text
stringlengths
1
2.05k
import RunAll from ..helpers
import make_test, Tensor, Dtype, FixedImpl, to_fp
class Reduce_log_sum_exp(RunAll): @staticmethod def reduce_log_sum_exp_fp32x32(): def reduce_log_sum_exp_export_do_not_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int64) keepdims = False x = np.reshape(np.arange(1, np.prod(shape) + 1), shape) y = np.log(np.sum(np.exp(x), axis=tuple(axes), keepdims=False)).astype(np.float64) x = Tensor(Dtype.FP32x32, x.shape, to_fp( x.flatten(), FixedImpl.FP32x32)) y = Tensor(Dtype.FP32x32, y.shape, to_fp( y.flatten(), FixedImpl.FP32x32)) name = "reduce_log_sum_exp_fp32x32_export_do_not_keepdims" make_test( [x], y, "input_0.reduce_log_sum_exp(2, false)", name) def reduce_log_sum_exp_export_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int64) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1), shape) y = np.log(np.sum(np.exp(x), axis=tuple(axes), keepdims=True)).astype(np.float64) x = Tensor(Dtype.FP32x32, x.shape, to_fp( x.flatten(), FixedImpl.FP32x32)) y = Tensor(Dtype.FP32x32, y.shape, to_fp( y.flatten(), FixedImpl.FP32x32)) name = "reduce_log_sum_exp_fp32x32_export_keepdims" make_test( [x], y, "input_0.reduce_log_sum_exp(2, true)", name) def reduce_log_sum_exp_axis_0(): shape = [3, 2, 2] axes = np.array([0], dtype=np.int64) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1), shape) y = np.log(np.sum(np.exp(x), axis=tuple(axes), keepdims=True)).astype(np.float64) x = Tensor(Dtype.FP32x32, x.shape, to_fp( x.flatten(), FixedImpl.FP32x32)) y = Tensor(Dtype.FP32x32, y.shape, to_fp( y.flatten(), FixedImpl.FP32x32)) name = "reduce_log_sum_exp_fp32x32_export_n
egative_axes_keepdims" make_test( [x], y, "input_0.reduce_log_sum_exp(0, true)", name) reduce_log_sum_exp_export_do_not_keepdims() reduce_log_sum_exp_export_keepdims() reduce_log_sum_exp_axis_0()
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl
class Reduce_mean(RunAll): @staticmethod def reduce_mean_u32(): def reduce_mean_1D(): x = np.array([0, 1, 2,]).astype(np.uint32) y = np.mean(x, keepdims=True).astype(np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reduce_mean_u32_1D" make_test( [x], y, "input_0.reduce_mean(Option::None(()), Option::None(()), Option::None(()))", name) def reduce_mean_2D(): def default(): x = np.array([0, 1, 2, 3]).astype(np.uint32).reshape(2, 2) y = np.mean(x, keepdims=True).astype(np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reduce_mean_u32_2D_default" make_test( [x], y, "input_0.reduce_mean(Option::None(()), Option::None(()), Option::None(()))", name) def keepdims(): x = np.array([0, 1, 2, 3]).astype(np.uint32).reshape(2, 2) y = np.mean(x, keepdims=False).astype(np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reduce_mean_u32_2D_keepdims" make_test( [x], y, "input_0.reduce_mean(Option::None(()), Option::Some(false), Option::None(()))", name) def axis_1(): x = np.array([0, 1, 2, 3]).astype(np.uint32).reshape(2, 2) y = np.mean(x, axis=(1), keepdims=True).astype(np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reduce_mean_u32_2D_axis_1" make_test( [x], y, "input_0.reduce_mean(Option::Some(array![1].span()), Option::None(()), Option::None(()))", name) default() keepdims()
axis_1() reduce_mean_1D() reduce_mean_2D() @staticmethod def reduce_mean_i32(): def reduce_mean_1D(): x = np.array([0, 1, 2,]).astype(np.int32) y = np.mean(x, keepdims=True).astype(np.int32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reduce_mean_i32_1D" make_test( [x], y, "input_0.reduce_mean(Option::None(()), Option::None(()), Option::None(()))", name) def reduce_mean_2D(): def default(): x = np.array([0, 1, 2, 3]).astype(np.int32).reshape(2, 2) y = np.mean(x, keepdims=True).astype(np.int32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reduce_mean_i32_2D_default" make_test( [x], y, "input_0.reduce_mean(Option::None(()), Option::None(()), Option::None(()))", name) def keepdims(): x = np.array([0, 1, 2, 3]).astype(np.int32).reshape(2, 2) y = np.mean(x, keepdims=False).astype(np.int32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reduce_mean_i32_2D_keepdims" make_test( [x], y, "input_0.reduce_mean(Option::None(()), Option::Some(false), Option::None(()))", name) def axis_1(): x = np.array([0, 1, 2, 3]).astype(np.int32).reshape(2, 2) y = np.mean(x, axis=(1), keepdims=True).astype(np.int32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reduce_mean_i32_2D_axis_1" make_test( [x], y, "input_0.reduce_mean(Option::Some(array![1].span()), Option::None(()), Option::None(()))", name) default(
) keepdims() axis_1() reduce_mean_1D() reduce_mean_2D() @staticmethod def reduce_mean_i8(): def reduce_mean_1D(): x = np.array([0, 1, 2,]).astype(np.int8) y = np.mean(x, keepdims=True).astype(np.int8) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "reduce_mean_i8_1D" make_test( [x], y, "input_0.reduce_mean(Option::None(()), Option::None(()), Option::None(()))", name) def reduce_mean_2D(): def default(): x = np.array([0, 1, 2, 3]).astype(np.int8).reshape(2, 2) y = np.mean(x, keepdims=True).astype(np.int8) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "reduce_mean_i8_2D_default" make_test( [x], y, "input_0.reduce_mean(Option::None(()), Option::None(()), Option::None(()))", name) def keepdims(): x = np.array([0, 1, 2, 3]).astype(np.int8).reshape(2, 2) y = np.mean(x, keepdims=False).astype(np.int8) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "reduce_mean_i8_2D_keepdims" make_test( [x], y, "input_0.reduce_mean(Option::None(()), Option::Some(false), Option::None(()))", name) def axis_1(): x = np.array([0, 1, 2, 3]).astype(np.int8).reshape(2, 2) y = np.mean(x, axis=(1), keepdims=True).astype(np.int8) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "reduce_mean_i8_2D_axis_1" make_test( [x], y, "input_0.reduce_mean(Option::Some(array![1].span()), Option::None(()), Optio
n::None(()))", name) default() keepdims() axis_1() reduce_mean_1D() reduce_mean_2D() @staticmethod def reduce_mean_fp8x23(): def reduce_mean_1D(): x = np.array([0, 1, 2,]).astype(np.int64) y = np.mean(x, keepdims=True) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "reduce_mean_fp8x23_1D" make_test( [x], y, "input_0.reduce_mean(Option::None(()), Option::None(()), Option::None(()))", name) def reduce_mean_2D(): def default(): x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2) y = np.mean(x, keepdims=True) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "reduce_mean_fp8x23_2D_default" make_test( [x], y, "input_0.reduce_mean(Option::None(()), Option::None(()), Option::None(()))", name) def keepdims(): x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2) y = np.mean(x, keepdims=False) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "reduce_mean_fp8x23_2D_keepdims" make_test( [x], y, "input_0.reduce_mean(Option::None(()), Option::Some(false), Option::None(()))", name) def axis_1(): x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2) y = np.mean(x, axis=(1), keepdims=True) x = Tensor(Dtype.FP8x23, x
.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "reduce_mean_fp8x23_2D_axis_1" make_test( [x], y, "input_0.reduce_mean(Option::Some(array![1].span()), Option::None(()), Option::None(()))", name) default() keepdims() axis_1() reduce_mean_1D() reduce_mean_2D() @staticmethod def reduce_mean_fp16x16(): def reduce_mean_1D(): x = np.array([0, 1, 2,]).astype(np.int64) y = np.mean(x, keepdims=True) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "reduce_mean_fp16x16_1D" make_test( [x], y, "input_0.reduce_mean(Option::None(()), Option::None(()), Option::None(()))", name) def reduce_mean_2D(): def default(): x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2) y = np.mean(x, keepdims=True) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "reduce_mean_fp16x16_2D_default" make_test( [x], y, "input_0.reduce_mean(Option::None(()), Option::None(()), Option::None(()))", name) def keepdims(): x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2) y = np.mean(x, keepdims=False) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16))
name = "reduce_mean_fp16x16_2D_keepdims" make_test( [x], y, "input_0.reduce_mean(Option::None(()), Option::Some(false), Option::None(()))", name) def axis_1(): x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2) y = np.mean(x, axis=(1), keepdims=True) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "reduce_mean_fp16x16_2D_axis_1" make_test( [x], y, "input_0.reduce_mean(Option::Some(array![1].span()), Option::None(()), Option::None(()))", name) default() keepdims() axis_1() reduce_mean_1D() reduce_mean_2D()
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl
class Reduce_min(RunAll): @staticmethod def reduce_min_u32(): def reduce_min_1D(): x = np.array([0, 1, 2,]).astype(np.uint32) y = np.minimum.reduce(x, axis=None, keepdims=True).astype(np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reduce_min_u32_1D" make_test( [x], y, "input_0.reduce_min(Option::None(()), Option::None(()), Option::None(()))", name) def reduce_min_2D(): def default(): x = np.array([0, 1, 2, 3]).astype(np.uint32).reshape(2, 2) y = np.minimum.reduce(x, axis=None, keepdims=True).astype(np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reduce_min_u32_2D_default" make_test( [x], y, "input_0.reduce_min(Option::None(()), Option::None(()), Option::None(()))", name) def keepdims(): x = np.array([0, 1, 2, 3]).astype(np.uint32).reshape(2, 2) y = np.minimum.reduce(x, axis=None, keepdims=False).astype(np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reduce_min_u32_2D_keepdims" make_test( [x], y, "input_0.reduce_min(Option::None(()), Option::Some(false), Option::None(()))", name) def axis_1(): x = np.array([0, 1, 2, 3]).astype(np.uint32).reshape(2, 2) y = np.minimum.reduce(x, axis=(1), keepdims=True).astype(np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reduce_min_u32_2D_axis_1" make_test( [x], y, "input_0.reduce_min(Option::Some(array![1].span()), Option::None(()), Option::None(()))
", name) default() keepdims() axis_1() reduce_min_1D() reduce_min_2D() @staticmethod def reduce_min_i32(): def reduce_min_1D(): x = np.array([0, 1, 2,]).astype(np.int32) y = np.minimum.reduce(x, axis=None, keepdims=True).astype(np.int32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reduce_min_i32_1D" make_test( [x], y, "input_0.reduce_min(Option::None(()), Option::None(()), Option::None(()))", name) def reduce_min_2D(): def default(): x = np.array([0, 1, 2, 3]).astype(np.int32).reshape(2, 2) y = np.minimum.reduce(x, axis=None, keepdims=True).astype(np.int32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reduce_min_i32_2D_default" make_test( [x], y, "input_0.reduce_min(Option::None(()), Option::None(()), Option::None(()))", name) def keepdims(): x = np.array([0, 1, 2, 3]).astype(np.int32).reshape(2, 2) y = np.minimum.reduce(x, axis=None, keepdims=False).astype(np.int32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reduce_min_i32_2D_keepdims" make_test( [x], y, "input_0.reduce_min(Option::None(()), Option::Some(false), Option::None(()))", name) def axis_1(): x = np.array([0, 1, 2, 3]).astype(np.int32).reshape(2, 2) y = np.minimum.reduce(x, axis=(1), keepdims=True).astype(np.int32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reduce_min_i32_2D_axis_1" make_test( [x],
y, "input_0.reduce_min(Option::Some(array![1].span()), Option::None(()), Option::None(()))", name) default() keepdims() axis_1() reduce_min_1D() reduce_min_2D() @staticmethod def reduce_min_i8(): def reduce_min_1D(): x = np.array([0, 1, 2,]).astype(np.int8) y = np.minimum.reduce(x, axis=None, keepdims=True).astype(np.int8) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "reduce_min_i8_1D" make_test( [x], y, "input_0.reduce_min(Option::None(()), Option::None(()), Option::None(()))", name) def reduce_min_2D(): def default(): x = np.array([0, 1, 2, 3]).astype(np.int8).reshape(2, 2) y = np.minimum.reduce(x, axis=None, keepdims=True).astype(np.int8) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "reduce_min_i8_2D_default" make_test( [x], y, "input_0.reduce_min(Option::None(()), Option::None(()), Option::None(()))", name) def keepdims(): x = np.array([0, 1, 2, 3]).astype(np.int8).reshape(2, 2) y = np.minimum.reduce(x, axis=None, keepdims=False).astype(np.int8) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "reduce_min_i8_2D_keepdims" make_test( [x], y, "input_0.reduce_min(Option::None(()), Option::Some(false), Option::None(()))", name) def axis_1(): x = np.array([0, 1, 2, 3]).astype(np.int8).reshape(2, 2) y = np.minimum.reduce(x, axis=(1), keepdims=True).astype(np.int8) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
name = "reduce_min_i8_2D_axis_1" make_test( [x], y, "input_0.reduce_min(Option::Some(array![1].span()), Option::None(()), Option::None(()))", name) default() keepdims() axis_1() reduce_min_1D() reduce_min_2D() @staticmethod def reduce_min_fp8x23(): def reduce_min_1D(): x = np.array([0, 1, 2,]).astype(np.int64) y = np.minimum.reduce(x, axis=None, keepdims=True) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "reduce_min_fp8x23_1D" make_test( [x], y, "input_0.reduce_min(Option::None(()), Option::None(()), Option::None(()))", name) def reduce_min_2D(): def default(): x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2) y = np.minimum.reduce(x, axis=None, keepdims=True) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "reduce_min_fp8x23_2D_default" make_test( [x], y, "input_0.reduce_min(Option::None(()), Option::None(()), Option::None(()))", name) def keepdims(): x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2) y = np.minimum.reduce(x, axis=None, keepdims=False) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "reduce_min_fp8x23_2D_keepdims" make_test( [x], y, "input_0.reduce_min(Option::None(()), Option::Some(f
alse), Option::None(()))", name) def axis_1(): x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2) y = np.minimum.reduce(x, axis=(1), keepdims=True) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "reduce_min_fp8x23_2D_axis_1" make_test( [x], y, "input_0.reduce_min(Option::Some(array![1].span()), Option::None(()), Option::None(()))", name) default() keepdims() axis_1() reduce_min_1D() reduce_min_2D() @staticmethod def reduce_min_fp16x16(): def reduce_min_1D(): x = np.array([0, 1, 2,]).astype(np.int64) y = np.minimum.reduce(x, axis=None, keepdims=True) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "reduce_min_fp16x16_1D" make_test( [x], y, "input_0.reduce_min(Option::None(()), Option::None(()), Option::None(()))", name) def reduce_min_2D(): def default(): x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2) y = np.minimum.reduce(x, axis=None, keepdims=True) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "reduce_min_fp16x16_2D_default" make_test( [x], y, "input_0.reduce_min(Option::None(()), Option::None(()), Option::None(()))", name) def keepdims(): x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2)
y = np.minimum.reduce(x, axis=None, keepdims=False) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "reduce_min_fp16x16_2D_keepdims" make_test( [x], y, "input_0.reduce_min(Option::None(()), Option::Some(false), Option::None(()))", name) def axis_1(): x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2) y = np.minimum.reduce(x, axis=(1), keepdims=True) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "reduce_min_fp16x16_2D_axis_1" make_test( [x], y, "input_0.reduce_min(Option::Some(array![1].span()), Option::None(()), Option::None(()))", name) default() keepdims() axis_1() reduce_min_1D() reduce_min_2D()
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl
class Reduce_sum(RunAll): @staticmethod def reduce_sum_no_keep_dims(): axes = np.array([1], dtype=np.uint32) keepdims = 0 x = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [ [9, 10], [11, 12]]]).astype(np.uint32) y = np.sum(x, axis=tuple(axes.tolist()), keepdims=keepdims == 1) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reduce_sum_no_keep_dims" make_test( [x], y, "input_0.reduce_sum(Option::Some(array![1].span()), Option::Some(false), Option::None)", name) @staticmethod def reduce_sum_keep_dims(): axes = np.array([1], dtype=np.uint32) keepdims = 1 x = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [ [9, 10], [11, 12]]]).astype(np.uint32) y = np.sum(x, axis=tuple(axes.tolist()), keepdims=keepdims == 1) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reduce_sum_keep_dims" make_test( [x], y, "input_0.reduce_sum(Option::Some(array![1].span()), Option::Some(true), Option::None)", name) @staticmethod def reduce_sum_default_axes_keepdims(): keepdims = 1 x = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [ [9, 10], [11, 12]]]).astype(np.uint32) y = np.sum(x, axis=None, keepdims=keepdims == 1) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reduce_sum_default_axes_keepdims" make_test( [x], y, "input_0.reduce_sum(Option::Some(array![].span()), Option::Some(true), Option::None)", name) @staticmethod def reduce_sum_negative_axes_keepdims(): axes = np.array([-2], dtype=np.int64) keepdims = 1 x = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [ [9, 10], [11, 12]]]).astype(np.uint32) y = np.sum(x, axis=tuple(axes.tolist()), keepd
ims=keepdims == 1) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reduce_sum_negative_axes_keepdims" make_test( [x], y, "input_0.reduce_sum(Option::Some(array![-2].span()), Option::Some(true), Option::None)", name) @staticmethod def reduce_sum_empty_axes_input_noop(): x = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [ [9, 10], [11, 12]]]).astype(np.uint32) y = np.array(x) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reduce_sum_empty_axes_input_noop" make_test( [x], y, "input_0.reduce_sum(Option::None, Option::Some(true), Option::Some(true))", name)
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl
import numpy as np
class Reduce_sum_square(RunAll): @staticmethod def reduce_sum_square_fp8x23(): def reduce_sum_square_export_do_not_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int64) keepdims = False x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=False).astype(np.int64) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "reduce_sum_square_fp8x23_export_do_not_keepdims" make_test( [x], y, "input_0.reduce_sum_square(2, false)", name) def reduce_sum_square_export_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int64) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=True).astype(np.int64) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "reduce_sum_square_fp8x23_export_keepdims" make_test( [x], y, "input_0.reduce_sum_square(2, true)", name) def reduce_sum_square_axis_0(): shape = [3, 3, 3] axes = np.array([0], dtype=np.int64) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=True).astype(np.int64) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "reduce_sum_square_fp8x23_export_negative_axes_keepdims" make_test( [x], y, "input_0.reduce_sum_square(0, true)", name)
reduce_sum_square_export_do_not_keepdims() reduce_sum_square_export_keepdims() reduce_sum_square_axis_0() @staticmethod def reduce_sum_square_fp16x16(): def reduce_sum_square_export_do_not_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int64) keepdims = False x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=False).astype(np.int64) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.FP16x16, y.shape, y.flatten()) name = "reduce_sum_square_fp16x16_export_do_not_keepdims" make_test( [x], y, "input_0.reduce_sum_square(2, false)", name) def reduce_sum_square_export_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int64) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=True).astype(np.int64) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.FP16x16, y.shape, y.flatten()) name = "reduce_sum_square_fp16x16_export_keepdims" make_test( [x], y, "input_0.reduce_sum_square(2, true)", name) def reduce_sum_square_axis_0(): shape = [2, 2, 2] axes = np.array([0], dtype=np.int64) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64) y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=True).astype(np.int64) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.FP16x16, y.shape, y.flatten()) name = "reduce_sum_square_fp16x16_export_negative_axes_keepdims"
make_test( [x], y, "input_0.reduce_sum_square(0, true)", name) reduce_sum_square_export_do_not_keepdims() reduce_sum_square_export_keepdims() reduce_sum_square_axis_0() @staticmethod def reduce_sum_square_i8(): def reduce_sum_square_export_do_not_keepdims(): shape = [2, 2, 2] axes = np.array([2], dtype=np.int8) keepdims = False x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int8) y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=False).astype(np.int8) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "reduce_sum_square_i8_export_do_not_keepdims" make_test( [x], y, "input_0.reduce_sum_square(2, false)", name) def reduce_sum_square_export_keepdims(): shape = [2, 2, 2] axes = np.array([2], dtype=np.int8) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int8) y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=True).astype(np.int8) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "reduce_sum_square_i8_export_keepdims" make_test( [x], y, "input_0.reduce_sum_square(2, true)", name) def reduce_sum_square_axis_0(): shape = [2, 2, 2] axes = np.array([0], dtype=np.int8) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int8) y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=True).astype(np.int8) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "reduce_sum_s
quare_i8_export_negative_axes_keepdims" make_test( [x], y, "input_0.reduce_sum_square(0, true)", name) reduce_sum_square_export_do_not_keepdims() reduce_sum_square_export_keepdims() reduce_sum_square_axis_0() @staticmethod def reduce_sum_square_i32(): def reduce_sum_square_export_do_not_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int32) keepdims = False x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int32) y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=False).astype(np.int32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reduce_sum_square_i32_export_do_not_keepdims" make_test( [x], y, "input_0.reduce_sum_square(2, false)", name) def reduce_sum_square_export_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.int32) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int32) y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=True).astype(np.int32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reduce_sum_square_i32_export_keepdims" make_test( [x], y, "input_0.reduce_sum_square(2, true)", name) def reduce_sum_square_axis_0(): shape = [3, 3, 3] axes = np.array([0], dtype=np.int32) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int32) y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=True).astype(np.int32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(
Dtype.I32, y.shape, y.flatten()) name = "reduce_sum_square_i32_export_negative_axes_keepdims" make_test( [x], y, "input_0.reduce_sum_square(0, true)", name) reduce_sum_square_export_do_not_keepdims() reduce_sum_square_export_keepdims() reduce_sum_square_axis_0() @staticmethod def reduce_sum_square_u32(): def reduce_sum_square_export_do_not_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.uint32) keepdims = False x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.uint32) y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=False).astype(np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reduce_sum_square_u32_export_do_not_keepdims" make_test( [x], y, "input_0.reduce_sum_square(2, false)", name) def reduce_sum_square_export_keepdims(): shape = [3, 2, 2] axes = np.array([2], dtype=np.uint32) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.uint32) y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=True).astype(np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reduce_sum_square_u32_export_keepdims" make_test( [x], y, "input_0.reduce_sum_square(2, true)", name) def reduce_sum_square_axis_0(): shape = [3, 3, 3] axes = np.array([0], dtype=np.uint32) keepdims = True x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.uint32) y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=True).astype(np.uint32)
x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reduce_sum_square_u32_export_negative_axes_keepdims" make_test( [x], y, "input_0.reduce_sum_square(0, true)", name) reduce_sum_square_export_do_not_keepdims() reduce_sum_square_export_keepdims() reduce_sum_square_axis_0()
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, Trait, FixedImpl import tensorflow as tf class Relu(RunAll): @staticmethod def relu_i32(): x = np.random.randint(-5, 9, (2, 2)).astype(np.int32) layer = tf.keras.layers.ReLU() y = layer(x).numpy() x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "relu_i32" make_test([x], y, "NNTrait::relu(@input_0)", name, Trait.NN) @staticmethod def relu_i8(): x = np.random.randint(-5, 9, (2, 2)).astype(np.int8) layer = tf.keras.layers.ReLU() y = layer(x).numpy() x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "relu_i8" make_test([x], y, "NNTrait::relu(@input_0)", name, Trait.NN) @staticmethod def relu_fp8x23(): x = np.random.uniform(-5, 7, (2, 2)).astype(np.float64) layer = tf.keras.layers.ReLU() y = layer(x).numpy() x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "relu_fp8x23" make_test([x], y, "NNTrait::relu(@input_0)", name, Trait.NN) @staticmethod def relu_fp16x16(): x = np.random.uniform(-5, 7, (2, 2)).astype(np.float64) layer = tf.keras.layers.ReLU() y = layer(x).numpy() x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "relu_fp16x16" make_test([x], y, "NNTrait::relu(@input_0)", name, Trait.NN)
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, Tensor, Dtype original_shape = [2, 3, 4] data = np.random.random_sample(original_shape).astype(np.int32) def reshape_reference_implementation( data: np.ndarray, shape: np.ndarray, allowzero: int = 0 ) -> np.ndarray: new_shape = np.copy(shape) if allowzero == 0: zeros_index = np.where(shape == 0) new_shape[zeros_index] = np.array(data.shape)[zeros_index] reshaped = np.reshape(data, new_shape) return reshaped
class Reshape(RunAll): @staticmethod def reshape_reordered_all_dims(): y = reshape_reference_implementation( data, np.array([4, 2, 3], dtype=np.int64)) x = Tensor(Dtype.I32, data.shape, data.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reshape_reordered_all_dims" make_test([x], y, "input_0.reshape(array![4,2,3].span(), false)", name) @staticmethod def reshape_reordered_last_dims(): y = reshape_reference_implementation( data, np.array([2, 4, 3], dtype=np.int64)) x = Tensor(Dtype.I32, data.shape, data.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reshape_reordered_last_dims" make_test([x], y, "input_0.reshape(array![2,4,3].span(), false)", name) @staticmethod def reshape_reduced_dims(): y = reshape_reference_implementation( data, np.array([2, 12], dtype=np.int64)) x = Tensor(Dtype.I32, data.shape, data.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reshape_reduced_dims" make_test([x], y, "input_0.reshape(array![2,12].span(), false)", name) @staticmethod def reshape_extended_dims(): y = reshape_reference_implementation( data, np.array([2, 3, 2, 2], dtype=np.int64)) x = Tensor(Dtype.I32, data.shape, data.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reshape_extended_dims" make_test([x], y, "input_0.reshape(array![2, 3, 2, 2].span(), false)", name) @staticmethod def reshape_one_dim(): y = reshape_reference_implementation( data, np.array([24], dtype=np.int64)) x = Tensor(Dtype.I32, data.shape, data.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reshape_one_dim" make_test([x], y, "input_0.reshape(array![24].span(), false)", name) @staticmethod def reshape_negative_dim(): y = reshape_reference_implementation(
data, np.array([2, -1, 2], dtype=np.int64)) x = Tensor(Dtype.I32, data.shape, data.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reshape_negative_dim" make_test([x], y, "input_0.reshape(array![2, -1, 2].span(), false)", name) @staticmethod def reshape_negative_extended_dims(): y = reshape_reference_implementation( data, np.array([-1, 2, 3, 4], dtype=np.int64)) x = Tensor(Dtype.I32, data.shape, data.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reshape_negative_extended_dims" make_test([x], y, "input_0.reshape(array![-1, 2, 3, 4].span(), false)", name) @staticmethod def reshape_zero_dim(): y = reshape_reference_implementation( data, np.array([2, 0, 4, 1], dtype=np.int64)) x = Tensor(Dtype.I32, data.shape, data.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reshape_zero_dim" make_test([x], y, "input_0.reshape(array![2, 0, 4, 1].span(), false)", name) @staticmethod def reshape_zero_and_negative_dim(): y = reshape_reference_implementation( data, np.array([2, 0, 1, -1], dtype=np.int64)) x = Tensor(Dtype.I32, data.shape, data.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reshape_zero_and_negative_dim" make_test([x], y, "input_0.reshape(array![2, 0, 1, -1].span(), false)", name) @staticmethod def reshape_zero_and_negative_dim(): original_shape = [0, 3, 4] data = np.random.random_sample(original_shape).astype(np.int32) y = reshape_reference_implementation( data, np.array([3, 4, 0], dtype=np.int64), allowzero=1) x = Tensor(Dtype.I32, data.shape, data.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reshape_zero_and_negative_dim" make_test([x], y, "input_0.reshape(array![3, 4, 0].span(), true)", name)
import numpy as np from typing
import Any, Callable from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl def _cartesian(arrays: list[np.ndarray], out: np.ndarray | None = None) -> np.ndarray: arrays = [np.asarray(x) for x in arrays] dtype = arrays[0].dtype n = np.prod([x.size for x in arrays]) if out is None: out = np.zeros([n, len(arrays)], dtype=dtype) m = n out[:, 0] = np.repeat(arrays[0], m) if arrays[1:]: _cartesian(arrays[1:], out=out[0:m, 1:]) for j in range(1, arrays[0].size): out[j * m : (j + 1) * m, 1:] = out[0:m, 1:] return out def _get_neighbor_idxes(x: float, n: int, limit: int) -> np.ndarray: idxes = sorted(range(limit), key=lambda idx: (abs(x - idx), idx))[:n] idxes = sorted(idxes) return np.array(idxes) def _get_neighbor(x: float, n: int, data: np.ndarray) -> tuple[np.ndarray, np.ndarray]: pad_width = np.ceil(n / 2).astype(int) padded = np.pad(data, pad_width, mode="edge") x += pad_width idxes = _get_neighbor_idxes(x, n, len(padded)) ret = padded[idxes] return idxes - pad_width, ret def linear_coeffs(ratio: float, scale: float | None = None) -> np.ndarray: del scale return np.array([1 - ratio, ratio]) def linear_coeffs_antialias(ratio: float, scale: float) -> np.ndarray: scale = min(scale, 1.0) start = int(np.floor(-1 / scale) + 1) footprint = 2 - 2 * start args = (np.arange(start, start + footprint) - ratio) * scale coeffs = np.clip(1 - np.abs(args), 0, 1) return np.array(coeffs) / sum(coeffs) def cubic_coeffs_antialias(ratio: float, scale: float, A: float = -0.75) -> np.ndarray: scale = min(scale, 1.0) def compute_coeff(x: float) -> float: x = abs(x) x_2 = x * x x_3 = x * x_2 if x <= 1: return (A + 2) * x_3 - (A + 3) * x_2 + 1 if x < 2: return A * x_3 - 5 * A * x_2 + 8 * A * x - 4 * A return 0.0 i_start = int(np.floor(-2 / scale) + 1) i_end = 2 - i_start args = [scale * (i - ratio) for i in range(
i_start, i_end)] coeffs = [compute_coeff(x) for x in args] return np.array(coeffs) / sum(coeffs) def nearest_coeffs( ratio: float | int | np.ndarray, mode: str = "round_prefer_floor" ) -> np.ndarray: if isinstance(ratio, int) or ratio.is_integer(): return np.array([0, 1]) if mode == "round_prefer_floor": return np.array([ratio <= 0.5, ratio > 0.5]) if mode == "round_prefer_ceil": return np.array([ratio < 0.5, ratio >= 0.5]) if mode == "floor": return np.array([1, 0]) if mode == "ceil": return np.array([0, 1]) raise ValueError(f"Unexpected value {mode!r}.") def _interpolate_1d_with_x( data: np.ndarray, scale_factor: float, output_width_int: int, x: float, get_coeffs: Callable[[float, float], np.ndarray], roi: np.ndarray | None = None, extrapolation_value: float = 0.0, coordinate_transformation_mode: str = "half_pixel", exclude_outside: bool = False, ) -> np.ndarray: input_width = len(data) output_width = scale_factor * input_width if coordinate_transformation_mode == "align_corners": if output_width == 1: x_ori = 0.0 else: x_ori = x * (input_width - 1) / (output_width - 1) elif coordinate_transformation_mode == "asymmetric": x_ori = x / scale_factor elif coordinate_transformation_mode == "tf_crop_and_resize": if roi is None: raise ValueError("roi cannot be None.") if output_width == 1: x_ori = (roi[1] - roi[0]) * (input_width - 1) / 2 else: x_ori = x * (roi[1] - roi[0]) * (input_width - 1) / (output_width - 1) x_ori += roi[0] * (input_width - 1) if x_ori < 0 or x_ori > input_width - 1: return np.array(extrapolation_value) elif coordinate_transformation_mode == "pytorch_half_pixel": if output_width == 1: x_ori = -0.5 else: x_ori = (x + 0.5) / scale_factor - 0.5 elif coordinate_transformation_mo
de == "half_pixel": x_ori = (x + 0.5) / scale_factor - 0.5 elif coordinate_transformation_mode == "half_pixel_symmetric": adjustment = output_width_int / output_width center = input_width / 2 offset = center * (1 - adjustment) x_ori = offset + (x + 0.5) / scale_factor - 0.5 else: raise ValueError( f"Invalid coordinate_transformation_mode: {coordinate_transformation_mode!r}." ) x_ori_int = np.floor(x_ori).astype(int).item() if x_ori.is_integer(): ratio = 1 else: ratio = x_ori - x_ori_int coeffs = get_coeffs(ratio, scale_factor) n = len(coeffs) idxes, points = _get_neighbor(x_ori, n, data) if exclude_outside: for i, idx in enumerate(idxes): if idx < 0 or idx >= input_width: coeffs[i] = 0 coeffs /= sum(coeffs) return np.dot(coeffs, points).item() def _interpolate_nd_with_x( data: np.ndarray, n: int, scale_factors: list[float], output_size: list[int], x: list[float], get_coeffs: Callable[[float, float], np.ndarray], roi: np.ndarray | None = None, exclude_outside: bool = False, **kwargs: Any, ) -> np.ndarray: if n == 1: return _interpolate_1d_with_x( data, scale_factors[0], output_size[0], x[0], get_coeffs, roi=roi, exclude_outside=exclude_outside, **kwargs, ) res1d = [] for i in range(data.shape[0]): r = _interpolate_nd_with_x( data[i], n - 1, scale_factors[1:], output_size[1:], x[1:], get_coeffs, roi=None if roi is None else np.concatenate([roi[1:n], roi[n + 1 :]]), exclude_outside=exclude_outside, **kwargs, ) res1d.append(r) return _interpolate_1d_with_x( res1d, scale_factors[0], output_size[0], x[0],
get_coeffs, roi=None if roi is None else [roi[0], roi[n]], exclude_outside=exclude_outside, **kwargs, ) def _get_all_coords(data: np.ndarray) -> np.ndarray: return _cartesian( [list(range(data.shape[i])) for i in range(len(data.shape))] ) def interpolate_nd( data: np.ndarray, get_coeffs: Callable[[float, float], np.ndarray], output_size: list[int] | None = None, scale_factors: list[float] | None = None, axes: list[int] | None = None, roi: np.ndarray | None = None, keep_aspect_ratio_policy: str | None = "stretch", exclude_outside: bool = False, **kwargs: Any, ) -> np.ndarray: if output_size is None and scale_factors is None: raise ValueError("output_size is None and scale_factors is None.") r = len(data.shape) if axes is not None: if scale_factors is not None: new_scale_factors = [1.0] * r for i, d in enumerate(axes): new_scale_factors[d] = scale_factors[i] scale_factors = new_scale_factors if output_size is not None: new_output_size = [data.shape[i] for i in range(r)] for i, d in enumerate(axes): new_output_size[d] = output_size[i] output_size = new_output_size if roi is not None: new_roi = ([0.0] * r) + ([1.0] * r) naxes = len(axes) for i, d in enumerate(axes): new_roi[d] = roi[i] new_roi[r + d] = roi[naxes + i] roi = new_roi else: axes = list(range(r)) if output_size is not None: scale_factors = [output_size[i] / data.shape[i] for i in range(r)] if keep_aspect_ratio_policy != "stretch": if keep_aspect_ratio_policy == "not_larger": scale = np.array(scale_factors)[axes].min() elif keep_aspect_ratio_policy == "not_smaller": scale = np.array(scale_factors)[axes].max() else: raise Va
lueError( f"Invalid keep_aspect_ratio_policy={keep_aspect_ratio_policy!r}" ) scale_factors = [scale if i in axes else 1.0 for i in range(r)] def round_half_up(x: float) -> int: return int(x + 0.5) output_size = [ round_half_up(scale * data.shape[i]) if i in axes else data.shape[i] for i in range(r) ] else: output_size = (scale_factors * np.array(data.shape)).astype(int) if scale_factors is None: raise ValueError("scale_factors is None.") if output_size is None: raise ValueError("output_size is None.") ret = np.zeros(output_size) for x in _get_all_coords(ret): ret[tuple(x)] = _interpolate_nd_with_x( data, len(data.shape), scale_factors, output_size, x, get_coeffs, roi=roi, exclude_outside=exclude_outside, **kwargs, ) return ret def cubic_coeffs( ratio: float, scale: float | None = None, A: float = -0.75 ) -> np.ndarray: del scale coeffs = [ ((A * (ratio + 1) - 5 * A) * (ratio + 1) + 8 * A) * (ratio + 1) - 4 * A, ((A + 2) * ratio - (A + 3)) * ratio * ratio + 1, ((A + 2) * (1 - ratio) - (A + 3)) * (1 - ratio) * (1 - ratio) + 1, ((A * ((1 - ratio) + 1) - 5 * A) * ((1 - ratio) + 1) + 8 * A) * ((1 - ratio) + 1) - 4 * A, ] return np.array(coeffs)
class Resize(RunAll): @staticmethod def resize_upsample_scales_nearest() -> None: data = np.array( [ [ [ [1, 2], [3, 4], ] ] ], dtype=np.float32, ) scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32) output = interpolate_nd( data, lambda x, _: nearest_coeffs(x), scale_factors=scales ).astype(np.float32) x = [data, scales] y = output for i in range(len(x)): x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_upsample_scales_nearest" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "scales," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(TRANSFORMATION_MODE::HALF_PIXEL_SYMMETRIC)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::NEAREST)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_downsample_scales_nearest() -> None: data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], ] ] ], dtype=np.float32, ) scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32) output = interpolate_nd( data, lambda x, _: nearest_coeffs(x), scale_factors=scales ).astype(np.float32) x = [data, scales] y = output for i in range(len(x)): x[i] = Tensor(Dt
ype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_downsample_scales_nearest" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "scales," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::NEAREST)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_upsample_sizes_nearest() -> None: data = np.array( [ [ [ [1, 2], [3, 4], ] ] ], dtype=np.float32, ) sizes = np.array([1, 1, 7, 8], dtype=np.int64) output = interpolate_nd( data, lambda x, _: nearest_coeffs(x), output_size=sizes ).astype(np.float32) x = [data, sizes] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_upsample_sizes_nearest" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "Option::None," func_sig += "sizes," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::NEAREST)," func_sig += "O
ption::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_downsample_sizes_nearest() -> None: data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], ] ] ], dtype=np.float32, ) sizes = np.array([1, 1, 1, 3], dtype=np.int64) output = interpolate_nd( data, lambda x, _: nearest_coeffs(x), output_size=sizes ).astype(np.float32) x = [data, sizes] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_downsample_sizes_nearest" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "Option::None," func_sig += "sizes," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::NEAREST)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_upsample_scales_linear() -> None: data = np.array( [ [ [ [1, 2], [3, 4], ] ] ], dtype=np.float32, ) scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32) output = interpolate_nd( data, lambda x, _: linear_coeffs(x, None), scale_factors=scales ).astype(np.float32) x = [data, scales] y = output for i in range(len(x)):
x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_upsample_scales_linear" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "scales," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::LINEAR)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_upsample_scales_linear_align_corners() -> None: data = np.array( [ [ [ [1, 2], [3, 4], ] ] ], dtype=np.float32, ) scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32) output = interpolate_nd( data, lambda x, _: linear_coeffs(x, None), scale_factors=scales, coordinate_transformation_mode="align_corners", ).astype(np.float32) x = [data, scales] y = output for i in range(len(x)): x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_upsample_scales_linear_align_corners" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "scales," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(TRANSFORMATION_MODE::ALIGN_CORNERS)," func_sig += "Option::None," func_sig += "Option
::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::LINEAR)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_downsample_scales_linear() -> None: data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], ] ] ], dtype=np.float32, ) scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32) output = interpolate_nd( data, lambda x, _: linear_coeffs(x, None), scale_factors=scales ).astype(np.float32) x = [data, scales] y = output for i in range(len(x)): x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_upsample_scales_linear" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "scales," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::LINEAR)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_downsample_scales_linear_align_corners() -> None: data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], ] ] ], dtype=np.float32, ) scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32) output = interpolate_nd( data,
lambda x, _: linear_coeffs(x, None), scale_factors=scales, coordinate_transformation_mode="align_corners", ).astype(np.float32) x = [data, scales] y = output for i in range(len(x)): x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_downsample_scales_linear_align_corners" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "scales," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(TRANSFORMATION_MODE::ALIGN_CORNERS)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::LINEAR)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_upsample_scales_cubic() -> None: data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ], dtype=np.float32, ) scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32) output = interpolate_nd( data, lambda x, _: cubic_coeffs(x, None), scale_factors=scales ).astype(np.float32) x = [data, scales] y = output for i in range(len(x)): x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_upsample_scales_cubic" func_sig = "data.resize(" func_sig += "Op
tion::None," func_sig += "scales," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::CUBIC)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_upsample_scales_cubic_align_corners() -> None: data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ], dtype=np.float32, ) scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32) output = interpolate_nd( data, lambda x, _: cubic_coeffs(x), scale_factors=scales, coordinate_transformation_mode="align_corners", ).astype(np.float32) x = [data, scales] y = output for i in range(len(x)): x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_upsample_scales_cubic_align_corners" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "scales," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(TRANSFORMATION_MODE::ALIGN_CORNERS)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::CUBIC)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_
sig, name) @staticmethod def resize_downsample_scales_cubic() -> None: data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ], dtype=np.float32, ) scales = np.array([1.0, 1.0, 0.8, 0.8], dtype=np.float32) output = interpolate_nd( data, lambda x, _: cubic_coeffs(x), scale_factors=scales ).astype(np.float32) x = [data, scales] y = output for i in range(len(x)): x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_downsample_scales_cubic" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "scales," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::CUBIC)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_downsample_scales_cubic_align_corners() -> None: data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ], dtype=np.float32, ) scales = np.array([1.0, 1.0, 0.8, 0.8], dtype=np.float32) output = interpolate_nd( data, lambda x, _: cubic_coeffs(x), scal
e_factors=scales, coordinate_transformation_mode="align_corners", ).astype(np.float32) x = [data, scales] y = output for i in range(len(x)): x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_downsample_scales_cubic_align_corners" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "scales," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(TRANSFORMATION_MODE::ALIGN_CORNERS)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::CUBIC)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_upsample_sizes_cubic() -> None: data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ], dtype=np.float32, ) sizes = np.array([1, 1, 9, 10], dtype=np.int64) output = interpolate_nd( data, lambda x, _: cubic_coeffs(x), output_size=sizes ).astype(np.float32) x = [data, sizes] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_upsample_sizes_cubic" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "Option::None," fun
c_sig += "sizes," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::CUBIC)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_downsample_sizes_cubic() -> None: data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ], dtype=np.float32, ) sizes = np.array([1, 1, 3, 3], dtype=np.int64) output = interpolate_nd( data, lambda x, _: cubic_coeffs(x), output_size=sizes ).astype(np.float32) x = [data, sizes] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_downsample_sizes_cubic" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "Option::None," func_sig += "sizes," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::CUBIC)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_upsample_scales_cubic_A_n0p5_exclude_outside() -> None: data = np.array( [ [ [
[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ], dtype=np.float32, ) scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32) output = interpolate_nd( data, lambda x, _: cubic_coeffs(x, A=-0.5), scale_factors=scales, exclude_outside=True, ).astype(np.float32) x = [data, scales] y = output for i in range(len(x)): x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_upsample_scales_cubic_A_n0p5_exclude_outside" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "scales," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(FixedTrait::<FP16x16>::new(32768, true))," func_sig += "Option::Some(true)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::CUBIC)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_downsample_scales_cubic_A_n0p5_exclude_outside() -> None: data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ], dtype=np.float32, ) scales = np.array([1.0, 1.0, 0.8, 0.8], dtype=np.float32) output = interpolate_nd( data, lambda x, _: cubic_coeffs(x, A=-0.5), scale_factors=sca
les, exclude_outside=True, ).astype(np.float32) x = [data, scales] y = output for i in range(len(x)): x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_downsample_scales_cubic_A_n0p5_exclude_outside" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "scales," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(FixedTrait::<FP16x16>::new(32768, true))," func_sig += "Option::Some(true)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::CUBIC)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_upsample_scales_cubic_asymmetric() -> None: data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ], dtype=np.float32, ) scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32) output = interpolate_nd( data, lambda x, _: cubic_coeffs(x, A=-0.75), scale_factors=scales, coordinate_transformation_mode="asymmetric", ).astype(np.float32) x = [data, scales] y = output for i in range(len(x)): x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_upsample_scales_cubic_asymmetric" func_sig = "data.resize("
func_sig += "Option::None," func_sig += "scales," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(TRANSFORMATION_MODE::ASYMMETRIC)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::CUBIC)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_tf_crop_and_resize() -> None: data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ], dtype=np.float32, ) roi = np.array([0, 0, 0.4, 0.6, 1, 1, 0.6, 0.8], dtype=np.float32) sizes = np.array([1, 1, 3, 3], dtype=np.int64) output = interpolate_nd( data, lambda x, _: linear_coeffs(x), output_size=sizes, roi=roi, coordinate_transformation_mode="tf_crop_and_resize", ).astype(np.float32) x = [data, sizes, roi] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) x[2] = Tensor(Dtype.FP16x16, x[2].shape, to_fp(x[2].flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_tf_crop_and_resize" func_sig = "data.resize(" func_sig += "roi," func_sig += "Option::None," func_sig += "sizes," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(TRANSFORMATION_MODE::TF_CROP_AND_RESIZE)," func_sig += "Option::None," fun
c_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::LINEAR)," func_sig += "Option::None,)" make_test([x[0], x[1], x[2]], y, func_sig, name) @staticmethod def resize_tf_crop_and_resize_extrapolation_value() -> None: data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ], dtype=np.float32, ) roi = np.array([0, 0, 0.4, 0.6, 1, 1, 1.2, 1.7], dtype=np.float32) sizes = np.array([1, 1, 3, 3], dtype=np.int64) output = interpolate_nd( data, lambda x, _: linear_coeffs(x), output_size=sizes, roi=roi, coordinate_transformation_mode="tf_crop_and_resize", extrapolation_value=10.0, ).astype(np.float32) x = [data, sizes, roi] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) x[2] = Tensor(Dtype.FP16x16, x[2].shape, to_fp(x[2].flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_tf_crop_and_resize_extrapolation_value" func_sig = "data.resize(" func_sig += "roi," func_sig += "Option::None," func_sig += "sizes," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(TRANSFORMATION_MODE::TF_CROP_AND_RESIZE)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(FixedTrait::<FP16x16>::new(655360, false))," func_sig += "Option::None," func_sig += "Option::Some(MODE::LINEAR),"
func_sig += "Option::None,)" make_test([x[0], x[1], x[2]], y, func_sig, name) @staticmethod def resize_downsample_sizes_linear_pytorch_half_pixel() -> None: data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ], dtype=np.float32, ) sizes = np.array([1, 1, 3, 1], dtype=np.int64) output = interpolate_nd( data, lambda x, _: linear_coeffs(x), output_size=sizes, coordinate_transformation_mode="pytorch_half_pixel", ).astype(np.float32) x = [data, sizes] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_downsample_sizes_linear_pytorch_half_pixel" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "Option::None," func_sig += "sizes," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(TRANSFORMATION_MODE::PYTORCH_HALF_PIXEL)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::LINEAR)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_upsample_sizes_nearest_floor_align_corners() -> None: data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16],
] ] ], dtype=np.float32, ) sizes = np.array([1, 1, 8, 8], dtype=np.int64) output = interpolate_nd( data, lambda x, _: nearest_coeffs(x, mode="floor"), output_size=sizes, coordinate_transformation_mode="align_corners", ).astype(np.float32) x = [data, sizes] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_upsample_sizes_nearest_floor_align_corners" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "Option::None," func_sig += "sizes," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(TRANSFORMATION_MODE::ALIGN_CORNERS)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::NEAREST)," func_sig += "Option::Some(NEAREST_MODE::FLOOR),)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_upsample_sizes_nearest_round_prefer_ceil_asymmetric() -> None: data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ], dtype=np.float32, ) sizes = np.array([1, 1, 8, 8], dtype=np.int64) output = interpolate_nd( data, lambda x, _: nearest_coeffs(x, mode="round_prefer_ceil"), output_size=sizes, coordinate_transformation_mode="asymmetric", ).astype(np.float32)
x = [data, sizes] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_upsample_sizes_nearest_round_prefer_ceil_asymmetric" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "Option::None," func_sig += "sizes," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(TRANSFORMATION_MODE::ASYMMETRIC)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::NEAREST)," func_sig += "Option::Some(NEAREST_MODE::ROUND_PREFER_CEIL),)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_upsample_sizes_nearest_ceil_half_pixel() -> None: data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ], dtype=np.float32, ) sizes = np.array([1, 1, 8, 8], dtype=np.int64) output = interpolate_nd( data, lambda x, _: nearest_coeffs(x, mode="ceil"), output_size=sizes ).astype(np.float32) x = [data, sizes] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_upsample_sizes_nearest_ceil_half_pixel" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "Option::None," fun
c_sig += "sizes," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(TRANSFORMATION_MODE::HALF_PIXEL)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::NEAREST)," func_sig += "Option::Some(NEAREST_MODE::CEIL),)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_downsample_scales_linear_antialias() -> None: data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ], dtype=np.float32, ) scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32) output = interpolate_nd( data, linear_coeffs_antialias, scale_factors=scales ).astype(np.float32) x = [data, scales] y = output for i in range(len(x)): x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_downsample_scales_linear_antialias" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "scales," func_sig += "Option::None," func_sig += "Option::Some(1)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::LINEAR)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_downsample_sizes_linear_antialias() -> None: data = np.array( [
[ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ], dtype=np.float32, ) sizes = np.array([1, 1, 3, 3], dtype=np.int64) output = interpolate_nd( data, linear_coeffs_antialias, output_size=sizes ).astype(np.float32) x = [data, sizes] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_downsample_sizes_linear_pytorch_half_pixel" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "Option::None," func_sig += "sizes," func_sig += "Option::Some(1)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::LINEAR)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_downsample_scales_cubic_antialias() -> None: data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ], dtype=np.float32, ) scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32) output = interpolate_nd( data, cubic_coeffs_antialias, scale_factors=scales ).astype(np.float32) x = [data, scales] y = output for i in range(len(x)):
x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_downsample_scales_cubic_antialias" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "scales," func_sig += "Option::None," func_sig += "Option::Some(1)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::CUBIC)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_downsample_sizes_cubic_antialias() -> None: data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ], dtype=np.float32, ) sizes = np.array([1, 1, 3, 3], dtype=np.int64) output = interpolate_nd(data, cubic_coeffs_antialias, output_size=sizes).astype( np.float32 ) x = [data, sizes] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_downsample_sizes_cubic_antialias" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "Option::None," func_sig += "sizes," func_sig += "Option::Some(1)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_s
ig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::CUBIC)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_upsample_scales_nearest_axes_2_3() -> None: axes = np.array([2, 3], dtype=np.int64) data = np.array( [ [ [ [1, 2], [3, 4], ] ] ], dtype=np.float32, ) scales = np.array([2.0, 3.0], dtype=np.float32) output = interpolate_nd( data, lambda x, _: nearest_coeffs(x), scale_factors=scales, axes=axes ).astype(np.float32) x = [data, scales, axes] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.FP16x16, x[1].shape, to_fp(x[1].flatten(), FixedImpl.FP16x16)) x[2] = Tensor(Dtype.U32, x[2].shape, x[2].flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_upsample_scales_nearest_axes_2_3" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "scales," func_sig += "Option::None," func_sig += "Option::None," func_sig += "axes," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::NEAREST)," func_sig += "Option::None,)" make_test([x[0], x[1], x[2]], y, func_sig, name) @staticmethod def resize_upsample_scales_nearest_axes_3_2() -> None: axes = np.array([3, 2], dtype=np.int64) data = np.array([[[[1, 2],[3, 4],]]],dtype=np.float32,) scales = np.array([3.0, 2.0], dtype=np.float32) output = interpolate_nd( data, lambda x,
_: nearest_coeffs(x), scale_factors=scales, axes=axes ).astype(np.float32) x = [data, scales, axes] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.FP16x16, x[1].shape, to_fp(x[1].flatten(), FixedImpl.FP16x16)) x[2] = Tensor(Dtype.U32, x[2].shape, x[2].flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_upsample_scales_nearest_axes_3_2" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "scales," func_sig += "Option::None," func_sig += "Option::None," func_sig += "axes," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::NEAREST)," func_sig += "Option::None,)" make_test([x[0], x[1], x[2]], y, func_sig, name) @staticmethod def resize_upsample_sizes_nearest_axes_2_3() -> None: data = np.array( [ [ [ [1, 2], [3, 4], ] ] ], dtype=np.float32, ) sizes = np.array([7, 8], dtype=np.int64) axes = np.array([2, 3], dtype=np.int64) output = interpolate_nd( data, lambda x, _: nearest_coeffs(x), output_size=sizes, axes=axes ).astype(np.float32) x = [data, sizes, axes] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) x[2] = Tensor(Dtype.U32, x[2].shape, x[2].flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_upsample_sizes_nearest_axes_2_3" func_sig = "data.resize(
" func_sig += "Option::None," func_sig += "Option::None," func_sig += "sizes," func_sig += "Option::None," func_sig += "axes," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::NEAREST)," func_sig += "Option::None,)" make_test([x[0], x[1], x[2]], y, func_sig, name) @staticmethod def resize_upsample_sizes_nearest_axes_3_2() -> None: data = np.array( [ [ [ [1, 2], [3, 4], ] ] ], dtype=np.float32, ) sizes = np.array([8, 7], dtype=np.int64) axes = np.array([3, 2], dtype=np.int64) output = interpolate_nd( data, lambda x, _: nearest_coeffs(x), output_size=sizes, axes=axes ).astype(np.float32) x = [data, sizes, axes] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) x[2] = Tensor(Dtype.U32, x[2].shape, x[2].flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_upsample_sizes_nearest_axes_3_2" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "Option::None," func_sig += "sizes," func_sig += "Option::None," func_sig += "axes," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::NEAREST)," func_sig += "Option::None,)" make_test([x[0], x[1], x[2]], y, func_sig, name) @staticmethod def resize_tf_crop_and_resize_a
xes_2_3() -> None: axes = np.array([2, 3], dtype=np.int64) data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ], dtype=np.float32, ) roi = np.array([0.4, 0.6, 0.6, 0.8], dtype=np.float32) sizes = np.array([3, 3], dtype=np.int64) output = interpolate_nd( data, lambda x, _: linear_coeffs(x), output_size=sizes, roi=roi, axes=axes, coordinate_transformation_mode="tf_crop_and_resize", ).astype(np.float32) x = [data, sizes, roi, axes] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) x[2] = Tensor(Dtype.FP16x16, x[2].shape, to_fp(x[2].flatten(), FixedImpl.FP16x16)) x[3] = Tensor(Dtype.U32, x[3].shape, x[3].flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_tf_crop_and_resize_axes_2_3" func_sig = "data.resize(" func_sig += "roi," func_sig += "Option::None," func_sig += "sizes," func_sig += "Option::None," func_sig += "axes," func_sig += "Option::Some(TRANSFORMATION_MODE::TF_CROP_AND_RESIZE)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::LINEAR)," func_sig += "Option::None,)" make_test([x[0], x[1], x[2], x[3]], y, func_sig, name) @staticmethod def resize_tf_crop_and_resize_axes_3_2() -> None: axes = np.array([3, 2], dtype=np.int64) data = np.array( [ [ [
[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ], dtype=np.float32, ) roi = np.array([0.6, 0.4, 0.8, 0.6], dtype=np.float32) sizes = np.array([3, 3], dtype=np.int64) output = interpolate_nd( data, lambda x, _: linear_coeffs(x), output_size=sizes, roi=roi, axes=axes, coordinate_transformation_mode="tf_crop_and_resize", ).astype(np.float32) x = [data, sizes, roi, axes] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) x[2] = Tensor(Dtype.FP16x16, x[2].shape, to_fp(x[2].flatten(), FixedImpl.FP16x16)) x[3] = Tensor(Dtype.U32, x[3].shape, x[3].flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_tf_crop_and_resize_axes_3_2" func_sig = "data.resize(" func_sig += "roi," func_sig += "Option::None," func_sig += "sizes," func_sig += "Option::None," func_sig += "axes," func_sig += "Option::Some(TRANSFORMATION_MODE::TF_CROP_AND_RESIZE)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::LINEAR)," func_sig += "Option::None,)" make_test([x[0], x[1], x[2], x[3]], y, func_sig, name) @staticmethod def resize_upsample_sizes_nearest_not_larger() -> None: keep_aspect_ratio_policy = "not_larger" axes = np.array([2, 3], dtype=np.int64) data = np.array( [ [ [ [1, 2], [3, 4], ]
] ], dtype=np.float32, ) sizes = np.array([7, 8], dtype=np.int64) output = interpolate_nd( data, lambda x, _: nearest_coeffs(x), output_size=sizes, axes=axes, keep_aspect_ratio_policy=keep_aspect_ratio_policy, ).astype(np.float32) x = [data, sizes, axes] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) x[2] = Tensor(Dtype.U32, x[2].shape, x[2].flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_upsample_sizes_nearest_not_larger" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "Option::None," func_sig += "sizes," func_sig += "Option::None," func_sig += "axes," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(KEEP_ASPECT_RATIO_POLICY::NOT_LARGER)," func_sig += "Option::Some(MODE::NEAREST)," func_sig += "Option::None,)" make_test([x[0], x[1], x[2]], y, func_sig, name) @staticmethod def resize_upsample_sizes_nearest_not_smaller() -> None: keep_aspect_ratio_policy = "not_smaller" axes = np.array([2, 3], dtype=np.int64) data = np.array( [ [ [ [1, 2], [3, 4], ] ] ], dtype=np.float32, ) sizes = np.array([7, 8], dtype=np.int64) output = interpolate_nd( data, lambda x, _: nearest_coeffs(x), output_size=sizes, axes=axes, keep_aspect_ratio_policy=keep_aspect_ratio_policy, ).astype(np.float32) x
= [data, sizes, axes] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) x[2] = Tensor(Dtype.U32, x[2].shape, x[2].flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_upsample_sizes_nearest_not_smaller" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "Option::None," func_sig += "sizes," func_sig += "Option::None," func_sig += "axes," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(KEEP_ASPECT_RATIO_POLICY::NOT_SMALLER)," func_sig += "Option::Some(MODE::NEAREST)," func_sig += "Option::None,)" make_test([x[0], x[1], x[2]], y, func_sig, name) @staticmethod def resize_downsample_sizes_nearest_not_larger() -> None: keep_aspect_ratio_policy = "not_larger" axes = np.array([2, 3], dtype=np.int64) data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], ] ] ], dtype=np.float32, ) sizes = np.array([1, 3], dtype=np.int64) output = interpolate_nd( data, lambda x, _: nearest_coeffs(x), output_size=sizes, axes=axes, keep_aspect_ratio_policy=keep_aspect_ratio_policy, ).astype(np.float32) x = [data, sizes, axes] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) x[2] = Tensor(Dtype.U32, x[2].shape, x[2].flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
name = "resize_downsample_sizes_nearest_not_larger" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "Option::None," func_sig += "sizes," func_sig += "Option::None," func_sig += "axes," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(KEEP_ASPECT_RATIO_POLICY::NOT_LARGER)," func_sig += "Option::Some(MODE::NEAREST)," func_sig += "Option::None,)" make_test([x[0], x[1], x[2]], y, func_sig, name) @staticmethod def resize_downsample_sizes_nearest_not_smaller() -> None: keep_aspect_ratio_policy = "not_smaller" axes = np.array([2, 3], dtype=np.int64) data = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], ] ] ], dtype=np.float32, ) sizes = np.array([1, 3], dtype=np.int64) output = interpolate_nd( data, lambda x, _: nearest_coeffs(x), output_size=sizes, axes=axes, keep_aspect_ratio_policy=keep_aspect_ratio_policy, ).astype(np.float32) x = [data, sizes, axes] y = output x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) x[2] = Tensor(Dtype.U32, x[2].shape, x[2].flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_downsample_sizes_nearest_not_smaller" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "Option::None," func_sig += "sizes," func_sig += "Option::None," func_sig += "axes," func_sig += "Option::None," func_sig += "Option::None,"
func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(KEEP_ASPECT_RATIO_POLICY::NOT_SMALLER)," func_sig += "Option::Some(MODE::NEAREST)," func_sig += "Option::None,)" make_test([x[0], x[1], x[2]], y, func_sig, name) @staticmethod def resize_downsample_scales_linear_half_pixel_symmetric() -> None: data = np.array([[[[1, 2, 3, 4]]]], dtype=np.float32) scales = np.array([1.0, 1.0, 1.0, 0.6], dtype=np.float32) output = interpolate_nd( data, lambda x, _: linear_coeffs(x), scale_factors=scales, coordinate_transformation_mode="half_pixel_symmetric", ).astype(np.float32) x = [data, scales] y = output for i in range(len(x)): x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_downsample_scales_linear_half_pixel_symmetric" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "scales," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(TRANSFORMATION_MODE::HALF_PIXEL_SYMMETRIC)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::LINEAR)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name) @staticmethod def resize_upsample_scales_linear_half_pixel_symmetric() -> None: data = np.array([[[[1, 2], [3, 4]]]], dtype=np.float32) scales = np.array([1.0, 1.0, 2.3, 2.94], dtype=np.float32) output = interpolate_nd( data, lambda x, _: linear_coeffs(x), scale_factors=scales, coordinate_transformation_mode="half_pixel_s
ymmetric", ).astype(np.float32) x = [data, scales] y = output for i in range(len(x)): x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "resize_upsample_scales_linear_half_pixel_symmetric" func_sig = "data.resize(" func_sig += "Option::None," func_sig += "scales," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(TRANSFORMATION_MODE::HALF_PIXEL_SYMMETRIC)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(MODE::LINEAR)," func_sig += "Option::None,)" make_test([x[0], x[1]], y, func_sig, name)
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl
class Reverse_sequence(RunAll): @staticmethod def Reverse_sequence_u32(): def reverse_sequence_u32_4x4_batch(): x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], dtype=np.uint32).reshape((4, 4)) y = np.array([0, 1, 2, 3, 5, 4, 6, 7, 10, 9, 8, 11, 15, 14, 13, 12], dtype=np.uint32).reshape((4, 4)) _x = Tensor(Dtype.U32, x.shape, x.flatten()) _y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reverse_sequence_u32_4x4_batch" make_test( [_x], _y, "input_0.reverse_sequence(TensorTrait::<usize>::new(array![4].span(), array![1,2,3,4].span()), Option::Some(0), Option::Some(1))", name ) def reverse_sequence_u32_4x4_time(): x = np.array([0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15], dtype=np.uint32).reshape((4, 4)) y = np.array([3, 6, 9, 12, 2, 5, 8, 13, 1, 4, 10, 14, 0, 7, 11, 15], dtype=np.uint32).reshape((4, 4)) _x = Tensor(Dtype.U32, x.shape, x.flatten()) _y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reverse_sequence_u32_4x4_time" make_test( [_x], _y, "input_0.reverse_sequence(TensorTrait::<usize>::new(array![4].span(), array![4,3,2,1].span()), Option::Some(1), Option::Some(0))", name ) def reverse_sequence_u32_3x3_batch(): x = np.array([0,1,2,3,4,5,6,7,8], dtype=np.uint32).reshape(3,3) y = np.array([2,1,0,3,4,5,7,6,8], dtype=np.uint32).reshape(3,3) _x = Tensor(Dtype.U32, x.shape, x.flatten()) _y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reverse_sequence_u32_3x3_batch" make_test( [_x], _y, "input_0.reverse_sequence(TensorTrait::<usize>::new(array![3].span(), array![3,1,2].span()), Option::Some(0), Option::Some(1))",
name ) def reverse_sequence_u32_3x3_time(): x = np.array([0,1,2,3,4,5,6,7,8], dtype=np.uint32).reshape(3,3) y = np.array([0,7,8,3,4,5,6,1,2], dtype=np.uint32).reshape(3,3) _x = Tensor(Dtype.U32, x.shape, x.flatten()) _y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reverse_sequence_u32_3x3_time" make_test( [_x], _y, "input_0.reverse_sequence(TensorTrait::<usize>::new(array![3].span(), array![1,3,3].span()), Option::Some(1), Option::Some(0))", name ) reverse_sequence_u32_4x4_batch() reverse_sequence_u32_4x4_time() reverse_sequence_u32_3x3_batch() reverse_sequence_u32_3x3_time() @staticmethod def Reverse_sequence_i32(): def reverse_sequence_i32_batch(): x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], dtype=np.int32).reshape((4, 4)) y = np.array([0, 1, 2, 3, 5, 4, 6, 7, 10, 9, 8, 11, 15, 14, 13, 12], dtype=np.int32).reshape((4, 4)) _x = Tensor(Dtype.I32, x.shape, x.flatten()) _y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reverse_sequence_i32_batch_equal_parts" make_test( [_x], _y, "input_0.reverse_sequence(TensorTrait::<usize>::new(array![4].span(), array![1,2,3,4].span()), Option::Some(0), Option::Some(1))", name ) def reverse_sequence_i32_time(): x = np.array([0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15], dtype=np.int32).reshape((4, 4)) y = np.array([3, 6, 9, 12, 2, 5, 8, 13, 1, 4, 10, 14, 0, 7, 11, 15], dtype=np.int32).reshape((4, 4)) _x = Tensor(Dtype.I32, x.shape, x.flatten()) _y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "reverse_sequence_i32_time_equal_parts" make_test
( [_x], _y, "input_0.reverse_sequence(TensorTrait::<usize>::new(array![4].span(), array![4,3,2,1].span()), Option::Some(1), Option::Some(0))", name ) reverse_sequence_i32_batch() reverse_sequence_i32_time() @staticmethod def Reverse_sequence_i8(): def reverse_sequence_batch(): x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], dtype=np.int8).reshape((4, 4)) y = np.array([0, 1, 2, 3, 5, 4, 6, 7, 10, 9, 8, 11, 15, 14, 13, 12], dtype=np.int8).reshape((4, 4)) _x = Tensor(Dtype.I8, x.shape, x.flatten()) _y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "reverse_sequence_i8_batch_equal_parts" make_test( [_x], _y, "input_0.reverse_sequence(TensorTrait::<usize>::new(array![4].span(), array![1,2,3,4].span()), Option::Some(0), Option::Some(1))", name ) def reverse_sequence_time(): x = np.array([0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15], dtype=np.uint32).reshape((4, 4)) y = np.array([3, 6, 9, 12, 2, 5, 8, 13, 1, 4, 10, 14, 0, 7, 11, 15], dtype=np.uint32).reshape((4, 4)) _x = Tensor(Dtype.U32, x.shape, x.flatten()) _y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reverse_sequence_i8_time_equal_parts" make_test( [_x], _y, "input_0.reverse_sequence(TensorTrait::<usize>::new(array![4].span(), array![4,3,2,1].span()), Option::Some(1), Option::Some(0))", name ) reverse_sequence_batch() reverse_sequence_time() def Reverse_sequence_fp16x16(): def reverse_sequence_batch(): x = to_fp(np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], dtype=np.int64).reshape(4, 4), FixedImpl.FP16x16) y = to_fp(
np.array([0, 1, 2, 3, 5, 4, 6, 7, 10, 9, 8, 11, 15, 14, 13, 12], dtype=np.int64).reshape(4, 4), FixedImpl.FP16x16) _x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) _y = Tensor(Dtype.FP16x16, y.shape, y.flatten()) name = "reverse_sequence_fp16x16_batch_equal_parts" make_test( [_x], _y, "input_0.reverse_sequence(TensorTrait::<usize>::new(array![4].span(), array![1,2,3,4].span()), Option::Some(0), Option::Some(1))", name ) def reverse_sequence_time(): x = to_fp(np.array([0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15], dtype=np.int64).reshape(4, 4), FixedImpl.FP16x16) y = to_fp(np.array([3, 6, 9, 12, 2, 5, 8, 13, 1, 4, 10, 14, 0, 7, 11, 15], dtype=np.int64).reshape(4, 4), FixedImpl.FP16x16) _x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) _y = Tensor(Dtype.FP16x16, y.shape, y.flatten()) name = "reverse_sequence_fp16x16_time_equal_parts" make_test( [_x], _y, "input_0.reverse_sequence(TensorTrait::<usize>::new(array![4].span(), array![4,3,2,1].span()), Option::Some(1), Option::Some(0))", name ) reverse_sequence_batch() reverse_sequence_time() def reverse_sequence_different_dimensions(): def reverse_sequence_different_dimensions_4_5(): x = np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20], dtype=np.uint32).reshape(4,5) y = np.array([5,4,3,2,1,9,8,7,6,10,13,12,11,14,15,17,16,18,19,20], dtype=np.uint32).reshape(4,5) _x = Tensor(Dtype.U32, x.shape, x.flatten()) _y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reverse_sequence_different_dimensions_4_5" make_test( [_x], _y, "input_0.reverse_sequence(TensorTrait::<usize>::new(array![4].span(), array![5,4,3,2].span()), Option::Some(0), Option::So
me(1))", name ) def reverse_sequence_different_dimensions_2_4(): x = np.array([1,2,3,4,5,6,7,8], dtype=np.uint32).reshape(2,4) y = np.array([5,6,7,8,1,2,3,4], dtype=np.uint32).reshape(2,4) _x = Tensor(Dtype.U32, x.shape, x.flatten()) _y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reverse_sequence_different_dimensions_2_4" make_test( [_x], _y, "input_0.reverse_sequence(TensorTrait::<usize>::new(array![4].span(), array![2,2,2,2].span()), Option::Some(1), Option::Some(0))", name ) def reverse_sequence_different_dimensions_1_6(): x = np.array([0,1,2,3,4,5], dtype=np.uint32).reshape(1,6) y = np.array([4,3,2,1,0,5], dtype=np.uint32).reshape(1,6) _x = Tensor(Dtype.U32, x.shape, x.flatten()) _y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reverse_sequence_different_dimensions_1_6" make_test( [_x], _y, "input_0.reverse_sequence(TensorTrait::<usize>::new(array![1].span(), array![5].span()), Option::Some(0), Option::Some(1))", name ) def reverse_sequence_different_dimensions_3x9_batch(): x = np.array([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26], dtype=np.uint32).reshape(3,9) y = np.array([6,5,4,3,2,1,0,7,8,16,15,14,13,12,11,10,9,17,26,25,24,23,22,21,20,19,18], dtype=np.uint32).reshape(3,9) _x = Tensor(Dtype.U32, x.shape, x.flatten()) _y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reverse_sequence_different_dimensions_3x9_batch" make_test( [_x], _y, "input_0.reverse_sequence(TensorTrait::<usize>::new(array![3].span(), array![7,8,9].span()), Option::Some(0), Option::Some(1))",
name ) def reverse_sequence_different_dimensions_3x9_time(): x = np.array([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26], dtype=np.uint32).reshape(3,9) y = np.array([18,10,20,12,22,14,24,16,8,9,1,11,3,13,5,15,7,17,0,19,2,21,4,23,6,25,26], dtype=np.uint32).reshape(3,9) _x = Tensor(Dtype.U32, x.shape, x.flatten()) _y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "reverse_sequence_different_dimensions_3x9_time" make_test( [_x], _y, "input_0.reverse_sequence(TensorTrait::<usize>::new(array![9].span(), array![3,2,3,2,3,2,3,2,1].span()), Option::Some(1), Option::Some(0))", name ) reverse_sequence_different_dimensions_4_5() reverse_sequence_different_dimensions_2_4() reverse_sequence_different_dimensions_1_6() reverse_sequence_different_dimensions_3x9_batch() reverse_sequence_different_dimensions_3x9_time()
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Round(RunAll): @staticmethod def round_fp8x23(): x = np.array([0.1, 0.5, 0.9, 1.2, 1.5, 1.8, 2.3, 2.5, 2.7, -1.1, -1.5, -1.9, -2.2, -2.5, -2.8]).astype(np.float64) y = np.array([0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, -1.0, -2.0, -2.0, -2.0, -3.0, -3.0]).astype(np.float64) x = Tensor(Dtype.FP8x23, x.shape, to_fp(x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23)) name = "round_fp8x23" make_test([x], y, "input_0.round()", name) @staticmethod def round_fp16x16(): x = np.array([0.1, 0.5, 0.9, 1.2, 1.5, 1.8, 2.3, 2.5, 2.7, -1.1, -1.5, -1.9, -2.2, -2.5, -2.8]).astype(np.float64) y = np.array([0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, -1.0, -2.0, -2.0, -2.0, -3.0, -3.0]).astype(np.float64) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "round_fp16x16" make_test([x], y, "input_0.round()", name)
import os import glob # Directory path where Python files/modules are located directory_path = 'nodegen/node/' # Get all files in the directory all_files = os.listdir(directory_path) # Filter Python files using glob and '*.py' pattern python_files = [file[:-3] for file in all_files if file.endswith('.py')] fixed = [ 'abs', 'argmax', 'argmin', 'concat', 'cumsum', 'div', 'equal', 'less_equal', 'greater', 'linear', 'matmul', 'mul', 'or', 'reduce_sum', 'sub', 'transpose', 'xor', 'less', 'greater_equal', 'slice', 'gather', 'nonzero', 'squeeze', 'unsqueeze', 'sign', 'clip', '__init__', 'running' ] for node in python_files: if node not in fixed: current_dir = os.getcwd() command = f'python nodegen/node/__init__.py {node}' os.system(command)
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait def scatter_elements(data, indices, updates, axis=0, reduction="none"): if axis < 0: axis = data.ndim + axis idx_xsection_shape = indices.shape[:axis] + indices.shape[axis + 1 :] def make_slice(arr, axis, i): slc = [slice(None)] * arr.ndim slc[axis] = i return slc def unpack(packed): unpacked = packed[0] for i in range(1, len(packed)): unpacked = unpacked, packed[i] return unpacked def make_indices_for_duplicate(idx): final_idx = [] for i in range(len(idx[0])): final_idx.append(tuple(idx_element[i] for idx_element in idx)) return list(final_idx) idx = [ [ unpack(np.indices(idx_xsection_shape).reshape(indices.ndim - 1, -1)), indices[tuple(make_slice(indices, axis, i))].reshape(1, -1)[0], ] for i in range(indices.shape[axis]) ] idx = list(np.concatenate(idx, axis=1)) idx.insert(axis, idx.pop()) updates_idx = list(idx) updates_idx.pop(axis) updates_idx.insert( axis, np.repeat(np.arange(indices.shape[axis]), np.prod(idx_xsection_shape)) ) scattered = np.copy(data) if reduction == "none": scattered[tuple(idx)] = updates[tuple(updates_idx)] else: idx, updates_idx = make_indices_for_duplicate(idx), make_indices_for_duplicate( updates_idx ) for iter, idx_set in enumerate(idx): if reduction == "add": scattered[idx_set] += updates[updates_idx[iter]] elif reduction == "mul": scattered[idx_set] *= updates[updates_idx[iter]] elif reduction == "max": scattered[idx_set] = np.maximum( scattered[idx_set], updates[updates_idx[iter]] ) elif reduction == "min": scattered[idx_set] = np.minimum( scattered[idx_set], upda
tes[updates_idx[iter]] ) return scattered
class Scatter(RunAll): @staticmethod def scatter_fp16x16(): def scatter(): def default(): x1 = np.zeros((3, 3)).astype(np.int64) x2 = np.arange(1, 10).reshape((3, 3)).astype(np.int64) x3 = np.array( [[0,1,2], [2,0,1], [1,0,1]], ) y = scatter_elements(x1, x3, x2, 0, 'none') x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp(x2.flatten(), FixedImpl.FP16x16)) x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "scatter_fp16x16_3d_default" make_test( inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, indices:input_2, axis:Option::Some(0), reduction:Option::Some('none'))", name= name) def axis_1(): x1 = np.zeros((3, 3)).astype(np.int64) x2 = np.arange(1, 10).reshape((3, 3)).astype(np.int64) x3 = np.array( [[0,1,2], [2,0,1], [1,0,1]], ) y = scatter_elements(x1, x3, x2, 1, 'none') x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp(x2.flatten(), FixedImpl.FP16x16)) x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "scatter_fp16x16_3d_axis1" make_test( inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, ind
ices:input_2, axis:Option::Some(1), reduction:Option::Some('none'))", name= name) def axis_1_add(): x1 = np.zeros((3, 3)).astype(np.int64) x2 = np.arange(1, 10).reshape((3, 3)).astype(np.int64) x3 = np.array( [[0,1,2], [2,0,1], [1,0,1]], ) y = scatter_elements(x1, x3, x2, 1, 'add') x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp(x2.flatten(), FixedImpl.FP16x16)) x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "scatter_fp16x16_3d_axis1_add" make_test( inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, indices:input_2, axis:Option::Some(1), reduction:Option::Some('add'))", name= name) default() axis_1() axis_1_add() scatter() @staticmethod def scatter_fp8x23(): def scatter(): def default(): x1 = np.zeros((3, 3)).astype(np.int64) x2 = np.arange(1, 10).reshape((3, 3)).astype(np.int64) x3 = np.array( [[0,1,2], [2,0,1], [1,0,1]], ) y = scatter_elements(x1, x3, x2, 0, 'none') x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp(x2.flatten(), FixedImpl.FP8x23)) x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23)) n
ame = "scatter_fp8x23_default" make_test( inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, indices:input_2, axis:Option::Some(0), reduction:Option::Some('none'))", name= name) def axis1(): x1 = np.zeros((3, 3)).astype(np.int64) x2 = np.arange(1, 10).reshape((3, 3)).astype(np.int64) x3 = np.array( [[0,1,2], [2,0,1], [1,0,1]], ) y = scatter_elements(x1, x3, x2, 1, 'none') x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp(x2.flatten(), FixedImpl.FP8x23)) x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23)) name = "scatter_fp8x23_axis1" make_test( inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, indices:input_2, axis:Option::Some(1), reduction:Option::Some('none'))", name= name) def axis1_mul(): x1 = np.zeros((3, 3)).astype(np.int64) x2 = np.arange(1, 10).reshape((3, 3)).astype(np.int64) x3 = np.array( [[0,1,2], [2,0,1], [1,0,1]], ) y = scatter_elements(x1, x3, x2, 0, 'mul') x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp(x2.flatten(), FixedImpl.FP8x23)) x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23)) name = "scatter_fp8x23_mul"
make_test( inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, indices:input_2, axis:Option::Some(0), reduction:Option::Some('mul'))", name= name) default() axis1() axis1_mul() scatter() @staticmethod def scatter_i8(): def scatter_3D(): def default(): x1 = np.zeros((3, 3)).astype(np.int8) x2 = np.arange(1, 10).reshape((3, 3)).astype(np.int8) x3 = np.array( [[0,1,2], [2,0,1], [1,0,1]], ) y = scatter_elements(x1, x3, x2, 0, 'none') x1 = Tensor(Dtype.I8, x1.shape, x1.flatten()) x2 = Tensor(Dtype.I8, x2.shape, x2.flatten()) x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "scatter_i8_default" make_test( inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, indices:input_2, axis:Option::Some(0), reduction:Option::Some('none'))", name= name) def axis1(): x1 = np.zeros((3, 3)).astype(np.int8) x2 = np.arange(1, 10).reshape((3, 3)).astype(np.int8) x3 = np.array( [[0,1,2], [2,0,1], [1,0,1]], ) y = scatter_elements(x1, x3, x2, 1, 'none') x1 = Tensor(Dtype.I8, x1.shape, x1.flatten()) x2 = Tensor(Dtype.I8, x2.shape, x2.flatten()) x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "scatter_i8_axis1" make_test( inputs = [x1, x2, x3],