applied_motor_torques = np.zeros(self.num_motors) self._max_force = 3.5 self._accurate_motor_model_enabled = accurate_motor_model_enabled self._torque_control_enabled = torque_control_enabled self._motor_overheat_protection = motor_overheat_protection self._on_rack = on_rack if self._accurate_motor_model_enabled: self._kp = motor_kp self._kd = motor_kd self._motor_model = motor.MotorModel( torque_control_enabled=self._torque_control_enabled, kp=self._kp, kd=self._kd) elif self._pd_control_enabled: self._kp = 8 self._kd = kd_for_pd_controllers else: self._kp = 1 self._kd = 1 self.time_step = time_step self.desired_velocity = desired_velocity self.desired_rate = desired_rate self.Reset() def _RecordMassInfoFromURDF(self): self._base_mass_urdf = self._pybullet_client.getDynamicsInfo( self.quadruped, BASE_LINK_ID)[0] self._leg_masses_urdf = [] self._leg_masses_urdf.append( self._pybullet_client.getDynamicsInfo(self.quadruped, LEG_LINK_ID[0])[0]) self._leg_masses_urdf.append( self._pybullet_client.getDynamicsInfo(self.quadruped, MOTOR_LINK_ID[0])[0]) def _BuildJointNameToIdDict(self): num_joints = self._pybullet_client.getNumJoints(self.quadruped) self._joint_name_to_id = {} for i in range(num_joints): joint_info = self._pybullet_client.getJointInfo(self.quadruped, i) self._joint_name_to_id[joint_info[1].decode( "UTF-8")] = joint_info[0] def _BuildMotorIdList(self): self._motor_id_list = [ self._joint_name_to_id[motor_name] for motor_name in MOTOR_NAMES ] def Reset(self, reload_urdf=True, desired_velocity=None, desired_rate=None): """Reset the minitaur to its initial states. Args: reload_urdf: Whether to reload the urdf file. If not, Reset() just place the minitaur back to its starting position. """ # UPDATE DESIRED VELOCITY AND RATE STATES if desired_velocity is not None: self.desired_velocity = desired_velocity if desired_rate is not None: self.desired_rate = desired_rate if reload_urdf: if self._self_collision_enabled: self.quadruped = self._pybullet_client.loadURDF( "%s/quadruped/minitaur.urdf" % self._urdf_root, INIT_POSITION, flags=self._pybullet_client.URDF_USE_SELF_COLLISION) else: self.quadruped = self._pybullet_client.loadURDF( "%s/quadruped/minitaur.urdf" % self._urdf_root, INIT_POSITION) self._BuildJointNameToIdDict() self._BuildMotorIdList() self._RecordMassInfoFromURDF() self.ResetPose(add_constraint=True) if self._on_rack: self._pybullet_client.createConstraint( self.quadruped, -1, -1, -1, self._pybullet_client.JOINT_FIXED, [0, 0, 0], [0, 0, 0], [0, 0, 1]) else: self._pybullet_client.resetBasePositionAndOrientation( self.quadruped, INIT_POSITION, INIT_ORIENTATION) self._pybullet_client.resetBaseVelocity(self.quadruped, [0, 0, 0], [0, 0, 0]) self.ResetPose(add_constraint=False) self._overheat_counter = np.zeros(self.num_motors) self._motor_enabled_list = [True] * self.num_motors\ def _SetMotorTorqueById(self, motor_id, torque): self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=motor_id, controlMode=self._pybullet_client.TORQUE_CONTROL, force=torque) def _SetDesiredMotorAngleById(self, motor_id, desired_angle): self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=motor_id, controlMode=self._pybullet_client.POSITION_CONTROL, targetPosition=desired_angle, positionGain=self._kp, velocityGain=self._kd, force=self._max_force) def _SetDesiredMotorAngleByName(self, motor_name, desired_angle): self._SetDesiredMotorAngleById(self._joint_name_to_id[motor_name], desired_angle) def ResetPose(self, add_constraint): """Reset the pose of the minitaur. Args: add_constraint: Whether to add a constraint at the joints of two feet. """ for i in range(self.num_legs): self._ResetPoseForLeg(i, add_constraint) def _ResetPoseForLeg(self, leg_id, add_constraint): """Reset the initial pose for the leg. Args: leg_id: It should be 0, 1, 2, or 3, which represents the leg at front_left, back_left, front_right and back_right. add_constraint: Whether to add a constraint at the joints of two feet. """ knee_friction_force = 0 half_pi = math.pi / 2.0 knee_angle = -2.1834 leg_position = LEG_POSITION[leg_id] self._pybullet_client.resetJointState( self.quadruped, self._joint_name_to_id["motor_" + leg_position + "L_joint"], self._motor_direction[2 * leg_id] * half_pi, targetVelocity=0) self._pybullet_client.resetJointState( self.quadruped, self._joint_name_to_id["knee_" + leg_position + "L_link"], self._motor_direction[2 * leg_id] * knee_angle, targetVelocity=0) self._pybullet_client.resetJointState( self.quadruped, self._joint_name_to_id["motor_" + leg_position + "R_joint"], self._motor_direction[2 * leg_id + 1] * half_pi, targetVelocity=0) self._pybullet_client.resetJointState( self.quadruped, self._joint_name_to_id["knee_" + leg_position + "R_link"], self._motor_direction[2 * leg_id + 1] * knee_angle, targetVelocity=0) if add_constraint: self._pybullet_client.createConstraint( self.quadruped, self._joint_name_to_id["knee_" + leg_position + "R_link"], self.quadruped, self._joint_name_to_id["knee_" + leg_position + "L_link"], self._pybullet_client.JOINT_POINT2POINT, [0, 0, 0], KNEE_CONSTRAINT_POINT_RIGHT, KNEE_CONSTRAINT_POINT_LEFT) if self._accurate_motor_model_enabled or self._pd_control_enabled: # Disable the default motor in pybullet. self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=(self._joint_name_to_id["motor_" + leg_position + "L_joint"]), controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=knee_friction_force) self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=(self._joint_name_to_id["motor_" + leg_position + "R_joint"]), controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=knee_friction_force) else: self._SetDesiredMotorAngleByName( "motor_" + leg_position + "L_joint", self._motor_direction[2 * leg_id] * half_pi) self._SetDesiredMotorAngleByName( "motor_" + leg_position + "R_joint", self._motor_direction[2 * leg_id + 1] * half_pi) self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=(self._joint_name_to_id["knee_" + leg_position + "L_link"]), controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=knee_friction_force) self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=(self._joint_name_to_id["knee_" + leg_position + "R_link"]), controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=knee_friction_force) def GetBasePosition(self): """Get the position of minitaur's base. Returns: The position of minitaur's base. """ position, _ = (self._pybullet_client.getBasePositionAndOrientation( self.quadruped)) return position def GetBaseOrientation(self): """Get the orientation of minitaur's base, represented as quaternion. Returns: The orientation of minitaur's base. """ _, orientation = (self._pybullet_client.getBasePositionAndOrientation( self.quadruped)) return orientation def GetBaseTwitst(self): """Get the Twist of minitaur's base. Returns: The Twist of the minitaur's base. """ return self._pybullet_client.getBaseVelocity(self.quadruped) def GetActionDimension(self): """Get the length of the action list. Returns: The length of the action list. """ return self.num_motors def GetObservationUpperBound(self): """Get the upper bound of the observation. Returns: The upper bound of an observation. See GetObservation() for the details of each element of an observation. NOTE: Changed just like GetObservation() """ upper_bound = np.array([0.0] * self.GetObservationDimension()) # roll, pitch upper_bound[0:2] = np.pi / 2.0 # acc, rate in x,y,z upper_bound[2:8] = np.inf # 8:10 are velocity and rate bounds, min and max are +-10 # upper_bound[8:10] = 10 # NOTE: ORIGINAL BELOW # upper_bound[10:10 + self.num_motors] = math.pi # Joint angle. # upper_bound[self.num_motors + 10:2 * self.num_motors + 10] = ( # motor.MOTOR_SPEED_LIMIT) # Joint velocity. # upper_bound[2 * self.num_motors + 10:3 * self.num_motors + 10] = ( # motor.OBSERVED_TORQUE_LIMIT) # Joint torque. # upper_bound[3 * # self.num_motors:] = 1.0 # Quaternion of base orientation. # print("UPPER BOUND{}".format(upper_bound)) return upper_bound def GetObservationLowerBound(self): """Get the lower bound of the observation.""" return -self.GetObservationUpperBound() def GetObservationDimension(self): """Get the length of the observation list. Returns: The length of the observation list. """ return len(self.GetObservation()) def GetObservation(self): """Get the observations of minitaur. It includes the angles, velocities, torques and the orientation of the base. Returns: The observation list. observation[0:8] are motor angles. observation[8:16] are motor velocities, observation[16:24] are motor torques. observation[24:28] is the orientation of the base, in quaternion form. NOTE: DIVERGES FROM STOCK MINITAUR ENV. WILL LEAVE ORIGINAL COMMENTED For my purpose, the observation space includes Roll and Pitch, as well as acceleration and gyroscopic rate along the x,y,z axes. All of this information can be collected from an onboard IMU. The reward function will contain a hidden velocity reward (fwd, bwd) which cannot be measured and so is not included. For spinning, the gyroscopic z rate will be used as the (explicit) velocity reward. This version operates without motor torques, angles and velocities. Erwin Coumans' paper suggests a sparse observation space leads to higher reward """ observation = [] ori = self.GetBaseOrientation() # Get roll and pitch roll, pitch, _ = self._pybullet_client.getEulerFromQuaternion( [ori[0], ori[1], ori[2], ori[3]]) # Get linear accelerations and angular rates lt, ang_twist = self.GetBaseTwitst() lin_twist = np.array([lt[0], lt[1], lt[2]]) # Get linear accelerations lin_acc = self.prev_lin_twist - lin_twist # if lin_acc.all() == 0.0: # lin_acc = self.prev_lin_acc self.prev_lin_acc = lin_acc # print("LIN ACC: ", lin_acc) self.prev_lin_twist = lin_twist # order: roll, pitch, acc(x,y,z), gyro(x,y,z) observation.append(roll) observation.append(pitch) observation.extend(lin_acc.tolist()) observation.extend(list(ang_twist)) # velocity and rate # observation.append(self.desired_velocity) # observation.append(self.desired_rate) # NOTE: ORIGINAL BELOW # observation.extend(self.GetMotorAngles().tolist()) # observation.extend(self.GetMotorVelocities().tolist()) # observation.extend(self.GetMotorTorques().tolist()) # observation.extend(list(self.GetBaseOrientation())) return observation def ApplyAction(self, motor_commands): """Set the desired motor angles to the motors of the minitaur. The desired motor angles are clipped based on the maximum allowed velocity. If the pd_control_enabled is True, a torque is calculated according to the difference between current and desired joint angle, as well as the joint velocity. This torque is exerted to the motor. For more information about PD control, please refer to: https://en.wikipedia.org/wiki/PID_controller. Args: motor_commands: The eight desired motor angles. """ if self._motor_velocity_limit < np.inf: current_motor_angle = self.GetMotorAngles() motor_commands_max = (current_motor_angle + self.time_step * self._motor_velocity_limit) motor_commands_min = (current_motor_angle - self.time_step * self._motor_velocity_limit) motor_commands = np.clip(motor_commands, motor_commands_min, motor_commands_max) if self._accurate_motor_model_enabled or self._pd_control_enabled: q = self.GetMotorAngles() qdot = self.GetMotorVelocities() if self._accurate_motor_model_enabled: actual_torque, observed_torque = self._motor_model.convert_to_torque( motor_commands, q, qdot) if self._motor_overheat_protection: for i in range(self.num_motors): if abs(actual_torque[i]) > OVERHEAT_SHUTDOWN_TORQUE: self._overheat_counter[i] += 1 else: self._overheat_counter[i] = 0 if (self._overheat_counter[i] > OVERHEAT_SHUTDOWN_TIME / self.time_step): self._motor_enabled_list[i] = False # The torque is already in the observation space because we use # GetMotorAngles and GetMotorVelocities. self._observed_motor_torques = observed_torque # Transform into the motor space when applying the torque. self._applied_motor_torque = np.multiply( actual_torque, self._motor_direction) for motor_id, motor_torque, motor_enabled in zip( self._motor_id_list, self._applied_motor_torque, self._motor_enabled_list): if motor_enabled: self._SetMotorTorqueById(motor_id, motor_torque) else: self._SetMotorTorqueById(motor_id, 0) else: torque_commands = -self._kp * ( q - motor_commands) - self._kd * qdot # The torque is already in the observation space because we use # GetMotorAngles and GetMotorVelocities. self._observed_motor_torques = torque_commands # Transform into the motor space when applying the torque. self._applied_motor_torques = np.multiply( self._observed_motor_torques, self._motor_direction) for motor_id, motor_torque in zip(self._motor_id_list, self._applied_motor_torques): self._SetMotorTorqueById(motor_id, motor_torque) else: motor_commands_with_direction = np.multiply( motor_commands, self._motor_direction) for motor_id, motor_command_with_direction in zip( self._motor_id_list, motor_commands_with_direction): self._SetDesiredMotorAngleById(motor_id, motor_command_with_direction) def GetMotorAngles(self): """Get the eight motor angles at the current moment. Returns: Motor angles. """ motor_angles = [ self._pybullet_client.getJointState(self.quadruped, motor_id)[0] for motor_id in self._motor_id_list ] motor_angles = np.multiply(motor_angles, self._motor_direction) return motor_angles def GetMotorVelocities(self): """Get the velocity of all eight motors. Returns: Velocities of all eight motors. """ motor_velocities = [ self._pybullet_client.getJointState(self.quadruped, motor_id)[1] for motor_id in self._motor_id_list ] motor_velocities = np.multiply(motor_velocities, self._motor_direction) return motor_velocities def GetMotorTorques(self): """Get the amount of torques the motors are exerting. Returns: Motor torques of all eight motors. """ if self._accurate_motor_model_enabled or self._pd_control_enabled: return self._observed_motor_torques else: motor_torques = [ self._pybullet_client.getJointState(self.quadruped, motor_id)[3] for motor_id in self._motor_id_list ] motor_torques = np.multiply(motor_torques, self._motor_direction) return motor_torques def ConvertFromLegModel(self, actions): """Convert the actions that use leg model to the real motor actions. Args: actions: The theta, phi of the leg model. actions are of form = [phi, phi, phi, phi, theta, theta, theta, theta] where phi = swing and theta = extension Returns: The eight desired motor angles that can be used in ApplyActions(). """ motor_angle = copy.deepcopy(actions) scale_for_singularity = 1 offset_for_singularity = 1.5 half_num_motors = int(self.num_motors / 2) quater_pi = math.pi / 4 for i in range(self.num_motors): action_idx = i // 2 forward_backward_component = ( -scale_for_singularity * quater_pi * (actions[action_idx + half_num_motors] + offset_for_singularity)) extension_component = (-1)**i * quater_pi * actions[action_idx] if i >= half_num_motors: extension_component = -extension_component motor_angle[i] = (math.pi + forward_backward_component + extension_component) return motor_angle def GetBaseMassFromURDF(self): """Get the mass of the base from the URDF file.""" return self._base_mass_urdf def GetLegMassesFromURDF(self): """Get the mass of the legs from the URDF file.""" return self._leg_masses_urdf def SetBaseMass(self, base_mass): self._pybullet_client.changeDynamics(self.quadruped, BASE_LINK_ID, mass=base_mass) def SetLegMasses(self, leg_masses): """Set the mass of the legs. A leg includes leg_link and motor. All four leg_links have the same mass, which is leg_masses[0]. All four motors have the same mass, which is leg_mass[1]. Args: leg_masses: The leg masses. leg_masses[0] is the mass of the leg link. leg_masses[1] is the mass of the motor. """ for link_id in LEG_LINK_ID: self._pybullet_client.changeDynamics(self.quadruped, link_id, mass=leg_masses[0]) for link_id in MOTOR_LINK_ID: self._pybullet_client.changeDynamics(self.quadruped, link_id, mass=leg_masses[1]) def SetFootFriction(self, foot_friction): """Set the lateral friction of the feet. Args: foot_friction: The lateral friction coefficient of the foot. This value is shared by all four feet. """ for link_id in FOOT_LINK_ID: self._pybullet_client.changeDynamics(self.quadruped, link_id, lateralFriction=foot_friction) def SetBatteryVoltage(self, voltage): if self._accurate_motor_model_enabled: self._motor_model.set_voltage(voltage) def SetMotorViscousDamping(self, viscous_damping): if self._accurate_motor_model_enabled: self._motor_model.set_viscous_damping(viscous_damping)
25,949
Python
42.540268
85
0.582951
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/mini_bullet/minitaur_gym_env.py
"""This file implements the gym environment of minitaur. """ import os import inspect import math import time import gym from gym import spaces from gym.utils import seeding import numpy as np import pybullet import pybullet_utils.bullet_client as bc from . import minitaur import pybullet_data from . import minitaur_env_randomizer from pkg_resources import parse_version from gym.envs.registration import register currentdir = os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(os.path.dirname(currentdir)) os.sys.path.insert(0, parentdir) NUM_SUBSTEPS = 5 NUM_MOTORS = 8 MOTOR_ANGLE_OBSERVATION_INDEX = 0 MOTOR_VELOCITY_OBSERVATION_INDEX = MOTOR_ANGLE_OBSERVATION_INDEX + NUM_MOTORS MOTOR_TORQUE_OBSERVATION_INDEX = MOTOR_VELOCITY_OBSERVATION_INDEX + NUM_MOTORS BASE_ORIENTATION_OBSERVATION_INDEX = MOTOR_TORQUE_OBSERVATION_INDEX + NUM_MOTORS ACTION_EPS = 0.01 OBSERVATION_EPS = 0.01 RENDER_HEIGHT = 720 RENDER_WIDTH = 960 # Register as OpenAI Gym Environment register( id="MinitaurBulletEnv-v999", entry_point='mini_bullet.minitaur_gym_env:MinitaurBulletEnv', max_episode_steps=500, ) class MinitaurBulletEnv(gym.Env): """The gym environment for the minitaur. It simulates the locomotion of a minitaur, a quadruped robot. The state space include the angles, velocities and torques for all the motors and the action space is the desired motor angle for each motor. The reward function is based on how far the minitaur walks in 1000 steps and penalizes the energy expenditure. """ metadata = { "render.modes": ["human", "rgb_array"], "video.frames_per_second": 50 } def __init__( self, urdf_root=pybullet_data.getDataPath(), action_repeat=1, # WEIGHTS distance_weight=1.0, rotation_weight=1.0, energy_weight=0.0005, shake_weight=0.005, drift_weight=2.0, rp_weight=0.1, rate_weight=0.1, distance_limit=float("inf"), observation_noise_stdev=0.0, self_collision_enabled=True, motor_velocity_limit=np.inf, pd_control_enabled=False, # not needed to be true if accurate motor model is enabled (has its own better PD) leg_model_enabled=True, accurate_motor_model_enabled=True, motor_kp=0.7, motor_kd=0.02, torque_control_enabled=False, motor_overheat_protection=True, hard_reset=True, on_rack=False, render=False, kd_for_pd_controllers=0.3, env_randomizer=minitaur_env_randomizer.MinitaurEnvRandomizer(), desired_velocity=0.5, desired_rate=0.0, lateral=False): """Initialize the minitaur gym environment. Args: urdf_root: The path to the urdf data folder. action_repeat: The number of simulation steps before actions are applied. distance_weight: The weight of the distance term in the reward. energy_weight: The weight of the energy term in the reward. shake_weight: The weight of the vertical shakiness term in the reward. drift_weight: The weight of the sideways drift term in the reward. distance_limit: The maximum distance to terminate the episode. observation_noise_stdev: The standard deviation of observation noise. self_collision_enabled: Whether to enable self collision in the sim. motor_velocity_limit: The velocity limit of each motor. pd_control_enabled: Whether to use PD controller for each motor. leg_model_enabled: Whether to use a leg motor to reparameterize the action space. accurate_motor_model_enabled: Whether to use the accurate DC motor model. motor_kp: proportional gain for the accurate motor model. motor_kd: derivative gain for the accurate motor model. torque_control_enabled: Whether to use the torque control, if set to False, pose control will be used. motor_overheat_protection: Whether to shutdown the motor that has exerted large torque (OVERHEAT_SHUTDOWN_TORQUE) for an extended amount of time (OVERHEAT_SHUTDOWN_TIME). See ApplyAction() in minitaur.py for more details. hard_reset: Whether to wipe the simulation and load everything when reset is called. If set to false, reset just place the minitaur back to start position and set its pose to initial configuration. on_rack: Whether to place the minitaur on rack. This is only used to debug the walking gait. In this mode, the minitaur's base is hanged midair so that its walking gait is clearer to visualize. render: Whether to render the simulation. kd_for_pd_controllers: kd value for the pd controllers of the motors env_randomizer: An EnvRandomizer to randomize the physical properties during reset(). """ self._time_step = 0.01 self._action_repeat = action_repeat self._num_bullet_solver_iterations = 300 self._urdf_root = urdf_root self._self_collision_enabled = self_collision_enabled self._motor_velocity_limit = motor_velocity_limit self._observation = [] self._env_step_counter = 0 self._is_render = render self._last_base_position = [0, 0, 0] self._distance_weight = distance_weight self._rotation_weight = rotation_weight self._energy_weight = energy_weight self._drift_weight = drift_weight self._shake_weight = shake_weight self._rp_weight = rp_weight self._rate_weight = rate_weight self._distance_limit = distance_limit self._observation_noise_stdev = observation_noise_stdev self._action_bound = 1 self._pd_control_enabled = pd_control_enabled self._leg_model_enabled = leg_model_enabled self._accurate_motor_model_enabled = accurate_motor_model_enabled self._motor_kp = motor_kp self._motor_kd = motor_kd self._torque_control_enabled = torque_control_enabled self._motor_overheat_protection = motor_overheat_protection self._on_rack = on_rack self._cam_dist = 1.0 self._cam_yaw = 0 self._cam_pitch = -30 self._hard_reset = True self._kd_for_pd_controllers = kd_for_pd_controllers self._last_frame_time = 0.0 print("urdf_root=" + self._urdf_root) self._env_randomizer = env_randomizer # PD control needs smaller time step for stability. if pd_control_enabled or accurate_motor_model_enabled: self._time_step /= NUM_SUBSTEPS self._num_bullet_solver_iterations /= NUM_SUBSTEPS self._action_repeat *= NUM_SUBSTEPS if self._is_render: self._pybullet_client = bc.BulletClient( connection_mode=pybullet.GUI) else: self._pybullet_client = bc.BulletClient() self.seed() np.random.seed(0) self.desired_velocity = desired_velocity self.desired_rate = desired_rate # Change fwd/bwd reward to side-side reward self.lateral = lateral self.reset() observation_high = (self.minitaur.GetObservationUpperBound() + OBSERVATION_EPS) observation_low = (self.minitaur.GetObservationLowerBound() - OBSERVATION_EPS) action_dim = 8 action_high = np.array([self._action_bound] * action_dim) self.action_space = spaces.Box(-action_high, action_high, dtype=np.float32) self.observation_space = spaces.Box(observation_low, observation_high, dtype=np.float32) self.viewer = None self._hard_reset = hard_reset # This assignment need to be after reset() def set_env_randomizer(self, env_randomizer): self._env_randomizer = env_randomizer def configure(self, args): self._args = args def reset(self, desired_velocity=None, desired_rate=None): if desired_velocity is not None: self.desired_velocity = desired_velocity if desired_rate is not None: self.desired_rate = desired_rate if self._hard_reset: self._pybullet_client.resetSimulation() self._pybullet_client.setPhysicsEngineParameter( numSolverIterations=int(self._num_bullet_solver_iterations)) self._pybullet_client.setTimeStep(self._time_step) plane = self._pybullet_client.loadURDF("%s/plane.urdf" % self._urdf_root) self._pybullet_client.changeVisualShape(plane, -1, rgbaColor=[1, 1, 1, 0.9]) self._pybullet_client.configureDebugVisualizer( self._pybullet_client.COV_ENABLE_PLANAR_REFLECTION, 0) self._pybullet_client.setGravity(0, 0, -9.81) acc_motor = self._accurate_motor_model_enabled motor_protect = self._motor_overheat_protection self.minitaur = (minitaur.Minitaur( pybullet_client=self._pybullet_client, urdf_root=self._urdf_root, time_step=self._time_step, self_collision_enabled=self._self_collision_enabled, motor_velocity_limit=self._motor_velocity_limit, pd_control_enabled=self._pd_control_enabled, accurate_motor_model_enabled=acc_motor, motor_kp=self._motor_kp, motor_kd=self._motor_kd, torque_control_enabled=self._torque_control_enabled, motor_overheat_protection=motor_protect, on_rack=self._on_rack, kd_for_pd_controllers=self._kd_for_pd_controllers, desired_velocity=self.desired_velocity, desired_rate=self.desired_rate)) else: self.minitaur.Reset(reload_urdf=False, desired_velocity=self.desired_velocity, desired_rate=self.desired_rate) if self._env_randomizer is not None: self._env_randomizer.randomize_env(self) self._env_step_counter = 0 self._last_base_position = [0, 0, 0] self._objectives = [] self._pybullet_client.resetDebugVisualizerCamera( self._cam_dist, self._cam_yaw, self._cam_pitch, [0, 0, 0]) if not self._torque_control_enabled: for _ in range(100): if self._pd_control_enabled or self._accurate_motor_model_enabled: self.minitaur.ApplyAction([math.pi / 2] * 8) self._pybullet_client.stepSimulation() return self._noisy_observation() def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def _transform_action_to_motor_command(self, action): if self._leg_model_enabled: for i, action_component in enumerate(action): if not (-self._action_bound - ACTION_EPS <= action_component <= self._action_bound + ACTION_EPS): raise ValueError("{}th action {} out of bounds.".format( i, action_component)) action = self.minitaur.ConvertFromLegModel(action) return action def step(self, action): """Step forward the simulation, given the action. Args: action: A list of desired motor angles for eight motors. Returns: observations: The angles, velocities and torques of all motors. reward: The reward for the current state-action pair. done: Whether the episode has ended. info: A dictionary that stores diagnostic information. Raises: ValueError: The action dimension is not the same as the number of motors. ValueError: The magnitude of actions is out of bounds. """ if self._is_render: # Sleep, otherwise the computation takes less time than real time, # which will make the visualization like a fast-forward video. time_spent = time.time() - self._last_frame_time self._last_frame_time = time.time() time_to_sleep = self._action_repeat * self._time_step - time_spent if time_to_sleep > 0: time.sleep(time_to_sleep) base_pos = self.minitaur.GetBasePosition() camInfo = self._pybullet_client.getDebugVisualizerCamera() curTargetPos = camInfo[11] distance = camInfo[10] yaw = camInfo[8] pitch = camInfo[9] targetPos = [ 0.95 * curTargetPos[0] + 0.05 * base_pos[0], 0.95 * curTargetPos[1] + 0.05 * base_pos[1], curTargetPos[2] ] self._pybullet_client.resetDebugVisualizerCamera( distance, yaw, pitch, base_pos) action = self._transform_action_to_motor_command(action) for _ in range(self._action_repeat): self.minitaur.ApplyAction(action) self._pybullet_client.stepSimulation() self._env_step_counter += 1 reward = self._reward() done = self._termination() return np.array(self._noisy_observation()), reward, done, {} def render(self, mode="rgb_array", close=False): if mode != "rgb_array": return np.array([]) base_pos = self.minitaur.GetBasePosition() view_matrix = self._pybullet_client.computeViewMatrixFromYawPitchRoll( cameraTargetPosition=base_pos, distance=self._cam_dist, yaw=self._cam_yaw, pitch=self._cam_pitch, roll=0, upAxisIndex=2) proj_matrix = self._pybullet_client.computeProjectionMatrixFOV( fov=60, aspect=float(RENDER_WIDTH) / RENDER_HEIGHT, nearVal=0.1, farVal=100.0) (_, _, px, _, _) = self._pybullet_client.getCameraImage( width=RENDER_WIDTH, height=RENDER_HEIGHT, viewMatrix=view_matrix, projectionMatrix=proj_matrix, renderer=pybullet.ER_BULLET_HARDWARE_OPENGL) rgb_array = np.array(px) rgb_array = rgb_array[:, :, :3] return rgb_array def get_minitaur_motor_angles(self): """Get the minitaur's motor angles. Returns: A numpy array of motor angles. """ return np.array( self._observation[MOTOR_ANGLE_OBSERVATION_INDEX: MOTOR_ANGLE_OBSERVATION_INDEX + NUM_MOTORS]) def get_minitaur_motor_velocities(self): """Get the minitaur's motor velocities. Returns: A numpy array of motor velocities. """ return np.array( self._observation[MOTOR_VELOCITY_OBSERVATION_INDEX: MOTOR_VELOCITY_OBSERVATION_INDEX + NUM_MOTORS]) def get_minitaur_motor_torques(self): """Get the minitaur's motor torques. Returns: A numpy array of motor torques. """ return np.array( self._observation[MOTOR_TORQUE_OBSERVATION_INDEX: MOTOR_TORQUE_OBSERVATION_INDEX + NUM_MOTORS]) def get_minitaur_base_orientation(self): """Get the minitaur's base orientation, represented by a quaternion. Returns: A numpy array of minitaur's orientation. """ return np.array(self._observation[BASE_ORIENTATION_OBSERVATION_INDEX:]) def is_fallen(self): """Decide whether the minitaur has fallen. If the up directions between the base and the world is larger (the dot product is smaller than 0.85) or the base is very low on the ground (the height is smaller than 0.13 meter), the minitaur is considered fallen. Returns: Boolean value that indicates whether the minitaur has fallen. """ orientation = self.minitaur.GetBaseOrientation() rot_mat = self._pybullet_client.getMatrixFromQuaternion(orientation) local_up = rot_mat[6:] pos = self.minitaur.GetBasePosition() return (np.dot(np.asarray([0, 0, 1]), np.asarray(local_up)) < 0.85 or pos[2] < 0.10) def _termination(self): position = self.minitaur.GetBasePosition() distance = math.sqrt(position[0]**2 + position[1]**2) return self.is_fallen() or distance > self._distance_limit def _reward(self): """ NOTE: reward now consists of: roll, pitch at desired 0 acc (y,z) = 0 FORWARD-BACKWARD: rate(x,y,z) = 0 --> HIDDEN REWARD: x(+-) velocity reference, not incl. in obs SPIN: acc(x) = 0, rate(x,y) = 0, rate (z) = rate reference Also include drift, energy vanilla rewards """ current_base_position = self.minitaur.GetBasePosition() # get observation obs = self._get_observation() # forward_reward = current_base_position[0] - self._last_base_position[0] # POSITIVE FOR FORWARD, NEGATIVE FOR BACKWARD | NOTE: HIDDEN fwd_speed = self.minitaur.prev_lin_twist[0] lat_speed = self.minitaur.prev_lin_twist[1] # print("FORWARD SPEED: {} \t STATE SPEED: {}".format( # fwd_speed, self.desired_velocity)) # self.desired_velocity = 0.4 # Modification for lateral/fwd rewards # FORWARD if not self.lateral: # f(x)=-(x-desired))^(2)*((1/desired)^2)+1 # to make sure that at 0vel there is 0 reawrd. # also squishes allowable tolerance reward_max = 1.0 forward_reward = reward_max * np.exp( -(fwd_speed - self.desired_velocity)**2 / (0.1)) # LATERAL else: reward_max = 1.0 forward_reward = reward_max * np.exp( -(lat_speed - self.desired_rate)**2 / (0.1)) if forward_reward < 0.0: forward_reward = 0.0 yaw_rate = obs[7] if self.desired_rate != 0: rot_reward = (-(yaw_rate - (self.desired_rate))**2) * ( (1.0 / self.desired_rate)**2) + 1.0 else: rot_reward = (-(yaw_rate - (self.desired_rate))**2) * ((1.0 / 0.1)**2) + 1.0 # Make sure that for forward-policy there is the appropriate rotation penalty if self.desired_velocity != 0: self._rotation_weight = self._rate_weight rot_reward = -abs(obs[7]) elif self.desired_rate != 0: forward_reward = 0.0 # penalty for nonzero roll, pitch rp_reward = -(abs(obs[0]) + abs(obs[1])) # print("ROLL: {} \t PITCH: {}".format(obs[0], obs[1])) # penalty for nonzero acc(z) shake_reward = -abs(obs[4]) # penalty for nonzero rate (x,y,z) rate_reward = -(abs(obs[5]) + abs(obs[6])) # drift_reward = -abs(current_base_position[1] - # self._last_base_position[1]) # this penalizes absolute error, and does not penalize correction # NOTE: for side-side, drift reward becomes in x instead drift_reward = -abs(current_base_position[1]) # If Lateral, change drift reward if self.lateral: drift_reward = -abs(current_base_position[0]) # shake_reward = -abs(current_base_position[2] - # self._last_base_position[2]) self._last_base_position = current_base_position energy_reward = -np.abs( np.dot(self.minitaur.GetMotorTorques(), self.minitaur.GetMotorVelocities())) * self._time_step reward = (self._distance_weight * forward_reward + self._rotation_weight * rot_reward + self._energy_weight * energy_reward + self._drift_weight * drift_reward + self._shake_weight * shake_reward + self._rp_weight * rp_reward + self._rate_weight * rate_reward) self._objectives.append( [forward_reward, energy_reward, drift_reward, shake_reward]) return reward def get_objectives(self): return self._objectives def _get_observation(self): self._observation = self.minitaur.GetObservation() return self._observation def _noisy_observation(self): self._get_observation() observation = np.array(self._observation) if self._observation_noise_stdev > 0: observation += (self.np_random.normal( scale=self._observation_noise_stdev, size=observation.shape) * self.minitaur.GetObservationUpperBound()) return observation if parse_version(gym.__version__) < parse_version('0.9.6'): _render = render _reset = reset _seed = seed _step = step
21,275
Python
40.554687
121
0.600188
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/mini_bullet/minitaur_env_randomizer.py
"""Randomize the minitaur_gym_env when reset() is called.""" import numpy as np from . import env_randomizer_base # Relative range. MINITAUR_BASE_MASS_ERROR_RANGE = (-0.2, 0.2) # 0.2 means 20% MINITAUR_LEG_MASS_ERROR_RANGE = (-0.2, 0.2) # 0.2 means 20% # Absolute range. BATTERY_VOLTAGE_RANGE = (14.8, 16.8) # Unit: Volt MOTOR_VISCOUS_DAMPING_RANGE = (0, 0.01) # Unit: N*m*s/rad (torque/angular vel) MINITAUR_LEG_FRICTION = (0.8, 1.5) # Unit: dimensionless class MinitaurEnvRandomizer(env_randomizer_base.EnvRandomizerBase): """A randomizer that change the minitaur_gym_env during every reset.""" def __init__(self, minitaur_base_mass_err_range=MINITAUR_BASE_MASS_ERROR_RANGE, minitaur_leg_mass_err_range=MINITAUR_LEG_MASS_ERROR_RANGE, battery_voltage_range=BATTERY_VOLTAGE_RANGE, motor_viscous_damping_range=MOTOR_VISCOUS_DAMPING_RANGE): self._minitaur_base_mass_err_range = minitaur_base_mass_err_range self._minitaur_leg_mass_err_range = minitaur_leg_mass_err_range self._battery_voltage_range = battery_voltage_range self._motor_viscous_damping_range = motor_viscous_damping_range np.random.seed(0) def randomize_env(self, env): self._randomize_minitaur(env.minitaur) def _randomize_minitaur(self, minitaur): """Randomize various physical properties of minitaur. It randomizes the mass/inertia of the base, mass/inertia of the legs, friction coefficient of the feet, the battery voltage and the motor damping at each reset() of the environment. Args: minitaur: the Minitaur instance in minitaur_gym_env environment. """ base_mass = minitaur.GetBaseMassFromURDF() randomized_base_mass = np.random.uniform( base_mass * (1.0 + self._minitaur_base_mass_err_range[0]), base_mass * (1.0 + self._minitaur_base_mass_err_range[1])) minitaur.SetBaseMass(randomized_base_mass) leg_masses = minitaur.GetLegMassesFromURDF() leg_masses_lower_bound = np.array(leg_masses) * ( 1.0 + self._minitaur_leg_mass_err_range[0]) leg_masses_upper_bound = np.array(leg_masses) * ( 1.0 + self._minitaur_leg_mass_err_range[1]) randomized_leg_masses = [ np.random.uniform(leg_masses_lower_bound[i], leg_masses_upper_bound[i]) for i in range(len(leg_masses)) ] minitaur.SetLegMasses(randomized_leg_masses) randomized_battery_voltage = np.random.uniform( BATTERY_VOLTAGE_RANGE[0], BATTERY_VOLTAGE_RANGE[1]) minitaur.SetBatteryVoltage(randomized_battery_voltage) randomized_motor_damping = np.random.uniform( MOTOR_VISCOUS_DAMPING_RANGE[0], MOTOR_VISCOUS_DAMPING_RANGE[1]) minitaur.SetMotorViscousDamping(randomized_motor_damping) randomized_foot_friction = np.random.uniform(MINITAUR_LEG_FRICTION[0], MINITAUR_LEG_FRICTION[1]) minitaur.SetFootFriction(randomized_foot_friction)
3,133
Python
43.771428
79
0.651452
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/mini_bullet/motor.py
"""This file implements an accurate motor model.""" import numpy as np VOLTAGE_CLIPPING = 50 OBSERVED_TORQUE_LIMIT = 5.7 MOTOR_VOLTAGE = 16.0 MOTOR_RESISTANCE = 0.186 MOTOR_TORQUE_CONSTANT = 0.0954 MOTOR_VISCOUS_DAMPING = 0 MOTOR_SPEED_LIMIT = MOTOR_VOLTAGE / (MOTOR_VISCOUS_DAMPING + MOTOR_TORQUE_CONSTANT) class MotorModel(object): """The accurate motor model, which is based on the physics of DC motors. The motor model support two types of control: position control and torque control. In position control mode, a desired motor angle is specified, and a torque is computed based on the internal motor model. When the torque control is specified, a pwm signal in the range of [-1.0, 1.0] is converted to the torque. The internal motor model takes the following factors into consideration: pd gains, viscous friction, back-EMF voltage and current-torque profile. """ def __init__(self, torque_control_enabled=False, kp=1.2, kd=0): self._torque_control_enabled = torque_control_enabled self._kp = kp self._kd = kd self._resistance = MOTOR_RESISTANCE self._voltage = MOTOR_VOLTAGE self._torque_constant = MOTOR_TORQUE_CONSTANT self._viscous_damping = MOTOR_VISCOUS_DAMPING self._current_table = [0, 10, 20, 30, 40, 50, 60] self._torque_table = [0, 1, 1.9, 2.45, 3.0, 3.25, 3.5] def set_voltage(self, voltage): self._voltage = voltage def get_voltage(self): return self._voltage def set_viscous_damping(self, viscous_damping): self._viscous_damping = viscous_damping def get_viscous_dampling(self): return self._viscous_damping def convert_to_torque(self, motor_commands, current_motor_angle, current_motor_velocity): """Convert the commands (position control or torque control) to torque. Args: motor_commands: The desired motor angle if the motor is in position control mode. The pwm signal if the motor is in torque control mode. current_motor_angle: The motor angle at the current time step. current_motor_velocity: The motor velocity at the current time step. Returns: actual_torque: The torque that needs to be applied to the motor. observed_torque: The torque observed by the sensor. """ if self._torque_control_enabled: pwm = motor_commands else: pwm = (-self._kp * (current_motor_angle - motor_commands) - self._kd * current_motor_velocity) pwm = np.clip(pwm, -1.0, 1.0) return self._convert_to_torque_from_pwm(pwm, current_motor_velocity) def _convert_to_torque_from_pwm(self, pwm, current_motor_velocity): """Convert the pwm signal to torque. Args: pwm: The pulse width modulation. current_motor_velocity: The motor velocity at the current time step. Returns: actual_torque: The torque that needs to be applied to the motor. observed_torque: The torque observed by the sensor. """ observed_torque = np.clip( self._torque_constant * (pwm * self._voltage / self._resistance), -OBSERVED_TORQUE_LIMIT, OBSERVED_TORQUE_LIMIT) # Net voltage is clipped at 50V by diodes on the motor controller. voltage_net = np.clip( pwm * self._voltage - (self._torque_constant + self._viscous_damping) * current_motor_velocity, -VOLTAGE_CLIPPING, VOLTAGE_CLIPPING) current = voltage_net / self._resistance current_sign = np.sign(current) current_magnitude = np.absolute(current) # Saturate torque based on empirical current relation. actual_torque = np.interp(current_magnitude, self._current_table, self._torque_table) actual_torque = np.multiply(current_sign, actual_torque) return actual_torque, observed_torque
3,985
Python
39.673469
79
0.652698
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/mini_bullet/heightfield.py
import pybullet as p import pybullet_data as pd import math import time textureId = -1 useProgrammatic = 0 useTerrainFromPNG = 1 useDeepLocoCSV = 2 updateHeightfield = False heightfieldSource = useProgrammatic import random random.seed(10) class HeightField(): def __init__(self): self.hf_id = 0 def _generate_field(self, env, heightPerturbationRange=0.08): env.pybullet_client.setAdditionalSearchPath(pd.getDataPath()) env.pybullet_client.configureDebugVisualizer( env.pybullet_client.COV_ENABLE_RENDERING, 0) heightPerturbationRange = heightPerturbationRange if heightfieldSource == useProgrammatic: numHeightfieldRows = 256 numHeightfieldColumns = 256 heightfieldData = [0] * numHeightfieldRows * numHeightfieldColumns for j in range(int(numHeightfieldColumns / 2)): for i in range(int(numHeightfieldRows / 2)): height = random.uniform(0, heightPerturbationRange) heightfieldData[2 * i + 2 * j * numHeightfieldRows] = height heightfieldData[2 * i + 1 + 2 * j * numHeightfieldRows] = height heightfieldData[2 * i + (2 * j + 1) * numHeightfieldRows] = height heightfieldData[2 * i + 1 + (2 * j + 1) * numHeightfieldRows] = height terrainShape = env.pybullet_client.createCollisionShape( shapeType=env.pybullet_client.GEOM_HEIGHTFIELD, meshScale=[.05, .05, 1], heightfieldTextureScaling=(numHeightfieldRows - 1) / 2, heightfieldData=heightfieldData, numHeightfieldRows=numHeightfieldRows, numHeightfieldColumns=numHeightfieldColumns) terrain = env.pybullet_client.createMultiBody( 0, terrainShape) env.pybullet_client.resetBasePositionAndOrientation( terrain, [0, 0, 0], [0, 0, 0, 1]) if heightfieldSource == useDeepLocoCSV: terrainShape = env.pybullet_client.createCollisionShape( shapeType=env.pybullet_client.GEOM_HEIGHTFIELD, meshScale=[.5, .5, 2.5], fileName="heightmaps/ground0.txt", heightfieldTextureScaling=128) terrain = env.pybullet_client.createMultiBody( 0, terrainShape) env.pybullet_client.resetBasePositionAndOrientation( terrain, [0, 0, 0], [0, 0, 0, 1]) if heightfieldSource == useTerrainFromPNG: terrainShape = env.pybullet_client.createCollisionShape( shapeType=env.pybullet_client.GEOM_HEIGHTFIELD, meshScale=[.05, .05, 5], fileName="heightmaps/wm_height_out.png") textureId = env.pybullet_client.loadTexture( "heightmaps/gimp_overlay_out.png") terrain = env.pybullet_client.createMultiBody( 0, terrainShape) env.pybullet_client.changeVisualShape(terrain, -1, textureUniqueId=textureId) self.hf_id = terrainShape print("TERRAIN SHAPE: {}".format(terrainShape)) env.pybullet_client.changeVisualShape(terrain, -1, rgbaColor=[1, 1, 1, 1]) env.pybullet_client.configureDebugVisualizer( env.pybullet_client.COV_ENABLE_RENDERING, 1)
3,706
Python
40.188888
78
0.565839
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/sac_lib/softQnetwork.py
import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.distributions import Normal class SoftQNetwork(nn.Module): def __init__(self, num_inputs, num_actions, hidden_size, init_w=3e-3): super(SoftQNetwork, self).__init__() self.q1 = nn.Sequential( nn.Linear(num_inputs + num_actions, hidden_size), nn.ReLU(), nn.Linear(hidden_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, 1) ) self.q2 = nn.Sequential( nn.Linear(num_inputs + num_actions, hidden_size), nn.ReLU(), nn.Linear(hidden_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, 1) ) def forward(self, state, action): state_action = torch.cat([state, action], 1) return self.q1(state_action), self.q2(state_action)
866
Python
35.124999
74
0.615473
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/sac_lib/policynetwork.py
import numpy as np import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.distributions import Normal device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu") class PolicyNetwork(nn.Module): def __init__(self, num_inputs, num_actions, hidden_size, init_w=3e-3, log_std_min=-20, log_std_max=2): super(PolicyNetwork, self).__init__() self.log_std_min = log_std_min self.log_std_max = log_std_max self.linear1 = nn.Linear(num_inputs, hidden_size) self.linear2 = nn.Linear(hidden_size, hidden_size) self.mean_linear = nn.Linear(hidden_size, num_actions) self.mean_linear.weight.data.uniform_(-init_w, init_w) self.mean_linear.bias.data.uniform_(-init_w, init_w) self.log_std_linear1 = nn.Linear(hidden_size, hidden_size) self.log_std_linear2 = nn.Linear(hidden_size, num_actions) self.log_std_linear2.weight.data.uniform_(-init_w, init_w) self.log_std_linear2.bias.data.uniform_(-init_w, init_w) # self.log_std_linear.weight.data.zero_() # self.log_std_linear.bias.data.zero_() def forward(self, state): x = F.relu(self.linear1(state)) x = F.relu(self.linear2(x)) mean = self.mean_linear(x) log_std = self.log_std_linear2(F.relu(self.log_std_linear1(x))) log_std = torch.clamp(log_std, self.log_std_min, self.log_std_max) return mean, log_std def evaluate(self, state, epsilon=1e-6): mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(mean, std) z = normal.rsample() action = torch.tanh(z) log_prob = normal.log_prob(z) - torch.log(1 - action.pow(2) + epsilon) log_prob = log_prob.sum(-1, keepdim=True) return action, log_prob, z, mean, log_std def get_action(self, state): state = torch.FloatTensor(state).unsqueeze(0).to(device) mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(mean, std) z = normal.sample() action = torch.tanh(z) action = action.detach().cpu().numpy() return action[0]
2,319
Python
31.222222
78
0.593359
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/sac_lib/replay_buffer.py
import numpy as np import random class ReplayBuffer: def __init__(self, capacity): self.capacity = capacity self.buffer = [] self.position = 0 def push(self, state, action, reward, next_state, done): if len(self.buffer) < self.capacity: self.buffer.append(None) self.buffer[self.position] = (state, action, reward, next_state, done) self.position = (self.position + 1) % self.capacity def sample(self, batch_size): batch = random.sample(self.buffer, batch_size) state, action, reward, next_state, done = map(np.stack, zip(*batch)) return state, action, reward, next_state, done def __len__(self): return len(self.buffer)
733
Python
30.913042
78
0.619372
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/sac_lib/__init__.py
from .sac import SoftActorCritic from .policynetwork import PolicyNetwork from .replay_buffer import ReplayBuffer from .normalized_actions import NormalizedActions
164
Python
31.999994
49
0.865854
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/sac_lib/normalized_actions.py
import gym import numpy as np class NormalizedActions(gym.ActionWrapper): def action(self, action): low_bound = self.action_space.low upper_bound = self.action_space.high action = low_bound + (action + 1.0) * 0.5 * (upper_bound - low_bound) action = np.clip(action, low_bound, upper_bound) return action def reverse_action(self, action): low_bound = self.action_space.low upper_bound = self.action_space.high action = 2 * (action - low_bound) / (upper_bound - low_bound) - 1 action = np.clip(action, low_bound, upper_bound) return actions
638
Python
26.782608
77
0.62069
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/sac_lib/sac.py
import numpy as np import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.distributions import Normal # alg specific imports from .softQnetwork import SoftQNetwork from .valuenetwork import ValueNetwork class SoftActorCritic(object): def __init__(self, policy, state_dim, action_dim, replay_buffer, hidden_dim=256, soft_q_lr=3e-3, policy_lr=3e-3, device=torch.device( "cuda:1" if torch.cuda.is_available() else "cpu")): self.device = device # set up the networks self.policy_net = policy.to(device) self.soft_q_net = SoftQNetwork(state_dim, action_dim, hidden_dim).to(device) self.target_soft_q_net = SoftQNetwork(state_dim, action_dim, hidden_dim).to(device) # ent coeff self.target_entropy = -action_dim self.log_ent_coef = torch.FloatTensor(np.log(np.array([.1 ]))).to(device) self.log_ent_coef.requires_grad = True # copy the target params over for target_param, param in zip(self.target_soft_q_net.parameters(), self.soft_q_net.parameters()): target_param.data.copy_(param.data) # set the losses self.soft_q_criterion = nn.MSELoss() # set the optimizers self.soft_q_optimizer = optim.Adam(self.soft_q_net.parameters(), lr=soft_q_lr) self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=policy_lr) self.ent_coef_optimizer = optim.Adam([self.log_ent_coef], lr=3e-3) # reference the replay buffer self.replay_buffer = replay_buffer self.log = {'entropy_loss': [], 'q_value_loss': [], 'policy_loss': []} def soft_q_update(self, batch_size, gamma=0.99, soft_tau=0.01): state, action, reward, next_state, done = self.replay_buffer.sample( batch_size) state = torch.FloatTensor(state).to(self.device) next_state = torch.FloatTensor(next_state).to(self.device) action = torch.FloatTensor(action).to(self.device) reward = torch.FloatTensor(reward).unsqueeze(1).to(self.device) done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(self.device) ent_coef = torch.exp(self.log_ent_coef.detach()) new_action, log_prob, z, mean, log_std = self.policy_net.evaluate( next_state) target_q1_value, target_q2_value = self.target_soft_q_net( next_state, new_action) target_value = reward + (1 - done) * gamma * ( torch.min(target_q2_value, target_q2_value) - ent_coef * log_prob) expected_q1_value, expected_q2_value = self.soft_q_net(state, action) q_value_loss = self.soft_q_criterion(expected_q1_value, target_value.detach()) \ + self.soft_q_criterion(expected_q2_value, target_value.detach()) self.soft_q_optimizer.zero_grad() q_value_loss.backward() self.soft_q_optimizer.step() new_action, log_prob, z, mean, log_std = self.policy_net.evaluate( state) expected_new_q1_value, expected_new_q2_value = self.soft_q_net( state, new_action) expected_new_q_value = torch.min(expected_new_q1_value, expected_new_q2_value) policy_loss = (ent_coef * log_prob - expected_new_q_value).mean() self.policy_optimizer.zero_grad() policy_loss.backward() self.policy_optimizer.step() self.ent_coef_optimizer.zero_grad() ent_loss = torch.mean( torch.exp(self.log_ent_coef) * (-log_prob - self.target_entropy).detach()) ent_loss.backward() self.ent_coef_optimizer.step() for target_param, param in zip(self.target_soft_q_net.parameters(), self.soft_q_net.parameters()): target_param.data.copy_(target_param.data * (1.0 - soft_tau) + param.data * soft_tau) self.log['q_value_loss'].append(q_value_loss.item()) self.log['entropy_loss'].append(ent_loss.item()) self.log['policy_loss'].append(policy_loss.item()) def save(self, filename): torch.save(self.policy_net.state_dict(), filename + "_policy_net") torch.save(self.policy_optimizer.state_dict(), filename + "_policy_optimizer") torch.save(self.soft_q_net.state_dict(), filename + "_soft_q_net") torch.save(self.soft_q_optimizer.state_dict(), filename + "_soft_q_optimizer") def load(self, filename): self.policy_net.load_state_dict( torch.load(filename + "_policy_net", map_location=self.device)) self.policy_optimizer.load_state_dict( torch.load(filename + "_policy_optimizer", map_location=self.device)) # self.soft_q_net.load_state_dict( # torch.load(filename + "_soft_q_net", map_location=self.device)) # self.soft_q_optimizer.load_state_dict( # torch.load(filename + "_soft_q_optimizer", # map_location=self.device)) # self.target_soft_q_net = copy.deepcopy(self.soft_q_net)
5,614
Python
40.286764
93
0.563591
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/sac_lib/valuenetwork.py
import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.distributions import Normal class ValueNetwork(nn.Module): def __init__(self, state_dim, hidden_dim, init_w=3e-3): super(ValueNetwork, self).__init__() self.linear1 = nn.Linear(state_dim, hidden_dim) self.linear2 = nn.Linear(hidden_dim, hidden_dim) self.linear3 = nn.Linear(hidden_dim, 1) self.linear3.weight.data.uniform_(-init_w, init_w) self.linear3.bias.data.uniform_(-init_w, init_w) def forward(self, state): x = F.relu(self.linear1(state)) x = F.relu(self.linear2(x)) x = self.linear3(x) return x
726
Python
30.608694
59
0.62259
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/tg_lib/traj_gen.py
import numpy as np PHASE_PERIOD = 2.0 * np.pi class CyclicIntegrator(): def __init__(self, dphi_leg=0.0): # Phase starts with offset self.tprime = PHASE_PERIOD * dphi_leg def progress_tprime(self, dt, f_tg, swing_stance_speed_ratio): """ swing_stance_speed_ratio is Beta in the paper set by policy at each step, but default is 1/3 delta_period is just dt This moves the phase based on delta (which is one parameter * delta_time_step). The speed of the phase depends on swing vs stance phase (phase > np.pi or phase < np.pi) which has different speeds. """ time_mult = dt * f_tg stance_speed_coef = (swing_stance_speed_ratio + 1) * 0.5 / swing_stance_speed_ratio swing_speed_coef = (swing_stance_speed_ratio + 1) * 0.5 if self.tprime < PHASE_PERIOD / 2.0: # Swing delta_phase_multiplier = stance_speed_coef * PHASE_PERIOD self.tprime += np.fmod(time_mult * delta_phase_multiplier, PHASE_PERIOD) else: # Stance delta_phase_multiplier = swing_speed_coef * PHASE_PERIOD self.tprime += np.fmod(time_mult * delta_phase_multiplier, PHASE_PERIOD) self.tprime = np.fmod(self.tprime, PHASE_PERIOD) class TrajectoryGenerator(): def __init__(self, center_swing=0.0, amplitude_extension=0.2, amplitude_lift=0.4, dphi_leg=0.0): # Cyclic Integrator self.CI = CyclicIntegrator(dphi_leg) self.center_swing = center_swing self.amplitude_extension = amplitude_extension self.amplitude_lift = amplitude_lift def get_state_based_on_phase(self): return np.array([(np.cos(self.CI.tprime) + 1) / 2.0, (np.sin(self.CI.tprime) + 1) / 2.0]) def get_swing_extend_based_on_phase(self, amplitude_swing=0.0, center_extension=0.0, intensity=1.0, theta=0.0): """ Eqn 2 in paper appendix Cs: center_swing Ae: amplitude_extension theta: extention difference between end of swing and stance (good for climbing) POLICY PARAMS: h_tg = center_extension --> walking height (+short/-tall) alpha_th = amplitude_swing --> swing fwd (-) or bwd (+) """ # Set amplitude_extension amplitude_extension = self.amplitude_extension if self.CI.tprime > PHASE_PERIOD / 2.0: amplitude_extension = self.amplitude_lift # E(t) extend = center_extension + (amplitude_extension * np.sin( self.CI.tprime)) * intensity + theta * np.cos(self.CI.tprime) # S(t) swing = self.center_swing + amplitude_swing * np.cos( self.CI.tprime) * intensity return swing, extend
3,133
Python
38.175
91
0.5391
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/tg_lib/tg_policy.py
import numpy as np from tg_lib.traj_gen import TrajectoryGenerator class TGPolicy(): """ state --> action """ def __init__( self, movetype="walk", # offset for leg swing. # mostly useless except walking up/down hill # Might be good to make it a policy param center_swing=0.0, # push legs towards body amplitude_extension=0.0, # push legs away from body amplitude_lift=0.0, ): """ movetype decides which type of TG we are training for OPTIONS: walk: one leg at a time LF, LB, RF, RB trot: LF|RB together followed by bound pace pronk """ # Trajectory Generators self.TG_dict = {} movetype_dict = { "walk": [0, 0.25, 0.5, 0.75], # ORDER: RF | LF | RB | LB "trot": [0, 0.5, 0.5, 0], # ORDER: LF + RB | LB + RF "bound": [0, 0.5, 0, 0.5], # ORDER: LF + LB | RF + RB "pace": [0, 0, 0.5, 0.5], # ORDER: LF + RF | LB + RB "pronk": [0, 0, 0, 0] # LF + LB + RF + RB } TG_LF = TrajectoryGenerator(center_swing, amplitude_extension, amplitude_lift, movetype_dict[movetype][0]) TG_LB = TrajectoryGenerator(center_swing, amplitude_extension, amplitude_lift, movetype_dict[movetype][1]) TG_RF = TrajectoryGenerator(center_swing, amplitude_extension, amplitude_lift, movetype_dict[movetype][2]) TG_RB = TrajectoryGenerator(center_swing, amplitude_extension, amplitude_lift, movetype_dict[movetype][3]) self.TG_dict["LF"] = TG_LF self.TG_dict["LB"] = TG_LB self.TG_dict["RF"] = TG_RF self.TG_dict["RB"] = TG_RB def increment(self, dt, f_tg, Beta): # Increment phase for (key, tg) in self.TG_dict.items(): tg.CI.progress_tprime(dt, f_tg, Beta) def get_TG_state(self): # NOTE: MAYBE RETURN ONLY tprime for TG1 since that's # the 'master' phase # We get two observations per TG # obs = np.array([]) # for i, (key, tg) in enumerate(self.TG_dict.items()): # obs = np.append(obs, tg.get_state_based_on_phase[0]) # obs = np.append(obs, tg.get_state_based_on_phase[1]) # return obs # OR just return phase, not sure why sin and cos is relevant... # obs = np.array([]) # for i, (key, tg) in enumerate(self.TG_dict.items()): # obs = np.append(obs, tg.CI.tprime) # Return MASTER phase obs = self.TG_dict["LF"].get_state_based_on_phase() return obs def get_utg(self, action, alpha_tg, h_tg, intensity, num_motors, theta=0.0): """ INPUTS: action: residuals for each motor from Policy alpha_tg: swing amplitude from Policy h_tg: center extension from Policy ie walking height num_motors: number of motors on minitaur OUTPUTS: action: residuals + TG """ # Get Action from TG [no policies here] half_num_motors = int(num_motors / 2) for i, (key, tg) in enumerate(self.TG_dict.items()): action_idx = i swing, extend = tg.get_swing_extend_based_on_phase( alpha_tg, h_tg, intensity, theta) # NOTE: ADDING to residuals action[action_idx] += swing action[action_idx + half_num_motors] += extend return action
3,806
Python
35.257143
79
0.505255
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/debug_scripts/loader.py
#!/usr/bin/env python import pybullet as p import time import pybullet_data import numpy as np import sys sys.path.append('../../../') from spotmicro.util import pybullet_data as pd physicsClient = p.connect(p.GUI) # or p.DIRECT for non-graphical version p.setAdditionalSearchPath(pybullet_data.getDataPath()) # optionally p.setGravity(0, 0, -9.81) # p.setTimeStep(1./240.) # slow, accurate p.setRealTimeSimulation(0) # we want to be faster than real time :) planeId = p.loadURDF("plane.urdf") StartPos = [0, 0, 0.3] StartOrientation = p.getQuaternionFromEuler([0, 0, 0]) p.resetDebugVisualizerCamera(cameraDistance=0.8, cameraYaw=45, cameraPitch=-30, cameraTargetPosition=[0, 0, 0]) boxId = p.loadURDF(pd.getDataPath() + "/assets/urdf/spot.urdf", StartPos, StartOrientation, flags=p.URDF_USE_SELF_COLLISION_EXCLUDE_PARENT) numj = p.getNumJoints(boxId) numb = p.getNumBodies() Pos, Orn = p.getBasePositionAndOrientation(boxId) print(Pos, Orn) print("Number of joints {}".format(numj)) print("Number of links {}".format(numb)) joint = [] movingJoints = [ 6, 7, 8, # FL 10, 11, 12, # FR 15, 16, 17, # BL 19, 20, 21 # BR ] maxVelocity = 100 mode = p.POSITION_CONTROL p.setJointMotorControlArray(bodyUniqueId=boxId, jointIndices=movingJoints, controlMode=p.POSITION_CONTROL, targetPositions=np.zeros(12), targetVelocities=np.zeros(12), forces=np.ones(12) * np.inf) counter = 0 angle1 = -np.pi / 2.0 angle2 = 0.0 angle = angle1 for i in range(100000000): counter += 1 if counter % 1000 == 0: p.setJointMotorControlArray( bodyUniqueId=boxId, jointIndices=[8, 12, 17, 21], # FWrists controlMode=p.POSITION_CONTROL, targetPositions=np.ones(4) * angle, targetVelocities=np.zeros(4), forces=np.ones(4) * 0.15) counter = 0 if angle == angle1: angle = angle2 else: angle = angle1 p.stepSimulation() p.disconnect()
2,296
Python
26.674698
73
0.578397
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/old_training_scripts/mini_td3.py
#!/usr/bin/env python import numpy as np from td3_lib.td3 import ReplayBuffer, TD3Agent, evaluate_policy from mini_bullet.minitaur_gym_env import MinitaurBulletEnv import torch import os def main(): """ The main() function. """ print("STARTING MINITAUR TD3") # TRAINING PARAMETERS # env_name = "MinitaurBulletEnv-v0" seed = 0 max_timesteps = 4e6 start_timesteps = 1e4 # 1e3 for testing purposes, use 1e4 for real expl_noise = 0.1 batch_size = 100 eval_freq = 1e4 save_model = True file_name = "mini_td3_" # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") models_path = os.path.join(my_path, "../models") if not os.path.exists(results_path): os.makedirs(results_path) if not os.path.exists(models_path): os.makedirs(models_path) env = MinitaurBulletEnv(render=False) # Set seeds env.seed(seed) torch.manual_seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] print("STATE DIM: {}".format(state_dim)) action_dim = env.action_space.shape[0] print("ACTION DIM: {}".format(action_dim)) max_action = float(env.action_space.high[0]) print("RECORDED MAX ACTION: {}".format(max_action)) policy = TD3Agent(state_dim, action_dim, max_action) policy_num = 0 if os.path.exists(models_path + "/" + file_name + str(policy_num) + "_critic"): print("Loading Existing Policy") policy.load(models_path + "/" + file_name + str(policy_num)) replay_buffer = ReplayBuffer() # Optionally load existing policy, replace 9999 with num buffer_number = 0 # BY DEFAULT WILL LOAD NOTHING, CHANGE THIS if os.path.exists(replay_buffer.buffer_path + "/" + "replay_buffer_" + str(buffer_number) + '.data'): print("Loading Replay Buffer " + str(buffer_number)) replay_buffer.load(buffer_number) # print(replay_buffer.storage) # Evaluate untrained policy and init list for storage evaluations = [] state = env.reset() done = False episode_reward = 0 episode_timesteps = 0 episode_num = 0 print("STARTED MINITAUR TD3") for t in range(int(max_timesteps)): episode_timesteps += 1 # Select action randomly or according to policy # Random Action - no training yet, just storing in buffer if t < start_timesteps: action = env.action_space.sample() # rospy.logdebug("Sampled Action") else: # According to policy + Exploraton Noise # print("POLICY Action") """ Note we clip at +-0.99.... because Gazebo has problems executing actions at the position limit (breaks model) """ action = np.clip( (policy.select_action(np.array(state)) + np.random.normal( 0, max_action * expl_noise, size=action_dim)), -max_action, max_action) # rospy.logdebug("Selected Acton: {}".format(action)) # Perform action next_state, reward, done, _ = env.step(action) done_bool = float(done) # Store data in replay buffer replay_buffer.add((state, action, next_state, reward, done_bool)) state = next_state episode_reward += reward # Train agent after collecting sufficient data for buffer if t >= start_timesteps: policy.train(replay_buffer, batch_size) if done: # +1 to account for 0 indexing. # +0 on ep_timesteps since it will increment +1 even if done=True print( "Total T: {} Episode Num: {} Episode T: {} Reward: {}".format( t + 1, episode_num, episode_timesteps, episode_reward)) # Reset environment state, done = env.reset(), False evaluations.append(episode_reward) episode_reward = 0 episode_timesteps = 0 episode_num += 1 # Evaluate episode if (t + 1) % eval_freq == 0: # evaluate_policy(policy, env_name, seed, np.save(results_path + "/" + str(file_name), evaluations) if save_model: policy.save(models_path + "/" + str(file_name) + str(t)) # replay_buffer.save(t) env.close() if __name__ == '__main__': main()
4,520
Python
30.615384
78
0.584735
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/old_training_scripts/mini_ars.py
#!/usr/bin/env python import numpy as np from ars_lib.ars import ARSAgent, Normalizer, Policy, ParallelWorker from mini_bullet.minitaur_gym_env import MinitaurBulletEnv import torch import os # Multiprocessing package for python # Parallelization improvements based on: # https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/gym/pybullet_envs/ARS/ars.py import multiprocessing as mp from multiprocessing import Pipe # Messages for Pipe _RESET = 1 _CLOSE = 2 _EXPLORE = 3 def main(): """ The main() function. """ # Hold mp pipes mp.freeze_support() print("STARTING MINITAUR ARS") # TRAINING PARAMETERS # env_name = "MinitaurBulletEnv-v0" seed = 0 max_timesteps = 4e6 eval_freq = 1e1 save_model = True file_name = "mini_ars_" # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") models_path = os.path.join(my_path, "../models") if not os.path.exists(results_path): os.makedirs(results_path) if not os.path.exists(models_path): os.makedirs(models_path) env = MinitaurBulletEnv(render=False) # Set seeds env.seed(seed) torch.manual_seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] print("STATE DIM: {}".format(state_dim)) action_dim = env.action_space.shape[0] print("ACTION DIM: {}".format(action_dim)) max_action = float(env.action_space.high[0]) print("RECORDED MAX ACTION: {}".format(max_action)) # Initialize Normalizer normalizer = Normalizer(state_dim) # Initialize Policy policy = Policy(state_dim, action_dim) # Initialize Agent with normalizer, policy and gym env agent = ARSAgent(normalizer, policy, env) agent_num = 0 if os.path.exists(models_path + "/" + file_name + str(agent_num) + "_policy"): print("Loading Existing agent") agent.load(models_path + "/" + file_name + str(agent_num)) # Evaluate untrained agent and init list for storage evaluations = [] env.reset(agent.desired_velocity, agent.desired_rate) episode_reward = 0 episode_timesteps = 0 episode_num = 0 # MULTIPROCESSING # Create mp pipes num_processes = policy.num_deltas processes = [] childPipes = [] parentPipes = [] # Store mp pipes for pr in range(num_processes): parentPipe, childPipe = Pipe() parentPipes.append(parentPipe) childPipes.append(childPipe) # Start multiprocessing for proc_num in range(num_processes): p = mp.Process(target=ParallelWorker, args=(childPipes[proc_num], env)) p.start() processes.append(p) print("STARTED MINITAUR ARS") t = 0 while t < (int(max_timesteps)): # Maximum timesteps per rollout t += policy.episode_steps episode_timesteps += 1 episode_reward = agent.train_parallel(parentPipes) # episode_reward = agent.train() # +1 to account for 0 indexing. # +0 on ep_timesteps since it will increment +1 even if done=True print("Total T: {} Episode Num: {} Episode T: {} Reward: {}, >400: {}". format(t, episode_num, policy.episode_steps, episode_reward, agent.successes)) # Reset environment evaluations.append(episode_reward) episode_reward = 0 episode_timesteps = 0 # Evaluate episode if (episode_num + 1) % eval_freq == 0: # evaluate_agent(agent, env_name, seed, np.save(results_path + "/" + str(file_name), evaluations) if save_model: agent.save(models_path + "/" + str(file_name) + str(episode_num)) # replay_buffer.save(t) episode_num += 1 # Close pipes and hence envs for parentPipe in parentPipes: parentPipe.send([_CLOSE, "pay2"]) for p in processes: p.join() if __name__ == '__main__': main()
4,077
Python
26.186666
101
0.619328
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/paper/GMBC_data_collector.py
#!/usr/bin/env python import numpy as np import sys sys.path.append('../../') from ars_lib.ars import ARSAgent, Normalizer, Policy from spotmicro.util.gui import GUI from spotmicro.Kinematics.SpotKinematics import SpotModel from spotmicro.GaitGenerator.Bezier import BezierGait from spotmicro.OpenLoopSM.SpotOL import BezierStepper from spotmicro.GymEnvs.spot_bezier_env import spotBezierEnv from spotmicro.spot_env_randomizer import SpotEnvRandomizer import os import argparse import pickle import matplotlib.pyplot as plt import pandas as pd import seaborn as sns sns.set() # ARGUMENTS descr = "Spot Mini Mini ARS Agent Evaluator." parser = argparse.ArgumentParser(description=descr) parser.add_argument("-hf", "--HeightField", help="Use HeightField", action='store_true') parser.add_argument("-a", "--AgentNum", help="Agent Number To Load") parser.add_argument("-nep", "--NumberOfEpisodes", help="Number of Episodes to Collect Data For") parser.add_argument("-dr", "--DontRandomize", help="Do NOT Randomize State and Environment.", action='store_true') parser.add_argument("-nc", "--NoContactSensing", help="Disable Contact Sensing", action='store_true') parser.add_argument("-s", "--Seed", help="Seed (Default: 0).") ARGS = parser.parse_args() def main(): """ The main() function. """ print("STARTING MINITAUR ARS") # TRAINING PARAMETERS # env_name = "MinitaurBulletEnv-v0" seed = 0 if ARGS.Seed: seed = ARGS.Seed max_episodes = 1000 if ARGS.NumberOfEpisodes: max_episodes = ARGS.NumberOfEpisodes if ARGS.HeightField: height_field = True else: height_field = False if ARGS.NoContactSensing: contacts = False else: contacts = True if ARGS.DontRandomize: env_randomizer = None else: env_randomizer = SpotEnvRandomizer() file_name = "spot_ars_" # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") if contacts: models_path = os.path.join(my_path, "../models/contact") else: models_path = os.path.join(my_path, "../models/no_contact") if not os.path.exists(results_path): os.makedirs(results_path) if not os.path.exists(models_path): os.makedirs(models_path) if ARGS.HeightField: height_field = True else: height_field = False env = spotBezierEnv(render=False, on_rack=False, height_field=height_field, draw_foot_path=False, contacts=contacts, env_randomizer=env_randomizer) # Set seeds env.seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] print("STATE DIM: {}".format(state_dim)) action_dim = env.action_space.shape[0] print("ACTION DIM: {}".format(action_dim)) max_action = float(env.action_space.high[0]) env.reset() spot = SpotModel() bz_step = BezierStepper(dt=env._time_step) bzg = BezierGait(dt=env._time_step) # Initialize Normalizer normalizer = Normalizer(state_dim) # Initialize Policy policy = Policy(state_dim, action_dim, episode_steps=np.inf) # Initialize Agent with normalizer, policy and gym env agent = ARSAgent(normalizer, policy, env, bz_step, bzg, spot, False) use_agent = False agent_num = 0 if ARGS.AgentNum: agent_num = ARGS.AgentNum use_agent = True if os.path.exists(models_path + "/" + file_name + str(agent_num) + "_policy"): print("Loading Existing agent") agent.load(models_path + "/" + file_name + str(agent_num)) agent.policy.episode_steps = 50000 policy = agent.policy env.reset() episode_reward = 0 episode_timesteps = 0 episode_num = 0 print("STARTED MINITAUR TEST SCRIPT") # Used to create gaussian distribution of survival distance surv_pos = [] # Store results if use_agent: # Store _agent agt = "agent_" + str(agent_num) else: # Store _vanilla agt = "vanilla" while episode_num < (int(max_episodes)): episode_reward, episode_timesteps = agent.deployTG() # We only care about x/y pos travelled_pos = list(agent.returnPose()) # NOTE: FORMAT: X, Y, TIMESTEPS - # tells us if robobt was just stuck forever. didn't actually fall. travelled_pos[-1] = episode_timesteps episode_num += 1 # Store dt and frequency for prob distribution surv_pos.append(travelled_pos) print("Episode Num: {} Episode T: {} Reward: {}".format( episode_num, episode_timesteps, episode_reward)) print("Survival Pos: {}".format(surv_pos[-1])) # Save/Overwrite each time with open( results_path + "/" + str(file_name) + agt + '_survival_' + str(max_episodes), 'wb') as filehandle: pickle.dump(surv_pos, filehandle) env.close() print("---------------------------------------") if __name__ == '__main__': main()
5,460
Python
27.442708
74
0.59359
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/paper/GMBC_data_plotter.py
#!/usr/bin/env python import numpy as np import sys import os import argparse import pickle import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import copy from scipy.stats import norm sns.set() # ARGUMENTS descr = "Spot Mini Mini ARS Agent Evaluator." parser = argparse.ArgumentParser(description=descr) parser.add_argument("-nep", "--NumberOfEpisodes", help="Number of Episodes to Plot Data For") parser.add_argument("-maw", "--MovingAverageWindow", help="Moving Average Window for Plotting (Default: 50)") parser.add_argument("-surv", "--Survival", help="Plot Survival Curve", action='store_true') parser.add_argument("-tr", "--TrainingData", help="Plot Training Curve", action='store_true') parser.add_argument("-tot", "--TotalReward", help="Show Total Reward instead of Reward Per Timestep", action='store_true') parser.add_argument("-ar", "--RandAgentNum", help="Randomized Agent Number To Load") parser.add_argument("-anor", "--NoRandAgentNum", help="Non-Randomized Agent Number To Load") parser.add_argument("-raw", "--Raw", help="Plot Raw Data in addition to Moving Averaged Data", action='store_true') parser.add_argument( "-s", "--Seed", help="Seed [UP TO, e.g. 0 | 0, 1 | 0, 1, 2 ...] (Default: 0).") parser.add_argument("-pout", "--PolicyOut", help="Plot Policy Output Data", action='store_true') parser.add_argument("-rough", "--Rough", help="Plot Policy Output Data for Rough Terrain", action='store_true') parser.add_argument( "-tru", "--TrueAct", help="Plot the Agent Action instead of what the robot sees", action='store_true') ARGS = parser.parse_args() MA_WINDOW = 50 if ARGS.MovingAverageWindow: MA_WINDOW = int(ARGS.MovingAverageWindow) def moving_average(a, n=MA_WINDOW): MA = np.cumsum(a, dtype=float) MA[n:] = MA[n:] - MA[:-n] return MA[n - 1:] / n def extract_data_bounds(min=0, max=5, dist_data=None, dt_data=None): """ 3 bounds: lower, mid, highest """ if dist_data is not None: # Get Survival Data, dt # Lowest Bound: x <= max bound = np.array([0]) if min == 0: less_max_cond = dist_data <= max bound = np.where(less_max_cond) else: # Highest Bound: min <= x if max == np.inf: gtr_min_cond = dist_data >= min bound = np.where(gtr_min_cond) # Mid Bound: min < x < max else: less_max_gtr_min_cond = np.logical_and(dist_data > min, dist_data < max) bound = np.where(less_max_gtr_min_cond) if dt_data is not None: dt_bounded = dt_data[bound] num_surv = np.array(np.where(dt_bounded == 50000))[0].shape[0] else: num_surv = None return dist_data[bound], num_surv else: return None def main(): """ The main() function. """ file_name = "spot_ars_" seed = 0 if ARGS.Seed: seed = ARGS.Seed # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") if not os.path.exists(results_path): os.makedirs(results_path) vanilla_surv = np.random.randn(1000) agent_surv = np.random.randn(1000) nep = 1000 if ARGS.NumberOfEpisodes: nep = ARGS.NumberOfEpisodes if ARGS.TrainingData: training = True else: training = False if ARGS.Survival: surv = True else: surv = False if ARGS.PolicyOut or ARGS.Rough or ARGS.TrueAct: pout = True else: pout = False if not pout and not surv and not training: print( "Please Select which Data you would like to plot (-pout | -surv | -tr)" ) rand_agt = 579 norand_agt = 569 if ARGS.RandAgentNum: rand_agt = ARGS.RandAgentNum if ARGS.NoRandAgentNum: norand_agt = ARGS.NoRandAgentNum if surv: # Vanilla Data if os.path.exists(results_path + "/" + file_name + "vanilla" + '_survival_{}'.format(nep)): with open( results_path + "/" + file_name + "vanilla" + '_survival_{}'.format(nep), 'rb') as filehandle: vanilla_surv = np.array(pickle.load(filehandle)) # Rand Agent Data if os.path.exists(results_path + "/" + file_name + "agent_{}".format(rand_agt) + '_survival_{}'.format(nep)): with open( results_path + "/" + file_name + "agent_{}".format(rand_agt) + '_survival_{}'.format(nep), 'rb') as filehandle: d2gmbc_surv = np.array(pickle.load(filehandle)) # NoRand Agent Data if os.path.exists(results_path + "/" + file_name + "agent_{}".format(norand_agt) + '_survival_{}'.format(nep)): with open( results_path + "/" + file_name + "agent_{}".format(norand_agt) + '_survival_{}'.format(nep), 'rb') as filehandle: gmbc_surv = np.array(pickle.load(filehandle)) # print(gmbc_surv[:, 0]) # Extract useful values vanilla_surv_x = vanilla_surv[:1000, 0] d2gmbc_surv_x = d2gmbc_surv[:, 0] gmbc_surv_x = gmbc_surv[:, 0] # convert the lists to series data = { 'Open Loop': vanilla_surv_x, 'GMBC': d2gmbc_surv_x, 'D^2-GMBC': gmbc_surv_x } colors = ['r', 'g', 'b'] # get dataframe df = pd.DataFrame(data) print(df) # get dataframe2 # Extract useful values vanilla_surv_dt = vanilla_surv[:1000, -1] d2gmbc_surv_dt = d2gmbc_surv[:, -1] gmbc_surv_dt = gmbc_surv[:, -1] # convert the lists to series data2 = { 'Open Loop': vanilla_surv_dt, 'GMBC': d2gmbc_surv_dt, 'D^2-GMBC': gmbc_surv_dt } df2 = pd.DataFrame(data2) # Plot for i, col in enumerate(df.columns): sns.distplot(df[[col]], color=colors[i]) plt.legend(labels=['D^2-GMBC', 'GMBC', 'Open Loop']) plt.xlabel("Forward Survived Distance (m)") plt.ylabel("Kernel Density Estimate") plt.show() # Print AVG and STDEV norand_avg = np.average(copy.deepcopy(gmbc_surv_x)) norand_std = np.std(copy.deepcopy(gmbc_surv_x)) rand_avg = np.average(copy.deepcopy(d2gmbc_surv_x)) rand_std = np.std(copy.deepcopy(d2gmbc_surv_x)) vanilla_avg = np.average(copy.deepcopy(vanilla_surv_x)) vanilla_std = np.std(copy.deepcopy(vanilla_surv_x)) print("Open Loop: AVG [{}] | STD [{}] | AMOUNT [{}]".format( vanilla_avg, vanilla_std, gmbc_surv_x.shape[0])) print("D^2-GMBC: AVG [{}] | STD [{}] AMOUNT [{}]".format( rand_avg, rand_std, d2gmbc_surv_x.shape[0])) print("GMBC: AVG [{}] | STD [{}] AMOUNT [{}]".format( norand_avg, norand_std, vanilla_surv_x.shape[0])) # collect data gmbc_surv_x_less_5, gmbc_surv_num_less_5 = extract_data_bounds( 0, 5, gmbc_surv_x, gmbc_surv_dt) d2gmbc_surv_x_less_5, d2gmbc_surv_num_less_5 = extract_data_bounds( 0, 5, d2gmbc_surv_x, d2gmbc_surv_dt) vanilla_surv_x_less_5, vanilla_surv_num_less_5 = extract_data_bounds( 0, 5, vanilla_surv_x, vanilla_surv_dt) # <=5 # Make sure all arrays filled if gmbc_surv_x_less_5.size == 0: gmbc_surv_x_less_5 = np.array([0]) if d2gmbc_surv_x_less_5.size == 0: d2gmbc_surv_x_less_5 = np.array([0]) if vanilla_surv_x_less_5.size == 0: vanilla_surv_x_less_5 = np.array([0]) norand_avg = np.average(gmbc_surv_x_less_5) norand_std = np.std(gmbc_surv_x_less_5) rand_avg = np.average(d2gmbc_surv_x_less_5) rand_std = np.std(d2gmbc_surv_x_less_5) vanilla_avg = np.average(vanilla_surv_x_less_5) vanilla_std = np.std(vanilla_surv_x_less_5) print("<= 5m") print( "Open Loop: AVG [{}] | STD [{}] | AMOUNT DEAD [{}] | AMOUNT ALIVE [{}]" .format(vanilla_avg, vanilla_std, vanilla_surv_x_less_5.shape[0] - vanilla_surv_num_less_5, vanilla_surv_num_less_5)) print( "D^2-GMBC: AVG [{}] | STD [{}] AMOUNT DEAD [{}] | AMOUNT ALIVE [{}]" .format(rand_avg, rand_std, d2gmbc_surv_x_less_5.shape[0] - d2gmbc_surv_num_less_5, d2gmbc_surv_num_less_5)) print("GMBC: AVG [{}] | STD [{}] AMOUNT DEAD [{}] | AMOUNT ALIVE [{}]". format(norand_avg, norand_std, gmbc_surv_x_less_5.shape[0] - gmbc_surv_num_less_5, gmbc_surv_num_less_5)) # collect data gmbc_surv_x_gtr_5, gmbc_surv_num_gtr_5 = extract_data_bounds( 5, 90, gmbc_surv_x, gmbc_surv_dt) d2gmbc_surv_x_gtr_5, d2gmbc_surv_num_gtr_5 = extract_data_bounds( 5, 90, d2gmbc_surv_x, d2gmbc_surv_dt) vanilla_surv_x_gtr_5, vanilla_surv_num_gtr_5 = extract_data_bounds( 5, 90, vanilla_surv_x, vanilla_surv_dt) # >5 <90 # Make sure all arrays filled if gmbc_surv_x_gtr_5.size == 0: gmbc_surv_x_gtr_5 = np.array([0]) if d2gmbc_surv_x_gtr_5.size == 0: d2gmbc_surv_x_gtr_5 = np.array([0]) if vanilla_surv_x_gtr_5.size == 0: vanilla_surv_x_gtr_5 = np.array([0]) norand_avg = np.average(gmbc_surv_x_gtr_5) norand_std = np.std(gmbc_surv_x_gtr_5) rand_avg = np.average(d2gmbc_surv_x_gtr_5) rand_std = np.std(d2gmbc_surv_x_gtr_5) vanilla_avg = np.average(vanilla_surv_x_gtr_5) vanilla_std = np.std(vanilla_surv_x_gtr_5) print("> 5m and <90m") print( "Open Loop: AVG [{}] | STD [{}] | AMOUNT DEAD [{}] | AMOUNT ALIVE [{}]" .format(vanilla_avg, vanilla_std, vanilla_surv_x_gtr_5.shape[0] - vanilla_surv_num_gtr_5, vanilla_surv_num_gtr_5)) print( "D^2-GMBC: AVG [{}] | STD [{}] AMOUNT DEAD [{}] | AMOUNT ALIVE [{}]" .format(rand_avg, rand_std, d2gmbc_surv_x_gtr_5.shape[0] - d2gmbc_surv_num_gtr_5, d2gmbc_surv_num_gtr_5)) print("GMBC: AVG [{}] | STD [{}] AMOUNT DEAD [{}] | AMOUNT ALIVE [{}]". format(norand_avg, norand_std, gmbc_surv_x_gtr_5.shape[0] - gmbc_surv_num_gtr_5, gmbc_surv_num_gtr_5)) # collect data gmbc_surv_x_gtr_90, gmbc_surv_num_gtr_90 = extract_data_bounds( 90, np.inf, gmbc_surv_x, gmbc_surv_dt) d2gmbc_surv_x_gtr_90, d2gmbc_surv_num_gtr_90 = extract_data_bounds( 90, np.inf, d2gmbc_surv_x, d2gmbc_surv_dt) vanilla_surv_x_gtr_90, vanilla_surv_num_gtr_90 = extract_data_bounds( 90, np.inf, vanilla_surv_x, vanilla_surv_dt) # >90 # Make sure all arrays filled if gmbc_surv_x_gtr_90.size == 0: gmbc_surv_x_gtr_90 = np.array([0]) if d2gmbc_surv_x_gtr_90.size == 0: d2gmbc_surv_x_gtr_90 = np.array([0]) if vanilla_surv_x_gtr_90.size == 0: vanilla_surv_x_gtr_90 = np.array([0]) norand_avg = np.average(gmbc_surv_x_gtr_90) norand_std = np.std(gmbc_surv_x_gtr_90) rand_avg = np.average(d2gmbc_surv_x_gtr_90) rand_std = np.std(d2gmbc_surv_x_gtr_90) vanilla_avg = np.average(vanilla_surv_x_gtr_90) vanilla_std = np.std(vanilla_surv_x_gtr_90) print(">= 90m") print( "Open Loop: AVG [{}] | STD [{}] | AAMOUNT DEAD [{}] | AMOUNT ALIVE [{}]" .format(vanilla_avg, vanilla_std, vanilla_surv_x_gtr_90.shape[0] - vanilla_surv_num_gtr_90, vanilla_surv_num_gtr_90)) print( "D^2-GMBC: AVG [{}] | STD [{}] AMOUNT DEAD [{}] | AMOUNT ALIVE [{}]" .format(rand_avg, rand_std, d2gmbc_surv_x_gtr_90.shape[0] - d2gmbc_surv_num_gtr_90, d2gmbc_surv_num_gtr_90)) print("GMBC: AVG [{}] | STD [{}] AMOUNT DEAD [{}] | AMOUNT ALIVE [{}]". format(norand_avg, norand_std, gmbc_surv_x_gtr_90.shape[0] - gmbc_surv_num_gtr_90, gmbc_surv_num_gtr_90)) # Save to excel df.to_excel(results_path + "/SurvDist.xlsx", index=False) df2.to_excel(results_path + "/SurvDT.xlsx", index=False) elif training: rand_data_list = [] norand_data_list = [] rand_shortest_length = np.inf norand_shortest_length = np.inf for i in range(int(seed) + 1): # Training Data Plotter rand_data_temp = np.load(results_path + "/spot_ars_rand_" + "seed" + str(i) + ".npy") norand_data_temp = np.load(results_path + "/spot_ars_norand_" + "seed" + str(i) + ".npy") rand_shortest_length = min( np.shape(rand_data_temp[:, 1])[0], rand_shortest_length) norand_shortest_length = min( np.shape(norand_data_temp[:, 1])[0], norand_shortest_length) rand_data_list.append(rand_data_temp) norand_data_list.append(norand_data_temp) tot_rand_data = [] tot_norand_data = [] norm_rand_data = [] norm_norand_data = [] for i in range(int(seed) + 1): tot_rand_data.append( moving_average(rand_data_list[i][:rand_shortest_length, 0])) tot_norand_data.append( moving_average( norand_data_list[i][:norand_shortest_length, 0])) norm_rand_data.append( moving_average(rand_data_list[i][:rand_shortest_length, 1])) norm_norand_data.append( moving_average( norand_data_list[i][:norand_shortest_length, 1])) tot_rand_data = np.array(tot_rand_data) tot_norand_data = np.array(tot_norand_data) norm_rand_data = np.array(norm_rand_data) norm_norand_data = np.array(norm_norand_data) # column-wise axis = 0 # MEAN tot_rand_mean = tot_rand_data.mean(axis=axis) tot_norand_mean = tot_norand_data.mean(axis=axis) norm_rand_mean = norm_rand_data.mean(axis=axis) norm_norand_mean = norm_norand_data.mean(axis=axis) # STD tot_rand_std = tot_rand_data.std(axis=axis) tot_norand_std = tot_norand_data.std(axis=axis) norm_rand_std = norm_rand_data.std(axis=axis) norm_norand_std = norm_norand_data.std(axis=axis) aranged_rand = np.arange(np.shape(tot_rand_mean)[0]) aranged_norand = np.arange(np.shape(tot_norand_mean)[0]) if ARGS.TotalReward: if ARGS.Raw: plt.plot(rand_data_list[0][:, 0], label="Randomized (Total Reward)", color='g') plt.plot(norand_data_list[0][:, 0], label="Non-Randomized (Total Reward)", color='r') plt.plot(aranged_norand, tot_norand_mean, label="MA: Non-Randomized (Total Reward)", color='r') plt.fill_between(aranged_norand, tot_norand_mean - tot_norand_std, tot_norand_mean + tot_norand_std, color='r', alpha=0.2) plt.plot(aranged_rand, tot_rand_mean, label="MA: Randomized (Total Reward)", color='g') plt.fill_between(aranged_rand, tot_rand_mean - tot_rand_std, tot_rand_mean + tot_rand_std, color='g', alpha=0.2) else: if ARGS.Raw: plt.plot(rand_data_list[0][:, 1], label="Randomized (Reward/dt)", color='g') plt.plot(norand_data_list[0][:, 1], label="Non-Randomized (Reward/dt)", color='r') plt.plot(aranged_norand, norm_norand_mean, label="MA: Non-Randomized (Reward/dt)", color='r') plt.fill_between(aranged_norand, norm_norand_mean - norm_norand_std, norm_norand_mean + norm_norand_std, color='r', alpha=0.2) plt.plot(aranged_rand, norm_rand_mean, label="MA: Randomized (Reward/dt)", color='g') plt.fill_between(aranged_rand, norm_rand_mean - norm_rand_std, norm_rand_mean + norm_rand_std, color='g', alpha=0.2) plt.xlabel("Epoch #") plt.ylabel("Reward") plt.title( "Training Performance with {} seed samples".format(int(seed) + 1)) plt.legend() plt.show() elif pout: if ARGS.Rough: terrain_name = "rough_" else: terrain_name = "flat_" if ARGS.TrueAct: action_name = "agent_act" else: action_name = "robot_act" action = np.load(results_path + "/" + "policy_out_" + terrain_name + action_name + ".npy") ClearHeight_act = action[:, 0] BodyHeight_act = action[:, 1] Residuals_act = action[:, 2:] plt.plot(ClearHeight_act, label='Clearance Height Mod', color='black') plt.plot(BodyHeight_act, label='Body Height Mod', color='darkviolet') # FL plt.plot(Residuals_act[:, 0], label='Residual: FL (x)', color='limegreen') plt.plot(Residuals_act[:, 1], label='Residual: FL (y)', color='lime') plt.plot(Residuals_act[:, 2], label='Residual: FL (z)', color='green') # FR plt.plot(Residuals_act[:, 3], label='Residual: FR (x)', color='lightskyblue') plt.plot(Residuals_act[:, 4], label='Residual: FR (y)', color='dodgerblue') plt.plot(Residuals_act[:, 5], label='Residual: FR (z)', color='blue') # BL plt.plot(Residuals_act[:, 6], label='Residual: BL (x)', color='firebrick') plt.plot(Residuals_act[:, 7], label='Residual: BL (y)', color='crimson') plt.plot(Residuals_act[:, 8], label='Residual: BL (z)', color='red') # BR plt.plot(Residuals_act[:, 9], label='Residual: BR (x)', color='gold') plt.plot(Residuals_act[:, 10], label='Residual: BR (y)', color='orange') plt.plot(Residuals_act[:, 11], label='Residual: BR (z)', color='coral') plt.xlabel("Epoch Iteration") plt.ylabel("Action Value") plt.title("Policy Output") plt.legend() plt.show() if __name__ == '__main__': main()
20,353
Python
36.484346
84
0.5014
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_real/Control/RPi/lib/servo_model.py
#!/usr/bin/env python import numpy as np import busio import digitalio import board import adafruit_mcp3xxx.mcp3008 as MCP from adafruit_mcp3xxx.analog_in import AnalogIn import time from adafruit_servokit import ServoKit class ServoJoint: def __init__(self, name, effort=0.15, speed=8.76, gpio=22, fb_chan=0, pwm_chan=0, pwm_min=600, pwm_max=2800, servo_horn_bias=0, actuation_range=270): self.name = name self.effort = effort # Nm self.speed = speed # rad/s # offset in mechanical design self.servo_horn_bias = servo_horn_bias # create the spi bus self.spi = busio.SPI(clock=board.SCK, MISO=board.MISO, MOSI=board.MOSI) # create the cs (chip select) if gpio == 22: self.cs = digitalio.DigitalInOut(board.D22) elif gpio == 27: self.cs = digitalio.DigitalInOut(board.D27) # create the mcp object self.mcp = MCP.MCP3008(self.spi, self.cs) # fb_chan from 0 to 7 for each MCP ADC if fb_chan == 0: self.chan = AnalogIn(self.mcp, MCP.P0) elif fb_chan == 1: self.chan = AnalogIn(self.mcp, MCP.P1) elif fb_chan == 2: self.chan = AnalogIn(self.mcp, MCP.P2) elif fb_chan == 3: self.chan = AnalogIn(self.mcp, MCP.P3) elif fb_chan == 4: self.chan = AnalogIn(self.mcp, MCP.P4) elif fb_chan == 5: self.chan = AnalogIn(self.mcp, MCP.P5) elif fb_chan == 6: self.chan = AnalogIn(self.mcp, MCP.P6) elif fb_chan == 7: self.chan = AnalogIn(self.mcp, MCP.P7) self.kit = ServoKit(channels=16) self.pwm_chan = pwm_chan self.kit.servo[self.pwm_chan].set_pulse_width_range(pwm_min, pwm_max) self.kit.servo[self.pwm_chan].actuation_range = actuation_range self.bias = self.rad2deg(self.servo_horn_bias) # degrees def forward_propagate(self, current_pos, desired_pos, dt): """ Predict the new position of the actuated servo motor joint """ pos_change = desired_pos - current_pos percent_of_pos_reached = (self.speed * dt) / np.abs(pos_change) # Cap at 100% if percent_of_pos_reached > 100.0: percent_of_pos_reached = 100.0 return current_pos + (pos_change * percent_of_pos_reached) def calibrate(self, min_val, max_val, num_iters=22): # Send to min value and record digital sig # Send to max value and record digital sig # OR INCREMENT TO GET MORE DATA commands = np.array([]) measurements = np.array([]) # Number of data points to collect num_iters = num_iters for i in range(num_iters): # commanded_value = (-np.pi / 2.0) + (i * # (np.pi) / float(num_iters - 1)) range_val = max_val - min_val commanded_value = (min_val) + (i * (range_val) / float(num_iters - 1)) commands = np.append(commands, commanded_value) self.actuate(commanded_value) time.sleep(.5) # according to rated speed 0.1sec/60deg measurements = np.append(measurements, self.chan.value) time.sleep(1.0) # according to rated speed 0.1sec/60deg # Perform fit print("COMMANDS: {}".format(commands)) print("MEASUREMENTS: {}".format(measurements)) polynomial = 4 # We want to input measurements and receive equivalent commanded angles in radians self.fit = np.poly1d(np.polyfit(measurements, commands, polynomial)) # Test Fit print("TESTING FIT: 90 DEG; RESULT IS {}".format( self.fit(self.chan.value))) print("RETURNING TO -90") self.actuate(-np.pi / 2) # Save fit np.save(self.name + "_fit", self.fit) def load_calibration(self): # Load fit self.fit = np.load(self.name + "_fit.npy") def remap(self, value): # Use calibraton value to remap from Digital Sig to Angle p = np.poly1d(self.fit) return p(value) def measure(self): return self.remap(self.chan.value) def rad2deg(self, rad): deg = rad * 180.0 / np.pi if deg > 90: deg = 90 elif deg < -90: deg = -90 return deg def deg2rad(self, deg): return deg * np.pi / 180.0 def actuate(self, desired_pos): self.kit.servo[ self.pwm_chan].angle = self.bias + self.rad2deg(desired_pos) def actuate_deg(self, desired_pos): self.kit.servo[ self.pwm_chan].angle = desired_pos
4,877
Python
31.092105
90
0.555464
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_real/Control/RPi/lib/serial_test.py
import time from Teensy_Interface import TeensyInterface ti = TeensyInterface() while True: s = input("Send? [y/n]") if s == "y": ti.add_to_buffer(4, 0, 135, 60) ti.send_buffer() r = input("Read? [y/n]") if r == "y": print(ti.read_buffer())
284
Python
17.999999
44
0.552817
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_real/Control/RPi/lib/motor_calibrate.py
#!/usr/bin/env python import time import numpy as np from servo_model import ServoJoint joint_names = [ 'rb_servo_r_hip', 'r_hip_r_thigh', 'r_thigh_r_knee', 'r_knee_r_shin', 'r_shin_r_ankle', 'r_ankle_r_foot', 'lb_servo_l_hip', 'l_hip_l_thigh', 'l_thigh_l_knee', 'l_knee_l_shin', 'l_shin_l_ankle', 'l_ankle_l_foot', 'torso_r_shoulder', 'r_shoulder_rs_servo', 're_servo_r_elbow', 'torso_l_shoulder', 'l_shoulder_ls_servo', 'le_servo_l_elbow' ] loop = True pwm_min = int(input("Enter Min PWM: ")) # 500 pwm_max = int(input("Enter Max PWM: ")) # 2400 actuation_range = int(input("Enter Actuation Range: ")) while loop: channel = int( input("Which channel is your servo connected to? [0-11]: ")) servo = ServoJoint(name=joint_names[channel], pwm_chan=channel, pwm_min=pwm_min, pwm_max=pwm_max, actuation_range=actuation_range) inner_loop = True while inner_loop: val = float(input("Select an angle value (deg): [q to quit]")) if val == "q" or val == "Q": inner_loop = False else: servo.actuate_deg(val) cont = input("Test another motor [y] or quit [n]? ") if cont == "n": loop = False
1,292
Python
29.069767
74
0.563467
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_real/Control/RPi/lib/Teensy_Interface.py
import serial class TeensyInterface: def __init__(self, port='/dev/ttyS0', baud=500000, timeout=0.2): self.ser = serial.Serial(port, baud) self.ser.flush() self.buffer = [] def __construct_string(self, i, x, y, z): return "{},{},{},{}\n".format(i, x, y, z) def add_to_buffer(self, i, x, y, z): self.buffer.append(self.__construct_string(i, x, y, z)) def add_raw(self, val): self.buffer.append("{}\n".format(val)) def send_buffer(self): for message in self.buffer: self.ser.write(message.encode('utf-8')) self.buffer = [] def read_buffer(self): return self.ser.read_until(b'\n')
694
Python
24.74074
68
0.559078
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_real/Control/RPi/lib/imu.py
import time import board import busio import adafruit_lsm9ds1 import numpy as np import math # i2c permission: sudo usermod -a -G i2c <user> # https://www.raspberrypi.org/forums/viewtopic.php?t=58782 # use ROS with python3: https://medium.com/@beta_b0t/how-to-setup-ros-with-python-3-44a69ca36674 class IMU: def __init__(self, rp_flip=True, r_neg=False, p_neg=True, y_neg=True): # I2C connection: # SPI connection: # from digitalio import DigitalInOut, Direction # spi = busio.SPI(board.SCK, board.MOSI, board.MISO) # csag = DigitalInOut(board.D5) # csag.direction = Direction.OUTPUT # csag.value = True # csm = DigitalInOut(board.D6) # csm.direction = Direction.OUTPUT # csm.value = True # sensor = adafruit_lsm9ds1.LSM9DS1_SPI(spi, csag, csm) self.i2c = busio.I2C(board.SCL, board.SDA) self.sensor = adafruit_lsm9ds1.LSM9DS1_I2C(self.i2c) # Calibration Parameters self.x_gyro_calibration = 0 self.y_gyro_calibration = 0 self.z_gyro_calibration = 0 self.roll_calibration = 0 self.pitch_calibration = 0 self.yaw_calibration = 0 # IMU Parameters: acc (x,y,z), gyro(x,y,z) self.imu_data = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] # Time in seconds self.prev_time = time.time() # IMU timer self.imu_diff = 0 # Gyroscope integrals for filtering self.roll_int = 0 self.pitch_int = 0 self.yaw_int = 0 # Complementary Filter Coefficient self.comp_filter = 0.02 # Filtered RPY self.roll = 0 self.pitch = 0 self.yaw = 0 # Used to turn the IMU into right-hand coordinate system self.rp_flip = rp_flip self.r_neg = r_neg self.p_neg = p_neg self.y_neg = y_neg # Magnemometer Calibration Values self.scale_x = 1 self.scale_y = 1 self.scale_z = 1 self.mag_x_bias = 0 self.mag_y_bias = 0 self.mag_z_bias = 0 self.yaw_bias = 0 # CALIBRATE self.calibrate_imu() print("IMU Calibrated!\n") def calibrate_imu(self): """ """ # Reset calibration params self.x_gyro_calibration = 0 self.y_gyro_calibration = 0 self.z_gyro_calibration = 0 self.roll_calibration = 0 self.pitch_calibration = 0 self.yaw_calibration = 0 sum_xg = 0 sum_yg = 0 sum_zg = 0 sum_xa = 0 sum_ya = 0 sum_za = 0 sum_roll = 0 sum_pitch = 0 sum_yaw = 0 num_calibrations = 1000 print("Calibrating Gyroscope and Accelerometer...\n") for i in range(num_calibrations): """ GYRO/ACC CALIBRATION """ self.read_imu() sum_xg += self.imu_data[0] sum_yg += self.imu_data[1] sum_zg += self.imu_data[2] sum_xa += self.imu_data[3] sum_ya += self.imu_data[4] sum_za += self.imu_data[5] # Y,Z accelerations make up roll sum_roll += (math.atan2(self.imu_data[3], self.imu_data[5])) * 180.0 / np.pi # X,Z accelerations make up pitch sum_pitch += (math.atan2(self.imu_data[4], self.imu_data[5])) * 180.0 / np.pi # # Y, X accelerations make up yaw # sum_yaw += (math.atan2(self.imu_data[7], self.imu_data[6]) * # 180.0 / np.pi) # Average values for calibration self.x_gyro_calibration = sum_xg / float(num_calibrations) self.y_gyro_calibration = sum_yg / float(num_calibrations) self.z_gyro_calibration = sum_zg / float(num_calibrations) self.roll_calibration = sum_roll / float(num_calibrations) self.pitch_calibration = sum_pitch / float(num_calibrations) # self.yaw_calibration = sum_yaw / float(num_calibrations) print("Gyroscope and Accelerometer calibrated!\n") # magne_cal = input( # "Calibrate Magnemometer [c] or Load Existing Calibration [l] ?") # if magne_cal == "c": # print("Calibrating Magnetometer...") # self.calibrate_magnemometer() # else: # print("Loading Magnetometer Calibration...") # self.load_magnemometer_calibration() # input( # "Put the robot at its zero-yaw position and press Enter to calibrate Yaw" # ) # self.read_imu() # self.yaw_bias = (math.atan2(self.imu_data[7], self.imu_data[6]) * # 180.0 / np.pi) # print("Recorded Bias: {}".format(self.yaw_bias)) # input("Enter To Start") def load_magnemometer_calibration(self): return True def calibrate_magnemometer(self): # Get 10 seconds of magnemometer data collection_time = 10.0 # Hard Iron Offset mag_x_max = -32767 mag_x_min = 32767 mag_y_max = -32767 mag_y_min = 32767 mag_z_max = -32767 mag_z_min = 32767 input("Press Enter to start data collection for " + str(collection_time) + " seconds:") start_time = time.time() elapsed_time = time.time() - start_time while elapsed_time < collection_time: elapsed_time = time.time() - start_time self.read_imu() # Set Max/Min for x if self.imu_data[6] > mag_x_max: mag_x_max = self.imu_data[6] if self.imu_data[6] < mag_x_min: mag_x_min = self.imu_data[6] # Set Max/Min for y if self.imu_data[7] > mag_y_max: mag_y_max = self.imu_data[7] if self.imu_data[7] < mag_y_min: mag_y_min = self.imu_data[6] # Set Max/Min for z if self.imu_data[8] > mag_z_max: mag_z_max = self.imu_data[8] if self.imu_data[8] < mag_z_min: mag_z_min = self.imu_data[8] # Get Hard Iron Correction self.mag_x_bias = (mag_x_max + mag_x_min) / 2.0 self.mag_y_bias = (mag_y_max + mag_y_min) / 2.0 self.mag_z_bias = (mag_z_max + mag_z_min) / 2.0 # Soft Iron Distortion - SCALE BIASES METHOD # https://appelsiini.net/2018/calibrate-magnetometer/ # NOTE: Can also do Matrix Method mag_x_delta = (mag_x_max - mag_x_min) / 2.0 mag_y_delta = (mag_y_max - mag_y_min) / 2.0 mag_z_delta = (mag_z_max - mag_z_min) / 2.0 avg_delta = (mag_x_delta + mag_y_delta + mag_z_delta) / 3.0 self.scale_x = avg_delta / mag_x_delta self.scale_y = avg_delta / mag_y_delta self.scale_y = avg_delta / mag_z_delta # NOW, FOR EACH AXIS: corrected_reading = (reading - bias) * scale input("Press Enter to save results") def read_imu(self): """ """ accel_x, accel_y, accel_z = self.sensor.acceleration mag_x, mag_y, mag_z = self.sensor.magnetic gyro_x, gyro_y, gyro_z = self.sensor.gyro # temp = self.sensor.temperature # Populate imu data list # Gyroscope Values (Degrees/sec) self.imu_data[0] = gyro_x - self.x_gyro_calibration self.imu_data[1] = gyro_y - self.y_gyro_calibration self.imu_data[2] = gyro_z - self.z_gyro_calibration # Accelerometer Values (m/s^2) self.imu_data[3] = accel_x self.imu_data[4] = accel_y self.imu_data[5] = accel_z # Magnemometer Values self.imu_data[6] = (mag_x - self.mag_x_bias) * self.scale_x self.imu_data[7] = (mag_y - self.mag_y_bias) * self.scale_y self.imu_data[8] = (mag_z - self.mag_z_bias) * self.scale_z def filter_rpy(self): """ """ # Get Readings self.read_imu() # Get Current Time in seconds current_time = time.time() self.imu_diff = current_time - self.prev_time # Set new previous time self.prev_time = current_time # Catch rollovers if self.imu_diff < 0: self.imu_diff = 0 # Complementary filter for RPY # TODO: DOUBLE CHECK THIS!!!!!!! roll_gyro_delta = self.imu_data[1] * self.imu_diff pitch_gyro_delta = self.imu_data[0] * self.imu_diff yaw_gyro_delta = self.imu_data[2] * self.imu_diff self.roll_int += roll_gyro_delta self.pitch_int += pitch_gyro_delta self.yaw_int += yaw_gyro_delta # RPY from Accelerometer # Y,Z accelerations make up roll roll_a = (math.atan2(self.imu_data[3], self.imu_data[5]) ) * 180.0 / np.pi - self.roll_calibration # X,Z accelerations make up pitch pitch_a = (math.atan2(self.imu_data[4], self.imu_data[5]) ) * 180.0 / np.pi - self.pitch_calibration # Y, X Magnetometer data makes up yaw yaw_m = (math.atan2(self.imu_data[7], self.imu_data[6]) * 180.0 / np.pi) # Calculate Filtered RPY self.roll = roll_a * self.comp_filter + (1 - self.comp_filter) * ( roll_gyro_delta + self.roll) self.pitch = pitch_a * self.comp_filter + (1 - self.comp_filter) * ( pitch_gyro_delta + self.pitch) self.yaw = math.atan2(self.imu_data[7], self.imu_data[6]) * 180.0 / np.pi self.yaw = yaw_m - self.yaw_bias # Wrap from -PI to PI self.yaw -= 360.0 * math.floor((self.yaw + 180) / 360.0) # self.yaw = yaw_m * self.comp_filter + (1 - self.comp_filter) * ( # pitch_gyro_delta + self.yaw) # self.roll = roll_a # self.pitch = pitch_a # self.yaw = yaw_a # Recenter Roll and Pitch for Right Handed Frame self.recenter_rp() def recenter_rp(self): """ LSM9DS1 IMU does not adhere to right hand rule. this function allows the user to specify which coordinate frame standards to use by deciding when to flip and/or negate Roll and Pitch in the class constructor. """ if self.rp_flip: if self.r_neg: self.true_roll = -self.pitch else: self.true_roll = self.pitch if self.p_neg: self.true_pitch = -self.roll else: self.true_pitch = self.roll else: if self.r_neg: self.true_roll = -self.roll else: self.true_roll = self.roll if self.p_neg: self.true_pitch = -self.pitch else: self.true_pitch = self.pitch if self.y_neg: self.yaw = -self.yaw if __name__ == "__main__": imu = IMU() while True: imu.filter_rpy() print("ROLL: {} \t PICH: {} \t YAW: {} \n".format( imu.true_roll, imu.true_pitch, imu.yaw))
11,139
Python
33.596273
96
0.534429
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/mini_ros/setup.py
## ! DO NOT MANUALLY INVOKE THIS setup.py, USE CATKIN INSTEAD ## Copies from http://docs.ros.org/melodic/api/catkin/html/howto/format2/installing_python.html and edited for our package from distutils.core import setup from catkin_pkg.python_setup import generate_distutils_setup # fetch values from package.xml setup_args = generate_distutils_setup( packages=['mini_bullet', 'ars_lib'], package_dir={'../mini_bullet/src': ''}) setup(**setup_args)
457
Python
37.166664
122
0.746171
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spotmicro/spot.py
""" CODE BASED ON EXAMPLE FROM: @misc{coumans2017pybullet, title={Pybullet, a python module for physics simulation in robotics, games and machine learning}, author={Coumans, Erwin and Bai, Yunfei}, url={www.pybullet.org}, year={2017}, } Example: minitaur.py https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/gym/pybullet_envs/bullet/minitaur.py """ import collections import copy import math import re import numpy as np from . import motor from spotmicro.util import pybullet_data print(pybullet_data.getDataPath()) from spotmicro.Kinematics.SpotKinematics import SpotModel import spotmicro.Kinematics.LieAlgebra as LA INIT_POSITION = [0, 0, 0.25] INIT_RACK_POSITION = [0, 0, 1] # NOTE: URDF IS FACING THE WRONG WAY # TEMP FIX INIT_ORIENTATION = [0, 0, 0, 1] OVERHEAT_SHUTDOWN_TORQUE = 2.45 OVERHEAT_SHUTDOWN_TIME = 1.0 # -math.pi / 5 INIT_LEG_POS = -0.658319 # math.pi / 3 INIT_FOOT_POS = 1.0472 OLD_LEG_POSITION = ["front_left", "front_right", "rear_left", "rear_right"] OLD_MOTOR_NAMES = [ "motor_front_left_shoulder", "motor_front_left_leg", "foot_motor_front_left", "motor_front_right_shoulder", "motor_front_right_leg", "foot_motor_front_right", "motor_rear_left_shoulder", "motor_rear_left_leg", "foot_motor_rear_left", "motor_rear_right_shoulder", "motor_rear_right_leg", "foot_motor_rear_right" ] OLD_MOTOR_LIMITS_BY_NAME = {} for name in OLD_MOTOR_NAMES: if "shoulder" in name: OLD_MOTOR_LIMITS_BY_NAME[name] = [-1.04, 1.04] elif "leg" in name: OLD_MOTOR_LIMITS_BY_NAME[name] = [-2.59, 1.571] elif "foot" in name: OLD_MOTOR_LIMITS_BY_NAME[name] = [-1.571, 2.9] OLD_FOOT_NAMES = [ "front_left_toe", "front_right_toe", "rear_left_toe", "rear_right_toe" ] LEG_POSITION = ["front_left", "front_right", "back_left", "back_right"] MOTOR_NAMES = [ "motor_front_left_hip", "motor_front_left_upper_leg", "motor_front_left_lower_leg", "motor_front_right_hip", "motor_front_right_upper_leg", "motor_front_right_lower_leg", "motor_back_left_hip", "motor_back_left_upper_leg", "motor_back_left_lower_leg", "motor_back_right_hip", "motor_back_right_upper_leg", "motor_back_right_lower_leg" ] MOTOR_LIMITS_BY_NAME = {} for name in MOTOR_NAMES: if "hip" in name: MOTOR_LIMITS_BY_NAME[name] = [-1.04, 1.04] elif "upper_leg" in name: MOTOR_LIMITS_BY_NAME[name] = [-1.571, 2.59] elif "lower_leg" in name: MOTOR_LIMITS_BY_NAME[name] = [-2.9, 1.671] FOOT_NAMES = [ "front_left_leg_foot", "front_right_leg_foot", "back_left_leg_foot", "back_right_leg_foot" ] _CHASSIS_NAME_PATTERN = re.compile(r"chassis\D*") _MOTOR_NAME_PATTERN = re.compile(r"motor\D*") _FOOT_NAME_PATTERN = re.compile(r"foot\D*") SENSOR_NOISE_STDDEV = (0.0, 0.0, 0.0, 0.0, 0.0) TWO_PI = 2 * math.pi def MapToMinusPiToPi(angles): """Maps a list of angles to [-pi, pi]. Args: angles: A list of angles in rad. Returns: A list of angle mapped to [-pi, pi]. """ mapped_angles = copy.deepcopy(angles) for i in range(len(angles)): mapped_angles[i] = math.fmod(angles[i], TWO_PI) if mapped_angles[i] >= math.pi: mapped_angles[i] -= TWO_PI elif mapped_angles[i] < -math.pi: mapped_angles[i] += TWO_PI return mapped_angles class Spot(object): """The spot class that simulates a quadruped robot. """ INIT_POSES = { 'stand': np.array([ 0.15192765, 0.7552236, -1.5104472, -0.15192765, 0.7552236, -1.5104472, 0.15192765, 0.7552236, -1.5104472, -0.15192765, 0.7552236, -1.5104472 ]), 'liedown': np.array([-0.4, -1.5, 6, 0.4, -1.5, 6, -0.4, -1.5, 6, 0.4, -1.5, 6]), 'zero': np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]), } def __init__(self, pybullet_client, urdf_root=pybullet_data.getDataPath(), time_step=0.01, action_repeat=1, self_collision_enabled=False, motor_velocity_limit=9.7, pd_control_enabled=False, accurate_motor_model_enabled=False, remove_default_joint_damping=False, max_force=100.0, motor_kp=1.0, motor_kd=0.02, pd_latency=0.0, control_latency=0.0, observation_noise_stdev=SENSOR_NOISE_STDDEV, torque_control_enabled=False, motor_overheat_protection=False, on_rack=False, kd_for_pd_controllers=0.3, pose_id='stand', np_random=np.random, contacts=True): """Constructs a spot and reset it to the initial states. Args: pybullet_client: The instance of BulletClient to manage different simulations. urdf_root: The path to the urdf folder. time_step: The time step of the simulation. action_repeat: The number of ApplyAction() for each control step. self_collision_enabled: Whether to enable self collision. motor_velocity_limit: The upper limit of the motor velocity. pd_control_enabled: Whether to use PD control for the motors. accurate_motor_model_enabled: Whether to use the accurate DC motor model. remove_default_joint_damping: Whether to remove the default joint damping. motor_kp: proportional gain for the accurate motor model. motor_kd: derivative gain for the accurate motor model. pd_latency: The latency of the observations (in seconds) used to calculate PD control. On the real hardware, it is the latency between the microcontroller and the motor controller. control_latency: The latency of the observations (in second) used to calculate action. On the real hardware, it is the latency from the motor controller, the microcontroller to the host (Nvidia TX2). observation_noise_stdev: The standard deviation of a Gaussian noise model for the sensor. It should be an array for separate sensors in the following order [motor_angle, motor_velocity, motor_torque, base_roll_pitch_yaw, base_angular_velocity] torque_control_enabled: Whether to use the torque control, if set to False, pose control will be used. motor_overheat_protection: Whether to shutdown the motor that has exerted large torque (OVERHEAT_SHUTDOWN_TORQUE) for an extended amount of time (OVERHEAT_SHUTDOWN_TIME). See ApplyAction() in spot.py for more details. on_rack: Whether to place the spot on rack. This is only used to debug the walking gait. In this mode, the spot's base is hanged midair so that its walking gait is clearer to visualize. """ # SPOT MODEL self.spot = SpotModel() # Whether to include contact sensing self.contacts = contacts # Control Inputs self.StepLength = 0.0 self.StepVelocity = 0.0 self.LateralFraction = 0.0 self.YawRate = 0.0 # Leg Phases self.LegPhases = [0.0, 0.0, 0.0, 0.0] # used to calculate minitaur acceleration self.init_leg = INIT_LEG_POS self.init_foot = INIT_FOOT_POS self.prev_ang_twist = np.array([0, 0, 0]) self.prev_lin_twist = np.array([0, 0, 0]) self.prev_lin_acc = np.array([0, 0, 0]) self.num_motors = 12 self.num_legs = int(self.num_motors / 3) self._pybullet_client = pybullet_client self._action_repeat = action_repeat self._urdf_root = urdf_root self._self_collision_enabled = self_collision_enabled self._motor_velocity_limit = motor_velocity_limit self._pd_control_enabled = pd_control_enabled self._motor_direction = np.ones(self.num_motors) self._observed_motor_torques = np.zeros(self.num_motors) self._applied_motor_torques = np.zeros(self.num_motors) self._max_force = max_force self._pd_latency = pd_latency self._control_latency = control_latency self._observation_noise_stdev = observation_noise_stdev self._accurate_motor_model_enabled = accurate_motor_model_enabled self._remove_default_joint_damping = remove_default_joint_damping self._observation_history = collections.deque(maxlen=100) self._control_observation = [] self._chassis_link_ids = [-1] self._leg_link_ids = [] self._motor_link_ids = [] self._foot_link_ids = [] self._torque_control_enabled = torque_control_enabled self._motor_overheat_protection = motor_overheat_protection self._on_rack = on_rack self._pose_id = pose_id self.np_random = np_random if self._accurate_motor_model_enabled: self._kp = motor_kp self._kd = motor_kd self._motor_model = motor.MotorModel( torque_control_enabled=self._torque_control_enabled, kp=self._kp, kd=self._kd) elif self._pd_control_enabled: self._kp = 8 self._kd = kd_for_pd_controllers else: self._kp = 1 self._kd = 1 self.time_step = time_step self._step_counter = 0 # reset_time=-1.0 means skipping the reset motion. # See Reset for more details. self.Reset(reset_time=-1) self.init_on_rack_position = INIT_RACK_POSITION self.init_position = INIT_POSITION self.initial_pose = self.INIT_POSES[pose_id] def _RecordMassInfoFromURDF(self): self._base_mass_urdf = [] for chassis_id in self._chassis_link_ids: self._base_mass_urdf.append( self._pybullet_client.getDynamicsInfo(self.quadruped, chassis_id)[0]) self._leg_masses_urdf = [] for leg_id in self._leg_link_ids: self._leg_masses_urdf.append( self._pybullet_client.getDynamicsInfo(self.quadruped, leg_id)[0]) for motor_id in self._motor_link_ids: self._leg_masses_urdf.append( self._pybullet_client.getDynamicsInfo(self.quadruped, motor_id)[0]) def GetBaseMassFromURDF(self): """Get the mass of the base from the URDF file.""" return self._base_mass_urdf def SetBaseMass(self, base_mass): for i in range(len(self._chassis_link_ids)): self._pybullet_client.changeDynamics(self.quadruped, self._chassis_link_ids[i], mass=base_mass[i]) def _RecordInertiaInfoFromURDF(self): """Record the inertia of each body from URDF file.""" self._link_urdf = [] num_bodies = self._pybullet_client.getNumJoints(self.quadruped) for body_id in range(-1, num_bodies): # -1 is for the base link. inertia = self._pybullet_client.getDynamicsInfo( self.quadruped, body_id)[2] self._link_urdf.append(inertia) # We need to use id+1 to index self._link_urdf because it has the base # (index = -1) at the first element. self._base_inertia_urdf = [ self._link_urdf[chassis_id + 1] for chassis_id in self._chassis_link_ids ] self._leg_inertia_urdf = [ self._link_urdf[leg_id + 1] for leg_id in self._leg_link_ids ] self._leg_inertia_urdf.extend([ self._link_urdf[motor_id + 1] for motor_id in self._motor_link_ids ]) def _BuildJointNameToIdDict(self): num_joints = self._pybullet_client.getNumJoints(self.quadruped) self._joint_name_to_id = {} for i in range(num_joints): joint_info = self._pybullet_client.getJointInfo(self.quadruped, i) self._joint_name_to_id[joint_info[1].decode( "UTF-8")] = joint_info[0] def _BuildMotorIdList(self): self._motor_id_list = [ self._joint_name_to_id[motor_name] for motor_name in MOTOR_NAMES ] def _BuildFootIdList(self): self._foot_id_list = [ self._joint_name_to_id[foot_name] for foot_name in FOOT_NAMES ] print(self._foot_id_list) def _BuildUrdfIds(self): """Build the link Ids from its name in the URDF file.""" c = [] m = [] f = [] lg = [] num_joints = self._pybullet_client.getNumJoints(self.quadruped) self._chassis_link_ids = [-1] # the self._leg_link_ids include both the upper and lower links of the leg. self._leg_link_ids = [] self._motor_link_ids = [] self._foot_link_ids = [] for i in range(num_joints): joint_info = self._pybullet_client.getJointInfo(self.quadruped, i) joint_name = joint_info[1].decode("UTF-8") joint_id = self._joint_name_to_id[joint_name] if _CHASSIS_NAME_PATTERN.match(joint_name): c.append(joint_name) self._chassis_link_ids.append(joint_id) elif _MOTOR_NAME_PATTERN.match(joint_name): m.append(joint_name) self._motor_link_ids.append(joint_id) elif _FOOT_NAME_PATTERN.match(joint_name): f.append(joint_name) self._foot_link_ids.append(joint_id) else: lg.append(joint_name) self._leg_link_ids.append(joint_id) self._leg_link_ids.extend(self._foot_link_ids) self._chassis_link_ids.sort() self._motor_link_ids.sort() self._foot_link_ids.sort() self._leg_link_ids.sort() def Reset(self, reload_urdf=True, default_motor_angles=None, reset_time=3.0): """Reset the spot to its initial states. Args: reload_urdf: Whether to reload the urdf file. If not, Reset() just place the spot back to its starting position. default_motor_angles: The default motor angles. If it is None, spot will hold a default pose for 100 steps. In torque control mode, the phase of holding the default pose is skipped. reset_time: The duration (in seconds) to hold the default motor angles. If reset_time <= 0 or in torque control mode, the phase of holding the default pose is skipped. """ if self._on_rack: init_position = INIT_RACK_POSITION else: init_position = INIT_POSITION if reload_urdf: if self._self_collision_enabled: self.quadruped = self._pybullet_client.loadURDF( pybullet_data.getDataPath() + "/assets/urdf/spot.urdf", init_position, useFixedBase=self._on_rack, flags=self._pybullet_client.URDF_USE_SELF_COLLISION_EXCLUDE_PARENT) else: self.quadruped = self._pybullet_client.loadURDF( pybullet_data.getDataPath() + "/assets/urdf/spot.urdf", init_position, INIT_ORIENTATION, useFixedBase=self._on_rack) self._BuildJointNameToIdDict() self._BuildUrdfIds() if self._remove_default_joint_damping: self._RemoveDefaultJointDamping() self._BuildMotorIdList() self._BuildFootIdList() self._RecordMassInfoFromURDF() self._RecordInertiaInfoFromURDF() self.ResetPose(add_constraint=True) else: self._pybullet_client.resetBasePositionAndOrientation( self.quadruped, init_position, INIT_ORIENTATION) self._pybullet_client.resetBaseVelocity(self.quadruped, [0, 0, 0], [0, 0, 0]) # self._pybullet_client.changeDynamics(self.quadruped, -1, lateralFriction=0.8) self.ResetPose(add_constraint=False) self._overheat_counter = np.zeros(self.num_motors) self._motor_enabled_list = [True] * self.num_motors self._step_counter = 0 # Perform reset motion within reset_duration if in position control mode. # Nothing is performed if in torque control mode for now. self._observation_history.clear() if reset_time > 0.0 and default_motor_angles is not None: self.RealisticObservation() for _ in range(100): self.ApplyAction(self.initial_pose) self._pybullet_client.stepSimulation() self.RealisticObservation() num_steps_to_reset = int(reset_time / self.time_step) for _ in range(num_steps_to_reset): self.ApplyAction(default_motor_angles) self._pybullet_client.stepSimulation() self.RealisticObservation() self.RealisticObservation() # Set Foot Friction self.SetFootFriction() def _RemoveDefaultJointDamping(self): num_joints = self._pybullet_client.getNumJoints(self.quadruped) for i in range(num_joints): joint_info = self._pybullet_client.getJointInfo(self.quadruped, i) self._pybullet_client.changeDynamics(joint_info[0], -1, linearDamping=0, angularDamping=0) def _SetMotorTorqueById(self, motor_id, torque): self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=motor_id, controlMode=self._pybullet_client.TORQUE_CONTROL, force=torque) def _SetDesiredMotorAngleById(self, motor_id, desired_angle): if self._pd_control_enabled or self._accurate_motor_model_enabled: self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=motor_id, controlMode=self._pybullet_client.POSITION_CONTROL, targetPosition=desired_angle, positionGain=self._kp, velocityGain=self._kd, force=self._max_force) # Pybullet has a 'perfect' joint controller with its default p,d else: self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=motor_id, controlMode=self._pybullet_client.POSITION_CONTROL, targetPosition=desired_angle) def _SetDesiredMotorAngleByName(self, motor_name, desired_angle): self._SetDesiredMotorAngleById(self._joint_name_to_id[motor_name], desired_angle) def ResetPose(self, add_constraint): """Reset the pose of the spot. Args: add_constraint: Whether to add a constraint at the joints of two feet. """ for i in range(self.num_legs): self._ResetPoseForLeg(i, add_constraint) def _ResetPoseForLeg(self, leg_id, add_constraint): """Reset the initial pose for the leg. Args: leg_id: It should be 0, 1, 2, or 3, which represents the leg at front_left, back_left, front_right and back_right. add_constraint: Whether to add a constraint at the joints of two feet. """ knee_friction_force = 0 pi = math.pi leg_position = LEG_POSITION[leg_id] self._pybullet_client.resetJointState( self.quadruped, self._joint_name_to_id["motor_" + leg_position + "_hip"], self.INIT_POSES[self._pose_id][3 * leg_id], targetVelocity=0) self._pybullet_client.resetJointState( self.quadruped, self._joint_name_to_id["motor_" + leg_position + "_upper_leg"], self.INIT_POSES[self._pose_id][3 * leg_id + 1], targetVelocity=0) self._pybullet_client.resetJointState( self.quadruped, self._joint_name_to_id["motor_" + leg_position + "_lower_leg"], self.INIT_POSES[self._pose_id][3 * leg_id + 2], targetVelocity=0) if self._accurate_motor_model_enabled or self._pd_control_enabled: # Disable the default motor in pybullet. self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=(self._joint_name_to_id["motor_" + leg_position + "_hip"]), controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=knee_friction_force) self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=(self._joint_name_to_id["motor_" + leg_position + "_upper_leg"]), controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=knee_friction_force) self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=(self._joint_name_to_id["motor_" + leg_position + "_lower_leg"]), controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=knee_friction_force) def GetBasePosition(self): """Get the position of spot's base. Returns: The position of spot's base. """ position, _ = (self._pybullet_client.getBasePositionAndOrientation( self.quadruped)) return position def GetBaseOrientation(self): """Get the orientation of spot's base, represented as quaternion. Returns: The orientation of spot's base. """ _, orientation = (self._pybullet_client.getBasePositionAndOrientation( self.quadruped)) return orientation def GetBaseRollPitchYaw(self): """Get the rate of orientation change of the spot's base in euler angle. Returns: rate of (roll, pitch, yaw) change of the spot's base. """ vel = self._pybullet_client.getBaseVelocity(self.quadruped) return np.asarray([vel[1][0], vel[1][1], vel[1][2]]) def GetBaseRollPitchYawRate(self): """Get the rate of orientation change of the spot's base in euler angle. This function mimicks the noisy sensor reading and adds latency. Returns: rate of (roll, pitch, yaw) change of the spot's base polluted by noise and latency. """ return self._AddSensorNoise( np.array(self._control_observation[3 * self.num_motors + 4:3 * self.num_motors + 7]), self._observation_noise_stdev[4]) def GetBaseTwist(self): """Get the Twist of minitaur's base. Returns: The Twist of the minitaur's base. """ return self._pybullet_client.getBaseVelocity(self.quadruped) def GetActionDimension(self): """Get the length of the action list. Returns: The length of the action list. """ return self.num_motors def GetObservationUpperBound(self): """Get the upper bound of the observation. Returns: The upper bound of an observation. See GetObservation() for the details of each element of an observation. NOTE: Changed just like GetObservation() """ upper_bound = np.array([0.0] * self.GetObservationDimension()) # roll, pitch upper_bound[0:2] = 2.0 * np.pi # acc, rate in x,y,z upper_bound[2:8] = np.inf # Leg Phases upper_bound[8:12] = 2.0 # Contacts if self.contacts: upper_bound[12:] = 1.0 return upper_bound def GetObservationLowerBound(self): """Get the lower bound of the observation.""" return -self.GetObservationUpperBound() def GetObservationDimension(self): """Get the length of the observation list. Returns: The length of the observation list. """ return len(self.GetObservation()) def GetObservation(self): """Get the observations of minitaur. It includes the angles, velocities, torques and the orientation of the base. Returns: The observation list. observation[0:8] are motor angles. observation[8:16] are motor velocities, observation[16:24] are motor torques. observation[24:28] is the orientation of the base, in quaternion form. NOTE: DIVERGES FROM STOCK MINITAUR ENV. WILL LEAVE ORIGINAL COMMENTED For my purpose, the observation space includes Roll and Pitch, as well as acceleration and gyroscopic rate along the x,y,z axes. All of this information can be collected from an onboard IMU. The reward function will contain a hidden velocity reward (fwd, bwd) which cannot be measured and so is not included. For spinning, the gyroscopic z rate will be used as the (explicit) velocity reward. This version operates without motor torques, angles and velocities. Erwin Coumans' paper suggests a sparse observation space leads to higher reward # NOTE: use True version for perfect data, or other for realistic data """ observation = [] # GETTING TWIST IN BODY FRAME pos = self.GetBasePosition() orn = self.GetBaseOrientation() roll, pitch, yaw = self._pybullet_client.getEulerFromQuaternion( [orn[0], orn[1], orn[2], orn[3]]) # rpy = LA.RPY(roll, pitch, yaw) # R, _ = LA.TransToRp(rpy) # T_wb = LA.RpToTrans(R, np.array([pos[0], pos[1], pos[2]])) # T_bw = LA.TransInv(T_wb) # Adj_Tbw = LA.Adjoint(T_bw) # Get Linear and Angular Twist in WORLD FRAME lin_twist, ang_twist = self.GetBaseTwist() lin_twist = np.array([lin_twist[0], lin_twist[1], lin_twist[2]]) ang_twist = np.array([ang_twist[0], ang_twist[1], ang_twist[2]]) # Vw = np.concatenate((ang_twist, lin_twist)) # Vb = np.dot(Adj_Tbw, Vw) # roll, pitch, _ = self._pybullet_client.getEulerFromQuaternion( # [orn[0], orn[1], orn[2], orn[3]]) # # Get linear accelerations # lin_twist = -Vb[3:] # ang_twist = Vb[:3] lin_acc = lin_twist - self.prev_lin_twist if lin_acc.all() == 0.0: lin_acc = self.prev_lin_acc self.prev_lin_acc = lin_acc # print("LIN TWIST: ", lin_twist) self.prev_lin_twist = lin_twist self.prev_ang_twist = ang_twist # Get Contacts CONTACT = list(self._pybullet_client.getContactPoints(self.quadruped)) FLC = 0 FRC = 0 BLC = 0 BRC = 0 if len(CONTACT) > 0: for i in range(len(CONTACT)): Contact_Link_Index = CONTACT[i][3] if Contact_Link_Index == self._foot_id_list[0]: FLC = 1 # print("FL CONTACT") if Contact_Link_Index == self._foot_id_list[1]: FRC = 1 # print("FR CONTACT") if Contact_Link_Index == self._foot_id_list[2]: BLC = 1 # print("BL CONTACT") if Contact_Link_Index == self._foot_id_list[3]: BRC = 1 # print("BR CONTACT") # order: roll, pitch, gyro(x,y,z), acc(x, y, z) observation.append(roll) observation.append(pitch) observation.extend(list(ang_twist)) observation.extend(list(lin_acc)) # Control Input # observation.append(self.StepLength) # observation.append(self.StepVelocity) # observation.append(self.LateralFraction) # observation.append(self.YawRate) observation.extend(self.LegPhases) if self.contacts: observation.append(FLC) observation.append(FRC) observation.append(BLC) observation.append(BRC) # print("CONTACTS: {} {} {} {}".format(FLC, FRC, BLC, BRC)) return observation def GetControlInput(self, controller): """ Store Control Input as Observation """ _, _, StepLength, LateralFraction, YawRate, StepVelocity, _, _ = controller.return_bezier_params( ) self.StepLength = StepLength self.StepVelocity = StepVelocity self.LateralFraction = LateralFraction self.YawRate = YawRate def GetLegPhases(self, TrajectoryGenerator): """ Leg phases according to TG from 0->2 0->1: Stance 1->2 Swing """ self.LegPhases = TrajectoryGenerator.Phases def GetExternalObservations(self, TrajectoryGenerator, controller): """ Augment State Space """ self.GetControlInput(controller) self.GetLegPhases(TrajectoryGenerator) def ConvertFromLegModel(self, action): # TODO joint_angles = action return joint_angles def ApplyMotorLimits(self, joint_angles): eps = 0.001 for i in range(len(joint_angles)): LIM = MOTOR_LIMITS_BY_NAME[MOTOR_NAMES[i]] joint_angles[i] = np.clip(joint_angles[i], LIM[0] + eps, LIM[1] - eps) return joint_angles def ApplyAction(self, motor_commands): """Set the desired motor angles to the motors of the minitaur. The desired motor angles are clipped based on the maximum allowed velocity. If the pd_control_enabled is True, a torque is calculated according to the difference between current and desired joint angle, as well as the joint velocity. This torque is exerted to the motor. For more information about PD control, please refer to: https://en.wikipedia.org/wiki/PID_controller. Args: motor_commands: The eight desired motor angles. """ # FIRST, APPLY MOTOR LIMITS: motor_commands = self.ApplyMotorLimits(motor_commands) if self._motor_velocity_limit < np.inf: current_motor_angle = self.GetMotorAngles() motor_commands_max = (current_motor_angle + self.time_step * self._motor_velocity_limit) motor_commands_min = (current_motor_angle - self.time_step * self._motor_velocity_limit) motor_commands = np.clip(motor_commands, motor_commands_min, motor_commands_max) if self._accurate_motor_model_enabled or self._pd_control_enabled: q = self.GetMotorAngles() qdot = self.GetMotorVelocities() if self._accurate_motor_model_enabled: actual_torque, observed_torque = self._motor_model.convert_to_torque( motor_commands, q, qdot) if self._motor_overheat_protection: for i in range(self.num_motors): if abs(actual_torque[i]) > OVERHEAT_SHUTDOWN_TORQUE: self._overheat_counter[i] += 1 else: self._overheat_counter[i] = 0 if (self._overheat_counter[i] > OVERHEAT_SHUTDOWN_TIME / self.time_step): self._motor_enabled_list[i] = False # The torque is already in the observation space because we use # GetMotorAngles and GetMotorVelocities. self._observed_motor_torques = observed_torque # Transform into the motor space when applying the torque. self._applied_motor_torque = np.multiply( actual_torque, self._motor_direction) for motor_id, motor_torque, motor_enabled in zip( self._motor_id_list, self._applied_motor_torque, self._motor_enabled_list): if motor_enabled: self._SetMotorTorqueById(motor_id, motor_torque) else: self._SetMotorTorqueById(motor_id, 0) else: torque_commands = -self._kp * ( q - motor_commands) - self._kd * qdot # The torque is already in the observation space because we use # GetMotorAngles and GetMotorVelocities. self._observed_motor_torques = torque_commands # Transform into the motor space when applying the torque. self._applied_motor_torques = np.multiply( self._observed_motor_torques, self._motor_direction) for motor_id, motor_torque in zip(self._motor_id_list, self._applied_motor_torques): self._SetMotorTorqueById(motor_id, motor_torque) else: motor_commands_with_direction = np.multiply( motor_commands, self._motor_direction) for motor_id, motor_command_with_direction in zip( self._motor_id_list, motor_commands_with_direction): self._SetDesiredMotorAngleById(motor_id, motor_command_with_direction) def Step(self, action): for _ in range(self._action_repeat): self.ApplyAction(action) self._pybullet_client.stepSimulation() self.RealisticObservation() self._step_counter += 1 def GetTimeSinceReset(self): return self._step_counter * self.time_step def GetMotorAngles(self): """Gets the eight motor angles at the current moment, mapped to [-pi, pi]. Returns: Motor angles, mapped to [-pi, pi]. """ motor_angles = [ self._pybullet_client.getJointState(self.quadruped, motor_id)[0] for motor_id in self._motor_id_list ] motor_angles = np.multiply(motor_angles, self._motor_direction) return MapToMinusPiToPi(motor_angles) def GetMotorVelocities(self): """Get the velocity of all eight motors. Returns: Velocities of all eight motors. """ motor_velocities = [ self._pybullet_client.getJointState(self.quadruped, motor_id)[1] for motor_id in self._motor_id_list ] motor_velocities = np.multiply(motor_velocities, self._motor_direction) return motor_velocities def GetMotorTorques(self): """Get the amount of torque the motors are exerting. Returns: Motor torques of all eight motors. """ if self._accurate_motor_model_enabled or self._pd_control_enabled: return self._observed_motor_torques else: motor_torques = [ self._pybullet_client.getJointState(self.quadruped, motor_id)[3] for motor_id in self._motor_id_list ] motor_torques = np.multiply(motor_torques, self._motor_direction) return motor_torques def GetBaseMassesFromURDF(self): """Get the mass of the base from the URDF file.""" return self._base_mass_urdf def GetBaseInertiasFromURDF(self): """Get the inertia of the base from the URDF file.""" return self._base_inertia_urdf def GetLegMassesFromURDF(self): """Get the mass of the legs from the URDF file.""" return self._leg_masses_urdf def GetLegInertiasFromURDF(self): """Get the inertia of the legs from the URDF file.""" return self._leg_inertia_urdf def SetBaseMasses(self, base_mass): """Set the mass of spot's base. Args: base_mass: A list of masses of each body link in CHASIS_LINK_IDS. The length of this list should be the same as the length of CHASIS_LINK_IDS. Raises: ValueError: It is raised when the length of base_mass is not the same as the length of self._chassis_link_ids. """ if len(base_mass) != len(self._chassis_link_ids): raise ValueError( "The length of base_mass {} and self._chassis_link_ids {} are not " "the same.".format(len(base_mass), len(self._chassis_link_ids))) for chassis_id, chassis_mass in zip(self._chassis_link_ids, base_mass): self._pybullet_client.changeDynamics(self.quadruped, chassis_id, mass=chassis_mass) def SetLegMasses(self, leg_masses): """Set the mass of the legs. Args: leg_masses: The leg and motor masses for all the leg links and motors. Raises: ValueError: It is raised when the length of masses is not equal to number of links + motors. """ if len(leg_masses) != len(self._leg_link_ids) + len( self._motor_link_ids): raise ValueError("The number of values passed to SetLegMasses are " "different than number of leg links and motors.") for leg_id, leg_mass in zip(self._leg_link_ids, leg_masses): self._pybullet_client.changeDynamics(self.quadruped, leg_id, mass=leg_mass) motor_masses = leg_masses[len(self._leg_link_ids):] for link_id, motor_mass in zip(self._motor_link_ids, motor_masses): self._pybullet_client.changeDynamics(self.quadruped, link_id, mass=motor_mass) def SetBaseInertias(self, base_inertias): """Set the inertias of spot's base. Args: base_inertias: A list of inertias of each body link in CHASIS_LINK_IDS. The length of this list should be the same as the length of CHASIS_LINK_IDS. Raises: ValueError: It is raised when the length of base_inertias is not the same as the length of self._chassis_link_ids and base_inertias contains negative values. """ if len(base_inertias) != len(self._chassis_link_ids): raise ValueError( "The length of base_inertias {} and self._chassis_link_ids {} are " "not the same.".format(len(base_inertias), len(self._chassis_link_ids))) for chassis_id, chassis_inertia in zip(self._chassis_link_ids, base_inertias): for inertia_value in chassis_inertia: if (np.asarray(inertia_value) < 0).any(): raise ValueError( "Values in inertia matrix should be non-negative.") self._pybullet_client.changeDynamics( self.quadruped, chassis_id, localInertiaDiagonal=chassis_inertia) def SetLegInertias(self, leg_inertias): """Set the inertias of the legs. Args: leg_inertias: The leg and motor inertias for all the leg links and motors. Raises: ValueError: It is raised when the length of inertias is not equal to the number of links + motors or leg_inertias contains negative values. """ if len(leg_inertias) != len(self._leg_link_ids) + len( self._motor_link_ids): raise ValueError("The number of values passed to SetLegMasses are " "different than number of leg links and motors.") for leg_id, leg_inertia in zip(self._leg_link_ids, leg_inertias): for inertia_value in leg_inertias: if (np.asarray(inertia_value) < 0).any(): raise ValueError( "Values in inertia matrix should be non-negative.") self._pybullet_client.changeDynamics( self.quadruped, leg_id, localInertiaDiagonal=leg_inertia) motor_inertias = leg_inertias[len(self._leg_link_ids):] for link_id, motor_inertia in zip(self._motor_link_ids, motor_inertias): for inertia_value in motor_inertias: if (np.asarray(inertia_value) < 0).any(): raise ValueError( "Values in inertia matrix should be non-negative.") self._pybullet_client.changeDynamics( self.quadruped, link_id, localInertiaDiagonal=motor_inertia) def SetFootFriction(self, foot_friction=100.0): """Set the lateral friction of the feet. Args: foot_friction: The lateral friction coefficient of the foot. This value is shared by all four feet. """ for link_id in self._foot_link_ids: self._pybullet_client.changeDynamics(self.quadruped, link_id, lateralFriction=foot_friction) # TODO(b/73748980): Add more API's to set other contact parameters. def SetFootRestitution(self, link_id, foot_restitution=1.0): """Set the coefficient of restitution at the feet. Args: foot_restitution: The coefficient of restitution (bounciness) of the feet. This value is shared by all four feet. """ self._pybullet_client.changeDynamics(self.quadruped, link_id, restitution=foot_restitution) def SetJointFriction(self, joint_frictions): for knee_joint_id, friction in zip(self._foot_link_ids, joint_frictions): self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=knee_joint_id, controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=friction) def GetNumKneeJoints(self): return len(self._foot_link_ids) def SetBatteryVoltage(self, voltage): if self._accurate_motor_model_enabled: self._motor_model.set_voltage(voltage) def SetMotorViscousDamping(self, viscous_damping): if self._accurate_motor_model_enabled: self._motor_model.set_viscous_damping(viscous_damping) def RealisticObservation(self): """Receive the observation from sensors. This function is called once per step. The observations are only updated when this function is called. """ self._observation_history.appendleft(self.GetObservation()) self._control_observation = self._GetDelayedObservation( self._control_latency) self._control_observation = self._AddSensorNoise( self._control_observation, self._observation_noise_stdev) return self._control_observation def _GetDelayedObservation(self, latency): """Get observation that is delayed by the amount specified in latency. Args: latency: The latency (in seconds) of the delayed observation. Returns: observation: The observation which was actually latency seconds ago. """ if latency <= 0 or len(self._observation_history) == 1: observation = self._observation_history[0] else: n_steps_ago = int(latency / self.time_step) if n_steps_ago + 1 >= len(self._observation_history): return self._observation_history[-1] remaining_latency = latency - n_steps_ago * self.time_step blend_alpha = remaining_latency / self.time_step observation = ( (1.0 - blend_alpha) * np.array(self._observation_history[n_steps_ago]) + blend_alpha * np.array(self._observation_history[n_steps_ago + 1])) return observation def _GetPDObservation(self): pd_delayed_observation = self._GetDelayedObservation(self._pd_latency) q = pd_delayed_observation[0:self.num_motors] qdot = pd_delayed_observation[self.num_motors:2 * self.num_motors] return (np.array(q), np.array(qdot)) def _AddSensorNoise(self, observation, noise_stdev): # if self._observation_noise_stdev > 0: # observation += (self.np_random.normal(scale=noise_stdev, # size=observation.shape) * # self.GetObservationUpperBound()) return observation def SetControlLatency(self, latency): """Set the latency of the control loop. It measures the duration between sending an action from Nvidia TX2 and receiving the observation from microcontroller. Args: latency: The latency (in seconds) of the control loop. """ self._control_latency = latency def GetControlLatency(self): """Get the control latency. Returns: The latency (in seconds) between when the motor command is sent and when the sensor measurements are reported back to the controller. """ return self._control_latency def SetMotorGains(self, kp, kd): """Set the gains of all motors. These gains are PD gains for motor positional control. kp is the proportional gain and kd is the derivative gain. Args: kp: proportional gain of the motors. kd: derivative gain of the motors. """ self._kp = kp self._kd = kd if self._accurate_motor_model_enabled: self._motor_model.set_motor_gains(kp, kd) def GetMotorGains(self): """Get the gains of the motor. Returns: The proportional gain. The derivative gain. """ return self._kp, self._kd def SetMotorStrengthRatio(self, ratio): """Set the strength of all motors relative to the default value. Args: ratio: The relative strength. A scalar range from 0.0 to 1.0. """ if self._accurate_motor_model_enabled: self._motor_model.set_strength_ratios([ratio] * self.num_motors) def SetMotorStrengthRatios(self, ratios): """Set the strength of each motor relative to the default value. Args: ratios: The relative strength. A numpy array ranging from 0.0 to 1.0. """ if self._accurate_motor_model_enabled: self._motor_model.set_strength_ratios(ratios) def SetTimeSteps(self, action_repeat, simulation_step): """Set the time steps of the control and simulation. Args: action_repeat: The number of simulation steps that the same action is repeated. simulation_step: The simulation time step. """ self.time_step = simulation_step self._action_repeat = action_repeat @property def chassis_link_ids(self): return self._chassis_link_ids
47,996
Python
40.269991
107
0.578777
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spotmicro/spot_gym_env.py
""" CODE BASED ON EXAMPLE FROM: @misc{coumans2017pybullet, title={Pybullet, a python module for physics simulation in robotics, games and machine learning}, author={Coumans, Erwin and Bai, Yunfei}, url={www.pybullet.org}, year={2017}, } Example: minitaur_gym_env.py https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/gym/pybullet_envs/minitaur/envs/minitaur_gym_env.py """ import math import time import gym import numpy as np import pybullet import pybullet_data from gym import spaces from gym.utils import seeding from pkg_resources import parse_version from spotmicro import spot import pybullet_utils.bullet_client as bullet_client from gym.envs.registration import register from spotmicro.heightfield import HeightField from spotmicro.OpenLoopSM.SpotOL import BezierStepper import spotmicro.Kinematics.LieAlgebra as LA from spotmicro.spot_env_randomizer import SpotEnvRandomizer NUM_SUBSTEPS = 5 NUM_MOTORS = 12 MOTOR_ANGLE_OBSERVATION_INDEX = 0 MOTOR_VELOCITY_OBSERVATION_INDEX = MOTOR_ANGLE_OBSERVATION_INDEX + NUM_MOTORS MOTOR_TORQUE_OBSERVATION_INDEX = MOTOR_VELOCITY_OBSERVATION_INDEX + NUM_MOTORS BASE_ORIENTATION_OBSERVATION_INDEX = MOTOR_TORQUE_OBSERVATION_INDEX + NUM_MOTORS ACTION_EPS = 0.01 OBSERVATION_EPS = 0.01 RENDER_HEIGHT = 720 RENDER_WIDTH = 960 SENSOR_NOISE_STDDEV = spot.SENSOR_NOISE_STDDEV DEFAULT_URDF_VERSION = "default" NUM_SIMULATION_ITERATION_STEPS = 1000 spot_URDF_VERSION_MAP = {DEFAULT_URDF_VERSION: spot.Spot} # Register as OpenAI Gym Environment register( id="SpotMicroEnv-v0", entry_point='spotmicro.spot_gym_env:spotGymEnv', max_episode_steps=1000, ) def convert_to_list(obj): try: iter(obj) return obj except TypeError: return [obj] class spotGymEnv(gym.Env): """The gym environment for spot. It simulates the locomotion of spot, a quadruped robot. The state space include the angles, velocities and torques for all the motors and the action space is the desired motor angle for each motor. The reward function is based on how far spot walks in 1000 steps and penalizes the energy expenditure. """ metadata = { "render.modes": ["human", "rgb_array"], "video.frames_per_second": 50 } def __init__(self, distance_weight=1.0, rotation_weight=1.0, energy_weight=0.0005, shake_weight=0.005, drift_weight=2.0, rp_weight=0.1, rate_weight=0.1, urdf_root=pybullet_data.getDataPath(), urdf_version=None, distance_limit=float("inf"), observation_noise_stdev=SENSOR_NOISE_STDDEV, self_collision_enabled=True, motor_velocity_limit=np.inf, pd_control_enabled=False, leg_model_enabled=False, accurate_motor_model_enabled=False, remove_default_joint_damping=False, motor_kp=2.0, motor_kd=0.03, control_latency=0.0, pd_latency=0.0, torque_control_enabled=False, motor_overheat_protection=False, hard_reset=False, on_rack=False, render=True, num_steps_to_log=1000, action_repeat=1, control_time_step=None, env_randomizer=SpotEnvRandomizer(), forward_reward_cap=float("inf"), reflection=True, log_path=None, desired_velocity=0.5, desired_rate=0.0, lateral=False, draw_foot_path=False, height_field=False, height_field_iters=2, AutoStepper=False, contacts=True): """Initialize the spot gym environment. Args: urdf_root: The path to the urdf data folder. urdf_version: [DEFAULT_URDF_VERSION] are allowable versions. If None, DEFAULT_URDF_VERSION is used. distance_weight: The weight of the distance term in the reward. energy_weight: The weight of the energy term in the reward. shake_weight: The weight of the vertical shakiness term in the reward. drift_weight: The weight of the sideways drift term in the reward. distance_limit: The maximum distance to terminate the episode. observation_noise_stdev: The standard deviation of observation noise. self_collision_enabled: Whether to enable self collision in the sim. motor_velocity_limit: The velocity limit of each motor. pd_control_enabled: Whether to use PD controller for each motor. leg_model_enabled: Whether to use a leg motor to reparameterize the action space. accurate_motor_model_enabled: Whether to use the accurate DC motor model. remove_default_joint_damping: Whether to remove the default joint damping. motor_kp: proportional gain for the accurate motor model. motor_kd: derivative gain for the accurate motor model. control_latency: It is the delay in the controller between when an observation is made at some point, and when that reading is reported back to the Neural Network. pd_latency: latency of the PD controller loop. PD calculates PWM based on the motor angle and velocity. The latency measures the time between when the motor angle and velocity are observed on the microcontroller and when the true state happens on the motor. It is typically (0.001- 0.002s). torque_control_enabled: Whether to use the torque control, if set to False, pose control will be used. motor_overheat_protection: Whether to shutdown the motor that has exerted large torque (OVERHEAT_SHUTDOWN_TORQUE) for an extended amount of time (OVERHEAT_SHUTDOWN_TIME). See ApplyAction() in spot.py for more details. hard_reset: Whether to wipe the simulation and load everything when reset is called. If set to false, reset just place spot back to start position and set its pose to initial configuration. on_rack: Whether to place spot on rack. This is only used to debug the walking gait. In this mode, spot's base is hanged midair so that its walking gait is clearer to visualize. render: Whether to render the simulation. num_steps_to_log: The max number of control steps in one episode that will be logged. If the number of steps is more than num_steps_to_log, the environment will still be running, but only first num_steps_to_log will be recorded in logging. action_repeat: The number of simulation steps before actions are applied. control_time_step: The time step between two successive control signals. env_randomizer: An instance (or a list) of EnvRandomizer(s). An EnvRandomizer may randomize the physical property of spot, change the terrrain during reset(), or add perturbation forces during step(). forward_reward_cap: The maximum value that forward reward is capped at. Disabled (Inf) by default. log_path: The path to write out logs. For the details of logging, refer to spot_logging.proto. Raises: ValueError: If the urdf_version is not supported. """ # Sense Contacts self.contacts = contacts # Enable Auto Stepper State Machine self.AutoStepper = AutoStepper # Enable Rough Terrain or Not self.height_field = height_field self.draw_foot_path = draw_foot_path # DRAWING FEET PATH self.prev_feet_path = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]) # CONTROL METRICS self.desired_velocity = desired_velocity self.desired_rate = desired_rate self.lateral = lateral # Set up logging. self._log_path = log_path # @TODO fix logging # NUM ITERS self._time_step = 0.01 self._action_repeat = action_repeat self._num_bullet_solver_iterations = 300 self.logging = None if pd_control_enabled or accurate_motor_model_enabled: self._time_step /= NUM_SUBSTEPS self._num_bullet_solver_iterations /= NUM_SUBSTEPS self._action_repeat *= NUM_SUBSTEPS # PD control needs smaller time step for stability. if control_time_step is not None: self.control_time_step = control_time_step else: # Get Control Timestep self.control_time_step = self._time_step * self._action_repeat # TODO: Fix the value of self._num_bullet_solver_iterations. self._num_bullet_solver_iterations = int( NUM_SIMULATION_ITERATION_STEPS / self._action_repeat) # URDF self._urdf_root = urdf_root self._self_collision_enabled = self_collision_enabled self._motor_velocity_limit = motor_velocity_limit self._observation = [] self._true_observation = [] self._objectives = [] self._objective_weights = [ distance_weight, energy_weight, drift_weight, shake_weight ] self._env_step_counter = 0 self._num_steps_to_log = num_steps_to_log self._is_render = render self._last_base_position = [0, 0, 0] self._last_base_orientation = [0, 0, 0, 1] self._distance_weight = distance_weight self._rotation_weight = rotation_weight self._energy_weight = energy_weight self._drift_weight = drift_weight self._shake_weight = shake_weight self._rp_weight = rp_weight self._rate_weight = rate_weight self._distance_limit = distance_limit self._observation_noise_stdev = observation_noise_stdev self._action_bound = 1 self._pd_control_enabled = pd_control_enabled self._leg_model_enabled = leg_model_enabled self._accurate_motor_model_enabled = accurate_motor_model_enabled self._remove_default_joint_damping = remove_default_joint_damping self._motor_kp = motor_kp self._motor_kd = motor_kd self._torque_control_enabled = torque_control_enabled self._motor_overheat_protection = motor_overheat_protection self._on_rack = on_rack self._cam_dist = 1.0 self._cam_yaw = 0 self._cam_pitch = -30 self._forward_reward_cap = forward_reward_cap self._hard_reset = True self._last_frame_time = 0.0 self._control_latency = control_latency self._pd_latency = pd_latency self._urdf_version = urdf_version self._ground_id = None self._reflection = reflection self._env_randomizer = env_randomizer # @TODO fix logging self._episode_proto = None if self._is_render: self._pybullet_client = bullet_client.BulletClient( connection_mode=pybullet.GUI) else: self._pybullet_client = bullet_client.BulletClient() if self._urdf_version is None: self._urdf_version = DEFAULT_URDF_VERSION self._pybullet_client.setPhysicsEngineParameter(enableConeFriction=0) self.seed() # Only update after HF has been generated self.height_field = False self.reset() observation_high = (self.spot.GetObservationUpperBound() + OBSERVATION_EPS) observation_low = (self.spot.GetObservationLowerBound() - OBSERVATION_EPS) action_dim = NUM_MOTORS action_high = np.array([self._action_bound] * action_dim) self.action_space = spaces.Box(-action_high, action_high) self.observation_space = spaces.Box(observation_low, observation_high) self.viewer = None self._hard_reset = hard_reset # This assignment need to be after reset() self.goal_reached = False # Generate HeightField or not self.height_field = height_field self.hf = HeightField() if self.height_field: # Do 3x for extra roughness for i in range(height_field_iters): self.hf._generate_field(self) def set_env_randomizer(self, env_randomizer): self._env_randomizer = env_randomizer def configure(self, args): self._args = args def reset(self, initial_motor_angles=None, reset_duration=1.0, desired_velocity=None, desired_rate=None): # Use Autostepper if self.AutoStepper: self.StateMachine = BezierStepper(dt=self._time_step) # Shuffle order of states self.StateMachine.reshuffle() self._pybullet_client.configureDebugVisualizer( self._pybullet_client.COV_ENABLE_RENDERING, 0) if self._hard_reset: self._pybullet_client.resetSimulation() self._pybullet_client.setPhysicsEngineParameter( numSolverIterations=int(self._num_bullet_solver_iterations)) self._pybullet_client.setTimeStep(self._time_step) self._ground_id = self._pybullet_client.loadURDF("%s/plane.urdf" % self._urdf_root) if self._reflection: self._pybullet_client.changeVisualShape( self._ground_id, -1, rgbaColor=[1, 1, 1, 0.8]) self._pybullet_client.configureDebugVisualizer( self._pybullet_client.COV_ENABLE_PLANAR_REFLECTION, self._ground_id) self._pybullet_client.setGravity(0, 0, -9.81) acc_motor = self._accurate_motor_model_enabled motor_protect = self._motor_overheat_protection if self._urdf_version not in spot_URDF_VERSION_MAP: raise ValueError("%s is not a supported urdf_version." % self._urdf_version) else: self.spot = (spot_URDF_VERSION_MAP[self._urdf_version]( pybullet_client=self._pybullet_client, action_repeat=self._action_repeat, urdf_root=self._urdf_root, time_step=self._time_step, self_collision_enabled=self._self_collision_enabled, motor_velocity_limit=self._motor_velocity_limit, pd_control_enabled=self._pd_control_enabled, accurate_motor_model_enabled=acc_motor, remove_default_joint_damping=self. _remove_default_joint_damping, motor_kp=self._motor_kp, motor_kd=self._motor_kd, control_latency=self._control_latency, pd_latency=self._pd_latency, observation_noise_stdev=self._observation_noise_stdev, torque_control_enabled=self._torque_control_enabled, motor_overheat_protection=motor_protect, on_rack=self._on_rack, np_random=self.np_random, contacts=self.contacts)) self.spot.Reset(reload_urdf=False, default_motor_angles=initial_motor_angles, reset_time=reset_duration) if self._env_randomizer is not None: self._env_randomizer.randomize_env(self) # Also update heightfield if wr are wholly randomizing if self.height_field: self.hf.UpdateHeightField() if desired_velocity is not None: self.desired_velocity = desired_velocity if desired_rate is not None: self.desired_rate = desired_rate self._pybullet_client.setPhysicsEngineParameter(enableConeFriction=0) self._env_step_counter = 0 self._last_base_position = [0, 0, 0] self._last_base_orientation = [0, 0, 0, 1] self._objectives = [] self._pybullet_client.resetDebugVisualizerCamera( self._cam_dist, self._cam_yaw, self._cam_pitch, [0, 0, 0]) self._pybullet_client.configureDebugVisualizer( self._pybullet_client.COV_ENABLE_RENDERING, 1) return self._get_observation() def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def _transform_action_to_motor_command(self, action): if self._leg_model_enabled: for i, action_component in enumerate(action): if not (-self._action_bound - ACTION_EPS <= action_component <= self._action_bound + ACTION_EPS): raise ValueError("{}th action {} out of bounds.".format( i, action_component)) action = self.spot.ConvertFromLegModel(action) return action def step(self, action): """Step forward the simulation, given the action. Args: action: A list of desired motor angles for eight motors. Returns: observations: The angles, velocities and torques of all motors. reward: The reward for the current state-action pair. done: Whether the episode has ended. info: A dictionary that stores diagnostic information. Raises: ValueError: The action dimension is not the same as the number of motors. ValueError: The magnitude of actions is out of bounds. """ self._last_base_position = self.spot.GetBasePosition() self._last_base_orientation = self.spot.GetBaseOrientation() # print("ACTION:") # print(action) if self._is_render: # Sleep, otherwise the computation takes less time than real time, # which will make the visualization like a fast-forward video. time_spent = time.time() - self._last_frame_time self._last_frame_time = time.time() time_to_sleep = self.control_time_step - time_spent if time_to_sleep > 0: time.sleep(time_to_sleep) base_pos = self.spot.GetBasePosition() # Keep the previous orientation of the camera set by the user. [yaw, pitch, dist] = self._pybullet_client.getDebugVisualizerCamera()[8:11] self._pybullet_client.resetDebugVisualizerCamera( dist, yaw, pitch, base_pos) action = self._transform_action_to_motor_command(action) self.spot.Step(action) reward = self._reward() done = self._termination() self._env_step_counter += 1 # DRAW FOOT PATH if self.draw_foot_path: self.DrawFootPath() return np.array(self._get_observation()), reward, done, {} def render(self, mode="rgb_array", close=False): if mode != "rgb_array": return np.array([]) base_pos = self.spot.GetBasePosition() view_matrix = self._pybullet_client.computeViewMatrixFromYawPitchRoll( cameraTargetPosition=base_pos, distance=self._cam_dist, yaw=self._cam_yaw, pitch=self._cam_pitch, roll=0, upAxisIndex=2) proj_matrix = self._pybullet_client.computeProjectionMatrixFOV( fov=60, aspect=float(RENDER_WIDTH) / RENDER_HEIGHT, nearVal=0.1, farVal=100.0) (_, _, px, _, _) = self._pybullet_client.getCameraImage( width=RENDER_WIDTH, height=RENDER_HEIGHT, renderer=self._pybullet_client.ER_BULLET_HARDWARE_OPENGL, viewMatrix=view_matrix, projectionMatrix=proj_matrix) rgb_array = np.array(px) rgb_array = rgb_array[:, :, :3] return rgb_array def DrawFootPath(self): # Get Foot Positions FL = self._pybullet_client.getLinkState(self.spot.quadruped, self.spot._foot_id_list[0])[0] FR = self._pybullet_client.getLinkState(self.spot.quadruped, self.spot._foot_id_list[1])[0] BL = self._pybullet_client.getLinkState(self.spot.quadruped, self.spot._foot_id_list[2])[0] BR = self._pybullet_client.getLinkState(self.spot.quadruped, self.spot._foot_id_list[3])[0] lifetime = 3.0 # sec self._pybullet_client.addUserDebugLine(self.prev_feet_path[0], FL, [1, 0, 0], lifeTime=lifetime) self._pybullet_client.addUserDebugLine(self.prev_feet_path[1], FR, [0, 1, 0], lifeTime=lifetime) self._pybullet_client.addUserDebugLine(self.prev_feet_path[2], BL, [0, 0, 1], lifeTime=lifetime) self._pybullet_client.addUserDebugLine(self.prev_feet_path[3], BR, [1, 1, 0], lifeTime=lifetime) self.prev_feet_path[0] = FL self.prev_feet_path[1] = FR self.prev_feet_path[2] = BL self.prev_feet_path[3] = BR def get_spot_motor_angles(self): """Get the spot's motor angles. Returns: A numpy array of motor angles. """ return np.array( self._observation[MOTOR_ANGLE_OBSERVATION_INDEX: MOTOR_ANGLE_OBSERVATION_INDEX + NUM_MOTORS]) def get_spot_motor_velocities(self): """Get the spot's motor velocities. Returns: A numpy array of motor velocities. """ return np.array( self._observation[MOTOR_VELOCITY_OBSERVATION_INDEX: MOTOR_VELOCITY_OBSERVATION_INDEX + NUM_MOTORS]) def get_spot_motor_torques(self): """Get the spot's motor torques. Returns: A numpy array of motor torques. """ return np.array( self._observation[MOTOR_TORQUE_OBSERVATION_INDEX: MOTOR_TORQUE_OBSERVATION_INDEX + NUM_MOTORS]) def get_spot_base_orientation(self): """Get the spot's base orientation, represented by a quaternion. Returns: A numpy array of spot's orientation. """ return np.array(self._observation[BASE_ORIENTATION_OBSERVATION_INDEX:]) def is_fallen(self): """Decide whether spot has fallen. If the up directions between the base and the world is larger (the dot product is smaller than 0.85) or the base is very low on the ground (the height is smaller than 0.13 meter), spot is considered fallen. Returns: Boolean value that indicates whether spot has fallen. """ orientation = self.spot.GetBaseOrientation() rot_mat = self._pybullet_client.getMatrixFromQuaternion(orientation) local_up = rot_mat[6:] pos = self.spot.GetBasePosition() # or pos[2] < 0.13 return (np.dot(np.asarray([0, 0, 1]), np.asarray(local_up)) < 0.55) def _termination(self): position = self.spot.GetBasePosition() distance = math.sqrt(position[0]**2 + position[1]**2) return self.is_fallen() or distance > self._distance_limit def _reward(self): """ NOTE: reward now consists of: roll, pitch at desired 0 acc (y,z) = 0 FORWARD-BACKWARD: rate(x,y,z) = 0 --> HIDDEN REWARD: x(+-) velocity reference, not incl. in obs SPIN: acc(x) = 0, rate(x,y) = 0, rate (z) = rate reference Also include drift, energy vanilla rewards """ current_base_position = self.spot.GetBasePosition() # get observation obs = self._get_observation() # forward_reward = current_base_position[0] - self._last_base_position[0] # # POSITIVE FOR FORWARD, NEGATIVE FOR BACKWARD | NOTE: HIDDEN # GETTING TWIST IN BODY FRAME pos = self.spot.GetBasePosition() orn = self.spot.GetBaseOrientation() roll, pitch, yaw = self._pybullet_client.getEulerFromQuaternion( [orn[0], orn[1], orn[2], orn[3]]) rpy = LA.RPY(roll, pitch, yaw) R, _ = LA.TransToRp(rpy) T_wb = LA.RpToTrans(R, np.array([pos[0], pos[1], pos[2]])) T_bw = LA.TransInv(T_wb) Adj_Tbw = LA.Adjoint(T_bw) Vw = np.concatenate( (self.spot.prev_ang_twist, self.spot.prev_lin_twist)) Vb = np.dot(Adj_Tbw, Vw) # New Twist in Body Frame # POSITIVE FOR FORWARD, NEGATIVE FOR BACKWARD | NOTE: HIDDEN fwd_speed = -Vb[3] # vx lat_speed = -Vb[4] # vy # fwd_speed = self.spot.prev_lin_twist[0] # lat_speed = self.spot.prev_lin_twist[1] # print("FORWARD SPEED: {} \t STATE SPEED: {}".format( # fwd_speed, self.desired_velocity)) # self.desired_velocity = 0.4 # Modification for lateral/fwd rewards reward_max = 1.0 # FORWARD if not self.lateral: # f(x)=-(x-desired))^(2)*((1/desired)^2)+1 # to make sure that at 0vel there is 0 reawrd. # also squishes allowable tolerance forward_reward = reward_max * np.exp( -(fwd_speed - self.desired_velocity)**2 / (0.1)) # LATERAL else: forward_reward = reward_max * np.exp( -(lat_speed - self.desired_velocity)**2 / (0.1)) yaw_rate = obs[4] rot_reward = reward_max * np.exp(-(yaw_rate - self.desired_rate)**2 / (0.1)) # Make sure that for forward-policy there is the appropriate rotation penalty if self.desired_velocity != 0: self._rotation_weight = self._rate_weight rot_reward = -abs(obs[4]) elif self.desired_rate != 0: forward_reward = 0.0 # penalty for nonzero roll, pitch rp_reward = -(abs(obs[0]) + abs(obs[1])) # print("ROLL: {} \t PITCH: {}".format(obs[0], obs[1])) # penalty for nonzero acc(z) shake_reward = -abs(obs[4]) # penalty for nonzero rate (x,y,z) rate_reward = -(abs(obs[2]) + abs(obs[3])) # drift_reward = -abs(current_base_position[1] - # self._last_base_position[1]) # this penalizes absolute error, and does not penalize correction # NOTE: for side-side, drift reward becomes in x instead drift_reward = -abs(current_base_position[1]) # If Lateral, change drift reward if self.lateral: drift_reward = -abs(current_base_position[0]) # shake_reward = -abs(current_base_position[2] - # self._last_base_position[2]) self._last_base_position = current_base_position energy_reward = -np.abs( np.dot(self.spot.GetMotorTorques(), self.spot.GetMotorVelocities())) * self._time_step reward = (self._distance_weight * forward_reward + self._rotation_weight * rot_reward + self._energy_weight * energy_reward + self._drift_weight * drift_reward + self._shake_weight * shake_reward + self._rp_weight * rp_reward + self._rate_weight * rate_reward) self._objectives.append( [forward_reward, energy_reward, drift_reward, shake_reward]) # print("REWARD: ", reward) return reward def get_objectives(self): return self._objectives @property def objective_weights(self): """Accessor for the weights for all the objectives. Returns: List of floating points that corresponds to weights for the objectives in the order that objectives are stored. """ return self._objective_weights def _get_observation(self): """Get observation of this environment, including noise and latency. spot class maintains a history of true observations. Based on the latency, this function will find the observation at the right time, interpolate if necessary. Then Gaussian noise is added to this observation based on self.observation_noise_stdev. Returns: The noisy observation with latency. """ self._observation = self.spot.GetObservation() return self._observation def _get_realistic_observation(self): """Get the observations of this environment. It includes the angles, velocities, torques and the orientation of the base. Returns: The observation list. observation[0:8] are motor angles. observation[8:16] are motor velocities, observation[16:24] are motor torques. observation[24:28] is the orientation of the base, in quaternion form. """ self._observation = self.spot.RealisticObservation() return self._observation if parse_version(gym.__version__) < parse_version('0.9.6'): _render = render _reset = reset _seed = seed _step = step def set_time_step(self, control_step, simulation_step=0.001): """Sets the time step of the environment. Args: control_step: The time period (in seconds) between two adjacent control actions are applied. simulation_step: The simulation time step in PyBullet. By default, the simulation step is 0.001s, which is a good trade-off between simulation speed and accuracy. Raises: ValueError: If the control step is smaller than the simulation step. """ if control_step < simulation_step: raise ValueError( "Control step should be larger than or equal to simulation step." ) self.control_time_step = control_step self._time_step = simulation_step self._action_repeat = int(round(control_step / simulation_step)) self._num_bullet_solver_iterations = (NUM_SIMULATION_ITERATION_STEPS / self._action_repeat) self._pybullet_client.setPhysicsEngineParameter( numSolverIterations=self._num_bullet_solver_iterations) self._pybullet_client.setTimeStep(self._time_step) self.spot.SetTimeSteps(action_repeat=self._action_repeat, simulation_step=self._time_step) @property def pybullet_client(self): return self._pybullet_client @property def ground_id(self): return self._ground_id @ground_id.setter def ground_id(self, new_ground_id): self._ground_id = new_ground_id @property def env_step_counter(self): return self._env_step_counter
31,142
Python
40.358566
122
0.598452
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spotmicro/spot_env_randomizer.py
""" CODE BASED ON EXAMPLE FROM: @misc{coumans2017pybullet, title={Pybullet, a python module for physics simulation in robotics, games and machine learning}, author={Coumans, Erwin and Bai, Yunfei}, url={www.pybullet.org}, year={2017}, } Example: minitaur_env_randomizer.py https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/gym/pybullet_envs/minitaur/envs/env_randomizers/minitaur_env_randomizer.py """ import numpy as np from . import env_randomizer_base # Relative range. spot_BASE_MASS_ERROR_RANGE = (-0.2, 0.2) # 0.2 means 20% spot_LEG_MASS_ERROR_RANGE = (-0.2, 0.2) # 0.2 means 20% # Absolute range. BATTERY_VOLTAGE_RANGE = (7.0, 8.4) # Unit: Volt MOTOR_VISCOUS_DAMPING_RANGE = (0, 0.01) # Unit: N*m*s/rad (torque/angular vel) spot_LEG_FRICTION = (0.8, 1.5) # Unit: dimensionless class SpotEnvRandomizer(env_randomizer_base.EnvRandomizerBase): """A randomizer that change the spot_gym_env during every reset.""" def __init__(self, spot_base_mass_err_range=spot_BASE_MASS_ERROR_RANGE, spot_leg_mass_err_range=spot_LEG_MASS_ERROR_RANGE, battery_voltage_range=BATTERY_VOLTAGE_RANGE, motor_viscous_damping_range=MOTOR_VISCOUS_DAMPING_RANGE): self._spot_base_mass_err_range = spot_base_mass_err_range self._spot_leg_mass_err_range = spot_leg_mass_err_range self._battery_voltage_range = battery_voltage_range self._motor_viscous_damping_range = motor_viscous_damping_range np.random.seed(0) def randomize_env(self, env): self._randomize_spot(env.spot) def _randomize_spot(self, spot): """Randomize various physical properties of spot. It randomizes the mass/inertia of the base, mass/inertia of the legs, friction coefficient of the feet, the battery voltage and the motor damping at each reset() of the environment. Args: spot: the spot instance in spot_gym_env environment. """ base_mass = spot.GetBaseMassFromURDF() # print("BM: ", base_mass) randomized_base_mass = np.random.uniform( np.array([base_mass]) * (1.0 + self._spot_base_mass_err_range[0]), np.array([base_mass]) * (1.0 + self._spot_base_mass_err_range[1])) spot.SetBaseMass(randomized_base_mass[0]) leg_masses = spot.GetLegMassesFromURDF() leg_masses_lower_bound = np.array(leg_masses) * ( 1.0 + self._spot_leg_mass_err_range[0]) leg_masses_upper_bound = np.array(leg_masses) * ( 1.0 + self._spot_leg_mass_err_range[1]) randomized_leg_masses = [ np.random.uniform(leg_masses_lower_bound[i], leg_masses_upper_bound[i]) for i in range(len(leg_masses)) ] spot.SetLegMasses(randomized_leg_masses) randomized_battery_voltage = np.random.uniform( BATTERY_VOLTAGE_RANGE[0], BATTERY_VOLTAGE_RANGE[1]) spot.SetBatteryVoltage(randomized_battery_voltage) randomized_motor_damping = np.random.uniform( MOTOR_VISCOUS_DAMPING_RANGE[0], MOTOR_VISCOUS_DAMPING_RANGE[1]) spot.SetMotorViscousDamping(randomized_motor_damping) randomized_foot_friction = np.random.uniform(spot_LEG_FRICTION[0], spot_LEG_FRICTION[1]) spot.SetFootFriction(randomized_foot_friction)
3,428
Python
40.817073
145
0.648483
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spotmicro/heightfield.py
""" CODE BASED ON EXAMPLE FROM: @misc{coumans2017pybullet, title={Pybullet, a python module for physics simulation in robotics, games and machine learning}, author={Coumans, Erwin and Bai, Yunfei}, url={www.pybullet.org}, year={2017}, } Example: heightfield.py https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/examples/heightfield.py """ import pybullet as p import pybullet_data as pd import math import time textureId = -1 useProgrammatic = 0 useTerrainFromPNG = 1 useDeepLocoCSV = 2 updateHeightfield = False heightfieldSource = useProgrammatic numHeightfieldRows = 256 numHeightfieldColumns = 256 import random random.seed(10) class HeightField(): def __init__(self): self.hf_id = 0 self.terrainShape = 0 self.heightfieldData = [0] * numHeightfieldRows * numHeightfieldColumns def _generate_field(self, env, heightPerturbationRange=0.08): env.pybullet_client.setAdditionalSearchPath(pd.getDataPath()) env.pybullet_client.configureDebugVisualizer( env.pybullet_client.COV_ENABLE_RENDERING, 0) heightPerturbationRange = heightPerturbationRange if heightfieldSource == useProgrammatic: for j in range(int(numHeightfieldColumns / 2)): for i in range(int(numHeightfieldRows / 2)): height = random.uniform(0, heightPerturbationRange) self.heightfieldData[2 * i + 2 * j * numHeightfieldRows] = height self.heightfieldData[2 * i + 1 + 2 * j * numHeightfieldRows] = height self.heightfieldData[2 * i + (2 * j + 1) * numHeightfieldRows] = height self.heightfieldData[2 * i + 1 + (2 * j + 1) * numHeightfieldRows] = height terrainShape = env.pybullet_client.createCollisionShape( shapeType=env.pybullet_client.GEOM_HEIGHTFIELD, meshScale=[.07, .07, 1.6], heightfieldTextureScaling=(numHeightfieldRows - 1) / 2, heightfieldData=self.heightfieldData, numHeightfieldRows=numHeightfieldRows, numHeightfieldColumns=numHeightfieldColumns) terrain = env.pybullet_client.createMultiBody(0, terrainShape) env.pybullet_client.resetBasePositionAndOrientation( terrain, [0, 0, 0.0], [0, 0, 0, 1]) env.pybullet_client.changeDynamics(terrain, -1, lateralFriction=1.0) if heightfieldSource == useDeepLocoCSV: terrainShape = env.pybullet_client.createCollisionShape( shapeType=env.pybullet_client.GEOM_HEIGHTFIELD, meshScale=[.5, .5, 2.5], fileName="heightmaps/ground0.txt", heightfieldTextureScaling=128) terrain = env.pybullet_client.createMultiBody(0, terrainShape) env.pybullet_client.resetBasePositionAndOrientation( terrain, [0, 0, 0], [0, 0, 0, 1]) env.pybullet_client.changeDynamics(terrain, -1, lateralFriction=1.0) if heightfieldSource == useTerrainFromPNG: terrainShape = env.pybullet_client.createCollisionShape( shapeType=env.pybullet_client.GEOM_HEIGHTFIELD, meshScale=[.05, .05, 1.8], fileName="heightmaps/wm_height_out.png") textureId = env.pybullet_client.loadTexture( "heightmaps/gimp_overlay_out.png") terrain = env.pybullet_client.createMultiBody(0, terrainShape) env.pybullet_client.changeVisualShape(terrain, -1, textureUniqueId=textureId) env.pybullet_client.resetBasePositionAndOrientation( terrain, [0, 0, 0.1], [0, 0, 0, 1]) env.pybullet_client.changeDynamics(terrain, -1, lateralFriction=1.0) self.hf_id = terrainShape self.terrainShape = terrainShape print("TERRAIN SHAPE: {}".format(terrainShape)) env.pybullet_client.changeVisualShape(terrain, -1, rgbaColor=[1, 1, 1, 1]) env.pybullet_client.configureDebugVisualizer( env.pybullet_client.COV_ENABLE_RENDERING, 1) def UpdateHeightField(self, heightPerturbationRange=0.08): if heightfieldSource == useProgrammatic: for j in range(int(numHeightfieldColumns / 2)): for i in range(int(numHeightfieldRows / 2)): height = random.uniform( 0, heightPerturbationRange) # +math.sin(time.time()) self.heightfieldData[2 * i + 2 * j * numHeightfieldRows] = height self.heightfieldData[2 * i + 1 + 2 * j * numHeightfieldRows] = height self.heightfieldData[2 * i + (2 * j + 1) * numHeightfieldRows] = height self.heightfieldData[2 * i + 1 + (2 * j + 1) * numHeightfieldRows] = height #GEOM_CONCAVE_INTERNAL_EDGE may help avoid getting stuck at an internal (shared) edge of the triangle/heightfield. #GEOM_CONCAVE_INTERNAL_EDGE is a bit slower to build though. #flags = p.GEOM_CONCAVE_INTERNAL_EDGE flags = 0 self.terrainShape = p.createCollisionShape( shapeType=p.GEOM_HEIGHTFIELD, flags=flags, meshScale=[.05, .05, 1], heightfieldTextureScaling=(numHeightfieldRows - 1) / 2, heightfieldData=self.heightfieldData, numHeightfieldRows=numHeightfieldRows, numHeightfieldColumns=numHeightfieldColumns, replaceHeightfieldIndex=self.terrainShape)
6,396
Python
44.368794
126
0.553627
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spotmicro/Kinematics/SpotKinematics.py
#!/usr/bin/env python import numpy as np from spotmicro.Kinematics.LegKinematics import LegIK from spotmicro.Kinematics.LieAlgebra import RpToTrans, TransToRp, TransInv, RPY, TransformVector from collections import OrderedDict class SpotModel: def __init__(self, shoulder_length=0.055, elbow_length=0.10652, wrist_length=0.145, hip_x=0.23, hip_y=0.075, foot_x=0.23, foot_y=0.185, height=0.20, com_offset=0.016, shoulder_lim=[-0.548, 0.548], elbow_lim=[-2.17, 0.97], wrist_lim=[-0.1, 2.59]): """ Spot Micro Kinematics """ # COM offset in x direction self.com_offset = com_offset # Leg Parameters self.shoulder_length = shoulder_length self.elbow_length = elbow_length self.wrist_length = wrist_length # Leg Vector desired_positions # Distance Between Hips # Length self.hip_x = hip_x # Width self.hip_y = hip_y # Distance Between Feet # Length self.foot_x = foot_x # Width self.foot_y = foot_y # Body Height self.height = height # Joint Parameters self.shoulder_lim = shoulder_lim self.elbow_lim = elbow_lim self.wrist_lim = wrist_lim # Dictionary to store Leg IK Solvers self.Legs = OrderedDict() self.Legs["FL"] = LegIK("LEFT", self.shoulder_length, self.elbow_length, self.wrist_length, self.shoulder_lim, self.elbow_lim, self.wrist_lim) self.Legs["FR"] = LegIK("RIGHT", self.shoulder_length, self.elbow_length, self.wrist_length, self.shoulder_lim, self.elbow_lim, self.wrist_lim) self.Legs["BL"] = LegIK("LEFT", self.shoulder_length, self.elbow_length, self.wrist_length, self.shoulder_lim, self.elbow_lim, self.wrist_lim) self.Legs["BR"] = LegIK("RIGHT", self.shoulder_length, self.elbow_length, self.wrist_length, self.shoulder_lim, self.elbow_lim, self.wrist_lim) # Dictionary to store Hip and Foot Transforms # Transform of Hip relative to world frame # With Body Centroid also in world frame Rwb = np.eye(3) self.WorldToHip = OrderedDict() self.ph_FL = np.array([self.hip_x / 2.0, self.hip_y / 2.0, 0]) self.WorldToHip["FL"] = RpToTrans(Rwb, self.ph_FL) self.ph_FR = np.array([self.hip_x / 2.0, -self.hip_y / 2.0, 0]) self.WorldToHip["FR"] = RpToTrans(Rwb, self.ph_FR) self.ph_BL = np.array([-self.hip_x / 2.0, self.hip_y / 2.0, 0]) self.WorldToHip["BL"] = RpToTrans(Rwb, self.ph_BL) self.ph_BR = np.array([-self.hip_x / 2.0, -self.hip_y / 2.0, 0]) self.WorldToHip["BR"] = RpToTrans(Rwb, self.ph_BR) # Transform of Foot relative to world frame # With Body Centroid also in world frame self.WorldToFoot = OrderedDict() self.pf_FL = np.array( [self.foot_x / 2.0, self.foot_y / 2.0, -self.height]) self.WorldToFoot["FL"] = RpToTrans(Rwb, self.pf_FL) self.pf_FR = np.array( [self.foot_x / 2.0, -self.foot_y / 2.0, -self.height]) self.WorldToFoot["FR"] = RpToTrans(Rwb, self.pf_FR) self.pf_BL = np.array( [-self.foot_x / 2.0, self.foot_y / 2.0, -self.height]) self.WorldToFoot["BL"] = RpToTrans(Rwb, self.pf_BL) self.pf_BR = np.array( [-self.foot_x / 2.0, -self.foot_y / 2.0, -self.height]) self.WorldToFoot["BR"] = RpToTrans(Rwb, self.pf_BR) def HipToFoot(self, orn, pos, T_bf): """ Converts a desired position and orientation wrt Spot's home position, with a desired body-to-foot Transform into a body-to-hip Transform, which is used to extract and return the Hip To Foot Vector. :param orn: A 3x1 np.array([]) with Spot's Roll, Pitch, Yaw angles :param pos: A 3x1 np.array([]) with Spot's X, Y, Z coordinates :param T_bf: Dictionary of desired body-to-foot Transforms. :return: Hip To Foot Vector for each of Spot's Legs. """ # Following steps in attached document: SpotBodyIK. # TODO: LINK DOC # Only get Rot component Rb, _ = TransToRp(RPY(orn[0], orn[1], orn[2])) pb = pos T_wb = RpToTrans(Rb, pb) # Dictionary to store vectors HipToFoot_List = OrderedDict() for i, (key, T_wh) in enumerate(self.WorldToHip.items()): # ORDER: FL, FR, FR, BL, BR # Extract vector component _, p_bf = TransToRp(T_bf[key]) # Step 1, get T_bh for each leg T_bh = np.dot(TransInv(T_wb), T_wh) # Step 2, get T_hf for each leg # VECTOR ADDITION METHOD _, p_bh = TransToRp(T_bh) p_hf0 = p_bf - p_bh # TRANSFORM METHOD T_hf = np.dot(TransInv(T_bh), T_bf[key]) _, p_hf1 = TransToRp(T_hf) # They should yield the same result if p_hf1.all() != p_hf0.all(): print("NOT EQUAL") p_hf = p_hf1 HipToFoot_List[key] = p_hf return HipToFoot_List def IK(self, orn, pos, T_bf): """ Uses HipToFoot() to convert a desired position and orientation wrt Spot's home position into a Hip To Foot Vector, which is fed into the LegIK solver. Finally, the resultant joint angles are returned from the LegIK solver for each leg. :param orn: A 3x1 np.array([]) with Spot's Roll, Pitch, Yaw angles :param pos: A 3x1 np.array([]) with Spot's X, Y, Z coordinates :param T_bf: Dictionary of desired body-to-foot Transforms. :return: Joint angles for each of Spot's joints. """ # Following steps in attached document: SpotBodyIK. # TODO: LINK DOC # Modify x by com offset pos[0] += self.com_offset # 4 legs, 3 joints per leg joint_angles = np.zeros((4, 3)) # print("T_bf: {}".format(T_bf)) # Steps 1 and 2 of pipeline here HipToFoot = self.HipToFoot(orn, pos, T_bf) for i, (key, p_hf) in enumerate(HipToFoot.items()): # ORDER: FL, FR, FR, BL, BR # print("LEG: {} \t HipToFoot: {}".format(key, p_hf)) # Step 3, compute joint angles from T_hf for each leg joint_angles[i, :] = self.Legs[key].solve(p_hf) # print("-----------------------------") return joint_angles
7,062
Python
33.120773
96
0.528887
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spotmicro/Kinematics/LegKinematics.py
#!/usr/bin/env python # https://www.researchgate.net/publication/320307716_Inverse_Kinematic_Analysis_Of_A_Quadruped_Robot import numpy as np class LegIK(): def __init__(self, legtype="RIGHT", shoulder_length=0.04, elbow_length=0.1, wrist_length=0.125, hip_lim=[-0.548, 0.548], shoulder_lim=[-2.17, 0.97], leg_lim=[-0.1, 2.59]): self.legtype = legtype self.shoulder_length = shoulder_length self.elbow_length = elbow_length self.wrist_length = wrist_length self.hip_lim = hip_lim self.shoulder_lim = shoulder_lim self.leg_lim = leg_lim def get_domain(self, x, y, z): """ Calculates the leg's Domain and caps it in case of a breach :param x,y,z: hip-to-foot distances in each dimension :return: Leg Domain D """ D = (y**2 + (-z)**2 - self.shoulder_length**2 + (-x)**2 - self.elbow_length**2 - self.wrist_length**2) / ( 2 * self.wrist_length * self.elbow_length) if D > 1 or D < -1: # DOMAIN BREACHED # print("---------DOMAIN BREACH---------") D = np.clip(D, -1.0, 1.0) return D else: return D def solve(self, xyz_coord): """ Generic Leg Inverse Kinematics Solver :param xyz_coord: hip-to-foot distances in each dimension :return: Joint Angles required for desired position """ x = xyz_coord[0] y = xyz_coord[1] z = xyz_coord[2] D = self.get_domain(x, y, z) if self.legtype == "RIGHT": return self.RightIK(x, y, z, D) else: return self.LeftIK(x, y, z, D) def RightIK(self, x, y, z, D): """ Right Leg Inverse Kinematics Solver :param x,y,z: hip-to-foot distances in each dimension :param D: leg domain :return: Joint Angles required for desired position """ wrist_angle = np.arctan2(-np.sqrt(1 - D**2), D) sqrt_component = y**2 + (-z)**2 - self.shoulder_length**2 if sqrt_component < 0.0: # print("NEGATIVE SQRT") sqrt_component = 0.0 shoulder_angle = -np.arctan2(z, y) - np.arctan2( np.sqrt(sqrt_component), -self.shoulder_length) elbow_angle = np.arctan2(-x, np.sqrt(sqrt_component)) - np.arctan2( self.wrist_length * np.sin(wrist_angle), self.elbow_length + self.wrist_length * np.cos(wrist_angle)) joint_angles = np.array([-shoulder_angle, elbow_angle, wrist_angle]) return joint_angles def LeftIK(self, x, y, z, D): """ Left Leg Inverse Kinematics Solver :param x,y,z: hip-to-foot distances in each dimension :param D: leg domain :return: Joint Angles required for desired position """ wrist_angle = np.arctan2(-np.sqrt(1 - D**2), D) sqrt_component = y**2 + (-z)**2 - self.shoulder_length**2 if sqrt_component < 0.0: print("NEGATIVE SQRT") sqrt_component = 0.0 shoulder_angle = -np.arctan2(z, y) - np.arctan2( np.sqrt(sqrt_component), self.shoulder_length) elbow_angle = np.arctan2(-x, np.sqrt(sqrt_component)) - np.arctan2( self.wrist_length * np.sin(wrist_angle), self.elbow_length + self.wrist_length * np.cos(wrist_angle)) joint_angles = np.array([-shoulder_angle, elbow_angle, wrist_angle]) return joint_angles
3,617
Python
35.918367
100
0.544927
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spotmicro/Kinematics/LieAlgebra.py
#!/usr/bin/env python import numpy as np # NOTE: Code snippets from Modern Robotics at Northwestern University: # See https://github.com/NxRLab/ModernRobotics def RpToTrans(R, p): """ Converts a rotation matrix and a position vector into homogeneous transformation matrix :param R: A 3x3 rotation matrix :param p: A 3-vector :return: A homogeneous transformation matrix corresponding to the inputs Example Input: R = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]]) p = np.array([1, 2, 5]) Output: np.array([[1, 0, 0, 1], [0, 0, -1, 2], [0, 1, 0, 5], [0, 0, 0, 1]]) """ return np.r_[np.c_[R, p], [[0, 0, 0, 1]]] def TransToRp(T): """ Converts a homogeneous transformation matrix into a rotation matrix and position vector :param T: A homogeneous transformation matrix :return R: The corresponding rotation matrix, :return p: The corresponding position vector. Example Input: T = np.array([[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 3], [0, 0, 0, 1]]) Output: (np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]]), np.array([0, 0, 3])) """ T = np.array(T) return T[0:3, 0:3], T[0:3, 3] def TransInv(T): """ Inverts a homogeneous transformation matrix :param T: A homogeneous transformation matrix :return: The inverse of T Uses the structure of transformation matrices to avoid taking a matrix inverse, for efficiency. Example input: T = np.array([[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 3], [0, 0, 0, 1]]) Output: np.array([[1, 0, 0, 0], [0, 0, 1, -3], [0, -1, 0, 0], [0, 0, 0, 1]]) """ R, p = TransToRp(T) Rt = np.array(R).T return np.r_[np.c_[Rt, -np.dot(Rt, p)], [[0, 0, 0, 1]]] def Adjoint(T): """ Computes the adjoint representation of a homogeneous transformation matrix :param T: A homogeneous transformation matrix :return: The 6x6 adjoint representation [AdT] of T Example Input: T = np.array([[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 3], [0, 0, 0, 1]]) Output: np.array([[1, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 3, 1, 0, 0], [3, 0, 0, 0, 0, -1], [0, 0, 0, 0, 1, 0]]) """ R, p = TransToRp(T) return np.r_[np.c_[R, np.zeros((3, 3))], np.c_[np.dot(VecToso3(p), R), R]] def VecToso3(omg): """ Converts a 3-vector to an so(3) representation :param omg: A 3-vector :return: The skew symmetric representation of omg Example Input: omg = np.array([1, 2, 3]) Output: np.array([[ 0, -3, 2], [ 3, 0, -1], [-2, 1, 0]]) """ return np.array([[0, -omg[2], omg[1]], [omg[2], 0, -omg[0]], [-omg[1], omg[0], 0]]) def RPY(roll, pitch, yaw): """ Creates a Roll, Pitch, Yaw Transformation Matrix :param roll: roll component of matrix :param pitch: pitch component of matrix :param yaw: yaw component of matrix :return: The transformation matrix Example Input: roll = 0.0 pitch = 0.0 yaw = 0.0 Output: np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) """ Roll = np.array([[1, 0, 0, 0], [0, np.cos(roll), -np.sin(roll), 0], [0, np.sin(roll), np.cos(roll), 0], [0, 0, 0, 1]]) Pitch = np.array([[np.cos(pitch), 0, np.sin(pitch), 0], [0, 1, 0, 0], [-np.sin(pitch), 0, np.cos(pitch), 0], [0, 0, 0, 1]]) Yaw = np.array([[np.cos(yaw), -np.sin(yaw), 0, 0], [np.sin(yaw), np.cos(yaw), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) return np.matmul(np.matmul(Roll, Pitch), Yaw) def RotateTranslate(rotation, position): """ Creates a Transformation Matrix from a Rotation, THEN, a Translation :param rotation: pure rotation matrix :param translation: pure translation matrix :return: The transformation matrix """ trans = np.eye(4) trans[0, 3] = position[0] trans[1, 3] = position[1] trans[2, 3] = position[2] return np.dot(rotation, trans) def TransformVector(xyz_coord, rotation, translation): """ Transforms a vector by a specified Rotation THEN Translation Matrix :param xyz_coord: the vector to transform :param rotation: pure rotation matrix :param translation: pure translation matrix :return: The transformed vector """ xyz_vec = np.append(xyz_coord, 1.0) Transformed = np.dot(RotateTranslate(rotation, translation), xyz_vec) return Transformed[:3]
5,162
Python
27.213115
78
0.49012
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spotmicro/util/gui.py
#!/usr/bin/env python import pybullet as pb import time import numpy as np import sys class GUI: def __init__(self, quadruped): time.sleep(0.5) self.cyaw = 0 self.cpitch = -7 self.cdist = 0.66 self.xId = pb.addUserDebugParameter("x", -0.10, 0.10, 0.) self.yId = pb.addUserDebugParameter("y", -0.10, 0.10, 0.) self.zId = pb.addUserDebugParameter("z", -0.055, 0.17, 0.) self.rollId = pb.addUserDebugParameter("roll", -np.pi / 4, np.pi / 4, 0.) self.pitchId = pb.addUserDebugParameter("pitch", -np.pi / 4, np.pi / 4, 0.) self.yawId = pb.addUserDebugParameter("yaw", -np.pi / 4, np.pi / 4, 0.) self.StepLengthID = pb.addUserDebugParameter("Step Length", -0.1, 0.1, 0.0) self.YawRateId = pb.addUserDebugParameter("Yaw Rate", -2.0, 2.0, 0.) self.LateralFractionId = pb.addUserDebugParameter( "Lateral Fraction", -np.pi / 2.0, np.pi / 2.0, 0.) self.StepVelocityId = pb.addUserDebugParameter("Step Velocity", 0.001, 3., 0.001) self.SwingPeriodId = pb.addUserDebugParameter("Swing Period", 0.1, 0.4, 0.2) self.ClearanceHeightId = pb.addUserDebugParameter( "Clearance Height", 0.0, 0.1, 0.045) self.PenetrationDepthId = pb.addUserDebugParameter( "Penetration Depth", 0.0, 0.05, 0.003) self.quadruped = quadruped def UserInput(self): quadruped_pos, _ = pb.getBasePositionAndOrientation(self.quadruped) pb.resetDebugVisualizerCamera(cameraDistance=self.cdist, cameraYaw=self.cyaw, cameraPitch=self.cpitch, cameraTargetPosition=quadruped_pos) keys = pb.getKeyboardEvents() # Keys to change camera if keys.get(100): # D self.cyaw += 1 if keys.get(97): # A self.cyaw -= 1 if keys.get(99): # C self.cpitch += 1 if keys.get(102): # F self.cpitch -= 1 if keys.get(122): # Z self.cdist += .01 if keys.get(120): # X self.cdist -= .01 if keys.get(27): # ESC pb.disconnect() sys.exit() # Read Robot Transform from GUI pos = np.array([ pb.readUserDebugParameter(self.xId), pb.readUserDebugParameter(self.yId), pb.readUserDebugParameter(self.zId) ]) orn = np.array([ pb.readUserDebugParameter(self.rollId), pb.readUserDebugParameter(self.pitchId), pb.readUserDebugParameter(self.yawId) ]) StepLength = pb.readUserDebugParameter(self.StepLengthID) YawRate = pb.readUserDebugParameter(self.YawRateId) LateralFraction = pb.readUserDebugParameter(self.LateralFractionId) StepVelocity = pb.readUserDebugParameter(self.StepVelocityId) ClearanceHeight = pb.readUserDebugParameter(self.ClearanceHeightId) PenetrationDepth = pb.readUserDebugParameter(self.PenetrationDepthId) SwingPeriod = pb.readUserDebugParameter(self.SwingPeriodId) return pos, orn, StepLength, LateralFraction, YawRate, StepVelocity, ClearanceHeight, PenetrationDepth, SwingPeriod
3,557
Python
39.431818
123
0.555243
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spotmicro/util/action_mapper.py
STATIC_ACTIONS_MAP = { 'gallop': ('rex_gym/policies/galloping/balanced', 'model.ckpt-20000000'), 'walk': ('rex_gym/policies/walking/alternating_legs', 'model.ckpt-16000000'), 'standup': ('rex_gym/policies/standup', 'model.ckpt-10000000') } DYNAMIC_ACTIONS_MAP = { 'turn': ('rex_gym/policies/turn', 'model.ckpt-16000000') } ACTIONS_TO_ENV_NAMES = { 'gallop': 'RexReactiveEnv', 'walk': 'RexWalkEnv', 'turn': 'RexTurnEnv', 'standup': 'RexStandupEnv' }
483
Python
27.470587
81
0.648033
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spotmicro/util/bullet_client.py
"""A wrapper for pybullet to manage different clients.""" from __future__ import absolute_import from __future__ import division import functools import inspect import pybullet class BulletClient(object): """A wrapper for pybullet to manage different clients.""" def __init__(self, connection_mode=None): """Creates a Bullet client and connects to a simulation. Args: connection_mode: `None` connects to an existing simulation or, if fails, creates a new headless simulation, `pybullet.GUI` creates a new simulation with a GUI, `pybullet.DIRECT` creates a headless simulation, `pybullet.SHARED_MEMORY` connects to an existing simulation. """ self._shapes = {} if connection_mode is None: self._client = pybullet.connect(pybullet.SHARED_MEMORY) if self._client >= 0: return else: connection_mode = pybullet.DIRECT self._client = pybullet.connect(connection_mode) def __del__(self): """Clean up connection if not already done.""" try: pybullet.disconnect(physicsClientId=self._client) except pybullet.error: pass def __getattr__(self, name): """Inject the client id into Bullet functions.""" attribute = getattr(pybullet, name) if inspect.isbuiltin(attribute): if name not in [ "invertTransform", "multiplyTransforms", "getMatrixFromQuaternion", "getEulerFromQuaternion", "computeViewMatrixFromYawPitchRoll", "computeProjectionMatrixFOV", "getQuaternionFromEuler", ]: # A temporary hack for now. attribute = functools.partial(attribute, physicsClientId=self._client) return attribute
1,894
Python
33.454545
86
0.607181
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spotmicro/util/pybullet_data/__init__.py
import os def getDataPath(): resdir = os.path.join(os.path.dirname(__file__)) return resdir
98
Python
13.142855
50
0.683673
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spotmicro/OpenLoopSM/SpotOL.py
""" Open Loop Controller for Spot Micro. Takes GUI params or uses default """ import numpy as np from random import shuffle import copy # Ensuring totally random seed every step! np.random.seed() FB = 0 LAT = 1 ROT = 2 COMBI = 3 FWD = 0 ALL = 1 class BezierStepper(): def __init__(self, pos=np.array([0.0, 0.0, 0.0]), orn=np.array([0.0, 0.0, 0.0]), StepLength=0.04, LateralFraction=0.0, YawRate=0.0, StepVelocity=0.001, ClearanceHeight=0.045, PenetrationDepth=0.003, episode_length=5000, dt=0.01, num_shuffles=2, mode=FWD): self.pos = pos self.orn = orn self.desired_StepLength = StepLength self.StepLength = StepLength self.StepLength_LIMITS = [-0.05, 0.05] self.LateralFraction = LateralFraction self.LateralFraction_LIMITS = [-np.pi / 2.0, np.pi / 2.0] self.YawRate = YawRate self.YawRate_LIMITS = [-1.0, 1.0] self.StepVelocity = StepVelocity self.StepVelocity_LIMITS = [0.1, 1.5] self.ClearanceHeight = ClearanceHeight self.ClearanceHeight_LIMITS = [0.0, 0.04] self.PenetrationDepth = PenetrationDepth self.PenetrationDepth_LIMITS = [0.0, 0.02] self.mode = mode self.dt = dt # Keep track of state machine self.time = 0 # Decide how long to stay in each phase based on maxtime self.max_time = episode_length """ States 1: FWD/BWD 2: Lat 3: Rot 4: Combined """ self.order = [FB, LAT, ROT, COMBI] # Shuffles list in place so the order of states is unpredictable # NOTE: increment num_shuffles by episode num (cap at 10 # and reset or someting) for some forced randomness for _ in range(num_shuffles): shuffle(self.order) # Forward/Backward always needs to be first! self.reshuffle() # Current State self.current_state = self.order[0] # Divide by number of states (see RL_SM()) self.time_per_episode = int(self.max_time / len(self.order)) def ramp_up(self): if self.StepLength < self.desired_StepLength: self.StepLength += self.desired_StepLength * self.dt def reshuffle(self): self.time = 0 # Make sure FWD/BWD is always first state FB_index = self.order.index(FB) if FB_index != 0: what_was_in_zero = self.order[0] self.order[0] = FB self.order[FB_index] = what_was_in_zero def which_state(self): # Ensuring totally random seed every step! np.random.seed() if self.time > self.max_time: # Combined self.current_state = COMBI self.time = 0 else: index = int(self.time / self.time_per_episode) if index > len(self.order) - 1: index = len(self.order) - 1 self.current_state = self.order[index] def StateMachine(self): """ State Machined used for training robust RL on top of OL gait. STATES: Forward/Backward: All Default Values. Can have slow changes to StepLength(+-) and Velocity Lateral: As above (fwd or bwd random) with added random slow changing LateralFraction param Rotating: As above except with YawRate Combined: ALL changeable values may change! StepLength StepVelocity LateralFraction YawRate NOTE: the RL is solely responsible for modulating Clearance Height and Penetration Depth """ if self.mode is ALL: self.which_state() if self.current_state == FB: # print("FORWARD/BACKWARD") self.FB() elif self.current_state == LAT: # print("LATERAL") self.LAT() elif self.current_state == ROT: # print("ROTATION") self.ROT() elif self.current_state == COMBI: # print("COMBINED") self.COMBI() return self.return_bezier_params() def return_bezier_params(self): # First, Clip Everything self.StepLength = np.clip(self.StepLength, self.StepLength_LIMITS[0], self.StepLength_LIMITS[1]) self.StepVelocity = np.clip(self.StepVelocity, self.StepVelocity_LIMITS[0], self.StepVelocity_LIMITS[1]) self.LateralFraction = np.clip(self.LateralFraction, self.LateralFraction_LIMITS[0], self.LateralFraction_LIMITS[1]) self.YawRate = np.clip(self.YawRate, self.YawRate_LIMITS[0], self.YawRate_LIMITS[1]) self.ClearanceHeight = np.clip(self.ClearanceHeight, self.ClearanceHeight_LIMITS[0], self.ClearanceHeight_LIMITS[1]) self.PenetrationDepth = np.clip(self.PenetrationDepth, self.PenetrationDepth_LIMITS[0], self.PenetrationDepth_LIMITS[1]) # Then, return # FIRST COPY TO AVOID OVERWRITING pos = copy.deepcopy(self.pos) orn = copy.deepcopy(self.orn) StepLength = copy.deepcopy(self.StepLength) LateralFraction = copy.deepcopy(self.LateralFraction) YawRate = copy.deepcopy(self.YawRate) StepVelocity = copy.deepcopy(self.StepVelocity) ClearanceHeight = copy.deepcopy(self.ClearanceHeight) PenetrationDepth = copy.deepcopy(self.PenetrationDepth) return pos, orn, StepLength, LateralFraction,\ YawRate, StepVelocity,\ ClearanceHeight, PenetrationDepth def FB(self): """ Here, we can modulate StepLength and StepVelocity """ # The maximum update amount for these element StepLength_DELTA = self.dt * (self.StepLength_LIMITS[1] - self.StepLength_LIMITS[0]) / (6.0) StepVelocity_DELTA = self.dt * (self.StepVelocity_LIMITS[1] - self.StepVelocity_LIMITS[0]) / (2.0) # Add either positive or negative or zero delta for each # NOTE: 'High' is open bracket ) so the max is 1 if self.StepLength < -self.StepLength_LIMITS[0] / 2.0: StepLength_DIRECTION = np.random.randint(-1, 3, 1)[0] elif self.StepLength > self.StepLength_LIMITS[1] / 2.0: StepLength_DIRECTION = np.random.randint(-2, 2, 1)[0] else: StepLength_DIRECTION = np.random.randint(-1, 2, 1)[0] StepVelocity_DIRECTION = np.random.randint(-1, 2, 1)[0] # Now, modify modifiable params AND CLIP self.StepLength += StepLength_DIRECTION * StepLength_DELTA self.StepLength = np.clip(self.StepLength, self.StepLength_LIMITS[0], self.StepLength_LIMITS[1]) self.StepVelocity += StepVelocity_DIRECTION * StepVelocity_DELTA self.StepVelocity = np.clip(self.StepVelocity, self.StepVelocity_LIMITS[0], self.StepVelocity_LIMITS[1]) def LAT(self): """ Here, we can modulate StepLength and LateralFraction """ # The maximum update amount for these element LateralFraction_DELTA = self.dt * (self.LateralFraction_LIMITS[1] - self.LateralFraction_LIMITS[0]) / ( 2.0) # Add either positive or negative or zero delta for each # NOTE: 'High' is open bracket ) so the max is 1 LateralFraction_DIRECTION = np.random.randint(-1, 2, 1)[0] # Now, modify modifiable params AND CLIP self.LateralFraction += LateralFraction_DIRECTION * LateralFraction_DELTA self.LateralFraction = np.clip(self.LateralFraction, self.LateralFraction_LIMITS[0], self.LateralFraction_LIMITS[1]) def ROT(self): """ Here, we can modulate StepLength and YawRate """ # The maximum update amount for these element # no dt since YawRate is already mult by dt YawRate_DELTA = (self.YawRate_LIMITS[1] - self.YawRate_LIMITS[0]) / (2.0) # Add either positive or negative or zero delta for each # NOTE: 'High' is open bracket ) so the max is 1 YawRate_DIRECTION = np.random.randint(-1, 2, 1)[0] # Now, modify modifiable params AND CLIP self.YawRate += YawRate_DIRECTION * YawRate_DELTA self.YawRate = np.clip(self.YawRate, self.YawRate_LIMITS[0], self.YawRate_LIMITS[1]) def COMBI(self): """ Here, we can modify all the parameters """ self.FB() self.LAT() self.ROT()
9,534
Python
36.53937
81
0.540696
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spotmicro/GymEnvs/spot_bezier_env.py
""" This file implements the gym environment of SpotMicro with Bezier Curve. """ import math import time import gym import numpy as np import pybullet import pybullet_data from gym import spaces from gym.utils import seeding from pkg_resources import parse_version from spotmicro import spot import pybullet_utils.bullet_client as bullet_client from gym.envs.registration import register from spotmicro.OpenLoopSM.SpotOL import BezierStepper from spotmicro.spot_gym_env import spotGymEnv import spotmicro.Kinematics.LieAlgebra as LA from spotmicro.spot_env_randomizer import SpotEnvRandomizer SENSOR_NOISE_STDDEV = spot.SENSOR_NOISE_STDDEV # Register as OpenAI Gym Environment register( id="SpotMicroEnv-v1", entry_point='spotmicro.GymEnvs.spot_bezier_env:spotBezierEnv', max_episode_steps=1000, ) class spotBezierEnv(spotGymEnv): """The gym environment for spot. It simulates the locomotion of spot, a quadruped robot. The state space include the angles, velocities and torques for all the motors and the action space is the desired motor angle for each motor. The reward function is based on how far spot walks in 1000 steps and penalizes the energy expenditure. """ metadata = { "render.modes": ["human", "rgb_array"], "video.frames_per_second": 50 } def __init__(self, distance_weight=1.0, rotation_weight=0.0, energy_weight=0.000, shake_weight=0.00, drift_weight=0.0, rp_weight=10.0, rate_weight=.03, urdf_root=pybullet_data.getDataPath(), urdf_version=None, distance_limit=float("inf"), observation_noise_stdev=SENSOR_NOISE_STDDEV, self_collision_enabled=True, motor_velocity_limit=np.inf, pd_control_enabled=False, leg_model_enabled=False, accurate_motor_model_enabled=False, remove_default_joint_damping=False, motor_kp=2.0, motor_kd=0.03, control_latency=0.0, pd_latency=0.0, torque_control_enabled=False, motor_overheat_protection=False, hard_reset=False, on_rack=False, render=True, num_steps_to_log=1000, action_repeat=1, control_time_step=None, env_randomizer=SpotEnvRandomizer(), forward_reward_cap=float("inf"), reflection=True, log_path=None, desired_velocity=0.5, desired_rate=0.0, lateral=False, draw_foot_path=False, height_field=False, AutoStepper=True, action_dim=14, contacts=True): super(spotBezierEnv, self).__init__( distance_weight=distance_weight, rotation_weight=rotation_weight, energy_weight=energy_weight, shake_weight=shake_weight, drift_weight=drift_weight, rp_weight=rp_weight, rate_weight=rate_weight, urdf_root=urdf_root, urdf_version=urdf_version, distance_limit=distance_limit, observation_noise_stdev=observation_noise_stdev, self_collision_enabled=self_collision_enabled, motor_velocity_limit=motor_velocity_limit, pd_control_enabled=pd_control_enabled, leg_model_enabled=leg_model_enabled, accurate_motor_model_enabled=accurate_motor_model_enabled, remove_default_joint_damping=remove_default_joint_damping, motor_kp=motor_kp, motor_kd=motor_kd, control_latency=control_latency, pd_latency=pd_latency, torque_control_enabled=torque_control_enabled, motor_overheat_protection=motor_overheat_protection, hard_reset=hard_reset, on_rack=on_rack, render=render, num_steps_to_log=num_steps_to_log, action_repeat=action_repeat, control_time_step=control_time_step, env_randomizer=env_randomizer, forward_reward_cap=forward_reward_cap, reflection=reflection, log_path=log_path, desired_velocity=desired_velocity, desired_rate=desired_rate, lateral=lateral, draw_foot_path=draw_foot_path, height_field=height_field, AutoStepper=AutoStepper, contacts=contacts) # Residuals + Clearance Height + Penetration Depth action_high = np.array([self._action_bound] * action_dim) self.action_space = spaces.Box(-action_high, action_high) print("Action SPACE: {}".format(self.action_space)) self.prev_pos = np.array([0.0, 0.0, 0.0]) self.yaw = 0.0 def pass_joint_angles(self, ja): """ For executing joint angles """ self.ja = ja def step(self, action): """Step forward the simulation, given the action. Args: action: A list of desired motor angles for eight motors. smach: the bezier state machine containing simulated random controll inputs Returns: observations: The angles, velocities and torques of all motors. reward: The reward for the current state-action pair. done: Whether the episode has ended. info: A dictionary that stores diagnostic information. Raises: ValueError: The action dimension is not the same as the number of motors. ValueError: The magnitude of actions is out of bounds. """ # Discard all but joint angles action = self.ja self._last_base_position = self.spot.GetBasePosition() self._last_base_orientation = self.spot.GetBaseOrientation() # print("ACTION:") # print(action) if self._is_render: # Sleep, otherwise the computation takes less time than real time, # which will make the visualization like a fast-forward video. time_spent = time.time() - self._last_frame_time self._last_frame_time = time.time() time_to_sleep = self.control_time_step - time_spent if time_to_sleep > 0: time.sleep(time_to_sleep) base_pos = self.spot.GetBasePosition() # Keep the previous orientation of the camera set by the user. [yaw, pitch, dist] = self._pybullet_client.getDebugVisualizerCamera()[8:11] self._pybullet_client.resetDebugVisualizerCamera( dist, yaw, pitch, base_pos) action = self._transform_action_to_motor_command(action) self.spot.Step(action) # NOTE: SMACH is passed to the reward method reward = self._reward() done = self._termination() self._env_step_counter += 1 # DRAW FOOT PATH if self.draw_foot_path: self.DrawFootPath() return np.array(self._get_observation()), reward, done, {} def return_state(self): return np.array(self._get_observation()) def return_yaw(self): return self.yaw def _reward(self): # get observation obs = self._get_observation() orn = self.spot.GetBaseOrientation() # Return StepVelocity with the sign of StepLength DesiredVelicty = math.copysign(self.spot.StepVelocity / 4.0, self.spot.StepLength) fwd_speed = self.spot.prev_lin_twist[0] # vx lat_speed = self.spot.prev_lin_twist[1] # vy # DEBUG lt, at = self.spot.GetBaseTwist() # ONLY WORKS FOR MOVING PURELY FORWARD pos = self.spot.GetBasePosition() forward_reward = pos[0] - self.prev_pos[0] # yaw_rate = obs[4] rot_reward = 0.0 roll, pitch, yaw = self._pybullet_client.getEulerFromQuaternion( [orn[0], orn[1], orn[2], orn[3]]) # if yaw < 0.0: # yaw += np.pi # else: # yaw -= np.pi # For auto correct self.yaw = yaw # penalty for nonzero PITCH and YAW(hidden) ONLY # NOTE: Added Yaw mult rp_reward = -(abs(obs[0]) + abs(obs[1])) # print("YAW: {}".format(yaw)) # print("RP RWD: {:.2f}".format(rp_reward)) # print("ROLL: {} \t PITCH: {}".format(obs[0], obs[1])) # penalty for nonzero acc(z) - UNRELIABLE ON IMU shake_reward = 0 # penalty for nonzero rate (x,y,z) rate_reward = -(abs(obs[2]) + abs(obs[3])) # print("RATES: {}".format(obs[2:5])) drift_reward = -abs(pos[1]) energy_reward = -np.abs( np.dot(self.spot.GetMotorTorques(), self.spot.GetMotorVelocities())) * self._time_step reward = (self._distance_weight * forward_reward + self._rotation_weight * rot_reward + self._energy_weight * energy_reward + self._drift_weight * drift_reward + self._shake_weight * shake_reward + self._rp_weight * rp_reward + self._rate_weight * rate_reward) self._objectives.append( [forward_reward, energy_reward, drift_reward, shake_reward]) # print("REWARD: ", reward) # NOTE: return yaw for automatic correction (not part of RL) return reward
9,666
Python
34.803704
79
0.581212
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spotmicro/GaitGenerator/Bezier.py
import numpy as np from spotmicro.Kinematics.LieAlgebra import TransToRp import copy STANCE = 0 SWING = 1 # Bezier Curves from: https://dspace.mit.edu/handle/1721.1/98270 # Rotation Logic from: http://www.inase.org/library/2014/santorini/bypaper/ROBCIRC/ROBCIRC-54.pdf class BezierGait(): def __init__(self, dSref=[0.0, 0.0, 0.5, 0.5], dt=0.01, Tswing=0.2): # Phase Lag Per Leg: FL, FR, BL, BR # Reference Leg is FL, always 0 self.dSref = dSref self.Prev_fxyz = [0.0, 0.0, 0.0, 0.0] # Number of control points is n + 1 = 11 + 1 = 12 self.NumControlPoints = 11 # Timestep self.dt = dt # Total Elapsed Time self.time = 0.0 # Touchdown Time self.TD_time = 0.0 # Time Since Last Touchdown self.time_since_last_TD = 0.0 # Trajectory Mode self.StanceSwing = SWING # Swing Phase value [0, 1] of Reference Foot self.SwRef = 0.0 self.Stref = 0.0 # Whether Reference Foot has Touched Down self.TD = False # Stance Time self.Tswing = Tswing # Reference Leg self.ref_idx = 0 # Store all leg phases self.Phases = self.dSref def reset(self): """Resets the parameters of the Bezier Gait Generator """ self.Prev_fxyz = [0.0, 0.0, 0.0, 0.0] # Total Elapsed Time self.time = 0.0 # Touchdown Time self.TD_time = 0.0 # Time Since Last Touchdown self.time_since_last_TD = 0.0 # Trajectory Mode self.StanceSwing = SWING # Swing Phase value [0, 1] of Reference Foot self.SwRef = 0.0 self.Stref = 0.0 # Whether Reference Foot has Touched Down self.TD = False def GetPhase(self, index, Tstance, Tswing): """Retrieves the phase of an individual leg. NOTE modification from original paper: if ti < -Tswing: ti += Tstride This is to avoid a phase discontinuity if the user selects a Step Length and Velocity combination that causes Tstance > Tswing. :param index: the leg's index, used to identify the required phase lag :param Tstance: the current user-specified stance period :param Tswing: the swing period (constant, class member) :return: Leg Phase, and StanceSwing (bool) to indicate whether leg is in stance or swing mode """ StanceSwing = STANCE Sw_phase = 0.0 Tstride = Tstance + Tswing ti = self.Get_ti(index, Tstride) # NOTE: PAPER WAS MISSING THIS LOGIC!! if ti < -Tswing: ti += Tstride # STANCE if ti >= 0.0 and ti <= Tstance: StanceSwing = STANCE if Tstance == 0.0: Stnphase = 0.0 else: Stnphase = ti / float(Tstance) if index == self.ref_idx: # print("STANCE REF: {}".format(Stnphase)) self.StanceSwing = StanceSwing return Stnphase, StanceSwing # SWING elif ti >= -Tswing and ti < 0.0: StanceSwing = SWING Sw_phase = (ti + Tswing) / Tswing elif ti > Tstance and ti <= Tstride: StanceSwing = SWING Sw_phase = (ti - Tstance) / Tswing # Touchdown at End of Swing if Sw_phase >= 1.0: Sw_phase = 1.0 if index == self.ref_idx: # print("SWING REF: {}".format(Sw_phase)) self.StanceSwing = StanceSwing self.SwRef = Sw_phase # REF Touchdown at End of Swing if self.SwRef >= 0.999: self.TD = True # else: # self.TD = False return Sw_phase, StanceSwing def Get_ti(self, index, Tstride): """Retrieves the time index for the individual leg :param index: the leg's index, used to identify the required phase lag :param Tstride: the total leg movement period (Tstance + Tswing) :return: the leg's time index """ # NOTE: for some reason python's having numerical issues w this # setting to 0 for ref leg by force if index == self.ref_idx: self.dSref[index] = 0.0 return self.time_since_last_TD - self.dSref[index] * Tstride def Increment(self, dt, Tstride): """Increments the Bezier gait generator's internal clock (self.time) :param dt: the time step phase lag :param Tstride: the total leg movement period (Tstance + Tswing) :return: the leg's time index """ self.CheckTouchDown() self.time_since_last_TD = self.time - self.TD_time if self.time_since_last_TD > Tstride: self.time_since_last_TD = Tstride elif self.time_since_last_TD < 0.0: self.time_since_last_TD = 0.0 # print("T STRIDE: {}".format(Tstride)) # Increment Time at the end in case TD just happened # So that we get time_since_last_TD = 0.0 self.time += dt # If Tstride = Tswing, Tstance = 0 # RESET ALL if Tstride < self.Tswing + dt: self.time = 0.0 self.time_since_last_TD = 0.0 self.TD_time = 0.0 self.SwRef = 0.0 def CheckTouchDown(self): """Checks whether a reference leg touchdown has occured, and whether this warrants resetting the touchdown time """ if self.SwRef >= 0.9 and self.TD: self.TD_time = self.time self.TD = False self.SwRef = 0.0 def BernSteinPoly(self, t, k, point): """Calculate the point on the Berinstein Polynomial based on phase (0->1), point number (0-11), and the value of the control point itself :param t: phase :param k: point number :param point: point value :return: Value through Bezier Curve """ return point * self.Binomial(k) * np.power(t, k) * np.power( 1 - t, self.NumControlPoints - k) def Binomial(self, k): """Solves the binomial theorem given a Bezier point number relative to the total number of Bezier points. :param k: Bezier point number :returns: Binomial solution """ return np.math.factorial(self.NumControlPoints) / ( np.math.factorial(k) * np.math.factorial(self.NumControlPoints - k)) def BezierSwing(self, phase, L, LateralFraction, clearance_height=0.04): """Calculates the step coordinates for the Bezier (swing) period :param phase: current trajectory phase :param L: step length :param LateralFraction: determines how lateral the movement is :param clearance_height: foot clearance height during swing phase :returns: X,Y,Z Foot Coordinates relative to unmodified body """ # Polar Leg Coords X_POLAR = np.cos(LateralFraction) Y_POLAR = np.sin(LateralFraction) # Bezier Curve Points (12 pts) # NOTE: L is HALF of STEP LENGTH # Forward Component STEP = np.array([ -L, # Ctrl Point 0, half of stride len -L * 1.4, # Ctrl Point 1 diff btwn 1 and 0 = x Lift vel -L * 1.5, # Ctrl Pts 2, 3, 4 are overlapped for -L * 1.5, # Direction change after -L * 1.5, # Follow Through 0.0, # Change acceleration during Protraction 0.0, # So we include three 0.0, # Overlapped Ctrl Pts: 5, 6, 7 L * 1.5, # Changing direction for swing-leg retraction L * 1.5, # requires double overlapped Ctrl Pts: 8, 9 L * 1.4, # Swing Leg Retraction Velocity = Ctrl 11 - 10 L ]) # Account for lateral movements by multiplying with polar coord. # LateralFraction switches leg movements from X over to Y+ or Y- # As it tends away from zero X = STEP * X_POLAR # Account for lateral movements by multiplying with polar coord. # LateralFraction switches leg movements from X over to Y+ or Y- # As it tends away from zero Y = STEP * Y_POLAR # Vertical Component Z = np.array([ 0.0, # Double Overlapped Ctrl Pts for zero Lift 0.0, # Veloicty wrt hip (Pts 0 and 1) clearance_height * 0.9, # Triple overlapped control for change in clearance_height * 0.9, # Force direction during transition from clearance_height * 0.9, # follow-through to protraction (2, 3, 4) clearance_height * 0.9, # Double Overlapped Ctrl Pts for Traj clearance_height * 0.9, # Dirctn Change during Protraction (5, 6) clearance_height * 1.1, # Maximum Clearance at mid Traj, Pt 7 clearance_height * 1.1, # Smooth Transition from Protraction clearance_height * 1.1, # To Retraction, Two Ctrl Pts (8, 9) 0.0, # Double Overlap Ctrl Pts for 0 Touchdown 0.0, # Veloicty wrt hip (Pts 10 and 11) ]) stepX = 0. stepY = 0. stepZ = 0. # Bernstein Polynomial sum over control points for i in range(len(X)): stepX += self.BernSteinPoly(phase, i, X[i]) stepY += self.BernSteinPoly(phase, i, Y[i]) stepZ += self.BernSteinPoly(phase, i, Z[i]) return stepX, stepY, stepZ def SineStance(self, phase, L, LateralFraction, penetration_depth=0.00): """Calculates the step coordinates for the Sinusoidal stance period :param phase: current trajectory phase :param L: step length :param LateralFraction: determines how lateral the movement is :param penetration_depth: foot penetration depth during stance phase :returns: X,Y,Z Foot Coordinates relative to unmodified body """ X_POLAR = np.cos(LateralFraction) Y_POLAR = np.sin(LateralFraction) # moves from +L to -L step = L * (1.0 - 2.0 * phase) stepX = step * X_POLAR stepY = step * Y_POLAR if L != 0.0: stepZ = -penetration_depth * np.cos( (np.pi * (stepX + stepY)) / (2.0 * L)) else: stepZ = 0.0 return stepX, stepY, stepZ def YawCircle(self, T_bf, index): """ Calculates the required rotation of the trajectory plane for yaw motion :param T_bf: default body-to-foot Vector :param index: the foot index in the container :returns: phi_arc, the plane rotation angle required for yaw motion """ # Foot Magnitude depending on leg type DefaultBodyToFoot_Magnitude = np.sqrt(T_bf[0]**2 + T_bf[1]**2) # Rotation Angle depending on leg type DefaultBodyToFoot_Direction = np.arctan2(T_bf[1], T_bf[0]) # Previous leg coordinates relative to default coordinates g_xyz = self.Prev_fxyz[index] - np.array([T_bf[0], T_bf[1], T_bf[2]]) # Modulate Magnitude to keep tracing circle g_mag = np.sqrt((g_xyz[0])**2 + (g_xyz[1])**2) th_mod = np.arctan2(g_mag, DefaultBodyToFoot_Magnitude) # Angle Traced by Foot for Rotation # FR and BL if index == 1 or index == 2: phi_arc = np.pi / 2.0 + DefaultBodyToFoot_Direction + th_mod # FL and BR else: phi_arc = np.pi / 2.0 - DefaultBodyToFoot_Direction + th_mod # print("INDEX {}: \t Angle: {}".format( # index, np.degrees(DefaultBodyToFoot_Direction))) return phi_arc def SwingStep(self, phase, L, LateralFraction, YawRate, clearance_height, T_bf, key, index): """Calculates the step coordinates for the Bezier (swing) period using a combination of forward and rotational step coordinates initially decomposed from user input of L, LateralFraction and YawRate :param phase: current trajectory phase :param L: step length :param LateralFraction: determines how lateral the movement is :param YawRate: the desired body yaw rate :param clearance_height: foot clearance height during swing phase :param T_bf: default body-to-foot Vector :param key: indicates which foot is being processed :param index: the foot index in the container :returns: Foot Coordinates relative to unmodified body """ # Yaw foot angle for tangent-to-circle motion phi_arc = self.YawCircle(T_bf, index) # Get Foot Coordinates for Forward Motion X_delta_lin, Y_delta_lin, Z_delta_lin = self.BezierSwing( phase, L, LateralFraction, clearance_height) X_delta_rot, Y_delta_rot, Z_delta_rot = self.BezierSwing( phase, YawRate, phi_arc, clearance_height) coord = np.array([ X_delta_lin + X_delta_rot, Y_delta_lin + Y_delta_rot, Z_delta_lin + Z_delta_rot ]) self.Prev_fxyz[index] = coord return coord def StanceStep(self, phase, L, LateralFraction, YawRate, penetration_depth, T_bf, key, index): """Calculates the step coordinates for the Sine (stance) period using a combination of forward and rotational step coordinates initially decomposed from user input of L, LateralFraction and YawRate :param phase: current trajectory phase :param L: step length :param LateralFraction: determines how lateral the movement is :param YawRate: the desired body yaw rate :param penetration_depth: foot penetration depth during stance phase :param T_bf: default body-to-foot Vector :param key: indicates which foot is being processed :param index: the foot index in the container :returns: Foot Coordinates relative to unmodified body """ # Yaw foot angle for tangent-to-circle motion phi_arc = self.YawCircle(T_bf, index) # Get Foot Coordinates for Forward Motion X_delta_lin, Y_delta_lin, Z_delta_lin = self.SineStance( phase, L, LateralFraction, penetration_depth) X_delta_rot, Y_delta_rot, Z_delta_rot = self.SineStance( phase, YawRate, phi_arc, penetration_depth) coord = np.array([ X_delta_lin + X_delta_rot, Y_delta_lin + Y_delta_rot, Z_delta_lin + Z_delta_rot ]) self.Prev_fxyz[index] = coord return coord def GetFootStep(self, L, LateralFraction, YawRate, clearance_height, penetration_depth, Tstance, T_bf, index, key): """Calculates the step coordinates in either the Bezier or Sine portion of the trajectory depending on the retrieved phase :param phase: current trajectory phase :param L: step length :param LateralFraction: determines how lateral the movement is :param YawRate: the desired body yaw rate :param clearance_height: foot clearance height during swing phase :param penetration_depth: foot penetration depth during stance phase :param Tstance: the current user-specified stance period :param T_bf: default body-to-foot Vector :param index: the foot index in the container :param key: indicates which foot is being processed :returns: Foot Coordinates relative to unmodified body """ phase, StanceSwing = self.GetPhase(index, Tstance, self.Tswing) if StanceSwing == SWING: stored_phase = phase + 1.0 else: stored_phase = phase # Just for keeping track self.Phases[index] = stored_phase # print("LEG: {} \t PHASE: {}".format(index, stored_phase)) if StanceSwing == STANCE: return self.StanceStep(phase, L, LateralFraction, YawRate, penetration_depth, T_bf, key, index) elif StanceSwing == SWING: return self.SwingStep(phase, L, LateralFraction, YawRate, clearance_height, T_bf, key, index) def GenerateTrajectory(self, L, LateralFraction, YawRate, vel, T_bf_, T_bf_curr, clearance_height=0.06, penetration_depth=0.01, contacts=[0, 0, 0, 0], dt=None): """Calculates the step coordinates for each foot :param L: step length :param LateralFraction: determines how lateral the movement is :param YawRate: the desired body yaw rate :param vel: the desired step velocity :param clearance_height: foot clearance height during swing phase :param penetration_depth: foot penetration depth during stance phase :param contacts: array containing 1 for contact and 0 otherwise :param dt: the time step :returns: Foot Coordinates relative to unmodified body """ # First, get Tstance from desired speed and stride length # NOTE: L is HALF of stride length if vel != 0.0: Tstance = 2.0 * abs(L) / abs(vel) else: Tstance = 0.0 L = 0.0 self.TD = False self.time = 0.0 self.time_since_last_TD = 0.0 # Then, get time since last Touchdown and increment time counter if dt is None: dt = self.dt YawRate *= dt # Catch infeasible timesteps if Tstance < dt: Tstance = 0.0 L = 0.0 self.TD = False self.time = 0.0 self.time_since_last_TD = 0.0 YawRate = 0.0 # NOTE: MUCH MORE STABLE WITH THIS elif Tstance > 1.3 * self.Tswing: Tstance = 1.3 * self.Tswing # Check contacts if contacts[0] == 1 and Tstance > dt: self.TD = True self.Increment(dt, Tstance + self.Tswing) T_bf = copy.deepcopy(T_bf_) for i, (key, Tbf_in) in enumerate(T_bf_.items()): # TODO: MAKE THIS MORE ELEGANT if key == "FL": self.ref_idx = i self.dSref[i] = 0.0 if key == "FR": self.dSref[i] = 0.5 if key == "BL": self.dSref[i] = 0.5 if key == "BR": self.dSref[i] = 0.0 _, p_bf = TransToRp(Tbf_in) if Tstance > 0.0: step_coord = self.GetFootStep(L, LateralFraction, YawRate, clearance_height, penetration_depth, Tstance, p_bf, i, key) else: step_coord = np.array([0.0, 0.0, 0.0]) T_bf[key][0, 3] = Tbf_in[0, 3] + step_coord[0] T_bf[key][1, 3] = Tbf_in[1, 3] + step_coord[1] T_bf[key][2, 3] = Tbf_in[2, 3] + step_coord[2] return T_bf
19,596
Python
36.759152
97
0.5594
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/docs/conf.py
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys from recommonmark.parser import CommonMarkParser sys.path.insert(0, os.path.abspath('..')) source_parsers = { '.md': CommonMarkParser, } # -- Project information ----------------------------------------------------- project = u'spot_mini_mini' copyright = u'2020, Maurice Rahme' author = u'Maurice Rahme' # The short X.Y version version = u'' # The full version, including alpha/beta/rc tags release = u'1.0.0' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [u'_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = None # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'spot_mini_minidoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'spot_mini_mini.tex', u'spot\\_mini\\_mini Documentation', u'Maurice Rahme', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'spot_mini_mini', u'spot_mini_mini Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'spot_mini_mini', u'spot_mini_mini Documentation', author, 'spot_mini_mini', 'One line description of project.', 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # -- Extension configuration -------------------------------------------------
5,505
Python
28.287234
79
0.642688
renanmb/Omniverse_legged_robotics/URDF-Descriptions/MIT_mini-cheetah/mini-cheetah-CHAMP/yobo_model/yobotics_gazebo/scripts/imu_sensor.py
#! /usr/bin/env python ''' Copyright (c) 2019-2020, Juan Miguel Jimeno All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' import rospy from nav_msgs.msg import Odometry from geometry_msgs.msg import Point, Quaternion from yobotics_msgs.msg import Pose import tf class SimPose: def __init__(self): rospy.Subscriber("odom/ground_truth", Odometry, self.odometry_callback) self.sim_pose_publisher = rospy.Publisher("/yobotics/gazebo/pose", Pose, queue_size=50) def odometry_callback(self, data): sim_pose_msg = Pose() sim_pose_msg.roll = data.pose.pose.orientation.x sim_pose_msg.pitch = data.pose.pose.orientation.y sim_pose_msg.yaw = data.pose.pose.orientation.z self.sim_pose_publisher.publish(sim_pose_msg) if __name__ == "__main__": rospy.init_node("yobotics_gazebo_sim_pose", anonymous = True) odom = SimPose() rospy.spin()
2,342
Python
44.941176
95
0.752775
renanmb/Omniverse_legged_robotics/URDF-Descriptions/MIT_mini-cheetah/mini-cheetah-CHAMP/yobo_model/yobotics_gazebo/scripts/odometry_tf.py
#! /usr/bin/env python ''' Copyright (c) 2019-2020, Juan Miguel Jimeno All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' import rospy from nav_msgs.msg import Odometry from geometry_msgs.msg import Point, Quaternion import tf class Odom: def __init__(self): rospy.Subscriber("odom/raw", Odometry, self.odometry_callback) self.odom_broadcaster = tf.TransformBroadcaster() def odometry_callback(self, data): self.current_linear_speed_x = data.twist.twist.linear.x self.current_angular_speed_z = data.twist.twist.angular.z current_time = rospy.Time.now() odom_quat = ( data.pose.pose.orientation.x, data.pose.pose.orientation.y, data.pose.pose.orientation.z, data.pose.pose.orientation.w ) self.odom_broadcaster.sendTransform( (data.pose.pose.position.x, data.pose.pose.position.y, 0), odom_quat, current_time, "base_footprint", "odom" ) if __name__ == "__main__": rospy.init_node("yobotics_gazebo_odometry_transform", anonymous = True) odom = Odom() rospy.spin()
2,612
Python
40.47619
80
0.714778
renanmb/Omniverse_legged_robotics/URDF-Descriptions/MIT_mini-cheetah/mini-cheetah-CHAMP/yobo_model/yobotics_gazebo/scripts/odometry.py
#! /usr/bin/env python ''' Copyright (c) 2019-2020, Juan Miguel Jimeno All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' import rospy from yobotics_msgs.msg import Contacts from nav_msgs.msg import Odometry from geometry_msgs.msg import Point, Quaternion, Pose, Twist, Vector3 import tf from tf import TransformListener from tf.transformations import euler_from_quaternion, quaternion_from_euler from nav_msgs.msg import Odometry import math class yoboticsOdometry: def __init__(self): rospy.Subscriber("/yobotics/gazebo/contacts", Contacts, self.contacts_callback) self.odom_publisher = rospy.Publisher("odom/raw", Odometry, queue_size=50) self.odom_broadcaster = tf.TransformBroadcaster() self.tf = TransformListener() self.foot_links = [ "lf_foot_link", "rf_foot_link", "lh_foot_link", "rh_foot_link" ] self.nominal_foot_positions = [[0,0],[0,0],[0,0],[0,0]] self.prev_foot_positions = [[0,0],[0,0],[0,0],[0,0]] self.prev_theta = [0,0,0,0] self.prev_stance_angles = [0,0,0,0] self.prev_time = 0 self.pos_x = 0 self.pos_y = 0 self.theta = 0 self.publish_odom_tf(0,0,0,0) rospy.sleep(1) for i in range(4): self.nominal_foot_positions[i] = self.get_foot_position(i) self.prev_foot_positions[i] = self.nominal_foot_positions[i] self.prev_theta[i] = math.atan2(self.prev_foot_positions[i][1], self.prev_foot_positions[i][0]) def publish_odom(self, x, y, z, theta, vx, vy, vth): current_time = rospy.Time.now() odom = Odometry() odom.header.stamp = current_time odom.header.frame_id = "odom" odom_quat = tf.transformations.quaternion_from_euler(0, 0, theta) odom.pose.pose = Pose(Point(x, y, z), Quaternion(*odom_quat)) odom.child_frame_id = "base_footprint" odom.twist.twist = Twist(Vector3(vx, vy, 0), Vector3(0, 0, vth)) # publish the message self.odom_publisher.publish(odom) def publish_odom_tf(self, x, y, z, theta): current_time = rospy.Time.now() odom_quat = quaternion_from_euler (0, 0, theta) self.odom_broadcaster.sendTransform( (x, y, z), odom_quat, current_time, "base_footprint", "odom" ) def get_foot_position(self, leg_id): if self.tf.frameExists("base_link" and self.foot_links[leg_id]) : t = self.tf.getLatestCommonTime("base_link", self.foot_links[leg_id]) position, quaternion = self.tf.lookupTransform("base_link", self.foot_links[leg_id], t) return position else: return 0, 0, 0 def contacts_callback(self, data): self.leg_contact_states = data.contacts def is_almost_equal(self, a, b, max_rel_diff): diff = abs(a - b) a = abs(a) b = abs(b) largest = 0 if b > a: largest = b else: larget = a if diff <= (largest * max_rel_diff): return True return False def run(self): while not rospy.is_shutdown(): leg_contact_states = self.leg_contact_states current_foot_position = [[0,0],[0,0],[0,0],[0,0]] stance_angles = [0, 0, 0, 0] current_theta = [0, 0, 0, 0] delta_theta = 0 in_xy = False total_contact = sum(leg_contact_states) x_sum = 0 y_sum = 0 theta_sum = 0 for i in range(4): current_foot_position[i] = self.get_foot_position(i) for i in range(4): current_theta[i] = math.atan2(current_foot_position[i][1], current_foot_position[i][0]) from_nominal_x = self.nominal_foot_positions[i][0] - current_foot_position[i][0] from_nominal_y = self.nominal_foot_positions[i][1] - current_foot_position[i][1] stance_angles[i] = math.atan2(from_nominal_y, from_nominal_x) # print stance_angles #check if it's moving in the x or y axis if self.is_almost_equal(stance_angles[i], abs(1.5708), 0.001) or self.is_almost_equal(stance_angles[i], abs(3.1416), 0.001): in_xy = True if current_foot_position[i] != None and leg_contact_states[i] == True and total_contact == 2: delta_x = (self.prev_foot_positions[i][0] - current_foot_position[i][0]) / 2 delta_y = (self.prev_foot_positions[i][1] - current_foot_position[i][1]) / 2 x = delta_x * math.cos(self.theta) - delta_y * math.sin(self.theta) y = delta_x * math.sin(self.theta) + delta_y * math.cos(self.theta) x_sum += delta_x y_sum += delta_y self.pos_x += x self.pos_y += y if not in_xy: delta_theta = self.prev_theta[i] - current_theta[i] theta_sum += delta_theta self.theta += delta_theta / 2 now = rospy.Time.now().to_sec() dt = now - self.prev_time vx = x_sum / dt vy = y_sum / dt vth = theta_sum / dt self.publish_odom(self.pos_x, self.pos_y, 0, self.theta, vx, vy, vth) # self.publish_odom_tf(self.pos_x, self.pos_y, 0, self.theta) self.prev_foot_positions = current_foot_position self.prev_theta = current_theta self.prev_stance_angles = stance_angles self.prev_time = now rospy.sleep(0.01) if __name__ == "__main__": rospy.init_node("yobotics_gazebo_odometry", anonymous = True) odom = yoboticsOdometry() odom.run()
7,397
Python
37.331606
140
0.592402
renanmb/Omniverse_legged_robotics/URDF-Descriptions/MIT_mini-cheetah/mini-cheetah-CHAMP/yobo_model/yobotics_teleop/yobotics_teleop.py
#!/usr/bin/env python #credits to: https://github.com/ros-teleop/teleop_twist_keyboard/blob/master/teleop_twist_keyboard.py from __future__ import print_function import roslib; roslib.load_manifest('yobotics_teleop') import rospy from sensor_msgs.msg import Joy from geometry_msgs.msg import Twist from yobotics_msgs.msg import Pose import sys, select, termios, tty import numpy as np class Teleop: def __init__(self): self.velocity_publisher = rospy.Publisher('cmd_vel', Twist, queue_size = 1) self.pose_publisher = rospy.Publisher('cmd_pose', Pose, queue_size = 1) self.joy_subscriber = rospy.Subscriber('joy', Joy, self.joy_callback) self.speed = rospy.get_param("~speed", 0.3) self.turn = rospy.get_param("~turn", 1.0) self.msg = """ Reading from the keyboard and Publishing to Twist! --------------------------- Moving around: u i o j k l m , . For Holonomic mode (strafing), hold down the shift key: --------------------------- U I O J K L M < > t : up (+z) b : down (-z) anything else : stop q/z : increase/decrease max speeds by 10% w/x : increase/decrease only linear speed by 10% e/c : increase/decrease only angular speed by 10% CTRL-C to quit """ self.velocityBindings = { 'i':(1,0,0,0), 'o':(1,0,0,-1), 'j':(0,0,0,1), 'l':(0,0,0,-1), 'u':(1,0,0,1), ',':(-1,0,0,0), '.':(-1,0,0,1), 'm':(-1,0,0,-1), 'O':(1,-1,0,0), 'I':(1,0,0,0), 'J':(0,1,0,0), 'L':(0,-1,0,0), 'U':(1,1,0,0), '<':(-1,0,0,0), '>':(-1,-1,0,0), 'M':(-1,1,0,0), 'v':(0,0,1,0), 'n':(0,0,-1,0), } self.poseBindings = { 'f':(-1,0,0,0), 'h':(1,0,0,0), 't':(0,1,0,0), 'b':(0,-1,0,0), 'r':(0,0,1,0), 'y':(0,0,-1,0), } self.speedBindings={ 'q':(1.1,1.1), 'z':(.9,.9), 'w':(1.1,1), 'x':(.9,1), 'e':(1,1.1), 'c':(1,.9), } self.poll_keys() def joy_callback(self, data): twist = Twist() twist.linear.x = data.axes[7] * self.speed twist.linear.y = data.buttons[4] * data.axes[6] * self.speed twist.linear.z = 0 twist.angular.x = 0 twist.angular.y = 0 twist.angular.z = (not data.buttons[4]) * data.axes[6] * self.turn self.velocity_publisher.publish(twist) body_pose = Pose() body_pose.x = 0 body_pose.y = 0 body_pose.roll = (not data.buttons[5]) *-data.axes[3] * 0.349066 body_pose.pitch = data.axes[4] * 0.261799 body_pose.yaw = data.buttons[5] * data.axes[3] * 0.436332 if data.axes[5] < 0: body_pose.z = self.map(data.axes[5], 0, -1.0, 1, 0.00001) else: body_pose.z = 1.0 self.pose_publisher.publish(body_pose) def poll_keys(self): self.settings = termios.tcgetattr(sys.stdin) x = 0 y = 0 z = 0 th = 0 roll = 0 pitch = 0 yaw = 0 status = 0 cmd_attempts = 0 try: print(self.msg) print(self.vels( self.speed, self.turn)) while not rospy.is_shutdown(): key = self.getKey() if key in self.velocityBindings.keys(): x = self.velocityBindings[key][0] y = self.velocityBindings[key][1] z = self.velocityBindings[key][2] th = self.velocityBindings[key][3] if cmd_attempts > 1: twist = Twist() twist.linear.x = x *self.speed twist.linear.y = y * self.speed twist.linear.z = z * self.speed twist.angular.x = 0 twist.angular.y = 0 twist.angular.z = th * self.turn self.velocity_publisher.publish(twist) cmd_attempts += 1 elif key in self.poseBindings.keys(): #TODO: changes these values as rosparam roll += 0.0174533 * self.poseBindings[key][0] pitch += 0.0174533 * self.poseBindings[key][1] yaw += 0.0174533 * self.poseBindings[key][2] roll = np.clip(roll, -0.523599, 0.523599) pitch = np.clip(pitch, -0.349066, 0.349066) yaw = np.clip(yaw, -0.436332, 0.436332) if cmd_attempts > 1: body_pose = Pose() body_pose.x = 0 body_pose.y = 0 body_pose.z = 0 body_pose.roll = roll body_pose.pitch = pitch body_pose.yaw = yaw self.pose_publisher.publish(body_pose) cmd_attempts += 1 elif key in self.speedBindings.keys(): self.speed = self.speed * self.speedBindings[key][0] self.turn = self.turn * self.speedBindings[key][1] print(self.vels(self.speed, self.turn)) if (status == 14): print(self.msg) status = (status + 1) % 15 else: cmd_attempts = 0 if (key == '\x03'): break except Exception as e: print(e) finally: twist = Twist() twist.linear.x = 0 twist.linear.y = 0 twist.linear.z = 0 twist.angular.x = 0 twist.angular.y = 0 twist.angular.z = 0 self.velocity_publisher.publish(twist) termios.tcsetattr(sys.stdin, termios.TCSADRAIN, self.settings) def getKey(self): tty.setraw(sys.stdin.fileno()) rlist, _, _ = select.select([sys.stdin], [], [], 0.1) if rlist: key = sys.stdin.read(1) else: key = '' termios.tcsetattr(sys.stdin, termios.TCSADRAIN, self.settings) return key def vels(self, speed, turn): return "currently:\tspeed %s\tturn %s " % (speed,turn) def map(self, x, in_min, in_max, out_min, out_max): return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min; if __name__ == "__main__": rospy.init_node('yobotics_teleop') teleop = Teleop()
6,972
Python
31.282407
101
0.443632
renanmb/Omniverse_legged_robotics/URDF-Descriptions/KodlabPenn/kodlab_gazebo-master/other/objects_description/caster_stool/xacro.py
#! /usr/bin/env python # Copyright (c) 2013, Willow Garage, Inc. # Copyright (c) 2014, Open Source Robotics Foundation, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the Open Source Robotics Foundation, Inc. # nor the names of its contributors may be used to endorse or promote # products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # Author: Stuart Glaser # Maintainer: William Woodall <[email protected]> from __future__ import print_function import getopt import glob import os import re import string import sys import xml from xml.dom.minidom import parse try: _basestr = basestring except NameError: _basestr = str # Dictionary of subtitution args substitution_args_context = {} class XacroException(Exception): pass def isnumber(x): return hasattr(x, '__int__') # Better pretty printing of xml # Taken from http://ronrothman.com/public/leftbraned/xml-dom-minidom-toprettyxml-and-silly-whitespace/ def fixed_writexml(self, writer, indent="", addindent="", newl=""): # indent = current indentation # addindent = indentation to add to higher levels # newl = newline string writer.write(indent + "<" + self.tagName) attrs = self._get_attributes() a_names = list(attrs.keys()) a_names.sort() for a_name in a_names: writer.write(" %s=\"" % a_name) xml.dom.minidom._write_data(writer, attrs[a_name].value) writer.write("\"") if self.childNodes: if len(self.childNodes) == 1 \ and self.childNodes[0].nodeType == xml.dom.minidom.Node.TEXT_NODE: writer.write(">") self.childNodes[0].writexml(writer, "", "", "") writer.write("</%s>%s" % (self.tagName, newl)) return writer.write(">%s" % (newl)) for node in self.childNodes: # skip whitespace-only text nodes if node.nodeType == xml.dom.minidom.Node.TEXT_NODE and \ not node.data.strip(): continue node.writexml(writer, indent + addindent, addindent, newl) writer.write("%s</%s>%s" % (indent, self.tagName, newl)) else: writer.write("/>%s" % (newl)) # replace minidom's function with ours xml.dom.minidom.Element.writexml = fixed_writexml class Table: def __init__(self, parent=None): self.parent = parent self.table = {} def __getitem__(self, key): if key in self.table: return self.table[key] elif self.parent: return self.parent[key] else: raise KeyError(key) def __setitem__(self, key, value): self.table[key] = value def __contains__(self, key): return \ key in self.table or \ (self.parent and key in self.parent) class QuickLexer(object): def __init__(self, **res): self.str = "" self.top = None self.res = [] for k, v in res.items(): self.__setattr__(k, len(self.res)) self.res.append(v) def lex(self, str): self.str = str self.top = None self.next() def peek(self): return self.top def next(self): result = self.top self.top = None for i in range(len(self.res)): m = re.match(self.res[i], self.str) if m: self.top = (i, m.group(0)) self.str = self.str[m.end():] break return result def first_child_element(elt): c = elt.firstChild while c: if c.nodeType == xml.dom.Node.ELEMENT_NODE: return c c = c.nextSibling return None def next_sibling_element(elt): c = elt.nextSibling while c: if c.nodeType == xml.dom.Node.ELEMENT_NODE: return c c = c.nextSibling return None # Pre-order traversal of the elements def next_element(elt): child = first_child_element(elt) if child: return child while elt and elt.nodeType == xml.dom.Node.ELEMENT_NODE: next = next_sibling_element(elt) if next: return next elt = elt.parentNode return None # Pre-order traversal of all the nodes def next_node(node): if node.firstChild: return node.firstChild while node: if node.nextSibling: return node.nextSibling node = node.parentNode return None def child_nodes(elt): c = elt.firstChild while c: yield c c = c.nextSibling all_includes = [] # Deprecated message for <include> tags that don't have <xacro:include> prepended: deprecated_include_msg = """DEPRECATED IN HYDRO: The <include> tag should be prepended with 'xacro' if that is the intended use of it, such as <xacro:include ...>. Use the following script to fix incorrect xacro includes: sed -i 's/<include/<xacro:include/g' `find . -iname *.xacro`""" include_no_matches_msg = """Include tag filename spec \"{}\" matched no files.""" ## @throws XacroException if a parsing error occurs with an included document def process_includes(doc, base_dir): namespaces = {} previous = doc.documentElement elt = next_element(previous) while elt: # Xacro should not use plain 'include' tags but only namespaced ones. Causes conflicts with # other XML elements including Gazebo's <gazebo> extensions is_include = False if elt.tagName == 'xacro:include' or elt.tagName == 'include': is_include = True # Temporary fix for ROS Hydro and the xacro include scope problem if elt.tagName == 'include': # check if there is any element within the <include> tag. mostly we are concerned # with Gazebo's <uri> element, but it could be anything. also, make sure the child # nodes aren't just a single Text node, which is still considered a deprecated # instance if elt.childNodes and not (len(elt.childNodes) == 1 and elt.childNodes[0].nodeType == elt.TEXT_NODE): # this is not intended to be a xacro element, so we can ignore it is_include = False else: # throw a deprecated warning print(deprecated_include_msg, file=sys.stderr) # Process current element depending on previous conditions if is_include: filename_spec = eval_text(elt.getAttribute('filename'), {}) if not os.path.isabs(filename_spec): filename_spec = os.path.join(base_dir, filename_spec) if re.search('[*[?]+', filename_spec): # Globbing behaviour filenames = sorted(glob.glob(filename_spec)) if len(filenames) == 0: print(include_no_matches_msg.format(filename_spec), file=sys.stderr) else: # Default behaviour filenames = [filename_spec] for filename in filenames: global all_includes all_includes.append(filename) try: with open(filename) as f: try: included = parse(f) except Exception as e: raise XacroException( "included file \"%s\" generated an error during XML parsing: %s" % (filename, str(e))) except IOError as e: raise XacroException("included file \"%s\" could not be opened: %s" % (filename, str(e))) # Replaces the include tag with the elements of the included file for c in child_nodes(included.documentElement): elt.parentNode.insertBefore(c.cloneNode(deep=True), elt) # Grabs all the declared namespaces of the included document for name, value in included.documentElement.attributes.items(): if name.startswith('xmlns:'): namespaces[name] = value elt.parentNode.removeChild(elt) elt = None else: previous = elt elt = next_element(previous) # Makes sure the final document declares all the namespaces of the included documents. for k, v in namespaces.items(): doc.documentElement.setAttribute(k, v) # Returns a dictionary: { macro_name => macro_xml_block } def grab_macros(doc): macros = {} previous = doc.documentElement elt = next_element(previous) while elt: if elt.tagName == 'macro' or elt.tagName == 'xacro:macro': name = elt.getAttribute('name') macros[name] = elt macros['xacro:' + name] = elt elt.parentNode.removeChild(elt) elt = None else: previous = elt elt = next_element(previous) return macros # Returns a Table of the properties def grab_properties(doc): table = Table() previous = doc.documentElement elt = next_element(previous) while elt: if elt.tagName == 'property' or elt.tagName == 'xacro:property': name = elt.getAttribute('name') value = None if elt.hasAttribute('value'): value = elt.getAttribute('value') else: name = '**' + name value = elt # debug bad = string.whitespace + "${}" has_bad = False for b in bad: if b in name: has_bad = True break if has_bad: sys.stderr.write('Property names may not have whitespace, ' + '"{", "}", or "$" : "' + name + '"') else: table[name] = value elt.parentNode.removeChild(elt) elt = None else: previous = elt elt = next_element(previous) return table def eat_ignore(lex): while lex.peek() and lex.peek()[0] == lex.IGNORE: lex.next() def eval_lit(lex, symbols): eat_ignore(lex) if lex.peek()[0] == lex.NUMBER: return float(lex.next()[1]) if lex.peek()[0] == lex.SYMBOL: try: key = lex.next()[1] value = symbols[key] except KeyError as ex: raise XacroException("Property wasn't defined: %s" % str(ex)) if not (isnumber(value) or isinstance(value, _basestr)): if value is None: raise XacroException("Property %s recursively used" % key) raise XacroException("WTF2") try: return int(value) except: try: return float(value) except: # prevent infinite recursion symbols[key] = None result = eval_text(value, symbols) # restore old entry symbols[key] = value return result raise XacroException("Bad literal") def eval_factor(lex, symbols): eat_ignore(lex) neg = 1 if lex.peek()[1] == '-': lex.next() neg = -1 if lex.peek()[0] in [lex.NUMBER, lex.SYMBOL]: return neg * eval_lit(lex, symbols) if lex.peek()[0] == lex.LPAREN: lex.next() eat_ignore(lex) result = eval_expr(lex, symbols) eat_ignore(lex) if lex.next()[0] != lex.RPAREN: raise XacroException("Unmatched left paren") eat_ignore(lex) return neg * result raise XacroException("Misplaced operator") def eval_term(lex, symbols): eat_ignore(lex) result = 0 if lex.peek()[0] in [lex.NUMBER, lex.SYMBOL, lex.LPAREN] \ or lex.peek()[1] == '-': result = eval_factor(lex, symbols) eat_ignore(lex) while lex.peek() and lex.peek()[1] in ['*', '/']: op = lex.next()[1] n = eval_factor(lex, symbols) if op == '*': result = float(result) * float(n) elif op == '/': result = float(result) / float(n) else: raise XacroException("WTF") eat_ignore(lex) return result def eval_expr(lex, symbols): eat_ignore(lex) op = None if lex.peek()[0] == lex.OP: op = lex.next()[1] if not op in ['+', '-']: raise XacroException("Invalid operation. Must be '+' or '-'") result = eval_term(lex, symbols) if op == '-': result = -float(result) eat_ignore(lex) while lex.peek() and lex.peek()[1] in ['+', '-']: op = lex.next()[1] n = eval_term(lex, symbols) if op == '+': result = float(result) + float(n) if op == '-': result = float(result) - float(n) eat_ignore(lex) return result def eval_text(text, symbols): def handle_expr(s): lex = QuickLexer(IGNORE=r"\s+", NUMBER=r"(\d+(\.\d*)?|\.\d+)([eE][-+]?\d+)?", SYMBOL=r"[a-zA-Z_]\w*", OP=r"[\+\-\*/^]", LPAREN=r"\(", RPAREN=r"\)") lex.lex(s) return eval_expr(lex, symbols) def handle_extension(s): return ("$(%s)" % s) results = [] lex = QuickLexer(DOLLAR_DOLLAR_BRACE=r"\$\$+\{", EXPR=r"\$\{[^\}]*\}", EXTENSION=r"\$\([^\)]*\)", TEXT=r"([^\$]|\$[^{(]|\$$)+") lex.lex(text) while lex.peek(): if lex.peek()[0] == lex.EXPR: results.append(handle_expr(lex.next()[1][2:-1])) elif lex.peek()[0] == lex.EXTENSION: results.append(handle_extension(lex.next()[1][2:-1])) elif lex.peek()[0] == lex.TEXT: results.append(lex.next()[1]) elif lex.peek()[0] == lex.DOLLAR_DOLLAR_BRACE: results.append(lex.next()[1][1:]) return ''.join(map(str, results)) # Expands macros, replaces properties, and evaluates expressions def eval_all(root, macros, symbols): # Evaluates the attributes for the root node for at in root.attributes.items(): result = eval_text(at[1], symbols) root.setAttribute(at[0], result) previous = root node = next_node(previous) while node: if node.nodeType == xml.dom.Node.ELEMENT_NODE: if node.tagName in macros: body = macros[node.tagName].cloneNode(deep=True) params = body.getAttribute('params').split() # Parse default values for any parameters defaultmap = {} for param in params[:]: splitParam = param.split(':=') if len(splitParam) == 2: defaultmap[splitParam[0]] = splitParam[1] params.remove(param) params.append(splitParam[0]) elif len(splitParam) != 1: raise XacroException("Invalid parameter definition") # Expands the macro scoped = Table(symbols) for name, value in node.attributes.items(): if not name in params: raise XacroException("Invalid parameter \"%s\" while expanding macro \"%s\"" % (str(name), str(node.tagName))) params.remove(name) scoped[name] = eval_text(value, symbols) # Pulls out the block arguments, in order cloned = node.cloneNode(deep=True) eval_all(cloned, macros, symbols) block = cloned.firstChild for param in params[:]: if param[0] == '*': while block and block.nodeType != xml.dom.Node.ELEMENT_NODE: block = block.nextSibling if not block: raise XacroException("Not enough blocks while evaluating macro %s" % str(node.tagName)) params.remove(param) scoped[param] = block block = block.nextSibling # Try to load defaults for any remaining non-block parameters for param in params[:]: if param[0] != '*' and param in defaultmap: scoped[param] = defaultmap[param] params.remove(param) if params: raise XacroException("Parameters [%s] were not set for macro %s" % (",".join(params), str(node.tagName))) eval_all(body, macros, scoped) # Replaces the macro node with the expansion for e in list(child_nodes(body)): # Ew node.parentNode.insertBefore(e, node) node.parentNode.removeChild(node) node = None elif node.tagName == 'arg' or node.tagName == 'xacro:arg': name = node.getAttribute('name') if not name: raise XacroException("Argument name missing") default = node.getAttribute('default') if default and name not in substitution_args_context['arg']: substitution_args_context['arg'][name] = default node.parentNode.removeChild(node) node = None elif node.tagName == 'insert_block' or node.tagName == 'xacro:insert_block': name = node.getAttribute('name') if ("**" + name) in symbols: # Multi-block block = symbols['**' + name] for e in list(child_nodes(block)): node.parentNode.insertBefore(e.cloneNode(deep=True), node) node.parentNode.removeChild(node) elif ("*" + name) in symbols: # Single block block = symbols['*' + name] node.parentNode.insertBefore(block.cloneNode(deep=True), node) node.parentNode.removeChild(node) else: raise XacroException("Block \"%s\" was never declared" % name) node = None elif node.tagName in ['if', 'xacro:if', 'unless', 'xacro:unless']: value = eval_text(node.getAttribute('value'), symbols) try: if value == 'true': keep = True elif value == 'false': keep = False else: keep = float(value) except ValueError: raise XacroException("Xacro conditional evaluated to \"%s\". Acceptable evaluations are one of [\"1\",\"true\",\"0\",\"false\"]" % value) if node.tagName in ['unless', 'xacro:unless']: keep = not keep if keep: for e in list(child_nodes(node)): node.parentNode.insertBefore(e.cloneNode(deep=True), node) node.parentNode.removeChild(node) else: # Evals the attributes for at in node.attributes.items(): result = eval_text(at[1], symbols) node.setAttribute(at[0], result) previous = node elif node.nodeType == xml.dom.Node.TEXT_NODE: node.data = eval_text(node.data, symbols) previous = node else: previous = node node = next_node(previous) return macros # Expands everything except includes def eval_self_contained(doc): macros = grab_macros(doc) symbols = grab_properties(doc) eval_all(doc.documentElement, macros, symbols) def print_usage(exit_code=0): print("Usage: %s [-o <output>] <input>" % 'xacro.py') print(" %s --deps Prints dependencies" % 'xacro.py') print(" %s --includes Only evalutes includes" % 'xacro.py') sys.exit(exit_code) def set_substitution_args_context(context={}): substitution_args_context['arg'] = context def open_output(output_filename): if output_filename is None: return sys.stdout else: return open(output_filename, 'w') def main(): try: opts, args = getopt.gnu_getopt(sys.argv[1:], "ho:", ['deps', 'includes']) except getopt.GetoptError as err: print(str(err)) print_usage(2) just_deps = False just_includes = False output_filename = None for o, a in opts: if o == '-h': print_usage(0) elif o == '-o': output_filename = a elif o == '--deps': just_deps = True elif o == '--includes': just_includes = True if len(args) < 1: print("No input given") print_usage(2) # Process substitution args # set_substitution_args_context(load_mappings(sys.argv)) set_substitution_args_context((sys.argv)) f = open(args[0]) doc = None try: doc = parse(f) except xml.parsers.expat.ExpatError: sys.stderr.write("Expat parsing error. Check that:\n") sys.stderr.write(" - Your XML is correctly formed\n") sys.stderr.write(" - You have the xacro xmlns declaration: " + "xmlns:xacro=\"http://www.ros.org/wiki/xacro\"\n") sys.stderr.write("\n") raise finally: f.close() process_includes(doc, os.path.dirname(args[0])) if just_deps: for inc in all_includes: sys.stdout.write(inc + " ") sys.stdout.write("\n") elif just_includes: doc.writexml(open_output(output_filename)) print() else: eval_self_contained(doc) banner = [xml.dom.minidom.Comment(c) for c in [" %s " % ('=' * 83), " | This document was autogenerated by xacro from %-30s | " % args[0], " | EDITING THIS FILE BY HAND IS NOT RECOMMENDED %-30s | " % "", " %s " % ('=' * 83)]] first = doc.firstChild for comment in banner: doc.insertBefore(comment, first) open_output(output_filename).write(doc.toprettyxml(indent=' ')) print() if __name__ == '__main__': main()
23,887
Python
32.835694
157
0.542973
renanmb/Omniverse_legged_robotics/URDF-Descriptions/BostonDynamics/spot_ros/spot_driver/setup.py
from setuptools import setup from catkin_pkg.python_setup import generate_distutils_setup d = generate_distutils_setup( packages=["spot_driver"], scripts=["scripts/spot_ros"], package_dir={"": "src"} ) setup(**d)
219
Python
23.444442
83
0.721461
renanmb/Omniverse_legged_robotics/URDF-Descriptions/BostonDynamics/spot_ros/spot_driver/src/spot_driver/spot_ros.py
import copy import rospy import math import time from std_srvs.srv import Trigger, TriggerResponse, SetBool, SetBoolResponse from std_msgs.msg import Bool from tf2_msgs.msg import TFMessage from sensor_msgs.msg import Image, CameraInfo from sensor_msgs.msg import PointCloud2 from sensor_msgs.msg import JointState from geometry_msgs.msg import TwistWithCovarianceStamped, Twist, Pose, PoseStamped from nav_msgs.msg import Odometry from bosdyn.api.spot import robot_command_pb2 as spot_command_pb2 from bosdyn.api import geometry_pb2, trajectory_pb2 from bosdyn.api.geometry_pb2 import Quaternion, SE2VelocityLimit from bosdyn.client import math_helpers from google.protobuf.wrappers_pb2 import DoubleValue import actionlib import functools import math import bosdyn.geometry import tf2_ros import tf2_geometry_msgs from spot_msgs.msg import Metrics from spot_msgs.msg import LeaseArray, LeaseResource from spot_msgs.msg import FootState, FootStateArray from spot_msgs.msg import EStopState, EStopStateArray from spot_msgs.msg import WiFiState from spot_msgs.msg import PowerState from spot_msgs.msg import BehaviorFault, BehaviorFaultState from spot_msgs.msg import SystemFault, SystemFaultState from spot_msgs.msg import BatteryState, BatteryStateArray from spot_msgs.msg import DockAction, DockGoal, DockResult from spot_msgs.msg import PoseBodyAction, PoseBodyGoal, PoseBodyResult from spot_msgs.msg import Feedback from spot_msgs.msg import MobilityParams, ObstacleParams, TerrainParams from spot_msgs.msg import NavigateToAction, NavigateToResult, NavigateToFeedback from spot_msgs.msg import TrajectoryAction, TrajectoryResult, TrajectoryFeedback from spot_msgs.srv import ListGraph, ListGraphResponse from spot_msgs.srv import SetLocomotion, SetLocomotionResponse from spot_msgs.srv import SetTerrainParams, SetTerrainParamsResponse from spot_msgs.srv import SetObstacleParams, SetObstacleParamsResponse from spot_msgs.srv import ClearBehaviorFault, ClearBehaviorFaultResponse from spot_msgs.srv import SetVelocity, SetVelocityResponse from spot_msgs.srv import Dock, DockResponse, GetDockState, GetDockStateResponse from spot_msgs.srv import PosedStand, PosedStandResponse from spot_msgs.srv import SetSwingHeight, SetSwingHeightResponse from spot_msgs.srv import ( ArmJointMovement, ArmJointMovementResponse, ArmJointMovementRequest, ) from spot_msgs.srv import ( GripperAngleMove, GripperAngleMoveResponse, GripperAngleMoveRequest, ) from spot_msgs.srv import ( ArmForceTrajectory, ArmForceTrajectoryResponse, ArmForceTrajectoryRequest, ) from spot_msgs.srv import HandPose, HandPoseResponse, HandPoseRequest from spot_msgs.srv import Grasp3d, Grasp3dRequest, Grasp3dResponse from .ros_helpers import * from spot_wrapper.wrapper import SpotWrapper import actionlib import logging import threading class RateLimitedCall: """ Wrap a function with this class to limit how frequently it can be called within a loop """ def __init__(self, fn, rate_limit): """ Args: fn: Function to call rate_limit: The function will not be called faster than this rate """ self.fn = fn self.min_time_between_calls = 1.0 / rate_limit self.last_call = 0 def __call__(self): now_sec = time.time() if (now_sec - self.last_call) > self.min_time_between_calls: self.fn() self.last_call = now_sec class SpotROS: """Parent class for using the wrapper. Defines all callbacks and keeps the wrapper alive""" def __init__(self): self.spot_wrapper = None self.last_tf_msg = TFMessage() self.callbacks = {} """Dictionary listing what callback to use for what data task""" self.callbacks["robot_state"] = self.RobotStateCB self.callbacks["metrics"] = self.MetricsCB self.callbacks["lease"] = self.LeaseCB self.callbacks["front_image"] = self.FrontImageCB self.callbacks["side_image"] = self.SideImageCB self.callbacks["rear_image"] = self.RearImageCB self.callbacks["hand_image"] = self.HandImageCB self.callbacks["lidar_points"] = self.PointCloudCB self.active_camera_tasks = [] self.camera_pub_to_async_task_mapping = {} def RobotStateCB(self, results): """Callback for when the Spot Wrapper gets new robot state data. Args: results: FutureWrapper object of AsyncPeriodicQuery callback """ state = self.spot_wrapper.robot_state if state: ## joint states ## joint_state = GetJointStatesFromState(state, self.spot_wrapper) self.joint_state_pub.publish(joint_state) ## TF ## tf_msg = GetTFFromState(state, self.spot_wrapper, self.mode_parent_odom_tf) to_remove = [] if len(tf_msg.transforms) > 0: for transform in tf_msg.transforms: for last_tf in self.last_tf_msg.transforms: if transform == last_tf: to_remove.append(transform) if to_remove: # Do it this way to preserve the original tf message received. If we store the message we have # destroyed then if there are two duplicates in a row we will not remove the second set. deduplicated_tf = copy.deepcopy(tf_msg) for repeat_tf in to_remove: deduplicated_tf.transforms.remove(repeat_tf) publish_tf = deduplicated_tf else: publish_tf = tf_msg self.tf_pub.publish(publish_tf) self.last_tf_msg = tf_msg # Odom Twist # twist_odom_msg = GetOdomTwistFromState(state, self.spot_wrapper) self.odom_twist_pub.publish(twist_odom_msg) # Odom # use_vision = self.mode_parent_odom_tf == "vision" odom_msg = GetOdomFromState( state, self.spot_wrapper, use_vision=use_vision, ) self.odom_pub.publish(odom_msg) odom_corrected_msg = get_corrected_odom(odom_msg) self.odom_corrected_pub.publish(odom_corrected_msg) # Feet # foot_array_msg = GetFeetFromState(state, self.spot_wrapper) self.tf_pub.publish(generate_feet_tf(foot_array_msg)) self.feet_pub.publish(foot_array_msg) # EStop # estop_array_msg = GetEStopStateFromState(state, self.spot_wrapper) self.estop_pub.publish(estop_array_msg) # WIFI # wifi_msg = GetWifiFromState(state, self.spot_wrapper) self.wifi_pub.publish(wifi_msg) # Battery States # battery_states_array_msg = GetBatteryStatesFromState( state, self.spot_wrapper ) self.is_charging = ( battery_states_array_msg.battery_states[0].status == BatteryState.STATUS_CHARGING ) self.battery_pub.publish(battery_states_array_msg) # Power State # power_state_msg = GetPowerStatesFromState(state, self.spot_wrapper) self.power_pub.publish(power_state_msg) # System Faults # system_fault_state_msg = GetSystemFaultsFromState(state, self.spot_wrapper) self.system_faults_pub.publish(system_fault_state_msg) # Behavior Faults # behavior_fault_state_msg = getBehaviorFaultsFromState( state, self.spot_wrapper ) self.behavior_faults_pub.publish(behavior_fault_state_msg) def MetricsCB(self, results): """Callback for when the Spot Wrapper gets new metrics data. Args: results: FutureWrapper object of AsyncPeriodicQuery callback """ metrics = self.spot_wrapper.metrics if metrics: metrics_msg = Metrics() local_time = self.spot_wrapper.robotToLocalTime(metrics.timestamp) metrics_msg.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) for metric in metrics.metrics: if metric.label == "distance": metrics_msg.distance = metric.float_value if metric.label == "gait cycles": metrics_msg.gait_cycles = metric.int_value if metric.label == "time moving": metrics_msg.time_moving = rospy.Time( metric.duration.seconds, metric.duration.nanos ) if metric.label == "electric power": metrics_msg.electric_power = rospy.Time( metric.duration.seconds, metric.duration.nanos ) self.metrics_pub.publish(metrics_msg) def LeaseCB(self, results): """Callback for when the Spot Wrapper gets new lease data. Args: results: FutureWrapper object of AsyncPeriodicQuery callback """ lease_array_msg = LeaseArray() lease_list = self.spot_wrapper.lease if lease_list: for resource in lease_list: new_resource = LeaseResource() new_resource.resource = resource.resource new_resource.lease.resource = resource.lease.resource new_resource.lease.epoch = resource.lease.epoch for seq in resource.lease.sequence: new_resource.lease.sequence.append(seq) new_resource.lease_owner.client_name = resource.lease_owner.client_name new_resource.lease_owner.user_name = resource.lease_owner.user_name lease_array_msg.resources.append(new_resource) self.lease_pub.publish(lease_array_msg) def FrontImageCB(self, results): """Callback for when the Spot Wrapper gets new front image data. Args: results: FutureWrapper object of AsyncPeriodicQuery callback """ data = self.spot_wrapper.front_images if data: image_msg0, camera_info_msg0 = getImageMsg(data[0], self.spot_wrapper) self.frontleft_image_pub.publish(image_msg0) self.frontleft_image_info_pub.publish(camera_info_msg0) image_msg1, camera_info_msg1 = getImageMsg(data[1], self.spot_wrapper) self.frontright_image_pub.publish(image_msg1) self.frontright_image_info_pub.publish(camera_info_msg1) image_msg2, camera_info_msg2 = getImageMsg(data[2], self.spot_wrapper) self.frontleft_depth_pub.publish(image_msg2) self.frontleft_depth_info_pub.publish(camera_info_msg2) image_msg3, camera_info_msg3 = getImageMsg(data[3], self.spot_wrapper) self.frontright_depth_pub.publish(image_msg3) self.frontright_depth_info_pub.publish(camera_info_msg3) self.populate_camera_static_transforms(data[0]) self.populate_camera_static_transforms(data[1]) self.populate_camera_static_transforms(data[2]) self.populate_camera_static_transforms(data[3]) def SideImageCB(self, results): """Callback for when the Spot Wrapper gets new side image data. Args: results: FutureWrapper object of AsyncPeriodicQuery callback """ data = self.spot_wrapper.side_images if data: image_msg0, camera_info_msg0 = getImageMsg(data[0], self.spot_wrapper) self.left_image_pub.publish(image_msg0) self.left_image_info_pub.publish(camera_info_msg0) image_msg1, camera_info_msg1 = getImageMsg(data[1], self.spot_wrapper) self.right_image_pub.publish(image_msg1) self.right_image_info_pub.publish(camera_info_msg1) image_msg2, camera_info_msg2 = getImageMsg(data[2], self.spot_wrapper) self.left_depth_pub.publish(image_msg2) self.left_depth_info_pub.publish(camera_info_msg2) image_msg3, camera_info_msg3 = getImageMsg(data[3], self.spot_wrapper) self.right_depth_pub.publish(image_msg3) self.right_depth_info_pub.publish(camera_info_msg3) self.populate_camera_static_transforms(data[0]) self.populate_camera_static_transforms(data[1]) self.populate_camera_static_transforms(data[2]) self.populate_camera_static_transforms(data[3]) def RearImageCB(self, results): """Callback for when the Spot Wrapper gets new rear image data. Args: results: FutureWrapper object of AsyncPeriodicQuery callback """ data = self.spot_wrapper.rear_images if data: mage_msg0, camera_info_msg0 = getImageMsg(data[0], self.spot_wrapper) self.back_image_pub.publish(mage_msg0) self.back_image_info_pub.publish(camera_info_msg0) mage_msg1, camera_info_msg1 = getImageMsg(data[1], self.spot_wrapper) self.back_depth_pub.publish(mage_msg1) self.back_depth_info_pub.publish(camera_info_msg1) self.populate_camera_static_transforms(data[0]) self.populate_camera_static_transforms(data[1]) def HandImageCB(self, results): """Callback for when the Spot Wrapper gets new hand image data. Args: results: FutureWrapper object of AsyncPeriodicQuery callback """ data = self.spot_wrapper.hand_images if data: mage_msg0, camera_info_msg0 = getImageMsg(data[0], self.spot_wrapper) self.hand_image_mono_pub.publish(mage_msg0) self.hand_image_mono_info_pub.publish(camera_info_msg0) mage_msg1, camera_info_msg1 = getImageMsg(data[1], self.spot_wrapper) self.hand_depth_pub.publish(mage_msg1) self.hand_depth_info_pub.publish(camera_info_msg1) image_msg2, camera_info_msg2 = getImageMsg(data[2], self.spot_wrapper) self.hand_image_color_pub.publish(image_msg2) self.hand_image_color_info_pub.publish(camera_info_msg2) image_msg3, camera_info_msg3 = getImageMsg(data[3], self.spot_wrapper) self.hand_depth_in_hand_color_pub.publish(image_msg3) self.hand_depth_in_color_info_pub.publish(camera_info_msg3) self.populate_camera_static_transforms(data[0]) self.populate_camera_static_transforms(data[1]) self.populate_camera_static_transforms(data[2]) self.populate_camera_static_transforms(data[3]) def PointCloudCB(self, results): """Callback for when the Spot Wrapper gets new point cloud data. Args: results: FutureWrapper object of AsyncPeriodicQuery callback """ data = self.spot_wrapper.point_clouds if data: point_cloud_msg = GetPointCloudMsg(data[0], self.spot_wrapper) self.point_cloud_pub.publish(point_cloud_msg) self.populate_lidar_static_transforms(data[0]) def handle_claim(self, req): """ROS service handler for the claim service""" resp = self.spot_wrapper.claim() return TriggerResponse(resp[0], resp[1]) def handle_release(self, req): """ROS service handler for the release service""" resp = self.spot_wrapper.release() return TriggerResponse(resp[0], resp[1]) def handle_locked_stop(self, req): """Stop the current motion of the robot and disallow any further motion until the allow motion service is called""" self.allow_motion = False return self.handle_stop(req) def handle_stop(self, req): """ROS service handler for the stop service. Interrupts the currently active motion""" resp = self.spot_wrapper.stop() message = "Spot stop service was called" if self.navigate_as.is_active(): self.navigate_as.set_preempted( NavigateToResult(success=False, message=message) ) if self.trajectory_server.is_active(): self.trajectory_server.set_preempted( TrajectoryResult(success=False, message=message) ) if self.body_pose_as.is_active(): self.body_pose_as.set_preempted( PoseBodyResult(success=False, message=message) ) return TriggerResponse(resp[0], resp[1]) def handle_self_right(self, req): """ROS service handler for the self-right service""" if not self.robot_allowed_to_move(autonomous_command=False): return TriggerResponse(False, "Robot motion is not allowed") resp = self.spot_wrapper.self_right() return TriggerResponse(resp[0], resp[1]) def handle_sit(self, req): """ROS service handler for the sit service""" if not self.robot_allowed_to_move(autonomous_command=False): return TriggerResponse(False, "Robot motion is not allowed") resp = self.spot_wrapper.sit() return TriggerResponse(resp[0], resp[1]) def handle_stand(self, req): """ROS service handler for the stand service""" if not self.robot_allowed_to_move(autonomous_command=False): return TriggerResponse(False, "Robot motion is not allowed") resp = self.spot_wrapper.stand() return TriggerResponse(resp[0], resp[1]) def handle_posed_stand(self, req): """ Handle a service call for the posed stand Args: req: PosedStandRequest Returns: PosedStandResponse """ success, message = self._posed_stand( req.body_height, req.body_yaw, req.body_pitch, req.body_roll ) return PosedStandResponse(success, message) def handle_posed_stand_action(self, action): """ Handle a call to the posed stand actionserver If no value is provided, this is equivalent to the basic stand commmand Args: action: PoseBodyGoal """ success, message = self._posed_stand( action.body_height, action.yaw, action.pitch, action.roll ) result = PoseBodyResult(success, message) rospy.sleep(2) # Only return after the body has had a chance to move if success: self.body_pose_as.set_succeeded(result) else: self.body_pose_as.set_aborted(result) def _posed_stand(self, body_height, yaw, pitch, roll): """ Make the robot do a posed stand with specified body height and orientation By empirical observation, the limit on body height is [-0.16, 0.11], and RPY are probably limited to 30 degrees. Roll values are likely affected by the payload configuration as well. If the payload is misconfigured a high roll value could cause it to hit the legs Args: body_height: Height of the body relative to the default height yaw: Yaw to apply (in degrees) pitch: Pitch to apply (in degrees) roll: Roll to apply (in degrees) Returns: """ if not self.robot_allowed_to_move(autonomous_command=False): return False, "Robot motion is not allowed" resp = self.spot_wrapper.stand( body_height=body_height, body_yaw=math.radians(yaw), body_pitch=math.radians(pitch), body_roll=math.radians(roll), ) return resp[0], resp[1] def handle_power_on(self, req): """ROS service handler for the power-on service""" resp = self.spot_wrapper.power_on() return TriggerResponse(resp[0], resp[1]) def handle_safe_power_off(self, req): """ROS service handler for the safe-power-off service""" resp = self.spot_wrapper.safe_power_off() return TriggerResponse(resp[0], resp[1]) def handle_estop_hard(self, req): """ROS service handler to hard-eStop the robot. The robot will immediately cut power to the motors""" resp = self.spot_wrapper.assertEStop(True) return TriggerResponse(resp[0], resp[1]) def handle_estop_soft(self, req): """ROS service handler to soft-eStop the robot. The robot will try to settle on the ground before cutting power to the motors""" resp = self.spot_wrapper.assertEStop(False) return TriggerResponse(resp[0], resp[1]) def handle_estop_disengage(self, req): """ROS service handler to disengage the eStop on the robot.""" resp = self.spot_wrapper.disengageEStop() return TriggerResponse(resp[0], resp[1]) def handle_clear_behavior_fault(self, req): """ROS service handler for clearing behavior faults""" resp = self.spot_wrapper.clear_behavior_fault(req.id) return ClearBehaviorFaultResponse(resp[0], resp[1]) def handle_stair_mode(self, req): """ROS service handler to set a stair mode to the robot.""" try: mobility_params = self.spot_wrapper.get_mobility_params() mobility_params.stair_hint = req.data self.spot_wrapper.set_mobility_params(mobility_params) return SetBoolResponse(True, "Success") except Exception as e: return SetBoolResponse(False, "Error:{}".format(e)) def handle_locomotion_mode(self, req): """ROS service handler to set locomotion mode""" if req.locomotion_mode in [0, 9] or req.locomotion_mode > 10: msg = "Attempted to set locomotion mode to {}, which is an invalid value.".format( req.locomotion_mode ) rospy.logerr(msg) return SetLocomotionResponse(False, msg) try: mobility_params = self.spot_wrapper.get_mobility_params() mobility_params.locomotion_hint = req.locomotion_mode self.spot_wrapper.set_mobility_params(mobility_params) return SetLocomotionResponse(True, "Success") except Exception as e: return SetLocomotionResponse(False, "Error:{}".format(e)) def handle_swing_height(self, req): """ROS service handler to set the step swing height""" if req.swing_height == 0 or req.swing_height > 3: msg = "Attempted to set step swing height to {}, which is an invalid value.".format( req.swing_height ) rospy.logerr(msg) return SetSwingHeightResponse(False, msg) try: mobility_params = self.spot_wrapper.get_mobility_params() mobility_params.swing_height = req.swing_height self.spot_wrapper.set_mobility_params(mobility_params) return SetSwingHeightResponse(True, "Success") except Exception as e: return SetSwingHeightResponse(False, "Error:{}".format(e)) def handle_vel_limit(self, req): """ Handle a velocity_limit service call. Args: req: SetVelocityRequest containing requested velocity limit Returns: SetVelocityResponse """ success, message = self.set_velocity_limits( req.velocity_limit.linear.x, req.velocity_limit.linear.y, req.velocity_limit.angular.z, ) return SetVelocityResponse(success, message) def set_velocity_limits(self, max_linear_x, max_linear_y, max_angular_z): """ Modify the mobility params to have a limit on the robot's velocity during trajectory commands. Velocities sent to cmd_vel ignore these values Passing 0 to any of the values will use spot's internal limits Args: max_linear_x: Maximum forwards/backwards velocity max_linear_y: Maximum lateral velocity max_angular_z: Maximum rotation velocity Returns: (bool, str) boolean indicating whether the call was successful, along with a message """ if any( map(lambda x: 0 < x < 0.15, [max_linear_x, max_linear_y, max_angular_z]) ): return ( False, "Error: One of the values provided to velocity limits was below 0.15. Values in the range (" "0,0.15) can cause unexpected behaviour of the trajectory command.", ) try: mobility_params = self.spot_wrapper.get_mobility_params() mobility_params.vel_limit.CopyFrom( SE2VelocityLimit( max_vel=math_helpers.SE2Velocity( max_linear_x, max_linear_y, max_angular_z ).to_proto(), min_vel=math_helpers.SE2Velocity( -max_linear_x, -max_linear_y, -max_angular_z ).to_proto(), ) ) self.spot_wrapper.set_mobility_params(mobility_params) return True, "Success" except Exception as e: return False, "Error:{}".format(e) def _transform_pose_to_body_frame(self, pose): """ Transform a pose to the body frame Args: pose: PoseStamped to transform Raises: tf2_ros.LookupException if the transform lookup fails Returns: Transformed pose in body frame if given pose is not in the body frame, or the original pose if it is in the body frame """ if pose.header.frame_id == "body": return pose body_to_fixed = self.tf_buffer.lookup_transform( "body", pose.header.frame_id, rospy.Time() ) pose_in_body = tf2_geometry_msgs.do_transform_pose(pose, body_to_fixed) pose_in_body.header.frame_id = "body" return pose_in_body def robot_allowed_to_move(self, autonomous_command=True): """ Check if the robot is allowed to move. This means checking both that autonomy is enabled, which can only be set when the driver is started, and also that motion is allowed, the state of which can change while the driver is running Args: autonomous_command: If true, indicates that this function should also check if autonomy is enabled Returns: True if the robot is allowed to move, false otherwise """ if not self.allow_motion: rospy.logwarn( "Spot is not currently allowed to move. Use the allow_motion service to allow the robot to " "move." ) autonomy_ok = True if autonomous_command: if not self.autonomy_enabled: rospy.logwarn( "Spot is not allowed to be autonomous because this instance of the driver was started " "with it disabled. Set autonomy_enabled to true in the launch file to enable it." ) autonomy_ok = False if self.is_charging: rospy.logwarn( "Spot cannot be autonomous because it is connected to shore power." ) autonomy_ok = False return self.allow_motion and autonomy_ok def handle_allow_motion(self, req): """ Handle a call to set whether motion is allowed or not When motion is not allowed, any service call or topic which can move the robot will return without doing anything Returns: (bool, str) True if successful, along with a message """ self.allow_motion = req.data rospy.loginfo( "Robot motion is now {}".format( "allowed" if self.allow_motion else "disallowed" ) ) if not self.allow_motion: # Always send a stop command if disallowing motion, in case the robot is moving when it is sent self.spot_wrapper.stop() return True, "Spot motion was {}".format("enabled" if req.data else "disabled") def handle_obstacle_params(self, req): """ Handle a call to set the obstacle params part of mobility params. The previous values are always overwritten. Args: req: Returns: (bool, str) True if successful, along with a message """ mobility_params = self.spot_wrapper.get_mobility_params() obstacle_params = spot_command_pb2.ObstacleParams() # Currently only the obstacle setting that we allow is the padding. The previous value is always overwritten # Clamp to the range [0, 0.5] as on the controller if req.obstacle_params.obstacle_avoidance_padding < 0: rospy.logwarn( "Received padding value of {}, clamping to 0".format( req.obstacle_params.obstacle_avoidance_padding ) ) req.obstacle_params.obstacle_avoidance_padding = 0 if req.obstacle_params.obstacle_avoidance_padding > 0.5: rospy.logwarn( "Received padding value of {}, clamping to 0.5".format( req.obstacle_params.obstacle_avoidance_padding ) ) req.obstacle_params.obstacle_avoidance_padding = 0.5 disable_notallowed = "" if any( [ req.obstacle_params.disable_vision_foot_obstacle_avoidance, req.obstacle_params.disable_vision_foot_constraint_avoidance, req.obstacle_params.disable_vision_body_obstacle_avoidance, req.obstacle_params.disable_vision_foot_obstacle_body_assist, req.obstacle_params.disable_vision_negative_obstacles, ] ): disable_notallowed = " Disabling any of the obstacle avoidance components is not currently allowed." rospy.logerr( "At least one of the disable settings on obstacle params was true." + disable_notallowed ) obstacle_params.obstacle_avoidance_padding = ( req.obstacle_params.obstacle_avoidance_padding ) mobility_params.obstacle_params.CopyFrom(obstacle_params) self.spot_wrapper.set_mobility_params(mobility_params) return True, "Successfully set obstacle params" + disable_notallowed def handle_terrain_params(self, req): """ Handle a call to set the terrain params part of mobility params. The previous values are always overwritten Args: req: Returns: (bool, str) True if successful, along with a message """ mobility_params = self.spot_wrapper.get_mobility_params() # We always overwrite the previous settings of these values. Reject if not within recommended limits (as on # the controller) if 0.2 <= req.terrain_params.ground_mu_hint <= 0.8: # For some reason assignment to ground_mu_hint is not allowed once the terrain params are initialised # Must initialise with the protobuf type DoubleValue for initialisation to work terrain_params = spot_command_pb2.TerrainParams( ground_mu_hint=DoubleValue(value=req.terrain_params.ground_mu_hint) ) else: return ( False, "Failed to set terrain params, ground_mu_hint of {} is not in the range [0.4, 0.8]".format( req.terrain_params.ground_mu_hint ), ) if req.terrain_params.grated_surfaces_mode in [1, 2, 3]: terrain_params.grated_surfaces_mode = ( req.terrain_params.grated_surfaces_mode ) else: return ( False, "Failed to set terrain params, grated_surfaces_mode {} was not one of [1, 2, 3]".format( req.terrain_params.grated_surfaces_mode ), ) mobility_params.terrain_params.CopyFrom(terrain_params) self.spot_wrapper.set_mobility_params(mobility_params) return True, "Successfully set terrain params" def trajectory_callback(self, msg): """ Handle a callback from the trajectory topic requesting to go to a location The trajectory will time out after 5 seconds Args: msg: PoseStamped containing desired pose Returns: """ if not self.robot_allowed_to_move(): rospy.logerr( "Trajectory topic received a message but the robot is not allowed to move." ) return try: self._send_trajectory_command( self._transform_pose_to_body_frame(msg), rospy.Duration(5) ) except tf2_ros.LookupException as e: rospy.logerr(str(e)) def handle_trajectory(self, req): """ROS actionserver execution handler to handle receiving a request to move to a location""" if not self.robot_allowed_to_move(): rospy.logerr( "Trajectory service was called but robot is not allowed to move" ) self.trajectory_server.set_aborted( TrajectoryResult(False, "Robot is not allowed to move.") ) return target_pose = req.target_pose if req.target_pose.header.frame_id != "body": rospy.logwarn("Pose given was not in the body frame, will transform") try: target_pose = self._transform_pose_to_body_frame(target_pose) except tf2_ros.LookupException as e: self.trajectory_server.set_aborted( TrajectoryResult(False, "Could not transform pose into body frame") ) return if req.duration.data.to_sec() <= 0: self.trajectory_server.set_aborted( TrajectoryResult(False, "duration must be larger than 0") ) return cmd_duration = rospy.Duration(req.duration.data.secs, req.duration.data.nsecs) resp = self._send_trajectory_command( target_pose, cmd_duration, req.precise_positioning ) def timeout_cb(trajectory_server, _): trajectory_server.publish_feedback( TrajectoryFeedback("Failed to reach goal, timed out") ) trajectory_server.set_aborted( TrajectoryResult(False, "Failed to reach goal, timed out") ) # Abort the actionserver if cmd_duration is exceeded - the driver stops but does not provide feedback to # indicate this so we monitor it ourselves cmd_timeout = rospy.Timer( cmd_duration, functools.partial(timeout_cb, self.trajectory_server), oneshot=True, ) # Sleep to allow some feedback to come through from the trajectory command rospy.sleep(0.25) if self.spot_wrapper._trajectory_status_unknown: rospy.logerr( "Sent trajectory request to spot but received unknown feedback. Resending command. This will " "only be attempted once" ) # If we receive an unknown result from the trajectory, something went wrong internally (not # catastrophically). We need to resend the command, because getting status unknown happens right when # the command is sent. It's unclear right now why this happens resp = self._send_trajectory_command( target_pose, cmd_duration, req.precise_positioning ) cmd_timeout.shutdown() cmd_timeout = rospy.Timer( cmd_duration, functools.partial(timeout_cb, self.trajectory_server), oneshot=True, ) # The trajectory command is non-blocking but we need to keep this function up in order to interrupt if a # preempt is requested and to return success if/when the robot reaches the goal. Also check the is_active to # monitor whether the timeout_cb has already aborted the command rate = rospy.Rate(10) while ( not rospy.is_shutdown() and not self.trajectory_server.is_preempt_requested() and not self.spot_wrapper.at_goal and self.trajectory_server.is_active() and not self.spot_wrapper._trajectory_status_unknown ): if self.spot_wrapper.near_goal: if self.spot_wrapper._last_trajectory_command_precise: self.trajectory_server.publish_feedback( TrajectoryFeedback("Near goal, performing final adjustments") ) else: self.trajectory_server.publish_feedback( TrajectoryFeedback("Near goal") ) else: self.trajectory_server.publish_feedback( TrajectoryFeedback("Moving to goal") ) rate.sleep() # If still active after exiting the loop, the command did not time out if self.trajectory_server.is_active(): cmd_timeout.shutdown() if self.trajectory_server.is_preempt_requested(): self.trajectory_server.publish_feedback(TrajectoryFeedback("Preempted")) self.trajectory_server.set_preempted() self.spot_wrapper.stop() if self.spot_wrapper.at_goal: self.trajectory_server.publish_feedback( TrajectoryFeedback("Reached goal") ) self.trajectory_server.set_succeeded(TrajectoryResult(resp[0], resp[1])) else: self.trajectory_server.publish_feedback( TrajectoryFeedback("Failed to reach goal") ) self.trajectory_server.set_aborted( TrajectoryResult(False, "Failed to reach goal") ) def handle_roll_over_right(self, req): """Robot sit down and roll on to it its side for easier battery access""" del req resp = self.spot_wrapper.battery_change_pose(1) return TriggerResponse(resp[0], resp[1]) def handle_roll_over_left(self, req): """Robot sit down and roll on to it its side for easier battery access""" del req resp = self.spot_wrapper.battery_change_pose(2) return TriggerResponse(resp[0], resp[1]) def handle_dock(self, req): """Dock the robot""" resp = self.spot_wrapper.dock(req.dock_id) return DockResponse(resp[0], resp[1]) def handle_undock(self, req): """Undock the robot""" resp = self.spot_wrapper.undock() return TriggerResponse(resp[0], resp[1]) def handle_dock_action(self, req: DockGoal): if req.undock: resp = self.spot_wrapper.undock() else: resp = self.spot_wrapper.dock(req.dock_id) if resp[0]: self.dock_as.set_succeeded(DockResult(resp[0], resp[1])) else: self.dock_as.set_aborted(DockResult(resp[0], resp[1])) def handle_get_docking_state(self, req): """Get docking state of robot""" resp = self.spot_wrapper.get_docking_state() return GetDockStateResponse(GetDockStatesFromState(resp)) def _send_trajectory_command(self, pose, duration, precise=True): """ Send a trajectory command to the robot Args: pose: Pose the robot should go to. Must be in the body frame duration: After this duration, the command will time out and the robot will stop precise: If true, the robot will position itself precisely at the target pose, otherwise it will end up near (within ~0.5m, rotation optional) the requested location Returns: (bool, str) tuple indicating whether the command was successfully sent, and a message """ if not self.robot_allowed_to_move(): rospy.logerr("send trajectory was called but motion is not allowed.") return if pose.header.frame_id != "body": rospy.logerr("Trajectory command poses must be in the body frame") return return self.spot_wrapper.trajectory_cmd( goal_x=pose.pose.position.x, goal_y=pose.pose.position.y, goal_heading=math_helpers.Quat( w=pose.pose.orientation.w, x=pose.pose.orientation.x, y=pose.pose.orientation.y, z=pose.pose.orientation.z, ).to_yaw(), cmd_duration=duration.to_sec(), precise_position=precise, ) def cmdVelCallback(self, data): """Callback for cmd_vel command""" if not self.robot_allowed_to_move(): rospy.logerr("cmd_vel received a message but motion is not allowed.") return self.spot_wrapper.velocity_cmd(data.linear.x, data.linear.y, data.angular.z) def in_motion_or_idle_pose_cb(self, data): """ Callback for pose to be used while in motion or idling This sets the body control field in the mobility params. This means that the pose will be used while a motion command is executed. Only the pitch is maintained while moving. The roll and yaw will be applied by the idle stand command. """ if not self.robot_allowed_to_move(autonomous_command=False): rospy.logerr("body pose received a message but motion is not allowed.") return self._set_in_motion_or_idle_body_pose(data) def handle_in_motion_or_idle_body_pose(self, goal): """ Handle a goal received from the pose body actionserver Args: goal: PoseBodyGoal containing a pose to apply to the body Returns: """ # We can change the body pose if autonomy is not allowed if not self.robot_allowed_to_move(autonomous_command=False): rospy.logerr("body pose actionserver was called but motion is not allowed.") return # If the body_pose is empty, we use the rpy + height components instead if goal.body_pose == Pose(): # If the rpy+body height are all zero then we set the body to neutral pose if not any( [ goal.roll, goal.pitch, goal.yaw, not math.isclose(goal.body_height, 0, abs_tol=1e-9), ] ): pose = Pose() pose.orientation.w = 1 self._set_in_motion_or_idle_body_pose(pose) else: pose = Pose() # Multiplication order is important to get the correct quaternion orientation_quat = ( math_helpers.Quat.from_yaw(math.radians(goal.yaw)) * math_helpers.Quat.from_pitch(math.radians(goal.pitch)) * math_helpers.Quat.from_roll(math.radians(goal.roll)) ) pose.orientation.x = orientation_quat.x pose.orientation.y = orientation_quat.y pose.orientation.z = orientation_quat.z pose.orientation.w = orientation_quat.w pose.position.z = goal.body_height self._set_in_motion_or_idle_body_pose(pose) else: self._set_in_motion_or_idle_body_pose(goal.body_pose) # Give it some time to move rospy.sleep(2) self.motion_or_idle_body_pose_as.set_succeeded( PoseBodyResult( success=True, message="Successfully applied in-motion pose to body" ) ) def _set_in_motion_or_idle_body_pose(self, pose): """ Set the pose of the body which should be applied while in motion or idle Args: pose: Pose to be applied to the body. Only the body height is taken from the position component Returns: """ q = Quaternion() q.x = pose.orientation.x q.y = pose.orientation.y q.z = pose.orientation.z q.w = pose.orientation.w position = geometry_pb2.Vec3(z=pose.position.z) pose = geometry_pb2.SE3Pose(position=position, rotation=q) point = trajectory_pb2.SE3TrajectoryPoint(pose=pose) traj = trajectory_pb2.SE3Trajectory(points=[point]) body_control = spot_command_pb2.BodyControlParams(base_offset_rt_footprint=traj) mobility_params = self.spot_wrapper.get_mobility_params() mobility_params.body_control.CopyFrom(body_control) self.spot_wrapper.set_mobility_params(mobility_params) def handle_list_graph(self, upload_path): """ROS service handler for listing graph_nav waypoint_ids""" resp = self.spot_wrapper.list_graph(upload_path) return ListGraphResponse(resp) def handle_navigate_to_feedback(self): """Thread function to send navigate_to feedback""" while not rospy.is_shutdown() and self.run_navigate_to: localization_state = ( self.spot_wrapper._graph_nav_client.get_localization_state() ) if localization_state.localization.waypoint_id: self.navigate_as.publish_feedback( NavigateToFeedback(localization_state.localization.waypoint_id) ) rospy.Rate(10).sleep() def handle_navigate_to(self, msg): """ROS service handler to run mission of the robot. The robot will replay a mission""" if not self.robot_allowed_to_move(): rospy.logerr("navigate_to was requested but robot is not allowed to move.") self.navigate_as.set_aborted( NavigateToResult(False, "Autonomy is not enabled") ) return # create thread to periodically publish feedback feedback_thraed = threading.Thread( target=self.handle_navigate_to_feedback, args=() ) self.run_navigate_to = True feedback_thraed.start() # run navigate_to resp = self.spot_wrapper.navigate_to( upload_path=msg.upload_path, navigate_to=msg.navigate_to, initial_localization_fiducial=msg.initial_localization_fiducial, initial_localization_waypoint=msg.initial_localization_waypoint, ) self.run_navigate_to = False feedback_thraed.join() # check status if resp[0]: self.navigate_as.set_succeeded(NavigateToResult(resp[0], resp[1])) else: self.navigate_as.set_aborted(NavigateToResult(resp[0], resp[1])) def populate_camera_static_transforms(self, image_data): """Check data received from one of the image tasks and use the transform snapshot to extract the camera frame transforms. This is the transforms from body->frontleft->frontleft_fisheye, for example. These transforms never change, but they may be calibrated slightly differently for each robot so we need to generate the transforms at runtime. Args: image_data: Image protobuf data from the wrapper """ # We exclude the odometry frames from static transforms since they are not static. We can ignore the body # frame because it is a child of odom or vision depending on the mode_parent_odom_tf, and will be published # by the non-static transform publishing that is done by the state callback excluded_frames = [ self.tf_name_vision_odom, self.tf_name_kinematic_odom, "body", ] for frame_name in image_data.shot.transforms_snapshot.child_to_parent_edge_map: if frame_name in excluded_frames: continue parent_frame = ( image_data.shot.transforms_snapshot.child_to_parent_edge_map.get( frame_name ).parent_frame_name ) existing_transforms = [ (transform.header.frame_id, transform.child_frame_id) for transform in self.sensors_static_transforms ] if (parent_frame, frame_name) in existing_transforms: # We already extracted this transform continue transform = ( image_data.shot.transforms_snapshot.child_to_parent_edge_map.get( frame_name ) ) local_time = self.spot_wrapper.robotToLocalTime( image_data.shot.acquisition_time ) tf_time = rospy.Time(local_time.seconds, local_time.nanos) static_tf = populateTransformStamped( tf_time, transform.parent_frame_name, frame_name, transform.parent_tform_child, ) self.sensors_static_transforms.append(static_tf) self.sensors_static_transform_broadcaster.sendTransform( self.sensors_static_transforms ) def populate_lidar_static_transforms(self, point_cloud_data): """Check data received from one of the point cloud tasks and use the transform snapshot to extract the lidar frame transforms. This is the transforms from body->sensor, for example. These transforms never change, but they may be calibrated slightly differently for each robot so we need to generate the transforms at runtime. Args: point_cloud_data: PointCloud protobuf data from the wrapper """ # We exclude the odometry frames from static transforms since they are not static. We can ignore the body # frame because it is a child of odom or vision depending on the mode_parent_odom_tf, and will be published # by the non-static transform publishing that is done by the state callback excluded_frames = [ self.tf_name_vision_odom, self.tf_name_kinematic_odom, "body", ] for ( frame_name ) in ( point_cloud_data.point_cloud.source.transforms_snapshot.child_to_parent_edge_map ): if frame_name in excluded_frames: continue parent_frame = point_cloud_data.point_cloud.source.transforms_snapshot.child_to_parent_edge_map.get( frame_name ).parent_frame_name existing_transforms = [ (transform.header.frame_id, transform.child_frame_id) for transform in self.sensors_static_transforms ] if (parent_frame, frame_name) in existing_transforms: # We already extracted this transform continue transform = point_cloud_data.point_cloud.source.transforms_snapshot.child_to_parent_edge_map.get( frame_name ) local_time = self.spot_wrapper.robotToLocalTime( point_cloud_data.point_cloud.source.acquisition_time ) tf_time = rospy.Time(local_time.seconds, local_time.nanos) static_tf = populateTransformStamped( tf_time, transform.parent_frame_name, frame_name, transform.parent_tform_child, ) self.sensors_static_transforms.append(static_tf) self.sensors_static_transform_broadcaster.sendTransform( self.sensors_static_transforms ) # Arm functions ################################################## def handle_arm_stow(self, srv_data): """ROS service handler to command the arm to stow, home position""" resp = self.spot_wrapper.arm_stow() return TriggerResponse(resp[0], resp[1]) def handle_arm_unstow(self, srv_data): """ROS service handler to command the arm to unstow, joints are all zeros""" resp = self.spot_wrapper.arm_unstow() return TriggerResponse(resp[0], resp[1]) def handle_arm_joint_move(self, srv_data: ArmJointMovementRequest): """ROS service handler to send joint movement to the arm to execute""" resp = self.spot_wrapper.arm_joint_move(joint_targets=srv_data.joint_target) return ArmJointMovementResponse(resp[0], resp[1]) def handle_force_trajectory(self, srv_data: ArmForceTrajectoryRequest): """ROS service handler to send a force trajectory up or down a vertical force""" resp = self.spot_wrapper.force_trajectory(data=srv_data) return ArmForceTrajectoryResponse(resp[0], resp[1]) def handle_gripper_open(self, srv_data): """ROS service handler to open the gripper""" resp = self.spot_wrapper.gripper_open() return TriggerResponse(resp[0], resp[1]) def handle_gripper_close(self, srv_data): """ROS service handler to close the gripper""" resp = self.spot_wrapper.gripper_close() return TriggerResponse(resp[0], resp[1]) def handle_gripper_angle_open(self, srv_data: GripperAngleMoveRequest): """ROS service handler to open the gripper at an angle""" resp = self.spot_wrapper.gripper_angle_open(gripper_ang=srv_data.gripper_angle) return GripperAngleMoveResponse(resp[0], resp[1]) def handle_arm_carry(self, srv_data): """ROS service handler to put arm in carry mode""" resp = self.spot_wrapper.arm_carry() return TriggerResponse(resp[0], resp[1]) def handle_hand_pose(self, srv_data: HandPoseRequest): """ROS service to give a position to the gripper""" resp = self.spot_wrapper.hand_pose(data=srv_data) return HandPoseResponse(resp[0], resp[1]) def handle_grasp_3d(self, srv_data: Grasp3dRequest): """ROS service to grasp an object by x,y,z coordinates in given frame""" resp = self.spot_wrapper.grasp_3d( frame=srv_data.frame_name, object_rt_frame=srv_data.object_rt_frame, ) return Grasp3dResponse(resp[0], resp[1]) ################################################################## def shutdown(self): rospy.loginfo("Shutting down ROS driver for Spot") self.spot_wrapper.sit() rospy.Rate(0.25).sleep() self.spot_wrapper.disconnect() def publish_mobility_params(self): mobility_params_msg = MobilityParams() try: mobility_params = self.spot_wrapper.get_mobility_params() mobility_params_msg.body_control.position.x = ( mobility_params.body_control.base_offset_rt_footprint.points[ 0 ].pose.position.x ) mobility_params_msg.body_control.position.y = ( mobility_params.body_control.base_offset_rt_footprint.points[ 0 ].pose.position.y ) mobility_params_msg.body_control.position.z = ( mobility_params.body_control.base_offset_rt_footprint.points[ 0 ].pose.position.z ) mobility_params_msg.body_control.orientation.x = ( mobility_params.body_control.base_offset_rt_footprint.points[ 0 ].pose.rotation.x ) mobility_params_msg.body_control.orientation.y = ( mobility_params.body_control.base_offset_rt_footprint.points[ 0 ].pose.rotation.y ) mobility_params_msg.body_control.orientation.z = ( mobility_params.body_control.base_offset_rt_footprint.points[ 0 ].pose.rotation.z ) mobility_params_msg.body_control.orientation.w = ( mobility_params.body_control.base_offset_rt_footprint.points[ 0 ].pose.rotation.w ) mobility_params_msg.locomotion_hint = mobility_params.locomotion_hint mobility_params_msg.stair_hint = mobility_params.stair_hint mobility_params_msg.swing_height = mobility_params.swing_height mobility_params_msg.obstacle_params.obstacle_avoidance_padding = ( mobility_params.obstacle_params.obstacle_avoidance_padding ) mobility_params_msg.obstacle_params.disable_vision_foot_obstacle_avoidance = ( mobility_params.obstacle_params.disable_vision_foot_obstacle_avoidance ) mobility_params_msg.obstacle_params.disable_vision_foot_constraint_avoidance = ( mobility_params.obstacle_params.disable_vision_foot_constraint_avoidance ) mobility_params_msg.obstacle_params.disable_vision_body_obstacle_avoidance = ( mobility_params.obstacle_params.disable_vision_body_obstacle_avoidance ) mobility_params_msg.obstacle_params.disable_vision_foot_obstacle_body_assist = ( mobility_params.obstacle_params.disable_vision_foot_obstacle_body_assist ) mobility_params_msg.obstacle_params.disable_vision_negative_obstacles = ( mobility_params.obstacle_params.disable_vision_negative_obstacles ) if mobility_params.HasField("terrain_params"): if mobility_params.terrain_params.HasField("ground_mu_hint"): mobility_params_msg.terrain_params.ground_mu_hint = ( mobility_params.terrain_params.ground_mu_hint ) # hasfield does not work on grated surfaces mode if hasattr(mobility_params.terrain_params, "grated_surfaces_mode"): mobility_params_msg.terrain_params.grated_surfaces_mode = ( mobility_params.terrain_params.grated_surfaces_mode ) # The velocity limit values can be set independently so make sure each of them exists before setting if mobility_params.HasField("vel_limit"): if hasattr(mobility_params.vel_limit.max_vel.linear, "x"): mobility_params_msg.velocity_limit.linear.x = ( mobility_params.vel_limit.max_vel.linear.x ) if hasattr(mobility_params.vel_limit.max_vel.linear, "y"): mobility_params_msg.velocity_limit.linear.y = ( mobility_params.vel_limit.max_vel.linear.y ) if hasattr(mobility_params.vel_limit.max_vel, "angular"): mobility_params_msg.velocity_limit.angular.z = ( mobility_params.vel_limit.max_vel.angular ) except Exception as e: rospy.logerr("Error:{}".format(e)) pass self.mobility_params_pub.publish(mobility_params_msg) def publish_feedback(self): feedback_msg = Feedback() feedback_msg.standing = self.spot_wrapper.is_standing feedback_msg.sitting = self.spot_wrapper.is_sitting feedback_msg.moving = self.spot_wrapper.is_moving id_ = self.spot_wrapper.id try: feedback_msg.serial_number = id_.serial_number feedback_msg.species = id_.species feedback_msg.version = id_.version feedback_msg.nickname = id_.nickname feedback_msg.computer_serial_number = id_.computer_serial_number except: pass self.feedback_pub.publish(feedback_msg) def publish_allow_motion(self): self.motion_allowed_pub.publish(self.allow_motion) def check_for_subscriber(self): for pub in list(self.camera_pub_to_async_task_mapping.keys()): task_name = self.camera_pub_to_async_task_mapping[pub] if ( task_name not in self.active_camera_tasks and pub.get_num_connections() > 0 ): self.spot_wrapper.update_image_tasks(task_name) self.active_camera_tasks.append(task_name) print( f"Detected subscriber for {task_name} task, adding task to publish" ) def main(self): """Main function for the SpotROS class. Gets config from ROS and initializes the wrapper. Holds lease from wrapper and updates all async tasks at the ROS rate""" rospy.init_node("spot_ros", anonymous=True) self.rates = rospy.get_param("~rates", {}) if "loop_frequency" in self.rates: loop_rate = self.rates["loop_frequency"] else: loop_rate = 50 for param, rate in self.rates.items(): if rate > loop_rate: rospy.logwarn( "{} has a rate of {} specified, which is higher than the loop rate of {}. It will not " "be published at the expected frequency".format( param, rate, loop_rate ) ) rate = rospy.Rate(loop_rate) self.robot_name = rospy.get_param("~robot_name", "spot") self.username = rospy.get_param("~username", "default_value") self.password = rospy.get_param("~password", "default_value") self.hostname = rospy.get_param("~hostname", "default_value") self.motion_deadzone = rospy.get_param("~deadzone", 0.05) self.start_estop = rospy.get_param("~start_estop", True) self.estop_timeout = rospy.get_param("~estop_timeout", 9.0) self.autonomy_enabled = rospy.get_param("~autonomy_enabled", True) self.allow_motion = rospy.get_param("~allow_motion", True) self.use_take_lease = rospy.get_param("~use_take_lease", False) self.get_lease_on_action = rospy.get_param("~get_lease_on_action", False) self.is_charging = False self.tf_buffer = tf2_ros.Buffer() self.tf_listener = tf2_ros.TransformListener(self.tf_buffer) self.sensors_static_transform_broadcaster = tf2_ros.StaticTransformBroadcaster() # Static transform broadcaster is super simple and just a latched publisher. Every time we add a new static # transform we must republish all static transforms from this source, otherwise the tree will be incomplete. # We keep a list of all the static transforms we already have so they can be republished, and so we can check # which ones we already have self.sensors_static_transforms = [] # Spot has 2 types of odometries: 'odom' and 'vision' # The former one is kinematic odometry and the second one is a combined odometry of vision and kinematics # These params enables to change which odometry frame is a parent of body frame and to change tf names of each odometry frames. self.mode_parent_odom_tf = rospy.get_param( "~mode_parent_odom_tf", "odom" ) # 'vision' or 'odom' self.tf_name_kinematic_odom = rospy.get_param("~tf_name_kinematic_odom", "odom") self.tf_name_raw_kinematic = "odom" self.tf_name_vision_odom = rospy.get_param("~tf_name_vision_odom", "vision") self.tf_name_raw_vision = "vision" if ( self.mode_parent_odom_tf != self.tf_name_raw_kinematic and self.mode_parent_odom_tf != self.tf_name_raw_vision ): rospy.logerr( "rosparam '~mode_parent_odom_tf' should be 'odom' or 'vision'." ) return self.logger = logging.getLogger("rosout") rospy.loginfo("Starting ROS driver for Spot") self.spot_wrapper = SpotWrapper( username=self.username, password=self.password, hostname=self.hostname, robot_name=self.robot_name, logger=self.logger, start_estop=self.start_estop, estop_timeout=self.estop_timeout, rates=self.rates, callbacks=self.callbacks, use_take_lease=self.use_take_lease, get_lease_on_action=self.get_lease_on_action, ) if not self.spot_wrapper.is_valid: return # Images # self.back_image_pub = rospy.Publisher("camera/back/image", Image, queue_size=10) self.frontleft_image_pub = rospy.Publisher( "camera/frontleft/image", Image, queue_size=10 ) self.frontright_image_pub = rospy.Publisher( "camera/frontright/image", Image, queue_size=10 ) self.left_image_pub = rospy.Publisher("camera/left/image", Image, queue_size=10) self.right_image_pub = rospy.Publisher( "camera/right/image", Image, queue_size=10 ) self.hand_image_mono_pub = rospy.Publisher( "camera/hand_mono/image", Image, queue_size=10 ) self.hand_image_color_pub = rospy.Publisher( "camera/hand_color/image", Image, queue_size=10 ) # Depth # self.back_depth_pub = rospy.Publisher("depth/back/image", Image, queue_size=10) self.frontleft_depth_pub = rospy.Publisher( "depth/frontleft/image", Image, queue_size=10 ) self.frontright_depth_pub = rospy.Publisher( "depth/frontright/image", Image, queue_size=10 ) self.left_depth_pub = rospy.Publisher("depth/left/image", Image, queue_size=10) self.right_depth_pub = rospy.Publisher( "depth/right/image", Image, queue_size=10 ) self.hand_depth_pub = rospy.Publisher("depth/hand/image", Image, queue_size=10) self.hand_depth_in_hand_color_pub = rospy.Publisher( "depth/hand/depth_in_color", Image, queue_size=10 ) self.frontleft_depth_in_visual_pub = rospy.Publisher( "depth/frontleft/depth_in_visual", Image, queue_size=10 ) self.frontright_depth_in_visual_pub = rospy.Publisher( "depth/frontright/depth_in_visual", Image, queue_size=10 ) # EAP Pointcloud # self.point_cloud_pub = rospy.Publisher( "lidar/points", PointCloud2, queue_size=10 ) # Image Camera Info # self.back_image_info_pub = rospy.Publisher( "camera/back/camera_info", CameraInfo, queue_size=10 ) self.frontleft_image_info_pub = rospy.Publisher( "camera/frontleft/camera_info", CameraInfo, queue_size=10 ) self.frontright_image_info_pub = rospy.Publisher( "camera/frontright/camera_info", CameraInfo, queue_size=10 ) self.left_image_info_pub = rospy.Publisher( "camera/left/camera_info", CameraInfo, queue_size=10 ) self.right_image_info_pub = rospy.Publisher( "camera/right/camera_info", CameraInfo, queue_size=10 ) self.hand_image_mono_info_pub = rospy.Publisher( "camera/hand_mono/camera_info", CameraInfo, queue_size=10 ) self.hand_image_color_info_pub = rospy.Publisher( "camera/hand_color/camera_info", CameraInfo, queue_size=10 ) # Depth Camera Info # self.back_depth_info_pub = rospy.Publisher( "depth/back/camera_info", CameraInfo, queue_size=10 ) self.frontleft_depth_info_pub = rospy.Publisher( "depth/frontleft/camera_info", CameraInfo, queue_size=10 ) self.frontright_depth_info_pub = rospy.Publisher( "depth/frontright/camera_info", CameraInfo, queue_size=10 ) self.left_depth_info_pub = rospy.Publisher( "depth/left/camera_info", CameraInfo, queue_size=10 ) self.right_depth_info_pub = rospy.Publisher( "depth/right/camera_info", CameraInfo, queue_size=10 ) self.hand_depth_info_pub = rospy.Publisher( "depth/hand/camera_info", CameraInfo, queue_size=10 ) self.hand_depth_in_color_info_pub = rospy.Publisher( "camera/hand/depth_in_color/camera_info", CameraInfo, queue_size=10 ) self.frontleft_depth_in_visual_info_pub = rospy.Publisher( "depth/frontleft/depth_in_visual/camera_info", CameraInfo, queue_size=10 ) self.frontright_depth_in_visual_info_pub = rospy.Publisher( "depth/frontright/depth_in_visual/camera_info", CameraInfo, queue_size=10 ) self.camera_pub_to_async_task_mapping = { self.frontleft_image_pub: "front_image", self.frontleft_depth_pub: "front_image", self.frontleft_image_info_pub: "front_image", self.frontright_image_pub: "front_image", self.frontright_depth_pub: "front_image", self.frontright_image_info_pub: "front_image", self.back_image_pub: "rear_image", self.back_depth_pub: "rear_image", self.back_image_info_pub: "rear_image", self.right_image_pub: "side_image", self.right_depth_pub: "side_image", self.right_image_info_pub: "side_image", self.left_image_pub: "side_image", self.left_depth_pub: "side_image", self.left_image_info_pub: "side_image", self.hand_image_color_pub: "hand_image", self.hand_image_mono_pub: "hand_image", self.hand_image_mono_info_pub: "hand_image", self.hand_depth_pub: "hand_image", self.hand_depth_in_hand_color_pub: "hand_image", } # Status Publishers # self.joint_state_pub = rospy.Publisher( "joint_states", JointState, queue_size=10 ) """Defining a TF publisher manually because of conflicts between Python3 and tf""" self.tf_pub = rospy.Publisher("tf", TFMessage, queue_size=10) self.metrics_pub = rospy.Publisher("status/metrics", Metrics, queue_size=10) self.lease_pub = rospy.Publisher("status/leases", LeaseArray, queue_size=10) self.odom_twist_pub = rospy.Publisher( "odometry/twist", TwistWithCovarianceStamped, queue_size=10 ) self.odom_pub = rospy.Publisher("odometry", Odometry, queue_size=10) self.odom_corrected_pub = rospy.Publisher( "odometry_corrected", Odometry, queue_size=10 ) self.feet_pub = rospy.Publisher("status/feet", FootStateArray, queue_size=10) self.estop_pub = rospy.Publisher("status/estop", EStopStateArray, queue_size=10) self.wifi_pub = rospy.Publisher("status/wifi", WiFiState, queue_size=10) self.power_pub = rospy.Publisher( "status/power_state", PowerState, queue_size=10 ) self.battery_pub = rospy.Publisher( "status/battery_states", BatteryStateArray, queue_size=10 ) self.behavior_faults_pub = rospy.Publisher( "status/behavior_faults", BehaviorFaultState, queue_size=10 ) self.system_faults_pub = rospy.Publisher( "status/system_faults", SystemFaultState, queue_size=10 ) self.motion_allowed_pub = rospy.Publisher( "status/motion_allowed", Bool, queue_size=10 ) self.feedback_pub = rospy.Publisher("status/feedback", Feedback, queue_size=10) self.mobility_params_pub = rospy.Publisher( "status/mobility_params", MobilityParams, queue_size=10 ) rospy.Subscriber("cmd_vel", Twist, self.cmdVelCallback, queue_size=1) rospy.Subscriber( "go_to_pose", PoseStamped, self.trajectory_callback, queue_size=1 ) rospy.Subscriber( "in_motion_or_idle_body_pose", Pose, self.in_motion_or_idle_pose_cb, queue_size=1, ) rospy.Service("claim", Trigger, self.handle_claim) rospy.Service("release", Trigger, self.handle_release) rospy.Service("self_right", Trigger, self.handle_self_right) rospy.Service("sit", Trigger, self.handle_sit) rospy.Service("stand", Trigger, self.handle_stand) rospy.Service("power_on", Trigger, self.handle_power_on) rospy.Service("power_off", Trigger, self.handle_safe_power_off) rospy.Service("estop/hard", Trigger, self.handle_estop_hard) rospy.Service("estop/gentle", Trigger, self.handle_estop_soft) rospy.Service("estop/release", Trigger, self.handle_estop_disengage) rospy.Service("allow_motion", SetBool, self.handle_allow_motion) rospy.Service("stair_mode", SetBool, self.handle_stair_mode) rospy.Service("locomotion_mode", SetLocomotion, self.handle_locomotion_mode) rospy.Service("swing_height", SetSwingHeight, self.handle_swing_height) rospy.Service("velocity_limit", SetVelocity, self.handle_vel_limit) rospy.Service( "clear_behavior_fault", ClearBehaviorFault, self.handle_clear_behavior_fault ) rospy.Service("terrain_params", SetTerrainParams, self.handle_terrain_params) rospy.Service("obstacle_params", SetObstacleParams, self.handle_obstacle_params) rospy.Service("posed_stand", PosedStand, self.handle_posed_stand) rospy.Service("list_graph", ListGraph, self.handle_list_graph) rospy.Service("roll_over_right", Trigger, self.handle_roll_over_right) rospy.Service("roll_over_left", Trigger, self.handle_roll_over_left) # Docking rospy.Service("dock", Dock, self.handle_dock) rospy.Service("undock", Trigger, self.handle_undock) rospy.Service("docking_state", GetDockState, self.handle_get_docking_state) # Arm Services ######################################### rospy.Service("arm_stow", Trigger, self.handle_arm_stow) rospy.Service("arm_unstow", Trigger, self.handle_arm_unstow) rospy.Service("gripper_open", Trigger, self.handle_gripper_open) rospy.Service("gripper_close", Trigger, self.handle_gripper_close) rospy.Service("arm_carry", Trigger, self.handle_arm_carry) rospy.Service( "gripper_angle_open", GripperAngleMove, self.handle_gripper_angle_open ) rospy.Service("arm_joint_move", ArmJointMovement, self.handle_arm_joint_move) rospy.Service( "force_trajectory", ArmForceTrajectory, self.handle_force_trajectory ) rospy.Service("gripper_pose", HandPose, self.handle_hand_pose) rospy.Service("grasp_3d", Grasp3d, self.handle_grasp_3d) ######################################################### self.navigate_as = actionlib.SimpleActionServer( "navigate_to", NavigateToAction, execute_cb=self.handle_navigate_to, auto_start=False, ) self.navigate_as.start() self.trajectory_server = actionlib.SimpleActionServer( "trajectory", TrajectoryAction, execute_cb=self.handle_trajectory, auto_start=False, ) self.trajectory_server.start() self.motion_or_idle_body_pose_as = actionlib.SimpleActionServer( "motion_or_idle_body_pose", PoseBodyAction, execute_cb=self.handle_in_motion_or_idle_body_pose, auto_start=False, ) self.motion_or_idle_body_pose_as.start() self.body_pose_as = actionlib.SimpleActionServer( "body_pose", PoseBodyAction, execute_cb=self.handle_posed_stand_action, auto_start=False, ) self.body_pose_as.start() self.dock_as = actionlib.SimpleActionServer( "dock", DockAction, execute_cb=self.handle_dock_action, auto_start=False, ) self.dock_as.start() # Stop service calls other services so initialise it after them to prevent crashes which can happen if # the service is immediately called rospy.Service("stop", Trigger, self.handle_stop) rospy.Service("locked_stop", Trigger, self.handle_locked_stop) rospy.on_shutdown(self.shutdown) max_linear_x = rospy.get_param("~max_linear_velocity_x", 0) max_linear_y = rospy.get_param("~max_linear_velocity_y", 0) max_angular_z = rospy.get_param("~max_angular_velocity_z", 0) self.set_velocity_limits(max_linear_x, max_linear_y, max_angular_z) self.auto_claim = rospy.get_param("~auto_claim", False) self.auto_power_on = rospy.get_param("~auto_power_on", False) self.auto_stand = rospy.get_param("~auto_stand", False) if self.auto_claim: self.spot_wrapper.claim() if self.auto_power_on: self.spot_wrapper.power_on() if self.auto_stand: self.spot_wrapper.stand() rate_limited_feedback = RateLimitedCall( self.publish_feedback, self.rates["feedback"] ) rate_limited_mobility_params = RateLimitedCall( self.publish_mobility_params, self.rates["mobility_params"] ) rate_check_for_subscriber = RateLimitedCall( self.check_for_subscriber, self.rates["check_subscribers"] ) rate_limited_motion_allowed = RateLimitedCall(self.publish_allow_motion, 10) rospy.loginfo("Driver started") while not rospy.is_shutdown(): self.spot_wrapper.updateTasks() rate_limited_feedback() rate_limited_mobility_params() rate_limited_motion_allowed() rate_check_for_subscriber() rate.sleep()
78,021
Python
41.634973
135
0.608644
renanmb/Omniverse_legged_robotics/URDF-Descriptions/BostonDynamics/spot_ros/spot_driver/src/spot_driver/ros_helpers.py
import copy import rospy import tf2_ros import transforms3d from std_msgs.msg import Empty from tf2_msgs.msg import TFMessage from geometry_msgs.msg import TransformStamped, Transform from sensor_msgs.msg import Image, CameraInfo from sensor_msgs.msg import JointState from sensor_msgs.msg import PointCloud2, PointField from geometry_msgs.msg import PoseWithCovariance from geometry_msgs.msg import TwistWithCovariance from geometry_msgs.msg import TwistWithCovarianceStamped from nav_msgs.msg import Odometry from spot_msgs.msg import Metrics from spot_msgs.msg import LeaseArray, LeaseResource from spot_msgs.msg import FootState, FootStateArray from spot_msgs.msg import EStopState, EStopStateArray from spot_msgs.msg import WiFiState from spot_msgs.msg import PowerState from spot_msgs.msg import BehaviorFault, BehaviorFaultState from spot_msgs.msg import SystemFault, SystemFaultState from spot_msgs.msg import BatteryState, BatteryStateArray from spot_msgs.msg import DockState from bosdyn.api import image_pb2, point_cloud_pb2 from bosdyn.client.math_helpers import SE3Pose from bosdyn.client.frame_helpers import get_odom_tform_body, get_vision_tform_body import numpy as np friendly_joint_names = {} """Dictionary for mapping BD joint names to more friendly names""" friendly_joint_names["fl.hx"] = "front_left_hip_x" friendly_joint_names["fl.hy"] = "front_left_hip_y" friendly_joint_names["fl.kn"] = "front_left_knee" friendly_joint_names["fr.hx"] = "front_right_hip_x" friendly_joint_names["fr.hy"] = "front_right_hip_y" friendly_joint_names["fr.kn"] = "front_right_knee" friendly_joint_names["hl.hx"] = "rear_left_hip_x" friendly_joint_names["hl.hy"] = "rear_left_hip_y" friendly_joint_names["hl.kn"] = "rear_left_knee" friendly_joint_names["hr.hx"] = "rear_right_hip_x" friendly_joint_names["hr.hy"] = "rear_right_hip_y" friendly_joint_names["hr.kn"] = "rear_right_knee" # arm joints friendly_joint_names["arm0.sh0"] = "arm_joint1" friendly_joint_names["arm0.sh1"] = "arm_joint2" friendly_joint_names["arm0.el0"] = "arm_joint3" friendly_joint_names["arm0.el1"] = "arm_joint4" friendly_joint_names["arm0.wr0"] = "arm_joint5" friendly_joint_names["arm0.wr1"] = "arm_joint6" friendly_joint_names["arm0.f1x"] = "arm_gripper" class DefaultCameraInfo(CameraInfo): """Blank class extending CameraInfo ROS topic that defaults most parameters""" def __init__(self): super().__init__() self.distortion_model = "plumb_bob" self.D.append(0) self.D.append(0) self.D.append(0) self.D.append(0) self.D.append(0) self.K[1] = 0 self.K[3] = 0 self.K[6] = 0 self.K[7] = 0 self.K[8] = 1 self.R[0] = 1 self.R[1] = 0 self.R[2] = 0 self.R[3] = 0 self.R[4] = 1 self.R[5] = 0 self.R[6] = 0 self.R[7] = 0 self.R[8] = 1 self.P[1] = 0 self.P[3] = 0 self.P[4] = 0 self.P[7] = 0 self.P[8] = 0 self.P[9] = 0 self.P[10] = 1 self.P[11] = 0 def populateTransformStamped(time, parent_frame, child_frame, transform): """Populates a TransformStamped message Args: time: The time of the transform parent_frame: The parent frame of the transform child_frame: The child_frame_id of the transform transform: A transform to copy into a StampedTransform object. Should have position (x,y,z) and rotation (x, y,z,w) members Returns: TransformStamped message. Empty if transform does not have position or translation attribute """ if hasattr(transform, "position"): position = transform.position elif hasattr(transform, "translation"): position = transform.translation else: rospy.logerr( "Trying to generate StampedTransform but input transform has neither position nor translation " "attributes" ) return TransformStamped() new_tf = TransformStamped() new_tf.header.stamp = time new_tf.header.frame_id = parent_frame new_tf.child_frame_id = child_frame new_tf.transform.translation.x = position.x new_tf.transform.translation.y = position.y new_tf.transform.translation.z = position.z new_tf.transform.rotation.x = transform.rotation.x new_tf.transform.rotation.y = transform.rotation.y new_tf.transform.rotation.z = transform.rotation.z new_tf.transform.rotation.w = transform.rotation.w return new_tf def getImageMsg(data, spot_wrapper): """Takes the imag and camera data and populates the necessary ROS messages Args: data: Image proto spot_wrapper: A SpotWrapper object Returns: (tuple): * Image: message of the image captured * CameraInfo: message to define the state and config of the camera that took the image """ image_msg = Image() local_time = spot_wrapper.robotToLocalTime(data.shot.acquisition_time) image_msg.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) image_msg.header.frame_id = data.shot.frame_name_image_sensor image_msg.height = data.shot.image.rows image_msg.width = data.shot.image.cols # Color/greyscale formats. # JPEG format if data.shot.image.format == image_pb2.Image.FORMAT_JPEG: image_msg.encoding = "rgb8" image_msg.is_bigendian = True image_msg.step = 3 * data.shot.image.cols image_msg.data = data.shot.image.data # Uncompressed. Requires pixel_format. if data.shot.image.format == image_pb2.Image.FORMAT_RAW: # One byte per pixel. if data.shot.image.pixel_format == image_pb2.Image.PIXEL_FORMAT_GREYSCALE_U8: image_msg.encoding = "mono8" image_msg.is_bigendian = True image_msg.step = data.shot.image.cols image_msg.data = data.shot.image.data # Three bytes per pixel. if data.shot.image.pixel_format == image_pb2.Image.PIXEL_FORMAT_RGB_U8: image_msg.encoding = "rgb8" image_msg.is_bigendian = True image_msg.step = 3 * data.shot.image.cols image_msg.data = data.shot.image.data # Four bytes per pixel. if data.shot.image.pixel_format == image_pb2.Image.PIXEL_FORMAT_RGBA_U8: image_msg.encoding = "rgba8" image_msg.is_bigendian = True image_msg.step = 4 * data.shot.image.cols image_msg.data = data.shot.image.data # Little-endian uint16 z-distance from camera (mm). if data.shot.image.pixel_format == image_pb2.Image.PIXEL_FORMAT_DEPTH_U16: image_msg.encoding = "16UC1" image_msg.is_bigendian = False image_msg.step = 2 * data.shot.image.cols image_msg.data = data.shot.image.data camera_info_msg = DefaultCameraInfo() local_time = spot_wrapper.robotToLocalTime(data.shot.acquisition_time) camera_info_msg.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) camera_info_msg.header.frame_id = data.shot.frame_name_image_sensor camera_info_msg.height = data.shot.image.rows camera_info_msg.width = data.shot.image.cols camera_info_msg.K[0] = data.source.pinhole.intrinsics.focal_length.x camera_info_msg.K[2] = data.source.pinhole.intrinsics.principal_point.x camera_info_msg.K[4] = data.source.pinhole.intrinsics.focal_length.y camera_info_msg.K[5] = data.source.pinhole.intrinsics.principal_point.y camera_info_msg.P[0] = data.source.pinhole.intrinsics.focal_length.x camera_info_msg.P[2] = data.source.pinhole.intrinsics.principal_point.x camera_info_msg.P[5] = data.source.pinhole.intrinsics.focal_length.y camera_info_msg.P[6] = data.source.pinhole.intrinsics.principal_point.y return image_msg, camera_info_msg def GetPointCloudMsg(data, spot_wrapper): """Takes the imag and camera data and populates the necessary ROS messages Args: data: PointCloud proto (PointCloudResponse) spot_wrapper: A SpotWrapper object Returns: PointCloud: message of the point cloud (PointCloud2) """ point_cloud_msg = PointCloud2() local_time = spot_wrapper.robotToLocalTime(data.point_cloud.source.acquisition_time) point_cloud_msg.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) point_cloud_msg.header.frame_id = data.point_cloud.source.frame_name_sensor if data.point_cloud.encoding == point_cloud_pb2.PointCloud.ENCODING_XYZ_32F: point_cloud_msg.height = 1 point_cloud_msg.width = data.point_cloud.num_points point_cloud_msg.fields = [] for i, ax in enumerate(("x", "y", "z")): field = PointField() field.name = ax field.offset = i * 4 field.datatype = PointField.FLOAT32 field.count = 1 point_cloud_msg.fields.append(field) point_cloud_msg.is_bigendian = False point_cloud_np = np.frombuffer(data.point_cloud.data, dtype=np.uint8) point_cloud_msg.point_step = 12 # float32 XYZ point_cloud_msg.row_step = point_cloud_msg.width * point_cloud_msg.point_step point_cloud_msg.data = point_cloud_np.tobytes() point_cloud_msg.is_dense = True else: rospy.logwarn("Not supported point cloud data type.") return point_cloud_msg def GetJointStatesFromState(state, spot_wrapper): """Maps joint state data from robot state proto to ROS JointState message Args: data: Robot State proto spot_wrapper: A SpotWrapper object Returns: JointState message """ joint_state = JointState() local_time = spot_wrapper.robotToLocalTime( state.kinematic_state.acquisition_timestamp ) joint_state.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) for joint in state.kinematic_state.joint_states: # there is a joint with name arm0.hr0 in the robot state, however this # joint has no data and should not be there, this is why we ignore it if joint.name == "arm0.hr0": continue joint_state.name.append(friendly_joint_names.get(joint.name, "ERROR")) joint_state.position.append(joint.position.value) joint_state.velocity.append(joint.velocity.value) joint_state.effort.append(joint.load.value) return joint_state def GetEStopStateFromState(state, spot_wrapper): """Maps eStop state data from robot state proto to ROS EStopArray message Args: data: Robot State proto spot_wrapper: A SpotWrapper object Returns: EStopArray message """ estop_array_msg = EStopStateArray() for estop in state.estop_states: estop_msg = EStopState() local_time = spot_wrapper.robotToLocalTime(estop.timestamp) estop_msg.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) estop_msg.name = estop.name estop_msg.type = estop.type estop_msg.state = estop.state estop_msg.state_description = estop.state_description estop_array_msg.estop_states.append(estop_msg) return estop_array_msg def GetFeetFromState(state, spot_wrapper): """Maps foot position state data from robot state proto to ROS FootStateArray message Args: data: Robot State proto spot_wrapper: A SpotWrapper object Returns: FootStateArray message """ foot_array_msg = FootStateArray() for foot in state.foot_state: foot_msg = FootState() foot_msg.foot_position_rt_body.x = foot.foot_position_rt_body.x foot_msg.foot_position_rt_body.y = foot.foot_position_rt_body.y foot_msg.foot_position_rt_body.z = foot.foot_position_rt_body.z foot_msg.contact = foot.contact if foot.HasField("terrain"): terrain = foot.terrain foot_msg.terrain.ground_mu_est = terrain.ground_mu_est foot_msg.terrain.frame_name = terrain.frame_name foot_msg.terrain.foot_slip_distance_rt_frame = ( terrain.foot_slip_distance_rt_frame ) foot_msg.terrain.foot_slip_velocity_rt_frame = ( terrain.foot_slip_velocity_rt_frame ) foot_msg.terrain.ground_contact_normal_rt_frame = ( terrain.ground_contact_normal_rt_frame ) foot_msg.terrain.visual_surface_ground_penetration_mean = ( terrain.visual_surface_ground_penetration_mean ) foot_msg.terrain.visual_surface_ground_penetration_std = ( terrain.visual_surface_ground_penetration_std ) foot_array_msg.states.append(foot_msg) return foot_array_msg def GetOdomTwistFromState(state, spot_wrapper): """Maps odometry data from robot state proto to ROS TwistWithCovarianceStamped message Args: data: Robot State proto spot_wrapper: A SpotWrapper object Returns: TwistWithCovarianceStamped message """ twist_odom_msg = TwistWithCovarianceStamped() local_time = spot_wrapper.robotToLocalTime( state.kinematic_state.acquisition_timestamp ) twist_odom_msg.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) twist_odom_msg.twist.twist.linear.x = ( state.kinematic_state.velocity_of_body_in_odom.linear.x ) twist_odom_msg.twist.twist.linear.y = ( state.kinematic_state.velocity_of_body_in_odom.linear.y ) twist_odom_msg.twist.twist.linear.z = ( state.kinematic_state.velocity_of_body_in_odom.linear.z ) twist_odom_msg.twist.twist.angular.x = ( state.kinematic_state.velocity_of_body_in_odom.angular.x ) twist_odom_msg.twist.twist.angular.y = ( state.kinematic_state.velocity_of_body_in_odom.angular.y ) twist_odom_msg.twist.twist.angular.z = ( state.kinematic_state.velocity_of_body_in_odom.angular.z ) return twist_odom_msg def get_corrected_odom(base_odometry: Odometry): """ Get odometry from state but correct the twist portion of the message to be in the child frame id rather than the odom/vision frame. https://dev.bostondynamics.com/protos/bosdyn/api/proto_reference#kinematicstate indicates the twist in the state is in the odom frame and not the body frame, as is expected by many ROS components. Conversion of https://github.com/tpet/nav_utils/blob/master/src/nav_utils/odom_twist_to_child_frame.cpp Args: base_odometry: Uncorrected odometry message Returns: Odometry with twist in the body frame """ # Note: transforms3d has quaternions in wxyz, not xyzw like ros. # Get the transform from body to odom/vision so we have the inverse transform, which we will use to correct the # twist. We don't actually care about the translation at any point since we're just rotating the twist vectors inverse_rotation = transforms3d.quaternions.quat2mat( transforms3d.quaternions.qinverse( [ base_odometry.pose.pose.orientation.w, base_odometry.pose.pose.orientation.x, base_odometry.pose.pose.orientation.y, base_odometry.pose.pose.orientation.z, ] ) ) # transform the linear twist by rotating the vector according to the rotation from body to odom linear_twist = np.array( [ [base_odometry.twist.twist.linear.x], [base_odometry.twist.twist.linear.y], [base_odometry.twist.twist.linear.z], ] ) corrected_linear = inverse_rotation.dot(linear_twist) # Do the same for the angular twist angular_twist = np.array( [ [base_odometry.twist.twist.angular.x], [base_odometry.twist.twist.angular.y], [base_odometry.twist.twist.angular.z], ] ) corrected_angular = inverse_rotation.dot(angular_twist) corrected_odometry = copy.deepcopy(base_odometry) corrected_odometry.twist.twist.linear.x = corrected_linear[0][0] corrected_odometry.twist.twist.linear.y = corrected_linear[1][0] corrected_odometry.twist.twist.linear.z = corrected_linear[2][0] corrected_odometry.twist.twist.angular.x = corrected_angular[0][0] corrected_odometry.twist.twist.angular.y = corrected_angular[1][0] corrected_odometry.twist.twist.angular.z = corrected_angular[2][0] return corrected_odometry def GetOdomFromState(state, spot_wrapper, use_vision=True): """Maps odometry data from robot state proto to ROS Odometry message WARNING: The odometry twist from this message is in the odom frame and not in the body frame. This will likely cause issues. You should use the odometry_corrected topic instead Args: state: Robot State proto spot_wrapper: A SpotWrapper object use_vision: If true, the odometry frame will be vision rather than odom Returns: Odometry message """ odom_msg = Odometry() local_time = spot_wrapper.robotToLocalTime( state.kinematic_state.acquisition_timestamp ) odom_msg.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) if use_vision == True: odom_msg.header.frame_id = "vision" tform_body = get_vision_tform_body(state.kinematic_state.transforms_snapshot) else: odom_msg.header.frame_id = "odom" tform_body = get_odom_tform_body(state.kinematic_state.transforms_snapshot) odom_msg.child_frame_id = "body" pose_odom_msg = PoseWithCovariance() pose_odom_msg.pose.position.x = tform_body.position.x pose_odom_msg.pose.position.y = tform_body.position.y pose_odom_msg.pose.position.z = tform_body.position.z pose_odom_msg.pose.orientation.x = tform_body.rotation.x pose_odom_msg.pose.orientation.y = tform_body.rotation.y pose_odom_msg.pose.orientation.z = tform_body.rotation.z pose_odom_msg.pose.orientation.w = tform_body.rotation.w odom_msg.pose = pose_odom_msg twist_odom_msg = GetOdomTwistFromState(state, spot_wrapper).twist odom_msg.twist = twist_odom_msg return odom_msg def GetWifiFromState(state, spot_wrapper): """Maps wireless state data from robot state proto to ROS WiFiState message Args: data: Robot State proto spot_wrapper: A SpotWrapper object Returns: WiFiState message """ wifi_msg = WiFiState() for comm_state in state.comms_states: if comm_state.HasField("wifi_state"): wifi_msg.current_mode = comm_state.wifi_state.current_mode wifi_msg.essid = comm_state.wifi_state.essid return wifi_msg def generate_feet_tf(foot_states_msg): """ Generate a tf message containing information about foot states Args: foot_states_msg: FootStateArray message containing the foot states from the robot state Returns: tf message with foot states """ foot_ordering = ["front_left", "front_right", "rear_left", "rear_right"] foot_tfs = TFMessage() time_now = rospy.Time.now() for idx, foot_state in enumerate(foot_states_msg.states): foot_transform = Transform() # Rotation of the foot is not given foot_transform.rotation.w = 1 foot_transform.translation.x = foot_state.foot_position_rt_body.x foot_transform.translation.y = foot_state.foot_position_rt_body.y foot_transform.translation.z = foot_state.foot_position_rt_body.z foot_tfs.transforms.append( populateTransformStamped( time_now, "body", foot_ordering[idx] + "_foot", foot_transform ) ) return foot_tfs def GetTFFromState(state, spot_wrapper, inverse_target_frame): """Maps robot link state data from robot state proto to ROS TFMessage message Args: data: Robot State proto spot_wrapper: A SpotWrapper object inverse_target_frame: A frame name to be inversed to a parent frame. Returns: TFMessage message """ tf_msg = TFMessage() for ( frame_name ) in state.kinematic_state.transforms_snapshot.child_to_parent_edge_map: if state.kinematic_state.transforms_snapshot.child_to_parent_edge_map.get( frame_name ).parent_frame_name: try: transform = state.kinematic_state.transforms_snapshot.child_to_parent_edge_map.get( frame_name ) local_time = spot_wrapper.robotToLocalTime( state.kinematic_state.acquisition_timestamp ) tf_time = rospy.Time(local_time.seconds, local_time.nanos) if inverse_target_frame == frame_name: geo_tform_inversed = SE3Pose.from_obj( transform.parent_tform_child ).inverse() new_tf = populateTransformStamped( tf_time, frame_name, transform.parent_frame_name, geo_tform_inversed, ) else: new_tf = populateTransformStamped( tf_time, transform.parent_frame_name, frame_name, transform.parent_tform_child, ) tf_msg.transforms.append(new_tf) except Exception as e: spot_wrapper.logger.error("Error: {}".format(e)) return tf_msg def GetBatteryStatesFromState(state, spot_wrapper): """Maps battery state data from robot state proto to ROS BatteryStateArray message Args: data: Robot State proto spot_wrapper: A SpotWrapper object Returns: BatteryStateArray message """ battery_states_array_msg = BatteryStateArray() for battery in state.battery_states: battery_msg = BatteryState() local_time = spot_wrapper.robotToLocalTime(battery.timestamp) battery_msg.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) battery_msg.identifier = battery.identifier battery_msg.charge_percentage = battery.charge_percentage.value battery_msg.estimated_runtime = rospy.Time( battery.estimated_runtime.seconds, battery.estimated_runtime.nanos ) battery_msg.current = battery.current.value battery_msg.voltage = battery.voltage.value for temp in battery.temperatures: battery_msg.temperatures.append(temp) battery_msg.status = battery.status battery_states_array_msg.battery_states.append(battery_msg) return battery_states_array_msg def GetPowerStatesFromState(state, spot_wrapper): """Maps power state data from robot state proto to ROS PowerState message Args: data: Robot State proto spot_wrapper: A SpotWrapper object Returns: PowerState message """ power_state_msg = PowerState() local_time = spot_wrapper.robotToLocalTime(state.power_state.timestamp) power_state_msg.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) power_state_msg.motor_power_state = state.power_state.motor_power_state power_state_msg.shore_power_state = state.power_state.shore_power_state power_state_msg.locomotion_charge_percentage = ( state.power_state.locomotion_charge_percentage.value ) power_state_msg.locomotion_estimated_runtime = rospy.Time( state.power_state.locomotion_estimated_runtime.seconds, state.power_state.locomotion_estimated_runtime.nanos, ) return power_state_msg def GetDockStatesFromState(state): """Maps dock state data from robot state proto to ROS DockState message Args: state: Robot State proto Returns: DockState message """ dock_state_msg = DockState() dock_state_msg.status = state.status dock_state_msg.dock_type = state.dock_type dock_state_msg.dock_id = state.dock_id dock_state_msg.power_status = state.power_status return dock_state_msg def getBehaviorFaults(behavior_faults, spot_wrapper): """Helper function to strip out behavior faults into a list Args: behavior_faults: List of BehaviorFaults spot_wrapper: A SpotWrapper object Returns: List of BehaviorFault messages """ faults = [] for fault in behavior_faults: new_fault = BehaviorFault() new_fault.behavior_fault_id = fault.behavior_fault_id local_time = spot_wrapper.robotToLocalTime(fault.onset_timestamp) new_fault.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) new_fault.cause = fault.cause new_fault.status = fault.status faults.append(new_fault) return faults def getSystemFaults(system_faults, spot_wrapper): """Helper function to strip out system faults into a list Args: systen_faults: List of SystemFaults spot_wrapper: A SpotWrapper object Returns: List of SystemFault messages """ faults = [] for fault in system_faults: new_fault = SystemFault() new_fault.name = fault.name local_time = spot_wrapper.robotToLocalTime(fault.onset_timestamp) new_fault.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) new_fault.duration = rospy.Time(fault.duration.seconds, fault.duration.nanos) new_fault.code = fault.code new_fault.uid = fault.uid new_fault.error_message = fault.error_message for att in fault.attributes: new_fault.attributes.append(att) new_fault.severity = fault.severity faults.append(new_fault) return faults def GetSystemFaultsFromState(state, spot_wrapper): """Maps system fault data from robot state proto to ROS SystemFaultState message Args: data: Robot State proto spot_wrapper: A SpotWrapper object Returns: SystemFaultState message """ system_fault_state_msg = SystemFaultState() system_fault_state_msg.faults = getSystemFaults( state.system_fault_state.faults, spot_wrapper ) system_fault_state_msg.historical_faults = getSystemFaults( state.system_fault_state.historical_faults, spot_wrapper ) return system_fault_state_msg def getBehaviorFaultsFromState(state, spot_wrapper): """Maps behavior fault data from robot state proto to ROS BehaviorFaultState message Args: data: Robot State proto spot_wrapper: A SpotWrapper object Returns: BehaviorFaultState message """ behavior_fault_state_msg = BehaviorFaultState() behavior_fault_state_msg.faults = getBehaviorFaults( state.behavior_fault_state.faults, spot_wrapper ) return behavior_fault_state_msg
26,982
Python
35.963014
116
0.662812
renanmb/Omniverse_legged_robotics/URDF-Descriptions/BostonDynamics/spot_ros/docs/conf.py
# -*- coding: utf-8 -*- import os import sys import xml.etree.ElementTree as etree sys.path.insert(0, os.path.abspath(os.path.dirname(__file__))) extensions = [ "sphinx.ext.autodoc", "sphinx.ext.doctest", "sphinx.ext.viewcode", ] source_suffix = ".rst" master_doc = "index" project = "Spot ROS User Documentation" copyright = "2020, Clearpath Robotics, 2023 Oxford Robotics Institute" # Get version number from package.xml. tree = etree.parse("../spot_driver/package.xml") version = tree.find("version").text release = version # .. html_theme = 'nature' # .. html_theme_path = ["."] html_theme = "sphinx_rtd_theme" html_theme_path = ["."] html_sidebars = {"**": ["sidebartoc.html", "sourcelink.html", "searchbox.html"]} # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. html_show_sphinx = False # The name of an image file (relative to this directory) to place at the top # of the sidebar. # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ( master_doc, "SpotROSUserDocumentation.tex", "Spot ROS User Documentation", "Dave Niewinski, Michal Staniaszek", "manual", ), ]
1,895
Python
25.333333
80
0.636939
renanmb/Omniverse_legged_robotics/URDF-Descriptions/BostonDynamics/spot_ros-CHAMP/spot_driver/scripts/__init__.py
import spot_ros import spot_wrapper.py import ros_helpers.py
61
Python
14.499996
22
0.819672
renanmb/Omniverse_legged_robotics/URDF-Descriptions/BostonDynamics/spot_ros-CHAMP/spot_driver/scripts/spot_ros.py
#!/usr/bin/env python3 import rospy from std_srvs.srv import Trigger, TriggerResponse from std_msgs.msg import Bool from tf2_msgs.msg import TFMessage from geometry_msgs.msg import TransformStamped from sensor_msgs.msg import Image, CameraInfo from sensor_msgs.msg import JointState from geometry_msgs.msg import TwistWithCovarianceStamped, Twist, Pose from bosdyn.api.geometry_pb2 import Quaternion import bosdyn.geometry from spot_msgs.msg import Metrics from spot_msgs.msg import LeaseArray, LeaseResource from spot_msgs.msg import FootState, FootStateArray from spot_msgs.msg import EStopState, EStopStateArray from spot_msgs.msg import WiFiState from spot_msgs.msg import PowerState from spot_msgs.msg import BehaviorFault, BehaviorFaultState from spot_msgs.msg import SystemFault, SystemFaultState from spot_msgs.msg import BatteryState, BatteryStateArray from spot_msgs.msg import Feedback from ros_helpers import * from spot_wrapper import SpotWrapper import logging class SpotROS(): """Parent class for using the wrapper. Defines all callbacks and keeps the wrapper alive""" def __init__(self): self.spot_wrapper = None self.callbacks = {} """Dictionary listing what callback to use for what data task""" self.callbacks["robot_state"] = self.RobotStateCB self.callbacks["metrics"] = self.MetricsCB self.callbacks["lease"] = self.LeaseCB self.callbacks["front_image"] = self.FrontImageCB self.callbacks["side_image"] = self.SideImageCB self.callbacks["rear_image"] = self.RearImageCB def RobotStateCB(self, results): """Callback for when the Spot Wrapper gets new robot state data. Args: results: FutureWrapper object of AsyncPeriodicQuery callback """ state = self.spot_wrapper.robot_state if state: ## joint states ## joint_state = GetJointStatesFromState(state, self.spot_wrapper) self.joint_state_pub.publish(joint_state) ## TF ## tf_msg = GetTFFromState(state, self.spot_wrapper) if len(tf_msg.transforms) > 0: self.tf_pub.publish(tf_msg) # Odom Twist # twist_odom_msg = GetOdomTwistFromState(state, self.spot_wrapper) self.odom_twist_pub.publish(twist_odom_msg) # Feet # foot_array_msg = GetFeetFromState(state, self.spot_wrapper) self.feet_pub.publish(foot_array_msg) # EStop # estop_array_msg = GetEStopStateFromState(state, self.spot_wrapper) self.estop_pub.publish(estop_array_msg) # WIFI # wifi_msg = GetWifiFromState(state, self.spot_wrapper) self.wifi_pub.publish(wifi_msg) # Battery States # battery_states_array_msg = GetBatteryStatesFromState(state, self.spot_wrapper) self.battery_pub.publish(battery_states_array_msg) # Power State # power_state_msg = GetPowerStatesFromState(state, self.spot_wrapper) self.power_pub.publish(power_state_msg) # System Faults # system_fault_state_msg = GetSystemFaultsFromState(state, self.spot_wrapper) self.system_faults_pub.publish(system_fault_state_msg) # Behavior Faults # behavior_fault_state_msg = getBehaviorFaultsFromState(state, self.spot_wrapper) self.behavior_faults_pub.publish(behavior_fault_state_msg) def MetricsCB(self, results): """Callback for when the Spot Wrapper gets new metrics data. Args: results: FutureWrapper object of AsyncPeriodicQuery callback """ metrics = self.spot_wrapper.metrics if metrics: metrics_msg = Metrics() local_time = self.spot_wrapper.robotToLocalTime(metrics.timestamp) metrics_msg.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) for metric in metrics.metrics: if metric.label == "distance": metrics_msg.distance = metric.float_value if metric.label == "gait cycles": metrics_msg.gait_cycles = metric.int_value if metric.label == "time moving": metrics_msg.time_moving = rospy.Time(metric.duration.seconds, metric.duration.nanos) if metric.label == "electric power": metrics_msg.electric_power = rospy.Time(metric.duration.seconds, metric.duration.nanos) self.metrics_pub.publish(metrics_msg) def LeaseCB(self, results): """Callback for when the Spot Wrapper gets new lease data. Args: results: FutureWrapper object of AsyncPeriodicQuery callback """ lease_array_msg = LeaseArray() lease_list = self.spot_wrapper.lease if lease_list: for resource in lease_list: new_resource = LeaseResource() new_resource.resource = resource.resource new_resource.lease.resource = resource.lease.resource new_resource.lease.epoch = resource.lease.epoch for seq in resource.lease.sequence: new_resource.lease.sequence.append(seq) new_resource.lease_owner.client_name = resource.lease_owner.client_name new_resource.lease_owner.user_name = resource.lease_owner.user_name lease_array_msg.resources.append(new_resource) self.lease_pub.publish(lease_array_msg) def FrontImageCB(self, results): """Callback for when the Spot Wrapper gets new front image data. Args: results: FutureWrapper object of AsyncPeriodicQuery callback """ data = self.spot_wrapper.front_images if data: image_msg0, camera_info_msg0, camera_tf_msg0 = getImageMsg(data[0], self.spot_wrapper) self.frontleft_image_pub.publish(image_msg0) self.frontleft_image_info_pub.publish(camera_info_msg0) self.tf_pub.publish(camera_tf_msg0) image_msg1, camera_info_msg1, camera_tf_msg1 = getImageMsg(data[1], self.spot_wrapper) self.frontright_image_pub.publish(image_msg1) self.frontright_image_info_pub.publish(camera_info_msg1) self.tf_pub.publish(camera_tf_msg1) image_msg2, camera_info_msg2, camera_tf_msg2 = getImageMsg(data[2], self.spot_wrapper) self.frontleft_depth_pub.publish(image_msg2) self.frontleft_depth_info_pub.publish(camera_info_msg2) self.tf_pub.publish(camera_tf_msg2) image_msg3, camera_info_msg3, camera_tf_msg3 = getImageMsg(data[3], self.spot_wrapper) self.frontright_depth_pub.publish(image_msg3) self.frontright_depth_info_pub.publish(camera_info_msg3) self.tf_pub.publish(camera_tf_msg3) def SideImageCB(self, results): """Callback for when the Spot Wrapper gets new side image data. Args: results: FutureWrapper object of AsyncPeriodicQuery callback """ data = self.spot_wrapper.side_images if data: image_msg0, camera_info_msg0, camera_tf_msg0 = getImageMsg(data[0], self.spot_wrapper) self.left_image_pub.publish(image_msg0) self.left_image_info_pub.publish(camera_info_msg0) self.tf_pub.publish(camera_tf_msg0) image_msg1, camera_info_msg1, camera_tf_msg1 = getImageMsg(data[1], self.spot_wrapper) self.right_image_pub.publish(image_msg1) self.right_image_info_pub.publish(camera_info_msg1) self.tf_pub.publish(camera_tf_msg1) image_msg2, camera_info_msg2, camera_tf_msg2 = getImageMsg(data[2], self.spot_wrapper) self.left_depth_pub.publish(image_msg2) self.left_depth_info_pub.publish(camera_info_msg2) self.tf_pub.publish(camera_tf_msg2) image_msg3, camera_info_msg3, camera_tf_msg3 = getImageMsg(data[3], self.spot_wrapper) self.right_depth_pub.publish(image_msg3) self.right_depth_info_pub.publish(camera_info_msg3) self.tf_pub.publish(camera_tf_msg3) def RearImageCB(self, results): """Callback for when the Spot Wrapper gets new rear image data. Args: results: FutureWrapper object of AsyncPeriodicQuery callback """ data = self.spot_wrapper.rear_images if data: mage_msg0, camera_info_msg0, camera_tf_msg0 = getImageMsg(data[0], self.spot_wrapper) self.back_image_pub.publish(mage_msg0) self.back_image_info_pub.publish(camera_info_msg0) self.tf_pub.publish(camera_tf_msg0) mage_msg1, camera_info_msg1, camera_tf_msg1 = getImageMsg(data[1], self.spot_wrapper) self.back_depth_pub.publish(mage_msg1) self.back_depth_info_pub.publish(camera_info_msg1) self.tf_pub.publish(camera_tf_msg1) def handle_claim(self, req): """ROS service handler for the claim service""" resp = self.spot_wrapper.claim() return TriggerResponse(resp[0], resp[1]) def handle_release(self, req): """ROS service handler for the release service""" resp = self.spot_wrapper.release() return TriggerResponse(resp[0], resp[1]) def handle_stop(self, req): """ROS service handler for the stop service""" resp = self.spot_wrapper.stop() return TriggerResponse(resp[0], resp[1]) def handle_self_right(self, req): """ROS service handler for the self-right service""" resp = self.spot_wrapper.self_right() return TriggerResponse(resp[0], resp[1]) def handle_sit(self, req): """ROS service handler for the sit service""" resp = self.spot_wrapper.sit() return TriggerResponse(resp[0], resp[1]) def handle_stand(self, req): """ROS service handler for the stand service""" resp = self.spot_wrapper.stand() return TriggerResponse(resp[0], resp[1]) def handle_power_on(self, req): """ROS service handler for the power-on service""" resp = self.spot_wrapper.power_on() return TriggerResponse(resp[0], resp[1]) def handle_safe_power_off(self, req): """ROS service handler for the safe-power-off service""" resp = self.spot_wrapper.safe_power_off() return TriggerResponse(resp[0], resp[1]) def handle_estop_hard(self, req): """ROS service handler to hard-eStop the robot. The robot will immediately cut power to the motors""" resp = self.spot_wrapper.assertEStop(True) return TriggerResponse(resp[0], resp[1]) def handle_estop_soft(self, req): """ROS service handler to soft-eStop the robot. The robot will try to settle on the ground before cutting power to the motors""" resp = self.spot_wrapper.assertEStop(False) return TriggerResponse(resp[0], resp[1]) def cmdVelCallback(self, data): """Callback for cmd_vel command""" self.spot_wrapper.velocity_cmd(data.linear.x, data.linear.y, data.angular.z) def bodyPoseCallback(self, data): """Callback for cmd_vel command""" q = Quaternion() q.x = data.orientation.x q.y = data.orientation.y q.z = data.orientation.z q.w = data.orientation.w euler_zxy = q.to_euler_zxy() self.spot_wrapper.set_mobility_params(data.position.z, euler_zxy) def shutdown(self): rospy.loginfo("Shutting down ROS driver for Spot") self.spot_wrapper.sit() rospy.Rate(0.25).sleep() self.spot_wrapper.disconnect() def main(self): """Main function for the SpotROS class. Gets config from ROS and initializes the wrapper. Holds lease from wrapper and updates all async tasks at the ROS rate""" rospy.init_node('spot_ros', anonymous=True) rate = rospy.Rate(50) self.rates = rospy.get_param('~rates', {}) self.username = rospy.get_param('~username', 'default_value') self.password = rospy.get_param('~password', 'default_value') self.app_token = rospy.get_param('~app_token', 'default_value') self.hostname = rospy.get_param('~hostname', 'default_value') self.motion_deadzone = rospy.get_param('~deadzone', 0.05) self.logger = logging.getLogger('rosout') rospy.loginfo("Starting ROS driver for Spot") self.spot_wrapper = SpotWrapper(self.username, self.password, self.app_token, self.hostname, self.logger, self.rates, self.callbacks) if self.spot_wrapper.is_valid: # Images # self.back_image_pub = rospy.Publisher('camera/back/image', Image, queue_size=10) self.frontleft_image_pub = rospy.Publisher('camera/frontleft/image', Image, queue_size=10) self.frontright_image_pub = rospy.Publisher('camera/frontright/image', Image, queue_size=10) self.left_image_pub = rospy.Publisher('camera/left/image', Image, queue_size=10) self.right_image_pub = rospy.Publisher('camera/right/image', Image, queue_size=10) # Depth # self.back_depth_pub = rospy.Publisher('depth/back/image', Image, queue_size=10) self.frontleft_depth_pub = rospy.Publisher('depth/frontleft/image', Image, queue_size=10) self.frontright_depth_pub = rospy.Publisher('depth/frontright/image', Image, queue_size=10) self.left_depth_pub = rospy.Publisher('depth/left/image', Image, queue_size=10) self.right_depth_pub = rospy.Publisher('depth/right/image', Image, queue_size=10) # Image Camera Info # self.back_image_info_pub = rospy.Publisher('camera/back/camera_info', CameraInfo, queue_size=10) self.frontleft_image_info_pub = rospy.Publisher('camera/frontleft/camera_info', CameraInfo, queue_size=10) self.frontright_image_info_pub = rospy.Publisher('camera/frontright/camera_info', CameraInfo, queue_size=10) self.left_image_info_pub = rospy.Publisher('camera/left/camera_info', CameraInfo, queue_size=10) self.right_image_info_pub = rospy.Publisher('camera/right/camera_info', CameraInfo, queue_size=10) # Depth Camera Info # self.back_depth_info_pub = rospy.Publisher('depth/back/camera_info', CameraInfo, queue_size=10) self.frontleft_depth_info_pub = rospy.Publisher('depth/frontleft/camera_info', CameraInfo, queue_size=10) self.frontright_depth_info_pub = rospy.Publisher('depth/frontright/camera_info', CameraInfo, queue_size=10) self.left_depth_info_pub = rospy.Publisher('depth/left/camera_info', CameraInfo, queue_size=10) self.right_depth_info_pub = rospy.Publisher('depth/right/camera_info', CameraInfo, queue_size=10) # Status Publishers # self.joint_state_pub = rospy.Publisher('joint_states', JointState, queue_size=10) """Defining a TF publisher manually because of conflicts between Python3 and tf""" self.tf_pub = rospy.Publisher('tf', TFMessage, queue_size=10) self.metrics_pub = rospy.Publisher('status/metrics', Metrics, queue_size=10) self.lease_pub = rospy.Publisher('status/leases', LeaseArray, queue_size=10) self.odom_twist_pub = rospy.Publisher('odometry/twist', TwistWithCovarianceStamped, queue_size=10) self.feet_pub = rospy.Publisher('status/feet', FootStateArray, queue_size=10) self.estop_pub = rospy.Publisher('status/estop', EStopStateArray, queue_size=10) self.wifi_pub = rospy.Publisher('status/wifi', WiFiState, queue_size=10) self.power_pub = rospy.Publisher('status/power_state', PowerState, queue_size=10) self.battery_pub = rospy.Publisher('status/battery_states', BatteryStateArray, queue_size=10) self.behavior_faults_pub = rospy.Publisher('status/behavior_faults', BehaviorFaultState, queue_size=10) self.system_faults_pub = rospy.Publisher('status/system_faults', SystemFaultState, queue_size=10) self.feedback_pub = rospy.Publisher('status/feedback', Feedback, queue_size=10) rospy.Subscriber('cmd_vel', Twist, self.cmdVelCallback) rospy.Subscriber('body_pose', Pose, self.bodyPoseCallback) rospy.Service("claim", Trigger, self.handle_claim) rospy.Service("release", Trigger, self.handle_release) rospy.Service("stop", Trigger, self.handle_stop) rospy.Service("self_right", Trigger, self.handle_self_right) rospy.Service("sit", Trigger, self.handle_sit) rospy.Service("stand", Trigger, self.handle_stand) rospy.Service("power_on", Trigger, self.handle_power_on) rospy.Service("power_off", Trigger, self.handle_safe_power_off) rospy.Service("estop/hard", Trigger, self.handle_estop_hard) rospy.Service("estop/gentle", Trigger, self.handle_estop_soft) rospy.on_shutdown(self.shutdown) self.spot_wrapper.resetEStop() self.auto_claim = rospy.get_param('~auto_claim', False) self.auto_power_on = rospy.get_param('~auto_power_on', False) self.auto_stand = rospy.get_param('~auto_stand', False) if self.auto_claim: self.spot_wrapper.claim() if self.auto_power_on: self.spot_wrapper.power_on() if self.auto_stand: self.spot_wrapper.stand() while not rospy.is_shutdown(): self.spot_wrapper.updateTasks() feedback_msg = Feedback() feedback_msg.standing = self.spot_wrapper.is_standing feedback_msg.sitting = self.spot_wrapper.is_sitting feedback_msg.moving = self.spot_wrapper.is_moving id = self.spot_wrapper.id try: feedback_msg.serial_number = id.serial_number feedback_msg.species = id.species feedback_msg.version = id.version feedback_msg.nickname = id.nickname feedback_msg.computer_serial_number = id.computer_serial_number except: pass self.feedback_pub.publish(feedback_msg) rate.sleep() if __name__ == "__main__": SR = SpotROS() SR.main()
18,644
Python
46.202532
171
0.637041
renanmb/Omniverse_legged_robotics/URDF-Descriptions/BostonDynamics/spot_ros-CHAMP/spot_driver/scripts/ros_helpers.py
import rospy from std_msgs.msg import Empty from tf2_msgs.msg import TFMessage from geometry_msgs.msg import TransformStamped from sensor_msgs.msg import Image, CameraInfo from sensor_msgs.msg import JointState from geometry_msgs.msg import TwistWithCovarianceStamped from spot_msgs.msg import Metrics from spot_msgs.msg import LeaseArray, LeaseResource from spot_msgs.msg import FootState, FootStateArray from spot_msgs.msg import EStopState, EStopStateArray from spot_msgs.msg import WiFiState from spot_msgs.msg import PowerState from spot_msgs.msg import BehaviorFault, BehaviorFaultState from spot_msgs.msg import SystemFault, SystemFaultState from spot_msgs.msg import BatteryState, BatteryStateArray from bosdyn.api import image_pb2 friendly_joint_names = {} """Dictionary for mapping BD joint names to more friendly names""" friendly_joint_names["fl.hx"] = "front_left_hip_x" friendly_joint_names["fl.hy"] = "front_left_hip_y" friendly_joint_names["fl.kn"] = "front_left_knee" friendly_joint_names["fr.hx"] = "front_right_hip_x" friendly_joint_names["fr.hy"] = "front_right_hip_y" friendly_joint_names["fr.kn"] = "front_right_knee" friendly_joint_names["hl.hx"] = "rear_left_hip_x" friendly_joint_names["hl.hy"] = "rear_left_hip_y" friendly_joint_names["hl.kn"] = "rear_left_knee" friendly_joint_names["hr.hx"] = "rear_right_hip_x" friendly_joint_names["hr.hy"] = "rear_right_hip_y" friendly_joint_names["hr.kn"] = "rear_right_knee" class DefaultCameraInfo(CameraInfo): """Blank class extending CameraInfo ROS topic that defaults most parameters""" def __init__(self): super().__init__() self.distortion_model = "plumb_bob" self.D.append(0) self.D.append(0) self.D.append(0) self.D.append(0) self.D.append(0) self.K[1] = 0 self.K[3] = 0 self.K[6] = 0 self.K[7] = 0 self.K[8] = 1 self.R[0] = 1 self.R[1] = 0 self.R[2] = 0 self.R[3] = 0 self.R[4] = 1 self.R[5] = 0 self.R[6] = 0 self.R[7] = 0 self.R[8] = 1 self.P[1] = 0 self.P[3] = 0 self.P[4] = 0 self.P[7] = 0 self.P[8] = 0 self.P[9] = 0 self.P[10] = 1 self.P[11] = 0 def getImageMsg(data, spot_wrapper): """Takes the image, camera, and TF data and populates the necessary ROS messages Args: data: Image proto spot_wrapper: A SpotWrapper object Returns: (tuple): * Image: message of the image captured * CameraInfo: message to define the state and config of the camera that took the image * TFMessage: with the transforms necessary to locate the image frames """ tf_msg = TFMessage() for frame_name in data.shot.transforms_snapshot.child_to_parent_edge_map: if data.shot.transforms_snapshot.child_to_parent_edge_map.get(frame_name).parent_frame_name: transform = data.shot.transforms_snapshot.child_to_parent_edge_map.get(frame_name) new_tf = TransformStamped() local_time = spot_wrapper.robotToLocalTime(data.shot.acquisition_time) new_tf.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) new_tf.header.frame_id = transform.parent_frame_name new_tf.child_frame_id = frame_name new_tf.transform.translation.x = transform.parent_tform_child.position.x new_tf.transform.translation.y = transform.parent_tform_child.position.y new_tf.transform.translation.z = transform.parent_tform_child.position.z new_tf.transform.rotation.x = transform.parent_tform_child.rotation.x new_tf.transform.rotation.y = transform.parent_tform_child.rotation.y new_tf.transform.rotation.z = transform.parent_tform_child.rotation.z new_tf.transform.rotation.w = transform.parent_tform_child.rotation.w tf_msg.transforms.append(new_tf) image_msg = Image() local_time = spot_wrapper.robotToLocalTime(data.shot.acquisition_time) image_msg.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) image_msg.header.frame_id = data.shot.frame_name_image_sensor image_msg.height = data.shot.image.rows image_msg.width = data.shot.image.cols # Color/greyscale formats. # JPEG format if data.shot.image.format == image_pb2.Image.FORMAT_JPEG: image_msg.encoding = "rgb8" image_msg.is_bigendian = True image_msg.step = 3 * data.shot.image.cols image_msg.data = data.shot.image.data # Uncompressed. Requires pixel_format. if data.shot.image.format == image_pb2.Image.FORMAT_RAW: # One byte per pixel. if data.shot.image.pixel_format == image_pb2.Image.PIXEL_FORMAT_GREYSCALE_U8: image_msg.encoding = "mono8" image_msg.is_bigendian = True image_msg.step = data.shot.image.cols image_msg.data = data.shot.image.data # Three bytes per pixel. if data.shot.image.pixel_format == image_pb2.Image.PIXEL_FORMAT_RGB_U8: image_msg.encoding = "rgb8" image_msg.is_bigendian = True image_msg.step = 3 * data.shot.image.cols image_msg.data = data.shot.image.data # Four bytes per pixel. if data.shot.image.pixel_format == image_pb2.Image.PIXEL_FORMAT_RGBA_U8: image_msg.encoding = "rgba8" image_msg.is_bigendian = True image_msg.step = 4 * data.shot.image.cols image_msg.data = data.shot.image.data # Little-endian uint16 z-distance from camera (mm). if data.shot.image.pixel_format == image_pb2.Image.PIXEL_FORMAT_DEPTH_U16: image_msg.encoding = "mono16" image_msg.is_bigendian = False image_msg.step = 2 * data.shot.image.cols image_msg.data = data.shot.image.data camera_info_msg = DefaultCameraInfo() local_time = spot_wrapper.robotToLocalTime(data.shot.acquisition_time) camera_info_msg.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) camera_info_msg.header.frame_id = data.shot.frame_name_image_sensor camera_info_msg.height = data.shot.image.rows camera_info_msg.width = data.shot.image.cols camera_info_msg.K[0] = data.source.pinhole.intrinsics.focal_length.x camera_info_msg.K[2] = data.source.pinhole.intrinsics.principal_point.x camera_info_msg.K[4] = data.source.pinhole.intrinsics.focal_length.y camera_info_msg.K[5] = data.source.pinhole.intrinsics.principal_point.y camera_info_msg.P[0] = data.source.pinhole.intrinsics.focal_length.x camera_info_msg.P[2] = data.source.pinhole.intrinsics.principal_point.x camera_info_msg.P[5] = data.source.pinhole.intrinsics.focal_length.y camera_info_msg.P[6] = data.source.pinhole.intrinsics.principal_point.y return image_msg, camera_info_msg, tf_msg def GetJointStatesFromState(state, spot_wrapper): """Maps joint state data from robot state proto to ROS JointState message Args: data: Robot State proto spot_wrapper: A SpotWrapper object Returns: JointState message """ joint_state = JointState() local_time = spot_wrapper.robotToLocalTime(state.kinematic_state.acquisition_timestamp) joint_state.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) for joint in state.kinematic_state.joint_states: joint_state.name.append(friendly_joint_names.get(joint.name, "ERROR")) joint_state.position.append(joint.position.value) joint_state.velocity.append(joint.velocity.value) joint_state.effort.append(joint.load.value) return joint_state def GetEStopStateFromState(state, spot_wrapper): """Maps eStop state data from robot state proto to ROS EStopArray message Args: data: Robot State proto spot_wrapper: A SpotWrapper object Returns: EStopArray message """ estop_array_msg = EStopStateArray() for estop in state.estop_states: estop_msg = EStopState() local_time = spot_wrapper.robotToLocalTime(estop.timestamp) estop_msg.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) estop_msg.name = estop.name estop_msg.type = estop.type estop_msg.state = estop.state estop_array_msg.estop_states.append(estop_msg) return estop_array_msg def GetFeetFromState(state, spot_wrapper): """Maps foot position state data from robot state proto to ROS FootStateArray message Args: data: Robot State proto spot_wrapper: A SpotWrapper object Returns: FootStateArray message """ foot_array_msg = FootStateArray() for foot in state.foot_state: foot_msg = FootState() foot_msg.foot_position_rt_body.x = foot.foot_position_rt_body.x foot_msg.foot_position_rt_body.y = foot.foot_position_rt_body.y foot_msg.foot_position_rt_body.z = foot.foot_position_rt_body.z foot_msg.contact = foot.contact foot_array_msg.states.append(foot_msg) return foot_array_msg def GetOdomTwistFromState(state, spot_wrapper): """Maps odometry data from robot state proto to ROS TwistWithCovarianceStamped message Args: data: Robot State proto spot_wrapper: A SpotWrapper object Returns: TwistWithCovarianceStamped message """ twist_odom_msg = TwistWithCovarianceStamped() local_time = spot_wrapper.robotToLocalTime(state.kinematic_state.acquisition_timestamp) twist_odom_msg.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) twist_odom_msg.twist.twist.linear.x = state.kinematic_state.velocity_of_body_in_odom.linear.x twist_odom_msg.twist.twist.linear.y = state.kinematic_state.velocity_of_body_in_odom.linear.y twist_odom_msg.twist.twist.linear.z = state.kinematic_state.velocity_of_body_in_odom.linear.z twist_odom_msg.twist.twist.angular.x = state.kinematic_state.velocity_of_body_in_odom.angular.x twist_odom_msg.twist.twist.angular.y = state.kinematic_state.velocity_of_body_in_odom.angular.y twist_odom_msg.twist.twist.angular.z = state.kinematic_state.velocity_of_body_in_odom.angular.z return twist_odom_msg def GetWifiFromState(state, spot_wrapper): """Maps wireless state data from robot state proto to ROS WiFiState message Args: data: Robot State proto spot_wrapper: A SpotWrapper object Returns: WiFiState message """ wifi_msg = WiFiState() for comm_state in state.comms_states: if comm_state.HasField('wifi_state'): wifi_msg.current_mode = comm_state.wifi_state.current_mode wifi_msg.essid = comm_state.wifi_state.essid return wifi_msg def GetTFFromState(state, spot_wrapper): """Maps robot link state data from robot state proto to ROS TFMessage message Args: data: Robot State proto spot_wrapper: A SpotWrapper object Returns: TFMessage message """ tf_msg = TFMessage() for frame_name in state.kinematic_state.transforms_snapshot.child_to_parent_edge_map: if state.kinematic_state.transforms_snapshot.child_to_parent_edge_map.get(frame_name).parent_frame_name: transform = state.kinematic_state.transforms_snapshot.child_to_parent_edge_map.get(frame_name) new_tf = TransformStamped() local_time = spot_wrapper.robotToLocalTime(state.kinematic_state.acquisition_timestamp) new_tf.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) new_tf.header.frame_id = transform.parent_frame_name new_tf.child_frame_id = frame_name new_tf.transform.translation.x = transform.parent_tform_child.position.x new_tf.transform.translation.y = transform.parent_tform_child.position.y new_tf.transform.translation.z = transform.parent_tform_child.position.z new_tf.transform.rotation.x = transform.parent_tform_child.rotation.x new_tf.transform.rotation.y = transform.parent_tform_child.rotation.y new_tf.transform.rotation.z = transform.parent_tform_child.rotation.z new_tf.transform.rotation.w = transform.parent_tform_child.rotation.w tf_msg.transforms.append(new_tf) return tf_msg def GetBatteryStatesFromState(state, spot_wrapper): """Maps battery state data from robot state proto to ROS BatteryStateArray message Args: data: Robot State proto spot_wrapper: A SpotWrapper object Returns: BatteryStateArray message """ battery_states_array_msg = BatteryStateArray() for battery in state.battery_states: battery_msg = BatteryState() local_time = spot_wrapper.robotToLocalTime(battery.timestamp) battery_msg.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) battery_msg.identifier = battery.identifier battery_msg.charge_percentage = battery.charge_percentage.value battery_msg.estimated_runtime = rospy.Time(battery.estimated_runtime.seconds, battery.estimated_runtime.nanos) battery_msg.current = battery.current.value battery_msg.voltage = battery.voltage.value for temp in battery.temperatures: battery_msg.temperatures.append(temp) battery_msg.status = battery.status battery_states_array_msg.battery_states.append(battery_msg) return battery_states_array_msg def GetPowerStatesFromState(state, spot_wrapper): """Maps power state data from robot state proto to ROS PowerState message Args: data: Robot State proto spot_wrapper: A SpotWrapper object Returns: PowerState message """ power_state_msg = PowerState() local_time = spot_wrapper.robotToLocalTime(state.power_state.timestamp) power_state_msg.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) power_state_msg.motor_power_state = state.power_state.motor_power_state power_state_msg.shore_power_state = state.power_state.shore_power_state power_state_msg.locomotion_charge_percentage = state.power_state.locomotion_charge_percentage.value power_state_msg.locomotion_estimated_runtime = rospy.Time(state.power_state.locomotion_estimated_runtime.seconds, state.power_state.locomotion_estimated_runtime.nanos) return power_state_msg def getBehaviorFaults(behavior_faults, spot_wrapper): """Helper function to strip out behavior faults into a list Args: behavior_faults: List of BehaviorFaults spot_wrapper: A SpotWrapper object Returns: List of BehaviorFault messages """ faults = [] for fault in behavior_faults: new_fault = BehaviorFault() new_fault.behavior_fault_id = fault.behavior_fault_id local_time = spot_wrapper.robotToLocalTime(fault.onset_timestamp) new_fault.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) new_fault.cause = fault.cause new_fault.status = fault.status faults.append(new_fault) return faults def getSystemFaults(system_faults, spot_wrapper): """Helper function to strip out system faults into a list Args: systen_faults: List of SystemFaults spot_wrapper: A SpotWrapper object Returns: List of SystemFault messages """ faults = [] for fault in system_faults: new_fault = SystemFault() new_fault.name = fault.name local_time = spot_wrapper.robotToLocalTime(fault.onset_timestamp) new_fault.header.stamp = rospy.Time(local_time.seconds, local_time.nanos) new_fault.duration = rospy.Time(fault.duration.seconds, fault.duration.nanos) new_fault.code = fault.code new_fault.uid = fault.uid new_fault.error_message = fault.error_message for att in fault.attributes: new_fault.attributes.append(att) new_fault.severity = fault.severity faults.append(new_fault) return faults def GetSystemFaultsFromState(state, spot_wrapper): """Maps system fault data from robot state proto to ROS SystemFaultState message Args: data: Robot State proto spot_wrapper: A SpotWrapper object Returns: SystemFaultState message """ system_fault_state_msg = SystemFaultState() system_fault_state_msg.faults = getSystemFaults(state.system_fault_state.faults, spot_wrapper) system_fault_state_msg.historical_faults = getSystemFaults(state.system_fault_state.historical_faults, spot_wrapper) return system_fault_state_msg def getBehaviorFaultsFromState(state, spot_wrapper): """Maps behavior fault data from robot state proto to ROS BehaviorFaultState message Args: data: Robot State proto spot_wrapper: A SpotWrapper object Returns: BehaviorFaultState message """ behavior_fault_state_msg = BehaviorFaultState() behavior_fault_state_msg.faults = getBehaviorFaults(state.behavior_fault_state.faults, spot_wrapper) return behavior_fault_state_msg
17,178
Python
40.098086
171
0.685295
renanmb/Omniverse_legged_robotics/URDF-Descriptions/BostonDynamics/spot_ros-CHAMP/spot_driver/scripts/spot_wrapper.py
import time from bosdyn.client import create_standard_sdk, ResponseError, RpcError from bosdyn.client.async_tasks import AsyncPeriodicQuery, AsyncTasks from bosdyn.geometry import EulerZXY from bosdyn.client.robot_state import RobotStateClient from bosdyn.client.robot_command import RobotCommandClient, RobotCommandBuilder from bosdyn.client.power import PowerClient from bosdyn.client.lease import LeaseClient, LeaseKeepAlive from bosdyn.client.image import ImageClient, build_image_request from bosdyn.api import image_pb2 from bosdyn.client.estop import EstopClient, EstopEndpoint, EstopKeepAlive from bosdyn.client import power import bosdyn.api.robot_state_pb2 as robot_state_proto from bosdyn.api import basic_command_pb2 from google.protobuf.timestamp_pb2 import Timestamp front_image_sources = ['frontleft_fisheye_image', 'frontright_fisheye_image', 'frontleft_depth', 'frontright_depth'] """List of image sources for front image periodic query""" side_image_sources = ['left_fisheye_image', 'right_fisheye_image', 'left_depth', 'right_depth'] """List of image sources for side image periodic query""" rear_image_sources = ['back_fisheye_image', 'back_depth'] """List of image sources for rear image periodic query""" class AsyncRobotState(AsyncPeriodicQuery): """Class to get robot state at regular intervals. get_robot_state_async query sent to the robot at every tick. Callback registered to defined callback function. Attributes: client: The Client to a service on the robot logger: Logger object rate: Rate (Hz) to trigger the query callback: Callback function to call when the results of the query are available """ def __init__(self, client, logger, rate, callback): super(AsyncRobotState, self).__init__("robot-state", client, logger, period_sec=1.0/max(rate, 1.0)) self._callback = None if rate > 0.0: self._callback = callback def _start_query(self): if self._callback: callback_future = self._client.get_robot_state_async() callback_future.add_done_callback(self._callback) return callback_future class AsyncMetrics(AsyncPeriodicQuery): """Class to get robot metrics at regular intervals. get_robot_metrics_async query sent to the robot at every tick. Callback registered to defined callback function. Attributes: client: The Client to a service on the robot logger: Logger object rate: Rate (Hz) to trigger the query callback: Callback function to call when the results of the query are available """ def __init__(self, client, logger, rate, callback): super(AsyncMetrics, self).__init__("robot-metrics", client, logger, period_sec=1.0/max(rate, 1.0)) self._callback = None if rate > 0.0: self._callback = callback def _start_query(self): if self._callback: callback_future = self._client.get_robot_metrics_async() callback_future.add_done_callback(self._callback) return callback_future class AsyncLease(AsyncPeriodicQuery): """Class to get lease state at regular intervals. list_leases_async query sent to the robot at every tick. Callback registered to defined callback function. Attributes: client: The Client to a service on the robot logger: Logger object rate: Rate (Hz) to trigger the query callback: Callback function to call when the results of the query are available """ def __init__(self, client, logger, rate, callback): super(AsyncLease, self).__init__("lease", client, logger, period_sec=1.0/max(rate, 1.0)) self._callback = None if rate > 0.0: self._callback = callback def _start_query(self): if self._callback: callback_future = self._client.list_leases_async() callback_future.add_done_callback(self._callback) return callback_future class AsyncImageService(AsyncPeriodicQuery): """Class to get images at regular intervals. get_image_from_sources_async query sent to the robot at every tick. Callback registered to defined callback function. Attributes: client: The Client to a service on the robot logger: Logger object rate: Rate (Hz) to trigger the query callback: Callback function to call when the results of the query are available """ def __init__(self, client, logger, rate, callback, image_requests): super(AsyncImageService, self).__init__("robot_image_service", client, logger, period_sec=1.0/max(rate, 1.0)) self._callback = None if rate > 0.0: self._callback = callback self._image_requests = image_requests def _start_query(self): if self._callback: callback_future = self._client.get_image_async(self._image_requests) callback_future.add_done_callback(self._callback) return callback_future class AsyncIdle(AsyncPeriodicQuery): """Class to check if the robot is moving, and if not, command a stand with the set mobility parameters Attributes: client: The Client to a service on the robot logger: Logger object rate: Rate (Hz) to trigger the query spot_wrapper: A handle to the wrapper library """ def __init__(self, client, logger, rate, spot_wrapper): super(AsyncIdle, self).__init__("idle", client, logger, period_sec=1.0/rate) self._spot_wrapper = spot_wrapper def _start_query(self): if self._spot_wrapper._last_stand_command != None: self._spot_wrapper._is_sitting = False response = self._client.robot_command_feedback(self._spot_wrapper._last_stand_command) if (response.feedback.mobility_feedback.stand_feedback.status == basic_command_pb2.StandCommand.Feedback.STATUS_IS_STANDING): self._spot_wrapper._is_standing = True self._spot_wrapper._last_stand_command = None else: self._spot_wrapper._is_standing = False if self._spot_wrapper._last_sit_command != None: self._spot_wrapper._is_standing = False response = self._client.robot_command_feedback(self._spot_wrapper._last_sit_command) if (response.feedback.mobility_feedback.sit_feedback.status == basic_command_pb2.SitCommand.Feedback.STATUS_IS_SITTING): self._spot_wrapper._is_sitting = True self._spot_wrapper._last_sit_command = None else: self._spot_wrapper._is_sitting = False is_moving = False if self._spot_wrapper._last_motion_command_time != None: if time.time() < self._spot_wrapper._last_motion_command_time: is_moving = True else: self._spot_wrapper._last_motion_command_time = None if self._spot_wrapper._last_motion_command != None: response = self._client.robot_command_feedback(self._spot_wrapper._last_motion_command) if (response.feedback.mobility_feedback.se2_trajectory_feedback.status == basic_command_pb2.SE2TrajectoryCommand.Feedback.STATUS_GOING_TO_GOAL): is_moving = True else: self._spot_wrapper._last_motion_command = None self._spot_wrapper._is_moving = is_moving if self._spot_wrapper.is_standing and not self._spot_wrapper.is_moving: self._spot_wrapper.stand(False) class SpotWrapper(): """Generic wrapper class to encompass release 1.1.4 API features as well as maintaining leases automatically""" def __init__(self, username, password, token, hostname, logger, rates = {}, callbacks = {}): self._username = username self._password = password self._token = token self._hostname = hostname self._logger = logger self._rates = rates self._callbacks = callbacks self._keep_alive = True self._valid = True self._mobility_params = RobotCommandBuilder.mobility_params() self._is_standing = False self._is_sitting = True self._is_moving = False self._last_stand_command = None self._last_sit_command = None self._last_motion_command = None self._last_motion_command_time = None self._front_image_requests = [] for source in front_image_sources: self._front_image_requests.append(build_image_request(source, image_format=image_pb2.Image.Format.FORMAT_RAW)) self._side_image_requests = [] for source in side_image_sources: self._side_image_requests.append(build_image_request(source, image_format=image_pb2.Image.Format.FORMAT_RAW)) self._rear_image_requests = [] for source in rear_image_sources: self._rear_image_requests.append(build_image_request(source, image_format=image_pb2.Image.Format.FORMAT_RAW)) try: self._sdk = create_standard_sdk('ros_spot') except Exception as e: self._logger.error("Error creating SDK object: %s", e) self._valid = False return try: self._sdk.load_app_token(self._token) except Exception as e: self._logger.error("Error loading developer token: %s", e) self._valid = False return self._robot = self._sdk.create_robot(self._hostname) try: self._robot.authenticate(self._username, self._password) self._robot.start_time_sync() except RpcError as err: self._logger.error("Failed to communicate with robot: %s", err) self._valid = False return if self._robot: # Clients try: self._robot_state_client = self._robot.ensure_client(RobotStateClient.default_service_name) self._robot_command_client = self._robot.ensure_client(RobotCommandClient.default_service_name) self._power_client = self._robot.ensure_client(PowerClient.default_service_name) self._lease_client = self._robot.ensure_client(LeaseClient.default_service_name) self._image_client = self._robot.ensure_client(ImageClient.default_service_name) self._estop_client = self._robot.ensure_client(EstopClient.default_service_name) except Exception as e: self._logger.error("Unable to create client service: %s", e) self._valid = False return # Async Tasks self._async_task_list = [] self._robot_state_task = AsyncRobotState(self._robot_state_client, self._logger, max(0.0, self._rates.get("robot_state", 0.0)), self._callbacks.get("robot_state", lambda:None)) self._robot_metrics_task = AsyncMetrics(self._robot_state_client, self._logger, max(0.0, self._rates.get("metrics", 0.0)), self._callbacks.get("metrics", lambda:None)) self._lease_task = AsyncLease(self._lease_client, self._logger, max(0.0, self._rates.get("lease", 0.0)), self._callbacks.get("lease", lambda:None)) self._front_image_task = AsyncImageService(self._image_client, self._logger, max(0.0, self._rates.get("front_image", 0.0)), self._callbacks.get("front_image", lambda:None), self._front_image_requests) self._side_image_task = AsyncImageService(self._image_client, self._logger, max(0.0, self._rates.get("side_image", 0.0)), self._callbacks.get("side_image", lambda:None), self._side_image_requests) self._rear_image_task = AsyncImageService(self._image_client, self._logger, max(0.0, self._rates.get("rear_image", 0.0)), self._callbacks.get("rear_image", lambda:None), self._rear_image_requests) self._idle_task = AsyncIdle(self._robot_command_client, self._logger, 10.0, self) self._estop_endpoint = EstopEndpoint(self._estop_client, 'ros', 9.0) self._async_tasks = AsyncTasks( [self._robot_state_task, self._robot_metrics_task, self._lease_task, self._front_image_task, self._side_image_task, self._rear_image_task, self._idle_task]) self._robot_id = None self._lease = None @property def is_valid(self): """Return boolean indicating if the wrapper initialized successfully""" return self._valid @property def id(self): """Return robot's ID""" return self._robot_id @property def robot_state(self): """Return latest proto from the _robot_state_task""" return self._robot_state_task.proto @property def metrics(self): """Return latest proto from the _robot_metrics_task""" return self._robot_metrics_task.proto @property def lease(self): """Return latest proto from the _lease_task""" return self._lease_task.proto @property def front_images(self): """Return latest proto from the _front_image_task""" return self._front_image_task.proto @property def side_images(self): """Return latest proto from the _side_image_task""" return self._side_image_task.proto @property def rear_images(self): """Return latest proto from the _rear_image_task""" return self._rear_image_task.proto @property def is_standing(self): """Return boolean of standing state""" return self._is_standing @property def is_sitting(self): """Return boolean of standing state""" return self._is_sitting @property def is_moving(self): """Return boolean of walking state""" return self._is_moving @property def time_skew(self): """Return the time skew between local and spot time""" return self._robot.time_sync.endpoint.clock_skew def robotToLocalTime(self, timestamp): """Takes a timestamp and an estimated skew and return seconds and nano seconds Args: timestamp: google.protobuf.Timestamp Returns: google.protobuf.Timestamp """ rtime = Timestamp() rtime.seconds = timestamp.seconds - self.time_skew.seconds rtime.nanos = timestamp.nanos - self.time_skew.nanos if rtime.nanos < 0: rtime.nanos = rtime.nanos + 1000000000 rtime.seconds = rtime.seconds - 1 return rtime def claim(self): """Get a lease for the robot, a handle on the estop endpoint, and the ID of the robot.""" try: self._robot_id = self._robot.get_id() self.getLease() self.resetEStop() return True, "Success" except (ResponseError, RpcError) as err: self._logger.error("Failed to initialize robot communication: %s", err) return False, str(err) def updateTasks(self): """Loop through all periodic tasks and update their data if needed.""" self._async_tasks.update() def resetEStop(self): """Get keepalive for eStop""" self._estop_endpoint.force_simple_setup() # Set this endpoint as the robot's sole estop. self._estop_keepalive = EstopKeepAlive(self._estop_endpoint) def assertEStop(self, severe=True): """Forces the robot into eStop state. Args: severe: Default True - If true, will cut motor power immediately. If false, will try to settle the robot on the ground first """ try: if severe: self._estop_endpoint.stop() else: self._estop_endpoint.settle_then_cut() return True, "Success" except: return False, "Error" def releaseEStop(self): """Stop eStop keepalive""" if self._estop_keepalive: self._estop_keepalive.stop() self._estop_keepalive = None def getLease(self): """Get a lease for the robot and keep the lease alive automatically.""" self._lease = self._lease_client.acquire() self._lease_keepalive = LeaseKeepAlive(self._lease_client) def releaseLease(self): """Return the lease on the body.""" if self._lease: self._lease_client.return_lease(self._lease) self._lease = None def release(self): """Return the lease on the body and the eStop handle.""" try: self.releaseLease() self.releaseEStop() return True, "Success" except Exception as e: return False, str(e) def disconnect(self): """Release control of robot as gracefully as posssible.""" if self._robot.time_sync: self._robot.time_sync.stop() self.releaseLease() self.releaseEStop() def _robot_command(self, command_proto, end_time_secs=None): """Generic blocking function for sending commands to robots. Args: command_proto: robot_command_pb2 object to send to the robot. Usually made with RobotCommandBuilder end_time_secs: (optional) Time-to-live for the command in seconds """ try: id = self._robot_command_client.robot_command(lease=None, command=command_proto, end_time_secs=end_time_secs) return True, "Success", id except Exception as e: return False, str(e), None def stop(self): """Stop the robot's motion.""" response = self._robot_command(RobotCommandBuilder.stop_command()) return response[0], response[1] def self_right(self): """Have the robot self-right itself.""" response = self._robot_command(RobotCommandBuilder.selfright_command()) return response[0], response[1] def sit(self): """Stop the robot's motion and sit down if able.""" response = self._robot_command(RobotCommandBuilder.sit_command()) self._last_sit_command = response[2] return response[0], response[1] def stand(self, monitor_command=True): """If the e-stop is enabled, and the motor power is enabled, stand the robot up.""" response = self._robot_command(RobotCommandBuilder.stand_command(params=self._mobility_params)) if monitor_command: self._last_stand_command = response[2] return response[0], response[1] def safe_power_off(self): """Stop the robot's motion and sit if possible. Once sitting, disable motor power.""" response = self._robot_command(RobotCommandBuilder.safe_power_off_command()) return response[0], response[1] def power_on(self): """Enble the motor power if e-stop is enabled.""" try: power.power_on(self._power_client) return True, "Success" except: return False, "Error" def set_mobility_params(self, body_height=0, footprint_R_body=EulerZXY(), locomotion_hint=1, stair_hint=False, external_force_params=None): """Define body, locomotion, and stair parameters. Args: body_height: Body height in meters footprint_R_body: (EulerZXY) – The orientation of the body frame with respect to the footprint frame (gravity aligned framed with yaw computed from the stance feet) locomotion_hint: Locomotion hint stair_hint: Boolean to define stair motion """ self._mobility_params = RobotCommandBuilder.mobility_params(body_height, footprint_R_body, locomotion_hint, stair_hint, external_force_params) def velocity_cmd(self, v_x, v_y, v_rot, cmd_duration=0.1): """Send a velocity motion command to the robot. Args: v_x: Velocity in the X direction in meters v_y: Velocity in the Y direction in meters v_rot: Angular velocity around the Z axis in radians cmd_duration: (optional) Time-to-live for the command in seconds. Default is 125ms (assuming 10Hz command rate). """ end_time=time.time() + cmd_duration self._robot_command(RobotCommandBuilder.velocity_command( v_x=v_x, v_y=v_y, v_rot=v_rot, params=self._mobility_params), end_time_secs=end_time) self._last_motion_command_time = end_time
20,773
Python
42.010352
212
0.623117
renanmb/Omniverse_legged_robotics/URDF-Descriptions/BostonDynamics/spot_ros-CHAMP/spot_driver/doc/conf.py
import os import sys sys.path.insert(0, os.path.abspath('../scripts')) project = 'spot_driver' copyright = '2020, Dave Niewinski' author = 'Dave Niewinski' extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.coverage', 'sphinx.ext.napoleon' ] html_theme = 'clearpath-sphinx-theme' html_theme_path = ["."] html_static_path = ['./clearpath-sphinx-theme/static'] html_sidebars = { '**': ['sidebartoc.html', 'sourcelink.html', 'searchbox.html'] } html_show_sphinx = False html_logo = 'clearpath-sphinx-theme/static/clearpathlogo.png' html_favicon = 'clearpath-sphinx-theme/static/favicon.ico'
597
Python
19.620689
65
0.710218
renanmb/Omniverse_legged_robotics/DigitRobot.jl-main/src/digit_manual_control.py
import pybullet as p import time import pybullet_data p.connect(p.GUI) p.setAdditionalSearchPath('..') humanoid = p.loadURDF("urdf/digit_model.urdf",useFixedBase=True) gravId = p.addUserDebugParameter("gravity", -10, 10, 0) jointIds = [] paramIds = [] p.setPhysicsEngineParameter(numSolverIterations=10) p.changeDynamics(humanoid, -1, linearDamping=0, angularDamping=0) for j in range(p.getNumJoints(humanoid)): p.changeDynamics(humanoid, j, linearDamping=0, angularDamping=0) info = p.getJointInfo(humanoid, j) #print(info) jointName = info[1] jointType = info[2] if (jointType == p.JOINT_PRISMATIC or jointType == p.JOINT_REVOLUTE): jointIds.append(j) paramIds.append(p.addUserDebugParameter(jointName.decode("utf-8"), -4, 4, 0)) p.setRealTimeSimulation(1) while (1): p.setGravity(0, 0, p.readUserDebugParameter(gravId)) for i in range(len(paramIds)): c = paramIds[i] targetPos = p.readUserDebugParameter(c) p.setJointMotorControl2(humanoid, jointIds[i], p.POSITION_CONTROL, targetPos, force=5 * 240.) time.sleep(0.01)
1,065
Python
30.35294
97
0.733333
ft-lab/omniverse_sample_scripts/Light/CheckLightPrim.py
from pxr import Usd, UsdGeom, UsdPhysics, UsdLux, UsdShade, Sdf, Gf, Tf # Get stage. stage = omni.usd.get_context().get_stage() # Get selection. selection = omni.usd.get_context().get_selection() paths = selection.get_selected_prim_paths() # Check if prim is Light. def checkLight (prim : Usd.Prim): typeName = prim.GetTypeName() if typeName == "DistantLight" or typeName == "CylinderLight" or \ typeName == "DiskLight" or typeName == "DomeLight" or \ typeName == "RectLight" or typeName == "SphereLight": return True return False for path in paths: # Get prim. prim = stage.GetPrimAtPath(path) if checkLight(prim): print(f"[ {prim.GetPath().pathString} ] : {prim.GetTypeName()}")
741
Python
25.499999
72
0.661269
ft-lab/omniverse_sample_scripts/Light/CreateSphereLight.py
from pxr import Usd, UsdGeom, UsdPhysics, UsdLux, UsdShade, Sdf, Gf, Tf # Get stage. stage = omni.usd.get_context().get_stage() # Create sphere light. pathName = "/World/sphereLight" light = UsdLux.SphereLight.Define(stage, pathName) # Set Radius. light.CreateRadiusAttr(2.0) # Set intensity. light.CreateIntensityAttr(10000.0) # Set color. light.CreateColorAttr(Gf.Vec3f(1.0, 0.9, 0.8)) # Set Exposure. light.CreateExposureAttr(0.0) # cone angle. shapingAPI = UsdLux.ShapingAPI(light) shapingAPI.CreateShapingConeAngleAttr(180.0) shapingAPI.Apply(light.GetPrim()) # Register ShapingAPI as a schema in prim. # Compute extent. boundable = UsdGeom.Boundable(light.GetPrim()) extent = boundable.ComputeExtent(Usd.TimeCode(0)) # Set Extent. light.CreateExtentAttr(extent)
778
Python
22.60606
77
0.75964
ft-lab/omniverse_sample_scripts/Light/CreateLight.py
from pxr import Usd, UsdGeom, UsdPhysics, UsdLux, UsdShade, Sdf, Gf, Tf # Get stage. stage = omni.usd.get_context().get_stage() # Create distant light. pathName = "/World/distantLight" light = UsdLux.DistantLight.Define(stage, pathName) # Set intensity. light.CreateIntensityAttr(100.0) # Set color. light.CreateColorAttr(Gf.Vec3f(1.0, 0.5, 0.2)) # Set Exposure. light.CreateExposureAttr(0.0) # Compute extent. boundable = UsdGeom.Boundable(light.GetPrim()) extent = boundable.ComputeExtent(Usd.TimeCode(0)) # Set Extent. light.CreateExtentAttr(extent)
560
Python
21.439999
71
0.75
ft-lab/omniverse_sample_scripts/Nucleus/createFolder.py
# See : https://docs.omniverse.nvidia.com/py/kit/source/extensions/omni.client/docs/index.html import asyncio import omni.client # The following should be rewritten for your environment. url = "omniverse://localhost/test/new_folder" result = omni.client.create_folder(url) if result == omni.client.Result.OK: print("success !") else: print("failed ...")
366
Python
23.466665
94
0.73224