text
stringlengths
1
2.05k
me) default() broadcast() @staticmethod def less_equal_i8(): def default(): x = np.random.randint(-3, 3, (2, 2)).astype(np.int8) y = np.random.randint(-3, 3, (2, 2)).astype(np.int8) z = np.less_equal(x, y) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "less_equal_i8" make_test([x, y], z, "input_0.less_equal(@input_1)", name) def broadcast(): x = np.random.randint(-3, 3, (2, 2)).astype(np.int8) y = np.random.randint(-3, 3, (1, 2)).astype(np.int8) z = np.less_equal(x, y) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "less_equal_i8_broadcast" make_test([x, y], z, "input_0.less_equal(@input_1)", name) default() broadcast() @staticmethod def less_equal_fp8x23(): def default(): x = np.random.randint(-3, 3, (2, 2)).astype(np.float64) y = np.random.randint(-3, 3, (2, 2)).astype(np.float64) z = np.less_equal(x, y) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "less_equal_fp8x23" make_test([x, y], z, "input_0.less_equal(@input_1)", name) def broadcast(): x = np.random.randint(-3, 3, (2, 2)).astype(np.float64) y = np.random.randint(-3, 3, (1, 2)).astype(np.float64) z = np.less_equal(x, y) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp(
y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "less_equal_fp8x23_broadcast" make_test([x, y], z, "input_0.less_equal(@input_1)", name) default() broadcast() @staticmethod def less_equal_fp16x16(): def default(): x = np.random.randint(-3, 3, (2, 2)).astype(np.float64) y = np.random.randint(-3, 3, (2, 2)).astype(np.float64) z = np.less_equal(x, y) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "less_equal_fp16x16" make_test([x, y], z, "input_0.less_equal(@input_1)", name) def broadcast(): x = np.random.randint(-3, 3, (2, 2)).astype(np.float64) y = np.random.randint(-3, 3, (1, 2)).astype(np.float64) z = np.less_equal(x, y) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "less_equal_fp16x16_broadcast" make_test([x, y], z, "input_0.less_equal(@input_1)", name) default() broadcast()
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait from typing
import Optional def linear( i: np.ndarray, w: np.ndarray, b: Optional[np.ndarray] = None, ) -> np.ndarray: return np.dot(i, w.T) + b
class Linear(RunAll): @staticmethod def linear_i32(): i = np.random.randint(-5, 9, (3)).astype(np.int32) w = np.random.randint(-5, 9, (2, 3)).astype(np.int32) b = np.random.randint(-5, 9, (2)).astype(np.int32) y = linear(i, w, b) i = Tensor(Dtype.I32, i.shape, i.flatten()) w = Tensor(Dtype.I32, w.shape, w.flatten()) b = Tensor(Dtype.I32, b.shape, b.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "linear_i32" make_test([i, w, b], y, "NNTrait::linear(input_0, input_1, input_2)", name, Trait.NN) @staticmethod def linear_i8(): i = np.random.randint(-3, 3, (3)).astype(np.int8) w = np.random.randint(-3, 3, (2, 3)).astype(np.int8) b = np.random.randint(-3, 3, (2)).astype(np.int8) y = linear(i, w, b) i = Tensor(Dtype.I8, i.shape, i.flatten()) w = Tensor(Dtype.I8, w.shape, w.flatten()) b = Tensor(Dtype.I8, b.shape, b.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "linear_i8" make_test([i, w, b], y, "NNTrait::linear(input_0, input_1, input_2)", name, Trait.NN) @staticmethod def linear_u32(): i = np.random.randint(0, 6, (3)).astype(np.uint32) w = np.random.randint(0, 6, (2, 3)).astype(np.uint32) b = np.random.randint(0, 6, (2)).astype(np.uint32) y = linear(i, w, b) i = Tensor(Dtype.U32, i.shape, i.flatten()) w = Tensor(Dtype.U32, w.shape, w.flatten()) b = Tensor(Dtype.U32, b.shape, b.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "linear_u32" make_test([i, w, b], y, "NNTrait::linear(input_0, input_1, input_2)", name, Trait.NN) @staticmethod def linear_fp8x23(): i = np.random.uniform(-5, 7, (3)).astype(np.float64) w = np.random.uniform(-5, 7, (2, 3)).astype(np.float64) b = np.random.uniform(-5, 7, (2)).astype(np.float64)
y = linear(i, w, b) i = Tensor(Dtype.FP8x23, i.shape, to_fp( i.flatten(), FixedImpl.FP8x23)) w = Tensor(Dtype.FP8x23, w.shape, to_fp( w.flatten(), FixedImpl.FP8x23)) b = Tensor(Dtype.FP8x23, b.shape, to_fp( b.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "linear_fp8x23" make_test([i, w, b], y, "NNTrait::linear(input_0, input_1, input_2)", name, Trait.NN) @staticmethod def linear_fp16x16(): i = np.random.uniform(-5, 7, (3)).astype(np.float64) w = np.random.uniform(-5, 7, (2, 3)).astype(np.float64) b = np.random.uniform(-5, 7, (2)).astype(np.float64) y = linear(i, w, b) i = Tensor(Dtype.FP16x16, i.shape, to_fp( i.flatten(), FixedImpl.FP16x16)) w = Tensor(Dtype.FP16x16, w.shape, to_fp( w.flatten(), FixedImpl.FP16x16)) b = Tensor(Dtype.FP16x16, b.shape, to_fp( b.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "linear_fp16x16" make_test([i, w, b], y, "NNTrait::linear(input_0, input_1, input_2)", name, Trait.NN)
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Log(RunAll): @staticmethod def log_fp8x23(): x = np.random.uniform(1, 127, (2, 2)).astype(np.float64) y = np.log(x) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "log_fp8x23" make_test([x], y, "input_0.log()", name) @staticmethod def log_fp16x16(): x = np.random.uniform(1, 127, (2, 2)).astype(np.float64) y = np.log(x) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "log_fp16x16" make_test([x], y, "input_0.log()", name)
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait def logsoftmax(x: np.ndarray, axis: int = -1) -> np.ndarray: x_max = np.max(x, axis=axis, keepdims=True) tmp = np.exp(x - x_max) s = np.sum(tmp, axis=axis, keepdims=True) return (x - x_max) - np.log(s)
class Logsoftmax(RunAll): def logsoftmax_fp8x23(): def axis_0(): x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64) y = logsoftmax(x, 0) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "logsoftmax_fp8x23_axis_0" make_test([x], y, "NNTrait::logsoftmax(@input_0, 0)", name, Trait.NN) def axis_1(): x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64) y = logsoftmax(x, 1) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "logsoftmax_fp8x23_axis_1" make_test([x], y, "NNTrait::logsoftmax(@input_0, 1)", name, Trait.NN) axis_0() axis_1() def logsoftmax_fp16x16(): def axis_0(): x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64) y = logsoftmax(x, 0) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "logsoftmax_fp16x16_axis_0" make_test([x], y, "NNTrait::logsoftmax(@input_0, 0)", name, Trait.NN) def axis_1(): x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64) y = logsoftmax(x, 1) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "logsoftmax_fp16x16_axis_1" make_test([x], y, "NNTrait::logsoftmax(@input_0, 1)", name, Trait.NN)
axis_0() axis_1()
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl
class Matmul(RunAll): @staticmethod def matmul_u32(): def matmul_1D(): a = np.random.randint(0, 255, (3)).astype(np.uint32) b = np.random.randint(0, 255, (3)).astype(np.uint32) y = np.matmul(a, b).reshape((1)) a = Tensor(Dtype.U32, a.shape, a.flatten()) b = Tensor(Dtype.U32, b.shape, b.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "matmul_u32_1d" make_test( [a, b], y, "input_0.matmul(@input_1)", name) def matmul_2x2(): a = np.random.randint(0, 255, (2, 2)).astype(np.uint32) b = np.random.randint(0, 255, (2, 2)).astype(np.uint32) y = np.matmul(a, b) a = Tensor(Dtype.U32, a.shape, a.flatten()) b = Tensor(Dtype.U32, b.shape, b.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "matmul_u32_2x2" make_test( [a, b], y, "input_0.matmul(@input_1)", name) def matmul_2x1(): a = np.random.randint(0, 255, (2, 1)).astype(np.uint32) b = np.random.randint(0, 255, (1, 2)).astype(np.uint32) y = np.matmul(a, b) a = Tensor(Dtype.U32, a.shape, a.flatten()) b = Tensor(Dtype.U32, b.shape, b.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "matmul_u32_2x1" make_test( [a, b], y, "input_0.matmul(@input_1)", name) def matmul_1x2(): a = np.random.randint(0, 255, (1, 2)).astype(np.uint32) b = np.random.randint(0, 255, (2, 1)).astype(np.uint32) y = np.matmul(a, b) a = Tensor(Dtype.U32, a.shape, a.flatten()) b = Tensor(Dtype.U32, b.shape, b.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "matmul_u32_1x2" make_test( [a, b], y, "input_0.matmul(@input_1)", name) matmul_1D() matmul_2x2()
matmul_2x1() matmul_1x2() @staticmethod def matmul_i32(): def matmul_1D(): a = np.random.randint(-127, 127, (3)).astype(np.int32) b = np.random.randint(-127, 127, (3)).astype(np.int32) y = np.matmul(a, b).reshape((1)) a = Tensor(Dtype.I32, a.shape, a.flatten()) b = Tensor(Dtype.I32, b.shape, b.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "matmul_i32_1d" make_test( [a, b], y, "input_0.matmul(@input_1)", name) def matmul_2x2(): a = np.random.randint(-127, 127, (2, 2)).astype(np.int32) b = np.random.randint(-127, 127, (2, 2)).astype(np.int32) y = np.matmul(a, b) a = Tensor(Dtype.I32, a.shape, a.flatten()) b = Tensor(Dtype.I32, b.shape, b.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "matmul_i32_2x2" make_test( [a, b], y, "input_0.matmul(@input_1)", name) def matmul_2x1(): a = np.random.randint(-127, 127, (2, 1)).astype(np.int32) b = np.random.randint(-127, 127, (1, 2)).astype(np.int32) y = np.matmul(a, b) a = Tensor(Dtype.I32, a.shape, a.flatten()) b = Tensor(Dtype.I32, b.shape, b.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "matmul_i32_2x1" make_test( [a, b], y, "input_0.matmul(@input_1)", name) def matmul_1x2(): a = np.random.randint(-127, 127, (1, 2)).astype(np.int32) b = np.random.randint(-127, 127, (2, 1)).astype(np.int32) y = np.matmul(a, b) a = Tensor(Dtype.I32, a.shape, a.flatten()) b = Tensor(Dtype.I32, b.shape, b.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "matmul_i32_1x2" make_test( [a, b], y, "input_0.matmul(@input_1)", name)
matmul_1D() matmul_2x2() matmul_2x1() matmul_1x2() @staticmethod def matmul_i8(): def matmul_1D(): a = np.random.randint(-4, 5, (3)).astype(np.int8) b = np.random.randint(-4, 5, (3)).astype(np.int8) y = np.matmul(a, b).reshape((1)) a = Tensor(Dtype.I8, a.shape, a.flatten()) b = Tensor(Dtype.I8, b.shape, b.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "matmul_i8_1d" make_test( [a, b], y, "input_0.matmul(@input_1)", name) def matmul_2x2(): a = np.random.randint(-4, 5, (2, 2)).astype(np.int8) b = np.random.randint(-4, 5, (2, 2)).astype(np.int8) y = np.matmul(a, b) a = Tensor(Dtype.I8, a.shape, a.flatten()) b = Tensor(Dtype.I8, b.shape, b.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "matmul_i8_2x2" make_test( [a, b], y, "input_0.matmul(@input_1)", name) def matmul_2x1(): a = np.random.randint(-4, 5, (2, 1)).astype(np.int8) b = np.random.randint(-4, 5, (1, 2)).astype(np.int8) y = np.matmul(a, b) a = Tensor(Dtype.I8, a.shape, a.flatten()) b = Tensor(Dtype.I8, b.shape, b.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "matmul_i8_2x1" make_test( [a, b], y, "input_0.matmul(@input_1)", name) def matmul_1x2(): a = np.random.randint(-4, 5, (1, 2)).astype(np.int8) b = np.random.randint(-4, 5, (2, 1)).astype(np.int8) y = np.matmul(a, b) a = Tensor(Dtype.I8, a.shape, a.flatten()) b = Tensor(Dtype.I8, b.shape, b.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "matmul_i8_1x2" make_test( [a, b], y, "input_0.matmul(@input_1)", name) matmul_1D()
matmul_2x2() matmul_2x1() matmul_1x2() @staticmethod def matmul_fp8x23(): def matmul_1D(): a = np.random.randint(-3, 4, (3)).astype(np.int64) b = np.random.randint(-3, 4, (3)).astype(np.int64) y = np.matmul(a, b).reshape((1)) a = Tensor(Dtype.FP8x23, a.shape, to_fp( a.flatten(), FixedImpl.FP8x23)) b = Tensor(Dtype.FP8x23, b.shape, to_fp( b.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "matmul_fp8x23_1d" make_test( [a, b], y, "input_0.matmul(@input_1)", name) def matmul_2x2(): a = np.random.randint(-3, 4, (2, 2)).astype(np.int64) b = np.random.randint(-3, 4, (2, 2)).astype(np.int64) y = np.matmul(a, b) a = Tensor(Dtype.FP8x23, a.shape, to_fp( a.flatten(), FixedImpl.FP8x23)) b = Tensor(Dtype.FP8x23, b.shape, to_fp( b.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "matmul_fp8x23_2x2" make_test( [a, b], y, "input_0.matmul(@input_1)", name) def matmul_2x1(): a = np.random.randint(-3, 4, (2, 1)).astype(np.int64) b = np.random.randint(-3, 4, (1, 2)).astype(np.int64) y = np.matmul(a, b) a = Tensor(Dtype.FP8x23, a.shape, to_fp( a.flatten(), FixedImpl.FP8x23)) b = Tensor(Dtype.FP8x23, b.shape, to_fp( b.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "matmul_fp8x23_2x1" make_test( [a, b], y, "input_0.matmul(@input_1)", name) def matmul_1x2(): a = np.random.randint(-3, 4, (1, 2)).astype(
np.int64) b = np.random.randint(-3, 4, (2, 1)).astype(np.int64) y = np.matmul(a, b) a = Tensor(Dtype.FP8x23, a.shape, to_fp( a.flatten(), FixedImpl.FP8x23)) b = Tensor(Dtype.FP8x23, b.shape, to_fp( b.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "matmul_fp8x23_1x2" make_test( [a, b], y, "input_0.matmul(@input_1)", name) matmul_1D() matmul_2x2() matmul_2x1() matmul_1x2() @staticmethod def matmul_fp16x16(): def matmul_1D(): a = np.random.randint(-3, 4, (3)).astype(np.int64) b = np.random.randint(-3, 4, (3)).astype(np.int64) y = np.matmul(a, b).reshape((1)) a = Tensor(Dtype.FP16x16, a.shape, to_fp( a.flatten(), FixedImpl.FP16x16)) b = Tensor(Dtype.FP16x16, b.shape, to_fp( b.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "matmul_fp16x16_1d" make_test( [a, b], y, "input_0.matmul(@input_1)", name) def matmul_2x2(): a = np.random.randint(-3, 4, (2, 2)).astype(np.int64) b = np.random.randint(-3, 4, (2, 2)).astype(np.int64) y = np.matmul(a, b) a = Tensor(Dtype.FP16x16, a.shape, to_fp( a.flatten(), FixedImpl.FP16x16)) b = Tensor(Dtype.FP16x16, b.shape, to_fp( b.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "matmul_fp16x16_2x2" make_test( [a, b], y, "input_0.matmul(@input_1)", name) def matmul_2x1(): a = np.random.randint(-3, 4, (2, 1)).astype(np.int64) b = np.random.randint(
-3, 4, (1, 2)).astype(np.int64) y = np.matmul(a, b) a = Tensor(Dtype.FP16x16, a.shape, to_fp( a.flatten(), FixedImpl.FP16x16)) b = Tensor(Dtype.FP16x16, b.shape, to_fp( b.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "matmul_fp16x16_2x1" make_test( [a, b], y, "input_0.matmul(@input_1)", name) def matmul_1x2(): a = np.random.randint(-3, 4, (1, 2)).astype(np.int64) b = np.random.randint(-3, 4, (2, 1)).astype(np.int64) y = np.matmul(a, b) a = Tensor(Dtype.FP16x16, a.shape, to_fp( a.flatten(), FixedImpl.FP16x16)) b = Tensor(Dtype.FP16x16, b.shape, to_fp( b.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "matmul_fp16x16_1x2" make_test( [a, b], y, "input_0.matmul(@input_1)", name) matmul_1D() matmul_2x2() matmul_2x1() matmul_1x2()
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
class Max(RunAll): @staticmethod def max_u32_two_tensors(): def default(): x = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32) y = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32) z = np.maximum(x, y) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "max_u32_two_tensors" make_test([x, y], z, "TensorTrait::max(array![input_0, input_1].span())", name) def broadcast(): x = np.random.randint(0, 6, (2, 2)).astype(np.uint32) y = np.random.randint(0, 6, (1, 2)).astype(np.uint32) z = np.maximum(x, y) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "max_u32_broadcast_two_tensors" make_test([x, y], z, "TensorTrait::max(array![input_0, input_1].span())", name) default() broadcast() @staticmethod def max_i32_two_tensors(): def default(): x = np.random.randint(0, 6, (3, 3, 3)).astype(np.int32) y = np.random.randint(0, 6, (3, 3, 3)).astype(np.int32) z = np.maximum(x, y) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "max_i32_two_tensors" make_test([x, y], z, "TensorTrait::max(array![input_0, input_1].span())", name) def broadcast(): x = np.random.randint(0, 6, (2, 2)).astype(np.int32) y = np.random.randint(0, 6, (1, 2)).astype(np.int32) z = np.maximum(x, y) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "max_i32_broadca
st_two_tensors" make_test([x, y], z, "TensorTrait::max(array![input_0, input_1].span())", name) default() broadcast() @staticmethod def max_i8_two_tensors(): def default(): x = np.random.randint(0, 6, (3, 3, 3)).astype(np.int8) y = np.random.randint(0, 6, (3, 3, 3)).astype(np.int8) z = np.maximum(x, y) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.I8, z.shape, z.flatten()) name = "max_i8_two_tensors" make_test([x, y], z, "TensorTrait::max(array![input_0, input_1].span())", name) def broadcast(): x = np.random.randint(0, 6, (2, 2)).astype(np.int8) y = np.random.randint(0, 6, (1, 2)).astype(np.int8) z = np.maximum(x, y) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.I8, z.shape, z.flatten()) name = "max_i8_broadcast_two_tensors" make_test([x, y], z, "TensorTrait::max(array![input_0, input_1].span())", name) default() broadcast() @staticmethod def max_fp8x23_two_tensors(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) z = np.maximum(x, y) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) name = "max_fp8x23_two_tensors" make_test([x, y], z, "TensorTrait::max(array![input_0, input_1].span())", name) def broadcast(): x = np.random.randint(-3, 3, (2, 2)).astype(np.float64) y = np.random.randint(-3, 3,
(1, 2)).astype(np.float64) z = np.maximum(x, y) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) name = "max_fp8x23_broadcast_two_tensors" make_test([x, y], z, "TensorTrait::max(array![input_0, input_1].span())", name) default() broadcast() @staticmethod def max_fp16x16_two_tensors(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) z = np.maximum(x, y) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) name = "max_fp16x16_two_tensors" make_test([x, y], z, "TensorTrait::max(array![input_0, input_1].span())", name) def broadcast(): x = np.random.randint(-3, 3, (2, 2)).astype(np.float64) y = np.random.randint(-3, 3, (1, 2)).astype(np.float64) z = np.maximum(x, y) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) name = "max_fp16x16_broadcast_two_tensors" make_test([x, y], z, "TensorTrait::max(array![input_0, input_1].span())", name) default() broadcast() @staticmethod def max_u32_three_tensors(): def default(): x = np.rand
om.randint(0, 6, (3, 3, 3)).astype(np.uint32) y = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32) z = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32) m = np.maximum(np.maximum(x, y), z) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) m = Tensor(Dtype.U32, m.shape, m.flatten()) name = "max_u32_three_tensors" make_test([x, y, z], m, "TensorTrait::max(array![input_0, input_1, input_2].span())", name) def broadcast(): x = np.random.randint(0, 6, (2, 2)).astype(np.uint32) y = np.random.randint(0, 6, (1, 2)).astype(np.uint32) z = np.random.randint(0, 6, (1, 1)).astype(np.uint32) m = np.maximum(np.maximum(x, y), z) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) m = Tensor(Dtype.U32, m.shape, m.flatten()) name = "max_u32_broadcast_three_tensors" make_test([x, y, z], m, "TensorTrait::max(array![input_0, input_1, input_2].span())", name) default() broadcast() @staticmethod def max_i32_three_tensors(): def default(): x = np.random.randint(0, 6, (3, 3, 3)).astype(np.int32) y = np.random.randint(0, 6, (3, 3, 3)).astype(np.int32) z = np.random.randint(0, 6, (3, 3, 3)).astype(np.int32) m = np.maximum(np.maximum(x, y), z) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) m = Tensor(Dtype.I32, m.shape, m.flatten()) name = "max_i32_three_tensors" make_test([x, y, z], m, "TensorTrait::max(array![input_0, input_1, input_2].span())", name) def broadcast(): x = np.rand
om.randint(0, 6, (2, 2)).astype(np.int32) y = np.random.randint(0, 6, (1, 2)).astype(np.int32) z = np.random.randint(0, 6, (1, 1)).astype(np.int32) m = np.maximum(np.maximum(x, y), z) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) m = Tensor(Dtype.I32, m.shape, m.flatten()) name = "max_i32_broadcast_three_tensors" make_test([x, y, z], m, "TensorTrait::max(array![input_0, input_1, input_2].span())", name) default() broadcast() @staticmethod def max_i8_three_tensors(): def default(): x = np.random.randint(0, 6, (3, 3, 3)).astype(np.int8) y = np.random.randint(0, 6, (3, 3, 3)).astype(np.int8) z = np.random.randint(0, 6, (3, 3, 3)).astype(np.int8) m = np.maximum(np.maximum(x, y), z) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.I8, z.shape, z.flatten()) m = Tensor(Dtype.I8, m.shape, m.flatten()) name = "max_i8_three_tensors" make_test([x, y, z], m, "TensorTrait::max(array![input_0, input_1, input_2].span())", name) def broadcast(): x = np.random.randint(0, 6, (2, 2)).astype(np.int8) y = np.random.randint(0, 6, (1, 2)).astype(np.int8) z = np.random.randint(0, 6, (1, 1)).astype(np.int8) m = np.maximum(np.maximum(x, y), z) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.I8, z.shape, z.flatten()) m = Tensor(Dtype.I8, m.shape, m.flatten()) name = "max_i8_broadcast_three_tensors" make_test([x, y, z], m, "TensorTrait::max(array![input_0, input_1, input_2].span())", name) default() broadcast() @staticmethod def max_f
p8x23_three_tensors(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) z = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) m = np.maximum(np.maximum(x, y), z) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) m = Tensor(Dtype.FP8x23, m.shape, to_fp( m.flatten(), FixedImpl.FP8x23)) name = "max_fp8x23_three_tensors" make_test([x, y, z], m, "TensorTrait::max(array![input_0, input_1, input_2].span())", name) def broadcast(): x = np.random.randint(-3, 3, (2, 2)).astype(np.float64) y = np.random.randint(-3, 3, (1, 2)).astype(np.float64) z = np.random.randint(-3, 3, (1, 1)).astype(np.float64) m = np.maximum(np.maximum(x, y), z) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) m = Tensor(Dtype.FP8x23, m.shape, to_fp( m.flatten(), FixedImpl.FP8x23)) name = "max_fp8x23_broadcast_three_tensors" make_test([x, y, z], m, "TensorTrait::max(array![input_0, input_1, input_2].span())", name) default() broadcast() @staticmethod def max_fp16x16_three_tensors(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) z = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
m = np.maximum(np.maximum(x, y), z) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) m = Tensor(Dtype.FP16x16, m.shape, to_fp( m.flatten(), FixedImpl.FP16x16)) name = "max_fp16x16_three_tensors" make_test([x, y, z], m, "TensorTrait::max(array![input_0, input_1, input_2].span())", name) def broadcast(): x = np.random.randint(-3, 3, (2, 2)).astype(np.float64) y = np.random.randint(-3, 3, (1, 2)).astype(np.float64) z = np.random.randint(-3, 3, (1, 1)).astype(np.float64) m = np.maximum(np.maximum(x, y), z) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) m = Tensor(Dtype.FP16x16, m.shape, to_fp( m.flatten(), FixedImpl.FP16x16)) name = "max_fp16x16_broadcast_three_tensors" make_test([x, y, z], m, "TensorTrait::max(array![input_0, input_1, input_2].span())", name) default() broadcast()
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
class Min(RunAll): @staticmethod def min_u32_two_tensors(): def default(): x = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32) y = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32) z = np.minimum(x, y) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "min_u32_two_tensors" make_test([x, y], z, "TensorTrait::min(array![input_0, input_1].span())", name) def broadcast(): x = np.random.randint(0, 6, (2, 2)).astype(np.uint32) y = np.random.randint(0, 6, (1, 2)).astype(np.uint32) z = np.minimum(x, y) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "min_u32_broadcast_two_tensors" make_test([x, y], z, "TensorTrait::min(array![input_0, input_1].span())", name) default() broadcast() @staticmethod def min_i32_two_tensors(): def default(): x = np.random.randint(0, 6, (3, 3, 3)).astype(np.int32) y = np.random.randint(0, 6, (3, 3, 3)).astype(np.int32) z = np.minimum(x, y) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "min_i32_two_tensors" make_test([x, y], z, "TensorTrait::min(array![input_0, input_1].span())", name) def broadcast(): x = np.random.randint(0, 6, (2, 2)).astype(np.int32) y = np.random.randint(0, 6, (1, 2)).astype(np.int32) z = np.minimum(x, y) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "min_i32_broadca
st_two_tensors" make_test([x, y], z, "TensorTrait::min(array![input_0, input_1].span())", name) default() broadcast() @staticmethod def min_i8_two_tensors(): def default(): x = np.random.randint(0, 6, (3, 3, 3)).astype(np.int8) y = np.random.randint(0, 6, (3, 3, 3)).astype(np.int8) z = np.minimum(x, y) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.I8, z.shape, z.flatten()) name = "min_i8_two_tensors" make_test([x, y], z, "TensorTrait::min(array![input_0, input_1].span())", name) def broadcast(): x = np.random.randint(0, 6, (2, 2)).astype(np.int8) y = np.random.randint(0, 6, (1, 2)).astype(np.int8) z = np.minimum(x, y) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.I8, z.shape, z.flatten()) name = "min_i8_broadcast_two_tensors" make_test([x, y], z, "TensorTrait::min(array![input_0, input_1].span())", name) default() broadcast() @staticmethod def min_fp8x23_two_tensors(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) z = np.minimum(x, y) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) name = "min_fp8x23_two_tensors" make_test([x, y], z, "TensorTrait::min(array![input_0, input_1].span())", name) def broadcast(): x = np.random.randint(-3, 3, (2, 2)).astype(np.float64) y = np.random.randint(-3, 3,
(1, 2)).astype(np.float64) z = np.minimum(x, y) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) name = "min_fp8x23_broadcast_two_tensors" make_test([x, y], z, "TensorTrait::min(array![input_0, input_1].span())", name) default() broadcast() @staticmethod def min_fp16x16_two_tensors(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) z = np.minimum(x, y) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) name = "min_fp16x16_two_tensors" make_test([x, y], z, "TensorTrait::min(array![input_0, input_1].span())", name) def broadcast(): x = np.random.randint(-3, 3, (2, 2)).astype(np.float64) y = np.random.randint(-3, 3, (1, 2)).astype(np.float64) z = np.minimum(x, y) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) name = "min_fp16x16_broadcast_two_tensors" make_test([x, y], z, "TensorTrait::min(array![input_0, input_1].span())", name) default() broadcast() @staticmethod def min_u32_three_tensors(): def default(): x = np.rand
om.randint(0, 6, (3, 3, 3)).astype(np.uint32) y = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32) z = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32) m = np.minimum(np.minimum(x, y), z) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) m = Tensor(Dtype.U32, m.shape, m.flatten()) name = "min_u32_three_tensors" make_test([x, y, z], m, "TensorTrait::min(array![input_0, input_1, input_2].span())", name) def broadcast(): x = np.random.randint(0, 6, (2, 2)).astype(np.uint32) y = np.random.randint(0, 6, (1, 2)).astype(np.uint32) z = np.random.randint(0, 6, (1, 1)).astype(np.uint32) m = np.minimum(np.minimum(x, y), z) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) m = Tensor(Dtype.U32, m.shape, m.flatten()) name = "min_u32_broadcast_three_tensors" make_test([x, y, z], m, "TensorTrait::min(array![input_0, input_1, input_2].span())", name) default() broadcast() @staticmethod def min_i32_three_tensors(): def default(): x = np.random.randint(0, 6, (3, 3, 3)).astype(np.int32) y = np.random.randint(0, 6, (3, 3, 3)).astype(np.int32) z = np.random.randint(0, 6, (3, 3, 3)).astype(np.int32) m = np.minimum(np.minimum(x, y), z) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) m = Tensor(Dtype.I32, m.shape, m.flatten()) name = "min_i32_three_tensors" make_test([x, y, z], m, "TensorTrait::min(array![input_0, input_1, input_2].span())", name) def broadcast(): x = np.rand
om.randint(0, 6, (2, 2)).astype(np.int32) y = np.random.randint(0, 6, (1, 2)).astype(np.int32) z = np.random.randint(0, 6, (1, 1)).astype(np.int32) m = np.minimum(np.minimum(x, y), z) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) m = Tensor(Dtype.I32, m.shape, m.flatten()) name = "min_i32_broadcast_three_tensors" make_test([x, y, z], m, "TensorTrait::min(array![input_0, input_1, input_2].span())", name) default() broadcast() @staticmethod def min_i8_three_tensors(): def default(): x = np.random.randint(0, 6, (3, 3, 3)).astype(np.int8) y = np.random.randint(0, 6, (3, 3, 3)).astype(np.int8) z = np.random.randint(0, 6, (3, 3, 3)).astype(np.int8) m = np.minimum(np.minimum(x, y), z) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.I8, z.shape, z.flatten()) m = Tensor(Dtype.I8, m.shape, m.flatten()) name = "min_i8_three_tensors" make_test([x, y, z], m, "TensorTrait::min(array![input_0, input_1, input_2].span())", name) def broadcast(): x = np.random.randint(0, 6, (2, 2)).astype(np.int8) y = np.random.randint(0, 6, (1, 2)).astype(np.int8) z = np.random.randint(0, 6, (1, 1)).astype(np.int8) m = np.minimum(np.minimum(x, y), z) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.I8, z.shape, z.flatten()) m = Tensor(Dtype.I8, m.shape, m.flatten()) name = "min_i8_broadcast_three_tensors" make_test([x, y, z], m, "TensorTrait::min(array![input_0, input_1, input_2].span())", name) default() broadcast() @staticmethod def min_f
p8x23_three_tensors(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) z = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) m = np.minimum(np.minimum(x, y), z) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) m = Tensor(Dtype.FP8x23, m.shape, to_fp( m.flatten(), FixedImpl.FP8x23)) name = "min_fp8x23_three_tensors" make_test([x, y, z], m, "TensorTrait::min(array![input_0, input_1, input_2].span())", name) def broadcast(): x = np.random.randint(-3, 3, (2, 2)).astype(np.float64) y = np.random.randint(-3, 3, (1, 2)).astype(np.float64) z = np.random.randint(-3, 3, (1, 1)).astype(np.float64) m = np.minimum(np.minimum(x, y), z) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) m = Tensor(Dtype.FP8x23, m.shape, to_fp( m.flatten(), FixedImpl.FP8x23)) name = "min_fp8x23_broadcast_three_tensors" make_test([x, y, z], m, "TensorTrait::min(array![input_0, input_1, input_2].span())", name) default() broadcast() @staticmethod def min_fp16x16_three_tensors(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) z = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
m = np.minimum(np.minimum(x, y), z) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) m = Tensor(Dtype.FP16x16, m.shape, to_fp( m.flatten(), FixedImpl.FP16x16)) name = "min_fp16x16_three_tensors" make_test([x, y, z], m, "TensorTrait::min(array![input_0, input_1, input_2].span())", name) def broadcast(): x = np.random.randint(-3, 3, (2, 2)).astype(np.float64) y = np.random.randint(-3, 3, (1, 2)).astype(np.float64) z = np.random.randint(-3, 3, (1, 1)).astype(np.float64) m = np.minimum(np.minimum(x, y), z) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) m = Tensor(Dtype.FP16x16, m.shape, to_fp( m.flatten(), FixedImpl.FP16x16)) name = "min_fp16x16_broadcast_three_tensors" make_test([x, y, z], m, "TensorTrait::min(array![input_0, input_1, input_2].span())", name) default() broadcast()
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl
class Mul(RunAll): @staticmethod def mul_u32(): def default(): x = np.random.randint(3, 6, (3, 3, 3)).astype(np.uint32) y = np.random.randint(0, 3, (3, 3, 3)).astype(np.uint32) z = x * y x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "mul_u32" make_test([x, y], z, "input_0 * input_1", name) def broadcast(): x = np.random.randint(3, 6, (3, 3, 3)).astype(np.uint32) y = np.random.randint(0, 3, (1, 3, 1)).astype(np.uint32) z = x * y x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "mul_u32_broadcast" make_test([x, y], z, "input_0 * input_1", name) default() broadcast() @staticmethod def mul_i32(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32) z = x * y x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "mul_i32" make_test([x, y], z, "input_0 * input_1", name) def broadcast(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32) y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.int32) z = x * y x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "mul_i32_broadcast" make_test([x, y], z, "input_0 * input_1", name) default() broadcast() @staticmethod def mul_i8(): def default(): x = np.ran
dom.randint(-3, 3, (3, 3, 3)).astype(np.int8) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8) z = x * y x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.I8, z.shape, z.flatten()) name = "mul_i8" make_test([x, y], z, "input_0 * input_1", name) def broadcast(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8) y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.int8) z = x * y x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.I8, z.shape, z.flatten()) name = "mul_i8_broadcast" make_test([x, y], z, "input_0 * input_1", name) default() broadcast() @staticmethod def mul_fp8x23(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) z = x * y x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) name = "mul_fp8x23" make_test([x, y], z, "input_0 * input_1", name) def broadcast(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.float64) z = x * y x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) name = "mul_fp8x23_broadcast"
make_test([x, y], z, "input_0 * input_1", name) default() broadcast() @staticmethod def mul_fp16x16(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) z = x * y x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) name = "mul_fp16x16" make_test([x, y], z, "input_0 * input_1", name) def broadcast(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.float64) z = x * y x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) name = "mul_fp16x16_broadcast" make_test([x, y], z, "input_0 * input_1", name) default() broadcast()
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Neg(RunAll): @staticmethod def neg_i32(): x = np.random.randint(-127, 127, (2, 2)).astype(np.int32) y = np.negative(x) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "neg_i32" make_test([x], y, "input_0.neg()", name) @staticmethod def neg_i8(): x = np.random.randint(-127, 127, (2, 2)).astype(np.int8) y = np.negative(x) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "neg_i8" make_test([x], y, "input_0.neg()", name) @staticmethod def neg_fp8x23(): x = to_fp(np.random.randint(-127, 127, (2, 2) ).astype(np.int64), FixedImpl.FP8x23) y = np.negative(x) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "neg_fp8x23" make_test([x], y, "input_0.neg()", name) @staticmethod def neg_fp16x16(): x = to_fp(np.random.randint(-127, 127, (2, 2) ).astype(np.int64), FixedImpl.FP16x16) y = np.negative(x) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.FP16x16, y.shape, y.flatten()) name = "neg_fp16x16" make_test([x], y, "input_0.neg()", name)
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl
class Nonzero(RunAll): @staticmethod def nonzero_u32(): def nonzero_2D(): x = np.random.randint(0, 255, (2, 4)).astype(np.uint32) y = np.array(np.nonzero(x), dtype=np.int64) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "nonzero_u32_2d" make_test( [x], y, "input_0.nonzero()", name) def nonzero_3D(): x = np.random.randint(0, 255, (20, 10, 5)).astype(np.uint32) y = np.array(np.nonzero(x), dtype=np.int64) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "nonzero_u32_3d" make_test( [x], y, "input_0.nonzero()", name) nonzero_2D() nonzero_3D() @staticmethod def nonzero_i32(): def nonzero_2D(): x = np.random.randint(-127, 127, (2, 4)).astype(np.int32) y = np.array(np.nonzero(x), dtype=np.int64) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "nonzero_i32_2d" make_test( [x], y, "input_0.nonzero()", name) def nonzero_3D(): x = np.random.randint(-127, 127, (20, 10, 5)).astype(np.int32) y = np.array(np.nonzero(x), dtype=np.int64) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "nonzero_i32_3d" make_test( [x], y, "input_0.nonzero()", name) nonzero_2D() nonzero_3D() @staticmethod def nonzero_i8(): def nonzero_2D(): x = np.random.randint(-127, 127, (2, 4)).astype(np.int8) y = np.array(np.nonzero(x), dtype=np.int64) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "nonzero_i8_2d"
make_test( [x], y, "input_0.nonzero()", name) def nonzero_3D(): x = np.random.randint(-127, 127, (20, 10, 5)).astype(np.int8) y = np.array(np.nonzero(x), dtype=np.int64) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "nonzero_i8_3d" make_test( [x], y, "input_0.nonzero()", name) nonzero_2D() nonzero_3D() @staticmethod def nonzero_fp8x23(): def nonzero_2D(): x = to_fp(np.random.randint(-127, 127, (2, 4) ).astype(np.int64), FixedImpl.FP8x23) y = np.array(np.nonzero(x), dtype=np.int64) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "nonzero_fp8x23_2d" make_test( [x], y, "input_0.nonzero()", name) def nonzero_3D(): x = to_fp(np.random.randint(-127, 127, (20, 10, 5) ).astype(np.int64), FixedImpl.FP8x23) y = np.array(np.nonzero(x), dtype=np.int64) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "nonzero_fp8x23_3d" make_test( [x], y, "input_0.nonzero()", name) nonzero_2D() nonzero_3D() @staticmethod def nonzero_fp16x16(): def nonzero_2D(): x = to_fp(np.random.randint(-127, 127, (2, 4) ).astype(np.int64), FixedImpl.FP16x16) y = np.array(np.nonzero(x), dtype=np.int64) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "nonzero_fp16x16_2d" make_test( [x], y, "input_0.nonzero()", name) def nonzero_3D(): x = t
o_fp(np.random.randint(-127, 127, (20, 10, 5) ).astype(np.int64), FixedImpl.FP16x16) y = np.array(np.nonzero(x), dtype=np.int64) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "nonzero_fp16x16_3d" make_test( [x], y, "input_0.nonzero()", name) nonzero_2D() nonzero_3D()
import numpy as np from nodegen.node import RunAll from ..helpers import make_node, make_test, Tensor, Dtype class Not(RunAll): @staticmethod def not_bool(): x = np.random.uniform(True, False, (1, 1)).astype(bool) y = ~(x) x = Tensor(Dtype.Bool, x.shape, x.flatten()) y = Tensor(Dtype.Bool, y.shape, y.flatten()) name = "not_bool" make_node([x], [y], name) make_test([x], y, "input_0", name)
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl
class Or(RunAll): @staticmethod def or_u32(): def default(): x = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32) y = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32) z = np.logical_or(x, y) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "or_u32" make_test([x, y], z, "input_0.or(@input_1)", name) def broadcast(): x = np.random.randint(0, 6, (2, 2)).astype(np.uint32) y = np.random.randint(0, 6, (1, 2)).astype(np.uint32) z = np.logical_or(x, y) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "or_u32_broadcast" make_test([x, y], z, "input_0.or(@input_1)", name) default() broadcast() @staticmethod def or_i32(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32) z = np.logical_or(x, y) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "or_i32" make_test([x, y], z, "input_0.or(@input_1)", name) def broadcast(): x = np.random.randint(-3, 3, (2, 2)).astype(np.int32) y = np.random.randint(-3, 3, (1, 2)).astype(np.int32) z = np.logical_or(x, y) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "or_i32_broadcast" make_test([x, y], z, "input_0.or(@input_1)", name) default() broadcast() @staticmethod def or_i8(
): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8) z = np.logical_or(x, y) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "or_i8" make_test([x, y], z, "input_0.or(@input_1)", name) def broadcast(): x = np.random.randint(-3, 3, (2, 2)).astype(np.int8) y = np.random.randint(-3, 3, (1, 2)).astype(np.int8) z = np.logical_or(x, y) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "or_i8_broadcast" make_test([x, y], z, "input_0.or(@input_1)", name) default() broadcast() @staticmethod def or_fp8x23(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) z = np.logical_or(x, y) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "or_fp8x23" make_test([x, y], z, "input_0.or(@input_1)", name) def broadcast(): x = np.random.randint(-3, 3, (2, 2)).astype(np.float64) y = np.random.randint(-3, 3, (1, 2)).astype(np.float64) z = np.logical_or(x, y) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "or_fp8x23_broadcas
t" make_test([x, y], z, "input_0.or(@input_1)", name) default() broadcast() @staticmethod def or_fp16x16(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) z = np.logical_or(x, y) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "or_fp16x16" make_test([x, y], z, "input_0.or(@input_1)", name) def broadcast(): x = np.random.randint(-3, 3, (2, 2)).astype(np.float64) y = np.random.randint(-3, 3, (1, 2)).astype(np.float64) z = np.logical_or(x, y) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "or_fp16x16_broadcast" make_test([x, y], z, "input_0.or(@input_1)", name) default() broadcast()
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl
class Pow(RunAll): @staticmethod def pow_fp8x23(): def default(): x = np.array([1, 2, 3]).astype(np.float64) y = np.array([1, 2, 3]).astype(np.float64) z = np.array(pow(x, y), dtype=np.float64) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) name = "pow_fp8x23" make_test([x, y], z, "input_0.pow(@input_1)", name) def broadcast(): x = np.array([1, 2, 3]).astype(np.float64) y = np.array([2]).astype(np.float64) z = np.array(pow(x, y), dtype=np.float64) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) name = "pow_fp8x23_broadcast" make_test([x, y], z, "input_0.pow(@input_1)", name) default() broadcast() @staticmethod def and_fp16x16(): def default(): x = np.array([1, 2, 3]).astype(np.float64) y = np.array([1, 2, 3]).astype(np.float64) z = np.array(pow(x, y), dtype=np.float64) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) name = "pow_fp16x16" make_test([x, y], z, "input_0.pow(@input_1)", name) def broadcast(): x = np.array([1, 2, 3]).astype(np.float64) y = np.array([2]).astype(np.float6
4) z = np.array(pow(x, y), dtype=np.float64) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) name = "pow_fp16x16_broadcast" make_test([x, y], z, "input_0.pow(@input_1)", name) default() broadcast()
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait def random_uniform_like(x: np.ndarray, high: int=1,low: int=0,seed: int=25) ->np.ndarray: dtype = np.float64 if seed is None or np.isnan(seed): state = np.random.RandomState() else: state = np.random.RandomState(seed=int(seed)) res = state.rand(*x.shape).astype(dtype) res *= high - low res += low return (res.astype(dtype),) def get_data_statement(data: np.ndarray, dtype: Dtype) -> list[str]: match dtype: case Dtype.FP8x23: return ["Option::Some(FP8x23 { "+f"mag: {abs(int(x))}, sign: {str(x < 0).lower()} "+"})" for x in data.flatten()] case Dtype.FP16x16: return ["Option::Some(FP16x16 { "+f"mag: {abs(int(x))}, sign: {str(x < 0).lower()} "+"})" for x in data.flatten()] case Dtype.U32: return [f"Option::Some({int(x)})" for x in data.flatten()]
class Random_uniform_like(RunAll): @staticmethod def fp8x23(): x = np.random.uniform(1, 10, (1, 2, 2, 4)).astype(np.float64) y = random_uniform_like(x) args = [10, 1] args_str = get_data_statement(to_fp(np.array(args).flatten(), FixedImpl.FP8x23), Dtype.FP8x23) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y[0].shape, to_fp( y[0].flatten(), FixedImpl.FP8x23)) name = "random_uniform_like_fp8x23" make_test( [x], y, f"TensorTrait::random_uniform_like(@input_0, {','.join(args_str)}, Option::Some(354145))", name ) @staticmethod def fp16x16(): x = np.random.uniform(1, 10, (1, 2, 2, 4)).astype(np.float16) y = random_uniform_like(x) args = [10, 1] args_str = get_data_statement(to_fp(np.array(args).flatten(), FixedImpl.FP16x16), Dtype.FP16x16) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y[0].shape, to_fp( y[0].flatten(), FixedImpl.FP16x16)) name = "random_uniform_like_fp16x16" make_test( [x], y, f"TensorTrait::random_uniform_like(@input_0, {','.join(args_str)}, Option::Some(354145))", name )
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait, get_data_statement
class Range(RunAll): @staticmethod def fp8x23(): args = [1, 5, 0.3] args_str = get_data_statement(to_fp(np.array(args).flatten(), FixedImpl.FP8x23), Dtype.FP8x23) y = np.arange(*args) print(y) y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23)) name = "range_fp8x23" make_test( [], y, f"TensorTrait::range({','.join(args_str)})", name, ) @staticmethod def fp16x16(): args = [1, 25, 3] args_str = get_data_statement(to_fp(np.array(args).flatten(), FixedImpl.FP16x16), Dtype.FP16x16) y = np.arange(*args) print(y) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "range_fp16x16" make_test( [], y, f"TensorTrait::range({','.join(args_str)})", name, ) @staticmethod def i8(): args = [-1, 25, 3] args_str = get_data_statement(np.array(args).flatten(), Dtype.I8) y = np.arange(*args) print(y) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "range_i8" make_test( [], y, f"TensorTrait::range({','.join(args_str)})", name, ) @staticmethod def i32(): args = [21, 2, -3] args_str = get_data_statement(np.array(args).flatten(), Dtype.I32) y = np.arange(*args) print(y) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "range_i32" make_test( [], y, f"TensorTrait::range({','.join(args_str)})", name, ) @staticmethod def u32(): args = [1, 25, 3] args_str = get_data_statement(np.array(a
rgs).flatten(), Dtype.U32) y = np.arange(*args) print(y) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "range_u32" make_test( [], y, f"TensorTrait::range({','.join(args_str)})", name, )
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl
import numpy as np
class Reduce_l1(RunAll): @staticmethod def reduce_l1_fp8x23(): def reduce_l1_export_do_not_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int64) keepdims = False x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=False).astype(np.int64) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "reduce_l1_fp8x23_export_do_not_keepdims" make_test( [x], y, "input_0.reduce_l1(2, false)", name) def reduce_l1_export_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int64) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=True).astype(np.int64) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "reduce_l1_fp8x23_export_keepdims" make_test( [x], y, "input_0.reduce_l1(2, true)", name) def reduce_l1_axis_0(): shape = [3, 3, 3] axes = np.array([0], dtype=np.int64) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=True).astype(np.int64) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "reduce_l1_fp8x23_export_negative_axes_keepdims" make_test( [x], y, "input_0.reduce_l1(0, true)", name) reduce_l1_export_do_not_keepdims() reduce_l1_export_keepdims() reduce_l1_a
xis_0() @staticmethod def reduce_l1_fp16x16(): def reduce_l1_export_do_not_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int64) keepdims = False x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=False).astype(np.int64) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.FP16x16, y.shape, y.flatten()) name = "reduce_l1_fp16x16_export_do_not_keepdims" make_test( [x], y, "input_0.reduce_l1(2, false)", name) def reduce_l1_export_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int64) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=True).astype(np.int64) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.FP16x16, y.shape, y.flatten()) name = "reduce_l1_fp16x16_export_keepdims" make_test( [x], y, "input_0.reduce_l1(2, true)", name) def reduce_l1_axis_0(): shape = [3, 3, 3] axes = np.array([0], dtype=np.int64) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=True).astype(np.int64) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.FP16x16, y.shape, y.flatten()) name = "reduce_l1_fp16x16_export_negative_axes_keepdims" make_test( [x], y, "input_0.reduce_l1(0, true)", name) reduce_l1_export_do_not_keepdims() reduce_l1_export_keepdims() reduce_l1_axis_0(
) @staticmethod def reduce_l1_i8(): def reduce_l1_export_do_not_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int8) keepdims = False x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int8) y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=False).astype(np.int8) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "reduce_l1_i8_export_do_not_keepdims" make_test( [x], y, "input_0.reduce_l1(2, false)", name) def reduce_l1_export_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int8) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int8) y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=True).astype(np.int8) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "reduce_l1_i8_export_keepdims" make_test( [x], y, "input_0.reduce_l1(2, true)", name) def reduce_l1_axis_0(): shape = [3, 3, 3] axes = np.array([0], dtype=np.int8) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int8) y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=True).astype(np.int8) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "reduce_l1_i8_export_negative_axes_keepdims" make_test( [x], y, "input_0.reduce_l1(0, true)", name) reduce_l1_export_do_not_keepdims() reduce_l1_export_keepdims() reduce_l1_axis_0() @staticmethod def reduce_l1_i32(): def reduce_
l1_export_do_not_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int32) keepdims = False x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int32) y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=False).astype(np.int32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reduce_l1_i32_export_do_not_keepdims" make_test( [x], y, "input_0.reduce_l1(2, false)", name) def reduce_l1_export_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int32) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int32) y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=True).astype(np.int32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reduce_l1_i32_export_keepdims" make_test( [x], y, "input_0.reduce_l1(2, true)", name) def reduce_l1_axis_0(): shape = [3, 3, 3] axes = np.array([0], dtype=np.int32) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int32) y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=True).astype(np.int32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reduce_l1_i32_export_negative_axes_keepdims" make_test( [x], y, "input_0.reduce_l1(0, true)", name) reduce_l1_export_do_not_keepdims() reduce_l1_export_keepdims() reduce_l1_axis_0() @staticmethod def reduce_l1_u32(): def reduce_l1_export_do_not_keepdims(): shape
= [3, 2, 2] axes = np.array([2], dtype=np.uint32) keepdims = False x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.uint32) y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=False).astype(np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reduce_l1_u32_export_do_not_keepdims" make_test( [x], y, "input_0.reduce_l1(2, false)", name) def reduce_l1_export_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.uint32) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.uint32) y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=True).astype(np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reduce_l1_u32_export_keepdims" make_test( [x], y, "input_0.reduce_l1(2, true)", name) def reduce_l1_axis_0(): shape = [3, 3, 3] axes = np.array([0], dtype=np.uint32) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.uint32) y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=True).astype(np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reduce_l1_u32_export_negative_axes_keepdims" make_test( [x], y, "input_0.reduce_l1(0, true)", name) reduce_l1_export_do_not_keepdims() reduce_l1_export_keepdims() reduce_l1_axis_0()
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_node, make_test, to_fp, Tensor, Dtype, FixedImpl
import numpy as np
class Reduce_l2(RunAll): @staticmethod def reduce_l2_fp8x23(): def reduce_l2_export_do_not_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int64) keepdims = False x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.sqrt(np.sum(a=np.square(x), axis=tuple(axes), keepdims=False)).astype(np.int64) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "reduce_l2_fp8x23_export_do_not_keepdims" make_node([x], [y], name) make_test( [x], y, "input_0.reduce_l2(2, false)", name) def reduce_l2_export_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int64) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.sqrt(np.sum(a=np.square(x), axis=tuple(axes), keepdims=True)).astype(np.int64) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "reduce_l2_fp8x23_export_keepdims" make_node([x], [y], name) make_test( [x], y, "input_0.reduce_l2(2, true)", name) def reduce_l2_axis_0(): shape = [3, 3, 3] axes = np.array([0], dtype=np.int64) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.sqrt(np.sum(a=np.square(x), axis=tuple(axes), keepdims=True)).astype(np.int64) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "reduce_l2_fp8x23_export_negative_axes_keepdims" make_node([x], [y], name) make_test( [x], y, "input_0.reduce_l2(0, true)", nam
e) reduce_l2_export_do_not_keepdims() reduce_l2_export_keepdims() reduce_l2_axis_0() @staticmethod def reduce_l2_fp16x16(): def reduce_l2_export_do_not_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int64) keepdims = False x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.sqrt(np.sum(a=np.square(x), axis=tuple(axes), keepdims=False)).astype(np.int64) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.FP16x16, y.shape, y.flatten()) name = "reduce_l2_fp16x16_export_do_not_keepdims" make_node([x], [y], name) make_test( [x], y, "input_0.reduce_l2(2, false)", name) def reduce_l2_export_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int64) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.sqrt(np.sum(a=np.square(x), axis=tuple(axes), keepdims=True)).astype(np.int64) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.FP16x16, y.shape, y.flatten()) name = "reduce_l2_fp16x16_export_keepdims" make_node([x], [y], name) make_test( [x], y, "input_0.reduce_l2(2, true)", name) def reduce_l2_axis_0(): shape = [3, 3, 3] axes = np.array([0], dtype=np.int64) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.sqrt(np.sum(a=np.square(x), axis=tuple(axes), keepdims=True)).astype(np.int64) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.FP16x16, y.shape, y.flatten()) name = "reduce_l2_fp16x16_export_negative_axes_keepdims" m
ake_node([x], [y], name) make_test( [x], y, "input_0.reduce_l2(0, true)", name) reduce_l2_export_do_not_keepdims() reduce_l2_export_keepdims() reduce_l2_axis_0() @staticmethod def reduce_l2_complex64(): def reduce_l2_axis_0(): shape = [2, 3] axes = np.array([0], dtype=np.int64) keepdims = True x = np.reshape(np.array([1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j, 4.- 1.j]), shape) y = np.sqrt(np.sum(a=np.square(abs(x)), axis=tuple(axes), keepdims=True)) print(to_fp(x.flatten(), FixedImpl.FP64x64)) x = Tensor(Dtype.COMPLEX64, x.shape, to_fp( x.flatten(), FixedImpl.FP64x64)) y = Tensor(Dtype.COMPLEX64, y.shape, to_fp( y.flatten(), FixedImpl.FP64x64)) name = "reduce_l2_complex64_axis_0" make_test( [x], y, "input_0.reduce_l2(0, true)", name) reduce_l2_axis_0()
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl
class Reduce_log_sum(RunAll): @staticmethod def reduce_log_sum_fp8x23(): def reduce_log_sum_export_do_not_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int64) keepdims = False x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape) y = np.log(np.sum(x, axis=tuple(axes), keepdims=False)) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "reduce_log_sum_fp8x23_export_do_not_keepdims" make_test( [x], y, "input_0.reduce_log_sum(2, false)", name) def reduce_log_sum_export_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int64) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.log(np.sum(x, axis=tuple(axes), keepdims=True)) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "reduce_log_sum_fp8x23_export_keepdims" make_test( [x], y, "input_0.reduce_log_sum(2, true)", name) def reduce_log_sum_axis_0(): shape = [3, 3, 3] axes = np.array([0], dtype=np.int64) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1), shape) y = np.log(np.sum(x, axis=tuple(axes), keepdims=True)) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "reduce_log_sum_fp8x23_export_negative_axes_keepdims" make_test( [x], y, "input_0.reduc
e_log_sum(0, true)", name) reduce_log_sum_export_do_not_keepdims() reduce_log_sum_export_keepdims() reduce_log_sum_axis_0() @staticmethod def reduce_log_sum_fp16x16(): def reduce_log_sum_export_do_not_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int64) keepdims = False x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.log(np.sum(x, axis=tuple(axes), keepdims=False)) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "reduce_log_sum_fp16x16_export_do_not_keepdims" make_test( [x], y, "input_0.reduce_log_sum(2, false)", name) def reduce_log_sum_export_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int64) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.log(np.sum(x, axis=tuple(axes), keepdims=True)) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "reduce_log_sum_fp16x16_export_keepdims" make_test( [x], y, "input_0.reduce_log_sum(2, true)", name) def reduce_log_sum_axis_0(): shape = [2, 2, 2] axes = np.array([0], dtype=np.int64) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.log(np.sum(x, axis=tuple(axes), keepdims=True)) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, t
o_fp( y.flatten(), FixedImpl.FP8x23)) name = "reduce_log_sum_fp16x16_export_negative_axes_keepdims" make_test( [x], y, "input_0.reduce_log_sum(0, true)", name) reduce_log_sum_export_do_not_keepdims() reduce_log_sum_export_keepdims() reduce_log_sum_axis_0()
import numpy as np from nodegen.node