repo_name
stringlengths
6
100
path
stringlengths
4
294
copies
stringclasses
981 values
size
stringlengths
4
6
content
stringlengths
606
896k
license
stringclasses
15 values
synergeticsedx/deployment-wipro
common/lib/xmodule/xmodule/modulestore/split_mongo/caching_descriptor_system.py
32
16966
import sys import logging from contracts import contract, new_contract from fs.osfs import OSFS from lazy import lazy from xblock.runtime import KvsFieldData, KeyValueStore from xblock.fields import ScopeIds from xblock.core import XBlock from opaque_keys.edx.locator import BlockUsageLocator, LocalId, CourseLocator, LibraryLocator, DefinitionLocator from xmodule.library_tools import LibraryToolsService from xmodule.mako_module import MakoDescriptorSystem from xmodule.error_module import ErrorDescriptor from xmodule.errortracker import exc_info_to_str from xmodule.modulestore import BlockData from xmodule.modulestore.edit_info import EditInfoRuntimeMixin from xmodule.modulestore.exceptions import ItemNotFoundError from xmodule.modulestore.inheritance import inheriting_field_data, InheritanceMixin from xmodule.modulestore.split_mongo import BlockKey, CourseEnvelope from xmodule.modulestore.split_mongo.id_manager import SplitMongoIdManager from xmodule.modulestore.split_mongo.definition_lazy_loader import DefinitionLazyLoader from xmodule.modulestore.split_mongo.split_mongo_kvs import SplitMongoKVS from xmodule.x_module import XModuleMixin log = logging.getLogger(__name__) new_contract('BlockUsageLocator', BlockUsageLocator) new_contract('CourseLocator', CourseLocator) new_contract('LibraryLocator', LibraryLocator) new_contract('BlockKey', BlockKey) new_contract('BlockData', BlockData) new_contract('CourseEnvelope', CourseEnvelope) new_contract('XBlock', XBlock) class CachingDescriptorSystem(MakoDescriptorSystem, EditInfoRuntimeMixin): """ A system that has a cache of a course version's json that it will use to load modules from, with a backup of calling to the underlying modulestore for more data. Computes the settings (nee 'metadata') inheritance upon creation. """ @contract(course_entry=CourseEnvelope) def __init__(self, modulestore, course_entry, default_class, module_data, lazy, **kwargs): """ Computes the settings inheritance and sets up the cache. modulestore: the module store that can be used to retrieve additional modules course_entry: the originally fetched enveloped course_structure w/ branch and course id info. Callers to _load_item provide an override but that function ignores the provided structure and only looks at the branch and course id module_data: a dict mapping Location -> json that was cached from the underlying modulestore """ # needed by capa_problem (as runtime.filestore via this.resources_fs) if course_entry.course_key.course: root = modulestore.fs_root / course_entry.course_key.org / course_entry.course_key.course / course_entry.course_key.run else: root = modulestore.fs_root / str(course_entry.structure['_id']) root.makedirs_p() # create directory if it doesn't exist id_manager = SplitMongoIdManager(self) kwargs.setdefault('id_reader', id_manager) kwargs.setdefault('id_generator', id_manager) super(CachingDescriptorSystem, self).__init__( field_data=None, load_item=self._load_item, resources_fs=OSFS(root), **kwargs ) self.modulestore = modulestore self.course_entry = course_entry # set course_id attribute to avoid problems with subsystems that expect # it here. (grading, for example) self.course_id = course_entry.course_key self.lazy = lazy self.module_data = module_data self.default_class = default_class self.local_modules = {} self._services['library_tools'] = LibraryToolsService(modulestore) @lazy @contract(returns="dict(BlockKey: BlockKey)") def _parent_map(self): parent_map = {} for block_key, block in self.course_entry.structure['blocks'].iteritems(): for child in block.fields.get('children', []): parent_map[child] = block_key return parent_map @contract(usage_key="BlockUsageLocator | BlockKey", course_entry_override="CourseEnvelope | None") def _load_item(self, usage_key, course_entry_override=None, **kwargs): """ Instantiate the xblock fetching it either from the cache or from the structure :param course_entry_override: the course_info with the course_key to use (defaults to cached) """ # usage_key is either a UsageKey or just the block_key. if a usage_key, if isinstance(usage_key, BlockUsageLocator): # trust the passed in key to know the caller's expectations of which fields are filled in. # particularly useful for strip_keys so may go away when we're version aware course_key = usage_key.course_key if isinstance(usage_key.block_id, LocalId): try: return self.local_modules[usage_key] except KeyError: raise ItemNotFoundError else: block_key = BlockKey.from_usage_key(usage_key) version_guid = self.course_entry.course_key.version_guid else: block_key = usage_key course_info = course_entry_override or self.course_entry course_key = course_info.course_key version_guid = course_key.version_guid # look in cache cached_module = self.modulestore.get_cached_block(course_key, version_guid, block_key) if cached_module: return cached_module block_data = self.get_module_data(block_key, course_key) class_ = self.load_block_type(block_data.block_type) block = self.xblock_from_json(class_, course_key, block_key, block_data, course_entry_override, **kwargs) # TODO Once TNL-5092 is implemented, we can expose the course version # information within the key identifier of the block. Until then, set # the course_version as a field on the returned block so higher layers # can use it when needed. block.course_version = version_guid self.modulestore.cache_block(course_key, version_guid, block_key, block) return block @contract(block_key=BlockKey, course_key="CourseLocator | LibraryLocator") def get_module_data(self, block_key, course_key): """ Get block from module_data adding it to module_data if it's not already there but is in the structure Raises: ItemNotFoundError if block is not in the structure """ json_data = self.module_data.get(block_key) if json_data is None: # deeper than initial descendant fetch or doesn't exist self.modulestore.cache_items(self, [block_key], course_key, lazy=self.lazy) json_data = self.module_data.get(block_key) if json_data is None: raise ItemNotFoundError(block_key) return json_data # xblock's runtime does not always pass enough contextual information to figure out # which named container (course x branch) or which parent is requesting an item. Because split allows # a many:1 mapping from named containers to structures and because item's identities encode # context as well as unique identity, this function must sometimes infer whether the access is # within an unspecified named container. In most cases, course_entry_override will give the # explicit context; however, runtime.get_block(), e.g., does not. HOWEVER, there are simple heuristics # which will work 99.999% of the time: a runtime is thread & even context specific. The likelihood that # the thread is working with more than one named container pointing to the same specific structure is # low; thus, the course_entry is most likely correct. If the thread is looking at > 1 named container # pointing to the same structure, the access is likely to be chunky enough that the last known container # is the intended one when not given a course_entry_override; thus, the caching of the last branch/course id. @contract(block_key="BlockKey | None") def xblock_from_json(self, class_, course_key, block_key, block_data, course_entry_override=None, **kwargs): """ Load and return block info. """ if course_entry_override is None: course_entry_override = self.course_entry else: # most recent retrieval is most likely the right one for next caller (see comment above fn) self.course_entry = CourseEnvelope(course_entry_override.course_key, self.course_entry.structure) definition_id = block_data.definition # If no usage id is provided, generate an in-memory id if block_key is None: block_key = BlockKey(block_data.block_type, LocalId()) convert_fields = lambda field: self.modulestore.convert_references_to_keys( course_key, class_, field, self.course_entry.structure['blocks'], ) if definition_id is not None and not block_data.definition_loaded: definition_loader = DefinitionLazyLoader( self.modulestore, course_key, block_key.type, definition_id, convert_fields, ) else: definition_loader = None # If no definition id is provide, generate an in-memory id if definition_id is None: definition_id = LocalId() # Construct the Block Usage Locator: block_locator = course_key.make_usage_key( block_type=block_key.type, block_id=block_key.id, ) converted_fields = convert_fields(block_data.fields) converted_defaults = convert_fields(block_data.defaults) if block_key in self._parent_map: parent_key = self._parent_map[block_key] parent = course_key.make_usage_key(parent_key.type, parent_key.id) else: parent = None aside_fields = None # for the situation if block_data has no asides attribute # (in case it was taken from memcache) try: if block_data.asides: aside_fields = {block_key.type: {}} for aside in block_data.asides: aside_fields[block_key.type].update(aside['fields']) except AttributeError: pass try: kvs = SplitMongoKVS( definition_loader, converted_fields, converted_defaults, parent=parent, aside_fields=aside_fields, field_decorator=kwargs.get('field_decorator') ) if InheritanceMixin in self.modulestore.xblock_mixins: field_data = inheriting_field_data(kvs) else: field_data = KvsFieldData(kvs) module = self.construct_xblock_from_class( class_, ScopeIds(None, block_key.type, definition_id, block_locator), field_data, for_parent=kwargs.get('for_parent') ) except Exception: # pylint: disable=broad-except log.warning("Failed to load descriptor", exc_info=True) return ErrorDescriptor.from_json( block_data, self, course_entry_override.course_key.make_usage_key( block_type='error', block_id=block_key.id ), error_msg=exc_info_to_str(sys.exc_info()) ) edit_info = block_data.edit_info module._edited_by = edit_info.edited_by # pylint: disable=protected-access module._edited_on = edit_info.edited_on # pylint: disable=protected-access module.previous_version = edit_info.previous_version module.update_version = edit_info.update_version module.source_version = edit_info.source_version module.definition_locator = DefinitionLocator(block_key.type, definition_id) for wrapper in self.modulestore.xblock_field_data_wrappers: module._field_data = wrapper(module, module._field_data) # pylint: disable=protected-access # decache any pending field settings module.save() # If this is an in-memory block, store it in this system if isinstance(block_locator.block_id, LocalId): self.local_modules[block_locator] = module return module def get_edited_by(self, xblock): """ See :meth: cms.lib.xblock.runtime.EditInfoRuntimeMixin.get_edited_by """ return xblock._edited_by def get_edited_on(self, xblock): """ See :class: cms.lib.xblock.runtime.EditInfoRuntimeMixin """ return xblock._edited_on @contract(xblock='XBlock') def get_subtree_edited_by(self, xblock): """ See :class: cms.lib.xblock.runtime.EditInfoRuntimeMixin """ # pylint: disable=protected-access if not hasattr(xblock, '_subtree_edited_by'): block_data = self.module_data[BlockKey.from_usage_key(xblock.location)] if block_data.edit_info._subtree_edited_by is None: self._compute_subtree_edited_internal( block_data, xblock.location.course_key ) xblock._subtree_edited_by = block_data.edit_info._subtree_edited_by return xblock._subtree_edited_by @contract(xblock='XBlock') def get_subtree_edited_on(self, xblock): """ See :class: cms.lib.xblock.runtime.EditInfoRuntimeMixin """ # pylint: disable=protected-access if not hasattr(xblock, '_subtree_edited_on'): block_data = self.module_data[BlockKey.from_usage_key(xblock.location)] if block_data.edit_info._subtree_edited_on is None: self._compute_subtree_edited_internal( block_data, xblock.location.course_key ) xblock._subtree_edited_on = block_data.edit_info._subtree_edited_on return xblock._subtree_edited_on def get_published_by(self, xblock): """ See :class: cms.lib.xblock.runtime.EditInfoRuntimeMixin """ if not hasattr(xblock, '_published_by'): self.modulestore.compute_published_info_internal(xblock) return getattr(xblock, '_published_by', None) def get_published_on(self, xblock): """ See :class: cms.lib.xblock.runtime.EditInfoRuntimeMixin """ if not hasattr(xblock, '_published_on'): self.modulestore.compute_published_info_internal(xblock) return getattr(xblock, '_published_on', None) @contract(block_data='BlockData') def _compute_subtree_edited_internal(self, block_data, course_key): """ Recurse the subtree finding the max edited_on date and its corresponding edited_by. Cache it. """ # pylint: disable=protected-access max_date = block_data.edit_info.edited_on max_date_by = block_data.edit_info.edited_by for child in block_data.fields.get('children', []): child_data = self.get_module_data(BlockKey(*child), course_key) if block_data.edit_info._subtree_edited_on is None: self._compute_subtree_edited_internal(child_data, course_key) if child_data.edit_info._subtree_edited_on > max_date: max_date = child_data.edit_info._subtree_edited_on max_date_by = child_data.edit_info._subtree_edited_by block_data.edit_info._subtree_edited_on = max_date block_data.edit_info._subtree_edited_by = max_date_by def get_aside_of_type(self, block, aside_type): """ See `runtime.Runtime.get_aside_of_type` This override adds the field data from the block to the aside """ asides_cached = block.get_asides() if isinstance(block, XModuleMixin) else None if asides_cached: for aside in asides_cached: if aside.scope_ids.block_type == aside_type: return aside new_aside = super(CachingDescriptorSystem, self).get_aside_of_type(block, aside_type) new_aside._field_data = block._field_data # pylint: disable=protected-access for key, _ in new_aside.fields.iteritems(): if isinstance(key, KeyValueStore.Key) and block._field_data.has(new_aside, key): # pylint: disable=protected-access try: value = block._field_data.get(new_aside, key) # pylint: disable=protected-access except KeyError: pass else: setattr(new_aside, key, value) block.add_aside(new_aside) return new_aside
agpl-3.0
altsen/diandiyun-platform
lms/djangoapps/wechat/tests/test_views.py
12
17913
""" Tests courseware views.py """ import unittest from datetime import datetime from mock import MagicMock, patch from pytz import UTC from django.test import TestCase from django.http import Http404 from django.test.utils import override_settings from django.contrib.auth.models import User, AnonymousUser from django.test.client import RequestFactory from django.conf import settings from django.core.urlresolvers import reverse from student.models import CourseEnrollment from student.tests.factories import AdminFactory from edxmako.middleware import MakoMiddleware from xmodule.modulestore import Location from xmodule.modulestore.django import modulestore from xmodule.modulestore.tests.factories import CourseFactory, ItemFactory from xmodule.modulestore.tests.django_utils import ModuleStoreTestCase from student.tests.factories import UserFactory import courseware.views as views from courseware.tests.modulestore_config import TEST_DATA_MIXED_MODULESTORE from course_modes.models import CourseMode import shoppingcart from util.tests.test_date_utils import fake_ugettext, fake_pgettext @override_settings(MODULESTORE=TEST_DATA_MIXED_MODULESTORE) class TestJumpTo(TestCase): """ Check the jumpto link for a course. """ def setUp(self): # Use toy course from XML self.course_name = 'edX/toy/2012_Fall' def test_jumpto_invalid_location(self): location = Location('i4x', 'edX', 'toy', 'NoSuchPlace', None) jumpto_url = '{0}/{1}/jump_to/{2}'.format('/courses', self.course_name, location) response = self.client.get(jumpto_url) self.assertEqual(response.status_code, 404) def test_jumpto_from_chapter(self): location = Location('i4x', 'edX', 'toy', 'chapter', 'Overview') jumpto_url = '{0}/{1}/jump_to/{2}'.format('/courses', self.course_name, location) expected = 'courses/edX/toy/2012_Fall/courseware/Overview/' response = self.client.get(jumpto_url) self.assertRedirects(response, expected, status_code=302, target_status_code=302) def test_jumpto_id(self): location = Location('i4x', 'edX', 'toy', 'chapter', 'Overview') jumpto_url = '{0}/{1}/jump_to_id/{2}'.format('/courses', self.course_name, location.name) expected = 'courses/edX/toy/2012_Fall/courseware/Overview/' response = self.client.get(jumpto_url) self.assertRedirects(response, expected, status_code=302, target_status_code=302) def test_jumpto_id_invalid_location(self): location = Location('i4x', 'edX', 'toy', 'NoSuchPlace', None) jumpto_url = '{0}/{1}/jump_to_id/{2}'.format('/courses', self.course_name, location.name) response = self.client.get(jumpto_url) self.assertEqual(response.status_code, 404) @override_settings(MODULESTORE=TEST_DATA_MIXED_MODULESTORE) class ViewsTestCase(TestCase): """ Tests for views.py methods. """ def setUp(self): self.user = User.objects.create(username='dummy', password='123456', email='[email protected]') self.date = datetime(2013, 1, 22, tzinfo=UTC) self.course_id = 'edX/toy/2012_Fall' self.enrollment = CourseEnrollment.enroll(self.user, self.course_id) self.enrollment.created = self.date self.enrollment.save() self.location = ['tag', 'org', 'course', 'category', 'name'] self.request_factory = RequestFactory() chapter = 'Overview' self.chapter_url = '%s/%s/%s' % ('/courses', self.course_id, chapter) @unittest.skipUnless(settings.FEATURES.get('ENABLE_SHOPPING_CART'), "Shopping Cart not enabled in settings") @patch.dict(settings.FEATURES, {'ENABLE_PAID_COURSE_REGISTRATION': True}) def test_course_about_in_cart(self): in_cart_span = '<span class="add-to-cart">' # don't mock this course due to shopping cart existence checking course = CourseFactory.create(org="new", number="unenrolled", display_name="course") request = self.request_factory.get(reverse('about_course', args=[course.id])) request.user = AnonymousUser() response = views.course_about(request, course.id) self.assertEqual(response.status_code, 200) self.assertNotIn(in_cart_span, response.content) # authenticated user with nothing in cart request.user = self.user response = views.course_about(request, course.id) self.assertEqual(response.status_code, 200) self.assertNotIn(in_cart_span, response.content) # now add the course to the cart cart = shoppingcart.models.Order.get_cart_for_user(self.user) shoppingcart.models.PaidCourseRegistration.add_to_order(cart, course.id) response = views.course_about(request, course.id) self.assertEqual(response.status_code, 200) self.assertIn(in_cart_span, response.content) def test_user_groups(self): # depreciated function mock_user = MagicMock() mock_user.is_authenticated.return_value = False self.assertEquals(views.user_groups(mock_user), []) def test_get_current_child(self): self.assertIsNone(views.get_current_child(MagicMock())) mock_xmodule = MagicMock() mock_xmodule.position = -1 mock_xmodule.get_display_items.return_value = ['one', 'two'] self.assertEquals(views.get_current_child(mock_xmodule), 'one') mock_xmodule_2 = MagicMock() mock_xmodule_2.position = 3 mock_xmodule_2.get_display_items.return_value = [] self.assertIsNone(views.get_current_child(mock_xmodule_2)) def test_redirect_to_course_position(self): mock_module = MagicMock() mock_module.descriptor.id = 'Underwater Basketweaving' mock_module.position = 3 mock_module.get_display_items.return_value = [] self.assertRaises(Http404, views.redirect_to_course_position, mock_module) def test_registered_for_course(self): self.assertFalse(views.registered_for_course('Basketweaving', None)) mock_user = MagicMock() mock_user.is_authenticated.return_value = False self.assertFalse(views.registered_for_course('dummy', mock_user)) mock_course = MagicMock() mock_course.id = self.course_id self.assertTrue(views.registered_for_course(mock_course, self.user)) def test_jump_to_invalid(self): request = self.request_factory.get(self.chapter_url) self.assertRaisesRegexp(Http404, 'Invalid location', views.jump_to, request, 'bar', ()) self.assertRaisesRegexp(Http404, 'No data*', views.jump_to, request, 'dummy', self.location) def test_no_end_on_about_page(self): # Toy course has no course end date or about/end_date blob self.verify_end_date('edX/toy/TT_2012_Fall') def test_no_end_about_blob(self): # test_end has a course end date, no end_date HTML blob self.verify_end_date("edX/test_end/2012_Fall", "Sep 17, 2015") def test_about_blob_end_date(self): # test_about_blob_end_date has both a course end date and an end_date HTML blob. # HTML blob wins self.verify_end_date("edX/test_about_blob_end_date/2012_Fall", "Learning never ends") def verify_end_date(self, course_id, expected_end_text=None): request = self.request_factory.get("foo") request.user = self.user # TODO: Remove the dependency on MakoMiddleware (by making the views explicitly supply a RequestContext) MakoMiddleware().process_request(request) result = views.course_about(request, course_id) if expected_end_text is not None: self.assertContains(result, "Classes End") self.assertContains(result, expected_end_text) else: self.assertNotContains(result, "Classes End") def test_chat_settings(self): mock_user = MagicMock() mock_user.username = "johndoe" mock_course = MagicMock() mock_course.id = "a/b/c" # Stub this out in the case that it's not in the settings domain = "jabber.edx.org" settings.JABBER_DOMAIN = domain chat_settings = views.chat_settings(mock_course, mock_user) # Test the proper format of all chat settings self.assertEquals(chat_settings['domain'], domain) self.assertEquals(chat_settings['room'], "a-b-c_class") self.assertEquals(chat_settings['username'], "johndoe@%s" % domain) # TODO: this needs to be changed once we figure out how to # generate/store a real password. self.assertEquals(chat_settings['password'], "johndoe@%s" % domain) def test_course_mktg_about_coming_soon(self): # we should not be able to find this course url = reverse('mktg_about_course', kwargs={'course_id': 'no/course/here'}) response = self.client.get(url) self.assertIn('Coming Soon', response.content) def test_course_mktg_register(self): admin = AdminFactory() self.client.login(username=admin.username, password='test') url = reverse('mktg_about_course', kwargs={'course_id': self.course_id}) response = self.client.get(url) self.assertIn('Register for', response.content) self.assertNotIn('and choose your student track', response.content) def test_course_mktg_register_multiple_modes(self): admin = AdminFactory() CourseMode.objects.get_or_create(mode_slug='honor', mode_display_name='Honor Code Certificate', course_id=self.course_id) CourseMode.objects.get_or_create(mode_slug='verified', mode_display_name='Verified Certificate', course_id=self.course_id) self.client.login(username=admin.username, password='test') url = reverse('mktg_about_course', kwargs={'course_id': self.course_id}) response = self.client.get(url) self.assertIn('Register for', response.content) self.assertIn('and choose your student track', response.content) # clean up course modes CourseMode.objects.all().delete() def test_submission_history_xss(self): # log into a staff account admin = AdminFactory() self.client.login(username=admin.username, password='test') # try it with an existing user and a malicious location url = reverse('submission_history', kwargs={ 'course_id': self.course_id, 'student_username': 'dummy', 'location': '<script>alert("hello");</script>' }) response = self.client.get(url) self.assertFalse('<script>' in response.content) # try it with a malicious user and a non-existent location url = reverse('submission_history', kwargs={ 'course_id': self.course_id, 'student_username': '<script>alert("hello");</script>', 'location': 'dummy' }) response = self.client.get(url) self.assertFalse('<script>' in response.content) # setting TIME_ZONE_DISPLAYED_FOR_DEADLINES explicitly @override_settings(MODULESTORE=TEST_DATA_MIXED_MODULESTORE, TIME_ZONE_DISPLAYED_FOR_DEADLINES="UTC") class BaseDueDateTests(ModuleStoreTestCase): """ Base class that verifies that due dates are rendered correctly on a page """ __test__ = False def get_text(self, course): # pylint: disable=unused-argument """Return the rendered text for the page to be verified""" raise NotImplementedError def set_up_course(self, **course_kwargs): """ Create a stock course with a specific due date. :param course_kwargs: All kwargs are passed to through to the :class:`CourseFactory` """ course = CourseFactory(**course_kwargs) chapter = ItemFactory(category='chapter', parent_location=course.location) # pylint: disable=no-member section = ItemFactory(category='sequential', parent_location=chapter.location, due=datetime(2013, 9, 18, 11, 30, 00)) vertical = ItemFactory(category='vertical', parent_location=section.location) ItemFactory(category='problem', parent_location=vertical.location) course = modulestore().get_instance(course.id, course.location) # pylint: disable=no-member self.assertIsNotNone(course.get_children()[0].get_children()[0].due) return course def setUp(self): self.request_factory = RequestFactory() self.user = UserFactory.create() self.request = self.request_factory.get("foo") self.request.user = self.user self.time_with_tz = "due Sep 18, 2013 at 11:30 UTC" self.time_without_tz = "due Sep 18, 2013 at 11:30" def test_backwards_compatability(self): # The test course being used has show_timezone = False in the policy file # (and no due_date_display_format set). This is to test our backwards compatibility-- # in course_module's init method, the date_display_format will be set accordingly to # remove the timezone. course = self.set_up_course(due_date_display_format=None, show_timezone=False) text = self.get_text(course) self.assertIn(self.time_without_tz, text) self.assertNotIn(self.time_with_tz, text) # Test that show_timezone has been cleared (which means you get the default value of True). self.assertTrue(course.show_timezone) def test_defaults(self): course = self.set_up_course() text = self.get_text(course) self.assertIn(self.time_with_tz, text) def test_format_none(self): # Same for setting the due date to None course = self.set_up_course(due_date_display_format=None) text = self.get_text(course) self.assertIn(self.time_with_tz, text) def test_format_plain_text(self): # plain text due date course = self.set_up_course(due_date_display_format="foobar") text = self.get_text(course) self.assertNotIn(self.time_with_tz, text) self.assertIn("due foobar", text) def test_format_date(self): # due date with no time course = self.set_up_course(due_date_display_format=u"%b %d %y") text = self.get_text(course) self.assertNotIn(self.time_with_tz, text) self.assertIn("due Sep 18 13", text) def test_format_hidden(self): # hide due date completely course = self.set_up_course(due_date_display_format=u"") text = self.get_text(course) self.assertNotIn("due ", text) def test_format_invalid(self): # improperly formatted due_date_display_format falls through to default # (value of show_timezone does not matter-- setting to False to make that clear). course = self.set_up_course(due_date_display_format=u"%%%", show_timezone=False) text = self.get_text(course) self.assertNotIn("%%%", text) self.assertIn(self.time_with_tz, text) class TestProgressDueDate(BaseDueDateTests): """ Test that the progress page displays due dates correctly """ __test__ = True def get_text(self, course): """ Returns the HTML for the progress page """ return views.progress(self.request, course.id, self.user.id).content class TestAccordionDueDate(BaseDueDateTests): """ Test that the accordion page displays due dates correctly """ __test__ = True def get_text(self, course): """ Returns the HTML for the accordion """ return views.render_accordion( self.request, course, course.get_children()[0].id, None, None ) @override_settings(MODULESTORE=TEST_DATA_MIXED_MODULESTORE) class StartDateTests(ModuleStoreTestCase): """ Test that start dates are properly localized and displayed on the student dashboard. """ def setUp(self): self.request_factory = RequestFactory() self.user = UserFactory.create() self.request = self.request_factory.get("foo") self.request.user = self.user def set_up_course(self): """ Create a stock course with a specific due date. :param course_kwargs: All kwargs are passed to through to the :class:`CourseFactory` """ course = CourseFactory(start=datetime(2013, 9, 16, 7, 17, 28)) course = modulestore().get_instance(course.id, course.location) # pylint: disable=no-member return course def get_about_text(self, course_id): """ Get the text of the /about page for the course. """ text = views.course_about(self.request, course_id).content return text @patch('util.date_utils.pgettext', fake_pgettext(translations={ ("abbreviated month name", "Sep"): "SEPTEMBER", })) @patch('util.date_utils.ugettext', fake_ugettext(translations={ "SHORT_DATE_FORMAT": "%Y-%b-%d", })) def test_format_localized_in_studio_course(self): course = self.set_up_course() text = self.get_about_text(course.id) # The start date is set in the set_up_course function above. self.assertIn("2013-SEPTEMBER-16", text) @patch('util.date_utils.pgettext', fake_pgettext(translations={ ("abbreviated month name", "Jul"): "JULY", })) @patch('util.date_utils.ugettext', fake_ugettext(translations={ "SHORT_DATE_FORMAT": "%Y-%b-%d", })) def test_format_localized_in_xml_course(self): text = self.get_about_text('edX/toy/TT_2012_Fall') # The start date is set in common/test/data/two_toys/policies/TT_2012_Fall/policy.json self.assertIn("2015-JULY-17", text)
agpl-3.0
esteve/txamqp
src/txamqp/test/test_heartbeat.py
6
1136
from txamqp.testlib import TestBase from txamqp.protocol import AMQClient from twisted.internet import reactor from twisted.internet.defer import Deferred class SpyAMQClient(AMQClient): called_reschedule_check = 0 called_send_hb = 0 def reschedule_checkHB(self, dummy=None): AMQClient.reschedule_checkHB(self) self.called_reschedule_check += 1 def sendHeartbeat(self): AMQClient.sendHeartbeat(self) self.called_send_hb += 1 class HeartbeatTests(TestBase): heartbeat = 1 clientClass = SpyAMQClient """ Tests handling of heartbeat frames """ def test_heartbeat(self): """ Test that heartbeat frames are sent and received """ d = Deferred() def checkPulse(dummy): self.assertTrue(self.client.called_send_hb, "A heartbeat frame was recently sent") self.assertTrue(self.client.called_reschedule_check, "A heartbeat frame was recently received") d.addCallback(checkPulse) reactor.callLater(3, d.callback, None) return d
apache-2.0
OptimalPayments/Python_SDK
src/sample_application/DirectDebitACHpurchase.py
1
1780
#!/usr/bin/env python3 ''' Created on 1-June-2016 @author: Asawari.Vaidya ''' from PythonNetBanxSDK.CardPayments.BillingDetails import BillingDetails from PythonNetBanxSDK.CustomerVault.ACHBankAccount import ACHBankAccount from PythonNetBanxSDK.CustomerVault.Profile import Profile from PythonNetBanxSDK.DirectDebit.Purchase import Purchase from PythonNetBanxSDK.OptimalApiClient import OptimalApiClient from utils.Utils import Utils from Config import Config from RandomTokenGenerator import RandomTokenGenerator optimal_obj = OptimalApiClient(Config.api_key, Config.api_password, Config.environment, Config.account_number_ACH) purchase_obj = Purchase(None) purchase_obj.merchantRefNum(RandomTokenGenerator().generateToken()) purchase_obj.amount("10098") purchase_obj.customerIp("192.0.126.111") achbank_obj = ACHBankAccount (None) achbank_obj.accountHolderName("XYZ Company") achbank_obj.accountType("CHECKING") #achbank_obj.accountNumber(RandomTokenGenerator().generateNumber()) achbank_obj.accountNumber("988948193") achbank_obj.routingNumber("211589828") achbank_obj.payMethod("WEB") profile_obj = Profile(None) profile_obj.firstName("Joe") profile_obj.lastName("Smith") profile_obj.email("[email protected]") billingdetails_obj = BillingDetails(None) billingdetails_obj.street("100 Queen Street West") billingdetails_obj.city("Los Angeles") billingdetails_obj.state("CA") billingdetails_obj.country("US") billingdetails_obj.zip("90210") billingdetails_obj.phone("3102649010") purchase_obj.profile(profile_obj) purchase_obj.billingDetails(billingdetails_obj) purchase_obj.ach(achbank_obj) response_object = optimal_obj.direct_debit_service_handler().submit_purchase(purchase_obj) print ("\nResponse Values ==========> ") Utils.print_response(response_object)
mit
geekboxzone/lollipop_external_chromium_org_third_party_WebKit
Tools/Scripts/webkitpy/layout_tests/servers/apache_http.py
15
8419
# Copyright (C) 2011 Google Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Start and stop the Apache HTTP server as it is used by the layout tests.""" import logging import os import socket from webkitpy.layout_tests.servers import server_base _log = logging.getLogger(__name__) class ApacheHTTP(server_base.ServerBase): def __init__(self, port_obj, output_dir, additional_dirs, number_of_servers): super(ApacheHTTP, self).__init__(port_obj, output_dir) # We use the name "httpd" instead of "apache" to make our paths (e.g. the pid file: /tmp/WebKit/httpd.pid) # match old-run-webkit-tests: https://bugs.webkit.org/show_bug.cgi?id=63956 self._name = 'httpd' self._log_prefixes = ('access_log', 'error_log') self._mappings = [{'port': 8000}, {'port': 8080}, {'port': 8443, 'sslcert': True}] self._number_of_servers = number_of_servers self._pid_file = self._filesystem.join(self._runtime_path, '%s.pid' % self._name) executable = self._port_obj.path_to_apache() server_root = self._filesystem.dirname(self._filesystem.dirname(executable)) test_dir = self._port_obj.layout_tests_dir() document_root = self._filesystem.join(test_dir, "http", "tests") js_test_resources_dir = self._filesystem.join(test_dir, "resources") media_resources_dir = self._filesystem.join(test_dir, "media") mime_types_path = self._filesystem.join(test_dir, "http", "conf", "mime.types") cert_file = self._filesystem.join(test_dir, "http", "conf", "webkit-httpd.pem") self._access_log_path = self._filesystem.join(output_dir, "access_log.txt") self._error_log_path = self._filesystem.join(output_dir, "error_log.txt") self._is_win = self._port_obj.host.platform.is_win() start_cmd = [executable, '-f', '%s' % self._port_obj.path_to_apache_config_file(), '-C', 'ServerRoot "%s"' % server_root, '-C', 'DocumentRoot "%s"' % document_root, '-c', 'Alias /js-test-resources "%s"' % js_test_resources_dir, '-c', 'Alias /media-resources "%s"' % media_resources_dir, '-c', 'TypesConfig "%s"' % mime_types_path, '-c', 'CustomLog "%s" common' % self._access_log_path, '-c', 'ErrorLog "%s"' % self._error_log_path, '-c', 'PidFile %s' % self._pid_file, '-c', 'SSLCertificateFile "%s"' % cert_file, ] if self._is_win: start_cmd += ['-c', "ThreadsPerChild %d" % (self._number_of_servers * 2)] else: start_cmd += ['-c', "StartServers %d" % self._number_of_servers, '-c', "MinSpareServers %d" % self._number_of_servers, '-c', "MaxSpareServers %d" % self._number_of_servers, '-C', 'User "%s"' % os.environ.get('USERNAME', os.environ.get('USER', '')), '-k', 'start'] enable_ipv6 = self._port_obj.http_server_supports_ipv6() # Perform part of the checks Apache's APR does when trying to listen to # a specific host/port. This allows us to avoid trying to listen to # IPV6 addresses when it fails on Apache. APR itself tries to call # getaddrinfo() again without AI_ADDRCONFIG if the first call fails # with EBADFLAGS, but that is not how it normally fails in our use # cases, so ignore that for now. # See https://bugs.webkit.org/show_bug.cgi?id=98602#c7 try: socket.getaddrinfo('::1', 0, 0, 0, 0, socket.AI_ADDRCONFIG) except: enable_ipv6 = False for mapping in self._mappings: port = mapping['port'] start_cmd += ['-C', "Listen 127.0.0.1:%d" % port] # We listen to both IPv4 and IPv6 loop-back addresses, but ignore # requests to 8000 from random users on network. # See https://bugs.webkit.org/show_bug.cgi?id=37104 if enable_ipv6: start_cmd += ['-C', "Listen [::1]:%d" % port] if additional_dirs: self._start_cmd = start_cmd for alias, path in additional_dirs.iteritems(): start_cmd += ['-c', 'Alias %s "%s"' % (alias, path), # Disable CGI handler for additional dirs. '-c', '<Location %s>' % alias, '-c', 'RemoveHandler .cgi .pl', '-c', '</Location>'] self._start_cmd = start_cmd def _spawn_process(self): _log.debug('Starting %s server, cmd="%s"' % (self._name, str(self._start_cmd))) self._process = self._executive.popen(self._start_cmd, stderr=self._executive.PIPE) if self._process.returncode is not None: retval = self._process.returncode err = self._process.stderr.read() if retval or len(err): raise server_base.ServerError('Failed to start %s: %s' % (self._name, err)) # For some reason apache isn't guaranteed to have created the pid file before # the process exits, so we wait a little while longer. if not self._wait_for_action(lambda: self._filesystem.exists(self._pid_file)): self._log_errors_from_subprocess() raise server_base.ServerError('Failed to start %s: no pid file found' % self._name) return int(self._filesystem.read_text_file(self._pid_file)) def stop(self): self._stop_running_server() def _stop_running_server(self): # If apache was forcefully killed, the pid file will not have been deleted, so check # that the process specified by the pid_file no longer exists before deleting the file. if self._pid and not self._executive.check_running_pid(self._pid): self._filesystem.remove(self._pid_file) return if self._is_win: self._executive.kill_process(self._pid) return proc = self._executive.popen([self._port_obj.path_to_apache(), '-f', self._port_obj.path_to_apache_config_file(), '-c', 'PidFile "%s"' % self._pid_file, '-k', 'stop'], stderr=self._executive.PIPE) proc.wait() retval = proc.returncode err = proc.stderr.read() if retval or len(err): raise server_base.ServerError('Failed to stop %s: %s' % (self._name, err)) # For some reason apache isn't guaranteed to have actually stopped after # the stop command returns, so we wait a little while longer for the # pid file to be removed. if not self._wait_for_action(lambda: not self._filesystem.exists(self._pid_file)): raise server_base.ServerError('Failed to stop %s: pid file still exists' % self._name)
bsd-3-clause
ssadedin/seqr
seqr/migrations/0004_auto_20200124_1912.py
2
2811
# -*- coding: utf-8 -*- # Generated by Django 1.11.27 on 2020-01-24 19:12 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('seqr', '0003_auto_20191203_1130'), ] operations = [ migrations.RemoveField( model_name='projectlastaccesseddate', name='project', ), migrations.RemoveField( model_name='projectlastaccesseddate', name='user', ), migrations.RemoveField( model_name='uploadedfileforfamily', name='family', ), migrations.RemoveField( model_name='uploadedfileforfamily', name='uploaded_by', ), migrations.RemoveField( model_name='uploadedfileforindividual', name='individual', ), migrations.RemoveField( model_name='uploadedfileforindividual', name='uploaded_by', ), migrations.RemoveField( model_name='family', name='causal_inheritance_mode', ), migrations.RemoveField( model_name='locuslistgene', name='description', ), migrations.RemoveField( model_name='locuslistinterval', name='description', ), migrations.RemoveField( model_name='project', name='deprecated_project_id', ), migrations.RemoveField( model_name='project', name='disease_area', ), migrations.RemoveField( model_name='project', name='has_new_search', ), migrations.RemoveField( model_name='project', name='is_functional_data_enabled', ), migrations.RemoveField( model_name='project', name='is_phenotips_enabled', ), migrations.RemoveField( model_name='variantfunctionaldata', name='search_parameters', ), migrations.RemoveField( model_name='variantnote', name='search_parameters', ), migrations.RemoveField( model_name='varianttag', name='search_parameters', ), migrations.RemoveField( model_name='varianttagtype', name='is_built_in', ), migrations.AlterField( model_name='variantnote', name='note', field=models.TextField(), ), migrations.DeleteModel( name='ProjectLastAccessedDate', ), migrations.DeleteModel( name='UploadedFileForFamily', ), migrations.DeleteModel( name='UploadedFileForIndividual', ), ]
agpl-3.0
darshanthaker/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/_cm.py
70
375423
""" Color data and pre-defined cmap objects. This is a helper for cm.py, originally part of that file. Separating the data (this file) from cm.py makes both easier to deal with. Objects visible in cm.py are the individual cmap objects ('autumn', etc.) and a dictionary, 'datad', including all of these objects. """ import matplotlib as mpl import matplotlib.colors as colors LUTSIZE = mpl.rcParams['image.lut'] _binary_data = { 'red' : ((0., 1., 1.), (1., 0., 0.)), 'green': ((0., 1., 1.), (1., 0., 0.)), 'blue' : ((0., 1., 1.), (1., 0., 0.)) } _bone_data = {'red': ((0., 0., 0.),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.),(1.0, 1.0, 1.0))} _autumn_data = {'red': ((0., 1.0, 1.0),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.),(1.0, 0., 0.))} _bone_data = {'red': ((0., 0., 0.),(0.746032, 0.652778, 0.652778),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(0.365079, 0.319444, 0.319444), (0.746032, 0.777778, 0.777778),(1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.),(0.365079, 0.444444, 0.444444),(1.0, 1.0, 1.0))} _cool_data = {'red': ((0., 0., 0.), (1.0, 1.0, 1.0)), 'green': ((0., 1., 1.), (1.0, 0., 0.)), 'blue': ((0., 1., 1.), (1.0, 1., 1.))} _copper_data = {'red': ((0., 0., 0.),(0.809524, 1.000000, 1.000000),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(1.0, 0.7812, 0.7812)), 'blue': ((0., 0., 0.),(1.0, 0.4975, 0.4975))} _flag_data = {'red': ((0., 1., 1.),(0.015873, 1.000000, 1.000000), (0.031746, 0.000000, 0.000000),(0.047619, 0.000000, 0.000000), (0.063492, 1.000000, 1.000000),(0.079365, 1.000000, 1.000000), (0.095238, 0.000000, 0.000000),(0.111111, 0.000000, 0.000000), (0.126984, 1.000000, 1.000000),(0.142857, 1.000000, 1.000000), (0.158730, 0.000000, 0.000000),(0.174603, 0.000000, 0.000000), (0.190476, 1.000000, 1.000000),(0.206349, 1.000000, 1.000000), (0.222222, 0.000000, 0.000000),(0.238095, 0.000000, 0.000000), (0.253968, 1.000000, 1.000000),(0.269841, 1.000000, 1.000000), (0.285714, 0.000000, 0.000000),(0.301587, 0.000000, 0.000000), (0.317460, 1.000000, 1.000000),(0.333333, 1.000000, 1.000000), (0.349206, 0.000000, 0.000000),(0.365079, 0.000000, 0.000000), (0.380952, 1.000000, 1.000000),(0.396825, 1.000000, 1.000000), (0.412698, 0.000000, 0.000000),(0.428571, 0.000000, 0.000000), (0.444444, 1.000000, 1.000000),(0.460317, 1.000000, 1.000000), (0.476190, 0.000000, 0.000000),(0.492063, 0.000000, 0.000000), (0.507937, 1.000000, 1.000000),(0.523810, 1.000000, 1.000000), (0.539683, 0.000000, 0.000000),(0.555556, 0.000000, 0.000000), (0.571429, 1.000000, 1.000000),(0.587302, 1.000000, 1.000000), (0.603175, 0.000000, 0.000000),(0.619048, 0.000000, 0.000000), (0.634921, 1.000000, 1.000000),(0.650794, 1.000000, 1.000000), (0.666667, 0.000000, 0.000000),(0.682540, 0.000000, 0.000000), (0.698413, 1.000000, 1.000000),(0.714286, 1.000000, 1.000000), (0.730159, 0.000000, 0.000000),(0.746032, 0.000000, 0.000000), (0.761905, 1.000000, 1.000000),(0.777778, 1.000000, 1.000000), (0.793651, 0.000000, 0.000000),(0.809524, 0.000000, 0.000000), (0.825397, 1.000000, 1.000000),(0.841270, 1.000000, 1.000000), (0.857143, 0.000000, 0.000000),(0.873016, 0.000000, 0.000000), (0.888889, 1.000000, 1.000000),(0.904762, 1.000000, 1.000000), (0.920635, 0.000000, 0.000000),(0.936508, 0.000000, 0.000000), (0.952381, 1.000000, 1.000000),(0.968254, 1.000000, 1.000000), (0.984127, 0.000000, 0.000000),(1.0, 0., 0.)), 'green': ((0., 0., 0.),(0.015873, 1.000000, 1.000000), (0.031746, 0.000000, 0.000000),(0.063492, 0.000000, 0.000000), (0.079365, 1.000000, 1.000000),(0.095238, 0.000000, 0.000000), (0.126984, 0.000000, 0.000000),(0.142857, 1.000000, 1.000000), (0.158730, 0.000000, 0.000000),(0.190476, 0.000000, 0.000000), (0.206349, 1.000000, 1.000000),(0.222222, 0.000000, 0.000000), (0.253968, 0.000000, 0.000000),(0.269841, 1.000000, 1.000000), (0.285714, 0.000000, 0.000000),(0.317460, 0.000000, 0.000000), (0.333333, 1.000000, 1.000000),(0.349206, 0.000000, 0.000000), (0.380952, 0.000000, 0.000000),(0.396825, 1.000000, 1.000000), (0.412698, 0.000000, 0.000000),(0.444444, 0.000000, 0.000000), (0.460317, 1.000000, 1.000000),(0.476190, 0.000000, 0.000000), (0.507937, 0.000000, 0.000000),(0.523810, 1.000000, 1.000000), (0.539683, 0.000000, 0.000000),(0.571429, 0.000000, 0.000000), (0.587302, 1.000000, 1.000000),(0.603175, 0.000000, 0.000000), (0.634921, 0.000000, 0.000000),(0.650794, 1.000000, 1.000000), (0.666667, 0.000000, 0.000000),(0.698413, 0.000000, 0.000000), (0.714286, 1.000000, 1.000000),(0.730159, 0.000000, 0.000000), (0.761905, 0.000000, 0.000000),(0.777778, 1.000000, 1.000000), (0.793651, 0.000000, 0.000000),(0.825397, 0.000000, 0.000000), (0.841270, 1.000000, 1.000000),(0.857143, 0.000000, 0.000000), (0.888889, 0.000000, 0.000000),(0.904762, 1.000000, 1.000000), (0.920635, 0.000000, 0.000000),(0.952381, 0.000000, 0.000000), (0.968254, 1.000000, 1.000000),(0.984127, 0.000000, 0.000000), (1.0, 0., 0.)), 'blue': ((0., 0., 0.),(0.015873, 1.000000, 1.000000), (0.031746, 1.000000, 1.000000),(0.047619, 0.000000, 0.000000), (0.063492, 0.000000, 0.000000),(0.079365, 1.000000, 1.000000), (0.095238, 1.000000, 1.000000),(0.111111, 0.000000, 0.000000), (0.126984, 0.000000, 0.000000),(0.142857, 1.000000, 1.000000), (0.158730, 1.000000, 1.000000),(0.174603, 0.000000, 0.000000), (0.190476, 0.000000, 0.000000),(0.206349, 1.000000, 1.000000), (0.222222, 1.000000, 1.000000),(0.238095, 0.000000, 0.000000), (0.253968, 0.000000, 0.000000),(0.269841, 1.000000, 1.000000), (0.285714, 1.000000, 1.000000),(0.301587, 0.000000, 0.000000), (0.317460, 0.000000, 0.000000),(0.333333, 1.000000, 1.000000), (0.349206, 1.000000, 1.000000),(0.365079, 0.000000, 0.000000), (0.380952, 0.000000, 0.000000),(0.396825, 1.000000, 1.000000), (0.412698, 1.000000, 1.000000),(0.428571, 0.000000, 0.000000), (0.444444, 0.000000, 0.000000),(0.460317, 1.000000, 1.000000), (0.476190, 1.000000, 1.000000),(0.492063, 0.000000, 0.000000), (0.507937, 0.000000, 0.000000),(0.523810, 1.000000, 1.000000), (0.539683, 1.000000, 1.000000),(0.555556, 0.000000, 0.000000), (0.571429, 0.000000, 0.000000),(0.587302, 1.000000, 1.000000), (0.603175, 1.000000, 1.000000),(0.619048, 0.000000, 0.000000), (0.634921, 0.000000, 0.000000),(0.650794, 1.000000, 1.000000), (0.666667, 1.000000, 1.000000),(0.682540, 0.000000, 0.000000), (0.698413, 0.000000, 0.000000),(0.714286, 1.000000, 1.000000), (0.730159, 1.000000, 1.000000),(0.746032, 0.000000, 0.000000), (0.761905, 0.000000, 0.000000),(0.777778, 1.000000, 1.000000), (0.793651, 1.000000, 1.000000),(0.809524, 0.000000, 0.000000), (0.825397, 0.000000, 0.000000),(0.841270, 1.000000, 1.000000), (0.857143, 1.000000, 1.000000),(0.873016, 0.000000, 0.000000), (0.888889, 0.000000, 0.000000),(0.904762, 1.000000, 1.000000), (0.920635, 1.000000, 1.000000),(0.936508, 0.000000, 0.000000), (0.952381, 0.000000, 0.000000),(0.968254, 1.000000, 1.000000), (0.984127, 1.000000, 1.000000),(1.0, 0., 0.))} _gray_data = {'red': ((0., 0, 0), (1., 1, 1)), 'green': ((0., 0, 0), (1., 1, 1)), 'blue': ((0., 0, 0), (1., 1, 1))} _hot_data = {'red': ((0., 0.0416, 0.0416),(0.365079, 1.000000, 1.000000),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(0.365079, 0.000000, 0.000000), (0.746032, 1.000000, 1.000000),(1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.),(0.746032, 0.000000, 0.000000),(1.0, 1.0, 1.0))} _hsv_data = {'red': ((0., 1., 1.),(0.158730, 1.000000, 1.000000), (0.174603, 0.968750, 0.968750),(0.333333, 0.031250, 0.031250), (0.349206, 0.000000, 0.000000),(0.666667, 0.000000, 0.000000), (0.682540, 0.031250, 0.031250),(0.841270, 0.968750, 0.968750), (0.857143, 1.000000, 1.000000),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(0.158730, 0.937500, 0.937500), (0.174603, 1.000000, 1.000000),(0.507937, 1.000000, 1.000000), (0.666667, 0.062500, 0.062500),(0.682540, 0.000000, 0.000000), (1.0, 0., 0.)), 'blue': ((0., 0., 0.),(0.333333, 0.000000, 0.000000), (0.349206, 0.062500, 0.062500),(0.507937, 1.000000, 1.000000), (0.841270, 1.000000, 1.000000),(0.857143, 0.937500, 0.937500), (1.0, 0.09375, 0.09375))} _jet_data = {'red': ((0., 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89,1, 1), (1, 0.5, 0.5)), 'green': ((0., 0, 0), (0.125,0, 0), (0.375,1, 1), (0.64,1, 1), (0.91,0,0), (1, 0, 0)), 'blue': ((0., 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65,0, 0), (1, 0, 0))} _pink_data = {'red': ((0., 0.1178, 0.1178),(0.015873, 0.195857, 0.195857), (0.031746, 0.250661, 0.250661),(0.047619, 0.295468, 0.295468), (0.063492, 0.334324, 0.334324),(0.079365, 0.369112, 0.369112), (0.095238, 0.400892, 0.400892),(0.111111, 0.430331, 0.430331), (0.126984, 0.457882, 0.457882),(0.142857, 0.483867, 0.483867), (0.158730, 0.508525, 0.508525),(0.174603, 0.532042, 0.532042), (0.190476, 0.554563, 0.554563),(0.206349, 0.576204, 0.576204), (0.222222, 0.597061, 0.597061),(0.238095, 0.617213, 0.617213), (0.253968, 0.636729, 0.636729),(0.269841, 0.655663, 0.655663), (0.285714, 0.674066, 0.674066),(0.301587, 0.691980, 0.691980), (0.317460, 0.709441, 0.709441),(0.333333, 0.726483, 0.726483), (0.349206, 0.743134, 0.743134),(0.365079, 0.759421, 0.759421), (0.380952, 0.766356, 0.766356),(0.396825, 0.773229, 0.773229), (0.412698, 0.780042, 0.780042),(0.428571, 0.786796, 0.786796), (0.444444, 0.793492, 0.793492),(0.460317, 0.800132, 0.800132), (0.476190, 0.806718, 0.806718),(0.492063, 0.813250, 0.813250), (0.507937, 0.819730, 0.819730),(0.523810, 0.826160, 0.826160), (0.539683, 0.832539, 0.832539),(0.555556, 0.838870, 0.838870), (0.571429, 0.845154, 0.845154),(0.587302, 0.851392, 0.851392), (0.603175, 0.857584, 0.857584),(0.619048, 0.863731, 0.863731), (0.634921, 0.869835, 0.869835),(0.650794, 0.875897, 0.875897), (0.666667, 0.881917, 0.881917),(0.682540, 0.887896, 0.887896), (0.698413, 0.893835, 0.893835),(0.714286, 0.899735, 0.899735), (0.730159, 0.905597, 0.905597),(0.746032, 0.911421, 0.911421), (0.761905, 0.917208, 0.917208),(0.777778, 0.922958, 0.922958), (0.793651, 0.928673, 0.928673),(0.809524, 0.934353, 0.934353), (0.825397, 0.939999, 0.939999),(0.841270, 0.945611, 0.945611), (0.857143, 0.951190, 0.951190),(0.873016, 0.956736, 0.956736), (0.888889, 0.962250, 0.962250),(0.904762, 0.967733, 0.967733), (0.920635, 0.973185, 0.973185),(0.936508, 0.978607, 0.978607), (0.952381, 0.983999, 0.983999),(0.968254, 0.989361, 0.989361), (0.984127, 0.994695, 0.994695),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(0.015873, 0.102869, 0.102869), (0.031746, 0.145479, 0.145479),(0.047619, 0.178174, 0.178174), (0.063492, 0.205738, 0.205738),(0.079365, 0.230022, 0.230022), (0.095238, 0.251976, 0.251976),(0.111111, 0.272166, 0.272166), (0.126984, 0.290957, 0.290957),(0.142857, 0.308607, 0.308607), (0.158730, 0.325300, 0.325300),(0.174603, 0.341178, 0.341178), (0.190476, 0.356348, 0.356348),(0.206349, 0.370899, 0.370899), (0.222222, 0.384900, 0.384900),(0.238095, 0.398410, 0.398410), (0.253968, 0.411476, 0.411476),(0.269841, 0.424139, 0.424139), (0.285714, 0.436436, 0.436436),(0.301587, 0.448395, 0.448395), (0.317460, 0.460044, 0.460044),(0.333333, 0.471405, 0.471405), (0.349206, 0.482498, 0.482498),(0.365079, 0.493342, 0.493342), (0.380952, 0.517549, 0.517549),(0.396825, 0.540674, 0.540674), (0.412698, 0.562849, 0.562849),(0.428571, 0.584183, 0.584183), (0.444444, 0.604765, 0.604765),(0.460317, 0.624669, 0.624669), (0.476190, 0.643958, 0.643958),(0.492063, 0.662687, 0.662687), (0.507937, 0.680900, 0.680900),(0.523810, 0.698638, 0.698638), (0.539683, 0.715937, 0.715937),(0.555556, 0.732828, 0.732828), (0.571429, 0.749338, 0.749338),(0.587302, 0.765493, 0.765493), (0.603175, 0.781313, 0.781313),(0.619048, 0.796819, 0.796819), (0.634921, 0.812029, 0.812029),(0.650794, 0.826960, 0.826960), (0.666667, 0.841625, 0.841625),(0.682540, 0.856040, 0.856040), (0.698413, 0.870216, 0.870216),(0.714286, 0.884164, 0.884164), (0.730159, 0.897896, 0.897896),(0.746032, 0.911421, 0.911421), (0.761905, 0.917208, 0.917208),(0.777778, 0.922958, 0.922958), (0.793651, 0.928673, 0.928673),(0.809524, 0.934353, 0.934353), (0.825397, 0.939999, 0.939999),(0.841270, 0.945611, 0.945611), (0.857143, 0.951190, 0.951190),(0.873016, 0.956736, 0.956736), (0.888889, 0.962250, 0.962250),(0.904762, 0.967733, 0.967733), (0.920635, 0.973185, 0.973185),(0.936508, 0.978607, 0.978607), (0.952381, 0.983999, 0.983999),(0.968254, 0.989361, 0.989361), (0.984127, 0.994695, 0.994695),(1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.),(0.015873, 0.102869, 0.102869), (0.031746, 0.145479, 0.145479),(0.047619, 0.178174, 0.178174), (0.063492, 0.205738, 0.205738),(0.079365, 0.230022, 0.230022), (0.095238, 0.251976, 0.251976),(0.111111, 0.272166, 0.272166), (0.126984, 0.290957, 0.290957),(0.142857, 0.308607, 0.308607), (0.158730, 0.325300, 0.325300),(0.174603, 0.341178, 0.341178), (0.190476, 0.356348, 0.356348),(0.206349, 0.370899, 0.370899), (0.222222, 0.384900, 0.384900),(0.238095, 0.398410, 0.398410), (0.253968, 0.411476, 0.411476),(0.269841, 0.424139, 0.424139), (0.285714, 0.436436, 0.436436),(0.301587, 0.448395, 0.448395), (0.317460, 0.460044, 0.460044),(0.333333, 0.471405, 0.471405), (0.349206, 0.482498, 0.482498),(0.365079, 0.493342, 0.493342), (0.380952, 0.503953, 0.503953),(0.396825, 0.514344, 0.514344), (0.412698, 0.524531, 0.524531),(0.428571, 0.534522, 0.534522), (0.444444, 0.544331, 0.544331),(0.460317, 0.553966, 0.553966), (0.476190, 0.563436, 0.563436),(0.492063, 0.572750, 0.572750), (0.507937, 0.581914, 0.581914),(0.523810, 0.590937, 0.590937), (0.539683, 0.599824, 0.599824),(0.555556, 0.608581, 0.608581), (0.571429, 0.617213, 0.617213),(0.587302, 0.625727, 0.625727), (0.603175, 0.634126, 0.634126),(0.619048, 0.642416, 0.642416), (0.634921, 0.650600, 0.650600),(0.650794, 0.658682, 0.658682), (0.666667, 0.666667, 0.666667),(0.682540, 0.674556, 0.674556), (0.698413, 0.682355, 0.682355),(0.714286, 0.690066, 0.690066), (0.730159, 0.697691, 0.697691),(0.746032, 0.705234, 0.705234), (0.761905, 0.727166, 0.727166),(0.777778, 0.748455, 0.748455), (0.793651, 0.769156, 0.769156),(0.809524, 0.789314, 0.789314), (0.825397, 0.808969, 0.808969),(0.841270, 0.828159, 0.828159), (0.857143, 0.846913, 0.846913),(0.873016, 0.865261, 0.865261), (0.888889, 0.883229, 0.883229),(0.904762, 0.900837, 0.900837), (0.920635, 0.918109, 0.918109),(0.936508, 0.935061, 0.935061), (0.952381, 0.951711, 0.951711),(0.968254, 0.968075, 0.968075), (0.984127, 0.984167, 0.984167),(1.0, 1.0, 1.0))} _prism_data = {'red': ((0., 1., 1.),(0.031746, 1.000000, 1.000000), (0.047619, 0.000000, 0.000000),(0.063492, 0.000000, 0.000000), (0.079365, 0.666667, 0.666667),(0.095238, 1.000000, 1.000000), (0.126984, 1.000000, 1.000000),(0.142857, 0.000000, 0.000000), (0.158730, 0.000000, 0.000000),(0.174603, 0.666667, 0.666667), (0.190476, 1.000000, 1.000000),(0.222222, 1.000000, 1.000000), (0.238095, 0.000000, 0.000000),(0.253968, 0.000000, 0.000000), (0.269841, 0.666667, 0.666667),(0.285714, 1.000000, 1.000000), (0.317460, 1.000000, 1.000000),(0.333333, 0.000000, 0.000000), (0.349206, 0.000000, 0.000000),(0.365079, 0.666667, 0.666667), (0.380952, 1.000000, 1.000000),(0.412698, 1.000000, 1.000000), (0.428571, 0.000000, 0.000000),(0.444444, 0.000000, 0.000000), (0.460317, 0.666667, 0.666667),(0.476190, 1.000000, 1.000000), (0.507937, 1.000000, 1.000000),(0.523810, 0.000000, 0.000000), (0.539683, 0.000000, 0.000000),(0.555556, 0.666667, 0.666667), (0.571429, 1.000000, 1.000000),(0.603175, 1.000000, 1.000000), (0.619048, 0.000000, 0.000000),(0.634921, 0.000000, 0.000000), (0.650794, 0.666667, 0.666667),(0.666667, 1.000000, 1.000000), (0.698413, 1.000000, 1.000000),(0.714286, 0.000000, 0.000000), (0.730159, 0.000000, 0.000000),(0.746032, 0.666667, 0.666667), (0.761905, 1.000000, 1.000000),(0.793651, 1.000000, 1.000000), (0.809524, 0.000000, 0.000000),(0.825397, 0.000000, 0.000000), (0.841270, 0.666667, 0.666667),(0.857143, 1.000000, 1.000000), (0.888889, 1.000000, 1.000000),(0.904762, 0.000000, 0.000000), (0.920635, 0.000000, 0.000000),(0.936508, 0.666667, 0.666667), (0.952381, 1.000000, 1.000000),(0.984127, 1.000000, 1.000000), (1.0, 0.0, 0.0)), 'green': ((0., 0., 0.),(0.031746, 1.000000, 1.000000), (0.047619, 1.000000, 1.000000),(0.063492, 0.000000, 0.000000), (0.095238, 0.000000, 0.000000),(0.126984, 1.000000, 1.000000), (0.142857, 1.000000, 1.000000),(0.158730, 0.000000, 0.000000), (0.190476, 0.000000, 0.000000),(0.222222, 1.000000, 1.000000), (0.238095, 1.000000, 1.000000),(0.253968, 0.000000, 0.000000), (0.285714, 0.000000, 0.000000),(0.317460, 1.000000, 1.000000), (0.333333, 1.000000, 1.000000),(0.349206, 0.000000, 0.000000), (0.380952, 0.000000, 0.000000),(0.412698, 1.000000, 1.000000), (0.428571, 1.000000, 1.000000),(0.444444, 0.000000, 0.000000), (0.476190, 0.000000, 0.000000),(0.507937, 1.000000, 1.000000), (0.523810, 1.000000, 1.000000),(0.539683, 0.000000, 0.000000), (0.571429, 0.000000, 0.000000),(0.603175, 1.000000, 1.000000), (0.619048, 1.000000, 1.000000),(0.634921, 0.000000, 0.000000), (0.666667, 0.000000, 0.000000),(0.698413, 1.000000, 1.000000), (0.714286, 1.000000, 1.000000),(0.730159, 0.000000, 0.000000), (0.761905, 0.000000, 0.000000),(0.793651, 1.000000, 1.000000), (0.809524, 1.000000, 1.000000),(0.825397, 0.000000, 0.000000), (0.857143, 0.000000, 0.000000),(0.888889, 1.000000, 1.000000), (0.904762, 1.000000, 1.000000),(0.920635, 0.000000, 0.000000), (0.952381, 0.000000, 0.000000),(0.984127, 1.000000, 1.000000), (1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.),(0.047619, 0.000000, 0.000000), (0.063492, 1.000000, 1.000000),(0.079365, 1.000000, 1.000000), (0.095238, 0.000000, 0.000000),(0.142857, 0.000000, 0.000000), (0.158730, 1.000000, 1.000000),(0.174603, 1.000000, 1.000000), (0.190476, 0.000000, 0.000000),(0.238095, 0.000000, 0.000000), (0.253968, 1.000000, 1.000000),(0.269841, 1.000000, 1.000000), (0.285714, 0.000000, 0.000000),(0.333333, 0.000000, 0.000000), (0.349206, 1.000000, 1.000000),(0.365079, 1.000000, 1.000000), (0.380952, 0.000000, 0.000000),(0.428571, 0.000000, 0.000000), (0.444444, 1.000000, 1.000000),(0.460317, 1.000000, 1.000000), (0.476190, 0.000000, 0.000000),(0.523810, 0.000000, 0.000000), (0.539683, 1.000000, 1.000000),(0.555556, 1.000000, 1.000000), (0.571429, 0.000000, 0.000000),(0.619048, 0.000000, 0.000000), (0.634921, 1.000000, 1.000000),(0.650794, 1.000000, 1.000000), (0.666667, 0.000000, 0.000000),(0.714286, 0.000000, 0.000000), (0.730159, 1.000000, 1.000000),(0.746032, 1.000000, 1.000000), (0.761905, 0.000000, 0.000000),(0.809524, 0.000000, 0.000000), (0.825397, 1.000000, 1.000000),(0.841270, 1.000000, 1.000000), (0.857143, 0.000000, 0.000000),(0.904762, 0.000000, 0.000000), (0.920635, 1.000000, 1.000000),(0.936508, 1.000000, 1.000000), (0.952381, 0.000000, 0.000000),(1.0, 0.0, 0.0))} _spring_data = {'red': ((0., 1., 1.),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(1.0, 1.0, 1.0)), 'blue': ((0., 1., 1.),(1.0, 0.0, 0.0))} _summer_data = {'red': ((0., 0., 0.),(1.0, 1.0, 1.0)), 'green': ((0., 0.5, 0.5),(1.0, 1.0, 1.0)), 'blue': ((0., 0.4, 0.4),(1.0, 0.4, 0.4))} _winter_data = {'red': ((0., 0., 0.),(1.0, 0.0, 0.0)), 'green': ((0., 0., 0.),(1.0, 1.0, 1.0)), 'blue': ((0., 1., 1.),(1.0, 0.5, 0.5))} _spectral_data = {'red': [(0.0, 0.0, 0.0), (0.05, 0.4667, 0.4667), (0.10, 0.5333, 0.5333), (0.15, 0.0, 0.0), (0.20, 0.0, 0.0), (0.25, 0.0, 0.0), (0.30, 0.0, 0.0), (0.35, 0.0, 0.0), (0.40, 0.0, 0.0), (0.45, 0.0, 0.0), (0.50, 0.0, 0.0), (0.55, 0.0, 0.0), (0.60, 0.0, 0.0), (0.65, 0.7333, 0.7333), (0.70, 0.9333, 0.9333), (0.75, 1.0, 1.0), (0.80, 1.0, 1.0), (0.85, 1.0, 1.0), (0.90, 0.8667, 0.8667), (0.95, 0.80, 0.80), (1.0, 0.80, 0.80)], 'green': [(0.0, 0.0, 0.0), (0.05, 0.0, 0.0), (0.10, 0.0, 0.0), (0.15, 0.0, 0.0), (0.20, 0.0, 0.0), (0.25, 0.4667, 0.4667), (0.30, 0.6000, 0.6000), (0.35, 0.6667, 0.6667), (0.40, 0.6667, 0.6667), (0.45, 0.6000, 0.6000), (0.50, 0.7333, 0.7333), (0.55, 0.8667, 0.8667), (0.60, 1.0, 1.0), (0.65, 1.0, 1.0), (0.70, 0.9333, 0.9333), (0.75, 0.8000, 0.8000), (0.80, 0.6000, 0.6000), (0.85, 0.0, 0.0), (0.90, 0.0, 0.0), (0.95, 0.0, 0.0), (1.0, 0.80, 0.80)], 'blue': [(0.0, 0.0, 0.0), (0.05, 0.5333, 0.5333), (0.10, 0.6000, 0.6000), (0.15, 0.6667, 0.6667), (0.20, 0.8667, 0.8667), (0.25, 0.8667, 0.8667), (0.30, 0.8667, 0.8667), (0.35, 0.6667, 0.6667), (0.40, 0.5333, 0.5333), (0.45, 0.0, 0.0), (0.5, 0.0, 0.0), (0.55, 0.0, 0.0), (0.60, 0.0, 0.0), (0.65, 0.0, 0.0), (0.70, 0.0, 0.0), (0.75, 0.0, 0.0), (0.80, 0.0, 0.0), (0.85, 0.0, 0.0), (0.90, 0.0, 0.0), (0.95, 0.0, 0.0), (1.0, 0.80, 0.80)]} autumn = colors.LinearSegmentedColormap('autumn', _autumn_data, LUTSIZE) bone = colors.LinearSegmentedColormap('bone ', _bone_data, LUTSIZE) binary = colors.LinearSegmentedColormap('binary ', _binary_data, LUTSIZE) cool = colors.LinearSegmentedColormap('cool', _cool_data, LUTSIZE) copper = colors.LinearSegmentedColormap('copper', _copper_data, LUTSIZE) flag = colors.LinearSegmentedColormap('flag', _flag_data, LUTSIZE) gray = colors.LinearSegmentedColormap('gray', _gray_data, LUTSIZE) hot = colors.LinearSegmentedColormap('hot', _hot_data, LUTSIZE) hsv = colors.LinearSegmentedColormap('hsv', _hsv_data, LUTSIZE) jet = colors.LinearSegmentedColormap('jet', _jet_data, LUTSIZE) pink = colors.LinearSegmentedColormap('pink', _pink_data, LUTSIZE) prism = colors.LinearSegmentedColormap('prism', _prism_data, LUTSIZE) spring = colors.LinearSegmentedColormap('spring', _spring_data, LUTSIZE) summer = colors.LinearSegmentedColormap('summer', _summer_data, LUTSIZE) winter = colors.LinearSegmentedColormap('winter', _winter_data, LUTSIZE) spectral = colors.LinearSegmentedColormap('spectral', _spectral_data, LUTSIZE) datad = { 'autumn': _autumn_data, 'bone': _bone_data, 'binary': _binary_data, 'cool': _cool_data, 'copper': _copper_data, 'flag': _flag_data, 'gray' : _gray_data, 'hot': _hot_data, 'hsv': _hsv_data, 'jet' : _jet_data, 'pink': _pink_data, 'prism': _prism_data, 'spring': _spring_data, 'summer': _summer_data, 'winter': _winter_data, 'spectral': _spectral_data } # 34 colormaps based on color specifications and designs # developed by Cynthia Brewer (http://colorbrewer.org). # The ColorBrewer palettes have been included under the terms # of an Apache-stype license (for details, see the file # LICENSE_COLORBREWER in the license directory of the matplotlib # source distribution). _Accent_data = {'blue': [(0.0, 0.49803921580314636, 0.49803921580314636), (0.14285714285714285, 0.83137255907058716, 0.83137255907058716), (0.2857142857142857, 0.52549022436141968, 0.52549022436141968), (0.42857142857142855, 0.60000002384185791, 0.60000002384185791), (0.5714285714285714, 0.69019609689712524, 0.69019609689712524), (0.7142857142857143, 0.49803921580314636, 0.49803921580314636), (0.8571428571428571, 0.090196080505847931, 0.090196080505847931), (1.0, 0.40000000596046448, 0.40000000596046448)], 'green': [(0.0, 0.78823530673980713, 0.78823530673980713), (0.14285714285714285, 0.68235296010971069, 0.68235296010971069), (0.2857142857142857, 0.75294119119644165, 0.75294119119644165), (0.42857142857142855, 1.0, 1.0), (0.5714285714285714, 0.42352941632270813, 0.42352941632270813), (0.7142857142857143, 0.0078431377187371254, 0.0078431377187371254), (0.8571428571428571, 0.35686275362968445, 0.35686275362968445), (1.0, 0.40000000596046448, 0.40000000596046448)], 'red': [(0.0, 0.49803921580314636, 0.49803921580314636), (0.14285714285714285, 0.7450980544090271, 0.7450980544090271), (0.2857142857142857, 0.99215686321258545, 0.99215686321258545), (0.42857142857142855, 1.0, 1.0), (0.5714285714285714, 0.21960784494876862, 0.21960784494876862), (0.7142857142857143, 0.94117647409439087, 0.94117647409439087), (0.8571428571428571, 0.74901962280273438, 0.74901962280273438), (1.0, 0.40000000596046448, 0.40000000596046448)]} _Blues_data = {'blue': [(0.0, 1.0, 1.0), (0.125, 0.9686274528503418, 0.9686274528503418), (0.25, 0.93725490570068359, 0.93725490570068359), (0.375, 0.88235294818878174, 0.88235294818878174), (0.5, 0.83921569585800171, 0.83921569585800171), (0.625, 0.7764706015586853, 0.7764706015586853), (0.75, 0.70980393886566162, 0.70980393886566162), (0.875, 0.61176472902297974, 0.61176472902297974), (1.0, 0.41960784792900085, 0.41960784792900085)], 'green': [(0.0, 0.9843137264251709, 0.9843137264251709), (0.125, 0.92156863212585449, 0.92156863212585449), (0.25, 0.85882353782653809, 0.85882353782653809), (0.375, 0.7921568751335144, 0.7921568751335144), (0.5, 0.68235296010971069, 0.68235296010971069), (0.625, 0.57254904508590698, 0.57254904508590698), (0.75, 0.44313725829124451, 0.44313725829124451), (0.875, 0.31764706969261169, 0.31764706969261169), (1.0, 0.18823529779911041, 0.18823529779911041)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.87058824300765991, 0.87058824300765991), (0.25, 0.7764706015586853, 0.7764706015586853), (0.375, 0.61960786581039429, 0.61960786581039429), (0.5, 0.41960784792900085, 0.41960784792900085), (0.625, 0.25882354378700256, 0.25882354378700256), (0.75, 0.12941177189350128, 0.12941177189350128), (0.875, 0.031372550874948502, 0.031372550874948502), (1.0, 0.031372550874948502, 0.031372550874948502)]} _BrBG_data = {'blue': [(0.0, 0.019607843831181526, 0.019607843831181526), (0.10000000000000001, 0.039215687662363052, 0.039215687662363052), (0.20000000000000001, 0.17647059261798859, 0.17647059261798859), (0.29999999999999999, 0.49019607901573181, 0.49019607901573181), (0.40000000000000002, 0.76470589637756348, 0.76470589637756348), (0.5, 0.96078431606292725, 0.96078431606292725), (0.59999999999999998, 0.89803922176361084, 0.89803922176361084), (0.69999999999999996, 0.75686275959014893, 0.75686275959014893), (0.80000000000000004, 0.56078433990478516, 0.56078433990478516), (0.90000000000000002, 0.36862745881080627, 0.36862745881080627), (1.0, 0.18823529779911041, 0.18823529779911041)], 'green': [(0.0, 0.18823529779911041, 0.18823529779911041), (0.10000000000000001, 0.31764706969261169, 0.31764706969261169), (0.20000000000000001, 0.5058823823928833, 0.5058823823928833), (0.29999999999999999, 0.7607843279838562, 0.7607843279838562), (0.40000000000000002, 0.90980392694473267, 0.90980392694473267), (0.5, 0.96078431606292725, 0.96078431606292725), (0.59999999999999998, 0.91764706373214722, 0.91764706373214722), (0.69999999999999996, 0.80392158031463623, 0.80392158031463623), (0.80000000000000004, 0.59215688705444336, 0.59215688705444336), (0.90000000000000002, 0.40000000596046448, 0.40000000596046448), (1.0, 0.23529411852359772, 0.23529411852359772)], 'red': [(0.0, 0.32941177487373352, 0.32941177487373352), (0.10000000000000001, 0.54901963472366333, 0.54901963472366333), (0.20000000000000001, 0.74901962280273438, 0.74901962280273438), (0.29999999999999999, 0.87450981140136719, 0.87450981140136719), (0.40000000000000002, 0.96470588445663452, 0.96470588445663452), (0.5, 0.96078431606292725, 0.96078431606292725), (0.59999999999999998, 0.78039216995239258, 0.78039216995239258), (0.69999999999999996, 0.50196081399917603, 0.50196081399917603), (0.80000000000000004, 0.20784313976764679, 0.20784313976764679), (0.90000000000000002, 0.0039215688593685627, 0.0039215688593685627), (1.0, 0.0, 0.0)]} _BuGn_data = {'blue': [(0.0, 0.99215686321258545, 0.99215686321258545), (0.125, 0.97647058963775635, 0.97647058963775635), (0.25, 0.90196079015731812, 0.90196079015731812), (0.375, 0.78823530673980713, 0.78823530673980713), (0.5, 0.64313727617263794, 0.64313727617263794), (0.625, 0.46274510025978088, 0.46274510025978088), (0.75, 0.27058824896812439, 0.27058824896812439), (0.875, 0.17254902422428131, 0.17254902422428131), (1.0, 0.10588235408067703, 0.10588235408067703)], 'green': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.96078431606292725, 0.96078431606292725), (0.25, 0.92549020051956177, 0.92549020051956177), (0.375, 0.84705883264541626, 0.84705883264541626), (0.5, 0.7607843279838562, 0.7607843279838562), (0.625, 0.68235296010971069, 0.68235296010971069), (0.75, 0.54509806632995605, 0.54509806632995605), (0.875, 0.42745098471641541, 0.42745098471641541), (1.0, 0.26666668057441711, 0.26666668057441711)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.89803922176361084, 0.89803922176361084), (0.25, 0.80000001192092896, 0.80000001192092896), (0.375, 0.60000002384185791, 0.60000002384185791), (0.5, 0.40000000596046448, 0.40000000596046448), (0.625, 0.25490197539329529, 0.25490197539329529), (0.75, 0.13725490868091583, 0.13725490868091583), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)]} _BuPu_data = {'blue': [(0.0, 0.99215686321258545, 0.99215686321258545), (0.125, 0.95686274766921997, 0.95686274766921997), (0.25, 0.90196079015731812, 0.90196079015731812), (0.375, 0.85490196943283081, 0.85490196943283081), (0.5, 0.7764706015586853, 0.7764706015586853), (0.625, 0.69411766529083252, 0.69411766529083252), (0.75, 0.61568629741668701, 0.61568629741668701), (0.875, 0.48627451062202454, 0.48627451062202454), (1.0, 0.29411765933036804, 0.29411765933036804)], 'green': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.92549020051956177, 0.92549020051956177), (0.25, 0.82745099067687988, 0.82745099067687988), (0.375, 0.73725491762161255, 0.73725491762161255), (0.5, 0.58823531866073608, 0.58823531866073608), (0.625, 0.41960784792900085, 0.41960784792900085), (0.75, 0.25490197539329529, 0.25490197539329529), (0.875, 0.058823529630899429, 0.058823529630899429), (1.0, 0.0, 0.0)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.87843137979507446, 0.87843137979507446), (0.25, 0.74901962280273438, 0.74901962280273438), (0.375, 0.61960786581039429, 0.61960786581039429), (0.5, 0.54901963472366333, 0.54901963472366333), (0.625, 0.54901963472366333, 0.54901963472366333), (0.75, 0.53333336114883423, 0.53333336114883423), (0.875, 0.5058823823928833, 0.5058823823928833), (1.0, 0.30196079611778259, 0.30196079611778259)]} _Dark2_data = {'blue': [(0.0, 0.46666666865348816, 0.46666666865348816), (0.14285714285714285, 0.0078431377187371254, 0.0078431377187371254), (0.2857142857142857, 0.70196080207824707, 0.70196080207824707), (0.42857142857142855, 0.54117649793624878, 0.54117649793624878), (0.5714285714285714, 0.11764705926179886, 0.11764705926179886), (0.7142857142857143, 0.0078431377187371254, 0.0078431377187371254), (0.8571428571428571, 0.11372549086809158, 0.11372549086809158), (1.0, 0.40000000596046448, 0.40000000596046448)], 'green': [(0.0, 0.61960786581039429, 0.61960786581039429), (0.14285714285714285, 0.37254902720451355, 0.37254902720451355), (0.2857142857142857, 0.43921568989753723, 0.43921568989753723), (0.42857142857142855, 0.16078431904315948, 0.16078431904315948), (0.5714285714285714, 0.65098041296005249, 0.65098041296005249), (0.7142857142857143, 0.67058825492858887, 0.67058825492858887), (0.8571428571428571, 0.46274510025978088, 0.46274510025978088), (1.0, 0.40000000596046448, 0.40000000596046448)], 'red': [(0.0, 0.10588235408067703, 0.10588235408067703), (0.14285714285714285, 0.85098040103912354, 0.85098040103912354), (0.2857142857142857, 0.45882353186607361, 0.45882353186607361), (0.42857142857142855, 0.90588235855102539, 0.90588235855102539), (0.5714285714285714, 0.40000000596046448, 0.40000000596046448), (0.7142857142857143, 0.90196079015731812, 0.90196079015731812), (0.8571428571428571, 0.65098041296005249, 0.65098041296005249), (1.0, 0.40000000596046448, 0.40000000596046448)]} _GnBu_data = {'blue': [(0.0, 0.94117647409439087, 0.94117647409439087), (0.125, 0.85882353782653809, 0.85882353782653809), (0.25, 0.77254903316497803, 0.77254903316497803), (0.375, 0.70980393886566162, 0.70980393886566162), (0.5, 0.76862746477127075, 0.76862746477127075), (0.625, 0.82745099067687988, 0.82745099067687988), (0.75, 0.7450980544090271, 0.7450980544090271), (0.875, 0.67450982332229614, 0.67450982332229614), (1.0, 0.5058823823928833, 0.5058823823928833)], 'green': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.9529411792755127, 0.9529411792755127), (0.25, 0.92156863212585449, 0.92156863212585449), (0.375, 0.86666667461395264, 0.86666667461395264), (0.5, 0.80000001192092896, 0.80000001192092896), (0.625, 0.70196080207824707, 0.70196080207824707), (0.75, 0.54901963472366333, 0.54901963472366333), (0.875, 0.40784314274787903, 0.40784314274787903), (1.0, 0.25098040699958801, 0.25098040699958801)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.87843137979507446, 0.87843137979507446), (0.25, 0.80000001192092896, 0.80000001192092896), (0.375, 0.65882354974746704, 0.65882354974746704), (0.5, 0.48235294222831726, 0.48235294222831726), (0.625, 0.30588236451148987, 0.30588236451148987), (0.75, 0.16862745583057404, 0.16862745583057404), (0.875, 0.031372550874948502, 0.031372550874948502), (1.0, 0.031372550874948502, 0.031372550874948502)]} _Greens_data = {'blue': [(0.0, 0.96078431606292725, 0.96078431606292725), (0.125, 0.87843137979507446, 0.87843137979507446), (0.25, 0.75294119119644165, 0.75294119119644165), (0.375, 0.60784316062927246, 0.60784316062927246), (0.5, 0.46274510025978088, 0.46274510025978088), (0.625, 0.364705890417099, 0.364705890417099), (0.75, 0.27058824896812439, 0.27058824896812439), (0.875, 0.17254902422428131, 0.17254902422428131), (1.0, 0.10588235408067703, 0.10588235408067703)], 'green': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.96078431606292725, 0.96078431606292725), (0.25, 0.91372549533843994, 0.91372549533843994), (0.375, 0.85098040103912354, 0.85098040103912354), (0.5, 0.76862746477127075, 0.76862746477127075), (0.625, 0.67058825492858887, 0.67058825492858887), (0.75, 0.54509806632995605, 0.54509806632995605), (0.875, 0.42745098471641541, 0.42745098471641541), (1.0, 0.26666668057441711, 0.26666668057441711)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.89803922176361084, 0.89803922176361084), (0.25, 0.78039216995239258, 0.78039216995239258), (0.375, 0.63137257099151611, 0.63137257099151611), (0.5, 0.45490196347236633, 0.45490196347236633), (0.625, 0.25490197539329529, 0.25490197539329529), (0.75, 0.13725490868091583, 0.13725490868091583), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)]} _Greys_data = {'blue': [(0.0, 1.0, 1.0), (0.125, 0.94117647409439087, 0.94117647409439087), (0.25, 0.85098040103912354, 0.85098040103912354), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.58823531866073608, 0.58823531866073608), (0.625, 0.45098039507865906, 0.45098039507865906), (0.75, 0.32156863808631897, 0.32156863808631897), (0.875, 0.14509804546833038, 0.14509804546833038), (1.0, 0.0, 0.0)], 'green': [(0.0, 1.0, 1.0), (0.125, 0.94117647409439087, 0.94117647409439087), (0.25, 0.85098040103912354, 0.85098040103912354), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.58823531866073608, 0.58823531866073608), (0.625, 0.45098039507865906, 0.45098039507865906), (0.75, 0.32156863808631897, 0.32156863808631897), (0.875, 0.14509804546833038, 0.14509804546833038), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.94117647409439087, 0.94117647409439087), (0.25, 0.85098040103912354, 0.85098040103912354), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.58823531866073608, 0.58823531866073608), (0.625, 0.45098039507865906, 0.45098039507865906), (0.75, 0.32156863808631897, 0.32156863808631897), (0.875, 0.14509804546833038, 0.14509804546833038), (1.0, 0.0, 0.0)]} _Oranges_data = {'blue': [(0.0, 0.92156863212585449, 0.92156863212585449), (0.125, 0.80784314870834351, 0.80784314870834351), (0.25, 0.63529413938522339, 0.63529413938522339), (0.375, 0.41960784792900085, 0.41960784792900085), (0.5, 0.23529411852359772, 0.23529411852359772), (0.625, 0.074509806931018829, 0.074509806931018829), (0.75, 0.0039215688593685627, 0.0039215688593685627), (0.875, 0.011764706112444401, 0.011764706112444401), (1.0, 0.015686275437474251, 0.015686275437474251)], 'green': [(0.0, 0.96078431606292725, 0.96078431606292725), (0.125, 0.90196079015731812, 0.90196079015731812), (0.25, 0.81568628549575806, 0.81568628549575806), (0.375, 0.68235296010971069, 0.68235296010971069), (0.5, 0.55294120311737061, 0.55294120311737061), (0.625, 0.4117647111415863, 0.4117647111415863), (0.75, 0.28235295414924622, 0.28235295414924622), (0.875, 0.21176470816135406, 0.21176470816135406), (1.0, 0.15294118225574493, 0.15294118225574493)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.99607843160629272, 0.99607843160629272), (0.25, 0.99215686321258545, 0.99215686321258545), (0.375, 0.99215686321258545, 0.99215686321258545), (0.5, 0.99215686321258545, 0.99215686321258545), (0.625, 0.94509804248809814, 0.94509804248809814), (0.75, 0.85098040103912354, 0.85098040103912354), (0.875, 0.65098041296005249, 0.65098041296005249), (1.0, 0.49803921580314636, 0.49803921580314636)]} _OrRd_data = {'blue': [(0.0, 0.92549020051956177, 0.92549020051956177), (0.125, 0.78431373834609985, 0.78431373834609985), (0.25, 0.61960786581039429, 0.61960786581039429), (0.375, 0.51764708757400513, 0.51764708757400513), (0.5, 0.3490196168422699, 0.3490196168422699), (0.625, 0.28235295414924622, 0.28235295414924622), (0.75, 0.12156862765550613, 0.12156862765550613), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)], 'green': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.90980392694473267, 0.90980392694473267), (0.25, 0.83137255907058716, 0.83137255907058716), (0.375, 0.73333334922790527, 0.73333334922790527), (0.5, 0.55294120311737061, 0.55294120311737061), (0.625, 0.3960784375667572, 0.3960784375667572), (0.75, 0.18823529779911041, 0.18823529779911041), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.99607843160629272, 0.99607843160629272), (0.25, 0.99215686321258545, 0.99215686321258545), (0.375, 0.99215686321258545, 0.99215686321258545), (0.5, 0.98823529481887817, 0.98823529481887817), (0.625, 0.93725490570068359, 0.93725490570068359), (0.75, 0.84313726425170898, 0.84313726425170898), (0.875, 0.70196080207824707, 0.70196080207824707), (1.0, 0.49803921580314636, 0.49803921580314636)]} _Paired_data = {'blue': [(0.0, 0.89019608497619629, 0.89019608497619629), (0.090909090909090912, 0.70588237047195435, 0.70588237047195435), (0.18181818181818182, 0.54117649793624878, 0.54117649793624878), (0.27272727272727271, 0.17254902422428131, 0.17254902422428131), (0.36363636363636365, 0.60000002384185791, 0.60000002384185791), (0.45454545454545453, 0.10980392247438431, 0.10980392247438431), (0.54545454545454541, 0.43529412150382996, 0.43529412150382996), (0.63636363636363635, 0.0, 0.0), (0.72727272727272729, 0.83921569585800171, 0.83921569585800171), (0.81818181818181823, 0.60392159223556519, 0.60392159223556519), (0.90909090909090906, 0.60000002384185791, 0.60000002384185791), (1.0, 0.15686275064945221, 0.15686275064945221)], 'green': [(0.0, 0.80784314870834351, 0.80784314870834351), (0.090909090909090912, 0.47058823704719543, 0.47058823704719543), (0.18181818181818182, 0.87450981140136719, 0.87450981140136719), (0.27272727272727271, 0.62745100259780884, 0.62745100259780884), (0.36363636363636365, 0.60392159223556519, 0.60392159223556519), (0.45454545454545453, 0.10196078568696976, 0.10196078568696976), (0.54545454545454541, 0.74901962280273438, 0.74901962280273438), (0.63636363636363635, 0.49803921580314636, 0.49803921580314636), (0.72727272727272729, 0.69803923368453979, 0.69803923368453979), (0.81818181818181823, 0.23921568691730499, 0.23921568691730499), (0.90909090909090906, 1.0, 1.0), (1.0, 0.3490196168422699, 0.3490196168422699)], 'red': [(0.0, 0.65098041296005249, 0.65098041296005249), (0.090909090909090912, 0.12156862765550613, 0.12156862765550613), (0.18181818181818182, 0.69803923368453979, 0.69803923368453979), (0.27272727272727271, 0.20000000298023224, 0.20000000298023224), (0.36363636363636365, 0.9843137264251709, 0.9843137264251709), (0.45454545454545453, 0.89019608497619629, 0.89019608497619629), (0.54545454545454541, 0.99215686321258545, 0.99215686321258545), (0.63636363636363635, 1.0, 1.0), (0.72727272727272729, 0.7921568751335144, 0.7921568751335144), (0.81818181818181823, 0.41568627953529358, 0.41568627953529358), (0.90909090909090906, 1.0, 1.0), (1.0, 0.69411766529083252, 0.69411766529083252)]} _Pastel1_data = {'blue': [(0.0, 0.68235296010971069, 0.68235296010971069), (0.125, 0.89019608497619629, 0.89019608497619629), (0.25, 0.77254903316497803, 0.77254903316497803), (0.375, 0.89411765336990356, 0.89411765336990356), (0.5, 0.65098041296005249, 0.65098041296005249), (0.625, 0.80000001192092896, 0.80000001192092896), (0.75, 0.74117648601531982, 0.74117648601531982), (0.875, 0.92549020051956177, 0.92549020051956177), (1.0, 0.94901961088180542, 0.94901961088180542)], 'green': [(0.0, 0.70588237047195435, 0.70588237047195435), (0.125, 0.80392158031463623, 0.80392158031463623), (0.25, 0.92156863212585449, 0.92156863212585449), (0.375, 0.79607844352722168, 0.79607844352722168), (0.5, 0.85098040103912354, 0.85098040103912354), (0.625, 1.0, 1.0), (0.75, 0.84705883264541626, 0.84705883264541626), (0.875, 0.85490196943283081, 0.85490196943283081), (1.0, 0.94901961088180542, 0.94901961088180542)], 'red': [(0.0, 0.9843137264251709, 0.9843137264251709), (0.125, 0.70196080207824707, 0.70196080207824707), (0.25, 0.80000001192092896, 0.80000001192092896), (0.375, 0.87058824300765991, 0.87058824300765991), (0.5, 0.99607843160629272, 0.99607843160629272), (0.625, 1.0, 1.0), (0.75, 0.89803922176361084, 0.89803922176361084), (0.875, 0.99215686321258545, 0.99215686321258545), (1.0, 0.94901961088180542, 0.94901961088180542)]} _Pastel2_data = {'blue': [(0.0, 0.80392158031463623, 0.80392158031463623), (0.14285714285714285, 0.67450982332229614, 0.67450982332229614), (0.2857142857142857, 0.90980392694473267, 0.90980392694473267), (0.42857142857142855, 0.89411765336990356, 0.89411765336990356), (0.5714285714285714, 0.78823530673980713, 0.78823530673980713), (0.7142857142857143, 0.68235296010971069, 0.68235296010971069), (0.8571428571428571, 0.80000001192092896, 0.80000001192092896), (1.0, 0.80000001192092896, 0.80000001192092896)], 'green': [(0.0, 0.88627451658248901, 0.88627451658248901), (0.14285714285714285, 0.80392158031463623, 0.80392158031463623), (0.2857142857142857, 0.83529412746429443, 0.83529412746429443), (0.42857142857142855, 0.7921568751335144, 0.7921568751335144), (0.5714285714285714, 0.96078431606292725, 0.96078431606292725), (0.7142857142857143, 0.94901961088180542, 0.94901961088180542), (0.8571428571428571, 0.88627451658248901, 0.88627451658248901), (1.0, 0.80000001192092896, 0.80000001192092896)], 'red': [(0.0, 0.70196080207824707, 0.70196080207824707), (0.14285714285714285, 0.99215686321258545, 0.99215686321258545), (0.2857142857142857, 0.79607844352722168, 0.79607844352722168), (0.42857142857142855, 0.95686274766921997, 0.95686274766921997), (0.5714285714285714, 0.90196079015731812, 0.90196079015731812), (0.7142857142857143, 1.0, 1.0), (0.8571428571428571, 0.94509804248809814, 0.94509804248809814), (1.0, 0.80000001192092896, 0.80000001192092896)]} _PiYG_data = {'blue': [(0.0, 0.32156863808631897, 0.32156863808631897), (0.10000000000000001, 0.49019607901573181, 0.49019607901573181), (0.20000000000000001, 0.68235296010971069, 0.68235296010971069), (0.29999999999999999, 0.85490196943283081, 0.85490196943283081), (0.40000000000000002, 0.93725490570068359, 0.93725490570068359), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.81568628549575806, 0.81568628549575806), (0.69999999999999996, 0.52549022436141968, 0.52549022436141968), (0.80000000000000004, 0.25490197539329529, 0.25490197539329529), (0.90000000000000002, 0.12941177189350128, 0.12941177189350128), (1.0, 0.098039217293262482, 0.098039217293262482)], 'green': [(0.0, 0.0039215688593685627, 0.0039215688593685627), (0.10000000000000001, 0.10588235408067703, 0.10588235408067703), (0.20000000000000001, 0.46666666865348816, 0.46666666865348816), (0.29999999999999999, 0.7137255072593689, 0.7137255072593689), (0.40000000000000002, 0.87843137979507446, 0.87843137979507446), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.96078431606292725, 0.96078431606292725), (0.69999999999999996, 0.88235294818878174, 0.88235294818878174), (0.80000000000000004, 0.73725491762161255, 0.73725491762161255), (0.90000000000000002, 0.57254904508590698, 0.57254904508590698), (1.0, 0.39215686917304993, 0.39215686917304993)], 'red': [(0.0, 0.55686277151107788, 0.55686277151107788), (0.10000000000000001, 0.77254903316497803, 0.77254903316497803), (0.20000000000000001, 0.87058824300765991, 0.87058824300765991), (0.29999999999999999, 0.94509804248809814, 0.94509804248809814), (0.40000000000000002, 0.99215686321258545, 0.99215686321258545), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.90196079015731812, 0.90196079015731812), (0.69999999999999996, 0.72156864404678345, 0.72156864404678345), (0.80000000000000004, 0.49803921580314636, 0.49803921580314636), (0.90000000000000002, 0.30196079611778259, 0.30196079611778259), (1.0, 0.15294118225574493, 0.15294118225574493)]} _PRGn_data = {'blue': [(0.0, 0.29411765933036804, 0.29411765933036804), (0.10000000000000001, 0.51372551918029785, 0.51372551918029785), (0.20000000000000001, 0.67058825492858887, 0.67058825492858887), (0.29999999999999999, 0.81176471710205078, 0.81176471710205078), (0.40000000000000002, 0.90980392694473267, 0.90980392694473267), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.82745099067687988, 0.82745099067687988), (0.69999999999999996, 0.62745100259780884, 0.62745100259780884), (0.80000000000000004, 0.3803921639919281, 0.3803921639919281), (0.90000000000000002, 0.21568627655506134, 0.21568627655506134), (1.0, 0.10588235408067703, 0.10588235408067703)], 'green': [(0.0, 0.0, 0.0), (0.10000000000000001, 0.16470588743686676, 0.16470588743686676), (0.20000000000000001, 0.43921568989753723, 0.43921568989753723), (0.29999999999999999, 0.64705884456634521, 0.64705884456634521), (0.40000000000000002, 0.83137255907058716, 0.83137255907058716), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.94117647409439087, 0.94117647409439087), (0.69999999999999996, 0.85882353782653809, 0.85882353782653809), (0.80000000000000004, 0.68235296010971069, 0.68235296010971069), (0.90000000000000002, 0.47058823704719543, 0.47058823704719543), (1.0, 0.26666668057441711, 0.26666668057441711)], 'red': [(0.0, 0.25098040699958801, 0.25098040699958801), (0.10000000000000001, 0.46274510025978088, 0.46274510025978088), (0.20000000000000001, 0.60000002384185791, 0.60000002384185791), (0.29999999999999999, 0.7607843279838562, 0.7607843279838562), (0.40000000000000002, 0.90588235855102539, 0.90588235855102539), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.85098040103912354, 0.85098040103912354), (0.69999999999999996, 0.65098041296005249, 0.65098041296005249), (0.80000000000000004, 0.35294118523597717, 0.35294118523597717), (0.90000000000000002, 0.10588235408067703, 0.10588235408067703), (1.0, 0.0, 0.0)]} _PuBu_data = {'blue': [(0.0, 0.9843137264251709, 0.9843137264251709), (0.125, 0.94901961088180542, 0.94901961088180542), (0.25, 0.90196079015731812, 0.90196079015731812), (0.375, 0.85882353782653809, 0.85882353782653809), (0.5, 0.81176471710205078, 0.81176471710205078), (0.625, 0.75294119119644165, 0.75294119119644165), (0.75, 0.69019609689712524, 0.69019609689712524), (0.875, 0.55294120311737061, 0.55294120311737061), (1.0, 0.34509804844856262, 0.34509804844856262)], 'green': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.90588235855102539, 0.90588235855102539), (0.25, 0.81960785388946533, 0.81960785388946533), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.66274511814117432, 0.66274511814117432), (0.625, 0.56470590829849243, 0.56470590829849243), (0.75, 0.43921568989753723, 0.43921568989753723), (0.875, 0.35294118523597717, 0.35294118523597717), (1.0, 0.21960784494876862, 0.21960784494876862)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.92549020051956177, 0.92549020051956177), (0.25, 0.81568628549575806, 0.81568628549575806), (0.375, 0.65098041296005249, 0.65098041296005249), (0.5, 0.45490196347236633, 0.45490196347236633), (0.625, 0.21176470816135406, 0.21176470816135406), (0.75, 0.019607843831181526, 0.019607843831181526), (0.875, 0.015686275437474251, 0.015686275437474251), (1.0, 0.0078431377187371254, 0.0078431377187371254)]} _PuBuGn_data = {'blue': [(0.0, 0.9843137264251709, 0.9843137264251709), (0.125, 0.94117647409439087, 0.94117647409439087), (0.25, 0.90196079015731812, 0.90196079015731812), (0.375, 0.85882353782653809, 0.85882353782653809), (0.5, 0.81176471710205078, 0.81176471710205078), (0.625, 0.75294119119644165, 0.75294119119644165), (0.75, 0.54117649793624878, 0.54117649793624878), (0.875, 0.3490196168422699, 0.3490196168422699), (1.0, 0.21176470816135406, 0.21176470816135406)], 'green': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.88627451658248901, 0.88627451658248901), (0.25, 0.81960785388946533, 0.81960785388946533), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.66274511814117432, 0.66274511814117432), (0.625, 0.56470590829849243, 0.56470590829849243), (0.75, 0.5058823823928833, 0.5058823823928833), (0.875, 0.42352941632270813, 0.42352941632270813), (1.0, 0.27450981736183167, 0.27450981736183167)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.92549020051956177, 0.92549020051956177), (0.25, 0.81568628549575806, 0.81568628549575806), (0.375, 0.65098041296005249, 0.65098041296005249), (0.5, 0.40392157435417175, 0.40392157435417175), (0.625, 0.21176470816135406, 0.21176470816135406), (0.75, 0.0078431377187371254, 0.0078431377187371254), (0.875, 0.0039215688593685627, 0.0039215688593685627), (1.0, 0.0039215688593685627, 0.0039215688593685627)]} _PuOr_data = {'blue': [(0.0, 0.031372550874948502, 0.031372550874948502), (0.10000000000000001, 0.023529412224888802, 0.023529412224888802), (0.20000000000000001, 0.078431375324726105, 0.078431375324726105), (0.29999999999999999, 0.38823530077934265, 0.38823530077934265), (0.40000000000000002, 0.7137255072593689, 0.7137255072593689), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.92156863212585449, 0.92156863212585449), (0.69999999999999996, 0.82352942228317261, 0.82352942228317261), (0.80000000000000004, 0.67450982332229614, 0.67450982332229614), (0.90000000000000002, 0.53333336114883423, 0.53333336114883423), (1.0, 0.29411765933036804, 0.29411765933036804)], 'green': [(0.0, 0.23137255012989044, 0.23137255012989044), (0.10000000000000001, 0.34509804844856262, 0.34509804844856262), (0.20000000000000001, 0.50980395078659058, 0.50980395078659058), (0.29999999999999999, 0.72156864404678345, 0.72156864404678345), (0.40000000000000002, 0.87843137979507446, 0.87843137979507446), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.85490196943283081, 0.85490196943283081), (0.69999999999999996, 0.67058825492858887, 0.67058825492858887), (0.80000000000000004, 0.45098039507865906, 0.45098039507865906), (0.90000000000000002, 0.15294118225574493, 0.15294118225574493), (1.0, 0.0, 0.0)], 'red': [(0.0, 0.49803921580314636, 0.49803921580314636), (0.10000000000000001, 0.70196080207824707, 0.70196080207824707), (0.20000000000000001, 0.87843137979507446, 0.87843137979507446), (0.29999999999999999, 0.99215686321258545, 0.99215686321258545), (0.40000000000000002, 0.99607843160629272, 0.99607843160629272), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.84705883264541626, 0.84705883264541626), (0.69999999999999996, 0.69803923368453979, 0.69803923368453979), (0.80000000000000004, 0.50196081399917603, 0.50196081399917603), (0.90000000000000002, 0.32941177487373352, 0.32941177487373352), (1.0, 0.17647059261798859, 0.17647059261798859)]} _PuRd_data = {'blue': [(0.0, 0.97647058963775635, 0.97647058963775635), (0.125, 0.93725490570068359, 0.93725490570068359), (0.25, 0.85490196943283081, 0.85490196943283081), (0.375, 0.78039216995239258, 0.78039216995239258), (0.5, 0.69019609689712524, 0.69019609689712524), (0.625, 0.54117649793624878, 0.54117649793624878), (0.75, 0.33725491166114807, 0.33725491166114807), (0.875, 0.26274511218070984, 0.26274511218070984), (1.0, 0.12156862765550613, 0.12156862765550613)], 'green': [(0.0, 0.95686274766921997, 0.95686274766921997), (0.125, 0.88235294818878174, 0.88235294818878174), (0.25, 0.72549021244049072, 0.72549021244049072), (0.375, 0.58039218187332153, 0.58039218187332153), (0.5, 0.3960784375667572, 0.3960784375667572), (0.625, 0.16078431904315948, 0.16078431904315948), (0.75, 0.070588238537311554, 0.070588238537311554), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.90588235855102539, 0.90588235855102539), (0.25, 0.83137255907058716, 0.83137255907058716), (0.375, 0.78823530673980713, 0.78823530673980713), (0.5, 0.87450981140136719, 0.87450981140136719), (0.625, 0.90588235855102539, 0.90588235855102539), (0.75, 0.80784314870834351, 0.80784314870834351), (0.875, 0.59607845544815063, 0.59607845544815063), (1.0, 0.40392157435417175, 0.40392157435417175)]} _Purples_data = {'blue': [(0.0, 0.99215686321258545, 0.99215686321258545), (0.125, 0.96078431606292725, 0.96078431606292725), (0.25, 0.92156863212585449, 0.92156863212585449), (0.375, 0.86274510622024536, 0.86274510622024536), (0.5, 0.78431373834609985, 0.78431373834609985), (0.625, 0.729411780834198, 0.729411780834198), (0.75, 0.63921570777893066, 0.63921570777893066), (0.875, 0.56078433990478516, 0.56078433990478516), (1.0, 0.49019607901573181, 0.49019607901573181)], 'green': [(0.0, 0.9843137264251709, 0.9843137264251709), (0.125, 0.92941176891326904, 0.92941176891326904), (0.25, 0.85490196943283081, 0.85490196943283081), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.60392159223556519, 0.60392159223556519), (0.625, 0.49019607901573181, 0.49019607901573181), (0.75, 0.31764706969261169, 0.31764706969261169), (0.875, 0.15294118225574493, 0.15294118225574493), (1.0, 0.0, 0.0)], 'red': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.93725490570068359, 0.93725490570068359), (0.25, 0.85490196943283081, 0.85490196943283081), (0.375, 0.73725491762161255, 0.73725491762161255), (0.5, 0.61960786581039429, 0.61960786581039429), (0.625, 0.50196081399917603, 0.50196081399917603), (0.75, 0.41568627953529358, 0.41568627953529358), (0.875, 0.32941177487373352, 0.32941177487373352), (1.0, 0.24705882370471954, 0.24705882370471954)]} _RdBu_data = {'blue': [(0.0, 0.12156862765550613, 0.12156862765550613), (0.10000000000000001, 0.16862745583057404, 0.16862745583057404), (0.20000000000000001, 0.30196079611778259, 0.30196079611778259), (0.29999999999999999, 0.50980395078659058, 0.50980395078659058), (0.40000000000000002, 0.78039216995239258, 0.78039216995239258), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.94117647409439087, 0.94117647409439087), (0.69999999999999996, 0.87058824300765991, 0.87058824300765991), (0.80000000000000004, 0.76470589637756348, 0.76470589637756348), (0.90000000000000002, 0.67450982332229614, 0.67450982332229614), (1.0, 0.3803921639919281, 0.3803921639919281)], 'green': [(0.0, 0.0, 0.0), (0.10000000000000001, 0.094117648899555206, 0.094117648899555206), (0.20000000000000001, 0.37647059559822083, 0.37647059559822083), (0.29999999999999999, 0.64705884456634521, 0.64705884456634521), (0.40000000000000002, 0.85882353782653809, 0.85882353782653809), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.89803922176361084, 0.89803922176361084), (0.69999999999999996, 0.77254903316497803, 0.77254903316497803), (0.80000000000000004, 0.57647061347961426, 0.57647061347961426), (0.90000000000000002, 0.40000000596046448, 0.40000000596046448), (1.0, 0.18823529779911041, 0.18823529779911041)], 'red': [(0.0, 0.40392157435417175, 0.40392157435417175), (0.10000000000000001, 0.69803923368453979, 0.69803923368453979), (0.20000000000000001, 0.83921569585800171, 0.83921569585800171), (0.29999999999999999, 0.95686274766921997, 0.95686274766921997), (0.40000000000000002, 0.99215686321258545, 0.99215686321258545), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.81960785388946533, 0.81960785388946533), (0.69999999999999996, 0.57254904508590698, 0.57254904508590698), (0.80000000000000004, 0.26274511218070984, 0.26274511218070984), (0.90000000000000002, 0.12941177189350128, 0.12941177189350128), (1.0, 0.019607843831181526, 0.019607843831181526)]} _RdGy_data = {'blue': [(0.0, 0.12156862765550613, 0.12156862765550613), (0.10000000000000001, 0.16862745583057404, 0.16862745583057404), (0.20000000000000001, 0.30196079611778259, 0.30196079611778259), (0.29999999999999999, 0.50980395078659058, 0.50980395078659058), (0.40000000000000002, 0.78039216995239258, 0.78039216995239258), (0.5, 1.0, 1.0), (0.59999999999999998, 0.87843137979507446, 0.87843137979507446), (0.69999999999999996, 0.729411780834198, 0.729411780834198), (0.80000000000000004, 0.52941179275512695, 0.52941179275512695), (0.90000000000000002, 0.30196079611778259, 0.30196079611778259), (1.0, 0.10196078568696976, 0.10196078568696976)], 'green': [(0.0, 0.0, 0.0), (0.10000000000000001, 0.094117648899555206, 0.094117648899555206), (0.20000000000000001, 0.37647059559822083, 0.37647059559822083), (0.29999999999999999, 0.64705884456634521, 0.64705884456634521), (0.40000000000000002, 0.85882353782653809, 0.85882353782653809), (0.5, 1.0, 1.0), (0.59999999999999998, 0.87843137979507446, 0.87843137979507446), (0.69999999999999996, 0.729411780834198, 0.729411780834198), (0.80000000000000004, 0.52941179275512695, 0.52941179275512695), (0.90000000000000002, 0.30196079611778259, 0.30196079611778259), (1.0, 0.10196078568696976, 0.10196078568696976)], 'red': [(0.0, 0.40392157435417175, 0.40392157435417175), (0.10000000000000001, 0.69803923368453979, 0.69803923368453979), (0.20000000000000001, 0.83921569585800171, 0.83921569585800171), (0.29999999999999999, 0.95686274766921997, 0.95686274766921997), (0.40000000000000002, 0.99215686321258545, 0.99215686321258545), (0.5, 1.0, 1.0), (0.59999999999999998, 0.87843137979507446, 0.87843137979507446), (0.69999999999999996, 0.729411780834198, 0.729411780834198), (0.80000000000000004, 0.52941179275512695, 0.52941179275512695), (0.90000000000000002, 0.30196079611778259, 0.30196079611778259), (1.0, 0.10196078568696976, 0.10196078568696976)]} _RdPu_data = {'blue': [(0.0, 0.9529411792755127, 0.9529411792755127), (0.125, 0.86666667461395264, 0.86666667461395264), (0.25, 0.75294119119644165, 0.75294119119644165), (0.375, 0.70980393886566162, 0.70980393886566162), (0.5, 0.63137257099151611, 0.63137257099151611), (0.625, 0.59215688705444336, 0.59215688705444336), (0.75, 0.49411764740943909, 0.49411764740943909), (0.875, 0.46666666865348816, 0.46666666865348816), (1.0, 0.41568627953529358, 0.41568627953529358)], 'green': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.87843137979507446, 0.87843137979507446), (0.25, 0.77254903316497803, 0.77254903316497803), (0.375, 0.62352943420410156, 0.62352943420410156), (0.5, 0.40784314274787903, 0.40784314274787903), (0.625, 0.20392157137393951, 0.20392157137393951), (0.75, 0.0039215688593685627, 0.0039215688593685627), (0.875, 0.0039215688593685627, 0.0039215688593685627), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.99215686321258545, 0.99215686321258545), (0.25, 0.98823529481887817, 0.98823529481887817), (0.375, 0.98039215803146362, 0.98039215803146362), (0.5, 0.9686274528503418, 0.9686274528503418), (0.625, 0.86666667461395264, 0.86666667461395264), (0.75, 0.68235296010971069, 0.68235296010971069), (0.875, 0.47843137383460999, 0.47843137383460999), (1.0, 0.28627452254295349, 0.28627452254295349)]} _RdYlBu_data = {'blue': [(0.0, 0.14901961386203766, 0.14901961386203766), (0.10000000149011612, 0.15294118225574493, 0.15294118225574493), (0.20000000298023224, 0.26274511218070984, 0.26274511218070984), (0.30000001192092896, 0.3803921639919281, 0.3803921639919281), (0.40000000596046448, 0.56470590829849243, 0.56470590829849243), (0.5, 0.74901962280273438, 0.74901962280273438), (0.60000002384185791, 0.97254902124404907, 0.97254902124404907), (0.69999998807907104, 0.91372549533843994, 0.91372549533843994), (0.80000001192092896, 0.81960785388946533, 0.81960785388946533), (0.89999997615814209, 0.70588237047195435, 0.70588237047195435), (1.0, 0.58431375026702881, 0.58431375026702881)], 'green': [(0.0, 0.0, 0.0), (0.10000000149011612, 0.18823529779911041, 0.18823529779911041), (0.20000000298023224, 0.42745098471641541, 0.42745098471641541), (0.30000001192092896, 0.68235296010971069, 0.68235296010971069), (0.40000000596046448, 0.87843137979507446, 0.87843137979507446), (0.5, 1.0, 1.0), (0.60000002384185791, 0.9529411792755127, 0.9529411792755127), (0.69999998807907104, 0.85098040103912354, 0.85098040103912354), (0.80000001192092896, 0.67843139171600342, 0.67843139171600342), (0.89999997615814209, 0.45882353186607361, 0.45882353186607361), (1.0, 0.21176470816135406, 0.21176470816135406)], 'red': [(0.0, 0.64705884456634521, 0.64705884456634521), (0.10000000149011612, 0.84313726425170898, 0.84313726425170898), (0.20000000298023224, 0.95686274766921997, 0.95686274766921997), (0.30000001192092896, 0.99215686321258545, 0.99215686321258545), (0.40000000596046448, 0.99607843160629272, 0.99607843160629272), (0.5, 1.0, 1.0), (0.60000002384185791, 0.87843137979507446, 0.87843137979507446), (0.69999998807907104, 0.67058825492858887, 0.67058825492858887), (0.80000001192092896, 0.45490196347236633, 0.45490196347236633), (0.89999997615814209, 0.27058824896812439, 0.27058824896812439), (1.0, 0.19215686619281769, 0.19215686619281769)]} _RdYlGn_data = {'blue': [(0.0, 0.14901961386203766, 0.14901961386203766), (0.10000000000000001, 0.15294118225574493, 0.15294118225574493), (0.20000000000000001, 0.26274511218070984, 0.26274511218070984), (0.29999999999999999, 0.3803921639919281, 0.3803921639919281), (0.40000000000000002, 0.54509806632995605, 0.54509806632995605), (0.5, 0.74901962280273438, 0.74901962280273438), (0.59999999999999998, 0.54509806632995605, 0.54509806632995605), (0.69999999999999996, 0.41568627953529358, 0.41568627953529358), (0.80000000000000004, 0.38823530077934265, 0.38823530077934265), (0.90000000000000002, 0.31372550129890442, 0.31372550129890442), (1.0, 0.21568627655506134, 0.21568627655506134)], 'green': [(0.0, 0.0, 0.0), (0.10000000000000001, 0.18823529779911041, 0.18823529779911041), (0.20000000000000001, 0.42745098471641541, 0.42745098471641541), (0.29999999999999999, 0.68235296010971069, 0.68235296010971069), (0.40000000000000002, 0.87843137979507446, 0.87843137979507446), (0.5, 1.0, 1.0), (0.59999999999999998, 0.93725490570068359, 0.93725490570068359), (0.69999999999999996, 0.85098040103912354, 0.85098040103912354), (0.80000000000000004, 0.74117648601531982, 0.74117648601531982), (0.90000000000000002, 0.59607845544815063, 0.59607845544815063), (1.0, 0.40784314274787903, 0.40784314274787903)], 'red': [(0.0, 0.64705884456634521, 0.64705884456634521), (0.10000000000000001, 0.84313726425170898, 0.84313726425170898), (0.20000000000000001, 0.95686274766921997, 0.95686274766921997), (0.29999999999999999, 0.99215686321258545, 0.99215686321258545), (0.40000000000000002, 0.99607843160629272, 0.99607843160629272), (0.5, 1.0, 1.0), (0.59999999999999998, 0.85098040103912354, 0.85098040103912354), (0.69999999999999996, 0.65098041296005249, 0.65098041296005249), (0.80000000000000004, 0.40000000596046448, 0.40000000596046448), (0.90000000000000002, 0.10196078568696976, 0.10196078568696976), (1.0, 0.0, 0.0)]} _Reds_data = {'blue': [(0.0, 0.94117647409439087, 0.94117647409439087), (0.125, 0.82352942228317261, 0.82352942228317261), (0.25, 0.63137257099151611, 0.63137257099151611), (0.375, 0.44705882668495178, 0.44705882668495178), (0.5, 0.29019609093666077, 0.29019609093666077), (0.625, 0.17254902422428131, 0.17254902422428131), (0.75, 0.11372549086809158, 0.11372549086809158), (0.875, 0.08235294371843338, 0.08235294371843338), (1.0, 0.050980392843484879, 0.050980392843484879)], 'green': [(0.0, 0.96078431606292725, 0.96078431606292725), (0.125, 0.87843137979507446, 0.87843137979507446), (0.25, 0.73333334922790527, 0.73333334922790527), (0.375, 0.57254904508590698, 0.57254904508590698), (0.5, 0.41568627953529358, 0.41568627953529358), (0.625, 0.23137255012989044, 0.23137255012989044), (0.75, 0.094117648899555206, 0.094117648899555206), (0.875, 0.058823529630899429, 0.058823529630899429), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.99607843160629272, 0.99607843160629272), (0.25, 0.98823529481887817, 0.98823529481887817), (0.375, 0.98823529481887817, 0.98823529481887817), (0.5, 0.9843137264251709, 0.9843137264251709), (0.625, 0.93725490570068359, 0.93725490570068359), (0.75, 0.79607844352722168, 0.79607844352722168), (0.875, 0.64705884456634521, 0.64705884456634521), (1.0, 0.40392157435417175, 0.40392157435417175)]} _Set1_data = {'blue': [(0.0, 0.10980392247438431, 0.10980392247438431), (0.125, 0.72156864404678345, 0.72156864404678345), (0.25, 0.29019609093666077, 0.29019609093666077), (0.375, 0.63921570777893066, 0.63921570777893066), (0.5, 0.0, 0.0), (0.625, 0.20000000298023224, 0.20000000298023224), (0.75, 0.15686275064945221, 0.15686275064945221), (0.875, 0.74901962280273438, 0.74901962280273438), (1.0, 0.60000002384185791, 0.60000002384185791)], 'green': [(0.0, 0.10196078568696976, 0.10196078568696976), (0.125, 0.49411764740943909, 0.49411764740943909), (0.25, 0.68627452850341797, 0.68627452850341797), (0.375, 0.30588236451148987, 0.30588236451148987), (0.5, 0.49803921580314636, 0.49803921580314636), (0.625, 1.0, 1.0), (0.75, 0.33725491166114807, 0.33725491166114807), (0.875, 0.5058823823928833, 0.5058823823928833), (1.0, 0.60000002384185791, 0.60000002384185791)], 'red': [(0.0, 0.89411765336990356, 0.89411765336990356), (0.125, 0.21568627655506134, 0.21568627655506134), (0.25, 0.30196079611778259, 0.30196079611778259), (0.375, 0.59607845544815063, 0.59607845544815063), (0.5, 1.0, 1.0), (0.625, 1.0, 1.0), (0.75, 0.65098041296005249, 0.65098041296005249), (0.875, 0.9686274528503418, 0.9686274528503418), (1.0, 0.60000002384185791, 0.60000002384185791)]} _Set2_data = {'blue': [(0.0, 0.64705884456634521, 0.64705884456634521), (0.14285714285714285, 0.38431373238563538, 0.38431373238563538), (0.2857142857142857, 0.79607844352722168, 0.79607844352722168), (0.42857142857142855, 0.76470589637756348, 0.76470589637756348), (0.5714285714285714, 0.32941177487373352, 0.32941177487373352), (0.7142857142857143, 0.18431372940540314, 0.18431372940540314), (0.8571428571428571, 0.58039218187332153, 0.58039218187332153), (1.0, 0.70196080207824707, 0.70196080207824707)], 'green': [(0.0, 0.7607843279838562, 0.7607843279838562), (0.14285714285714285, 0.55294120311737061, 0.55294120311737061), (0.2857142857142857, 0.62745100259780884, 0.62745100259780884), (0.42857142857142855, 0.54117649793624878, 0.54117649793624878), (0.5714285714285714, 0.84705883264541626, 0.84705883264541626), (0.7142857142857143, 0.85098040103912354, 0.85098040103912354), (0.8571428571428571, 0.76862746477127075, 0.76862746477127075), (1.0, 0.70196080207824707, 0.70196080207824707)], 'red': [(0.0, 0.40000000596046448, 0.40000000596046448), (0.14285714285714285, 0.98823529481887817, 0.98823529481887817), (0.2857142857142857, 0.55294120311737061, 0.55294120311737061), (0.42857142857142855, 0.90588235855102539, 0.90588235855102539), (0.5714285714285714, 0.65098041296005249, 0.65098041296005249), (0.7142857142857143, 1.0, 1.0), (0.8571428571428571, 0.89803922176361084, 0.89803922176361084), (1.0, 0.70196080207824707, 0.70196080207824707)]} _Set3_data = {'blue': [(0.0, 0.78039216995239258, 0.78039216995239258), (0.090909090909090912, 0.70196080207824707, 0.70196080207824707), (0.18181818181818182, 0.85490196943283081, 0.85490196943283081), (0.27272727272727271, 0.44705882668495178, 0.44705882668495178), (0.36363636363636365, 0.82745099067687988, 0.82745099067687988), (0.45454545454545453, 0.38431373238563538, 0.38431373238563538), (0.54545454545454541, 0.4117647111415863, 0.4117647111415863), (0.63636363636363635, 0.89803922176361084, 0.89803922176361084), (0.72727272727272729, 0.85098040103912354, 0.85098040103912354), (0.81818181818181823, 0.74117648601531982, 0.74117648601531982), (0.90909090909090906, 0.77254903316497803, 0.77254903316497803), (1.0, 0.43529412150382996, 0.43529412150382996)], 'green': [(0.0, 0.82745099067687988, 0.82745099067687988), (0.090909090909090912, 1.0, 1.0), (0.18181818181818182, 0.729411780834198, 0.729411780834198), (0.27272727272727271, 0.50196081399917603, 0.50196081399917603), (0.36363636363636365, 0.69411766529083252, 0.69411766529083252), (0.45454545454545453, 0.70588237047195435, 0.70588237047195435), (0.54545454545454541, 0.87058824300765991, 0.87058824300765991), (0.63636363636363635, 0.80392158031463623, 0.80392158031463623), (0.72727272727272729, 0.85098040103912354, 0.85098040103912354), (0.81818181818181823, 0.50196081399917603, 0.50196081399917603), (0.90909090909090906, 0.92156863212585449, 0.92156863212585449), (1.0, 0.92941176891326904, 0.92941176891326904)], 'red': [(0.0, 0.55294120311737061, 0.55294120311737061), (0.090909090909090912, 1.0, 1.0), (0.18181818181818182, 0.7450980544090271, 0.7450980544090271), (0.27272727272727271, 0.9843137264251709, 0.9843137264251709), (0.36363636363636365, 0.50196081399917603, 0.50196081399917603), (0.45454545454545453, 0.99215686321258545, 0.99215686321258545), (0.54545454545454541, 0.70196080207824707, 0.70196080207824707), (0.63636363636363635, 0.98823529481887817, 0.98823529481887817), (0.72727272727272729, 0.85098040103912354, 0.85098040103912354), (0.81818181818181823, 0.73725491762161255, 0.73725491762161255), (0.90909090909090906, 0.80000001192092896, 0.80000001192092896), (1.0, 1.0, 1.0)]} _Spectral_data = {'blue': [(0.0, 0.25882354378700256, 0.25882354378700256), (0.10000000000000001, 0.30980393290519714, 0.30980393290519714), (0.20000000000000001, 0.26274511218070984, 0.26274511218070984), (0.29999999999999999, 0.3803921639919281, 0.3803921639919281), (0.40000000000000002, 0.54509806632995605, 0.54509806632995605), (0.5, 0.74901962280273438, 0.74901962280273438), (0.59999999999999998, 0.59607845544815063, 0.59607845544815063), (0.69999999999999996, 0.64313727617263794, 0.64313727617263794), (0.80000000000000004, 0.64705884456634521, 0.64705884456634521), (0.90000000000000002, 0.74117648601531982, 0.74117648601531982), (1.0, 0.63529413938522339, 0.63529413938522339)], 'green': [(0.0, 0.0039215688593685627, 0.0039215688593685627), (0.10000000000000001, 0.24313725531101227, 0.24313725531101227), (0.20000000000000001, 0.42745098471641541, 0.42745098471641541), (0.29999999999999999, 0.68235296010971069, 0.68235296010971069), (0.40000000000000002, 0.87843137979507446, 0.87843137979507446), (0.5, 1.0, 1.0), (0.59999999999999998, 0.96078431606292725, 0.96078431606292725), (0.69999999999999996, 0.86666667461395264, 0.86666667461395264), (0.80000000000000004, 0.7607843279838562, 0.7607843279838562), (0.90000000000000002, 0.53333336114883423, 0.53333336114883423), (1.0, 0.30980393290519714, 0.30980393290519714)], 'red': [(0.0, 0.61960786581039429, 0.61960786581039429), (0.10000000000000001, 0.83529412746429443, 0.83529412746429443), (0.20000000000000001, 0.95686274766921997, 0.95686274766921997), (0.29999999999999999, 0.99215686321258545, 0.99215686321258545), (0.40000000000000002, 0.99607843160629272, 0.99607843160629272), (0.5, 1.0, 1.0), (0.59999999999999998, 0.90196079015731812, 0.90196079015731812), (0.69999999999999996, 0.67058825492858887, 0.67058825492858887), (0.80000000000000004, 0.40000000596046448, 0.40000000596046448), (0.90000000000000002, 0.19607843458652496, 0.19607843458652496), (1.0, 0.36862745881080627, 0.36862745881080627)]} _YlGn_data = {'blue': [(0.0, 0.89803922176361084, 0.89803922176361084), (0.125, 0.72549021244049072, 0.72549021244049072), (0.25, 0.63921570777893066, 0.63921570777893066), (0.375, 0.55686277151107788, 0.55686277151107788), (0.5, 0.47450980544090271, 0.47450980544090271), (0.625, 0.364705890417099, 0.364705890417099), (0.75, 0.26274511218070984, 0.26274511218070984), (0.875, 0.21568627655506134, 0.21568627655506134), (1.0, 0.16078431904315948, 0.16078431904315948)], 'green': [(0.0, 1.0, 1.0), (0.125, 0.98823529481887817, 0.98823529481887817), (0.25, 0.94117647409439087, 0.94117647409439087), (0.375, 0.86666667461395264, 0.86666667461395264), (0.5, 0.7764706015586853, 0.7764706015586853), (0.625, 0.67058825492858887, 0.67058825492858887), (0.75, 0.51764708757400513, 0.51764708757400513), (0.875, 0.40784314274787903, 0.40784314274787903), (1.0, 0.27058824896812439, 0.27058824896812439)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.9686274528503418, 0.9686274528503418), (0.25, 0.85098040103912354, 0.85098040103912354), (0.375, 0.67843139171600342, 0.67843139171600342), (0.5, 0.47058823704719543, 0.47058823704719543), (0.625, 0.25490197539329529, 0.25490197539329529), (0.75, 0.13725490868091583, 0.13725490868091583), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)]} _YlGnBu_data = {'blue': [(0.0, 0.85098040103912354, 0.85098040103912354), (0.125, 0.69411766529083252, 0.69411766529083252), (0.25, 0.70588237047195435, 0.70588237047195435), (0.375, 0.73333334922790527, 0.73333334922790527), (0.5, 0.76862746477127075, 0.76862746477127075), (0.625, 0.75294119119644165, 0.75294119119644165), (0.75, 0.65882354974746704, 0.65882354974746704), (0.875, 0.58039218187332153, 0.58039218187332153), (1.0, 0.34509804844856262, 0.34509804844856262)], 'green': [(0.0, 1.0, 1.0), (0.125, 0.97254902124404907, 0.97254902124404907), (0.25, 0.91372549533843994, 0.91372549533843994), (0.375, 0.80392158031463623, 0.80392158031463623), (0.5, 0.7137255072593689, 0.7137255072593689), (0.625, 0.56862747669219971, 0.56862747669219971), (0.75, 0.36862745881080627, 0.36862745881080627), (0.875, 0.20392157137393951, 0.20392157137393951), (1.0, 0.11372549086809158, 0.11372549086809158)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.92941176891326904, 0.92941176891326904), (0.25, 0.78039216995239258, 0.78039216995239258), (0.375, 0.49803921580314636, 0.49803921580314636), (0.5, 0.25490197539329529, 0.25490197539329529), (0.625, 0.11372549086809158, 0.11372549086809158), (0.75, 0.13333334028720856, 0.13333334028720856), (0.875, 0.14509804546833038, 0.14509804546833038), (1.0, 0.031372550874948502, 0.031372550874948502)]} _YlOrBr_data = {'blue': [(0.0, 0.89803922176361084, 0.89803922176361084), (0.125, 0.73725491762161255, 0.73725491762161255), (0.25, 0.56862747669219971, 0.56862747669219971), (0.375, 0.30980393290519714, 0.30980393290519714), (0.5, 0.16078431904315948, 0.16078431904315948), (0.625, 0.078431375324726105, 0.078431375324726105), (0.75, 0.0078431377187371254, 0.0078431377187371254), (0.875, 0.015686275437474251, 0.015686275437474251), (1.0, 0.023529412224888802, 0.023529412224888802)], 'green': [(0.0, 1.0, 1.0), (0.125, 0.9686274528503418, 0.9686274528503418), (0.25, 0.89019608497619629, 0.89019608497619629), (0.375, 0.76862746477127075, 0.76862746477127075), (0.5, 0.60000002384185791, 0.60000002384185791), (0.625, 0.43921568989753723, 0.43921568989753723), (0.75, 0.29803922772407532, 0.29803922772407532), (0.875, 0.20392157137393951, 0.20392157137393951), (1.0, 0.14509804546833038, 0.14509804546833038)], 'red': [(0.0, 1.0, 1.0), (0.125, 1.0, 1.0), (0.25, 0.99607843160629272, 0.99607843160629272), (0.375, 0.99607843160629272, 0.99607843160629272), (0.5, 0.99607843160629272, 0.99607843160629272), (0.625, 0.92549020051956177, 0.92549020051956177), (0.75, 0.80000001192092896, 0.80000001192092896), (0.875, 0.60000002384185791, 0.60000002384185791), (1.0, 0.40000000596046448, 0.40000000596046448)]} _YlOrRd_data = {'blue': [(0.0, 0.80000001192092896, 0.80000001192092896), (0.125, 0.62745100259780884, 0.62745100259780884), (0.25, 0.46274510025978088, 0.46274510025978088), (0.375, 0.29803922772407532, 0.29803922772407532), (0.5, 0.23529411852359772, 0.23529411852359772), (0.625, 0.16470588743686676, 0.16470588743686676), (0.75, 0.10980392247438431, 0.10980392247438431), (0.875, 0.14901961386203766, 0.14901961386203766), (1.0, 0.14901961386203766, 0.14901961386203766)], 'green': [(0.0, 1.0, 1.0), (0.125, 0.92941176891326904, 0.92941176891326904), (0.25, 0.85098040103912354, 0.85098040103912354), (0.375, 0.69803923368453979, 0.69803923368453979), (0.5, 0.55294120311737061, 0.55294120311737061), (0.625, 0.30588236451148987, 0.30588236451148987), (0.75, 0.10196078568696976, 0.10196078568696976), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.125, 1.0, 1.0), (0.25, 0.99607843160629272, 0.99607843160629272), (0.375, 0.99607843160629272, 0.99607843160629272), (0.5, 0.99215686321258545, 0.99215686321258545), (0.625, 0.98823529481887817, 0.98823529481887817), (0.75, 0.89019608497619629, 0.89019608497619629), (0.875, 0.74117648601531982, 0.74117648601531982), (1.0, 0.50196081399917603, 0.50196081399917603)]} # The next 7 palettes are from the Yorick scientific visalisation package, # an evolution of the GIST package, both by David H. Munro. # They are released under a BSD-like license (see LICENSE_YORICK in # the license directory of the matplotlib source distribution). _gist_earth_data = {'blue': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.18039216101169586, 0.18039216101169586), (0.0084033617749810219, 0.22745098173618317, 0.22745098173618317), (0.012605042196810246, 0.27058824896812439, 0.27058824896812439), (0.016806723549962044, 0.31764706969261169, 0.31764706969261169), (0.021008403971791267, 0.36078432202339172, 0.36078432202339172), (0.025210084393620491, 0.40784314274787903, 0.40784314274787903), (0.029411764815449715, 0.45490196347236633, 0.45490196347236633), (0.033613447099924088, 0.45490196347236633, 0.45490196347236633), (0.037815127521753311, 0.45490196347236633, 0.45490196347236633), (0.042016807943582535, 0.45490196347236633, 0.45490196347236633), (0.046218488365411758, 0.45490196347236633, 0.45490196347236633), (0.050420168787240982, 0.45882353186607361, 0.45882353186607361), (0.054621849209070206, 0.45882353186607361, 0.45882353186607361), (0.058823529630899429, 0.45882353186607361, 0.45882353186607361), (0.063025213778018951, 0.45882353186607361, 0.45882353186607361), (0.067226894199848175, 0.45882353186607361, 0.45882353186607361), (0.071428574621677399, 0.46274510025978088, 0.46274510025978088), (0.075630255043506622, 0.46274510025978088, 0.46274510025978088), (0.079831935465335846, 0.46274510025978088, 0.46274510025978088), (0.08403361588716507, 0.46274510025978088, 0.46274510025978088), (0.088235296308994293, 0.46274510025978088, 0.46274510025978088), (0.092436976730823517, 0.46666666865348816, 0.46666666865348816), (0.09663865715265274, 0.46666666865348816, 0.46666666865348816), (0.10084033757448196, 0.46666666865348816, 0.46666666865348816), (0.10504201799631119, 0.46666666865348816, 0.46666666865348816), (0.10924369841814041, 0.46666666865348816, 0.46666666865348816), (0.11344537883996964, 0.47058823704719543, 0.47058823704719543), (0.11764705926179886, 0.47058823704719543, 0.47058823704719543), (0.12184873968362808, 0.47058823704719543, 0.47058823704719543), (0.1260504275560379, 0.47058823704719543, 0.47058823704719543), (0.13025210797786713, 0.47058823704719543, 0.47058823704719543), (0.13445378839969635, 0.47450980544090271, 0.47450980544090271), (0.13865546882152557, 0.47450980544090271, 0.47450980544090271), (0.1428571492433548, 0.47450980544090271, 0.47450980544090271), (0.14705882966518402, 0.47450980544090271, 0.47450980544090271), (0.15126051008701324, 0.47450980544090271, 0.47450980544090271), (0.15546219050884247, 0.47843137383460999, 0.47843137383460999), (0.15966387093067169, 0.47843137383460999, 0.47843137383460999), (0.16386555135250092, 0.47843137383460999, 0.47843137383460999), (0.16806723177433014, 0.47843137383460999, 0.47843137383460999), (0.17226891219615936, 0.47843137383460999, 0.47843137383460999), (0.17647059261798859, 0.48235294222831726, 0.48235294222831726), (0.18067227303981781, 0.48235294222831726, 0.48235294222831726), (0.18487395346164703, 0.48235294222831726, 0.48235294222831726), (0.18907563388347626, 0.48235294222831726, 0.48235294222831726), (0.19327731430530548, 0.48235294222831726, 0.48235294222831726), (0.1974789947271347, 0.48627451062202454, 0.48627451062202454), (0.20168067514896393, 0.48627451062202454, 0.48627451062202454), (0.20588235557079315, 0.48627451062202454, 0.48627451062202454), (0.21008403599262238, 0.48627451062202454, 0.48627451062202454), (0.2142857164144516, 0.48627451062202454, 0.48627451062202454), (0.21848739683628082, 0.49019607901573181, 0.49019607901573181), (0.22268907725811005, 0.49019607901573181, 0.49019607901573181), (0.22689075767993927, 0.49019607901573181, 0.49019607901573181), (0.23109243810176849, 0.49019607901573181, 0.49019607901573181), (0.23529411852359772, 0.49019607901573181, 0.49019607901573181), (0.23949579894542694, 0.49411764740943909, 0.49411764740943909), (0.24369747936725616, 0.49411764740943909, 0.49411764740943909), (0.24789915978908539, 0.49411764740943909, 0.49411764740943909), (0.25210085511207581, 0.49411764740943909, 0.49411764740943909), (0.25630253553390503, 0.49411764740943909, 0.49411764740943909), (0.26050421595573425, 0.49803921580314636, 0.49803921580314636), (0.26470589637756348, 0.49803921580314636, 0.49803921580314636), (0.2689075767993927, 0.49803921580314636, 0.49803921580314636), (0.27310925722122192, 0.49803921580314636, 0.49803921580314636), (0.27731093764305115, 0.49803921580314636, 0.49803921580314636), (0.28151261806488037, 0.50196081399917603, 0.50196081399917603), (0.28571429848670959, 0.49411764740943909, 0.49411764740943909), (0.28991597890853882, 0.49019607901573181, 0.49019607901573181), (0.29411765933036804, 0.48627451062202454, 0.48627451062202454), (0.29831933975219727, 0.48235294222831726, 0.48235294222831726), (0.30252102017402649, 0.47843137383460999, 0.47843137383460999), (0.30672270059585571, 0.47058823704719543, 0.47058823704719543), (0.31092438101768494, 0.46666666865348816, 0.46666666865348816), (0.31512606143951416, 0.46274510025978088, 0.46274510025978088), (0.31932774186134338, 0.45882353186607361, 0.45882353186607361), (0.32352942228317261, 0.45098039507865906, 0.45098039507865906), (0.32773110270500183, 0.44705882668495178, 0.44705882668495178), (0.33193278312683105, 0.44313725829124451, 0.44313725829124451), (0.33613446354866028, 0.43529412150382996, 0.43529412150382996), (0.3403361439704895, 0.43137255311012268, 0.43137255311012268), (0.34453782439231873, 0.42745098471641541, 0.42745098471641541), (0.34873950481414795, 0.42352941632270813, 0.42352941632270813), (0.35294118523597717, 0.41568627953529358, 0.41568627953529358), (0.3571428656578064, 0.4117647111415863, 0.4117647111415863), (0.36134454607963562, 0.40784314274787903, 0.40784314274787903), (0.36554622650146484, 0.40000000596046448, 0.40000000596046448), (0.36974790692329407, 0.3960784375667572, 0.3960784375667572), (0.37394958734512329, 0.39215686917304993, 0.39215686917304993), (0.37815126776695251, 0.38431373238563538, 0.38431373238563538), (0.38235294818878174, 0.3803921639919281, 0.3803921639919281), (0.38655462861061096, 0.37647059559822083, 0.37647059559822083), (0.39075630903244019, 0.36862745881080627, 0.36862745881080627), (0.39495798945426941, 0.364705890417099, 0.364705890417099), (0.39915966987609863, 0.36078432202339172, 0.36078432202339172), (0.40336135029792786, 0.35294118523597717, 0.35294118523597717), (0.40756303071975708, 0.3490196168422699, 0.3490196168422699), (0.4117647111415863, 0.34509804844856262, 0.34509804844856262), (0.41596639156341553, 0.33725491166114807, 0.33725491166114807), (0.42016807198524475, 0.3333333432674408, 0.3333333432674408), (0.42436975240707397, 0.32941177487373352, 0.32941177487373352), (0.4285714328289032, 0.32156863808631897, 0.32156863808631897), (0.43277311325073242, 0.31764706969261169, 0.31764706969261169), (0.43697479367256165, 0.31372550129890442, 0.31372550129890442), (0.44117647409439087, 0.30588236451148987, 0.30588236451148987), (0.44537815451622009, 0.30196079611778259, 0.30196079611778259), (0.44957983493804932, 0.29803922772407532, 0.29803922772407532), (0.45378151535987854, 0.29019609093666077, 0.29019609093666077), (0.45798319578170776, 0.28627452254295349, 0.28627452254295349), (0.46218487620353699, 0.27843138575553894, 0.27843138575553894), (0.46638655662536621, 0.27450981736183167, 0.27450981736183167), (0.47058823704719543, 0.27843138575553894, 0.27843138575553894), (0.47478991746902466, 0.28235295414924622, 0.28235295414924622), (0.47899159789085388, 0.28235295414924622, 0.28235295414924622), (0.48319327831268311, 0.28627452254295349, 0.28627452254295349), (0.48739495873451233, 0.28627452254295349, 0.28627452254295349), (0.49159663915634155, 0.29019609093666077, 0.29019609093666077), (0.49579831957817078, 0.29411765933036804, 0.29411765933036804), (0.5, 0.29411765933036804, 0.29411765933036804), (0.50420171022415161, 0.29803922772407532, 0.29803922772407532), (0.50840336084365845, 0.29803922772407532, 0.29803922772407532), (0.51260507106781006, 0.30196079611778259, 0.30196079611778259), (0.51680672168731689, 0.30196079611778259, 0.30196079611778259), (0.52100843191146851, 0.30588236451148987, 0.30588236451148987), (0.52521008253097534, 0.30980393290519714, 0.30980393290519714), (0.52941179275512695, 0.30980393290519714, 0.30980393290519714), (0.53361344337463379, 0.31372550129890442, 0.31372550129890442), (0.5378151535987854, 0.31372550129890442, 0.31372550129890442), (0.54201680421829224, 0.31764706969261169, 0.31764706969261169), (0.54621851444244385, 0.32156863808631897, 0.32156863808631897), (0.55042016506195068, 0.32156863808631897, 0.32156863808631897), (0.55462187528610229, 0.32156863808631897, 0.32156863808631897), (0.55882352590560913, 0.32549020648002625, 0.32549020648002625), (0.56302523612976074, 0.32549020648002625, 0.32549020648002625), (0.56722688674926758, 0.32549020648002625, 0.32549020648002625), (0.57142859697341919, 0.32941177487373352, 0.32941177487373352), (0.57563024759292603, 0.32941177487373352, 0.32941177487373352), (0.57983195781707764, 0.32941177487373352, 0.32941177487373352), (0.58403360843658447, 0.3333333432674408, 0.3333333432674408), (0.58823531866073608, 0.3333333432674408, 0.3333333432674408), (0.59243696928024292, 0.3333333432674408, 0.3333333432674408), (0.59663867950439453, 0.33725491166114807, 0.33725491166114807), (0.60084033012390137, 0.33725491166114807, 0.33725491166114807), (0.60504204034805298, 0.33725491166114807, 0.33725491166114807), (0.60924369096755981, 0.34117648005485535, 0.34117648005485535), (0.61344540119171143, 0.34117648005485535, 0.34117648005485535), (0.61764705181121826, 0.34117648005485535, 0.34117648005485535), (0.62184876203536987, 0.34509804844856262, 0.34509804844856262), (0.62605041265487671, 0.34509804844856262, 0.34509804844856262), (0.63025212287902832, 0.34509804844856262, 0.34509804844856262), (0.63445377349853516, 0.3490196168422699, 0.3490196168422699), (0.63865548372268677, 0.3490196168422699, 0.3490196168422699), (0.6428571343421936, 0.3490196168422699, 0.3490196168422699), (0.64705884456634521, 0.35294118523597717, 0.35294118523597717), (0.65126049518585205, 0.35294118523597717, 0.35294118523597717), (0.65546220541000366, 0.35294118523597717, 0.35294118523597717), (0.6596638560295105, 0.35686275362968445, 0.35686275362968445), (0.66386556625366211, 0.35686275362968445, 0.35686275362968445), (0.66806721687316895, 0.35686275362968445, 0.35686275362968445), (0.67226892709732056, 0.36078432202339172, 0.36078432202339172), (0.67647057771682739, 0.36078432202339172, 0.36078432202339172), (0.680672287940979, 0.36078432202339172, 0.36078432202339172), (0.68487393856048584, 0.364705890417099, 0.364705890417099), (0.68907564878463745, 0.364705890417099, 0.364705890417099), (0.69327729940414429, 0.364705890417099, 0.364705890417099), (0.6974790096282959, 0.36862745881080627, 0.36862745881080627), (0.70168066024780273, 0.36862745881080627, 0.36862745881080627), (0.70588237047195435, 0.36862745881080627, 0.36862745881080627), (0.71008402109146118, 0.37254902720451355, 0.37254902720451355), (0.71428573131561279, 0.37254902720451355, 0.37254902720451355), (0.71848738193511963, 0.37254902720451355, 0.37254902720451355), (0.72268909215927124, 0.37647059559822083, 0.37647059559822083), (0.72689074277877808, 0.37647059559822083, 0.37647059559822083), (0.73109245300292969, 0.3803921639919281, 0.3803921639919281), (0.73529410362243652, 0.3803921639919281, 0.3803921639919281), (0.73949581384658813, 0.3803921639919281, 0.3803921639919281), (0.74369746446609497, 0.38431373238563538, 0.38431373238563538), (0.74789917469024658, 0.38431373238563538, 0.38431373238563538), (0.75210082530975342, 0.38431373238563538, 0.38431373238563538), (0.75630253553390503, 0.38823530077934265, 0.38823530077934265), (0.76050418615341187, 0.38823530077934265, 0.38823530077934265), (0.76470589637756348, 0.38823530077934265, 0.38823530077934265), (0.76890754699707031, 0.39215686917304993, 0.39215686917304993), (0.77310925722122192, 0.39215686917304993, 0.39215686917304993), (0.77731090784072876, 0.39215686917304993, 0.39215686917304993), (0.78151261806488037, 0.3960784375667572, 0.3960784375667572), (0.78571426868438721, 0.3960784375667572, 0.3960784375667572), (0.78991597890853882, 0.40784314274787903, 0.40784314274787903), (0.79411762952804565, 0.41568627953529358, 0.41568627953529358), (0.79831933975219727, 0.42352941632270813, 0.42352941632270813), (0.8025209903717041, 0.43529412150382996, 0.43529412150382996), (0.80672270059585571, 0.44313725829124451, 0.44313725829124451), (0.81092435121536255, 0.45490196347236633, 0.45490196347236633), (0.81512606143951416, 0.46274510025978088, 0.46274510025978088), (0.819327712059021, 0.47450980544090271, 0.47450980544090271), (0.82352942228317261, 0.48235294222831726, 0.48235294222831726), (0.82773107290267944, 0.49411764740943909, 0.49411764740943909), (0.83193278312683105, 0.5058823823928833, 0.5058823823928833), (0.83613443374633789, 0.51372551918029785, 0.51372551918029785), (0.8403361439704895, 0.52549022436141968, 0.52549022436141968), (0.84453779458999634, 0.5372549295425415, 0.5372549295425415), (0.84873950481414795, 0.54509806632995605, 0.54509806632995605), (0.85294115543365479, 0.55686277151107788, 0.55686277151107788), (0.8571428656578064, 0.56862747669219971, 0.56862747669219971), (0.86134451627731323, 0.58039218187332153, 0.58039218187332153), (0.86554622650146484, 0.58823531866073608, 0.58823531866073608), (0.86974787712097168, 0.60000002384185791, 0.60000002384185791), (0.87394958734512329, 0.61176472902297974, 0.61176472902297974), (0.87815123796463013, 0.62352943420410156, 0.62352943420410156), (0.88235294818878174, 0.63529413938522339, 0.63529413938522339), (0.88655459880828857, 0.64705884456634521, 0.64705884456634521), (0.89075630903244019, 0.65882354974746704, 0.65882354974746704), (0.89495795965194702, 0.66666668653488159, 0.66666668653488159), (0.89915966987609863, 0.67843139171600342, 0.67843139171600342), (0.90336132049560547, 0.69019609689712524, 0.69019609689712524), (0.90756303071975708, 0.70196080207824707, 0.70196080207824707), (0.91176468133926392, 0.7137255072593689, 0.7137255072593689), (0.91596639156341553, 0.72549021244049072, 0.72549021244049072), (0.92016804218292236, 0.74117648601531982, 0.74117648601531982), (0.92436975240707397, 0.75294119119644165, 0.75294119119644165), (0.92857140302658081, 0.76470589637756348, 0.76470589637756348), (0.93277311325073242, 0.7764706015586853, 0.7764706015586853), (0.93697476387023926, 0.78823530673980713, 0.78823530673980713), (0.94117647409439087, 0.80000001192092896, 0.80000001192092896), (0.94537812471389771, 0.81176471710205078, 0.81176471710205078), (0.94957983493804932, 0.82745099067687988, 0.82745099067687988), (0.95378148555755615, 0.83921569585800171, 0.83921569585800171), (0.95798319578170776, 0.85098040103912354, 0.85098040103912354), (0.9621848464012146, 0.86274510622024536, 0.86274510622024536), (0.96638655662536621, 0.87843137979507446, 0.87843137979507446), (0.97058820724487305, 0.89019608497619629, 0.89019608497619629), (0.97478991746902466, 0.90196079015731812, 0.90196079015731812), (0.97899156808853149, 0.91764706373214722, 0.91764706373214722), (0.98319327831268311, 0.92941176891326904, 0.92941176891326904), (0.98739492893218994, 0.94509804248809814, 0.94509804248809814), (0.99159663915634155, 0.95686274766921997, 0.95686274766921997), (0.99579828977584839, 0.97254902124404907, 0.97254902124404907), (1.0, 0.9843137264251709, 0.9843137264251709)], 'green': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0, 0.0), (0.0084033617749810219, 0.0, 0.0), (0.012605042196810246, 0.0, 0.0), (0.016806723549962044, 0.0, 0.0), (0.021008403971791267, 0.0, 0.0), (0.025210084393620491, 0.0, 0.0), (0.029411764815449715, 0.0, 0.0), (0.033613447099924088, 0.011764706112444401, 0.011764706112444401), (0.037815127521753311, 0.023529412224888802, 0.023529412224888802), (0.042016807943582535, 0.031372550874948502, 0.031372550874948502), (0.046218488365411758, 0.043137256056070328, 0.043137256056070328), (0.050420168787240982, 0.050980392843484879, 0.050980392843484879), (0.054621849209070206, 0.062745101749897003, 0.062745101749897003), (0.058823529630899429, 0.070588238537311554, 0.070588238537311554), (0.063025213778018951, 0.08235294371843338, 0.08235294371843338), (0.067226894199848175, 0.090196080505847931, 0.090196080505847931), (0.071428574621677399, 0.10196078568696976, 0.10196078568696976), (0.075630255043506622, 0.10980392247438431, 0.10980392247438431), (0.079831935465335846, 0.12156862765550613, 0.12156862765550613), (0.08403361588716507, 0.12941177189350128, 0.12941177189350128), (0.088235296308994293, 0.14117647707462311, 0.14117647707462311), (0.092436976730823517, 0.14901961386203766, 0.14901961386203766), (0.09663865715265274, 0.16078431904315948, 0.16078431904315948), (0.10084033757448196, 0.16862745583057404, 0.16862745583057404), (0.10504201799631119, 0.17647059261798859, 0.17647059261798859), (0.10924369841814041, 0.18823529779911041, 0.18823529779911041), (0.11344537883996964, 0.19607843458652496, 0.19607843458652496), (0.11764705926179886, 0.20392157137393951, 0.20392157137393951), (0.12184873968362808, 0.21568627655506134, 0.21568627655506134), (0.1260504275560379, 0.22352941334247589, 0.22352941334247589), (0.13025210797786713, 0.23137255012989044, 0.23137255012989044), (0.13445378839969635, 0.23921568691730499, 0.23921568691730499), (0.13865546882152557, 0.25098040699958801, 0.25098040699958801), (0.1428571492433548, 0.25882354378700256, 0.25882354378700256), (0.14705882966518402, 0.26666668057441711, 0.26666668057441711), (0.15126051008701324, 0.27450981736183167, 0.27450981736183167), (0.15546219050884247, 0.28235295414924622, 0.28235295414924622), (0.15966387093067169, 0.29019609093666077, 0.29019609093666077), (0.16386555135250092, 0.30196079611778259, 0.30196079611778259), (0.16806723177433014, 0.30980393290519714, 0.30980393290519714), (0.17226891219615936, 0.31764706969261169, 0.31764706969261169), (0.17647059261798859, 0.32549020648002625, 0.32549020648002625), (0.18067227303981781, 0.3333333432674408, 0.3333333432674408), (0.18487395346164703, 0.34117648005485535, 0.34117648005485535), (0.18907563388347626, 0.3490196168422699, 0.3490196168422699), (0.19327731430530548, 0.35686275362968445, 0.35686275362968445), (0.1974789947271347, 0.364705890417099, 0.364705890417099), (0.20168067514896393, 0.37254902720451355, 0.37254902720451355), (0.20588235557079315, 0.3803921639919281, 0.3803921639919281), (0.21008403599262238, 0.38823530077934265, 0.38823530077934265), (0.2142857164144516, 0.39215686917304993, 0.39215686917304993), (0.21848739683628082, 0.40000000596046448, 0.40000000596046448), (0.22268907725811005, 0.40784314274787903, 0.40784314274787903), (0.22689075767993927, 0.41568627953529358, 0.41568627953529358), (0.23109243810176849, 0.42352941632270813, 0.42352941632270813), (0.23529411852359772, 0.42745098471641541, 0.42745098471641541), (0.23949579894542694, 0.43529412150382996, 0.43529412150382996), (0.24369747936725616, 0.44313725829124451, 0.44313725829124451), (0.24789915978908539, 0.45098039507865906, 0.45098039507865906), (0.25210085511207581, 0.45490196347236633, 0.45490196347236633), (0.25630253553390503, 0.46274510025978088, 0.46274510025978088), (0.26050421595573425, 0.47058823704719543, 0.47058823704719543), (0.26470589637756348, 0.47450980544090271, 0.47450980544090271), (0.2689075767993927, 0.48235294222831726, 0.48235294222831726), (0.27310925722122192, 0.49019607901573181, 0.49019607901573181), (0.27731093764305115, 0.49411764740943909, 0.49411764740943909), (0.28151261806488037, 0.50196081399917603, 0.50196081399917603), (0.28571429848670959, 0.50196081399917603, 0.50196081399917603), (0.28991597890853882, 0.5058823823928833, 0.5058823823928833), (0.29411765933036804, 0.5058823823928833, 0.5058823823928833), (0.29831933975219727, 0.50980395078659058, 0.50980395078659058), (0.30252102017402649, 0.51372551918029785, 0.51372551918029785), (0.30672270059585571, 0.51372551918029785, 0.51372551918029785), (0.31092438101768494, 0.51764708757400513, 0.51764708757400513), (0.31512606143951416, 0.5215686559677124, 0.5215686559677124), (0.31932774186134338, 0.5215686559677124, 0.5215686559677124), (0.32352942228317261, 0.52549022436141968, 0.52549022436141968), (0.32773110270500183, 0.52549022436141968, 0.52549022436141968), (0.33193278312683105, 0.52941179275512695, 0.52941179275512695), (0.33613446354866028, 0.53333336114883423, 0.53333336114883423), (0.3403361439704895, 0.53333336114883423, 0.53333336114883423), (0.34453782439231873, 0.5372549295425415, 0.5372549295425415), (0.34873950481414795, 0.54117649793624878, 0.54117649793624878), (0.35294118523597717, 0.54117649793624878, 0.54117649793624878), (0.3571428656578064, 0.54509806632995605, 0.54509806632995605), (0.36134454607963562, 0.54901963472366333, 0.54901963472366333), (0.36554622650146484, 0.54901963472366333, 0.54901963472366333), (0.36974790692329407, 0.55294120311737061, 0.55294120311737061), (0.37394958734512329, 0.55294120311737061, 0.55294120311737061), (0.37815126776695251, 0.55686277151107788, 0.55686277151107788), (0.38235294818878174, 0.56078433990478516, 0.56078433990478516), (0.38655462861061096, 0.56078433990478516, 0.56078433990478516), (0.39075630903244019, 0.56470590829849243, 0.56470590829849243), (0.39495798945426941, 0.56862747669219971, 0.56862747669219971), (0.39915966987609863, 0.56862747669219971, 0.56862747669219971), (0.40336135029792786, 0.57254904508590698, 0.57254904508590698), (0.40756303071975708, 0.57254904508590698, 0.57254904508590698), (0.4117647111415863, 0.57647061347961426, 0.57647061347961426), (0.41596639156341553, 0.58039218187332153, 0.58039218187332153), (0.42016807198524475, 0.58039218187332153, 0.58039218187332153), (0.42436975240707397, 0.58431375026702881, 0.58431375026702881), (0.4285714328289032, 0.58823531866073608, 0.58823531866073608), (0.43277311325073242, 0.58823531866073608, 0.58823531866073608), (0.43697479367256165, 0.59215688705444336, 0.59215688705444336), (0.44117647409439087, 0.59215688705444336, 0.59215688705444336), (0.44537815451622009, 0.59607845544815063, 0.59607845544815063), (0.44957983493804932, 0.60000002384185791, 0.60000002384185791), (0.45378151535987854, 0.60000002384185791, 0.60000002384185791), (0.45798319578170776, 0.60392159223556519, 0.60392159223556519), (0.46218487620353699, 0.60784316062927246, 0.60784316062927246), (0.46638655662536621, 0.60784316062927246, 0.60784316062927246), (0.47058823704719543, 0.61176472902297974, 0.61176472902297974), (0.47478991746902466, 0.61176472902297974, 0.61176472902297974), (0.47899159789085388, 0.61568629741668701, 0.61568629741668701), (0.48319327831268311, 0.61960786581039429, 0.61960786581039429), (0.48739495873451233, 0.61960786581039429, 0.61960786581039429), (0.49159663915634155, 0.62352943420410156, 0.62352943420410156), (0.49579831957817078, 0.62745100259780884, 0.62745100259780884), (0.5, 0.62745100259780884, 0.62745100259780884), (0.50420171022415161, 0.63137257099151611, 0.63137257099151611), (0.50840336084365845, 0.63137257099151611, 0.63137257099151611), (0.51260507106781006, 0.63529413938522339, 0.63529413938522339), (0.51680672168731689, 0.63921570777893066, 0.63921570777893066), (0.52100843191146851, 0.63921570777893066, 0.63921570777893066), (0.52521008253097534, 0.64313727617263794, 0.64313727617263794), (0.52941179275512695, 0.64705884456634521, 0.64705884456634521), (0.53361344337463379, 0.64705884456634521, 0.64705884456634521), (0.5378151535987854, 0.65098041296005249, 0.65098041296005249), (0.54201680421829224, 0.65098041296005249, 0.65098041296005249), (0.54621851444244385, 0.65490198135375977, 0.65490198135375977), (0.55042016506195068, 0.65882354974746704, 0.65882354974746704), (0.55462187528610229, 0.65882354974746704, 0.65882354974746704), (0.55882352590560913, 0.65882354974746704, 0.65882354974746704), (0.56302523612976074, 0.66274511814117432, 0.66274511814117432), (0.56722688674926758, 0.66274511814117432, 0.66274511814117432), (0.57142859697341919, 0.66666668653488159, 0.66666668653488159), (0.57563024759292603, 0.66666668653488159, 0.66666668653488159), (0.57983195781707764, 0.67058825492858887, 0.67058825492858887), (0.58403360843658447, 0.67058825492858887, 0.67058825492858887), (0.58823531866073608, 0.67450982332229614, 0.67450982332229614), (0.59243696928024292, 0.67450982332229614, 0.67450982332229614), (0.59663867950439453, 0.67450982332229614, 0.67450982332229614), (0.60084033012390137, 0.67843139171600342, 0.67843139171600342), (0.60504204034805298, 0.67843139171600342, 0.67843139171600342), (0.60924369096755981, 0.68235296010971069, 0.68235296010971069), (0.61344540119171143, 0.68235296010971069, 0.68235296010971069), (0.61764705181121826, 0.68627452850341797, 0.68627452850341797), (0.62184876203536987, 0.68627452850341797, 0.68627452850341797), (0.62605041265487671, 0.68627452850341797, 0.68627452850341797), (0.63025212287902832, 0.69019609689712524, 0.69019609689712524), (0.63445377349853516, 0.69019609689712524, 0.69019609689712524), (0.63865548372268677, 0.69411766529083252, 0.69411766529083252), (0.6428571343421936, 0.69411766529083252, 0.69411766529083252), (0.64705884456634521, 0.69803923368453979, 0.69803923368453979), (0.65126049518585205, 0.69803923368453979, 0.69803923368453979), (0.65546220541000366, 0.70196080207824707, 0.70196080207824707), (0.6596638560295105, 0.70196080207824707, 0.70196080207824707), (0.66386556625366211, 0.70196080207824707, 0.70196080207824707), (0.66806721687316895, 0.70588237047195435, 0.70588237047195435), (0.67226892709732056, 0.70588237047195435, 0.70588237047195435), (0.67647057771682739, 0.70980393886566162, 0.70980393886566162), (0.680672287940979, 0.70980393886566162, 0.70980393886566162), (0.68487393856048584, 0.7137255072593689, 0.7137255072593689), (0.68907564878463745, 0.7137255072593689, 0.7137255072593689), (0.69327729940414429, 0.71764707565307617, 0.71764707565307617), (0.6974790096282959, 0.71764707565307617, 0.71764707565307617), (0.70168066024780273, 0.7137255072593689, 0.7137255072593689), (0.70588237047195435, 0.70980393886566162, 0.70980393886566162), (0.71008402109146118, 0.70980393886566162, 0.70980393886566162), (0.71428573131561279, 0.70588237047195435, 0.70588237047195435), (0.71848738193511963, 0.70196080207824707, 0.70196080207824707), (0.72268909215927124, 0.69803923368453979, 0.69803923368453979), (0.72689074277877808, 0.69411766529083252, 0.69411766529083252), (0.73109245300292969, 0.69019609689712524, 0.69019609689712524), (0.73529410362243652, 0.68627452850341797, 0.68627452850341797), (0.73949581384658813, 0.68235296010971069, 0.68235296010971069), (0.74369746446609497, 0.67843139171600342, 0.67843139171600342), (0.74789917469024658, 0.67450982332229614, 0.67450982332229614), (0.75210082530975342, 0.67058825492858887, 0.67058825492858887), (0.75630253553390503, 0.66666668653488159, 0.66666668653488159), (0.76050418615341187, 0.66274511814117432, 0.66274511814117432), (0.76470589637756348, 0.65882354974746704, 0.65882354974746704), (0.76890754699707031, 0.65490198135375977, 0.65490198135375977), (0.77310925722122192, 0.65098041296005249, 0.65098041296005249), (0.77731090784072876, 0.64705884456634521, 0.64705884456634521), (0.78151261806488037, 0.64313727617263794, 0.64313727617263794), (0.78571426868438721, 0.63921570777893066, 0.63921570777893066), (0.78991597890853882, 0.63921570777893066, 0.63921570777893066), (0.79411762952804565, 0.64313727617263794, 0.64313727617263794), (0.79831933975219727, 0.64313727617263794, 0.64313727617263794), (0.8025209903717041, 0.64705884456634521, 0.64705884456634521), (0.80672270059585571, 0.64705884456634521, 0.64705884456634521), (0.81092435121536255, 0.65098041296005249, 0.65098041296005249), (0.81512606143951416, 0.65490198135375977, 0.65490198135375977), (0.819327712059021, 0.65490198135375977, 0.65490198135375977), (0.82352942228317261, 0.65882354974746704, 0.65882354974746704), (0.82773107290267944, 0.66274511814117432, 0.66274511814117432), (0.83193278312683105, 0.66666668653488159, 0.66666668653488159), (0.83613443374633789, 0.67058825492858887, 0.67058825492858887), (0.8403361439704895, 0.67450982332229614, 0.67450982332229614), (0.84453779458999634, 0.67843139171600342, 0.67843139171600342), (0.84873950481414795, 0.68235296010971069, 0.68235296010971069), (0.85294115543365479, 0.68627452850341797, 0.68627452850341797), (0.8571428656578064, 0.69019609689712524, 0.69019609689712524), (0.86134451627731323, 0.69411766529083252, 0.69411766529083252), (0.86554622650146484, 0.69803923368453979, 0.69803923368453979), (0.86974787712097168, 0.70196080207824707, 0.70196080207824707), (0.87394958734512329, 0.70980393886566162, 0.70980393886566162), (0.87815123796463013, 0.7137255072593689, 0.7137255072593689), (0.88235294818878174, 0.72156864404678345, 0.72156864404678345), (0.88655459880828857, 0.72549021244049072, 0.72549021244049072), (0.89075630903244019, 0.73333334922790527, 0.73333334922790527), (0.89495795965194702, 0.73725491762161255, 0.73725491762161255), (0.89915966987609863, 0.7450980544090271, 0.7450980544090271), (0.90336132049560547, 0.75294119119644165, 0.75294119119644165), (0.90756303071975708, 0.7607843279838562, 0.7607843279838562), (0.91176468133926392, 0.76862746477127075, 0.76862746477127075), (0.91596639156341553, 0.7764706015586853, 0.7764706015586853), (0.92016804218292236, 0.78431373834609985, 0.78431373834609985), (0.92436975240707397, 0.7921568751335144, 0.7921568751335144), (0.92857140302658081, 0.80000001192092896, 0.80000001192092896), (0.93277311325073242, 0.80784314870834351, 0.80784314870834351), (0.93697476387023926, 0.81568628549575806, 0.81568628549575806), (0.94117647409439087, 0.82745099067687988, 0.82745099067687988), (0.94537812471389771, 0.83529412746429443, 0.83529412746429443), (0.94957983493804932, 0.84313726425170898, 0.84313726425170898), (0.95378148555755615, 0.85490196943283081, 0.85490196943283081), (0.95798319578170776, 0.86666667461395264, 0.86666667461395264), (0.9621848464012146, 0.87450981140136719, 0.87450981140136719), (0.96638655662536621, 0.88627451658248901, 0.88627451658248901), (0.97058820724487305, 0.89803922176361084, 0.89803922176361084), (0.97478991746902466, 0.90980392694473267, 0.90980392694473267), (0.97899156808853149, 0.92156863212585449, 0.92156863212585449), (0.98319327831268311, 0.93333333730697632, 0.93333333730697632), (0.98739492893218994, 0.94509804248809814, 0.94509804248809814), (0.99159663915634155, 0.95686274766921997, 0.95686274766921997), (0.99579828977584839, 0.97254902124404907, 0.97254902124404907), (1.0, 0.9843137264251709, 0.9843137264251709)], 'red': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0, 0.0), (0.0084033617749810219, 0.0, 0.0), (0.012605042196810246, 0.0, 0.0), (0.016806723549962044, 0.0, 0.0), (0.021008403971791267, 0.0, 0.0), (0.025210084393620491, 0.0, 0.0), (0.029411764815449715, 0.0, 0.0), (0.033613447099924088, 0.0, 0.0), (0.037815127521753311, 0.0039215688593685627, 0.0039215688593685627), (0.042016807943582535, 0.0078431377187371254, 0.0078431377187371254), (0.046218488365411758, 0.0078431377187371254, 0.0078431377187371254), (0.050420168787240982, 0.011764706112444401, 0.011764706112444401), (0.054621849209070206, 0.015686275437474251, 0.015686275437474251), (0.058823529630899429, 0.019607843831181526, 0.019607843831181526), (0.063025213778018951, 0.019607843831181526, 0.019607843831181526), (0.067226894199848175, 0.023529412224888802, 0.023529412224888802), (0.071428574621677399, 0.027450980618596077, 0.027450980618596077), (0.075630255043506622, 0.031372550874948502, 0.031372550874948502), (0.079831935465335846, 0.031372550874948502, 0.031372550874948502), (0.08403361588716507, 0.035294119268655777, 0.035294119268655777), (0.088235296308994293, 0.039215687662363052, 0.039215687662363052), (0.092436976730823517, 0.043137256056070328, 0.043137256056070328), (0.09663865715265274, 0.043137256056070328, 0.043137256056070328), (0.10084033757448196, 0.047058824449777603, 0.047058824449777603), (0.10504201799631119, 0.050980392843484879, 0.050980392843484879), (0.10924369841814041, 0.054901961237192154, 0.054901961237192154), (0.11344537883996964, 0.058823529630899429, 0.058823529630899429), (0.11764705926179886, 0.058823529630899429, 0.058823529630899429), (0.12184873968362808, 0.062745101749897003, 0.062745101749897003), (0.1260504275560379, 0.066666670143604279, 0.066666670143604279), (0.13025210797786713, 0.070588238537311554, 0.070588238537311554), (0.13445378839969635, 0.070588238537311554, 0.070588238537311554), (0.13865546882152557, 0.074509806931018829, 0.074509806931018829), (0.1428571492433548, 0.078431375324726105, 0.078431375324726105), (0.14705882966518402, 0.08235294371843338, 0.08235294371843338), (0.15126051008701324, 0.086274512112140656, 0.086274512112140656), (0.15546219050884247, 0.086274512112140656, 0.086274512112140656), (0.15966387093067169, 0.090196080505847931, 0.090196080505847931), (0.16386555135250092, 0.094117648899555206, 0.094117648899555206), (0.16806723177433014, 0.098039217293262482, 0.098039217293262482), (0.17226891219615936, 0.10196078568696976, 0.10196078568696976), (0.17647059261798859, 0.10196078568696976, 0.10196078568696976), (0.18067227303981781, 0.10588235408067703, 0.10588235408067703), (0.18487395346164703, 0.10980392247438431, 0.10980392247438431), (0.18907563388347626, 0.11372549086809158, 0.11372549086809158), (0.19327731430530548, 0.11764705926179886, 0.11764705926179886), (0.1974789947271347, 0.12156862765550613, 0.12156862765550613), (0.20168067514896393, 0.12156862765550613, 0.12156862765550613), (0.20588235557079315, 0.12549020349979401, 0.12549020349979401), (0.21008403599262238, 0.12941177189350128, 0.12941177189350128), (0.2142857164144516, 0.13333334028720856, 0.13333334028720856), (0.21848739683628082, 0.13725490868091583, 0.13725490868091583), (0.22268907725811005, 0.14117647707462311, 0.14117647707462311), (0.22689075767993927, 0.14117647707462311, 0.14117647707462311), (0.23109243810176849, 0.14509804546833038, 0.14509804546833038), (0.23529411852359772, 0.14901961386203766, 0.14901961386203766), (0.23949579894542694, 0.15294118225574493, 0.15294118225574493), (0.24369747936725616, 0.15686275064945221, 0.15686275064945221), (0.24789915978908539, 0.16078431904315948, 0.16078431904315948), (0.25210085511207581, 0.16078431904315948, 0.16078431904315948), (0.25630253553390503, 0.16470588743686676, 0.16470588743686676), (0.26050421595573425, 0.16862745583057404, 0.16862745583057404), (0.26470589637756348, 0.17254902422428131, 0.17254902422428131), (0.2689075767993927, 0.17647059261798859, 0.17647059261798859), (0.27310925722122192, 0.18039216101169586, 0.18039216101169586), (0.27731093764305115, 0.18431372940540314, 0.18431372940540314), (0.28151261806488037, 0.18823529779911041, 0.18823529779911041), (0.28571429848670959, 0.18823529779911041, 0.18823529779911041), (0.28991597890853882, 0.18823529779911041, 0.18823529779911041), (0.29411765933036804, 0.19215686619281769, 0.19215686619281769), (0.29831933975219727, 0.19215686619281769, 0.19215686619281769), (0.30252102017402649, 0.19607843458652496, 0.19607843458652496), (0.30672270059585571, 0.19607843458652496, 0.19607843458652496), (0.31092438101768494, 0.20000000298023224, 0.20000000298023224), (0.31512606143951416, 0.20000000298023224, 0.20000000298023224), (0.31932774186134338, 0.20392157137393951, 0.20392157137393951), (0.32352942228317261, 0.20392157137393951, 0.20392157137393951), (0.32773110270500183, 0.20784313976764679, 0.20784313976764679), (0.33193278312683105, 0.20784313976764679, 0.20784313976764679), (0.33613446354866028, 0.21176470816135406, 0.21176470816135406), (0.3403361439704895, 0.21176470816135406, 0.21176470816135406), (0.34453782439231873, 0.21568627655506134, 0.21568627655506134), (0.34873950481414795, 0.21568627655506134, 0.21568627655506134), (0.35294118523597717, 0.21960784494876862, 0.21960784494876862), (0.3571428656578064, 0.21960784494876862, 0.21960784494876862), (0.36134454607963562, 0.22352941334247589, 0.22352941334247589), (0.36554622650146484, 0.22352941334247589, 0.22352941334247589), (0.36974790692329407, 0.22745098173618317, 0.22745098173618317), (0.37394958734512329, 0.22745098173618317, 0.22745098173618317), (0.37815126776695251, 0.23137255012989044, 0.23137255012989044), (0.38235294818878174, 0.23137255012989044, 0.23137255012989044), (0.38655462861061096, 0.23529411852359772, 0.23529411852359772), (0.39075630903244019, 0.23921568691730499, 0.23921568691730499), (0.39495798945426941, 0.23921568691730499, 0.23921568691730499), (0.39915966987609863, 0.24313725531101227, 0.24313725531101227), (0.40336135029792786, 0.24313725531101227, 0.24313725531101227), (0.40756303071975708, 0.24705882370471954, 0.24705882370471954), (0.4117647111415863, 0.24705882370471954, 0.24705882370471954), (0.41596639156341553, 0.25098040699958801, 0.25098040699958801), (0.42016807198524475, 0.25098040699958801, 0.25098040699958801), (0.42436975240707397, 0.25490197539329529, 0.25490197539329529), (0.4285714328289032, 0.25490197539329529, 0.25490197539329529), (0.43277311325073242, 0.25882354378700256, 0.25882354378700256), (0.43697479367256165, 0.26274511218070984, 0.26274511218070984), (0.44117647409439087, 0.26274511218070984, 0.26274511218070984), (0.44537815451622009, 0.26666668057441711, 0.26666668057441711), (0.44957983493804932, 0.26666668057441711, 0.26666668057441711), (0.45378151535987854, 0.27058824896812439, 0.27058824896812439), (0.45798319578170776, 0.27058824896812439, 0.27058824896812439), (0.46218487620353699, 0.27450981736183167, 0.27450981736183167), (0.46638655662536621, 0.27843138575553894, 0.27843138575553894), (0.47058823704719543, 0.28627452254295349, 0.28627452254295349), (0.47478991746902466, 0.29803922772407532, 0.29803922772407532), (0.47899159789085388, 0.30588236451148987, 0.30588236451148987), (0.48319327831268311, 0.31764706969261169, 0.31764706969261169), (0.48739495873451233, 0.32549020648002625, 0.32549020648002625), (0.49159663915634155, 0.33725491166114807, 0.33725491166114807), (0.49579831957817078, 0.34509804844856262, 0.34509804844856262), (0.5, 0.35686275362968445, 0.35686275362968445), (0.50420171022415161, 0.36862745881080627, 0.36862745881080627), (0.50840336084365845, 0.37647059559822083, 0.37647059559822083), (0.51260507106781006, 0.38823530077934265, 0.38823530077934265), (0.51680672168731689, 0.3960784375667572, 0.3960784375667572), (0.52100843191146851, 0.40784314274787903, 0.40784314274787903), (0.52521008253097534, 0.41568627953529358, 0.41568627953529358), (0.52941179275512695, 0.42745098471641541, 0.42745098471641541), (0.53361344337463379, 0.43529412150382996, 0.43529412150382996), (0.5378151535987854, 0.44705882668495178, 0.44705882668495178), (0.54201680421829224, 0.45882353186607361, 0.45882353186607361), (0.54621851444244385, 0.46666666865348816, 0.46666666865348816), (0.55042016506195068, 0.47450980544090271, 0.47450980544090271), (0.55462187528610229, 0.47843137383460999, 0.47843137383460999), (0.55882352590560913, 0.48627451062202454, 0.48627451062202454), (0.56302523612976074, 0.49411764740943909, 0.49411764740943909), (0.56722688674926758, 0.50196081399917603, 0.50196081399917603), (0.57142859697341919, 0.5058823823928833, 0.5058823823928833), (0.57563024759292603, 0.51372551918029785, 0.51372551918029785), (0.57983195781707764, 0.5215686559677124, 0.5215686559677124), (0.58403360843658447, 0.52941179275512695, 0.52941179275512695), (0.58823531866073608, 0.53333336114883423, 0.53333336114883423), (0.59243696928024292, 0.54117649793624878, 0.54117649793624878), (0.59663867950439453, 0.54901963472366333, 0.54901963472366333), (0.60084033012390137, 0.55294120311737061, 0.55294120311737061), (0.60504204034805298, 0.56078433990478516, 0.56078433990478516), (0.60924369096755981, 0.56862747669219971, 0.56862747669219971), (0.61344540119171143, 0.57647061347961426, 0.57647061347961426), (0.61764705181121826, 0.58431375026702881, 0.58431375026702881), (0.62184876203536987, 0.58823531866073608, 0.58823531866073608), (0.62605041265487671, 0.59607845544815063, 0.59607845544815063), (0.63025212287902832, 0.60392159223556519, 0.60392159223556519), (0.63445377349853516, 0.61176472902297974, 0.61176472902297974), (0.63865548372268677, 0.61568629741668701, 0.61568629741668701), (0.6428571343421936, 0.62352943420410156, 0.62352943420410156), (0.64705884456634521, 0.63137257099151611, 0.63137257099151611), (0.65126049518585205, 0.63921570777893066, 0.63921570777893066), (0.65546220541000366, 0.64705884456634521, 0.64705884456634521), (0.6596638560295105, 0.65098041296005249, 0.65098041296005249), (0.66386556625366211, 0.65882354974746704, 0.65882354974746704), (0.66806721687316895, 0.66666668653488159, 0.66666668653488159), (0.67226892709732056, 0.67450982332229614, 0.67450982332229614), (0.67647057771682739, 0.68235296010971069, 0.68235296010971069), (0.680672287940979, 0.68627452850341797, 0.68627452850341797), (0.68487393856048584, 0.69411766529083252, 0.69411766529083252), (0.68907564878463745, 0.70196080207824707, 0.70196080207824707), (0.69327729940414429, 0.70980393886566162, 0.70980393886566162), (0.6974790096282959, 0.71764707565307617, 0.71764707565307617), (0.70168066024780273, 0.71764707565307617, 0.71764707565307617), (0.70588237047195435, 0.72156864404678345, 0.72156864404678345), (0.71008402109146118, 0.72156864404678345, 0.72156864404678345), (0.71428573131561279, 0.72549021244049072, 0.72549021244049072), (0.71848738193511963, 0.72549021244049072, 0.72549021244049072), (0.72268909215927124, 0.729411780834198, 0.729411780834198), (0.72689074277877808, 0.729411780834198, 0.729411780834198), (0.73109245300292969, 0.73333334922790527, 0.73333334922790527), (0.73529410362243652, 0.73333334922790527, 0.73333334922790527), (0.73949581384658813, 0.73333334922790527, 0.73333334922790527), (0.74369746446609497, 0.73725491762161255, 0.73725491762161255), (0.74789917469024658, 0.73725491762161255, 0.73725491762161255), (0.75210082530975342, 0.74117648601531982, 0.74117648601531982), (0.75630253553390503, 0.74117648601531982, 0.74117648601531982), (0.76050418615341187, 0.7450980544090271, 0.7450980544090271), (0.76470589637756348, 0.7450980544090271, 0.7450980544090271), (0.76890754699707031, 0.7450980544090271, 0.7450980544090271), (0.77310925722122192, 0.74901962280273438, 0.74901962280273438), (0.77731090784072876, 0.74901962280273438, 0.74901962280273438), (0.78151261806488037, 0.75294119119644165, 0.75294119119644165), (0.78571426868438721, 0.75294119119644165, 0.75294119119644165), (0.78991597890853882, 0.75686275959014893, 0.75686275959014893), (0.79411762952804565, 0.76470589637756348, 0.76470589637756348), (0.79831933975219727, 0.76862746477127075, 0.76862746477127075), (0.8025209903717041, 0.77254903316497803, 0.77254903316497803), (0.80672270059585571, 0.7764706015586853, 0.7764706015586853), (0.81092435121536255, 0.78039216995239258, 0.78039216995239258), (0.81512606143951416, 0.78823530673980713, 0.78823530673980713), (0.819327712059021, 0.7921568751335144, 0.7921568751335144), (0.82352942228317261, 0.79607844352722168, 0.79607844352722168), (0.82773107290267944, 0.80000001192092896, 0.80000001192092896), (0.83193278312683105, 0.80392158031463623, 0.80392158031463623), (0.83613443374633789, 0.81176471710205078, 0.81176471710205078), (0.8403361439704895, 0.81568628549575806, 0.81568628549575806), (0.84453779458999634, 0.81960785388946533, 0.81960785388946533), (0.84873950481414795, 0.82352942228317261, 0.82352942228317261), (0.85294115543365479, 0.82745099067687988, 0.82745099067687988), (0.8571428656578064, 0.83529412746429443, 0.83529412746429443), (0.86134451627731323, 0.83921569585800171, 0.83921569585800171), (0.86554622650146484, 0.84313726425170898, 0.84313726425170898), (0.86974787712097168, 0.84705883264541626, 0.84705883264541626), (0.87394958734512329, 0.85098040103912354, 0.85098040103912354), (0.87815123796463013, 0.85882353782653809, 0.85882353782653809), (0.88235294818878174, 0.86274510622024536, 0.86274510622024536), (0.88655459880828857, 0.86666667461395264, 0.86666667461395264), (0.89075630903244019, 0.87058824300765991, 0.87058824300765991), (0.89495795965194702, 0.87450981140136719, 0.87450981140136719), (0.89915966987609863, 0.88235294818878174, 0.88235294818878174), (0.90336132049560547, 0.88627451658248901, 0.88627451658248901), (0.90756303071975708, 0.89019608497619629, 0.89019608497619629), (0.91176468133926392, 0.89411765336990356, 0.89411765336990356), (0.91596639156341553, 0.89803922176361084, 0.89803922176361084), (0.92016804218292236, 0.90588235855102539, 0.90588235855102539), (0.92436975240707397, 0.90980392694473267, 0.90980392694473267), (0.92857140302658081, 0.91372549533843994, 0.91372549533843994), (0.93277311325073242, 0.91764706373214722, 0.91764706373214722), (0.93697476387023926, 0.92156863212585449, 0.92156863212585449), (0.94117647409439087, 0.92941176891326904, 0.92941176891326904), (0.94537812471389771, 0.93333333730697632, 0.93333333730697632), (0.94957983493804932, 0.93725490570068359, 0.93725490570068359), (0.95378148555755615, 0.94117647409439087, 0.94117647409439087), (0.95798319578170776, 0.94509804248809814, 0.94509804248809814), (0.9621848464012146, 0.9529411792755127, 0.9529411792755127), (0.96638655662536621, 0.95686274766921997, 0.95686274766921997), (0.97058820724487305, 0.96078431606292725, 0.96078431606292725), (0.97478991746902466, 0.96470588445663452, 0.96470588445663452), (0.97899156808853149, 0.9686274528503418, 0.9686274528503418), (0.98319327831268311, 0.97647058963775635, 0.97647058963775635), (0.98739492893218994, 0.98039215803146362, 0.98039215803146362), (0.99159663915634155, 0.9843137264251709, 0.9843137264251709), (0.99579828977584839, 0.98823529481887817, 0.98823529481887817), (1.0, 0.99215686321258545, 0.99215686321258545)]} _gist_gray_data = {'blue': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0039215688593685627, 0.0039215688593685627), (0.0084033617749810219, 0.0078431377187371254, 0.0078431377187371254), (0.012605042196810246, 0.011764706112444401, 0.011764706112444401), (0.016806723549962044, 0.015686275437474251, 0.015686275437474251), (0.021008403971791267, 0.019607843831181526, 0.019607843831181526), (0.025210084393620491, 0.023529412224888802, 0.023529412224888802), (0.029411764815449715, 0.027450980618596077, 0.027450980618596077), (0.033613447099924088, 0.035294119268655777, 0.035294119268655777), (0.037815127521753311, 0.039215687662363052, 0.039215687662363052), (0.042016807943582535, 0.043137256056070328, 0.043137256056070328), (0.046218488365411758, 0.047058824449777603, 0.047058824449777603), (0.050420168787240982, 0.050980392843484879, 0.050980392843484879), (0.054621849209070206, 0.054901961237192154, 0.054901961237192154), (0.058823529630899429, 0.058823529630899429, 0.058823529630899429), (0.063025213778018951, 0.062745101749897003, 0.062745101749897003), (0.067226894199848175, 0.066666670143604279, 0.066666670143604279), (0.071428574621677399, 0.070588238537311554, 0.070588238537311554), (0.075630255043506622, 0.074509806931018829, 0.074509806931018829), (0.079831935465335846, 0.078431375324726105, 0.078431375324726105), (0.08403361588716507, 0.08235294371843338, 0.08235294371843338), (0.088235296308994293, 0.086274512112140656, 0.086274512112140656), (0.092436976730823517, 0.090196080505847931, 0.090196080505847931), (0.09663865715265274, 0.098039217293262482, 0.098039217293262482), (0.10084033757448196, 0.10196078568696976, 0.10196078568696976), (0.10504201799631119, 0.10588235408067703, 0.10588235408067703), (0.10924369841814041, 0.10980392247438431, 0.10980392247438431), (0.11344537883996964, 0.11372549086809158, 0.11372549086809158), (0.11764705926179886, 0.11764705926179886, 0.11764705926179886), (0.12184873968362808, 0.12156862765550613, 0.12156862765550613), (0.1260504275560379, 0.12549020349979401, 0.12549020349979401), (0.13025210797786713, 0.12941177189350128, 0.12941177189350128), (0.13445378839969635, 0.13333334028720856, 0.13333334028720856), (0.13865546882152557, 0.13725490868091583, 0.13725490868091583), (0.1428571492433548, 0.14117647707462311, 0.14117647707462311), (0.14705882966518402, 0.14509804546833038, 0.14509804546833038), (0.15126051008701324, 0.14901961386203766, 0.14901961386203766), (0.15546219050884247, 0.15294118225574493, 0.15294118225574493), (0.15966387093067169, 0.16078431904315948, 0.16078431904315948), (0.16386555135250092, 0.16470588743686676, 0.16470588743686676), (0.16806723177433014, 0.16862745583057404, 0.16862745583057404), (0.17226891219615936, 0.17254902422428131, 0.17254902422428131), (0.17647059261798859, 0.17647059261798859, 0.17647059261798859), (0.18067227303981781, 0.18039216101169586, 0.18039216101169586), (0.18487395346164703, 0.18431372940540314, 0.18431372940540314), (0.18907563388347626, 0.18823529779911041, 0.18823529779911041), (0.19327731430530548, 0.19215686619281769, 0.19215686619281769), (0.1974789947271347, 0.19607843458652496, 0.19607843458652496), (0.20168067514896393, 0.20000000298023224, 0.20000000298023224), (0.20588235557079315, 0.20392157137393951, 0.20392157137393951), (0.21008403599262238, 0.20784313976764679, 0.20784313976764679), (0.2142857164144516, 0.21176470816135406, 0.21176470816135406), (0.21848739683628082, 0.21568627655506134, 0.21568627655506134), (0.22268907725811005, 0.22352941334247589, 0.22352941334247589), (0.22689075767993927, 0.22745098173618317, 0.22745098173618317), (0.23109243810176849, 0.23137255012989044, 0.23137255012989044), (0.23529411852359772, 0.23529411852359772, 0.23529411852359772), (0.23949579894542694, 0.23921568691730499, 0.23921568691730499), (0.24369747936725616, 0.24313725531101227, 0.24313725531101227), (0.24789915978908539, 0.24705882370471954, 0.24705882370471954), (0.25210085511207581, 0.25098040699958801, 0.25098040699958801), (0.25630253553390503, 0.25490197539329529, 0.25490197539329529), (0.26050421595573425, 0.25882354378700256, 0.25882354378700256), (0.26470589637756348, 0.26274511218070984, 0.26274511218070984), (0.2689075767993927, 0.26666668057441711, 0.26666668057441711), (0.27310925722122192, 0.27058824896812439, 0.27058824896812439), (0.27731093764305115, 0.27450981736183167, 0.27450981736183167), (0.28151261806488037, 0.27843138575553894, 0.27843138575553894), (0.28571429848670959, 0.28627452254295349, 0.28627452254295349), (0.28991597890853882, 0.29019609093666077, 0.29019609093666077), (0.29411765933036804, 0.29411765933036804, 0.29411765933036804), (0.29831933975219727, 0.29803922772407532, 0.29803922772407532), (0.30252102017402649, 0.30196079611778259, 0.30196079611778259), (0.30672270059585571, 0.30588236451148987, 0.30588236451148987), (0.31092438101768494, 0.30980393290519714, 0.30980393290519714), (0.31512606143951416, 0.31372550129890442, 0.31372550129890442), (0.31932774186134338, 0.31764706969261169, 0.31764706969261169), (0.32352942228317261, 0.32156863808631897, 0.32156863808631897), (0.32773110270500183, 0.32549020648002625, 0.32549020648002625), (0.33193278312683105, 0.32941177487373352, 0.32941177487373352), (0.33613446354866028, 0.3333333432674408, 0.3333333432674408), (0.3403361439704895, 0.33725491166114807, 0.33725491166114807), (0.34453782439231873, 0.34117648005485535, 0.34117648005485535), (0.34873950481414795, 0.3490196168422699, 0.3490196168422699), (0.35294118523597717, 0.35294118523597717, 0.35294118523597717), (0.3571428656578064, 0.35686275362968445, 0.35686275362968445), (0.36134454607963562, 0.36078432202339172, 0.36078432202339172), (0.36554622650146484, 0.364705890417099, 0.364705890417099), (0.36974790692329407, 0.36862745881080627, 0.36862745881080627), (0.37394958734512329, 0.37254902720451355, 0.37254902720451355), (0.37815126776695251, 0.37647059559822083, 0.37647059559822083), (0.38235294818878174, 0.3803921639919281, 0.3803921639919281), (0.38655462861061096, 0.38431373238563538, 0.38431373238563538), (0.39075630903244019, 0.38823530077934265, 0.38823530077934265), (0.39495798945426941, 0.39215686917304993, 0.39215686917304993), (0.39915966987609863, 0.3960784375667572, 0.3960784375667572), (0.40336135029792786, 0.40000000596046448, 0.40000000596046448), (0.40756303071975708, 0.40392157435417175, 0.40392157435417175), (0.4117647111415863, 0.4117647111415863, 0.4117647111415863), (0.41596639156341553, 0.41568627953529358, 0.41568627953529358), (0.42016807198524475, 0.41960784792900085, 0.41960784792900085), (0.42436975240707397, 0.42352941632270813, 0.42352941632270813), (0.4285714328289032, 0.42745098471641541, 0.42745098471641541), (0.43277311325073242, 0.43137255311012268, 0.43137255311012268), (0.43697479367256165, 0.43529412150382996, 0.43529412150382996), (0.44117647409439087, 0.43921568989753723, 0.43921568989753723), (0.44537815451622009, 0.44313725829124451, 0.44313725829124451), (0.44957983493804932, 0.44705882668495178, 0.44705882668495178), (0.45378151535987854, 0.45098039507865906, 0.45098039507865906), (0.45798319578170776, 0.45490196347236633, 0.45490196347236633), (0.46218487620353699, 0.45882353186607361, 0.45882353186607361), (0.46638655662536621, 0.46274510025978088, 0.46274510025978088), (0.47058823704719543, 0.46666666865348816, 0.46666666865348816), (0.47478991746902466, 0.47450980544090271, 0.47450980544090271), (0.47899159789085388, 0.47843137383460999, 0.47843137383460999), (0.48319327831268311, 0.48235294222831726, 0.48235294222831726), (0.48739495873451233, 0.48627451062202454, 0.48627451062202454), (0.49159663915634155, 0.49019607901573181, 0.49019607901573181), (0.49579831957817078, 0.49411764740943909, 0.49411764740943909), (0.5, 0.49803921580314636, 0.49803921580314636), (0.50420171022415161, 0.50196081399917603, 0.50196081399917603), (0.50840336084365845, 0.5058823823928833, 0.5058823823928833), (0.51260507106781006, 0.50980395078659058, 0.50980395078659058), (0.51680672168731689, 0.51372551918029785, 0.51372551918029785), (0.52100843191146851, 0.51764708757400513, 0.51764708757400513), (0.52521008253097534, 0.5215686559677124, 0.5215686559677124), (0.52941179275512695, 0.52549022436141968, 0.52549022436141968), (0.53361344337463379, 0.52941179275512695, 0.52941179275512695), (0.5378151535987854, 0.5372549295425415, 0.5372549295425415), (0.54201680421829224, 0.54117649793624878, 0.54117649793624878), (0.54621851444244385, 0.54509806632995605, 0.54509806632995605), (0.55042016506195068, 0.54901963472366333, 0.54901963472366333), (0.55462187528610229, 0.55294120311737061, 0.55294120311737061), (0.55882352590560913, 0.55686277151107788, 0.55686277151107788), (0.56302523612976074, 0.56078433990478516, 0.56078433990478516), (0.56722688674926758, 0.56470590829849243, 0.56470590829849243), (0.57142859697341919, 0.56862747669219971, 0.56862747669219971), (0.57563024759292603, 0.57254904508590698, 0.57254904508590698), (0.57983195781707764, 0.57647061347961426, 0.57647061347961426), (0.58403360843658447, 0.58039218187332153, 0.58039218187332153), (0.58823531866073608, 0.58431375026702881, 0.58431375026702881), (0.59243696928024292, 0.58823531866073608, 0.58823531866073608), (0.59663867950439453, 0.59215688705444336, 0.59215688705444336), (0.60084033012390137, 0.60000002384185791, 0.60000002384185791), (0.60504204034805298, 0.60392159223556519, 0.60392159223556519), (0.60924369096755981, 0.60784316062927246, 0.60784316062927246), (0.61344540119171143, 0.61176472902297974, 0.61176472902297974), (0.61764705181121826, 0.61568629741668701, 0.61568629741668701), (0.62184876203536987, 0.61960786581039429, 0.61960786581039429), (0.62605041265487671, 0.62352943420410156, 0.62352943420410156), (0.63025212287902832, 0.62745100259780884, 0.62745100259780884), (0.63445377349853516, 0.63137257099151611, 0.63137257099151611), (0.63865548372268677, 0.63529413938522339, 0.63529413938522339), (0.6428571343421936, 0.63921570777893066, 0.63921570777893066), (0.64705884456634521, 0.64313727617263794, 0.64313727617263794), (0.65126049518585205, 0.64705884456634521, 0.64705884456634521), (0.65546220541000366, 0.65098041296005249, 0.65098041296005249), (0.6596638560295105, 0.65490198135375977, 0.65490198135375977), (0.66386556625366211, 0.66274511814117432, 0.66274511814117432), (0.66806721687316895, 0.66666668653488159, 0.66666668653488159), (0.67226892709732056, 0.67058825492858887, 0.67058825492858887), (0.67647057771682739, 0.67450982332229614, 0.67450982332229614), (0.680672287940979, 0.67843139171600342, 0.67843139171600342), (0.68487393856048584, 0.68235296010971069, 0.68235296010971069), (0.68907564878463745, 0.68627452850341797, 0.68627452850341797), (0.69327729940414429, 0.69019609689712524, 0.69019609689712524), (0.6974790096282959, 0.69411766529083252, 0.69411766529083252), (0.70168066024780273, 0.69803923368453979, 0.69803923368453979), (0.70588237047195435, 0.70196080207824707, 0.70196080207824707), (0.71008402109146118, 0.70588237047195435, 0.70588237047195435), (0.71428573131561279, 0.70980393886566162, 0.70980393886566162), (0.71848738193511963, 0.7137255072593689, 0.7137255072593689), (0.72268909215927124, 0.71764707565307617, 0.71764707565307617), (0.72689074277877808, 0.72549021244049072, 0.72549021244049072), (0.73109245300292969, 0.729411780834198, 0.729411780834198), (0.73529410362243652, 0.73333334922790527, 0.73333334922790527), (0.73949581384658813, 0.73725491762161255, 0.73725491762161255), (0.74369746446609497, 0.74117648601531982, 0.74117648601531982), (0.74789917469024658, 0.7450980544090271, 0.7450980544090271), (0.75210082530975342, 0.74901962280273438, 0.74901962280273438), (0.75630253553390503, 0.75294119119644165, 0.75294119119644165), (0.76050418615341187, 0.75686275959014893, 0.75686275959014893), (0.76470589637756348, 0.7607843279838562, 0.7607843279838562), (0.76890754699707031, 0.76470589637756348, 0.76470589637756348), (0.77310925722122192, 0.76862746477127075, 0.76862746477127075), (0.77731090784072876, 0.77254903316497803, 0.77254903316497803), (0.78151261806488037, 0.7764706015586853, 0.7764706015586853), (0.78571426868438721, 0.78039216995239258, 0.78039216995239258), (0.78991597890853882, 0.78823530673980713, 0.78823530673980713), (0.79411762952804565, 0.7921568751335144, 0.7921568751335144), (0.79831933975219727, 0.79607844352722168, 0.79607844352722168), (0.8025209903717041, 0.80000001192092896, 0.80000001192092896), (0.80672270059585571, 0.80392158031463623, 0.80392158031463623), (0.81092435121536255, 0.80784314870834351, 0.80784314870834351), (0.81512606143951416, 0.81176471710205078, 0.81176471710205078), (0.819327712059021, 0.81568628549575806, 0.81568628549575806), (0.82352942228317261, 0.81960785388946533, 0.81960785388946533), (0.82773107290267944, 0.82352942228317261, 0.82352942228317261), (0.83193278312683105, 0.82745099067687988, 0.82745099067687988), (0.83613443374633789, 0.83137255907058716, 0.83137255907058716), (0.8403361439704895, 0.83529412746429443, 0.83529412746429443), (0.84453779458999634, 0.83921569585800171, 0.83921569585800171), (0.84873950481414795, 0.84313726425170898, 0.84313726425170898), (0.85294115543365479, 0.85098040103912354, 0.85098040103912354), (0.8571428656578064, 0.85490196943283081, 0.85490196943283081), (0.86134451627731323, 0.85882353782653809, 0.85882353782653809), (0.86554622650146484, 0.86274510622024536, 0.86274510622024536), (0.86974787712097168, 0.86666667461395264, 0.86666667461395264), (0.87394958734512329, 0.87058824300765991, 0.87058824300765991), (0.87815123796463013, 0.87450981140136719, 0.87450981140136719), (0.88235294818878174, 0.87843137979507446, 0.87843137979507446), (0.88655459880828857, 0.88235294818878174, 0.88235294818878174), (0.89075630903244019, 0.88627451658248901, 0.88627451658248901), (0.89495795965194702, 0.89019608497619629, 0.89019608497619629), (0.89915966987609863, 0.89411765336990356, 0.89411765336990356), (0.90336132049560547, 0.89803922176361084, 0.89803922176361084), (0.90756303071975708, 0.90196079015731812, 0.90196079015731812), (0.91176468133926392, 0.90588235855102539, 0.90588235855102539), (0.91596639156341553, 0.91372549533843994, 0.91372549533843994), (0.92016804218292236, 0.91764706373214722, 0.91764706373214722), (0.92436975240707397, 0.92156863212585449, 0.92156863212585449), (0.92857140302658081, 0.92549020051956177, 0.92549020051956177), (0.93277311325073242, 0.92941176891326904, 0.92941176891326904), (0.93697476387023926, 0.93333333730697632, 0.93333333730697632), (0.94117647409439087, 0.93725490570068359, 0.93725490570068359), (0.94537812471389771, 0.94117647409439087, 0.94117647409439087), (0.94957983493804932, 0.94509804248809814, 0.94509804248809814), (0.95378148555755615, 0.94901961088180542, 0.94901961088180542), (0.95798319578170776, 0.9529411792755127, 0.9529411792755127), (0.9621848464012146, 0.95686274766921997, 0.95686274766921997), (0.96638655662536621, 0.96078431606292725, 0.96078431606292725), (0.97058820724487305, 0.96470588445663452, 0.96470588445663452), (0.97478991746902466, 0.9686274528503418, 0.9686274528503418), (0.97899156808853149, 0.97647058963775635, 0.97647058963775635), (0.98319327831268311, 0.98039215803146362, 0.98039215803146362), (0.98739492893218994, 0.9843137264251709, 0.9843137264251709), (0.99159663915634155, 0.98823529481887817, 0.98823529481887817), (0.99579828977584839, 0.99215686321258545, 0.99215686321258545), (1.0, 0.99607843160629272, 0.99607843160629272)], 'green': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0039215688593685627, 0.0039215688593685627), (0.0084033617749810219, 0.0078431377187371254, 0.0078431377187371254), (0.012605042196810246, 0.011764706112444401, 0.011764706112444401), (0.016806723549962044, 0.015686275437474251, 0.015686275437474251), (0.021008403971791267, 0.019607843831181526, 0.019607843831181526), (0.025210084393620491, 0.023529412224888802, 0.023529412224888802), (0.029411764815449715, 0.027450980618596077, 0.027450980618596077), (0.033613447099924088, 0.035294119268655777, 0.035294119268655777), (0.037815127521753311, 0.039215687662363052, 0.039215687662363052), (0.042016807943582535, 0.043137256056070328, 0.043137256056070328), (0.046218488365411758, 0.047058824449777603, 0.047058824449777603), (0.050420168787240982, 0.050980392843484879, 0.050980392843484879), (0.054621849209070206, 0.054901961237192154, 0.054901961237192154), (0.058823529630899429, 0.058823529630899429, 0.058823529630899429), (0.063025213778018951, 0.062745101749897003, 0.062745101749897003), (0.067226894199848175, 0.066666670143604279, 0.066666670143604279), (0.071428574621677399, 0.070588238537311554, 0.070588238537311554), (0.075630255043506622, 0.074509806931018829, 0.074509806931018829), (0.079831935465335846, 0.078431375324726105, 0.078431375324726105), (0.08403361588716507, 0.08235294371843338, 0.08235294371843338), (0.088235296308994293, 0.086274512112140656, 0.086274512112140656), (0.092436976730823517, 0.090196080505847931, 0.090196080505847931), (0.09663865715265274, 0.098039217293262482, 0.098039217293262482), (0.10084033757448196, 0.10196078568696976, 0.10196078568696976), (0.10504201799631119, 0.10588235408067703, 0.10588235408067703), (0.10924369841814041, 0.10980392247438431, 0.10980392247438431), (0.11344537883996964, 0.11372549086809158, 0.11372549086809158), (0.11764705926179886, 0.11764705926179886, 0.11764705926179886), (0.12184873968362808, 0.12156862765550613, 0.12156862765550613), (0.1260504275560379, 0.12549020349979401, 0.12549020349979401), (0.13025210797786713, 0.12941177189350128, 0.12941177189350128), (0.13445378839969635, 0.13333334028720856, 0.13333334028720856), (0.13865546882152557, 0.13725490868091583, 0.13725490868091583), (0.1428571492433548, 0.14117647707462311, 0.14117647707462311), (0.14705882966518402, 0.14509804546833038, 0.14509804546833038), (0.15126051008701324, 0.14901961386203766, 0.14901961386203766), (0.15546219050884247, 0.15294118225574493, 0.15294118225574493), (0.15966387093067169, 0.16078431904315948, 0.16078431904315948), (0.16386555135250092, 0.16470588743686676, 0.16470588743686676), (0.16806723177433014, 0.16862745583057404, 0.16862745583057404), (0.17226891219615936, 0.17254902422428131, 0.17254902422428131), (0.17647059261798859, 0.17647059261798859, 0.17647059261798859), (0.18067227303981781, 0.18039216101169586, 0.18039216101169586), (0.18487395346164703, 0.18431372940540314, 0.18431372940540314), (0.18907563388347626, 0.18823529779911041, 0.18823529779911041), (0.19327731430530548, 0.19215686619281769, 0.19215686619281769), (0.1974789947271347, 0.19607843458652496, 0.19607843458652496), (0.20168067514896393, 0.20000000298023224, 0.20000000298023224), (0.20588235557079315, 0.20392157137393951, 0.20392157137393951), (0.21008403599262238, 0.20784313976764679, 0.20784313976764679), (0.2142857164144516, 0.21176470816135406, 0.21176470816135406), (0.21848739683628082, 0.21568627655506134, 0.21568627655506134), (0.22268907725811005, 0.22352941334247589, 0.22352941334247589), (0.22689075767993927, 0.22745098173618317, 0.22745098173618317), (0.23109243810176849, 0.23137255012989044, 0.23137255012989044), (0.23529411852359772, 0.23529411852359772, 0.23529411852359772), (0.23949579894542694, 0.23921568691730499, 0.23921568691730499), (0.24369747936725616, 0.24313725531101227, 0.24313725531101227), (0.24789915978908539, 0.24705882370471954, 0.24705882370471954), (0.25210085511207581, 0.25098040699958801, 0.25098040699958801), (0.25630253553390503, 0.25490197539329529, 0.25490197539329529), (0.26050421595573425, 0.25882354378700256, 0.25882354378700256), (0.26470589637756348, 0.26274511218070984, 0.26274511218070984), (0.2689075767993927, 0.26666668057441711, 0.26666668057441711), (0.27310925722122192, 0.27058824896812439, 0.27058824896812439), (0.27731093764305115, 0.27450981736183167, 0.27450981736183167), (0.28151261806488037, 0.27843138575553894, 0.27843138575553894), (0.28571429848670959, 0.28627452254295349, 0.28627452254295349), (0.28991597890853882, 0.29019609093666077, 0.29019609093666077), (0.29411765933036804, 0.29411765933036804, 0.29411765933036804), (0.29831933975219727, 0.29803922772407532, 0.29803922772407532), (0.30252102017402649, 0.30196079611778259, 0.30196079611778259), (0.30672270059585571, 0.30588236451148987, 0.30588236451148987), (0.31092438101768494, 0.30980393290519714, 0.30980393290519714), (0.31512606143951416, 0.31372550129890442, 0.31372550129890442), (0.31932774186134338, 0.31764706969261169, 0.31764706969261169), (0.32352942228317261, 0.32156863808631897, 0.32156863808631897), (0.32773110270500183, 0.32549020648002625, 0.32549020648002625), (0.33193278312683105, 0.32941177487373352, 0.32941177487373352), (0.33613446354866028, 0.3333333432674408, 0.3333333432674408), (0.3403361439704895, 0.33725491166114807, 0.33725491166114807), (0.34453782439231873, 0.34117648005485535, 0.34117648005485535), (0.34873950481414795, 0.3490196168422699, 0.3490196168422699), (0.35294118523597717, 0.35294118523597717, 0.35294118523597717), (0.3571428656578064, 0.35686275362968445, 0.35686275362968445), (0.36134454607963562, 0.36078432202339172, 0.36078432202339172), (0.36554622650146484, 0.364705890417099, 0.364705890417099), (0.36974790692329407, 0.36862745881080627, 0.36862745881080627), (0.37394958734512329, 0.37254902720451355, 0.37254902720451355), (0.37815126776695251, 0.37647059559822083, 0.37647059559822083), (0.38235294818878174, 0.3803921639919281, 0.3803921639919281), (0.38655462861061096, 0.38431373238563538, 0.38431373238563538), (0.39075630903244019, 0.38823530077934265, 0.38823530077934265), (0.39495798945426941, 0.39215686917304993, 0.39215686917304993), (0.39915966987609863, 0.3960784375667572, 0.3960784375667572), (0.40336135029792786, 0.40000000596046448, 0.40000000596046448), (0.40756303071975708, 0.40392157435417175, 0.40392157435417175), (0.4117647111415863, 0.4117647111415863, 0.4117647111415863), (0.41596639156341553, 0.41568627953529358, 0.41568627953529358), (0.42016807198524475, 0.41960784792900085, 0.41960784792900085), (0.42436975240707397, 0.42352941632270813, 0.42352941632270813), (0.4285714328289032, 0.42745098471641541, 0.42745098471641541), (0.43277311325073242, 0.43137255311012268, 0.43137255311012268), (0.43697479367256165, 0.43529412150382996, 0.43529412150382996), (0.44117647409439087, 0.43921568989753723, 0.43921568989753723), (0.44537815451622009, 0.44313725829124451, 0.44313725829124451), (0.44957983493804932, 0.44705882668495178, 0.44705882668495178), (0.45378151535987854, 0.45098039507865906, 0.45098039507865906), (0.45798319578170776, 0.45490196347236633, 0.45490196347236633), (0.46218487620353699, 0.45882353186607361, 0.45882353186607361), (0.46638655662536621, 0.46274510025978088, 0.46274510025978088), (0.47058823704719543, 0.46666666865348816, 0.46666666865348816), (0.47478991746902466, 0.47450980544090271, 0.47450980544090271), (0.47899159789085388, 0.47843137383460999, 0.47843137383460999), (0.48319327831268311, 0.48235294222831726, 0.48235294222831726), (0.48739495873451233, 0.48627451062202454, 0.48627451062202454), (0.49159663915634155, 0.49019607901573181, 0.49019607901573181), (0.49579831957817078, 0.49411764740943909, 0.49411764740943909), (0.5, 0.49803921580314636, 0.49803921580314636), (0.50420171022415161, 0.50196081399917603, 0.50196081399917603), (0.50840336084365845, 0.5058823823928833, 0.5058823823928833), (0.51260507106781006, 0.50980395078659058, 0.50980395078659058), (0.51680672168731689, 0.51372551918029785, 0.51372551918029785), (0.52100843191146851, 0.51764708757400513, 0.51764708757400513), (0.52521008253097534, 0.5215686559677124, 0.5215686559677124), (0.52941179275512695, 0.52549022436141968, 0.52549022436141968), (0.53361344337463379, 0.52941179275512695, 0.52941179275512695), (0.5378151535987854, 0.5372549295425415, 0.5372549295425415), (0.54201680421829224, 0.54117649793624878, 0.54117649793624878), (0.54621851444244385, 0.54509806632995605, 0.54509806632995605), (0.55042016506195068, 0.54901963472366333, 0.54901963472366333), (0.55462187528610229, 0.55294120311737061, 0.55294120311737061), (0.55882352590560913, 0.55686277151107788, 0.55686277151107788), (0.56302523612976074, 0.56078433990478516, 0.56078433990478516), (0.56722688674926758, 0.56470590829849243, 0.56470590829849243), (0.57142859697341919, 0.56862747669219971, 0.56862747669219971), (0.57563024759292603, 0.57254904508590698, 0.57254904508590698), (0.57983195781707764, 0.57647061347961426, 0.57647061347961426), (0.58403360843658447, 0.58039218187332153, 0.58039218187332153), (0.58823531866073608, 0.58431375026702881, 0.58431375026702881), (0.59243696928024292, 0.58823531866073608, 0.58823531866073608), (0.59663867950439453, 0.59215688705444336, 0.59215688705444336), (0.60084033012390137, 0.60000002384185791, 0.60000002384185791), (0.60504204034805298, 0.60392159223556519, 0.60392159223556519), (0.60924369096755981, 0.60784316062927246, 0.60784316062927246), (0.61344540119171143, 0.61176472902297974, 0.61176472902297974), (0.61764705181121826, 0.61568629741668701, 0.61568629741668701), (0.62184876203536987, 0.61960786581039429, 0.61960786581039429), (0.62605041265487671, 0.62352943420410156, 0.62352943420410156), (0.63025212287902832, 0.62745100259780884, 0.62745100259780884), (0.63445377349853516, 0.63137257099151611, 0.63137257099151611), (0.63865548372268677, 0.63529413938522339, 0.63529413938522339), (0.6428571343421936, 0.63921570777893066, 0.63921570777893066), (0.64705884456634521, 0.64313727617263794, 0.64313727617263794), (0.65126049518585205, 0.64705884456634521, 0.64705884456634521), (0.65546220541000366, 0.65098041296005249, 0.65098041296005249), (0.6596638560295105, 0.65490198135375977, 0.65490198135375977), (0.66386556625366211, 0.66274511814117432, 0.66274511814117432), (0.66806721687316895, 0.66666668653488159, 0.66666668653488159), (0.67226892709732056, 0.67058825492858887, 0.67058825492858887), (0.67647057771682739, 0.67450982332229614, 0.67450982332229614), (0.680672287940979, 0.67843139171600342, 0.67843139171600342), (0.68487393856048584, 0.68235296010971069, 0.68235296010971069), (0.68907564878463745, 0.68627452850341797, 0.68627452850341797), (0.69327729940414429, 0.69019609689712524, 0.69019609689712524), (0.6974790096282959, 0.69411766529083252, 0.69411766529083252), (0.70168066024780273, 0.69803923368453979, 0.69803923368453979), (0.70588237047195435, 0.70196080207824707, 0.70196080207824707), (0.71008402109146118, 0.70588237047195435, 0.70588237047195435), (0.71428573131561279, 0.70980393886566162, 0.70980393886566162), (0.71848738193511963, 0.7137255072593689, 0.7137255072593689), (0.72268909215927124, 0.71764707565307617, 0.71764707565307617), (0.72689074277877808, 0.72549021244049072, 0.72549021244049072), (0.73109245300292969, 0.729411780834198, 0.729411780834198), (0.73529410362243652, 0.73333334922790527, 0.73333334922790527), (0.73949581384658813, 0.73725491762161255, 0.73725491762161255), (0.74369746446609497, 0.74117648601531982, 0.74117648601531982), (0.74789917469024658, 0.7450980544090271, 0.7450980544090271), (0.75210082530975342, 0.74901962280273438, 0.74901962280273438), (0.75630253553390503, 0.75294119119644165, 0.75294119119644165), (0.76050418615341187, 0.75686275959014893, 0.75686275959014893), (0.76470589637756348, 0.7607843279838562, 0.7607843279838562), (0.76890754699707031, 0.76470589637756348, 0.76470589637756348), (0.77310925722122192, 0.76862746477127075, 0.76862746477127075), (0.77731090784072876, 0.77254903316497803, 0.77254903316497803), (0.78151261806488037, 0.7764706015586853, 0.7764706015586853), (0.78571426868438721, 0.78039216995239258, 0.78039216995239258), (0.78991597890853882, 0.78823530673980713, 0.78823530673980713), (0.79411762952804565, 0.7921568751335144, 0.7921568751335144), (0.79831933975219727, 0.79607844352722168, 0.79607844352722168), (0.8025209903717041, 0.80000001192092896, 0.80000001192092896), (0.80672270059585571, 0.80392158031463623, 0.80392158031463623), (0.81092435121536255, 0.80784314870834351, 0.80784314870834351), (0.81512606143951416, 0.81176471710205078, 0.81176471710205078), (0.819327712059021, 0.81568628549575806, 0.81568628549575806), (0.82352942228317261, 0.81960785388946533, 0.81960785388946533), (0.82773107290267944, 0.82352942228317261, 0.82352942228317261), (0.83193278312683105, 0.82745099067687988, 0.82745099067687988), (0.83613443374633789, 0.83137255907058716, 0.83137255907058716), (0.8403361439704895, 0.83529412746429443, 0.83529412746429443), (0.84453779458999634, 0.83921569585800171, 0.83921569585800171), (0.84873950481414795, 0.84313726425170898, 0.84313726425170898), (0.85294115543365479, 0.85098040103912354, 0.85098040103912354), (0.8571428656578064, 0.85490196943283081, 0.85490196943283081), (0.86134451627731323, 0.85882353782653809, 0.85882353782653809), (0.86554622650146484, 0.86274510622024536, 0.86274510622024536), (0.86974787712097168, 0.86666667461395264, 0.86666667461395264), (0.87394958734512329, 0.87058824300765991, 0.87058824300765991), (0.87815123796463013, 0.87450981140136719, 0.87450981140136719), (0.88235294818878174, 0.87843137979507446, 0.87843137979507446), (0.88655459880828857, 0.88235294818878174, 0.88235294818878174), (0.89075630903244019, 0.88627451658248901, 0.88627451658248901), (0.89495795965194702, 0.89019608497619629, 0.89019608497619629), (0.89915966987609863, 0.89411765336990356, 0.89411765336990356), (0.90336132049560547, 0.89803922176361084, 0.89803922176361084), (0.90756303071975708, 0.90196079015731812, 0.90196079015731812), (0.91176468133926392, 0.90588235855102539, 0.90588235855102539), (0.91596639156341553, 0.91372549533843994, 0.91372549533843994), (0.92016804218292236, 0.91764706373214722, 0.91764706373214722), (0.92436975240707397, 0.92156863212585449, 0.92156863212585449), (0.92857140302658081, 0.92549020051956177, 0.92549020051956177), (0.93277311325073242, 0.92941176891326904, 0.92941176891326904), (0.93697476387023926, 0.93333333730697632, 0.93333333730697632), (0.94117647409439087, 0.93725490570068359, 0.93725490570068359), (0.94537812471389771, 0.94117647409439087, 0.94117647409439087), (0.94957983493804932, 0.94509804248809814, 0.94509804248809814), (0.95378148555755615, 0.94901961088180542, 0.94901961088180542), (0.95798319578170776, 0.9529411792755127, 0.9529411792755127), (0.9621848464012146, 0.95686274766921997, 0.95686274766921997), (0.96638655662536621, 0.96078431606292725, 0.96078431606292725), (0.97058820724487305, 0.96470588445663452, 0.96470588445663452), (0.97478991746902466, 0.9686274528503418, 0.9686274528503418), (0.97899156808853149, 0.97647058963775635, 0.97647058963775635), (0.98319327831268311, 0.98039215803146362, 0.98039215803146362), (0.98739492893218994, 0.9843137264251709, 0.9843137264251709), (0.99159663915634155, 0.98823529481887817, 0.98823529481887817), (0.99579828977584839, 0.99215686321258545, 0.99215686321258545), (1.0, 0.99607843160629272, 0.99607843160629272)], 'red': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0039215688593685627, 0.0039215688593685627), (0.0084033617749810219, 0.0078431377187371254, 0.0078431377187371254), (0.012605042196810246, 0.011764706112444401, 0.011764706112444401), (0.016806723549962044, 0.015686275437474251, 0.015686275437474251), (0.021008403971791267, 0.019607843831181526, 0.019607843831181526), (0.025210084393620491, 0.023529412224888802, 0.023529412224888802), (0.029411764815449715, 0.027450980618596077, 0.027450980618596077), (0.033613447099924088, 0.035294119268655777, 0.035294119268655777), (0.037815127521753311, 0.039215687662363052, 0.039215687662363052), (0.042016807943582535, 0.043137256056070328, 0.043137256056070328), (0.046218488365411758, 0.047058824449777603, 0.047058824449777603), (0.050420168787240982, 0.050980392843484879, 0.050980392843484879), (0.054621849209070206, 0.054901961237192154, 0.054901961237192154), (0.058823529630899429, 0.058823529630899429, 0.058823529630899429), (0.063025213778018951, 0.062745101749897003, 0.062745101749897003), (0.067226894199848175, 0.066666670143604279, 0.066666670143604279), (0.071428574621677399, 0.070588238537311554, 0.070588238537311554), (0.075630255043506622, 0.074509806931018829, 0.074509806931018829), (0.079831935465335846, 0.078431375324726105, 0.078431375324726105), (0.08403361588716507, 0.08235294371843338, 0.08235294371843338), (0.088235296308994293, 0.086274512112140656, 0.086274512112140656), (0.092436976730823517, 0.090196080505847931, 0.090196080505847931), (0.09663865715265274, 0.098039217293262482, 0.098039217293262482), (0.10084033757448196, 0.10196078568696976, 0.10196078568696976), (0.10504201799631119, 0.10588235408067703, 0.10588235408067703), (0.10924369841814041, 0.10980392247438431, 0.10980392247438431), (0.11344537883996964, 0.11372549086809158, 0.11372549086809158), (0.11764705926179886, 0.11764705926179886, 0.11764705926179886), (0.12184873968362808, 0.12156862765550613, 0.12156862765550613), (0.1260504275560379, 0.12549020349979401, 0.12549020349979401), (0.13025210797786713, 0.12941177189350128, 0.12941177189350128), (0.13445378839969635, 0.13333334028720856, 0.13333334028720856), (0.13865546882152557, 0.13725490868091583, 0.13725490868091583), (0.1428571492433548, 0.14117647707462311, 0.14117647707462311), (0.14705882966518402, 0.14509804546833038, 0.14509804546833038), (0.15126051008701324, 0.14901961386203766, 0.14901961386203766), (0.15546219050884247, 0.15294118225574493, 0.15294118225574493), (0.15966387093067169, 0.16078431904315948, 0.16078431904315948), (0.16386555135250092, 0.16470588743686676, 0.16470588743686676), (0.16806723177433014, 0.16862745583057404, 0.16862745583057404), (0.17226891219615936, 0.17254902422428131, 0.17254902422428131), (0.17647059261798859, 0.17647059261798859, 0.17647059261798859), (0.18067227303981781, 0.18039216101169586, 0.18039216101169586), (0.18487395346164703, 0.18431372940540314, 0.18431372940540314), (0.18907563388347626, 0.18823529779911041, 0.18823529779911041), (0.19327731430530548, 0.19215686619281769, 0.19215686619281769), (0.1974789947271347, 0.19607843458652496, 0.19607843458652496), (0.20168067514896393, 0.20000000298023224, 0.20000000298023224), (0.20588235557079315, 0.20392157137393951, 0.20392157137393951), (0.21008403599262238, 0.20784313976764679, 0.20784313976764679), (0.2142857164144516, 0.21176470816135406, 0.21176470816135406), (0.21848739683628082, 0.21568627655506134, 0.21568627655506134), (0.22268907725811005, 0.22352941334247589, 0.22352941334247589), (0.22689075767993927, 0.22745098173618317, 0.22745098173618317), (0.23109243810176849, 0.23137255012989044, 0.23137255012989044), (0.23529411852359772, 0.23529411852359772, 0.23529411852359772), (0.23949579894542694, 0.23921568691730499, 0.23921568691730499), (0.24369747936725616, 0.24313725531101227, 0.24313725531101227), (0.24789915978908539, 0.24705882370471954, 0.24705882370471954), (0.25210085511207581, 0.25098040699958801, 0.25098040699958801), (0.25630253553390503, 0.25490197539329529, 0.25490197539329529), (0.26050421595573425, 0.25882354378700256, 0.25882354378700256), (0.26470589637756348, 0.26274511218070984, 0.26274511218070984), (0.2689075767993927, 0.26666668057441711, 0.26666668057441711), (0.27310925722122192, 0.27058824896812439, 0.27058824896812439), (0.27731093764305115, 0.27450981736183167, 0.27450981736183167), (0.28151261806488037, 0.27843138575553894, 0.27843138575553894), (0.28571429848670959, 0.28627452254295349, 0.28627452254295349), (0.28991597890853882, 0.29019609093666077, 0.29019609093666077), (0.29411765933036804, 0.29411765933036804, 0.29411765933036804), (0.29831933975219727, 0.29803922772407532, 0.29803922772407532), (0.30252102017402649, 0.30196079611778259, 0.30196079611778259), (0.30672270059585571, 0.30588236451148987, 0.30588236451148987), (0.31092438101768494, 0.30980393290519714, 0.30980393290519714), (0.31512606143951416, 0.31372550129890442, 0.31372550129890442), (0.31932774186134338, 0.31764706969261169, 0.31764706969261169), (0.32352942228317261, 0.32156863808631897, 0.32156863808631897), (0.32773110270500183, 0.32549020648002625, 0.32549020648002625), (0.33193278312683105, 0.32941177487373352, 0.32941177487373352), (0.33613446354866028, 0.3333333432674408, 0.3333333432674408), (0.3403361439704895, 0.33725491166114807, 0.33725491166114807), (0.34453782439231873, 0.34117648005485535, 0.34117648005485535), (0.34873950481414795, 0.3490196168422699, 0.3490196168422699), (0.35294118523597717, 0.35294118523597717, 0.35294118523597717), (0.3571428656578064, 0.35686275362968445, 0.35686275362968445), (0.36134454607963562, 0.36078432202339172, 0.36078432202339172), (0.36554622650146484, 0.364705890417099, 0.364705890417099), (0.36974790692329407, 0.36862745881080627, 0.36862745881080627), (0.37394958734512329, 0.37254902720451355, 0.37254902720451355), (0.37815126776695251, 0.37647059559822083, 0.37647059559822083), (0.38235294818878174, 0.3803921639919281, 0.3803921639919281), (0.38655462861061096, 0.38431373238563538, 0.38431373238563538), (0.39075630903244019, 0.38823530077934265, 0.38823530077934265), (0.39495798945426941, 0.39215686917304993, 0.39215686917304993), (0.39915966987609863, 0.3960784375667572, 0.3960784375667572), (0.40336135029792786, 0.40000000596046448, 0.40000000596046448), (0.40756303071975708, 0.40392157435417175, 0.40392157435417175), (0.4117647111415863, 0.4117647111415863, 0.4117647111415863), (0.41596639156341553, 0.41568627953529358, 0.41568627953529358), (0.42016807198524475, 0.41960784792900085, 0.41960784792900085), (0.42436975240707397, 0.42352941632270813, 0.42352941632270813), (0.4285714328289032, 0.42745098471641541, 0.42745098471641541), (0.43277311325073242, 0.43137255311012268, 0.43137255311012268), (0.43697479367256165, 0.43529412150382996, 0.43529412150382996), (0.44117647409439087, 0.43921568989753723, 0.43921568989753723), (0.44537815451622009, 0.44313725829124451, 0.44313725829124451), (0.44957983493804932, 0.44705882668495178, 0.44705882668495178), (0.45378151535987854, 0.45098039507865906, 0.45098039507865906), (0.45798319578170776, 0.45490196347236633, 0.45490196347236633), (0.46218487620353699, 0.45882353186607361, 0.45882353186607361), (0.46638655662536621, 0.46274510025978088, 0.46274510025978088), (0.47058823704719543, 0.46666666865348816, 0.46666666865348816), (0.47478991746902466, 0.47450980544090271, 0.47450980544090271), (0.47899159789085388, 0.47843137383460999, 0.47843137383460999), (0.48319327831268311, 0.48235294222831726, 0.48235294222831726), (0.48739495873451233, 0.48627451062202454, 0.48627451062202454), (0.49159663915634155, 0.49019607901573181, 0.49019607901573181), (0.49579831957817078, 0.49411764740943909, 0.49411764740943909), (0.5, 0.49803921580314636, 0.49803921580314636), (0.50420171022415161, 0.50196081399917603, 0.50196081399917603), (0.50840336084365845, 0.5058823823928833, 0.5058823823928833), (0.51260507106781006, 0.50980395078659058, 0.50980395078659058), (0.51680672168731689, 0.51372551918029785, 0.51372551918029785), (0.52100843191146851, 0.51764708757400513, 0.51764708757400513), (0.52521008253097534, 0.5215686559677124, 0.5215686559677124), (0.52941179275512695, 0.52549022436141968, 0.52549022436141968), (0.53361344337463379, 0.52941179275512695, 0.52941179275512695), (0.5378151535987854, 0.5372549295425415, 0.5372549295425415), (0.54201680421829224, 0.54117649793624878, 0.54117649793624878), (0.54621851444244385, 0.54509806632995605, 0.54509806632995605), (0.55042016506195068, 0.54901963472366333, 0.54901963472366333), (0.55462187528610229, 0.55294120311737061, 0.55294120311737061), (0.55882352590560913, 0.55686277151107788, 0.55686277151107788), (0.56302523612976074, 0.56078433990478516, 0.56078433990478516), (0.56722688674926758, 0.56470590829849243, 0.56470590829849243), (0.57142859697341919, 0.56862747669219971, 0.56862747669219971), (0.57563024759292603, 0.57254904508590698, 0.57254904508590698), (0.57983195781707764, 0.57647061347961426, 0.57647061347961426), (0.58403360843658447, 0.58039218187332153, 0.58039218187332153), (0.58823531866073608, 0.58431375026702881, 0.58431375026702881), (0.59243696928024292, 0.58823531866073608, 0.58823531866073608), (0.59663867950439453, 0.59215688705444336, 0.59215688705444336), (0.60084033012390137, 0.60000002384185791, 0.60000002384185791), (0.60504204034805298, 0.60392159223556519, 0.60392159223556519), (0.60924369096755981, 0.60784316062927246, 0.60784316062927246), (0.61344540119171143, 0.61176472902297974, 0.61176472902297974), (0.61764705181121826, 0.61568629741668701, 0.61568629741668701), (0.62184876203536987, 0.61960786581039429, 0.61960786581039429), (0.62605041265487671, 0.62352943420410156, 0.62352943420410156), (0.63025212287902832, 0.62745100259780884, 0.62745100259780884), (0.63445377349853516, 0.63137257099151611, 0.63137257099151611), (0.63865548372268677, 0.63529413938522339, 0.63529413938522339), (0.6428571343421936, 0.63921570777893066, 0.63921570777893066), (0.64705884456634521, 0.64313727617263794, 0.64313727617263794), (0.65126049518585205, 0.64705884456634521, 0.64705884456634521), (0.65546220541000366, 0.65098041296005249, 0.65098041296005249), (0.6596638560295105, 0.65490198135375977, 0.65490198135375977), (0.66386556625366211, 0.66274511814117432, 0.66274511814117432), (0.66806721687316895, 0.66666668653488159, 0.66666668653488159), (0.67226892709732056, 0.67058825492858887, 0.67058825492858887), (0.67647057771682739, 0.67450982332229614, 0.67450982332229614), (0.680672287940979, 0.67843139171600342, 0.67843139171600342), (0.68487393856048584, 0.68235296010971069, 0.68235296010971069), (0.68907564878463745, 0.68627452850341797, 0.68627452850341797), (0.69327729940414429, 0.69019609689712524, 0.69019609689712524), (0.6974790096282959, 0.69411766529083252, 0.69411766529083252), (0.70168066024780273, 0.69803923368453979, 0.69803923368453979), (0.70588237047195435, 0.70196080207824707, 0.70196080207824707), (0.71008402109146118, 0.70588237047195435, 0.70588237047195435), (0.71428573131561279, 0.70980393886566162, 0.70980393886566162), (0.71848738193511963, 0.7137255072593689, 0.7137255072593689), (0.72268909215927124, 0.71764707565307617, 0.71764707565307617), (0.72689074277877808, 0.72549021244049072, 0.72549021244049072), (0.73109245300292969, 0.729411780834198, 0.729411780834198), (0.73529410362243652, 0.73333334922790527, 0.73333334922790527), (0.73949581384658813, 0.73725491762161255, 0.73725491762161255), (0.74369746446609497, 0.74117648601531982, 0.74117648601531982), (0.74789917469024658, 0.7450980544090271, 0.7450980544090271), (0.75210082530975342, 0.74901962280273438, 0.74901962280273438), (0.75630253553390503, 0.75294119119644165, 0.75294119119644165), (0.76050418615341187, 0.75686275959014893, 0.75686275959014893), (0.76470589637756348, 0.7607843279838562, 0.7607843279838562), (0.76890754699707031, 0.76470589637756348, 0.76470589637756348), (0.77310925722122192, 0.76862746477127075, 0.76862746477127075), (0.77731090784072876, 0.77254903316497803, 0.77254903316497803), (0.78151261806488037, 0.7764706015586853, 0.7764706015586853), (0.78571426868438721, 0.78039216995239258, 0.78039216995239258), (0.78991597890853882, 0.78823530673980713, 0.78823530673980713), (0.79411762952804565, 0.7921568751335144, 0.7921568751335144), (0.79831933975219727, 0.79607844352722168, 0.79607844352722168), (0.8025209903717041, 0.80000001192092896, 0.80000001192092896), (0.80672270059585571, 0.80392158031463623, 0.80392158031463623), (0.81092435121536255, 0.80784314870834351, 0.80784314870834351), (0.81512606143951416, 0.81176471710205078, 0.81176471710205078), (0.819327712059021, 0.81568628549575806, 0.81568628549575806), (0.82352942228317261, 0.81960785388946533, 0.81960785388946533), (0.82773107290267944, 0.82352942228317261, 0.82352942228317261), (0.83193278312683105, 0.82745099067687988, 0.82745099067687988), (0.83613443374633789, 0.83137255907058716, 0.83137255907058716), (0.8403361439704895, 0.83529412746429443, 0.83529412746429443), (0.84453779458999634, 0.83921569585800171, 0.83921569585800171), (0.84873950481414795, 0.84313726425170898, 0.84313726425170898), (0.85294115543365479, 0.85098040103912354, 0.85098040103912354), (0.8571428656578064, 0.85490196943283081, 0.85490196943283081), (0.86134451627731323, 0.85882353782653809, 0.85882353782653809), (0.86554622650146484, 0.86274510622024536, 0.86274510622024536), (0.86974787712097168, 0.86666667461395264, 0.86666667461395264), (0.87394958734512329, 0.87058824300765991, 0.87058824300765991), (0.87815123796463013, 0.87450981140136719, 0.87450981140136719), (0.88235294818878174, 0.87843137979507446, 0.87843137979507446), (0.88655459880828857, 0.88235294818878174, 0.88235294818878174), (0.89075630903244019, 0.88627451658248901, 0.88627451658248901), (0.89495795965194702, 0.89019608497619629, 0.89019608497619629), (0.89915966987609863, 0.89411765336990356, 0.89411765336990356), (0.90336132049560547, 0.89803922176361084, 0.89803922176361084), (0.90756303071975708, 0.90196079015731812, 0.90196079015731812), (0.91176468133926392, 0.90588235855102539, 0.90588235855102539), (0.91596639156341553, 0.91372549533843994, 0.91372549533843994), (0.92016804218292236, 0.91764706373214722, 0.91764706373214722), (0.92436975240707397, 0.92156863212585449, 0.92156863212585449), (0.92857140302658081, 0.92549020051956177, 0.92549020051956177), (0.93277311325073242, 0.92941176891326904, 0.92941176891326904), (0.93697476387023926, 0.93333333730697632, 0.93333333730697632), (0.94117647409439087, 0.93725490570068359, 0.93725490570068359), (0.94537812471389771, 0.94117647409439087, 0.94117647409439087), (0.94957983493804932, 0.94509804248809814, 0.94509804248809814), (0.95378148555755615, 0.94901961088180542, 0.94901961088180542), (0.95798319578170776, 0.9529411792755127, 0.9529411792755127), (0.9621848464012146, 0.95686274766921997, 0.95686274766921997), (0.96638655662536621, 0.96078431606292725, 0.96078431606292725), (0.97058820724487305, 0.96470588445663452, 0.96470588445663452), (0.97478991746902466, 0.9686274528503418, 0.9686274528503418), (0.97899156808853149, 0.97647058963775635, 0.97647058963775635), (0.98319327831268311, 0.98039215803146362, 0.98039215803146362), (0.98739492893218994, 0.9843137264251709, 0.9843137264251709), (0.99159663915634155, 0.98823529481887817, 0.98823529481887817), (0.99579828977584839, 0.99215686321258545, 0.99215686321258545), (1.0, 0.99607843160629272, 0.99607843160629272)]} _gist_heat_data = {'blue': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0, 0.0), (0.0084033617749810219, 0.0, 0.0), (0.012605042196810246, 0.0, 0.0), (0.016806723549962044, 0.0, 0.0), (0.021008403971791267, 0.0, 0.0), (0.025210084393620491, 0.0, 0.0), (0.029411764815449715, 0.0, 0.0), (0.033613447099924088, 0.0, 0.0), (0.037815127521753311, 0.0, 0.0), (0.042016807943582535, 0.0, 0.0), (0.046218488365411758, 0.0, 0.0), (0.050420168787240982, 0.0, 0.0), (0.054621849209070206, 0.0, 0.0), (0.058823529630899429, 0.0, 0.0), (0.063025213778018951, 0.0, 0.0), (0.067226894199848175, 0.0, 0.0), (0.071428574621677399, 0.0, 0.0), (0.075630255043506622, 0.0, 0.0), (0.079831935465335846, 0.0, 0.0), (0.08403361588716507, 0.0, 0.0), (0.088235296308994293, 0.0, 0.0), (0.092436976730823517, 0.0, 0.0), (0.09663865715265274, 0.0, 0.0), (0.10084033757448196, 0.0, 0.0), (0.10504201799631119, 0.0, 0.0), (0.10924369841814041, 0.0, 0.0), (0.11344537883996964, 0.0, 0.0), (0.11764705926179886, 0.0, 0.0), (0.12184873968362808, 0.0, 0.0), (0.1260504275560379, 0.0, 0.0), (0.13025210797786713, 0.0, 0.0), (0.13445378839969635, 0.0, 0.0), (0.13865546882152557, 0.0, 0.0), (0.1428571492433548, 0.0, 0.0), (0.14705882966518402, 0.0, 0.0), (0.15126051008701324, 0.0, 0.0), (0.15546219050884247, 0.0, 0.0), (0.15966387093067169, 0.0, 0.0), (0.16386555135250092, 0.0, 0.0), (0.16806723177433014, 0.0, 0.0), (0.17226891219615936, 0.0, 0.0), (0.17647059261798859, 0.0, 0.0), (0.18067227303981781, 0.0, 0.0), (0.18487395346164703, 0.0, 0.0), (0.18907563388347626, 0.0, 0.0), (0.19327731430530548, 0.0, 0.0), (0.1974789947271347, 0.0, 0.0), (0.20168067514896393, 0.0, 0.0), (0.20588235557079315, 0.0, 0.0), (0.21008403599262238, 0.0, 0.0), (0.2142857164144516, 0.0, 0.0), (0.21848739683628082, 0.0, 0.0), (0.22268907725811005, 0.0, 0.0), (0.22689075767993927, 0.0, 0.0), (0.23109243810176849, 0.0, 0.0), (0.23529411852359772, 0.0, 0.0), (0.23949579894542694, 0.0, 0.0), (0.24369747936725616, 0.0, 0.0), (0.24789915978908539, 0.0, 0.0), (0.25210085511207581, 0.0, 0.0), (0.25630253553390503, 0.0, 0.0), (0.26050421595573425, 0.0, 0.0), (0.26470589637756348, 0.0, 0.0), (0.2689075767993927, 0.0, 0.0), (0.27310925722122192, 0.0, 0.0), (0.27731093764305115, 0.0, 0.0), (0.28151261806488037, 0.0, 0.0), (0.28571429848670959, 0.0, 0.0), (0.28991597890853882, 0.0, 0.0), (0.29411765933036804, 0.0, 0.0), (0.29831933975219727, 0.0, 0.0), (0.30252102017402649, 0.0, 0.0), (0.30672270059585571, 0.0, 0.0), (0.31092438101768494, 0.0, 0.0), (0.31512606143951416, 0.0, 0.0), (0.31932774186134338, 0.0, 0.0), (0.32352942228317261, 0.0, 0.0), (0.32773110270500183, 0.0, 0.0), (0.33193278312683105, 0.0, 0.0), (0.33613446354866028, 0.0, 0.0), (0.3403361439704895, 0.0, 0.0), (0.34453782439231873, 0.0, 0.0), (0.34873950481414795, 0.0, 0.0), (0.35294118523597717, 0.0, 0.0), (0.3571428656578064, 0.0, 0.0), (0.36134454607963562, 0.0, 0.0), (0.36554622650146484, 0.0, 0.0), (0.36974790692329407, 0.0, 0.0), (0.37394958734512329, 0.0, 0.0), (0.37815126776695251, 0.0, 0.0), (0.38235294818878174, 0.0, 0.0), (0.38655462861061096, 0.0, 0.0), (0.39075630903244019, 0.0, 0.0), (0.39495798945426941, 0.0, 0.0), (0.39915966987609863, 0.0, 0.0), (0.40336135029792786, 0.0, 0.0), (0.40756303071975708, 0.0, 0.0), (0.4117647111415863, 0.0, 0.0), (0.41596639156341553, 0.0, 0.0), (0.42016807198524475, 0.0, 0.0), (0.42436975240707397, 0.0, 0.0), (0.4285714328289032, 0.0, 0.0), (0.43277311325073242, 0.0, 0.0), (0.43697479367256165, 0.0, 0.0), (0.44117647409439087, 0.0, 0.0), (0.44537815451622009, 0.0, 0.0), (0.44957983493804932, 0.0, 0.0), (0.45378151535987854, 0.0, 0.0), (0.45798319578170776, 0.0, 0.0), (0.46218487620353699, 0.0, 0.0), (0.46638655662536621, 0.0, 0.0), (0.47058823704719543, 0.0, 0.0), (0.47478991746902466, 0.0, 0.0), (0.47899159789085388, 0.0, 0.0), (0.48319327831268311, 0.0, 0.0), (0.48739495873451233, 0.0, 0.0), (0.49159663915634155, 0.0, 0.0), (0.49579831957817078, 0.0, 0.0), (0.5, 0.0, 0.0), (0.50420171022415161, 0.0, 0.0), (0.50840336084365845, 0.0, 0.0), (0.51260507106781006, 0.0, 0.0), (0.51680672168731689, 0.0, 0.0), (0.52100843191146851, 0.0, 0.0), (0.52521008253097534, 0.0, 0.0), (0.52941179275512695, 0.0, 0.0), (0.53361344337463379, 0.0, 0.0), (0.5378151535987854, 0.0, 0.0), (0.54201680421829224, 0.0, 0.0), (0.54621851444244385, 0.0, 0.0), (0.55042016506195068, 0.0, 0.0), (0.55462187528610229, 0.0, 0.0), (0.55882352590560913, 0.0, 0.0), (0.56302523612976074, 0.0, 0.0), (0.56722688674926758, 0.0, 0.0), (0.57142859697341919, 0.0, 0.0), (0.57563024759292603, 0.0, 0.0), (0.57983195781707764, 0.0, 0.0), (0.58403360843658447, 0.0, 0.0), (0.58823531866073608, 0.0, 0.0), (0.59243696928024292, 0.0, 0.0), (0.59663867950439453, 0.0, 0.0), (0.60084033012390137, 0.0, 0.0), (0.60504204034805298, 0.0, 0.0), (0.60924369096755981, 0.0, 0.0), (0.61344540119171143, 0.0, 0.0), (0.61764705181121826, 0.0, 0.0), (0.62184876203536987, 0.0, 0.0), (0.62605041265487671, 0.0, 0.0), (0.63025212287902832, 0.0, 0.0), (0.63445377349853516, 0.0, 0.0), (0.63865548372268677, 0.0, 0.0), (0.6428571343421936, 0.0, 0.0), (0.64705884456634521, 0.0, 0.0), (0.65126049518585205, 0.0, 0.0), (0.65546220541000366, 0.0, 0.0), (0.6596638560295105, 0.0, 0.0), (0.66386556625366211, 0.0, 0.0), (0.66806721687316895, 0.0, 0.0), (0.67226892709732056, 0.0, 0.0), (0.67647057771682739, 0.0, 0.0), (0.680672287940979, 0.0, 0.0), (0.68487393856048584, 0.0, 0.0), (0.68907564878463745, 0.0, 0.0), (0.69327729940414429, 0.0, 0.0), (0.6974790096282959, 0.0, 0.0), (0.70168066024780273, 0.0, 0.0), (0.70588237047195435, 0.0, 0.0), (0.71008402109146118, 0.0, 0.0), (0.71428573131561279, 0.0, 0.0), (0.71848738193511963, 0.0, 0.0), (0.72268909215927124, 0.0, 0.0), (0.72689074277877808, 0.0, 0.0), (0.73109245300292969, 0.0, 0.0), (0.73529410362243652, 0.0, 0.0), (0.73949581384658813, 0.0, 0.0), (0.74369746446609497, 0.0, 0.0), (0.74789917469024658, 0.0, 0.0), (0.75210082530975342, 0.0, 0.0), (0.75630253553390503, 0.027450980618596077, 0.027450980618596077), (0.76050418615341187, 0.043137256056070328, 0.043137256056070328), (0.76470589637756348, 0.058823529630899429, 0.058823529630899429), (0.76890754699707031, 0.074509806931018829, 0.074509806931018829), (0.77310925722122192, 0.090196080505847931, 0.090196080505847931), (0.77731090784072876, 0.10588235408067703, 0.10588235408067703), (0.78151261806488037, 0.12156862765550613, 0.12156862765550613), (0.78571426868438721, 0.13725490868091583, 0.13725490868091583), (0.78991597890853882, 0.15294118225574493, 0.15294118225574493), (0.79411762952804565, 0.16862745583057404, 0.16862745583057404), (0.79831933975219727, 0.20000000298023224, 0.20000000298023224), (0.8025209903717041, 0.21176470816135406, 0.21176470816135406), (0.80672270059585571, 0.22745098173618317, 0.22745098173618317), (0.81092435121536255, 0.24313725531101227, 0.24313725531101227), (0.81512606143951416, 0.25882354378700256, 0.25882354378700256), (0.819327712059021, 0.27450981736183167, 0.27450981736183167), (0.82352942228317261, 0.29019609093666077, 0.29019609093666077), (0.82773107290267944, 0.30588236451148987, 0.30588236451148987), (0.83193278312683105, 0.32156863808631897, 0.32156863808631897), (0.83613443374633789, 0.33725491166114807, 0.33725491166114807), (0.8403361439704895, 0.35294118523597717, 0.35294118523597717), (0.84453779458999634, 0.36862745881080627, 0.36862745881080627), (0.84873950481414795, 0.38431373238563538, 0.38431373238563538), (0.85294115543365479, 0.40000000596046448, 0.40000000596046448), (0.8571428656578064, 0.4117647111415863, 0.4117647111415863), (0.86134451627731323, 0.42745098471641541, 0.42745098471641541), (0.86554622650146484, 0.44313725829124451, 0.44313725829124451), (0.86974787712097168, 0.45882353186607361, 0.45882353186607361), (0.87394958734512329, 0.47450980544090271, 0.47450980544090271), (0.87815123796463013, 0.49019607901573181, 0.49019607901573181), (0.88235294818878174, 0.5215686559677124, 0.5215686559677124), (0.88655459880828857, 0.5372549295425415, 0.5372549295425415), (0.89075630903244019, 0.55294120311737061, 0.55294120311737061), (0.89495795965194702, 0.56862747669219971, 0.56862747669219971), (0.89915966987609863, 0.58431375026702881, 0.58431375026702881), (0.90336132049560547, 0.60000002384185791, 0.60000002384185791), (0.90756303071975708, 0.61176472902297974, 0.61176472902297974), (0.91176468133926392, 0.62745100259780884, 0.62745100259780884), (0.91596639156341553, 0.64313727617263794, 0.64313727617263794), (0.92016804218292236, 0.65882354974746704, 0.65882354974746704), (0.92436975240707397, 0.67450982332229614, 0.67450982332229614), (0.92857140302658081, 0.69019609689712524, 0.69019609689712524), (0.93277311325073242, 0.70588237047195435, 0.70588237047195435), (0.93697476387023926, 0.72156864404678345, 0.72156864404678345), (0.94117647409439087, 0.73725491762161255, 0.73725491762161255), (0.94537812471389771, 0.75294119119644165, 0.75294119119644165), (0.94957983493804932, 0.76862746477127075, 0.76862746477127075), (0.95378148555755615, 0.78431373834609985, 0.78431373834609985), (0.95798319578170776, 0.80000001192092896, 0.80000001192092896), (0.9621848464012146, 0.81176471710205078, 0.81176471710205078), (0.96638655662536621, 0.84313726425170898, 0.84313726425170898), (0.97058820724487305, 0.85882353782653809, 0.85882353782653809), (0.97478991746902466, 0.87450981140136719, 0.87450981140136719), (0.97899156808853149, 0.89019608497619629, 0.89019608497619629), (0.98319327831268311, 0.90588235855102539, 0.90588235855102539), (0.98739492893218994, 0.92156863212585449, 0.92156863212585449), (0.99159663915634155, 0.93725490570068359, 0.93725490570068359), (0.99579828977584839, 0.9529411792755127, 0.9529411792755127), (1.0, 0.9686274528503418, 0.9686274528503418)], 'green': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0, 0.0), (0.0084033617749810219, 0.0, 0.0), (0.012605042196810246, 0.0, 0.0), (0.016806723549962044, 0.0, 0.0), (0.021008403971791267, 0.0, 0.0), (0.025210084393620491, 0.0, 0.0), (0.029411764815449715, 0.0, 0.0), (0.033613447099924088, 0.0, 0.0), (0.037815127521753311, 0.0, 0.0), (0.042016807943582535, 0.0, 0.0), (0.046218488365411758, 0.0, 0.0), (0.050420168787240982, 0.0, 0.0), (0.054621849209070206, 0.0, 0.0), (0.058823529630899429, 0.0, 0.0), (0.063025213778018951, 0.0, 0.0), (0.067226894199848175, 0.0, 0.0), (0.071428574621677399, 0.0, 0.0), (0.075630255043506622, 0.0, 0.0), (0.079831935465335846, 0.0, 0.0), (0.08403361588716507, 0.0, 0.0), (0.088235296308994293, 0.0, 0.0), (0.092436976730823517, 0.0, 0.0), (0.09663865715265274, 0.0, 0.0), (0.10084033757448196, 0.0, 0.0), (0.10504201799631119, 0.0, 0.0), (0.10924369841814041, 0.0, 0.0), (0.11344537883996964, 0.0, 0.0), (0.11764705926179886, 0.0, 0.0), (0.12184873968362808, 0.0, 0.0), (0.1260504275560379, 0.0, 0.0), (0.13025210797786713, 0.0, 0.0), (0.13445378839969635, 0.0, 0.0), (0.13865546882152557, 0.0, 0.0), (0.1428571492433548, 0.0, 0.0), (0.14705882966518402, 0.0, 0.0), (0.15126051008701324, 0.0, 0.0), (0.15546219050884247, 0.0, 0.0), (0.15966387093067169, 0.0, 0.0), (0.16386555135250092, 0.0, 0.0), (0.16806723177433014, 0.0, 0.0), (0.17226891219615936, 0.0, 0.0), (0.17647059261798859, 0.0, 0.0), (0.18067227303981781, 0.0, 0.0), (0.18487395346164703, 0.0, 0.0), (0.18907563388347626, 0.0, 0.0), (0.19327731430530548, 0.0, 0.0), (0.1974789947271347, 0.0, 0.0), (0.20168067514896393, 0.0, 0.0), (0.20588235557079315, 0.0, 0.0), (0.21008403599262238, 0.0, 0.0), (0.2142857164144516, 0.0, 0.0), (0.21848739683628082, 0.0, 0.0), (0.22268907725811005, 0.0, 0.0), (0.22689075767993927, 0.0, 0.0), (0.23109243810176849, 0.0, 0.0), (0.23529411852359772, 0.0, 0.0), (0.23949579894542694, 0.0, 0.0), (0.24369747936725616, 0.0, 0.0), (0.24789915978908539, 0.0, 0.0), (0.25210085511207581, 0.0, 0.0), (0.25630253553390503, 0.0, 0.0), (0.26050421595573425, 0.0, 0.0), (0.26470589637756348, 0.0, 0.0), (0.2689075767993927, 0.0, 0.0), (0.27310925722122192, 0.0, 0.0), (0.27731093764305115, 0.0, 0.0), (0.28151261806488037, 0.0, 0.0), (0.28571429848670959, 0.0, 0.0), (0.28991597890853882, 0.0, 0.0), (0.29411765933036804, 0.0, 0.0), (0.29831933975219727, 0.0, 0.0), (0.30252102017402649, 0.0, 0.0), (0.30672270059585571, 0.0, 0.0), (0.31092438101768494, 0.0, 0.0), (0.31512606143951416, 0.0, 0.0), (0.31932774186134338, 0.0, 0.0), (0.32352942228317261, 0.0, 0.0), (0.32773110270500183, 0.0, 0.0), (0.33193278312683105, 0.0, 0.0), (0.33613446354866028, 0.0, 0.0), (0.3403361439704895, 0.0, 0.0), (0.34453782439231873, 0.0, 0.0), (0.34873950481414795, 0.0, 0.0), (0.35294118523597717, 0.0, 0.0), (0.3571428656578064, 0.0, 0.0), (0.36134454607963562, 0.0, 0.0), (0.36554622650146484, 0.0, 0.0), (0.36974790692329407, 0.0, 0.0), (0.37394958734512329, 0.0, 0.0), (0.37815126776695251, 0.0, 0.0), (0.38235294818878174, 0.0, 0.0), (0.38655462861061096, 0.0, 0.0), (0.39075630903244019, 0.0, 0.0), (0.39495798945426941, 0.0, 0.0), (0.39915966987609863, 0.0, 0.0), (0.40336135029792786, 0.0, 0.0), (0.40756303071975708, 0.0, 0.0), (0.4117647111415863, 0.0, 0.0), (0.41596639156341553, 0.0, 0.0), (0.42016807198524475, 0.0, 0.0), (0.42436975240707397, 0.0, 0.0), (0.4285714328289032, 0.0, 0.0), (0.43277311325073242, 0.0, 0.0), (0.43697479367256165, 0.0, 0.0), (0.44117647409439087, 0.0, 0.0), (0.44537815451622009, 0.0, 0.0), (0.44957983493804932, 0.0, 0.0), (0.45378151535987854, 0.0, 0.0), (0.45798319578170776, 0.0, 0.0), (0.46218487620353699, 0.0, 0.0), (0.46638655662536621, 0.0, 0.0), (0.47058823704719543, 0.0, 0.0), (0.47478991746902466, 0.0, 0.0), (0.47899159789085388, 0.0039215688593685627, 0.0039215688593685627), (0.48319327831268311, 0.011764706112444401, 0.011764706112444401), (0.48739495873451233, 0.019607843831181526, 0.019607843831181526), (0.49159663915634155, 0.027450980618596077, 0.027450980618596077), (0.49579831957817078, 0.035294119268655777, 0.035294119268655777), (0.5, 0.043137256056070328, 0.043137256056070328), (0.50420171022415161, 0.058823529630899429, 0.058823529630899429), (0.50840336084365845, 0.066666670143604279, 0.066666670143604279), (0.51260507106781006, 0.070588238537311554, 0.070588238537311554), (0.51680672168731689, 0.078431375324726105, 0.078431375324726105), (0.52100843191146851, 0.086274512112140656, 0.086274512112140656), (0.52521008253097534, 0.094117648899555206, 0.094117648899555206), (0.52941179275512695, 0.10196078568696976, 0.10196078568696976), (0.53361344337463379, 0.10980392247438431, 0.10980392247438431), (0.5378151535987854, 0.11764705926179886, 0.11764705926179886), (0.54201680421829224, 0.12549020349979401, 0.12549020349979401), (0.54621851444244385, 0.13725490868091583, 0.13725490868091583), (0.55042016506195068, 0.14509804546833038, 0.14509804546833038), (0.55462187528610229, 0.15294118225574493, 0.15294118225574493), (0.55882352590560913, 0.16078431904315948, 0.16078431904315948), (0.56302523612976074, 0.16862745583057404, 0.16862745583057404), (0.56722688674926758, 0.17647059261798859, 0.17647059261798859), (0.57142859697341919, 0.18431372940540314, 0.18431372940540314), (0.57563024759292603, 0.19215686619281769, 0.19215686619281769), (0.57983195781707764, 0.20000000298023224, 0.20000000298023224), (0.58403360843658447, 0.20392157137393951, 0.20392157137393951), (0.58823531866073608, 0.21176470816135406, 0.21176470816135406), (0.59243696928024292, 0.21960784494876862, 0.21960784494876862), (0.59663867950439453, 0.22745098173618317, 0.22745098173618317), (0.60084033012390137, 0.23529411852359772, 0.23529411852359772), (0.60504204034805298, 0.24313725531101227, 0.24313725531101227), (0.60924369096755981, 0.25098040699958801, 0.25098040699958801), (0.61344540119171143, 0.25882354378700256, 0.25882354378700256), (0.61764705181121826, 0.26666668057441711, 0.26666668057441711), (0.62184876203536987, 0.27058824896812439, 0.27058824896812439), (0.62605041265487671, 0.27843138575553894, 0.27843138575553894), (0.63025212287902832, 0.29411765933036804, 0.29411765933036804), (0.63445377349853516, 0.30196079611778259, 0.30196079611778259), (0.63865548372268677, 0.30980393290519714, 0.30980393290519714), (0.6428571343421936, 0.31764706969261169, 0.31764706969261169), (0.64705884456634521, 0.32549020648002625, 0.32549020648002625), (0.65126049518585205, 0.3333333432674408, 0.3333333432674408), (0.65546220541000366, 0.33725491166114807, 0.33725491166114807), (0.6596638560295105, 0.34509804844856262, 0.34509804844856262), (0.66386556625366211, 0.35294118523597717, 0.35294118523597717), (0.66806721687316895, 0.36078432202339172, 0.36078432202339172), (0.67226892709732056, 0.36862745881080627, 0.36862745881080627), (0.67647057771682739, 0.37647059559822083, 0.37647059559822083), (0.680672287940979, 0.38431373238563538, 0.38431373238563538), (0.68487393856048584, 0.39215686917304993, 0.39215686917304993), (0.68907564878463745, 0.40000000596046448, 0.40000000596046448), (0.69327729940414429, 0.40392157435417175, 0.40392157435417175), (0.6974790096282959, 0.4117647111415863, 0.4117647111415863), (0.70168066024780273, 0.41960784792900085, 0.41960784792900085), (0.70588237047195435, 0.42745098471641541, 0.42745098471641541), (0.71008402109146118, 0.43529412150382996, 0.43529412150382996), (0.71428573131561279, 0.45098039507865906, 0.45098039507865906), (0.71848738193511963, 0.45882353186607361, 0.45882353186607361), (0.72268909215927124, 0.46666666865348816, 0.46666666865348816), (0.72689074277877808, 0.47058823704719543, 0.47058823704719543), (0.73109245300292969, 0.47843137383460999, 0.47843137383460999), (0.73529410362243652, 0.48627451062202454, 0.48627451062202454), (0.73949581384658813, 0.49411764740943909, 0.49411764740943909), (0.74369746446609497, 0.50196081399917603, 0.50196081399917603), (0.74789917469024658, 0.50980395078659058, 0.50980395078659058), (0.75210082530975342, 0.51764708757400513, 0.51764708757400513), (0.75630253553390503, 0.53333336114883423, 0.53333336114883423), (0.76050418615341187, 0.5372549295425415, 0.5372549295425415), (0.76470589637756348, 0.54509806632995605, 0.54509806632995605), (0.76890754699707031, 0.55294120311737061, 0.55294120311737061), (0.77310925722122192, 0.56078433990478516, 0.56078433990478516), (0.77731090784072876, 0.56862747669219971, 0.56862747669219971), (0.78151261806488037, 0.57647061347961426, 0.57647061347961426), (0.78571426868438721, 0.58431375026702881, 0.58431375026702881), (0.78991597890853882, 0.59215688705444336, 0.59215688705444336), (0.79411762952804565, 0.60000002384185791, 0.60000002384185791), (0.79831933975219727, 0.61176472902297974, 0.61176472902297974), (0.8025209903717041, 0.61960786581039429, 0.61960786581039429), (0.80672270059585571, 0.62745100259780884, 0.62745100259780884), (0.81092435121536255, 0.63529413938522339, 0.63529413938522339), (0.81512606143951416, 0.64313727617263794, 0.64313727617263794), (0.819327712059021, 0.65098041296005249, 0.65098041296005249), (0.82352942228317261, 0.65882354974746704, 0.65882354974746704), (0.82773107290267944, 0.66666668653488159, 0.66666668653488159), (0.83193278312683105, 0.67058825492858887, 0.67058825492858887), (0.83613443374633789, 0.67843139171600342, 0.67843139171600342), (0.8403361439704895, 0.68627452850341797, 0.68627452850341797), (0.84453779458999634, 0.69411766529083252, 0.69411766529083252), (0.84873950481414795, 0.70196080207824707, 0.70196080207824707), (0.85294115543365479, 0.70980393886566162, 0.70980393886566162), (0.8571428656578064, 0.71764707565307617, 0.71764707565307617), (0.86134451627731323, 0.72549021244049072, 0.72549021244049072), (0.86554622650146484, 0.73333334922790527, 0.73333334922790527), (0.86974787712097168, 0.73725491762161255, 0.73725491762161255), (0.87394958734512329, 0.7450980544090271, 0.7450980544090271), (0.87815123796463013, 0.75294119119644165, 0.75294119119644165), (0.88235294818878174, 0.76862746477127075, 0.76862746477127075), (0.88655459880828857, 0.7764706015586853, 0.7764706015586853), (0.89075630903244019, 0.78431373834609985, 0.78431373834609985), (0.89495795965194702, 0.7921568751335144, 0.7921568751335144), (0.89915966987609863, 0.80000001192092896, 0.80000001192092896), (0.90336132049560547, 0.80392158031463623, 0.80392158031463623), (0.90756303071975708, 0.81176471710205078, 0.81176471710205078), (0.91176468133926392, 0.81960785388946533, 0.81960785388946533), (0.91596639156341553, 0.82745099067687988, 0.82745099067687988), (0.92016804218292236, 0.83529412746429443, 0.83529412746429443), (0.92436975240707397, 0.84313726425170898, 0.84313726425170898), (0.92857140302658081, 0.85098040103912354, 0.85098040103912354), (0.93277311325073242, 0.85882353782653809, 0.85882353782653809), (0.93697476387023926, 0.86666667461395264, 0.86666667461395264), (0.94117647409439087, 0.87058824300765991, 0.87058824300765991), (0.94537812471389771, 0.87843137979507446, 0.87843137979507446), (0.94957983493804932, 0.88627451658248901, 0.88627451658248901), (0.95378148555755615, 0.89411765336990356, 0.89411765336990356), (0.95798319578170776, 0.90196079015731812, 0.90196079015731812), (0.9621848464012146, 0.90980392694473267, 0.90980392694473267), (0.96638655662536621, 0.92549020051956177, 0.92549020051956177), (0.97058820724487305, 0.93333333730697632, 0.93333333730697632), (0.97478991746902466, 0.93725490570068359, 0.93725490570068359), (0.97899156808853149, 0.94509804248809814, 0.94509804248809814), (0.98319327831268311, 0.9529411792755127, 0.9529411792755127), (0.98739492893218994, 0.96078431606292725, 0.96078431606292725), (0.99159663915634155, 0.9686274528503418, 0.9686274528503418), (0.99579828977584839, 0.97647058963775635, 0.97647058963775635), (1.0, 0.9843137264251709, 0.9843137264251709)], 'red': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0039215688593685627, 0.0039215688593685627), (0.0084033617749810219, 0.0078431377187371254, 0.0078431377187371254), (0.012605042196810246, 0.015686275437474251, 0.015686275437474251), (0.016806723549962044, 0.019607843831181526, 0.019607843831181526), (0.021008403971791267, 0.027450980618596077, 0.027450980618596077), (0.025210084393620491, 0.031372550874948502, 0.031372550874948502), (0.029411764815449715, 0.039215687662363052, 0.039215687662363052), (0.033613447099924088, 0.043137256056070328, 0.043137256056070328), (0.037815127521753311, 0.050980392843484879, 0.050980392843484879), (0.042016807943582535, 0.058823529630899429, 0.058823529630899429), (0.046218488365411758, 0.066666670143604279, 0.066666670143604279), (0.050420168787240982, 0.070588238537311554, 0.070588238537311554), (0.054621849209070206, 0.078431375324726105, 0.078431375324726105), (0.058823529630899429, 0.08235294371843338, 0.08235294371843338), (0.063025213778018951, 0.090196080505847931, 0.090196080505847931), (0.067226894199848175, 0.094117648899555206, 0.094117648899555206), (0.071428574621677399, 0.10196078568696976, 0.10196078568696976), (0.075630255043506622, 0.10588235408067703, 0.10588235408067703), (0.079831935465335846, 0.10980392247438431, 0.10980392247438431), (0.08403361588716507, 0.11764705926179886, 0.11764705926179886), (0.088235296308994293, 0.12156862765550613, 0.12156862765550613), (0.092436976730823517, 0.12941177189350128, 0.12941177189350128), (0.09663865715265274, 0.13333334028720856, 0.13333334028720856), (0.10084033757448196, 0.14117647707462311, 0.14117647707462311), (0.10504201799631119, 0.14509804546833038, 0.14509804546833038), (0.10924369841814041, 0.15294118225574493, 0.15294118225574493), (0.11344537883996964, 0.15686275064945221, 0.15686275064945221), (0.11764705926179886, 0.16470588743686676, 0.16470588743686676), (0.12184873968362808, 0.16862745583057404, 0.16862745583057404), (0.1260504275560379, 0.18039216101169586, 0.18039216101169586), (0.13025210797786713, 0.18431372940540314, 0.18431372940540314), (0.13445378839969635, 0.19215686619281769, 0.19215686619281769), (0.13865546882152557, 0.19607843458652496, 0.19607843458652496), (0.1428571492433548, 0.20392157137393951, 0.20392157137393951), (0.14705882966518402, 0.20784313976764679, 0.20784313976764679), (0.15126051008701324, 0.21568627655506134, 0.21568627655506134), (0.15546219050884247, 0.21960784494876862, 0.21960784494876862), (0.15966387093067169, 0.22352941334247589, 0.22352941334247589), (0.16386555135250092, 0.23137255012989044, 0.23137255012989044), (0.16806723177433014, 0.23529411852359772, 0.23529411852359772), (0.17226891219615936, 0.24313725531101227, 0.24313725531101227), (0.17647059261798859, 0.24705882370471954, 0.24705882370471954), (0.18067227303981781, 0.25490197539329529, 0.25490197539329529), (0.18487395346164703, 0.25882354378700256, 0.25882354378700256), (0.18907563388347626, 0.26666668057441711, 0.26666668057441711), (0.19327731430530548, 0.27058824896812439, 0.27058824896812439), (0.1974789947271347, 0.27450981736183167, 0.27450981736183167), (0.20168067514896393, 0.28235295414924622, 0.28235295414924622), (0.20588235557079315, 0.28627452254295349, 0.28627452254295349), (0.21008403599262238, 0.29803922772407532, 0.29803922772407532), (0.2142857164144516, 0.30588236451148987, 0.30588236451148987), (0.21848739683628082, 0.30980393290519714, 0.30980393290519714), (0.22268907725811005, 0.31764706969261169, 0.31764706969261169), (0.22689075767993927, 0.32156863808631897, 0.32156863808631897), (0.23109243810176849, 0.32941177487373352, 0.32941177487373352), (0.23529411852359772, 0.3333333432674408, 0.3333333432674408), (0.23949579894542694, 0.33725491166114807, 0.33725491166114807), (0.24369747936725616, 0.34509804844856262, 0.34509804844856262), (0.24789915978908539, 0.3490196168422699, 0.3490196168422699), (0.25210085511207581, 0.36078432202339172, 0.36078432202339172), (0.25630253553390503, 0.36862745881080627, 0.36862745881080627), (0.26050421595573425, 0.37254902720451355, 0.37254902720451355), (0.26470589637756348, 0.3803921639919281, 0.3803921639919281), (0.2689075767993927, 0.38431373238563538, 0.38431373238563538), (0.27310925722122192, 0.38823530077934265, 0.38823530077934265), (0.27731093764305115, 0.3960784375667572, 0.3960784375667572), (0.28151261806488037, 0.40000000596046448, 0.40000000596046448), (0.28571429848670959, 0.40784314274787903, 0.40784314274787903), (0.28991597890853882, 0.4117647111415863, 0.4117647111415863), (0.29411765933036804, 0.42352941632270813, 0.42352941632270813), (0.29831933975219727, 0.43137255311012268, 0.43137255311012268), (0.30252102017402649, 0.43529412150382996, 0.43529412150382996), (0.30672270059585571, 0.44313725829124451, 0.44313725829124451), (0.31092438101768494, 0.44705882668495178, 0.44705882668495178), (0.31512606143951416, 0.45098039507865906, 0.45098039507865906), (0.31932774186134338, 0.45882353186607361, 0.45882353186607361), (0.32352942228317261, 0.46274510025978088, 0.46274510025978088), (0.32773110270500183, 0.47058823704719543, 0.47058823704719543), (0.33193278312683105, 0.47450980544090271, 0.47450980544090271), (0.33613446354866028, 0.48235294222831726, 0.48235294222831726), (0.3403361439704895, 0.48627451062202454, 0.48627451062202454), (0.34453782439231873, 0.49411764740943909, 0.49411764740943909), (0.34873950481414795, 0.49803921580314636, 0.49803921580314636), (0.35294118523597717, 0.50196081399917603, 0.50196081399917603), (0.3571428656578064, 0.50980395078659058, 0.50980395078659058), (0.36134454607963562, 0.51372551918029785, 0.51372551918029785), (0.36554622650146484, 0.5215686559677124, 0.5215686559677124), (0.36974790692329407, 0.52549022436141968, 0.52549022436141968), (0.37394958734512329, 0.53333336114883423, 0.53333336114883423), (0.37815126776695251, 0.54509806632995605, 0.54509806632995605), (0.38235294818878174, 0.54901963472366333, 0.54901963472366333), (0.38655462861061096, 0.55294120311737061, 0.55294120311737061), (0.39075630903244019, 0.56078433990478516, 0.56078433990478516), (0.39495798945426941, 0.56470590829849243, 0.56470590829849243), (0.39915966987609863, 0.57254904508590698, 0.57254904508590698), (0.40336135029792786, 0.57647061347961426, 0.57647061347961426), (0.40756303071975708, 0.58431375026702881, 0.58431375026702881), (0.4117647111415863, 0.58823531866073608, 0.58823531866073608), (0.41596639156341553, 0.59607845544815063, 0.59607845544815063), (0.42016807198524475, 0.60000002384185791, 0.60000002384185791), (0.42436975240707397, 0.60784316062927246, 0.60784316062927246), (0.4285714328289032, 0.61176472902297974, 0.61176472902297974), (0.43277311325073242, 0.61568629741668701, 0.61568629741668701), (0.43697479367256165, 0.62352943420410156, 0.62352943420410156), (0.44117647409439087, 0.62745100259780884, 0.62745100259780884), (0.44537815451622009, 0.63529413938522339, 0.63529413938522339), (0.44957983493804932, 0.63921570777893066, 0.63921570777893066), (0.45378151535987854, 0.64705884456634521, 0.64705884456634521), (0.45798319578170776, 0.65098041296005249, 0.65098041296005249), (0.46218487620353699, 0.66274511814117432, 0.66274511814117432), (0.46638655662536621, 0.66666668653488159, 0.66666668653488159), (0.47058823704719543, 0.67450982332229614, 0.67450982332229614), (0.47478991746902466, 0.67843139171600342, 0.67843139171600342), (0.47899159789085388, 0.68627452850341797, 0.68627452850341797), (0.48319327831268311, 0.69019609689712524, 0.69019609689712524), (0.48739495873451233, 0.69803923368453979, 0.69803923368453979), (0.49159663915634155, 0.70196080207824707, 0.70196080207824707), (0.49579831957817078, 0.70980393886566162, 0.70980393886566162), (0.5, 0.7137255072593689, 0.7137255072593689), (0.50420171022415161, 0.72549021244049072, 0.72549021244049072), (0.50840336084365845, 0.729411780834198, 0.729411780834198), (0.51260507106781006, 0.73725491762161255, 0.73725491762161255), (0.51680672168731689, 0.74117648601531982, 0.74117648601531982), (0.52100843191146851, 0.74901962280273438, 0.74901962280273438), (0.52521008253097534, 0.75294119119644165, 0.75294119119644165), (0.52941179275512695, 0.7607843279838562, 0.7607843279838562), (0.53361344337463379, 0.76470589637756348, 0.76470589637756348), (0.5378151535987854, 0.77254903316497803, 0.77254903316497803), (0.54201680421829224, 0.7764706015586853, 0.7764706015586853), (0.54621851444244385, 0.78823530673980713, 0.78823530673980713), (0.55042016506195068, 0.7921568751335144, 0.7921568751335144), (0.55462187528610229, 0.80000001192092896, 0.80000001192092896), (0.55882352590560913, 0.80392158031463623, 0.80392158031463623), (0.56302523612976074, 0.81176471710205078, 0.81176471710205078), (0.56722688674926758, 0.81568628549575806, 0.81568628549575806), (0.57142859697341919, 0.82352942228317261, 0.82352942228317261), (0.57563024759292603, 0.82745099067687988, 0.82745099067687988), (0.57983195781707764, 0.83137255907058716, 0.83137255907058716), (0.58403360843658447, 0.83921569585800171, 0.83921569585800171), (0.58823531866073608, 0.84313726425170898, 0.84313726425170898), (0.59243696928024292, 0.85098040103912354, 0.85098040103912354), (0.59663867950439453, 0.85490196943283081, 0.85490196943283081), (0.60084033012390137, 0.86274510622024536, 0.86274510622024536), (0.60504204034805298, 0.86666667461395264, 0.86666667461395264), (0.60924369096755981, 0.87450981140136719, 0.87450981140136719), (0.61344540119171143, 0.87843137979507446, 0.87843137979507446), (0.61764705181121826, 0.88627451658248901, 0.88627451658248901), (0.62184876203536987, 0.89019608497619629, 0.89019608497619629), (0.62605041265487671, 0.89411765336990356, 0.89411765336990356), (0.63025212287902832, 0.90588235855102539, 0.90588235855102539), (0.63445377349853516, 0.91372549533843994, 0.91372549533843994), (0.63865548372268677, 0.91764706373214722, 0.91764706373214722), (0.6428571343421936, 0.92549020051956177, 0.92549020051956177), (0.64705884456634521, 0.92941176891326904, 0.92941176891326904), (0.65126049518585205, 0.93725490570068359, 0.93725490570068359), (0.65546220541000366, 0.94117647409439087, 0.94117647409439087), (0.6596638560295105, 0.94509804248809814, 0.94509804248809814), (0.66386556625366211, 0.9529411792755127, 0.9529411792755127), (0.66806721687316895, 0.95686274766921997, 0.95686274766921997), (0.67226892709732056, 0.96470588445663452, 0.96470588445663452), (0.67647057771682739, 0.9686274528503418, 0.9686274528503418), (0.680672287940979, 0.97647058963775635, 0.97647058963775635), (0.68487393856048584, 0.98039215803146362, 0.98039215803146362), (0.68907564878463745, 0.98823529481887817, 0.98823529481887817), (0.69327729940414429, 0.99215686321258545, 0.99215686321258545), (0.6974790096282959, 1.0, 1.0), (0.70168066024780273, 1.0, 1.0), (0.70588237047195435, 1.0, 1.0), (0.71008402109146118, 1.0, 1.0), (0.71428573131561279, 1.0, 1.0), (0.71848738193511963, 1.0, 1.0), (0.72268909215927124, 1.0, 1.0), (0.72689074277877808, 1.0, 1.0), (0.73109245300292969, 1.0, 1.0), (0.73529410362243652, 1.0, 1.0), (0.73949581384658813, 1.0, 1.0), (0.74369746446609497, 1.0, 1.0), (0.74789917469024658, 1.0, 1.0), (0.75210082530975342, 1.0, 1.0), (0.75630253553390503, 1.0, 1.0), (0.76050418615341187, 1.0, 1.0), (0.76470589637756348, 1.0, 1.0), (0.76890754699707031, 1.0, 1.0), (0.77310925722122192, 1.0, 1.0), (0.77731090784072876, 1.0, 1.0), (0.78151261806488037, 1.0, 1.0), (0.78571426868438721, 1.0, 1.0), (0.78991597890853882, 1.0, 1.0), (0.79411762952804565, 1.0, 1.0), (0.79831933975219727, 1.0, 1.0), (0.8025209903717041, 1.0, 1.0), (0.80672270059585571, 1.0, 1.0), (0.81092435121536255, 1.0, 1.0), (0.81512606143951416, 1.0, 1.0), (0.819327712059021, 1.0, 1.0), (0.82352942228317261, 1.0, 1.0), (0.82773107290267944, 1.0, 1.0), (0.83193278312683105, 1.0, 1.0), (0.83613443374633789, 1.0, 1.0), (0.8403361439704895, 1.0, 1.0), (0.84453779458999634, 1.0, 1.0), (0.84873950481414795, 1.0, 1.0), (0.85294115543365479, 1.0, 1.0), (0.8571428656578064, 1.0, 1.0), (0.86134451627731323, 1.0, 1.0), (0.86554622650146484, 1.0, 1.0), (0.86974787712097168, 1.0, 1.0), (0.87394958734512329, 1.0, 1.0), (0.87815123796463013, 1.0, 1.0), (0.88235294818878174, 1.0, 1.0), (0.88655459880828857, 1.0, 1.0), (0.89075630903244019, 1.0, 1.0), (0.89495795965194702, 1.0, 1.0), (0.89915966987609863, 1.0, 1.0), (0.90336132049560547, 1.0, 1.0), (0.90756303071975708, 1.0, 1.0), (0.91176468133926392, 1.0, 1.0), (0.91596639156341553, 1.0, 1.0), (0.92016804218292236, 1.0, 1.0), (0.92436975240707397, 1.0, 1.0), (0.92857140302658081, 1.0, 1.0), (0.93277311325073242, 1.0, 1.0), (0.93697476387023926, 1.0, 1.0), (0.94117647409439087, 1.0, 1.0), (0.94537812471389771, 1.0, 1.0), (0.94957983493804932, 1.0, 1.0), (0.95378148555755615, 1.0, 1.0), (0.95798319578170776, 1.0, 1.0), (0.9621848464012146, 1.0, 1.0), (0.96638655662536621, 1.0, 1.0), (0.97058820724487305, 1.0, 1.0), (0.97478991746902466, 1.0, 1.0), (0.97899156808853149, 1.0, 1.0), (0.98319327831268311, 1.0, 1.0), (0.98739492893218994, 1.0, 1.0), (0.99159663915634155, 1.0, 1.0), (0.99579828977584839, 1.0, 1.0), (1.0, 1.0, 1.0)]} _gist_ncar_data = {'blue': [(0.0, 0.50196081399917603, 0.50196081399917603), (0.0050505050458014011, 0.45098039507865906, 0.45098039507865906), (0.010101010091602802, 0.40392157435417175, 0.40392157435417175), (0.015151515603065491, 0.35686275362968445, 0.35686275362968445), (0.020202020183205605, 0.30980393290519714, 0.30980393290519714), (0.025252524763345718, 0.25882354378700256, 0.25882354378700256), (0.030303031206130981, 0.21176470816135406, 0.21176470816135406), (0.035353533923625946, 0.16470588743686676, 0.16470588743686676), (0.040404040366411209, 0.11764705926179886, 0.11764705926179886), (0.045454546809196472, 0.070588238537311554, 0.070588238537311554), (0.050505049526691437, 0.019607843831181526, 0.019607843831181526), (0.0555555559694767, 0.047058824449777603, 0.047058824449777603), (0.060606062412261963, 0.14509804546833038, 0.14509804546833038), (0.065656565129756927, 0.23921568691730499, 0.23921568691730499), (0.070707067847251892, 0.3333333432674408, 0.3333333432674408), (0.075757578015327454, 0.43137255311012268, 0.43137255311012268), (0.080808080732822418, 0.52549022436141968, 0.52549022436141968), (0.085858583450317383, 0.61960786581039429, 0.61960786581039429), (0.090909093618392944, 0.71764707565307617, 0.71764707565307617), (0.095959596335887909, 0.81176471710205078, 0.81176471710205078), (0.10101009905338287, 0.90588235855102539, 0.90588235855102539), (0.10606060922145844, 1.0, 1.0), (0.1111111119389534, 1.0, 1.0), (0.11616161465644836, 1.0, 1.0), (0.12121212482452393, 1.0, 1.0), (0.12626262009143829, 1.0, 1.0), (0.13131313025951385, 1.0, 1.0), (0.13636364042758942, 1.0, 1.0), (0.14141413569450378, 1.0, 1.0), (0.14646464586257935, 1.0, 1.0), (0.15151515603065491, 1.0, 1.0), (0.15656565129756927, 1.0, 1.0), (0.16161616146564484, 1.0, 1.0), (0.1666666716337204, 1.0, 1.0), (0.17171716690063477, 1.0, 1.0), (0.17676767706871033, 1.0, 1.0), (0.18181818723678589, 1.0, 1.0), (0.18686868250370026, 1.0, 1.0), (0.19191919267177582, 1.0, 1.0), (0.19696970283985138, 1.0, 1.0), (0.20202019810676575, 1.0, 1.0), (0.20707070827484131, 1.0, 1.0), (0.21212121844291687, 0.99215686321258545, 0.99215686321258545), (0.21717171370983124, 0.95686274766921997, 0.95686274766921997), (0.2222222238779068, 0.91764706373214722, 0.91764706373214722), (0.22727273404598236, 0.88235294818878174, 0.88235294818878174), (0.23232322931289673, 0.84313726425170898, 0.84313726425170898), (0.23737373948097229, 0.80392158031463623, 0.80392158031463623), (0.24242424964904785, 0.76862746477127075, 0.76862746477127075), (0.24747474491596222, 0.729411780834198, 0.729411780834198), (0.25252524018287659, 0.69019609689712524, 0.69019609689712524), (0.25757575035095215, 0.65490198135375977, 0.65490198135375977), (0.26262626051902771, 0.61568629741668701, 0.61568629741668701), (0.26767677068710327, 0.56470590829849243, 0.56470590829849243), (0.27272728085517883, 0.50980395078659058, 0.50980395078659058), (0.27777779102325439, 0.45098039507865906, 0.45098039507865906), (0.28282827138900757, 0.39215686917304993, 0.39215686917304993), (0.28787878155708313, 0.3333333432674408, 0.3333333432674408), (0.29292929172515869, 0.27843138575553894, 0.27843138575553894), (0.29797980189323425, 0.21960784494876862, 0.21960784494876862), (0.30303031206130981, 0.16078431904315948, 0.16078431904315948), (0.30808082222938538, 0.10588235408067703, 0.10588235408067703), (0.31313130259513855, 0.047058824449777603, 0.047058824449777603), (0.31818181276321411, 0.0, 0.0), (0.32323232293128967, 0.0, 0.0), (0.32828283309936523, 0.0, 0.0), (0.3333333432674408, 0.0, 0.0), (0.33838382363319397, 0.0, 0.0), (0.34343433380126953, 0.0, 0.0), (0.34848484396934509, 0.0, 0.0), (0.35353535413742065, 0.0, 0.0), (0.35858586430549622, 0.0, 0.0), (0.36363637447357178, 0.0, 0.0), (0.36868685483932495, 0.0, 0.0), (0.37373736500740051, 0.0, 0.0), (0.37878787517547607, 0.0, 0.0), (0.38383838534355164, 0.0, 0.0), (0.3888888955116272, 0.0, 0.0), (0.39393940567970276, 0.0, 0.0), (0.39898988604545593, 0.0, 0.0), (0.40404039621353149, 0.0, 0.0), (0.40909090638160706, 0.0, 0.0), (0.41414141654968262, 0.0, 0.0), (0.41919192671775818, 0.0, 0.0), (0.42424243688583374, 0.0039215688593685627, 0.0039215688593685627), (0.42929291725158691, 0.027450980618596077, 0.027450980618596077), (0.43434342741966248, 0.050980392843484879, 0.050980392843484879), (0.43939393758773804, 0.074509806931018829, 0.074509806931018829), (0.4444444477558136, 0.094117648899555206, 0.094117648899555206), (0.44949495792388916, 0.11764705926179886, 0.11764705926179886), (0.45454546809196472, 0.14117647707462311, 0.14117647707462311), (0.4595959484577179, 0.16470588743686676, 0.16470588743686676), (0.46464645862579346, 0.18823529779911041, 0.18823529779911041), (0.46969696879386902, 0.21176470816135406, 0.21176470816135406), (0.47474747896194458, 0.23529411852359772, 0.23529411852359772), (0.47979798913002014, 0.22352941334247589, 0.22352941334247589), (0.4848484992980957, 0.20000000298023224, 0.20000000298023224), (0.48989897966384888, 0.17647059261798859, 0.17647059261798859), (0.49494948983192444, 0.15294118225574493, 0.15294118225574493), (0.5, 0.12941177189350128, 0.12941177189350128), (0.50505048036575317, 0.10980392247438431, 0.10980392247438431), (0.51010102033615112, 0.086274512112140656, 0.086274512112140656), (0.5151515007019043, 0.062745101749897003, 0.062745101749897003), (0.52020204067230225, 0.039215687662363052, 0.039215687662363052), (0.52525252103805542, 0.015686275437474251, 0.015686275437474251), (0.53030300140380859, 0.0, 0.0), (0.53535354137420654, 0.0, 0.0), (0.54040402173995972, 0.0, 0.0), (0.54545456171035767, 0.0, 0.0), (0.55050504207611084, 0.0, 0.0), (0.55555558204650879, 0.0, 0.0), (0.56060606241226196, 0.0, 0.0), (0.56565654277801514, 0.0, 0.0), (0.57070708274841309, 0.0, 0.0), (0.57575756311416626, 0.0, 0.0), (0.58080810308456421, 0.0, 0.0), (0.58585858345031738, 0.0039215688593685627, 0.0039215688593685627), (0.59090906381607056, 0.0078431377187371254, 0.0078431377187371254), (0.59595960378646851, 0.011764706112444401, 0.011764706112444401), (0.60101008415222168, 0.019607843831181526, 0.019607843831181526), (0.60606062412261963, 0.023529412224888802, 0.023529412224888802), (0.6111111044883728, 0.031372550874948502, 0.031372550874948502), (0.61616164445877075, 0.035294119268655777, 0.035294119268655777), (0.62121212482452393, 0.043137256056070328, 0.043137256056070328), (0.6262626051902771, 0.047058824449777603, 0.047058824449777603), (0.63131314516067505, 0.054901961237192154, 0.054901961237192154), (0.63636362552642822, 0.054901961237192154, 0.054901961237192154), (0.64141416549682617, 0.050980392843484879, 0.050980392843484879), (0.64646464586257935, 0.043137256056070328, 0.043137256056070328), (0.65151512622833252, 0.039215687662363052, 0.039215687662363052), (0.65656566619873047, 0.031372550874948502, 0.031372550874948502), (0.66161614656448364, 0.027450980618596077, 0.027450980618596077), (0.66666668653488159, 0.019607843831181526, 0.019607843831181526), (0.67171716690063477, 0.015686275437474251, 0.015686275437474251), (0.67676764726638794, 0.011764706112444401, 0.011764706112444401), (0.68181818723678589, 0.0039215688593685627, 0.0039215688593685627), (0.68686866760253906, 0.0, 0.0), (0.69191920757293701, 0.0, 0.0), (0.69696968793869019, 0.0, 0.0), (0.70202022790908813, 0.0, 0.0), (0.70707070827484131, 0.0, 0.0), (0.71212118864059448, 0.0, 0.0), (0.71717172861099243, 0.0, 0.0), (0.72222220897674561, 0.0, 0.0), (0.72727274894714355, 0.0, 0.0), (0.73232322931289673, 0.0, 0.0), (0.7373737096786499, 0.0, 0.0), (0.74242424964904785, 0.031372550874948502, 0.031372550874948502), (0.74747473001480103, 0.12941177189350128, 0.12941177189350128), (0.75252526998519897, 0.22352941334247589, 0.22352941334247589), (0.75757575035095215, 0.32156863808631897, 0.32156863808631897), (0.7626262903213501, 0.41568627953529358, 0.41568627953529358), (0.76767677068710327, 0.50980395078659058, 0.50980395078659058), (0.77272725105285645, 0.60784316062927246, 0.60784316062927246), (0.77777779102325439, 0.70196080207824707, 0.70196080207824707), (0.78282827138900757, 0.79607844352722168, 0.79607844352722168), (0.78787881135940552, 0.89411765336990356, 0.89411765336990356), (0.79292929172515869, 0.98823529481887817, 0.98823529481887817), (0.79797977209091187, 1.0, 1.0), (0.80303031206130981, 1.0, 1.0), (0.80808079242706299, 1.0, 1.0), (0.81313133239746094, 1.0, 1.0), (0.81818181276321411, 1.0, 1.0), (0.82323235273361206, 1.0, 1.0), (0.82828283309936523, 1.0, 1.0), (0.83333331346511841, 1.0, 1.0), (0.83838385343551636, 1.0, 1.0), (0.84343433380126953, 1.0, 1.0), (0.84848487377166748, 0.99607843160629272, 0.99607843160629272), (0.85353535413742065, 0.98823529481887817, 0.98823529481887817), (0.85858583450317383, 0.9843137264251709, 0.9843137264251709), (0.86363637447357178, 0.97647058963775635, 0.97647058963775635), (0.86868685483932495, 0.9686274528503418, 0.9686274528503418), (0.8737373948097229, 0.96470588445663452, 0.96470588445663452), (0.87878787517547607, 0.95686274766921997, 0.95686274766921997), (0.88383835554122925, 0.94901961088180542, 0.94901961088180542), (0.8888888955116272, 0.94509804248809814, 0.94509804248809814), (0.89393937587738037, 0.93725490570068359, 0.93725490570068359), (0.89898991584777832, 0.93333333730697632, 0.93333333730697632), (0.90404039621353149, 0.93333333730697632, 0.93333333730697632), (0.90909093618392944, 0.93725490570068359, 0.93725490570068359), (0.91414141654968262, 0.93725490570068359, 0.93725490570068359), (0.91919189691543579, 0.94117647409439087, 0.94117647409439087), (0.92424243688583374, 0.94509804248809814, 0.94509804248809814), (0.92929291725158691, 0.94509804248809814, 0.94509804248809814), (0.93434345722198486, 0.94901961088180542, 0.94901961088180542), (0.93939393758773804, 0.9529411792755127, 0.9529411792755127), (0.94444441795349121, 0.9529411792755127, 0.9529411792755127), (0.94949495792388916, 0.95686274766921997, 0.95686274766921997), (0.95454543828964233, 0.96078431606292725, 0.96078431606292725), (0.95959597826004028, 0.96470588445663452, 0.96470588445663452), (0.96464645862579346, 0.9686274528503418, 0.9686274528503418), (0.96969699859619141, 0.97254902124404907, 0.97254902124404907), (0.97474747896194458, 0.97647058963775635, 0.97647058963775635), (0.97979795932769775, 0.98039215803146362, 0.98039215803146362), (0.9848484992980957, 0.9843137264251709, 0.9843137264251709), (0.98989897966384888, 0.98823529481887817, 0.98823529481887817), (0.99494951963424683, 0.99215686321258545, 0.99215686321258545), (1.0, 0.99607843160629272, 0.99607843160629272)], 'green': [(0.0, 0.0, 0.0), (0.0050505050458014011, 0.035294119268655777, 0.035294119268655777), (0.010101010091602802, 0.074509806931018829, 0.074509806931018829), (0.015151515603065491, 0.10980392247438431, 0.10980392247438431), (0.020202020183205605, 0.14901961386203766, 0.14901961386203766), (0.025252524763345718, 0.18431372940540314, 0.18431372940540314), (0.030303031206130981, 0.22352941334247589, 0.22352941334247589), (0.035353533923625946, 0.25882354378700256, 0.25882354378700256), (0.040404040366411209, 0.29803922772407532, 0.29803922772407532), (0.045454546809196472, 0.3333333432674408, 0.3333333432674408), (0.050505049526691437, 0.37254902720451355, 0.37254902720451355), (0.0555555559694767, 0.36862745881080627, 0.36862745881080627), (0.060606062412261963, 0.3333333432674408, 0.3333333432674408), (0.065656565129756927, 0.29411765933036804, 0.29411765933036804), (0.070707067847251892, 0.25882354378700256, 0.25882354378700256), (0.075757578015327454, 0.21960784494876862, 0.21960784494876862), (0.080808080732822418, 0.18431372940540314, 0.18431372940540314), (0.085858583450317383, 0.14509804546833038, 0.14509804546833038), (0.090909093618392944, 0.10980392247438431, 0.10980392247438431), (0.095959596335887909, 0.070588238537311554, 0.070588238537311554), (0.10101009905338287, 0.035294119268655777, 0.035294119268655777), (0.10606060922145844, 0.0, 0.0), (0.1111111119389534, 0.074509806931018829, 0.074509806931018829), (0.11616161465644836, 0.14509804546833038, 0.14509804546833038), (0.12121212482452393, 0.21568627655506134, 0.21568627655506134), (0.12626262009143829, 0.28627452254295349, 0.28627452254295349), (0.13131313025951385, 0.36078432202339172, 0.36078432202339172), (0.13636364042758942, 0.43137255311012268, 0.43137255311012268), (0.14141413569450378, 0.50196081399917603, 0.50196081399917603), (0.14646464586257935, 0.57254904508590698, 0.57254904508590698), (0.15151515603065491, 0.64705884456634521, 0.64705884456634521), (0.15656565129756927, 0.71764707565307617, 0.71764707565307617), (0.16161616146564484, 0.7607843279838562, 0.7607843279838562), (0.1666666716337204, 0.78431373834609985, 0.78431373834609985), (0.17171716690063477, 0.80784314870834351, 0.80784314870834351), (0.17676767706871033, 0.83137255907058716, 0.83137255907058716), (0.18181818723678589, 0.85490196943283081, 0.85490196943283081), (0.18686868250370026, 0.88235294818878174, 0.88235294818878174), (0.19191919267177582, 0.90588235855102539, 0.90588235855102539), (0.19696970283985138, 0.92941176891326904, 0.92941176891326904), (0.20202019810676575, 0.9529411792755127, 0.9529411792755127), (0.20707070827484131, 0.97647058963775635, 0.97647058963775635), (0.21212121844291687, 0.99607843160629272, 0.99607843160629272), (0.21717171370983124, 0.99607843160629272, 0.99607843160629272), (0.2222222238779068, 0.99215686321258545, 0.99215686321258545), (0.22727273404598236, 0.99215686321258545, 0.99215686321258545), (0.23232322931289673, 0.99215686321258545, 0.99215686321258545), (0.23737373948097229, 0.98823529481887817, 0.98823529481887817), (0.24242424964904785, 0.98823529481887817, 0.98823529481887817), (0.24747474491596222, 0.9843137264251709, 0.9843137264251709), (0.25252524018287659, 0.9843137264251709, 0.9843137264251709), (0.25757575035095215, 0.98039215803146362, 0.98039215803146362), (0.26262626051902771, 0.98039215803146362, 0.98039215803146362), (0.26767677068710327, 0.98039215803146362, 0.98039215803146362), (0.27272728085517883, 0.98039215803146362, 0.98039215803146362), (0.27777779102325439, 0.9843137264251709, 0.9843137264251709), (0.28282827138900757, 0.9843137264251709, 0.9843137264251709), (0.28787878155708313, 0.98823529481887817, 0.98823529481887817), (0.29292929172515869, 0.98823529481887817, 0.98823529481887817), (0.29797980189323425, 0.99215686321258545, 0.99215686321258545), (0.30303031206130981, 0.99215686321258545, 0.99215686321258545), (0.30808082222938538, 0.99607843160629272, 0.99607843160629272), (0.31313130259513855, 0.99607843160629272, 0.99607843160629272), (0.31818181276321411, 0.99607843160629272, 0.99607843160629272), (0.32323232293128967, 0.97647058963775635, 0.97647058963775635), (0.32828283309936523, 0.95686274766921997, 0.95686274766921997), (0.3333333432674408, 0.93725490570068359, 0.93725490570068359), (0.33838382363319397, 0.92156863212585449, 0.92156863212585449), (0.34343433380126953, 0.90196079015731812, 0.90196079015731812), (0.34848484396934509, 0.88235294818878174, 0.88235294818878174), (0.35353535413742065, 0.86274510622024536, 0.86274510622024536), (0.35858586430549622, 0.84705883264541626, 0.84705883264541626), (0.36363637447357178, 0.82745099067687988, 0.82745099067687988), (0.36868685483932495, 0.80784314870834351, 0.80784314870834351), (0.37373736500740051, 0.81568628549575806, 0.81568628549575806), (0.37878787517547607, 0.83529412746429443, 0.83529412746429443), (0.38383838534355164, 0.85098040103912354, 0.85098040103912354), (0.3888888955116272, 0.87058824300765991, 0.87058824300765991), (0.39393940567970276, 0.89019608497619629, 0.89019608497619629), (0.39898988604545593, 0.90980392694473267, 0.90980392694473267), (0.40404039621353149, 0.92549020051956177, 0.92549020051956177), (0.40909090638160706, 0.94509804248809814, 0.94509804248809814), (0.41414141654968262, 0.96470588445663452, 0.96470588445663452), (0.41919192671775818, 0.9843137264251709, 0.9843137264251709), (0.42424243688583374, 1.0, 1.0), (0.42929291725158691, 1.0, 1.0), (0.43434342741966248, 1.0, 1.0), (0.43939393758773804, 1.0, 1.0), (0.4444444477558136, 1.0, 1.0), (0.44949495792388916, 1.0, 1.0), (0.45454546809196472, 1.0, 1.0), (0.4595959484577179, 1.0, 1.0), (0.46464645862579346, 1.0, 1.0), (0.46969696879386902, 1.0, 1.0), (0.47474747896194458, 1.0, 1.0), (0.47979798913002014, 1.0, 1.0), (0.4848484992980957, 1.0, 1.0), (0.48989897966384888, 1.0, 1.0), (0.49494948983192444, 1.0, 1.0), (0.5, 1.0, 1.0), (0.50505048036575317, 1.0, 1.0), (0.51010102033615112, 1.0, 1.0), (0.5151515007019043, 1.0, 1.0), (0.52020204067230225, 1.0, 1.0), (0.52525252103805542, 1.0, 1.0), (0.53030300140380859, 0.99215686321258545, 0.99215686321258545), (0.53535354137420654, 0.98039215803146362, 0.98039215803146362), (0.54040402173995972, 0.96470588445663452, 0.96470588445663452), (0.54545456171035767, 0.94901961088180542, 0.94901961088180542), (0.55050504207611084, 0.93333333730697632, 0.93333333730697632), (0.55555558204650879, 0.91764706373214722, 0.91764706373214722), (0.56060606241226196, 0.90588235855102539, 0.90588235855102539), (0.56565654277801514, 0.89019608497619629, 0.89019608497619629), (0.57070708274841309, 0.87450981140136719, 0.87450981140136719), (0.57575756311416626, 0.85882353782653809, 0.85882353782653809), (0.58080810308456421, 0.84313726425170898, 0.84313726425170898), (0.58585858345031738, 0.83137255907058716, 0.83137255907058716), (0.59090906381607056, 0.81960785388946533, 0.81960785388946533), (0.59595960378646851, 0.81176471710205078, 0.81176471710205078), (0.60101008415222168, 0.80000001192092896, 0.80000001192092896), (0.60606062412261963, 0.78823530673980713, 0.78823530673980713), (0.6111111044883728, 0.7764706015586853, 0.7764706015586853), (0.61616164445877075, 0.76470589637756348, 0.76470589637756348), (0.62121212482452393, 0.75294119119644165, 0.75294119119644165), (0.6262626051902771, 0.74117648601531982, 0.74117648601531982), (0.63131314516067505, 0.729411780834198, 0.729411780834198), (0.63636362552642822, 0.70980393886566162, 0.70980393886566162), (0.64141416549682617, 0.66666668653488159, 0.66666668653488159), (0.64646464586257935, 0.62352943420410156, 0.62352943420410156), (0.65151512622833252, 0.58039218187332153, 0.58039218187332153), (0.65656566619873047, 0.5372549295425415, 0.5372549295425415), (0.66161614656448364, 0.49411764740943909, 0.49411764740943909), (0.66666668653488159, 0.45098039507865906, 0.45098039507865906), (0.67171716690063477, 0.40392157435417175, 0.40392157435417175), (0.67676764726638794, 0.36078432202339172, 0.36078432202339172), (0.68181818723678589, 0.31764706969261169, 0.31764706969261169), (0.68686866760253906, 0.27450981736183167, 0.27450981736183167), (0.69191920757293701, 0.24705882370471954, 0.24705882370471954), (0.69696968793869019, 0.21960784494876862, 0.21960784494876862), (0.70202022790908813, 0.19607843458652496, 0.19607843458652496), (0.70707070827484131, 0.16862745583057404, 0.16862745583057404), (0.71212118864059448, 0.14509804546833038, 0.14509804546833038), (0.71717172861099243, 0.11764705926179886, 0.11764705926179886), (0.72222220897674561, 0.090196080505847931, 0.090196080505847931), (0.72727274894714355, 0.066666670143604279, 0.066666670143604279), (0.73232322931289673, 0.039215687662363052, 0.039215687662363052), (0.7373737096786499, 0.015686275437474251, 0.015686275437474251), (0.74242424964904785, 0.0, 0.0), (0.74747473001480103, 0.0, 0.0), (0.75252526998519897, 0.0, 0.0), (0.75757575035095215, 0.0, 0.0), (0.7626262903213501, 0.0, 0.0), (0.76767677068710327, 0.0, 0.0), (0.77272725105285645, 0.0, 0.0), (0.77777779102325439, 0.0, 0.0), (0.78282827138900757, 0.0, 0.0), (0.78787881135940552, 0.0, 0.0), (0.79292929172515869, 0.0, 0.0), (0.79797977209091187, 0.015686275437474251, 0.015686275437474251), (0.80303031206130981, 0.031372550874948502, 0.031372550874948502), (0.80808079242706299, 0.050980392843484879, 0.050980392843484879), (0.81313133239746094, 0.066666670143604279, 0.066666670143604279), (0.81818181276321411, 0.086274512112140656, 0.086274512112140656), (0.82323235273361206, 0.10588235408067703, 0.10588235408067703), (0.82828283309936523, 0.12156862765550613, 0.12156862765550613), (0.83333331346511841, 0.14117647707462311, 0.14117647707462311), (0.83838385343551636, 0.15686275064945221, 0.15686275064945221), (0.84343433380126953, 0.17647059261798859, 0.17647059261798859), (0.84848487377166748, 0.20000000298023224, 0.20000000298023224), (0.85353535413742065, 0.23137255012989044, 0.23137255012989044), (0.85858583450317383, 0.25882354378700256, 0.25882354378700256), (0.86363637447357178, 0.29019609093666077, 0.29019609093666077), (0.86868685483932495, 0.32156863808631897, 0.32156863808631897), (0.8737373948097229, 0.35294118523597717, 0.35294118523597717), (0.87878787517547607, 0.38431373238563538, 0.38431373238563538), (0.88383835554122925, 0.41568627953529358, 0.41568627953529358), (0.8888888955116272, 0.44313725829124451, 0.44313725829124451), (0.89393937587738037, 0.47450980544090271, 0.47450980544090271), (0.89898991584777832, 0.5058823823928833, 0.5058823823928833), (0.90404039621353149, 0.52941179275512695, 0.52941179275512695), (0.90909093618392944, 0.55294120311737061, 0.55294120311737061), (0.91414141654968262, 0.57254904508590698, 0.57254904508590698), (0.91919189691543579, 0.59607845544815063, 0.59607845544815063), (0.92424243688583374, 0.61960786581039429, 0.61960786581039429), (0.92929291725158691, 0.64313727617263794, 0.64313727617263794), (0.93434345722198486, 0.66274511814117432, 0.66274511814117432), (0.93939393758773804, 0.68627452850341797, 0.68627452850341797), (0.94444441795349121, 0.70980393886566162, 0.70980393886566162), (0.94949495792388916, 0.729411780834198, 0.729411780834198), (0.95454543828964233, 0.75294119119644165, 0.75294119119644165), (0.95959597826004028, 0.78039216995239258, 0.78039216995239258), (0.96464645862579346, 0.80392158031463623, 0.80392158031463623), (0.96969699859619141, 0.82745099067687988, 0.82745099067687988), (0.97474747896194458, 0.85098040103912354, 0.85098040103912354), (0.97979795932769775, 0.87450981140136719, 0.87450981140136719), (0.9848484992980957, 0.90196079015731812, 0.90196079015731812), (0.98989897966384888, 0.92549020051956177, 0.92549020051956177), (0.99494951963424683, 0.94901961088180542, 0.94901961088180542), (1.0, 0.97254902124404907, 0.97254902124404907)], 'red': [(0.0, 0.0, 0.0), (0.0050505050458014011, 0.0, 0.0), (0.010101010091602802, 0.0, 0.0), (0.015151515603065491, 0.0, 0.0), (0.020202020183205605, 0.0, 0.0), (0.025252524763345718, 0.0, 0.0), (0.030303031206130981, 0.0, 0.0), (0.035353533923625946, 0.0, 0.0), (0.040404040366411209, 0.0, 0.0), (0.045454546809196472, 0.0, 0.0), (0.050505049526691437, 0.0, 0.0), (0.0555555559694767, 0.0, 0.0), (0.060606062412261963, 0.0, 0.0), (0.065656565129756927, 0.0, 0.0), (0.070707067847251892, 0.0, 0.0), (0.075757578015327454, 0.0, 0.0), (0.080808080732822418, 0.0, 0.0), (0.085858583450317383, 0.0, 0.0), (0.090909093618392944, 0.0, 0.0), (0.095959596335887909, 0.0, 0.0), (0.10101009905338287, 0.0, 0.0), (0.10606060922145844, 0.0, 0.0), (0.1111111119389534, 0.0, 0.0), (0.11616161465644836, 0.0, 0.0), (0.12121212482452393, 0.0, 0.0), (0.12626262009143829, 0.0, 0.0), (0.13131313025951385, 0.0, 0.0), (0.13636364042758942, 0.0, 0.0), (0.14141413569450378, 0.0, 0.0), (0.14646464586257935, 0.0, 0.0), (0.15151515603065491, 0.0, 0.0), (0.15656565129756927, 0.0, 0.0), (0.16161616146564484, 0.0, 0.0), (0.1666666716337204, 0.0, 0.0), (0.17171716690063477, 0.0, 0.0), (0.17676767706871033, 0.0, 0.0), (0.18181818723678589, 0.0, 0.0), (0.18686868250370026, 0.0, 0.0), (0.19191919267177582, 0.0, 0.0), (0.19696970283985138, 0.0, 0.0), (0.20202019810676575, 0.0, 0.0), (0.20707070827484131, 0.0, 0.0), (0.21212121844291687, 0.0, 0.0), (0.21717171370983124, 0.0, 0.0), (0.2222222238779068, 0.0, 0.0), (0.22727273404598236, 0.0, 0.0), (0.23232322931289673, 0.0, 0.0), (0.23737373948097229, 0.0, 0.0), (0.24242424964904785, 0.0, 0.0), (0.24747474491596222, 0.0, 0.0), (0.25252524018287659, 0.0, 0.0), (0.25757575035095215, 0.0, 0.0), (0.26262626051902771, 0.0, 0.0), (0.26767677068710327, 0.0, 0.0), (0.27272728085517883, 0.0, 0.0), (0.27777779102325439, 0.0, 0.0), (0.28282827138900757, 0.0, 0.0), (0.28787878155708313, 0.0, 0.0), (0.29292929172515869, 0.0, 0.0), (0.29797980189323425, 0.0, 0.0), (0.30303031206130981, 0.0, 0.0), (0.30808082222938538, 0.0, 0.0), (0.31313130259513855, 0.0, 0.0), (0.31818181276321411, 0.0039215688593685627, 0.0039215688593685627), (0.32323232293128967, 0.043137256056070328, 0.043137256056070328), (0.32828283309936523, 0.08235294371843338, 0.08235294371843338), (0.3333333432674408, 0.11764705926179886, 0.11764705926179886), (0.33838382363319397, 0.15686275064945221, 0.15686275064945221), (0.34343433380126953, 0.19607843458652496, 0.19607843458652496), (0.34848484396934509, 0.23137255012989044, 0.23137255012989044), (0.35353535413742065, 0.27058824896812439, 0.27058824896812439), (0.35858586430549622, 0.30980393290519714, 0.30980393290519714), (0.36363637447357178, 0.3490196168422699, 0.3490196168422699), (0.36868685483932495, 0.38431373238563538, 0.38431373238563538), (0.37373736500740051, 0.40392157435417175, 0.40392157435417175), (0.37878787517547607, 0.41568627953529358, 0.41568627953529358), (0.38383838534355164, 0.42352941632270813, 0.42352941632270813), (0.3888888955116272, 0.43137255311012268, 0.43137255311012268), (0.39393940567970276, 0.44313725829124451, 0.44313725829124451), (0.39898988604545593, 0.45098039507865906, 0.45098039507865906), (0.40404039621353149, 0.45882353186607361, 0.45882353186607361), (0.40909090638160706, 0.47058823704719543, 0.47058823704719543), (0.41414141654968262, 0.47843137383460999, 0.47843137383460999), (0.41919192671775818, 0.49019607901573181, 0.49019607901573181), (0.42424243688583374, 0.50196081399917603, 0.50196081399917603), (0.42929291725158691, 0.52549022436141968, 0.52549022436141968), (0.43434342741966248, 0.54901963472366333, 0.54901963472366333), (0.43939393758773804, 0.57254904508590698, 0.57254904508590698), (0.4444444477558136, 0.60000002384185791, 0.60000002384185791), (0.44949495792388916, 0.62352943420410156, 0.62352943420410156), (0.45454546809196472, 0.64705884456634521, 0.64705884456634521), (0.4595959484577179, 0.67058825492858887, 0.67058825492858887), (0.46464645862579346, 0.69411766529083252, 0.69411766529083252), (0.46969696879386902, 0.72156864404678345, 0.72156864404678345), (0.47474747896194458, 0.7450980544090271, 0.7450980544090271), (0.47979798913002014, 0.76862746477127075, 0.76862746477127075), (0.4848484992980957, 0.7921568751335144, 0.7921568751335144), (0.48989897966384888, 0.81568628549575806, 0.81568628549575806), (0.49494948983192444, 0.83921569585800171, 0.83921569585800171), (0.5, 0.86274510622024536, 0.86274510622024536), (0.50505048036575317, 0.88627451658248901, 0.88627451658248901), (0.51010102033615112, 0.90980392694473267, 0.90980392694473267), (0.5151515007019043, 0.93333333730697632, 0.93333333730697632), (0.52020204067230225, 0.95686274766921997, 0.95686274766921997), (0.52525252103805542, 0.98039215803146362, 0.98039215803146362), (0.53030300140380859, 1.0, 1.0), (0.53535354137420654, 1.0, 1.0), (0.54040402173995972, 1.0, 1.0), (0.54545456171035767, 1.0, 1.0), (0.55050504207611084, 1.0, 1.0), (0.55555558204650879, 1.0, 1.0), (0.56060606241226196, 1.0, 1.0), (0.56565654277801514, 1.0, 1.0), (0.57070708274841309, 1.0, 1.0), (0.57575756311416626, 1.0, 1.0), (0.58080810308456421, 1.0, 1.0), (0.58585858345031738, 1.0, 1.0), (0.59090906381607056, 1.0, 1.0), (0.59595960378646851, 1.0, 1.0), (0.60101008415222168, 1.0, 1.0), (0.60606062412261963, 1.0, 1.0), (0.6111111044883728, 1.0, 1.0), (0.61616164445877075, 1.0, 1.0), (0.62121212482452393, 1.0, 1.0), (0.6262626051902771, 1.0, 1.0), (0.63131314516067505, 1.0, 1.0), (0.63636362552642822, 1.0, 1.0), (0.64141416549682617, 1.0, 1.0), (0.64646464586257935, 1.0, 1.0), (0.65151512622833252, 1.0, 1.0), (0.65656566619873047, 1.0, 1.0), (0.66161614656448364, 1.0, 1.0), (0.66666668653488159, 1.0, 1.0), (0.67171716690063477, 1.0, 1.0), (0.67676764726638794, 1.0, 1.0), (0.68181818723678589, 1.0, 1.0), (0.68686866760253906, 1.0, 1.0), (0.69191920757293701, 1.0, 1.0), (0.69696968793869019, 1.0, 1.0), (0.70202022790908813, 1.0, 1.0), (0.70707070827484131, 1.0, 1.0), (0.71212118864059448, 1.0, 1.0), (0.71717172861099243, 1.0, 1.0), (0.72222220897674561, 1.0, 1.0), (0.72727274894714355, 1.0, 1.0), (0.73232322931289673, 1.0, 1.0), (0.7373737096786499, 1.0, 1.0), (0.74242424964904785, 1.0, 1.0), (0.74747473001480103, 1.0, 1.0), (0.75252526998519897, 1.0, 1.0), (0.75757575035095215, 1.0, 1.0), (0.7626262903213501, 1.0, 1.0), (0.76767677068710327, 1.0, 1.0), (0.77272725105285645, 1.0, 1.0), (0.77777779102325439, 1.0, 1.0), (0.78282827138900757, 1.0, 1.0), (0.78787881135940552, 1.0, 1.0), (0.79292929172515869, 1.0, 1.0), (0.79797977209091187, 0.96470588445663452, 0.96470588445663452), (0.80303031206130981, 0.92549020051956177, 0.92549020051956177), (0.80808079242706299, 0.89019608497619629, 0.89019608497619629), (0.81313133239746094, 0.85098040103912354, 0.85098040103912354), (0.81818181276321411, 0.81568628549575806, 0.81568628549575806), (0.82323235273361206, 0.7764706015586853, 0.7764706015586853), (0.82828283309936523, 0.74117648601531982, 0.74117648601531982), (0.83333331346511841, 0.70196080207824707, 0.70196080207824707), (0.83838385343551636, 0.66666668653488159, 0.66666668653488159), (0.84343433380126953, 0.62745100259780884, 0.62745100259780884), (0.84848487377166748, 0.61960786581039429, 0.61960786581039429), (0.85353535413742065, 0.65098041296005249, 0.65098041296005249), (0.85858583450317383, 0.68235296010971069, 0.68235296010971069), (0.86363637447357178, 0.7137255072593689, 0.7137255072593689), (0.86868685483932495, 0.7450980544090271, 0.7450980544090271), (0.8737373948097229, 0.77254903316497803, 0.77254903316497803), (0.87878787517547607, 0.80392158031463623, 0.80392158031463623), (0.88383835554122925, 0.83529412746429443, 0.83529412746429443), (0.8888888955116272, 0.86666667461395264, 0.86666667461395264), (0.89393937587738037, 0.89803922176361084, 0.89803922176361084), (0.89898991584777832, 0.92941176891326904, 0.92941176891326904), (0.90404039621353149, 0.93333333730697632, 0.93333333730697632), (0.90909093618392944, 0.93725490570068359, 0.93725490570068359), (0.91414141654968262, 0.93725490570068359, 0.93725490570068359), (0.91919189691543579, 0.94117647409439087, 0.94117647409439087), (0.92424243688583374, 0.94509804248809814, 0.94509804248809814), (0.92929291725158691, 0.94509804248809814, 0.94509804248809814), (0.93434345722198486, 0.94901961088180542, 0.94901961088180542), (0.93939393758773804, 0.9529411792755127, 0.9529411792755127), (0.94444441795349121, 0.9529411792755127, 0.9529411792755127), (0.94949495792388916, 0.95686274766921997, 0.95686274766921997), (0.95454543828964233, 0.96078431606292725, 0.96078431606292725), (0.95959597826004028, 0.96470588445663452, 0.96470588445663452), (0.96464645862579346, 0.9686274528503418, 0.9686274528503418), (0.96969699859619141, 0.97254902124404907, 0.97254902124404907), (0.97474747896194458, 0.97647058963775635, 0.97647058963775635), (0.97979795932769775, 0.98039215803146362, 0.98039215803146362), (0.9848484992980957, 0.9843137264251709, 0.9843137264251709), (0.98989897966384888, 0.98823529481887817, 0.98823529481887817), (0.99494951963424683, 0.99215686321258545, 0.99215686321258545), (1.0, 0.99607843160629272, 0.99607843160629272)]} _gist_rainbow_data = {'blue': [(0.0, 0.16470588743686676, 0.16470588743686676), (0.0042016808874905109, 0.14117647707462311, 0.14117647707462311), (0.0084033617749810219, 0.12156862765550613, 0.12156862765550613), (0.012605042196810246, 0.10196078568696976, 0.10196078568696976), (0.016806723549962044, 0.078431375324726105, 0.078431375324726105), (0.021008403971791267, 0.058823529630899429, 0.058823529630899429), (0.025210084393620491, 0.039215687662363052, 0.039215687662363052), (0.029411764815449715, 0.015686275437474251, 0.015686275437474251), (0.033613447099924088, 0.0, 0.0), (0.037815127521753311, 0.0, 0.0), (0.042016807943582535, 0.0, 0.0), (0.046218488365411758, 0.0, 0.0), (0.050420168787240982, 0.0, 0.0), (0.054621849209070206, 0.0, 0.0), (0.058823529630899429, 0.0, 0.0), (0.063025213778018951, 0.0, 0.0), (0.067226894199848175, 0.0, 0.0), (0.071428574621677399, 0.0, 0.0), (0.075630255043506622, 0.0, 0.0), (0.079831935465335846, 0.0, 0.0), (0.08403361588716507, 0.0, 0.0), (0.088235296308994293, 0.0, 0.0), (0.092436976730823517, 0.0, 0.0), (0.09663865715265274, 0.0, 0.0), (0.10084033757448196, 0.0, 0.0), (0.10504201799631119, 0.0, 0.0), (0.10924369841814041, 0.0, 0.0), (0.11344537883996964, 0.0, 0.0), (0.11764705926179886, 0.0, 0.0), (0.12184873968362808, 0.0, 0.0), (0.1260504275560379, 0.0, 0.0), (0.13025210797786713, 0.0, 0.0), (0.13445378839969635, 0.0, 0.0), (0.13865546882152557, 0.0, 0.0), (0.1428571492433548, 0.0, 0.0), (0.14705882966518402, 0.0, 0.0), (0.15126051008701324, 0.0, 0.0), (0.15546219050884247, 0.0, 0.0), (0.15966387093067169, 0.0, 0.0), (0.16386555135250092, 0.0, 0.0), (0.16806723177433014, 0.0, 0.0), (0.17226891219615936, 0.0, 0.0), (0.17647059261798859, 0.0, 0.0), (0.18067227303981781, 0.0, 0.0), (0.18487395346164703, 0.0, 0.0), (0.18907563388347626, 0.0, 0.0), (0.19327731430530548, 0.0, 0.0), (0.1974789947271347, 0.0, 0.0), (0.20168067514896393, 0.0, 0.0), (0.20588235557079315, 0.0, 0.0), (0.21008403599262238, 0.0, 0.0), (0.2142857164144516, 0.0, 0.0), (0.21848739683628082, 0.0, 0.0), (0.22268907725811005, 0.0, 0.0), (0.22689075767993927, 0.0, 0.0), (0.23109243810176849, 0.0, 0.0), (0.23529411852359772, 0.0, 0.0), (0.23949579894542694, 0.0, 0.0), (0.24369747936725616, 0.0, 0.0), (0.24789915978908539, 0.0, 0.0), (0.25210085511207581, 0.0, 0.0), (0.25630253553390503, 0.0, 0.0), (0.26050421595573425, 0.0, 0.0), (0.26470589637756348, 0.0, 0.0), (0.2689075767993927, 0.0, 0.0), (0.27310925722122192, 0.0, 0.0), (0.27731093764305115, 0.0, 0.0), (0.28151261806488037, 0.0, 0.0), (0.28571429848670959, 0.0, 0.0), (0.28991597890853882, 0.0, 0.0), (0.29411765933036804, 0.0, 0.0), (0.29831933975219727, 0.0, 0.0), (0.30252102017402649, 0.0, 0.0), (0.30672270059585571, 0.0, 0.0), (0.31092438101768494, 0.0, 0.0), (0.31512606143951416, 0.0, 0.0), (0.31932774186134338, 0.0, 0.0), (0.32352942228317261, 0.0, 0.0), (0.32773110270500183, 0.0, 0.0), (0.33193278312683105, 0.0, 0.0), (0.33613446354866028, 0.0, 0.0), (0.3403361439704895, 0.0, 0.0), (0.34453782439231873, 0.0, 0.0), (0.34873950481414795, 0.0, 0.0), (0.35294118523597717, 0.0, 0.0), (0.3571428656578064, 0.0, 0.0), (0.36134454607963562, 0.0, 0.0), (0.36554622650146484, 0.0, 0.0), (0.36974790692329407, 0.0, 0.0), (0.37394958734512329, 0.0, 0.0), (0.37815126776695251, 0.0, 0.0), (0.38235294818878174, 0.0, 0.0), (0.38655462861061096, 0.0, 0.0), (0.39075630903244019, 0.0, 0.0), (0.39495798945426941, 0.0, 0.0), (0.39915966987609863, 0.0, 0.0), (0.40336135029792786, 0.0, 0.0), (0.40756303071975708, 0.0039215688593685627, 0.0039215688593685627), (0.4117647111415863, 0.047058824449777603, 0.047058824449777603), (0.41596639156341553, 0.066666670143604279, 0.066666670143604279), (0.42016807198524475, 0.090196080505847931, 0.090196080505847931), (0.42436975240707397, 0.10980392247438431, 0.10980392247438431), (0.4285714328289032, 0.12941177189350128, 0.12941177189350128), (0.43277311325073242, 0.15294118225574493, 0.15294118225574493), (0.43697479367256165, 0.17254902422428131, 0.17254902422428131), (0.44117647409439087, 0.19215686619281769, 0.19215686619281769), (0.44537815451622009, 0.21568627655506134, 0.21568627655506134), (0.44957983493804932, 0.23529411852359772, 0.23529411852359772), (0.45378151535987854, 0.25882354378700256, 0.25882354378700256), (0.45798319578170776, 0.27843138575553894, 0.27843138575553894), (0.46218487620353699, 0.29803922772407532, 0.29803922772407532), (0.46638655662536621, 0.32156863808631897, 0.32156863808631897), (0.47058823704719543, 0.34117648005485535, 0.34117648005485535), (0.47478991746902466, 0.38431373238563538, 0.38431373238563538), (0.47899159789085388, 0.40392157435417175, 0.40392157435417175), (0.48319327831268311, 0.42745098471641541, 0.42745098471641541), (0.48739495873451233, 0.44705882668495178, 0.44705882668495178), (0.49159663915634155, 0.46666666865348816, 0.46666666865348816), (0.49579831957817078, 0.49019607901573181, 0.49019607901573181), (0.5, 0.50980395078659058, 0.50980395078659058), (0.50420171022415161, 0.52941179275512695, 0.52941179275512695), (0.50840336084365845, 0.55294120311737061, 0.55294120311737061), (0.51260507106781006, 0.57254904508590698, 0.57254904508590698), (0.51680672168731689, 0.59607845544815063, 0.59607845544815063), (0.52100843191146851, 0.61568629741668701, 0.61568629741668701), (0.52521008253097534, 0.63529413938522339, 0.63529413938522339), (0.52941179275512695, 0.65882354974746704, 0.65882354974746704), (0.53361344337463379, 0.67843139171600342, 0.67843139171600342), (0.5378151535987854, 0.72156864404678345, 0.72156864404678345), (0.54201680421829224, 0.74117648601531982, 0.74117648601531982), (0.54621851444244385, 0.76470589637756348, 0.76470589637756348), (0.55042016506195068, 0.78431373834609985, 0.78431373834609985), (0.55462187528610229, 0.80392158031463623, 0.80392158031463623), (0.55882352590560913, 0.82745099067687988, 0.82745099067687988), (0.56302523612976074, 0.84705883264541626, 0.84705883264541626), (0.56722688674926758, 0.87058824300765991, 0.87058824300765991), (0.57142859697341919, 0.89019608497619629, 0.89019608497619629), (0.57563024759292603, 0.90980392694473267, 0.90980392694473267), (0.57983195781707764, 0.93333333730697632, 0.93333333730697632), (0.58403360843658447, 0.9529411792755127, 0.9529411792755127), (0.58823531866073608, 0.97254902124404907, 0.97254902124404907), (0.59243696928024292, 0.99607843160629272, 0.99607843160629272), (0.59663867950439453, 1.0, 1.0), (0.60084033012390137, 1.0, 1.0), (0.60504204034805298, 1.0, 1.0), (0.60924369096755981, 1.0, 1.0), (0.61344540119171143, 1.0, 1.0), (0.61764705181121826, 1.0, 1.0), (0.62184876203536987, 1.0, 1.0), (0.62605041265487671, 1.0, 1.0), (0.63025212287902832, 1.0, 1.0), (0.63445377349853516, 1.0, 1.0), (0.63865548372268677, 1.0, 1.0), (0.6428571343421936, 1.0, 1.0), (0.64705884456634521, 1.0, 1.0), (0.65126049518585205, 1.0, 1.0), (0.65546220541000366, 1.0, 1.0), (0.6596638560295105, 1.0, 1.0), (0.66386556625366211, 1.0, 1.0), (0.66806721687316895, 1.0, 1.0), (0.67226892709732056, 1.0, 1.0), (0.67647057771682739, 1.0, 1.0), (0.680672287940979, 1.0, 1.0), (0.68487393856048584, 1.0, 1.0), (0.68907564878463745, 1.0, 1.0), (0.69327729940414429, 1.0, 1.0), (0.6974790096282959, 1.0, 1.0), (0.70168066024780273, 1.0, 1.0), (0.70588237047195435, 1.0, 1.0), (0.71008402109146118, 1.0, 1.0), (0.71428573131561279, 1.0, 1.0), (0.71848738193511963, 1.0, 1.0), (0.72268909215927124, 1.0, 1.0), (0.72689074277877808, 1.0, 1.0), (0.73109245300292969, 1.0, 1.0), (0.73529410362243652, 1.0, 1.0), (0.73949581384658813, 1.0, 1.0), (0.74369746446609497, 1.0, 1.0), (0.74789917469024658, 1.0, 1.0), (0.75210082530975342, 1.0, 1.0), (0.75630253553390503, 1.0, 1.0), (0.76050418615341187, 1.0, 1.0), (0.76470589637756348, 1.0, 1.0), (0.76890754699707031, 1.0, 1.0), (0.77310925722122192, 1.0, 1.0), (0.77731090784072876, 1.0, 1.0), (0.78151261806488037, 1.0, 1.0), (0.78571426868438721, 1.0, 1.0), (0.78991597890853882, 1.0, 1.0), (0.79411762952804565, 1.0, 1.0), (0.79831933975219727, 1.0, 1.0), (0.8025209903717041, 1.0, 1.0), (0.80672270059585571, 1.0, 1.0), (0.81092435121536255, 1.0, 1.0), (0.81512606143951416, 1.0, 1.0), (0.819327712059021, 1.0, 1.0), (0.82352942228317261, 1.0, 1.0), (0.82773107290267944, 1.0, 1.0), (0.83193278312683105, 1.0, 1.0), (0.83613443374633789, 1.0, 1.0), (0.8403361439704895, 1.0, 1.0), (0.84453779458999634, 1.0, 1.0), (0.84873950481414795, 1.0, 1.0), (0.85294115543365479, 1.0, 1.0), (0.8571428656578064, 1.0, 1.0), (0.86134451627731323, 1.0, 1.0), (0.86554622650146484, 1.0, 1.0), (0.86974787712097168, 1.0, 1.0), (0.87394958734512329, 1.0, 1.0), (0.87815123796463013, 1.0, 1.0), (0.88235294818878174, 1.0, 1.0), (0.88655459880828857, 1.0, 1.0), (0.89075630903244019, 1.0, 1.0), (0.89495795965194702, 1.0, 1.0), (0.89915966987609863, 1.0, 1.0), (0.90336132049560547, 1.0, 1.0), (0.90756303071975708, 1.0, 1.0), (0.91176468133926392, 1.0, 1.0), (0.91596639156341553, 1.0, 1.0), (0.92016804218292236, 1.0, 1.0), (0.92436975240707397, 1.0, 1.0), (0.92857140302658081, 1.0, 1.0), (0.93277311325073242, 1.0, 1.0), (0.93697476387023926, 1.0, 1.0), (0.94117647409439087, 1.0, 1.0), (0.94537812471389771, 1.0, 1.0), (0.94957983493804932, 1.0, 1.0), (0.95378148555755615, 1.0, 1.0), (0.95798319578170776, 1.0, 1.0), (0.9621848464012146, 1.0, 1.0), (0.96638655662536621, 0.99607843160629272, 0.99607843160629272), (0.97058820724487305, 0.97647058963775635, 0.97647058963775635), (0.97478991746902466, 0.9529411792755127, 0.9529411792755127), (0.97899156808853149, 0.91372549533843994, 0.91372549533843994), (0.98319327831268311, 0.89019608497619629, 0.89019608497619629), (0.98739492893218994, 0.87058824300765991, 0.87058824300765991), (0.99159663915634155, 0.85098040103912354, 0.85098040103912354), (0.99579828977584839, 0.82745099067687988, 0.82745099067687988), (1.0, 0.80784314870834351, 0.80784314870834351)], 'green': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0, 0.0), (0.0084033617749810219, 0.0, 0.0), (0.012605042196810246, 0.0, 0.0), (0.016806723549962044, 0.0, 0.0), (0.021008403971791267, 0.0, 0.0), (0.025210084393620491, 0.0, 0.0), (0.029411764815449715, 0.0, 0.0), (0.033613447099924088, 0.019607843831181526, 0.019607843831181526), (0.037815127521753311, 0.043137256056070328, 0.043137256056070328), (0.042016807943582535, 0.062745101749897003, 0.062745101749897003), (0.046218488365411758, 0.086274512112140656, 0.086274512112140656), (0.050420168787240982, 0.10588235408067703, 0.10588235408067703), (0.054621849209070206, 0.12549020349979401, 0.12549020349979401), (0.058823529630899429, 0.14901961386203766, 0.14901961386203766), (0.063025213778018951, 0.16862745583057404, 0.16862745583057404), (0.067226894199848175, 0.18823529779911041, 0.18823529779911041), (0.071428574621677399, 0.21176470816135406, 0.21176470816135406), (0.075630255043506622, 0.23137255012989044, 0.23137255012989044), (0.079831935465335846, 0.25490197539329529, 0.25490197539329529), (0.08403361588716507, 0.27450981736183167, 0.27450981736183167), (0.088235296308994293, 0.29411765933036804, 0.29411765933036804), (0.092436976730823517, 0.31764706969261169, 0.31764706969261169), (0.09663865715265274, 0.35686275362968445, 0.35686275362968445), (0.10084033757448196, 0.3803921639919281, 0.3803921639919281), (0.10504201799631119, 0.40000000596046448, 0.40000000596046448), (0.10924369841814041, 0.42352941632270813, 0.42352941632270813), (0.11344537883996964, 0.44313725829124451, 0.44313725829124451), (0.11764705926179886, 0.46274510025978088, 0.46274510025978088), (0.12184873968362808, 0.48627451062202454, 0.48627451062202454), (0.1260504275560379, 0.5058823823928833, 0.5058823823928833), (0.13025210797786713, 0.52941179275512695, 0.52941179275512695), (0.13445378839969635, 0.54901963472366333, 0.54901963472366333), (0.13865546882152557, 0.56862747669219971, 0.56862747669219971), (0.1428571492433548, 0.59215688705444336, 0.59215688705444336), (0.14705882966518402, 0.61176472902297974, 0.61176472902297974), (0.15126051008701324, 0.63137257099151611, 0.63137257099151611), (0.15546219050884247, 0.65490198135375977, 0.65490198135375977), (0.15966387093067169, 0.69803923368453979, 0.69803923368453979), (0.16386555135250092, 0.71764707565307617, 0.71764707565307617), (0.16806723177433014, 0.73725491762161255, 0.73725491762161255), (0.17226891219615936, 0.7607843279838562, 0.7607843279838562), (0.17647059261798859, 0.78039216995239258, 0.78039216995239258), (0.18067227303981781, 0.80000001192092896, 0.80000001192092896), (0.18487395346164703, 0.82352942228317261, 0.82352942228317261), (0.18907563388347626, 0.84313726425170898, 0.84313726425170898), (0.19327731430530548, 0.86666667461395264, 0.86666667461395264), (0.1974789947271347, 0.88627451658248901, 0.88627451658248901), (0.20168067514896393, 0.90588235855102539, 0.90588235855102539), (0.20588235557079315, 0.92941176891326904, 0.92941176891326904), (0.21008403599262238, 0.94901961088180542, 0.94901961088180542), (0.2142857164144516, 0.9686274528503418, 0.9686274528503418), (0.21848739683628082, 0.99215686321258545, 0.99215686321258545), (0.22268907725811005, 1.0, 1.0), (0.22689075767993927, 1.0, 1.0), (0.23109243810176849, 1.0, 1.0), (0.23529411852359772, 1.0, 1.0), (0.23949579894542694, 1.0, 1.0), (0.24369747936725616, 1.0, 1.0), (0.24789915978908539, 1.0, 1.0), (0.25210085511207581, 1.0, 1.0), (0.25630253553390503, 1.0, 1.0), (0.26050421595573425, 1.0, 1.0), (0.26470589637756348, 1.0, 1.0), (0.2689075767993927, 1.0, 1.0), (0.27310925722122192, 1.0, 1.0), (0.27731093764305115, 1.0, 1.0), (0.28151261806488037, 1.0, 1.0), (0.28571429848670959, 1.0, 1.0), (0.28991597890853882, 1.0, 1.0), (0.29411765933036804, 1.0, 1.0), (0.29831933975219727, 1.0, 1.0), (0.30252102017402649, 1.0, 1.0), (0.30672270059585571, 1.0, 1.0), (0.31092438101768494, 1.0, 1.0), (0.31512606143951416, 1.0, 1.0), (0.31932774186134338, 1.0, 1.0), (0.32352942228317261, 1.0, 1.0), (0.32773110270500183, 1.0, 1.0), (0.33193278312683105, 1.0, 1.0), (0.33613446354866028, 1.0, 1.0), (0.3403361439704895, 1.0, 1.0), (0.34453782439231873, 1.0, 1.0), (0.34873950481414795, 1.0, 1.0), (0.35294118523597717, 1.0, 1.0), (0.3571428656578064, 1.0, 1.0), (0.36134454607963562, 1.0, 1.0), (0.36554622650146484, 1.0, 1.0), (0.36974790692329407, 1.0, 1.0), (0.37394958734512329, 1.0, 1.0), (0.37815126776695251, 1.0, 1.0), (0.38235294818878174, 1.0, 1.0), (0.38655462861061096, 1.0, 1.0), (0.39075630903244019, 1.0, 1.0), (0.39495798945426941, 1.0, 1.0), (0.39915966987609863, 1.0, 1.0), (0.40336135029792786, 1.0, 1.0), (0.40756303071975708, 1.0, 1.0), (0.4117647111415863, 1.0, 1.0), (0.41596639156341553, 1.0, 1.0), (0.42016807198524475, 1.0, 1.0), (0.42436975240707397, 1.0, 1.0), (0.4285714328289032, 1.0, 1.0), (0.43277311325073242, 1.0, 1.0), (0.43697479367256165, 1.0, 1.0), (0.44117647409439087, 1.0, 1.0), (0.44537815451622009, 1.0, 1.0), (0.44957983493804932, 1.0, 1.0), (0.45378151535987854, 1.0, 1.0), (0.45798319578170776, 1.0, 1.0), (0.46218487620353699, 1.0, 1.0), (0.46638655662536621, 1.0, 1.0), (0.47058823704719543, 1.0, 1.0), (0.47478991746902466, 1.0, 1.0), (0.47899159789085388, 1.0, 1.0), (0.48319327831268311, 1.0, 1.0), (0.48739495873451233, 1.0, 1.0), (0.49159663915634155, 1.0, 1.0), (0.49579831957817078, 1.0, 1.0), (0.5, 1.0, 1.0), (0.50420171022415161, 1.0, 1.0), (0.50840336084365845, 1.0, 1.0), (0.51260507106781006, 1.0, 1.0), (0.51680672168731689, 1.0, 1.0), (0.52100843191146851, 1.0, 1.0), (0.52521008253097534, 1.0, 1.0), (0.52941179275512695, 1.0, 1.0), (0.53361344337463379, 1.0, 1.0), (0.5378151535987854, 1.0, 1.0), (0.54201680421829224, 1.0, 1.0), (0.54621851444244385, 1.0, 1.0), (0.55042016506195068, 1.0, 1.0), (0.55462187528610229, 1.0, 1.0), (0.55882352590560913, 1.0, 1.0), (0.56302523612976074, 1.0, 1.0), (0.56722688674926758, 1.0, 1.0), (0.57142859697341919, 1.0, 1.0), (0.57563024759292603, 1.0, 1.0), (0.57983195781707764, 1.0, 1.0), (0.58403360843658447, 1.0, 1.0), (0.58823531866073608, 1.0, 1.0), (0.59243696928024292, 1.0, 1.0), (0.59663867950439453, 0.98039215803146362, 0.98039215803146362), (0.60084033012390137, 0.93725490570068359, 0.93725490570068359), (0.60504204034805298, 0.91764706373214722, 0.91764706373214722), (0.60924369096755981, 0.89411765336990356, 0.89411765336990356), (0.61344540119171143, 0.87450981140136719, 0.87450981140136719), (0.61764705181121826, 0.85490196943283081, 0.85490196943283081), (0.62184876203536987, 0.83137255907058716, 0.83137255907058716), (0.62605041265487671, 0.81176471710205078, 0.81176471710205078), (0.63025212287902832, 0.78823530673980713, 0.78823530673980713), (0.63445377349853516, 0.76862746477127075, 0.76862746477127075), (0.63865548372268677, 0.74901962280273438, 0.74901962280273438), (0.6428571343421936, 0.72549021244049072, 0.72549021244049072), (0.64705884456634521, 0.70588237047195435, 0.70588237047195435), (0.65126049518585205, 0.68235296010971069, 0.68235296010971069), (0.65546220541000366, 0.66274511814117432, 0.66274511814117432), (0.6596638560295105, 0.64313727617263794, 0.64313727617263794), (0.66386556625366211, 0.60000002384185791, 0.60000002384185791), (0.66806721687316895, 0.58039218187332153, 0.58039218187332153), (0.67226892709732056, 0.55686277151107788, 0.55686277151107788), (0.67647057771682739, 0.5372549295425415, 0.5372549295425415), (0.680672287940979, 0.51372551918029785, 0.51372551918029785), (0.68487393856048584, 0.49411764740943909, 0.49411764740943909), (0.68907564878463745, 0.47450980544090271, 0.47450980544090271), (0.69327729940414429, 0.45098039507865906, 0.45098039507865906), (0.6974790096282959, 0.43137255311012268, 0.43137255311012268), (0.70168066024780273, 0.4117647111415863, 0.4117647111415863), (0.70588237047195435, 0.38823530077934265, 0.38823530077934265), (0.71008402109146118, 0.36862745881080627, 0.36862745881080627), (0.71428573131561279, 0.34509804844856262, 0.34509804844856262), (0.71848738193511963, 0.32549020648002625, 0.32549020648002625), (0.72268909215927124, 0.30588236451148987, 0.30588236451148987), (0.72689074277877808, 0.26274511218070984, 0.26274511218070984), (0.73109245300292969, 0.24313725531101227, 0.24313725531101227), (0.73529410362243652, 0.21960784494876862, 0.21960784494876862), (0.73949581384658813, 0.20000000298023224, 0.20000000298023224), (0.74369746446609497, 0.17647059261798859, 0.17647059261798859), (0.74789917469024658, 0.15686275064945221, 0.15686275064945221), (0.75210082530975342, 0.13725490868091583, 0.13725490868091583), (0.75630253553390503, 0.11372549086809158, 0.11372549086809158), (0.76050418615341187, 0.094117648899555206, 0.094117648899555206), (0.76470589637756348, 0.070588238537311554, 0.070588238537311554), (0.76890754699707031, 0.050980392843484879, 0.050980392843484879), (0.77310925722122192, 0.031372550874948502, 0.031372550874948502), (0.77731090784072876, 0.0078431377187371254, 0.0078431377187371254), (0.78151261806488037, 0.0, 0.0), (0.78571426868438721, 0.0, 0.0), (0.78991597890853882, 0.0, 0.0), (0.79411762952804565, 0.0, 0.0), (0.79831933975219727, 0.0, 0.0), (0.8025209903717041, 0.0, 0.0), (0.80672270059585571, 0.0, 0.0), (0.81092435121536255, 0.0, 0.0), (0.81512606143951416, 0.0, 0.0), (0.819327712059021, 0.0, 0.0), (0.82352942228317261, 0.0, 0.0), (0.82773107290267944, 0.0, 0.0), (0.83193278312683105, 0.0, 0.0), (0.83613443374633789, 0.0, 0.0), (0.8403361439704895, 0.0, 0.0), (0.84453779458999634, 0.0, 0.0), (0.84873950481414795, 0.0, 0.0), (0.85294115543365479, 0.0, 0.0), (0.8571428656578064, 0.0, 0.0), (0.86134451627731323, 0.0, 0.0), (0.86554622650146484, 0.0, 0.0), (0.86974787712097168, 0.0, 0.0), (0.87394958734512329, 0.0, 0.0), (0.87815123796463013, 0.0, 0.0), (0.88235294818878174, 0.0, 0.0), (0.88655459880828857, 0.0, 0.0), (0.89075630903244019, 0.0, 0.0), (0.89495795965194702, 0.0, 0.0), (0.89915966987609863, 0.0, 0.0), (0.90336132049560547, 0.0, 0.0), (0.90756303071975708, 0.0, 0.0), (0.91176468133926392, 0.0, 0.0), (0.91596639156341553, 0.0, 0.0), (0.92016804218292236, 0.0, 0.0), (0.92436975240707397, 0.0, 0.0), (0.92857140302658081, 0.0, 0.0), (0.93277311325073242, 0.0, 0.0), (0.93697476387023926, 0.0, 0.0), (0.94117647409439087, 0.0, 0.0), (0.94537812471389771, 0.0, 0.0), (0.94957983493804932, 0.0, 0.0), (0.95378148555755615, 0.0, 0.0), (0.95798319578170776, 0.0, 0.0), (0.9621848464012146, 0.0, 0.0), (0.96638655662536621, 0.0, 0.0), (0.97058820724487305, 0.0, 0.0), (0.97478991746902466, 0.0, 0.0), (0.97899156808853149, 0.0, 0.0), (0.98319327831268311, 0.0, 0.0), (0.98739492893218994, 0.0, 0.0), (0.99159663915634155, 0.0, 0.0), (0.99579828977584839, 0.0, 0.0), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.0042016808874905109, 1.0, 1.0), (0.0084033617749810219, 1.0, 1.0), (0.012605042196810246, 1.0, 1.0), (0.016806723549962044, 1.0, 1.0), (0.021008403971791267, 1.0, 1.0), (0.025210084393620491, 1.0, 1.0), (0.029411764815449715, 1.0, 1.0), (0.033613447099924088, 1.0, 1.0), (0.037815127521753311, 1.0, 1.0), (0.042016807943582535, 1.0, 1.0), (0.046218488365411758, 1.0, 1.0), (0.050420168787240982, 1.0, 1.0), (0.054621849209070206, 1.0, 1.0), (0.058823529630899429, 1.0, 1.0), (0.063025213778018951, 1.0, 1.0), (0.067226894199848175, 1.0, 1.0), (0.071428574621677399, 1.0, 1.0), (0.075630255043506622, 1.0, 1.0), (0.079831935465335846, 1.0, 1.0), (0.08403361588716507, 1.0, 1.0), (0.088235296308994293, 1.0, 1.0), (0.092436976730823517, 1.0, 1.0), (0.09663865715265274, 1.0, 1.0), (0.10084033757448196, 1.0, 1.0), (0.10504201799631119, 1.0, 1.0), (0.10924369841814041, 1.0, 1.0), (0.11344537883996964, 1.0, 1.0), (0.11764705926179886, 1.0, 1.0), (0.12184873968362808, 1.0, 1.0), (0.1260504275560379, 1.0, 1.0), (0.13025210797786713, 1.0, 1.0), (0.13445378839969635, 1.0, 1.0), (0.13865546882152557, 1.0, 1.0), (0.1428571492433548, 1.0, 1.0), (0.14705882966518402, 1.0, 1.0), (0.15126051008701324, 1.0, 1.0), (0.15546219050884247, 1.0, 1.0), (0.15966387093067169, 1.0, 1.0), (0.16386555135250092, 1.0, 1.0), (0.16806723177433014, 1.0, 1.0), (0.17226891219615936, 1.0, 1.0), (0.17647059261798859, 1.0, 1.0), (0.18067227303981781, 1.0, 1.0), (0.18487395346164703, 1.0, 1.0), (0.18907563388347626, 1.0, 1.0), (0.19327731430530548, 1.0, 1.0), (0.1974789947271347, 1.0, 1.0), (0.20168067514896393, 1.0, 1.0), (0.20588235557079315, 1.0, 1.0), (0.21008403599262238, 1.0, 1.0), (0.2142857164144516, 1.0, 1.0), (0.21848739683628082, 1.0, 1.0), (0.22268907725811005, 0.96078431606292725, 0.96078431606292725), (0.22689075767993927, 0.94117647409439087, 0.94117647409439087), (0.23109243810176849, 0.92156863212585449, 0.92156863212585449), (0.23529411852359772, 0.89803922176361084, 0.89803922176361084), (0.23949579894542694, 0.87843137979507446, 0.87843137979507446), (0.24369747936725616, 0.85882353782653809, 0.85882353782653809), (0.24789915978908539, 0.83529412746429443, 0.83529412746429443), (0.25210085511207581, 0.81568628549575806, 0.81568628549575806), (0.25630253553390503, 0.7921568751335144, 0.7921568751335144), (0.26050421595573425, 0.77254903316497803, 0.77254903316497803), (0.26470589637756348, 0.75294119119644165, 0.75294119119644165), (0.2689075767993927, 0.729411780834198, 0.729411780834198), (0.27310925722122192, 0.70980393886566162, 0.70980393886566162), (0.27731093764305115, 0.68627452850341797, 0.68627452850341797), (0.28151261806488037, 0.66666668653488159, 0.66666668653488159), (0.28571429848670959, 0.62352943420410156, 0.62352943420410156), (0.28991597890853882, 0.60392159223556519, 0.60392159223556519), (0.29411765933036804, 0.58431375026702881, 0.58431375026702881), (0.29831933975219727, 0.56078433990478516, 0.56078433990478516), (0.30252102017402649, 0.54117649793624878, 0.54117649793624878), (0.30672270059585571, 0.51764708757400513, 0.51764708757400513), (0.31092438101768494, 0.49803921580314636, 0.49803921580314636), (0.31512606143951416, 0.47843137383460999, 0.47843137383460999), (0.31932774186134338, 0.45490196347236633, 0.45490196347236633), (0.32352942228317261, 0.43529412150382996, 0.43529412150382996), (0.32773110270500183, 0.41568627953529358, 0.41568627953529358), (0.33193278312683105, 0.39215686917304993, 0.39215686917304993), (0.33613446354866028, 0.37254902720451355, 0.37254902720451355), (0.3403361439704895, 0.3490196168422699, 0.3490196168422699), (0.34453782439231873, 0.32941177487373352, 0.32941177487373352), (0.34873950481414795, 0.28627452254295349, 0.28627452254295349), (0.35294118523597717, 0.26666668057441711, 0.26666668057441711), (0.3571428656578064, 0.24705882370471954, 0.24705882370471954), (0.36134454607963562, 0.22352941334247589, 0.22352941334247589), (0.36554622650146484, 0.20392157137393951, 0.20392157137393951), (0.36974790692329407, 0.18039216101169586, 0.18039216101169586), (0.37394958734512329, 0.16078431904315948, 0.16078431904315948), (0.37815126776695251, 0.14117647707462311, 0.14117647707462311), (0.38235294818878174, 0.11764705926179886, 0.11764705926179886), (0.38655462861061096, 0.098039217293262482, 0.098039217293262482), (0.39075630903244019, 0.074509806931018829, 0.074509806931018829), (0.39495798945426941, 0.054901961237192154, 0.054901961237192154), (0.39915966987609863, 0.035294119268655777, 0.035294119268655777), (0.40336135029792786, 0.011764706112444401, 0.011764706112444401), (0.40756303071975708, 0.0, 0.0), (0.4117647111415863, 0.0, 0.0), (0.41596639156341553, 0.0, 0.0), (0.42016807198524475, 0.0, 0.0), (0.42436975240707397, 0.0, 0.0), (0.4285714328289032, 0.0, 0.0), (0.43277311325073242, 0.0, 0.0), (0.43697479367256165, 0.0, 0.0), (0.44117647409439087, 0.0, 0.0), (0.44537815451622009, 0.0, 0.0), (0.44957983493804932, 0.0, 0.0), (0.45378151535987854, 0.0, 0.0), (0.45798319578170776, 0.0, 0.0), (0.46218487620353699, 0.0, 0.0), (0.46638655662536621, 0.0, 0.0), (0.47058823704719543, 0.0, 0.0), (0.47478991746902466, 0.0, 0.0), (0.47899159789085388, 0.0, 0.0), (0.48319327831268311, 0.0, 0.0), (0.48739495873451233, 0.0, 0.0), (0.49159663915634155, 0.0, 0.0), (0.49579831957817078, 0.0, 0.0), (0.5, 0.0, 0.0), (0.50420171022415161, 0.0, 0.0), (0.50840336084365845, 0.0, 0.0), (0.51260507106781006, 0.0, 0.0), (0.51680672168731689, 0.0, 0.0), (0.52100843191146851, 0.0, 0.0), (0.52521008253097534, 0.0, 0.0), (0.52941179275512695, 0.0, 0.0), (0.53361344337463379, 0.0, 0.0), (0.5378151535987854, 0.0, 0.0), (0.54201680421829224, 0.0, 0.0), (0.54621851444244385, 0.0, 0.0), (0.55042016506195068, 0.0, 0.0), (0.55462187528610229, 0.0, 0.0), (0.55882352590560913, 0.0, 0.0), (0.56302523612976074, 0.0, 0.0), (0.56722688674926758, 0.0, 0.0), (0.57142859697341919, 0.0, 0.0), (0.57563024759292603, 0.0, 0.0), (0.57983195781707764, 0.0, 0.0), (0.58403360843658447, 0.0, 0.0), (0.58823531866073608, 0.0, 0.0), (0.59243696928024292, 0.0, 0.0), (0.59663867950439453, 0.0, 0.0), (0.60084033012390137, 0.0, 0.0), (0.60504204034805298, 0.0, 0.0), (0.60924369096755981, 0.0, 0.0), (0.61344540119171143, 0.0, 0.0), (0.61764705181121826, 0.0, 0.0), (0.62184876203536987, 0.0, 0.0), (0.62605041265487671, 0.0, 0.0), (0.63025212287902832, 0.0, 0.0), (0.63445377349853516, 0.0, 0.0), (0.63865548372268677, 0.0, 0.0), (0.6428571343421936, 0.0, 0.0), (0.64705884456634521, 0.0, 0.0), (0.65126049518585205, 0.0, 0.0), (0.65546220541000366, 0.0, 0.0), (0.6596638560295105, 0.0, 0.0), (0.66386556625366211, 0.0, 0.0), (0.66806721687316895, 0.0, 0.0), (0.67226892709732056, 0.0, 0.0), (0.67647057771682739, 0.0, 0.0), (0.680672287940979, 0.0, 0.0), (0.68487393856048584, 0.0, 0.0), (0.68907564878463745, 0.0, 0.0), (0.69327729940414429, 0.0, 0.0), (0.6974790096282959, 0.0, 0.0), (0.70168066024780273, 0.0, 0.0), (0.70588237047195435, 0.0, 0.0), (0.71008402109146118, 0.0, 0.0), (0.71428573131561279, 0.0, 0.0), (0.71848738193511963, 0.0, 0.0), (0.72268909215927124, 0.0, 0.0), (0.72689074277877808, 0.0, 0.0), (0.73109245300292969, 0.0, 0.0), (0.73529410362243652, 0.0, 0.0), (0.73949581384658813, 0.0, 0.0), (0.74369746446609497, 0.0, 0.0), (0.74789917469024658, 0.0, 0.0), (0.75210082530975342, 0.0, 0.0), (0.75630253553390503, 0.0, 0.0), (0.76050418615341187, 0.0, 0.0), (0.76470589637756348, 0.0, 0.0), (0.76890754699707031, 0.0, 0.0), (0.77310925722122192, 0.0, 0.0), (0.77731090784072876, 0.0, 0.0), (0.78151261806488037, 0.0078431377187371254, 0.0078431377187371254), (0.78571426868438721, 0.027450980618596077, 0.027450980618596077), (0.78991597890853882, 0.070588238537311554, 0.070588238537311554), (0.79411762952804565, 0.094117648899555206, 0.094117648899555206), (0.79831933975219727, 0.11372549086809158, 0.11372549086809158), (0.8025209903717041, 0.13333334028720856, 0.13333334028720856), (0.80672270059585571, 0.15686275064945221, 0.15686275064945221), (0.81092435121536255, 0.17647059261798859, 0.17647059261798859), (0.81512606143951416, 0.19607843458652496, 0.19607843458652496), (0.819327712059021, 0.21960784494876862, 0.21960784494876862), (0.82352942228317261, 0.23921568691730499, 0.23921568691730499), (0.82773107290267944, 0.26274511218070984, 0.26274511218070984), (0.83193278312683105, 0.28235295414924622, 0.28235295414924622), (0.83613443374633789, 0.30196079611778259, 0.30196079611778259), (0.8403361439704895, 0.32549020648002625, 0.32549020648002625), (0.84453779458999634, 0.34509804844856262, 0.34509804844856262), (0.84873950481414795, 0.364705890417099, 0.364705890417099), (0.85294115543365479, 0.40784314274787903, 0.40784314274787903), (0.8571428656578064, 0.43137255311012268, 0.43137255311012268), (0.86134451627731323, 0.45098039507865906, 0.45098039507865906), (0.86554622650146484, 0.47058823704719543, 0.47058823704719543), (0.86974787712097168, 0.49411764740943909, 0.49411764740943909), (0.87394958734512329, 0.51372551918029785, 0.51372551918029785), (0.87815123796463013, 0.53333336114883423, 0.53333336114883423), (0.88235294818878174, 0.55686277151107788, 0.55686277151107788), (0.88655459880828857, 0.57647061347961426, 0.57647061347961426), (0.89075630903244019, 0.60000002384185791, 0.60000002384185791), (0.89495795965194702, 0.61960786581039429, 0.61960786581039429), (0.89915966987609863, 0.63921570777893066, 0.63921570777893066), (0.90336132049560547, 0.66274511814117432, 0.66274511814117432), (0.90756303071975708, 0.68235296010971069, 0.68235296010971069), (0.91176468133926392, 0.70588237047195435, 0.70588237047195435), (0.91596639156341553, 0.7450980544090271, 0.7450980544090271), (0.92016804218292236, 0.76862746477127075, 0.76862746477127075), (0.92436975240707397, 0.78823530673980713, 0.78823530673980713), (0.92857140302658081, 0.80784314870834351, 0.80784314870834351), (0.93277311325073242, 0.83137255907058716, 0.83137255907058716), (0.93697476387023926, 0.85098040103912354, 0.85098040103912354), (0.94117647409439087, 0.87450981140136719, 0.87450981140136719), (0.94537812471389771, 0.89411765336990356, 0.89411765336990356), (0.94957983493804932, 0.91372549533843994, 0.91372549533843994), (0.95378148555755615, 0.93725490570068359, 0.93725490570068359), (0.95798319578170776, 0.95686274766921997, 0.95686274766921997), (0.9621848464012146, 0.97647058963775635, 0.97647058963775635), (0.96638655662536621, 1.0, 1.0), (0.97058820724487305, 1.0, 1.0), (0.97478991746902466, 1.0, 1.0), (0.97899156808853149, 1.0, 1.0), (0.98319327831268311, 1.0, 1.0), (0.98739492893218994, 1.0, 1.0), (0.99159663915634155, 1.0, 1.0), (0.99579828977584839, 1.0, 1.0), (1.0, 1.0, 1.0)]} _gist_stern_data = {'blue': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0039215688593685627, 0.0039215688593685627), (0.0084033617749810219, 0.011764706112444401, 0.011764706112444401), (0.012605042196810246, 0.019607843831181526, 0.019607843831181526), (0.016806723549962044, 0.027450980618596077, 0.027450980618596077), (0.021008403971791267, 0.035294119268655777, 0.035294119268655777), (0.025210084393620491, 0.043137256056070328, 0.043137256056070328), (0.029411764815449715, 0.050980392843484879, 0.050980392843484879), (0.033613447099924088, 0.058823529630899429, 0.058823529630899429), (0.037815127521753311, 0.066666670143604279, 0.066666670143604279), (0.042016807943582535, 0.08235294371843338, 0.08235294371843338), (0.046218488365411758, 0.090196080505847931, 0.090196080505847931), (0.050420168787240982, 0.098039217293262482, 0.098039217293262482), (0.054621849209070206, 0.10588235408067703, 0.10588235408067703), (0.058823529630899429, 0.11372549086809158, 0.11372549086809158), (0.063025213778018951, 0.12156862765550613, 0.12156862765550613), (0.067226894199848175, 0.12941177189350128, 0.12941177189350128), (0.071428574621677399, 0.13725490868091583, 0.13725490868091583), (0.075630255043506622, 0.14509804546833038, 0.14509804546833038), (0.079831935465335846, 0.15294118225574493, 0.15294118225574493), (0.08403361588716507, 0.16078431904315948, 0.16078431904315948), (0.088235296308994293, 0.16862745583057404, 0.16862745583057404), (0.092436976730823517, 0.17647059261798859, 0.17647059261798859), (0.09663865715265274, 0.18431372940540314, 0.18431372940540314), (0.10084033757448196, 0.19215686619281769, 0.19215686619281769), (0.10504201799631119, 0.20000000298023224, 0.20000000298023224), (0.10924369841814041, 0.20784313976764679, 0.20784313976764679), (0.11344537883996964, 0.21568627655506134, 0.21568627655506134), (0.11764705926179886, 0.22352941334247589, 0.22352941334247589), (0.12184873968362808, 0.23137255012989044, 0.23137255012989044), (0.1260504275560379, 0.24705882370471954, 0.24705882370471954), (0.13025210797786713, 0.25490197539329529, 0.25490197539329529), (0.13445378839969635, 0.26274511218070984, 0.26274511218070984), (0.13865546882152557, 0.27058824896812439, 0.27058824896812439), (0.1428571492433548, 0.27843138575553894, 0.27843138575553894), (0.14705882966518402, 0.28627452254295349, 0.28627452254295349), (0.15126051008701324, 0.29411765933036804, 0.29411765933036804), (0.15546219050884247, 0.30196079611778259, 0.30196079611778259), (0.15966387093067169, 0.30980393290519714, 0.30980393290519714), (0.16386555135250092, 0.31764706969261169, 0.31764706969261169), (0.16806723177433014, 0.32549020648002625, 0.32549020648002625), (0.17226891219615936, 0.3333333432674408, 0.3333333432674408), (0.17647059261798859, 0.34117648005485535, 0.34117648005485535), (0.18067227303981781, 0.3490196168422699, 0.3490196168422699), (0.18487395346164703, 0.35686275362968445, 0.35686275362968445), (0.18907563388347626, 0.364705890417099, 0.364705890417099), (0.19327731430530548, 0.37254902720451355, 0.37254902720451355), (0.1974789947271347, 0.3803921639919281, 0.3803921639919281), (0.20168067514896393, 0.38823530077934265, 0.38823530077934265), (0.20588235557079315, 0.3960784375667572, 0.3960784375667572), (0.21008403599262238, 0.4117647111415863, 0.4117647111415863), (0.2142857164144516, 0.41960784792900085, 0.41960784792900085), (0.21848739683628082, 0.42745098471641541, 0.42745098471641541), (0.22268907725811005, 0.43529412150382996, 0.43529412150382996), (0.22689075767993927, 0.44313725829124451, 0.44313725829124451), (0.23109243810176849, 0.45098039507865906, 0.45098039507865906), (0.23529411852359772, 0.45882353186607361, 0.45882353186607361), (0.23949579894542694, 0.46666666865348816, 0.46666666865348816), (0.24369747936725616, 0.47450980544090271, 0.47450980544090271), (0.24789915978908539, 0.48235294222831726, 0.48235294222831726), (0.25210085511207581, 0.49803921580314636, 0.49803921580314636), (0.25630253553390503, 0.5058823823928833, 0.5058823823928833), (0.26050421595573425, 0.51372551918029785, 0.51372551918029785), (0.26470589637756348, 0.5215686559677124, 0.5215686559677124), (0.2689075767993927, 0.52941179275512695, 0.52941179275512695), (0.27310925722122192, 0.5372549295425415, 0.5372549295425415), (0.27731093764305115, 0.54509806632995605, 0.54509806632995605), (0.28151261806488037, 0.55294120311737061, 0.55294120311737061), (0.28571429848670959, 0.56078433990478516, 0.56078433990478516), (0.28991597890853882, 0.56862747669219971, 0.56862747669219971), (0.29411765933036804, 0.58431375026702881, 0.58431375026702881), (0.29831933975219727, 0.59215688705444336, 0.59215688705444336), (0.30252102017402649, 0.60000002384185791, 0.60000002384185791), (0.30672270059585571, 0.60784316062927246, 0.60784316062927246), (0.31092438101768494, 0.61568629741668701, 0.61568629741668701), (0.31512606143951416, 0.62352943420410156, 0.62352943420410156), (0.31932774186134338, 0.63137257099151611, 0.63137257099151611), (0.32352942228317261, 0.63921570777893066, 0.63921570777893066), (0.32773110270500183, 0.64705884456634521, 0.64705884456634521), (0.33193278312683105, 0.65490198135375977, 0.65490198135375977), (0.33613446354866028, 0.66274511814117432, 0.66274511814117432), (0.3403361439704895, 0.67058825492858887, 0.67058825492858887), (0.34453782439231873, 0.67843139171600342, 0.67843139171600342), (0.34873950481414795, 0.68627452850341797, 0.68627452850341797), (0.35294118523597717, 0.69411766529083252, 0.69411766529083252), (0.3571428656578064, 0.70196080207824707, 0.70196080207824707), (0.36134454607963562, 0.70980393886566162, 0.70980393886566162), (0.36554622650146484, 0.71764707565307617, 0.71764707565307617), (0.36974790692329407, 0.72549021244049072, 0.72549021244049072), (0.37394958734512329, 0.73333334922790527, 0.73333334922790527), (0.37815126776695251, 0.74901962280273438, 0.74901962280273438), (0.38235294818878174, 0.75686275959014893, 0.75686275959014893), (0.38655462861061096, 0.76470589637756348, 0.76470589637756348), (0.39075630903244019, 0.77254903316497803, 0.77254903316497803), (0.39495798945426941, 0.78039216995239258, 0.78039216995239258), (0.39915966987609863, 0.78823530673980713, 0.78823530673980713), (0.40336135029792786, 0.79607844352722168, 0.79607844352722168), (0.40756303071975708, 0.80392158031463623, 0.80392158031463623), (0.4117647111415863, 0.81176471710205078, 0.81176471710205078), (0.41596639156341553, 0.81960785388946533, 0.81960785388946533), (0.42016807198524475, 0.82745099067687988, 0.82745099067687988), (0.42436975240707397, 0.83529412746429443, 0.83529412746429443), (0.4285714328289032, 0.84313726425170898, 0.84313726425170898), (0.43277311325073242, 0.85098040103912354, 0.85098040103912354), (0.43697479367256165, 0.85882353782653809, 0.85882353782653809), (0.44117647409439087, 0.86666667461395264, 0.86666667461395264), (0.44537815451622009, 0.87450981140136719, 0.87450981140136719), (0.44957983493804932, 0.88235294818878174, 0.88235294818878174), (0.45378151535987854, 0.89019608497619629, 0.89019608497619629), (0.45798319578170776, 0.89803922176361084, 0.89803922176361084), (0.46218487620353699, 0.91372549533843994, 0.91372549533843994), (0.46638655662536621, 0.92156863212585449, 0.92156863212585449), (0.47058823704719543, 0.92941176891326904, 0.92941176891326904), (0.47478991746902466, 0.93725490570068359, 0.93725490570068359), (0.47899159789085388, 0.94509804248809814, 0.94509804248809814), (0.48319327831268311, 0.9529411792755127, 0.9529411792755127), (0.48739495873451233, 0.96078431606292725, 0.96078431606292725), (0.49159663915634155, 0.9686274528503418, 0.9686274528503418), (0.49579831957817078, 0.97647058963775635, 0.97647058963775635), (0.5, 0.9843137264251709, 0.9843137264251709), (0.50420171022415161, 1.0, 1.0), (0.50840336084365845, 0.9843137264251709, 0.9843137264251709), (0.51260507106781006, 0.9686274528503418, 0.9686274528503418), (0.51680672168731689, 0.9529411792755127, 0.9529411792755127), (0.52100843191146851, 0.93333333730697632, 0.93333333730697632), (0.52521008253097534, 0.91764706373214722, 0.91764706373214722), (0.52941179275512695, 0.90196079015731812, 0.90196079015731812), (0.53361344337463379, 0.88627451658248901, 0.88627451658248901), (0.5378151535987854, 0.86666667461395264, 0.86666667461395264), (0.54201680421829224, 0.85098040103912354, 0.85098040103912354), (0.54621851444244385, 0.81960785388946533, 0.81960785388946533), (0.55042016506195068, 0.80000001192092896, 0.80000001192092896), (0.55462187528610229, 0.78431373834609985, 0.78431373834609985), (0.55882352590560913, 0.76862746477127075, 0.76862746477127075), (0.56302523612976074, 0.75294119119644165, 0.75294119119644165), (0.56722688674926758, 0.73333334922790527, 0.73333334922790527), (0.57142859697341919, 0.71764707565307617, 0.71764707565307617), (0.57563024759292603, 0.70196080207824707, 0.70196080207824707), (0.57983195781707764, 0.68627452850341797, 0.68627452850341797), (0.58403360843658447, 0.66666668653488159, 0.66666668653488159), (0.58823531866073608, 0.65098041296005249, 0.65098041296005249), (0.59243696928024292, 0.63529413938522339, 0.63529413938522339), (0.59663867950439453, 0.61960786581039429, 0.61960786581039429), (0.60084033012390137, 0.60000002384185791, 0.60000002384185791), (0.60504204034805298, 0.58431375026702881, 0.58431375026702881), (0.60924369096755981, 0.56862747669219971, 0.56862747669219971), (0.61344540119171143, 0.55294120311737061, 0.55294120311737061), (0.61764705181121826, 0.53333336114883423, 0.53333336114883423), (0.62184876203536987, 0.51764708757400513, 0.51764708757400513), (0.62605041265487671, 0.50196081399917603, 0.50196081399917603), (0.63025212287902832, 0.46666666865348816, 0.46666666865348816), (0.63445377349853516, 0.45098039507865906, 0.45098039507865906), (0.63865548372268677, 0.43529412150382996, 0.43529412150382996), (0.6428571343421936, 0.41960784792900085, 0.41960784792900085), (0.64705884456634521, 0.40000000596046448, 0.40000000596046448), (0.65126049518585205, 0.38431373238563538, 0.38431373238563538), (0.65546220541000366, 0.36862745881080627, 0.36862745881080627), (0.6596638560295105, 0.35294118523597717, 0.35294118523597717), (0.66386556625366211, 0.3333333432674408, 0.3333333432674408), (0.66806721687316895, 0.31764706969261169, 0.31764706969261169), (0.67226892709732056, 0.30196079611778259, 0.30196079611778259), (0.67647057771682739, 0.28627452254295349, 0.28627452254295349), (0.680672287940979, 0.26666668057441711, 0.26666668057441711), (0.68487393856048584, 0.25098040699958801, 0.25098040699958801), (0.68907564878463745, 0.23529411852359772, 0.23529411852359772), (0.69327729940414429, 0.21960784494876862, 0.21960784494876862), (0.6974790096282959, 0.20000000298023224, 0.20000000298023224), (0.70168066024780273, 0.18431372940540314, 0.18431372940540314), (0.70588237047195435, 0.16862745583057404, 0.16862745583057404), (0.71008402109146118, 0.15294118225574493, 0.15294118225574493), (0.71428573131561279, 0.11764705926179886, 0.11764705926179886), (0.71848738193511963, 0.10196078568696976, 0.10196078568696976), (0.72268909215927124, 0.086274512112140656, 0.086274512112140656), (0.72689074277877808, 0.066666670143604279, 0.066666670143604279), (0.73109245300292969, 0.050980392843484879, 0.050980392843484879), (0.73529410362243652, 0.035294119268655777, 0.035294119268655777), (0.73949581384658813, 0.019607843831181526, 0.019607843831181526), (0.74369746446609497, 0.0, 0.0), (0.74789917469024658, 0.011764706112444401, 0.011764706112444401), (0.75210082530975342, 0.027450980618596077, 0.027450980618596077), (0.75630253553390503, 0.058823529630899429, 0.058823529630899429), (0.76050418615341187, 0.074509806931018829, 0.074509806931018829), (0.76470589637756348, 0.086274512112140656, 0.086274512112140656), (0.76890754699707031, 0.10196078568696976, 0.10196078568696976), (0.77310925722122192, 0.11764705926179886, 0.11764705926179886), (0.77731090784072876, 0.13333334028720856, 0.13333334028720856), (0.78151261806488037, 0.14901961386203766, 0.14901961386203766), (0.78571426868438721, 0.16078431904315948, 0.16078431904315948), (0.78991597890853882, 0.17647059261798859, 0.17647059261798859), (0.79411762952804565, 0.19215686619281769, 0.19215686619281769), (0.79831933975219727, 0.22352941334247589, 0.22352941334247589), (0.8025209903717041, 0.23529411852359772, 0.23529411852359772), (0.80672270059585571, 0.25098040699958801, 0.25098040699958801), (0.81092435121536255, 0.26666668057441711, 0.26666668057441711), (0.81512606143951416, 0.28235295414924622, 0.28235295414924622), (0.819327712059021, 0.29803922772407532, 0.29803922772407532), (0.82352942228317261, 0.30980393290519714, 0.30980393290519714), (0.82773107290267944, 0.32549020648002625, 0.32549020648002625), (0.83193278312683105, 0.34117648005485535, 0.34117648005485535), (0.83613443374633789, 0.35686275362968445, 0.35686275362968445), (0.8403361439704895, 0.37254902720451355, 0.37254902720451355), (0.84453779458999634, 0.38431373238563538, 0.38431373238563538), (0.84873950481414795, 0.40000000596046448, 0.40000000596046448), (0.85294115543365479, 0.41568627953529358, 0.41568627953529358), (0.8571428656578064, 0.43137255311012268, 0.43137255311012268), (0.86134451627731323, 0.44705882668495178, 0.44705882668495178), (0.86554622650146484, 0.45882353186607361, 0.45882353186607361), (0.86974787712097168, 0.47450980544090271, 0.47450980544090271), (0.87394958734512329, 0.49019607901573181, 0.49019607901573181), (0.87815123796463013, 0.5058823823928833, 0.5058823823928833), (0.88235294818878174, 0.5372549295425415, 0.5372549295425415), (0.88655459880828857, 0.54901963472366333, 0.54901963472366333), (0.89075630903244019, 0.56470590829849243, 0.56470590829849243), (0.89495795965194702, 0.58039218187332153, 0.58039218187332153), (0.89915966987609863, 0.59607845544815063, 0.59607845544815063), (0.90336132049560547, 0.61176472902297974, 0.61176472902297974), (0.90756303071975708, 0.62352943420410156, 0.62352943420410156), (0.91176468133926392, 0.63921570777893066, 0.63921570777893066), (0.91596639156341553, 0.65490198135375977, 0.65490198135375977), (0.92016804218292236, 0.67058825492858887, 0.67058825492858887), (0.92436975240707397, 0.68627452850341797, 0.68627452850341797), (0.92857140302658081, 0.69803923368453979, 0.69803923368453979), (0.93277311325073242, 0.7137255072593689, 0.7137255072593689), (0.93697476387023926, 0.729411780834198, 0.729411780834198), (0.94117647409439087, 0.7450980544090271, 0.7450980544090271), (0.94537812471389771, 0.7607843279838562, 0.7607843279838562), (0.94957983493804932, 0.77254903316497803, 0.77254903316497803), (0.95378148555755615, 0.78823530673980713, 0.78823530673980713), (0.95798319578170776, 0.80392158031463623, 0.80392158031463623), (0.9621848464012146, 0.81960785388946533, 0.81960785388946533), (0.96638655662536621, 0.84705883264541626, 0.84705883264541626), (0.97058820724487305, 0.86274510622024536, 0.86274510622024536), (0.97478991746902466, 0.87843137979507446, 0.87843137979507446), (0.97899156808853149, 0.89411765336990356, 0.89411765336990356), (0.98319327831268311, 0.90980392694473267, 0.90980392694473267), (0.98739492893218994, 0.92156863212585449, 0.92156863212585449), (0.99159663915634155, 0.93725490570068359, 0.93725490570068359), (0.99579828977584839, 0.9529411792755127, 0.9529411792755127), (1.0, 0.9686274528503418, 0.9686274528503418)], 'green': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0039215688593685627, 0.0039215688593685627), (0.0084033617749810219, 0.0078431377187371254, 0.0078431377187371254), (0.012605042196810246, 0.011764706112444401, 0.011764706112444401), (0.016806723549962044, 0.015686275437474251, 0.015686275437474251), (0.021008403971791267, 0.019607843831181526, 0.019607843831181526), (0.025210084393620491, 0.023529412224888802, 0.023529412224888802), (0.029411764815449715, 0.027450980618596077, 0.027450980618596077), (0.033613447099924088, 0.031372550874948502, 0.031372550874948502), (0.037815127521753311, 0.035294119268655777, 0.035294119268655777), (0.042016807943582535, 0.043137256056070328, 0.043137256056070328), (0.046218488365411758, 0.047058824449777603, 0.047058824449777603), (0.050420168787240982, 0.050980392843484879, 0.050980392843484879), (0.054621849209070206, 0.054901961237192154, 0.054901961237192154), (0.058823529630899429, 0.058823529630899429, 0.058823529630899429), (0.063025213778018951, 0.062745101749897003, 0.062745101749897003), (0.067226894199848175, 0.066666670143604279, 0.066666670143604279), (0.071428574621677399, 0.070588238537311554, 0.070588238537311554), (0.075630255043506622, 0.074509806931018829, 0.074509806931018829), (0.079831935465335846, 0.078431375324726105, 0.078431375324726105), (0.08403361588716507, 0.08235294371843338, 0.08235294371843338), (0.088235296308994293, 0.086274512112140656, 0.086274512112140656), (0.092436976730823517, 0.090196080505847931, 0.090196080505847931), (0.09663865715265274, 0.094117648899555206, 0.094117648899555206), (0.10084033757448196, 0.098039217293262482, 0.098039217293262482), (0.10504201799631119, 0.10196078568696976, 0.10196078568696976), (0.10924369841814041, 0.10588235408067703, 0.10588235408067703), (0.11344537883996964, 0.10980392247438431, 0.10980392247438431), (0.11764705926179886, 0.11372549086809158, 0.11372549086809158), (0.12184873968362808, 0.11764705926179886, 0.11764705926179886), (0.1260504275560379, 0.12549020349979401, 0.12549020349979401), (0.13025210797786713, 0.12941177189350128, 0.12941177189350128), (0.13445378839969635, 0.13333334028720856, 0.13333334028720856), (0.13865546882152557, 0.13725490868091583, 0.13725490868091583), (0.1428571492433548, 0.14117647707462311, 0.14117647707462311), (0.14705882966518402, 0.14509804546833038, 0.14509804546833038), (0.15126051008701324, 0.14901961386203766, 0.14901961386203766), (0.15546219050884247, 0.15294118225574493, 0.15294118225574493), (0.15966387093067169, 0.15686275064945221, 0.15686275064945221), (0.16386555135250092, 0.16078431904315948, 0.16078431904315948), (0.16806723177433014, 0.16470588743686676, 0.16470588743686676), (0.17226891219615936, 0.16862745583057404, 0.16862745583057404), (0.17647059261798859, 0.17254902422428131, 0.17254902422428131), (0.18067227303981781, 0.17647059261798859, 0.17647059261798859), (0.18487395346164703, 0.18039216101169586, 0.18039216101169586), (0.18907563388347626, 0.18431372940540314, 0.18431372940540314), (0.19327731430530548, 0.18823529779911041, 0.18823529779911041), (0.1974789947271347, 0.19215686619281769, 0.19215686619281769), (0.20168067514896393, 0.19607843458652496, 0.19607843458652496), (0.20588235557079315, 0.20000000298023224, 0.20000000298023224), (0.21008403599262238, 0.20784313976764679, 0.20784313976764679), (0.2142857164144516, 0.21176470816135406, 0.21176470816135406), (0.21848739683628082, 0.21568627655506134, 0.21568627655506134), (0.22268907725811005, 0.21960784494876862, 0.21960784494876862), (0.22689075767993927, 0.22352941334247589, 0.22352941334247589), (0.23109243810176849, 0.22745098173618317, 0.22745098173618317), (0.23529411852359772, 0.23137255012989044, 0.23137255012989044), (0.23949579894542694, 0.23529411852359772, 0.23529411852359772), (0.24369747936725616, 0.23921568691730499, 0.23921568691730499), (0.24789915978908539, 0.24313725531101227, 0.24313725531101227), (0.25210085511207581, 0.25098040699958801, 0.25098040699958801), (0.25630253553390503, 0.25490197539329529, 0.25490197539329529), (0.26050421595573425, 0.25882354378700256, 0.25882354378700256), (0.26470589637756348, 0.26274511218070984, 0.26274511218070984), (0.2689075767993927, 0.26666668057441711, 0.26666668057441711), (0.27310925722122192, 0.27058824896812439, 0.27058824896812439), (0.27731093764305115, 0.27450981736183167, 0.27450981736183167), (0.28151261806488037, 0.27843138575553894, 0.27843138575553894), (0.28571429848670959, 0.28235295414924622, 0.28235295414924622), (0.28991597890853882, 0.28627452254295349, 0.28627452254295349), (0.29411765933036804, 0.29411765933036804, 0.29411765933036804), (0.29831933975219727, 0.29803922772407532, 0.29803922772407532), (0.30252102017402649, 0.30196079611778259, 0.30196079611778259), (0.30672270059585571, 0.30588236451148987, 0.30588236451148987), (0.31092438101768494, 0.30980393290519714, 0.30980393290519714), (0.31512606143951416, 0.31372550129890442, 0.31372550129890442), (0.31932774186134338, 0.31764706969261169, 0.31764706969261169), (0.32352942228317261, 0.32156863808631897, 0.32156863808631897), (0.32773110270500183, 0.32549020648002625, 0.32549020648002625), (0.33193278312683105, 0.32941177487373352, 0.32941177487373352), (0.33613446354866028, 0.3333333432674408, 0.3333333432674408), (0.3403361439704895, 0.33725491166114807, 0.33725491166114807), (0.34453782439231873, 0.34117648005485535, 0.34117648005485535), (0.34873950481414795, 0.34509804844856262, 0.34509804844856262), (0.35294118523597717, 0.3490196168422699, 0.3490196168422699), (0.3571428656578064, 0.35294118523597717, 0.35294118523597717), (0.36134454607963562, 0.35686275362968445, 0.35686275362968445), (0.36554622650146484, 0.36078432202339172, 0.36078432202339172), (0.36974790692329407, 0.364705890417099, 0.364705890417099), (0.37394958734512329, 0.36862745881080627, 0.36862745881080627), (0.37815126776695251, 0.37647059559822083, 0.37647059559822083), (0.38235294818878174, 0.3803921639919281, 0.3803921639919281), (0.38655462861061096, 0.38431373238563538, 0.38431373238563538), (0.39075630903244019, 0.38823530077934265, 0.38823530077934265), (0.39495798945426941, 0.39215686917304993, 0.39215686917304993), (0.39915966987609863, 0.3960784375667572, 0.3960784375667572), (0.40336135029792786, 0.40000000596046448, 0.40000000596046448), (0.40756303071975708, 0.40392157435417175, 0.40392157435417175), (0.4117647111415863, 0.40784314274787903, 0.40784314274787903), (0.41596639156341553, 0.4117647111415863, 0.4117647111415863), (0.42016807198524475, 0.41568627953529358, 0.41568627953529358), (0.42436975240707397, 0.41960784792900085, 0.41960784792900085), (0.4285714328289032, 0.42352941632270813, 0.42352941632270813), (0.43277311325073242, 0.42745098471641541, 0.42745098471641541), (0.43697479367256165, 0.43137255311012268, 0.43137255311012268), (0.44117647409439087, 0.43529412150382996, 0.43529412150382996), (0.44537815451622009, 0.43921568989753723, 0.43921568989753723), (0.44957983493804932, 0.44313725829124451, 0.44313725829124451), (0.45378151535987854, 0.44705882668495178, 0.44705882668495178), (0.45798319578170776, 0.45098039507865906, 0.45098039507865906), (0.46218487620353699, 0.45882353186607361, 0.45882353186607361), (0.46638655662536621, 0.46274510025978088, 0.46274510025978088), (0.47058823704719543, 0.46666666865348816, 0.46666666865348816), (0.47478991746902466, 0.47058823704719543, 0.47058823704719543), (0.47899159789085388, 0.47450980544090271, 0.47450980544090271), (0.48319327831268311, 0.47843137383460999, 0.47843137383460999), (0.48739495873451233, 0.48235294222831726, 0.48235294222831726), (0.49159663915634155, 0.48627451062202454, 0.48627451062202454), (0.49579831957817078, 0.49019607901573181, 0.49019607901573181), (0.5, 0.49411764740943909, 0.49411764740943909), (0.50420171022415161, 0.50196081399917603, 0.50196081399917603), (0.50840336084365845, 0.5058823823928833, 0.5058823823928833), (0.51260507106781006, 0.50980395078659058, 0.50980395078659058), (0.51680672168731689, 0.51372551918029785, 0.51372551918029785), (0.52100843191146851, 0.51764708757400513, 0.51764708757400513), (0.52521008253097534, 0.5215686559677124, 0.5215686559677124), (0.52941179275512695, 0.52549022436141968, 0.52549022436141968), (0.53361344337463379, 0.52941179275512695, 0.52941179275512695), (0.5378151535987854, 0.53333336114883423, 0.53333336114883423), (0.54201680421829224, 0.5372549295425415, 0.5372549295425415), (0.54621851444244385, 0.54509806632995605, 0.54509806632995605), (0.55042016506195068, 0.54901963472366333, 0.54901963472366333), (0.55462187528610229, 0.55294120311737061, 0.55294120311737061), (0.55882352590560913, 0.55686277151107788, 0.55686277151107788), (0.56302523612976074, 0.56078433990478516, 0.56078433990478516), (0.56722688674926758, 0.56470590829849243, 0.56470590829849243), (0.57142859697341919, 0.56862747669219971, 0.56862747669219971), (0.57563024759292603, 0.57254904508590698, 0.57254904508590698), (0.57983195781707764, 0.57647061347961426, 0.57647061347961426), (0.58403360843658447, 0.58039218187332153, 0.58039218187332153), (0.58823531866073608, 0.58431375026702881, 0.58431375026702881), (0.59243696928024292, 0.58823531866073608, 0.58823531866073608), (0.59663867950439453, 0.59215688705444336, 0.59215688705444336), (0.60084033012390137, 0.59607845544815063, 0.59607845544815063), (0.60504204034805298, 0.60000002384185791, 0.60000002384185791), (0.60924369096755981, 0.60392159223556519, 0.60392159223556519), (0.61344540119171143, 0.60784316062927246, 0.60784316062927246), (0.61764705181121826, 0.61176472902297974, 0.61176472902297974), (0.62184876203536987, 0.61568629741668701, 0.61568629741668701), (0.62605041265487671, 0.61960786581039429, 0.61960786581039429), (0.63025212287902832, 0.62745100259780884, 0.62745100259780884), (0.63445377349853516, 0.63137257099151611, 0.63137257099151611), (0.63865548372268677, 0.63529413938522339, 0.63529413938522339), (0.6428571343421936, 0.63921570777893066, 0.63921570777893066), (0.64705884456634521, 0.64313727617263794, 0.64313727617263794), (0.65126049518585205, 0.64705884456634521, 0.64705884456634521), (0.65546220541000366, 0.65098041296005249, 0.65098041296005249), (0.6596638560295105, 0.65490198135375977, 0.65490198135375977), (0.66386556625366211, 0.65882354974746704, 0.65882354974746704), (0.66806721687316895, 0.66274511814117432, 0.66274511814117432), (0.67226892709732056, 0.66666668653488159, 0.66666668653488159), (0.67647057771682739, 0.67058825492858887, 0.67058825492858887), (0.680672287940979, 0.67450982332229614, 0.67450982332229614), (0.68487393856048584, 0.67843139171600342, 0.67843139171600342), (0.68907564878463745, 0.68235296010971069, 0.68235296010971069), (0.69327729940414429, 0.68627452850341797, 0.68627452850341797), (0.6974790096282959, 0.69019609689712524, 0.69019609689712524), (0.70168066024780273, 0.69411766529083252, 0.69411766529083252), (0.70588237047195435, 0.69803923368453979, 0.69803923368453979), (0.71008402109146118, 0.70196080207824707, 0.70196080207824707), (0.71428573131561279, 0.70980393886566162, 0.70980393886566162), (0.71848738193511963, 0.7137255072593689, 0.7137255072593689), (0.72268909215927124, 0.71764707565307617, 0.71764707565307617), (0.72689074277877808, 0.72156864404678345, 0.72156864404678345), (0.73109245300292969, 0.72549021244049072, 0.72549021244049072), (0.73529410362243652, 0.729411780834198, 0.729411780834198), (0.73949581384658813, 0.73333334922790527, 0.73333334922790527), (0.74369746446609497, 0.73725491762161255, 0.73725491762161255), (0.74789917469024658, 0.74117648601531982, 0.74117648601531982), (0.75210082530975342, 0.7450980544090271, 0.7450980544090271), (0.75630253553390503, 0.75294119119644165, 0.75294119119644165), (0.76050418615341187, 0.75686275959014893, 0.75686275959014893), (0.76470589637756348, 0.7607843279838562, 0.7607843279838562), (0.76890754699707031, 0.76470589637756348, 0.76470589637756348), (0.77310925722122192, 0.76862746477127075, 0.76862746477127075), (0.77731090784072876, 0.77254903316497803, 0.77254903316497803), (0.78151261806488037, 0.7764706015586853, 0.7764706015586853), (0.78571426868438721, 0.78039216995239258, 0.78039216995239258), (0.78991597890853882, 0.78431373834609985, 0.78431373834609985), (0.79411762952804565, 0.78823530673980713, 0.78823530673980713), (0.79831933975219727, 0.79607844352722168, 0.79607844352722168), (0.8025209903717041, 0.80000001192092896, 0.80000001192092896), (0.80672270059585571, 0.80392158031463623, 0.80392158031463623), (0.81092435121536255, 0.80784314870834351, 0.80784314870834351), (0.81512606143951416, 0.81176471710205078, 0.81176471710205078), (0.819327712059021, 0.81568628549575806, 0.81568628549575806), (0.82352942228317261, 0.81960785388946533, 0.81960785388946533), (0.82773107290267944, 0.82352942228317261, 0.82352942228317261), (0.83193278312683105, 0.82745099067687988, 0.82745099067687988), (0.83613443374633789, 0.83137255907058716, 0.83137255907058716), (0.8403361439704895, 0.83529412746429443, 0.83529412746429443), (0.84453779458999634, 0.83921569585800171, 0.83921569585800171), (0.84873950481414795, 0.84313726425170898, 0.84313726425170898), (0.85294115543365479, 0.84705883264541626, 0.84705883264541626), (0.8571428656578064, 0.85098040103912354, 0.85098040103912354), (0.86134451627731323, 0.85490196943283081, 0.85490196943283081), (0.86554622650146484, 0.85882353782653809, 0.85882353782653809), (0.86974787712097168, 0.86274510622024536, 0.86274510622024536), (0.87394958734512329, 0.86666667461395264, 0.86666667461395264), (0.87815123796463013, 0.87058824300765991, 0.87058824300765991), (0.88235294818878174, 0.87843137979507446, 0.87843137979507446), (0.88655459880828857, 0.88235294818878174, 0.88235294818878174), (0.89075630903244019, 0.88627451658248901, 0.88627451658248901), (0.89495795965194702, 0.89019608497619629, 0.89019608497619629), (0.89915966987609863, 0.89411765336990356, 0.89411765336990356), (0.90336132049560547, 0.89803922176361084, 0.89803922176361084), (0.90756303071975708, 0.90196079015731812, 0.90196079015731812), (0.91176468133926392, 0.90588235855102539, 0.90588235855102539), (0.91596639156341553, 0.90980392694473267, 0.90980392694473267), (0.92016804218292236, 0.91372549533843994, 0.91372549533843994), (0.92436975240707397, 0.91764706373214722, 0.91764706373214722), (0.92857140302658081, 0.92156863212585449, 0.92156863212585449), (0.93277311325073242, 0.92549020051956177, 0.92549020051956177), (0.93697476387023926, 0.92941176891326904, 0.92941176891326904), (0.94117647409439087, 0.93333333730697632, 0.93333333730697632), (0.94537812471389771, 0.93725490570068359, 0.93725490570068359), (0.94957983493804932, 0.94117647409439087, 0.94117647409439087), (0.95378148555755615, 0.94509804248809814, 0.94509804248809814), (0.95798319578170776, 0.94901961088180542, 0.94901961088180542), (0.9621848464012146, 0.9529411792755127, 0.9529411792755127), (0.96638655662536621, 0.96078431606292725, 0.96078431606292725), (0.97058820724487305, 0.96470588445663452, 0.96470588445663452), (0.97478991746902466, 0.9686274528503418, 0.9686274528503418), (0.97899156808853149, 0.97254902124404907, 0.97254902124404907), (0.98319327831268311, 0.97647058963775635, 0.97647058963775635), (0.98739492893218994, 0.98039215803146362, 0.98039215803146362), (0.99159663915634155, 0.9843137264251709, 0.9843137264251709), (0.99579828977584839, 0.98823529481887817, 0.98823529481887817), (1.0, 0.99215686321258545, 0.99215686321258545)], 'red': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.070588238537311554, 0.070588238537311554), (0.0084033617749810219, 0.14117647707462311, 0.14117647707462311), (0.012605042196810246, 0.21176470816135406, 0.21176470816135406), (0.016806723549962044, 0.28235295414924622, 0.28235295414924622), (0.021008403971791267, 0.35294118523597717, 0.35294118523597717), (0.025210084393620491, 0.42352941632270813, 0.42352941632270813), (0.029411764815449715, 0.49803921580314636, 0.49803921580314636), (0.033613447099924088, 0.56862747669219971, 0.56862747669219971), (0.037815127521753311, 0.63921570777893066, 0.63921570777893066), (0.042016807943582535, 0.78039216995239258, 0.78039216995239258), (0.046218488365411758, 0.85098040103912354, 0.85098040103912354), (0.050420168787240982, 0.92156863212585449, 0.92156863212585449), (0.054621849209070206, 0.99607843160629272, 0.99607843160629272), (0.058823529630899429, 0.97647058963775635, 0.97647058963775635), (0.063025213778018951, 0.95686274766921997, 0.95686274766921997), (0.067226894199848175, 0.93725490570068359, 0.93725490570068359), (0.071428574621677399, 0.91764706373214722, 0.91764706373214722), (0.075630255043506622, 0.89803922176361084, 0.89803922176361084), (0.079831935465335846, 0.87450981140136719, 0.87450981140136719), (0.08403361588716507, 0.85490196943283081, 0.85490196943283081), (0.088235296308994293, 0.83529412746429443, 0.83529412746429443), (0.092436976730823517, 0.81568628549575806, 0.81568628549575806), (0.09663865715265274, 0.79607844352722168, 0.79607844352722168), (0.10084033757448196, 0.77254903316497803, 0.77254903316497803), (0.10504201799631119, 0.75294119119644165, 0.75294119119644165), (0.10924369841814041, 0.73333334922790527, 0.73333334922790527), (0.11344537883996964, 0.7137255072593689, 0.7137255072593689), (0.11764705926179886, 0.69411766529083252, 0.69411766529083252), (0.12184873968362808, 0.67450982332229614, 0.67450982332229614), (0.1260504275560379, 0.63137257099151611, 0.63137257099151611), (0.13025210797786713, 0.61176472902297974, 0.61176472902297974), (0.13445378839969635, 0.59215688705444336, 0.59215688705444336), (0.13865546882152557, 0.57254904508590698, 0.57254904508590698), (0.1428571492433548, 0.54901963472366333, 0.54901963472366333), (0.14705882966518402, 0.52941179275512695, 0.52941179275512695), (0.15126051008701324, 0.50980395078659058, 0.50980395078659058), (0.15546219050884247, 0.49019607901573181, 0.49019607901573181), (0.15966387093067169, 0.47058823704719543, 0.47058823704719543), (0.16386555135250092, 0.45098039507865906, 0.45098039507865906), (0.16806723177433014, 0.42745098471641541, 0.42745098471641541), (0.17226891219615936, 0.40784314274787903, 0.40784314274787903), (0.17647059261798859, 0.38823530077934265, 0.38823530077934265), (0.18067227303981781, 0.36862745881080627, 0.36862745881080627), (0.18487395346164703, 0.3490196168422699, 0.3490196168422699), (0.18907563388347626, 0.32549020648002625, 0.32549020648002625), (0.19327731430530548, 0.30588236451148987, 0.30588236451148987), (0.1974789947271347, 0.28627452254295349, 0.28627452254295349), (0.20168067514896393, 0.26666668057441711, 0.26666668057441711), (0.20588235557079315, 0.24705882370471954, 0.24705882370471954), (0.21008403599262238, 0.20392157137393951, 0.20392157137393951), (0.2142857164144516, 0.18431372940540314, 0.18431372940540314), (0.21848739683628082, 0.16470588743686676, 0.16470588743686676), (0.22268907725811005, 0.14509804546833038, 0.14509804546833038), (0.22689075767993927, 0.12549020349979401, 0.12549020349979401), (0.23109243810176849, 0.10196078568696976, 0.10196078568696976), (0.23529411852359772, 0.08235294371843338, 0.08235294371843338), (0.23949579894542694, 0.062745101749897003, 0.062745101749897003), (0.24369747936725616, 0.043137256056070328, 0.043137256056070328), (0.24789915978908539, 0.023529412224888802, 0.023529412224888802), (0.25210085511207581, 0.25098040699958801, 0.25098040699958801), (0.25630253553390503, 0.25490197539329529, 0.25490197539329529), (0.26050421595573425, 0.25882354378700256, 0.25882354378700256), (0.26470589637756348, 0.26274511218070984, 0.26274511218070984), (0.2689075767993927, 0.26666668057441711, 0.26666668057441711), (0.27310925722122192, 0.27058824896812439, 0.27058824896812439), (0.27731093764305115, 0.27450981736183167, 0.27450981736183167), (0.28151261806488037, 0.27843138575553894, 0.27843138575553894), (0.28571429848670959, 0.28235295414924622, 0.28235295414924622), (0.28991597890853882, 0.28627452254295349, 0.28627452254295349), (0.29411765933036804, 0.29411765933036804, 0.29411765933036804), (0.29831933975219727, 0.29803922772407532, 0.29803922772407532), (0.30252102017402649, 0.30196079611778259, 0.30196079611778259), (0.30672270059585571, 0.30588236451148987, 0.30588236451148987), (0.31092438101768494, 0.30980393290519714, 0.30980393290519714), (0.31512606143951416, 0.31372550129890442, 0.31372550129890442), (0.31932774186134338, 0.31764706969261169, 0.31764706969261169), (0.32352942228317261, 0.32156863808631897, 0.32156863808631897), (0.32773110270500183, 0.32549020648002625, 0.32549020648002625), (0.33193278312683105, 0.32941177487373352, 0.32941177487373352), (0.33613446354866028, 0.3333333432674408, 0.3333333432674408), (0.3403361439704895, 0.33725491166114807, 0.33725491166114807), (0.34453782439231873, 0.34117648005485535, 0.34117648005485535), (0.34873950481414795, 0.34509804844856262, 0.34509804844856262), (0.35294118523597717, 0.3490196168422699, 0.3490196168422699), (0.3571428656578064, 0.35294118523597717, 0.35294118523597717), (0.36134454607963562, 0.35686275362968445, 0.35686275362968445), (0.36554622650146484, 0.36078432202339172, 0.36078432202339172), (0.36974790692329407, 0.364705890417099, 0.364705890417099), (0.37394958734512329, 0.36862745881080627, 0.36862745881080627), (0.37815126776695251, 0.37647059559822083, 0.37647059559822083), (0.38235294818878174, 0.3803921639919281, 0.3803921639919281), (0.38655462861061096, 0.38431373238563538, 0.38431373238563538), (0.39075630903244019, 0.38823530077934265, 0.38823530077934265), (0.39495798945426941, 0.39215686917304993, 0.39215686917304993), (0.39915966987609863, 0.3960784375667572, 0.3960784375667572), (0.40336135029792786, 0.40000000596046448, 0.40000000596046448), (0.40756303071975708, 0.40392157435417175, 0.40392157435417175), (0.4117647111415863, 0.40784314274787903, 0.40784314274787903), (0.41596639156341553, 0.4117647111415863, 0.4117647111415863), (0.42016807198524475, 0.41568627953529358, 0.41568627953529358), (0.42436975240707397, 0.41960784792900085, 0.41960784792900085), (0.4285714328289032, 0.42352941632270813, 0.42352941632270813), (0.43277311325073242, 0.42745098471641541, 0.42745098471641541), (0.43697479367256165, 0.43137255311012268, 0.43137255311012268), (0.44117647409439087, 0.43529412150382996, 0.43529412150382996), (0.44537815451622009, 0.43921568989753723, 0.43921568989753723), (0.44957983493804932, 0.44313725829124451, 0.44313725829124451), (0.45378151535987854, 0.44705882668495178, 0.44705882668495178), (0.45798319578170776, 0.45098039507865906, 0.45098039507865906), (0.46218487620353699, 0.45882353186607361, 0.45882353186607361), (0.46638655662536621, 0.46274510025978088, 0.46274510025978088), (0.47058823704719543, 0.46666666865348816, 0.46666666865348816), (0.47478991746902466, 0.47058823704719543, 0.47058823704719543), (0.47899159789085388, 0.47450980544090271, 0.47450980544090271), (0.48319327831268311, 0.47843137383460999, 0.47843137383460999), (0.48739495873451233, 0.48235294222831726, 0.48235294222831726), (0.49159663915634155, 0.48627451062202454, 0.48627451062202454), (0.49579831957817078, 0.49019607901573181, 0.49019607901573181), (0.5, 0.49411764740943909, 0.49411764740943909), (0.50420171022415161, 0.50196081399917603, 0.50196081399917603), (0.50840336084365845, 0.5058823823928833, 0.5058823823928833), (0.51260507106781006, 0.50980395078659058, 0.50980395078659058), (0.51680672168731689, 0.51372551918029785, 0.51372551918029785), (0.52100843191146851, 0.51764708757400513, 0.51764708757400513), (0.52521008253097534, 0.5215686559677124, 0.5215686559677124), (0.52941179275512695, 0.52549022436141968, 0.52549022436141968), (0.53361344337463379, 0.52941179275512695, 0.52941179275512695), (0.5378151535987854, 0.53333336114883423, 0.53333336114883423), (0.54201680421829224, 0.5372549295425415, 0.5372549295425415), (0.54621851444244385, 0.54509806632995605, 0.54509806632995605), (0.55042016506195068, 0.54901963472366333, 0.54901963472366333), (0.55462187528610229, 0.55294120311737061, 0.55294120311737061), (0.55882352590560913, 0.55686277151107788, 0.55686277151107788), (0.56302523612976074, 0.56078433990478516, 0.56078433990478516), (0.56722688674926758, 0.56470590829849243, 0.56470590829849243), (0.57142859697341919, 0.56862747669219971, 0.56862747669219971), (0.57563024759292603, 0.57254904508590698, 0.57254904508590698), (0.57983195781707764, 0.57647061347961426, 0.57647061347961426), (0.58403360843658447, 0.58039218187332153, 0.58039218187332153), (0.58823531866073608, 0.58431375026702881, 0.58431375026702881), (0.59243696928024292, 0.58823531866073608, 0.58823531866073608), (0.59663867950439453, 0.59215688705444336, 0.59215688705444336), (0.60084033012390137, 0.59607845544815063, 0.59607845544815063), (0.60504204034805298, 0.60000002384185791, 0.60000002384185791), (0.60924369096755981, 0.60392159223556519, 0.60392159223556519), (0.61344540119171143, 0.60784316062927246, 0.60784316062927246), (0.61764705181121826, 0.61176472902297974, 0.61176472902297974), (0.62184876203536987, 0.61568629741668701, 0.61568629741668701), (0.62605041265487671, 0.61960786581039429, 0.61960786581039429), (0.63025212287902832, 0.62745100259780884, 0.62745100259780884), (0.63445377349853516, 0.63137257099151611, 0.63137257099151611), (0.63865548372268677, 0.63529413938522339, 0.63529413938522339), (0.6428571343421936, 0.63921570777893066, 0.63921570777893066), (0.64705884456634521, 0.64313727617263794, 0.64313727617263794), (0.65126049518585205, 0.64705884456634521, 0.64705884456634521), (0.65546220541000366, 0.65098041296005249, 0.65098041296005249), (0.6596638560295105, 0.65490198135375977, 0.65490198135375977), (0.66386556625366211, 0.65882354974746704, 0.65882354974746704), (0.66806721687316895, 0.66274511814117432, 0.66274511814117432), (0.67226892709732056, 0.66666668653488159, 0.66666668653488159), (0.67647057771682739, 0.67058825492858887, 0.67058825492858887), (0.680672287940979, 0.67450982332229614, 0.67450982332229614), (0.68487393856048584, 0.67843139171600342, 0.67843139171600342), (0.68907564878463745, 0.68235296010971069, 0.68235296010971069), (0.69327729940414429, 0.68627452850341797, 0.68627452850341797), (0.6974790096282959, 0.69019609689712524, 0.69019609689712524), (0.70168066024780273, 0.69411766529083252, 0.69411766529083252), (0.70588237047195435, 0.69803923368453979, 0.69803923368453979), (0.71008402109146118, 0.70196080207824707, 0.70196080207824707), (0.71428573131561279, 0.70980393886566162, 0.70980393886566162), (0.71848738193511963, 0.7137255072593689, 0.7137255072593689), (0.72268909215927124, 0.71764707565307617, 0.71764707565307617), (0.72689074277877808, 0.72156864404678345, 0.72156864404678345), (0.73109245300292969, 0.72549021244049072, 0.72549021244049072), (0.73529410362243652, 0.729411780834198, 0.729411780834198), (0.73949581384658813, 0.73333334922790527, 0.73333334922790527), (0.74369746446609497, 0.73725491762161255, 0.73725491762161255), (0.74789917469024658, 0.74117648601531982, 0.74117648601531982), (0.75210082530975342, 0.7450980544090271, 0.7450980544090271), (0.75630253553390503, 0.75294119119644165, 0.75294119119644165), (0.76050418615341187, 0.75686275959014893, 0.75686275959014893), (0.76470589637756348, 0.7607843279838562, 0.7607843279838562), (0.76890754699707031, 0.76470589637756348, 0.76470589637756348), (0.77310925722122192, 0.76862746477127075, 0.76862746477127075), (0.77731090784072876, 0.77254903316497803, 0.77254903316497803), (0.78151261806488037, 0.7764706015586853, 0.7764706015586853), (0.78571426868438721, 0.78039216995239258, 0.78039216995239258), (0.78991597890853882, 0.78431373834609985, 0.78431373834609985), (0.79411762952804565, 0.78823530673980713, 0.78823530673980713), (0.79831933975219727, 0.79607844352722168, 0.79607844352722168), (0.8025209903717041, 0.80000001192092896, 0.80000001192092896), (0.80672270059585571, 0.80392158031463623, 0.80392158031463623), (0.81092435121536255, 0.80784314870834351, 0.80784314870834351), (0.81512606143951416, 0.81176471710205078, 0.81176471710205078), (0.819327712059021, 0.81568628549575806, 0.81568628549575806), (0.82352942228317261, 0.81960785388946533, 0.81960785388946533), (0.82773107290267944, 0.82352942228317261, 0.82352942228317261), (0.83193278312683105, 0.82745099067687988, 0.82745099067687988), (0.83613443374633789, 0.83137255907058716, 0.83137255907058716), (0.8403361439704895, 0.83529412746429443, 0.83529412746429443), (0.84453779458999634, 0.83921569585800171, 0.83921569585800171), (0.84873950481414795, 0.84313726425170898, 0.84313726425170898), (0.85294115543365479, 0.84705883264541626, 0.84705883264541626), (0.8571428656578064, 0.85098040103912354, 0.85098040103912354), (0.86134451627731323, 0.85490196943283081, 0.85490196943283081), (0.86554622650146484, 0.85882353782653809, 0.85882353782653809), (0.86974787712097168, 0.86274510622024536, 0.86274510622024536), (0.87394958734512329, 0.86666667461395264, 0.86666667461395264), (0.87815123796463013, 0.87058824300765991, 0.87058824300765991), (0.88235294818878174, 0.87843137979507446, 0.87843137979507446), (0.88655459880828857, 0.88235294818878174, 0.88235294818878174), (0.89075630903244019, 0.88627451658248901, 0.88627451658248901), (0.89495795965194702, 0.89019608497619629, 0.89019608497619629), (0.89915966987609863, 0.89411765336990356, 0.89411765336990356), (0.90336132049560547, 0.89803922176361084, 0.89803922176361084), (0.90756303071975708, 0.90196079015731812, 0.90196079015731812), (0.91176468133926392, 0.90588235855102539, 0.90588235855102539), (0.91596639156341553, 0.90980392694473267, 0.90980392694473267), (0.92016804218292236, 0.91372549533843994, 0.91372549533843994), (0.92436975240707397, 0.91764706373214722, 0.91764706373214722), (0.92857140302658081, 0.92156863212585449, 0.92156863212585449), (0.93277311325073242, 0.92549020051956177, 0.92549020051956177), (0.93697476387023926, 0.92941176891326904, 0.92941176891326904), (0.94117647409439087, 0.93333333730697632, 0.93333333730697632), (0.94537812471389771, 0.93725490570068359, 0.93725490570068359), (0.94957983493804932, 0.94117647409439087, 0.94117647409439087), (0.95378148555755615, 0.94509804248809814, 0.94509804248809814), (0.95798319578170776, 0.94901961088180542, 0.94901961088180542), (0.9621848464012146, 0.9529411792755127, 0.9529411792755127), (0.96638655662536621, 0.96078431606292725, 0.96078431606292725), (0.97058820724487305, 0.96470588445663452, 0.96470588445663452), (0.97478991746902466, 0.9686274528503418, 0.9686274528503418), (0.97899156808853149, 0.97254902124404907, 0.97254902124404907), (0.98319327831268311, 0.97647058963775635, 0.97647058963775635), (0.98739492893218994, 0.98039215803146362, 0.98039215803146362), (0.99159663915634155, 0.9843137264251709, 0.9843137264251709), (0.99579828977584839, 0.98823529481887817, 0.98823529481887817), (1.0, 0.99215686321258545, 0.99215686321258545)]} _gist_yarg_data = {'blue': [(0.0, 1.0, 1.0), (0.0042016808874905109, 0.99607843160629272, 0.99607843160629272), (0.0084033617749810219, 0.99215686321258545, 0.99215686321258545), (0.012605042196810246, 0.98823529481887817, 0.98823529481887817), (0.016806723549962044, 0.9843137264251709, 0.9843137264251709), (0.021008403971791267, 0.98039215803146362, 0.98039215803146362), (0.025210084393620491, 0.97647058963775635, 0.97647058963775635), (0.029411764815449715, 0.97254902124404907, 0.97254902124404907), (0.033613447099924088, 0.96470588445663452, 0.96470588445663452), (0.037815127521753311, 0.96078431606292725, 0.96078431606292725), (0.042016807943582535, 0.95686274766921997, 0.95686274766921997), (0.046218488365411758, 0.9529411792755127, 0.9529411792755127), (0.050420168787240982, 0.94901961088180542, 0.94901961088180542), (0.054621849209070206, 0.94509804248809814, 0.94509804248809814), (0.058823529630899429, 0.94117647409439087, 0.94117647409439087), (0.063025213778018951, 0.93725490570068359, 0.93725490570068359), (0.067226894199848175, 0.93333333730697632, 0.93333333730697632), (0.071428574621677399, 0.92941176891326904, 0.92941176891326904), (0.075630255043506622, 0.92549020051956177, 0.92549020051956177), (0.079831935465335846, 0.92156863212585449, 0.92156863212585449), (0.08403361588716507, 0.91764706373214722, 0.91764706373214722), (0.088235296308994293, 0.91372549533843994, 0.91372549533843994), (0.092436976730823517, 0.90980392694473267, 0.90980392694473267), (0.09663865715265274, 0.90196079015731812, 0.90196079015731812), (0.10084033757448196, 0.89803922176361084, 0.89803922176361084), (0.10504201799631119, 0.89411765336990356, 0.89411765336990356), (0.10924369841814041, 0.89019608497619629, 0.89019608497619629), (0.11344537883996964, 0.88627451658248901, 0.88627451658248901), (0.11764705926179886, 0.88235294818878174, 0.88235294818878174), (0.12184873968362808, 0.87843137979507446, 0.87843137979507446), (0.1260504275560379, 0.87450981140136719, 0.87450981140136719), (0.13025210797786713, 0.87058824300765991, 0.87058824300765991), (0.13445378839969635, 0.86666667461395264, 0.86666667461395264), (0.13865546882152557, 0.86274510622024536, 0.86274510622024536), (0.1428571492433548, 0.85882353782653809, 0.85882353782653809), (0.14705882966518402, 0.85490196943283081, 0.85490196943283081), (0.15126051008701324, 0.85098040103912354, 0.85098040103912354), (0.15546219050884247, 0.84705883264541626, 0.84705883264541626), (0.15966387093067169, 0.83921569585800171, 0.83921569585800171), (0.16386555135250092, 0.83529412746429443, 0.83529412746429443), (0.16806723177433014, 0.83137255907058716, 0.83137255907058716), (0.17226891219615936, 0.82745099067687988, 0.82745099067687988), (0.17647059261798859, 0.82352942228317261, 0.82352942228317261), (0.18067227303981781, 0.81960785388946533, 0.81960785388946533), (0.18487395346164703, 0.81568628549575806, 0.81568628549575806), (0.18907563388347626, 0.81176471710205078, 0.81176471710205078), (0.19327731430530548, 0.80784314870834351, 0.80784314870834351), (0.1974789947271347, 0.80392158031463623, 0.80392158031463623), (0.20168067514896393, 0.80000001192092896, 0.80000001192092896), (0.20588235557079315, 0.79607844352722168, 0.79607844352722168), (0.21008403599262238, 0.7921568751335144, 0.7921568751335144), (0.2142857164144516, 0.78823530673980713, 0.78823530673980713), (0.21848739683628082, 0.78431373834609985, 0.78431373834609985), (0.22268907725811005, 0.7764706015586853, 0.7764706015586853), (0.22689075767993927, 0.77254903316497803, 0.77254903316497803), (0.23109243810176849, 0.76862746477127075, 0.76862746477127075), (0.23529411852359772, 0.76470589637756348, 0.76470589637756348), (0.23949579894542694, 0.7607843279838562, 0.7607843279838562), (0.24369747936725616, 0.75686275959014893, 0.75686275959014893), (0.24789915978908539, 0.75294119119644165, 0.75294119119644165), (0.25210085511207581, 0.74901962280273438, 0.74901962280273438), (0.25630253553390503, 0.7450980544090271, 0.7450980544090271), (0.26050421595573425, 0.74117648601531982, 0.74117648601531982), (0.26470589637756348, 0.73725491762161255, 0.73725491762161255), (0.2689075767993927, 0.73333334922790527, 0.73333334922790527), (0.27310925722122192, 0.729411780834198, 0.729411780834198), (0.27731093764305115, 0.72549021244049072, 0.72549021244049072), (0.28151261806488037, 0.72156864404678345, 0.72156864404678345), (0.28571429848670959, 0.7137255072593689, 0.7137255072593689), (0.28991597890853882, 0.70980393886566162, 0.70980393886566162), (0.29411765933036804, 0.70588237047195435, 0.70588237047195435), (0.29831933975219727, 0.70196080207824707, 0.70196080207824707), (0.30252102017402649, 0.69803923368453979, 0.69803923368453979), (0.30672270059585571, 0.69411766529083252, 0.69411766529083252), (0.31092438101768494, 0.69019609689712524, 0.69019609689712524), (0.31512606143951416, 0.68627452850341797, 0.68627452850341797), (0.31932774186134338, 0.68235296010971069, 0.68235296010971069), (0.32352942228317261, 0.67843139171600342, 0.67843139171600342), (0.32773110270500183, 0.67450982332229614, 0.67450982332229614), (0.33193278312683105, 0.67058825492858887, 0.67058825492858887), (0.33613446354866028, 0.66666668653488159, 0.66666668653488159), (0.3403361439704895, 0.66274511814117432, 0.66274511814117432), (0.34453782439231873, 0.65882354974746704, 0.65882354974746704), (0.34873950481414795, 0.65098041296005249, 0.65098041296005249), (0.35294118523597717, 0.64705884456634521, 0.64705884456634521), (0.3571428656578064, 0.64313727617263794, 0.64313727617263794), (0.36134454607963562, 0.63921570777893066, 0.63921570777893066), (0.36554622650146484, 0.63529413938522339, 0.63529413938522339), (0.36974790692329407, 0.63137257099151611, 0.63137257099151611), (0.37394958734512329, 0.62745100259780884, 0.62745100259780884), (0.37815126776695251, 0.62352943420410156, 0.62352943420410156), (0.38235294818878174, 0.61960786581039429, 0.61960786581039429), (0.38655462861061096, 0.61568629741668701, 0.61568629741668701), (0.39075630903244019, 0.61176472902297974, 0.61176472902297974), (0.39495798945426941, 0.60784316062927246, 0.60784316062927246), (0.39915966987609863, 0.60392159223556519, 0.60392159223556519), (0.40336135029792786, 0.60000002384185791, 0.60000002384185791), (0.40756303071975708, 0.59607845544815063, 0.59607845544815063), (0.4117647111415863, 0.58823531866073608, 0.58823531866073608), (0.41596639156341553, 0.58431375026702881, 0.58431375026702881), (0.42016807198524475, 0.58039218187332153, 0.58039218187332153), (0.42436975240707397, 0.57647061347961426, 0.57647061347961426), (0.4285714328289032, 0.57254904508590698, 0.57254904508590698), (0.43277311325073242, 0.56862747669219971, 0.56862747669219971), (0.43697479367256165, 0.56470590829849243, 0.56470590829849243), (0.44117647409439087, 0.56078433990478516, 0.56078433990478516), (0.44537815451622009, 0.55686277151107788, 0.55686277151107788), (0.44957983493804932, 0.55294120311737061, 0.55294120311737061), (0.45378151535987854, 0.54901963472366333, 0.54901963472366333), (0.45798319578170776, 0.54509806632995605, 0.54509806632995605), (0.46218487620353699, 0.54117649793624878, 0.54117649793624878), (0.46638655662536621, 0.5372549295425415, 0.5372549295425415), (0.47058823704719543, 0.53333336114883423, 0.53333336114883423), (0.47478991746902466, 0.52549022436141968, 0.52549022436141968), (0.47899159789085388, 0.5215686559677124, 0.5215686559677124), (0.48319327831268311, 0.51764708757400513, 0.51764708757400513), (0.48739495873451233, 0.51372551918029785, 0.51372551918029785), (0.49159663915634155, 0.50980395078659058, 0.50980395078659058), (0.49579831957817078, 0.5058823823928833, 0.5058823823928833), (0.5, 0.50196081399917603, 0.50196081399917603), (0.50420171022415161, 0.49803921580314636, 0.49803921580314636), (0.50840336084365845, 0.49411764740943909, 0.49411764740943909), (0.51260507106781006, 0.49019607901573181, 0.49019607901573181), (0.51680672168731689, 0.48627451062202454, 0.48627451062202454), (0.52100843191146851, 0.48235294222831726, 0.48235294222831726), (0.52521008253097534, 0.47843137383460999, 0.47843137383460999), (0.52941179275512695, 0.47450980544090271, 0.47450980544090271), (0.53361344337463379, 0.47058823704719543, 0.47058823704719543), (0.5378151535987854, 0.46274510025978088, 0.46274510025978088), (0.54201680421829224, 0.45882353186607361, 0.45882353186607361), (0.54621851444244385, 0.45490196347236633, 0.45490196347236633), (0.55042016506195068, 0.45098039507865906, 0.45098039507865906), (0.55462187528610229, 0.44705882668495178, 0.44705882668495178), (0.55882352590560913, 0.44313725829124451, 0.44313725829124451), (0.56302523612976074, 0.43921568989753723, 0.43921568989753723), (0.56722688674926758, 0.43529412150382996, 0.43529412150382996), (0.57142859697341919, 0.43137255311012268, 0.43137255311012268), (0.57563024759292603, 0.42745098471641541, 0.42745098471641541), (0.57983195781707764, 0.42352941632270813, 0.42352941632270813), (0.58403360843658447, 0.41960784792900085, 0.41960784792900085), (0.58823531866073608, 0.41568627953529358, 0.41568627953529358), (0.59243696928024292, 0.4117647111415863, 0.4117647111415863), (0.59663867950439453, 0.40784314274787903, 0.40784314274787903), (0.60084033012390137, 0.40000000596046448, 0.40000000596046448), (0.60504204034805298, 0.3960784375667572, 0.3960784375667572), (0.60924369096755981, 0.39215686917304993, 0.39215686917304993), (0.61344540119171143, 0.38823530077934265, 0.38823530077934265), (0.61764705181121826, 0.38431373238563538, 0.38431373238563538), (0.62184876203536987, 0.3803921639919281, 0.3803921639919281), (0.62605041265487671, 0.37647059559822083, 0.37647059559822083), (0.63025212287902832, 0.37254902720451355, 0.37254902720451355), (0.63445377349853516, 0.36862745881080627, 0.36862745881080627), (0.63865548372268677, 0.364705890417099, 0.364705890417099), (0.6428571343421936, 0.36078432202339172, 0.36078432202339172), (0.64705884456634521, 0.35686275362968445, 0.35686275362968445), (0.65126049518585205, 0.35294118523597717, 0.35294118523597717), (0.65546220541000366, 0.3490196168422699, 0.3490196168422699), (0.6596638560295105, 0.34509804844856262, 0.34509804844856262), (0.66386556625366211, 0.33725491166114807, 0.33725491166114807), (0.66806721687316895, 0.3333333432674408, 0.3333333432674408), (0.67226892709732056, 0.32941177487373352, 0.32941177487373352), (0.67647057771682739, 0.32549020648002625, 0.32549020648002625), (0.680672287940979, 0.32156863808631897, 0.32156863808631897), (0.68487393856048584, 0.31764706969261169, 0.31764706969261169), (0.68907564878463745, 0.31372550129890442, 0.31372550129890442), (0.69327729940414429, 0.30980393290519714, 0.30980393290519714), (0.6974790096282959, 0.30588236451148987, 0.30588236451148987), (0.70168066024780273, 0.30196079611778259, 0.30196079611778259), (0.70588237047195435, 0.29803922772407532, 0.29803922772407532), (0.71008402109146118, 0.29411765933036804, 0.29411765933036804), (0.71428573131561279, 0.29019609093666077, 0.29019609093666077), (0.71848738193511963, 0.28627452254295349, 0.28627452254295349), (0.72268909215927124, 0.28235295414924622, 0.28235295414924622), (0.72689074277877808, 0.27450981736183167, 0.27450981736183167), (0.73109245300292969, 0.27058824896812439, 0.27058824896812439), (0.73529410362243652, 0.26666668057441711, 0.26666668057441711), (0.73949581384658813, 0.26274511218070984, 0.26274511218070984), (0.74369746446609497, 0.25882354378700256, 0.25882354378700256), (0.74789917469024658, 0.25490197539329529, 0.25490197539329529), (0.75210082530975342, 0.25098040699958801, 0.25098040699958801), (0.75630253553390503, 0.24705882370471954, 0.24705882370471954), (0.76050418615341187, 0.24313725531101227, 0.24313725531101227), (0.76470589637756348, 0.23921568691730499, 0.23921568691730499), (0.76890754699707031, 0.23529411852359772, 0.23529411852359772), (0.77310925722122192, 0.23137255012989044, 0.23137255012989044), (0.77731090784072876, 0.22745098173618317, 0.22745098173618317), (0.78151261806488037, 0.22352941334247589, 0.22352941334247589), (0.78571426868438721, 0.21960784494876862, 0.21960784494876862), (0.78991597890853882, 0.21176470816135406, 0.21176470816135406), (0.79411762952804565, 0.20784313976764679, 0.20784313976764679), (0.79831933975219727, 0.20392157137393951, 0.20392157137393951), (0.8025209903717041, 0.20000000298023224, 0.20000000298023224), (0.80672270059585571, 0.19607843458652496, 0.19607843458652496), (0.81092435121536255, 0.19215686619281769, 0.19215686619281769), (0.81512606143951416, 0.18823529779911041, 0.18823529779911041), (0.819327712059021, 0.18431372940540314, 0.18431372940540314), (0.82352942228317261, 0.18039216101169586, 0.18039216101169586), (0.82773107290267944, 0.17647059261798859, 0.17647059261798859), (0.83193278312683105, 0.17254902422428131, 0.17254902422428131), (0.83613443374633789, 0.16862745583057404, 0.16862745583057404), (0.8403361439704895, 0.16470588743686676, 0.16470588743686676), (0.84453779458999634, 0.16078431904315948, 0.16078431904315948), (0.84873950481414795, 0.15686275064945221, 0.15686275064945221), (0.85294115543365479, 0.14901961386203766, 0.14901961386203766), (0.8571428656578064, 0.14509804546833038, 0.14509804546833038), (0.86134451627731323, 0.14117647707462311, 0.14117647707462311), (0.86554622650146484, 0.13725490868091583, 0.13725490868091583), (0.86974787712097168, 0.13333334028720856, 0.13333334028720856), (0.87394958734512329, 0.12941177189350128, 0.12941177189350128), (0.87815123796463013, 0.12549020349979401, 0.12549020349979401), (0.88235294818878174, 0.12156862765550613, 0.12156862765550613), (0.88655459880828857, 0.11764705926179886, 0.11764705926179886), (0.89075630903244019, 0.11372549086809158, 0.11372549086809158), (0.89495795965194702, 0.10980392247438431, 0.10980392247438431), (0.89915966987609863, 0.10588235408067703, 0.10588235408067703), (0.90336132049560547, 0.10196078568696976, 0.10196078568696976), (0.90756303071975708, 0.098039217293262482, 0.098039217293262482), (0.91176468133926392, 0.094117648899555206, 0.094117648899555206), (0.91596639156341553, 0.086274512112140656, 0.086274512112140656), (0.92016804218292236, 0.08235294371843338, 0.08235294371843338), (0.92436975240707397, 0.078431375324726105, 0.078431375324726105), (0.92857140302658081, 0.074509806931018829, 0.074509806931018829), (0.93277311325073242, 0.070588238537311554, 0.070588238537311554), (0.93697476387023926, 0.066666670143604279, 0.066666670143604279), (0.94117647409439087, 0.062745101749897003, 0.062745101749897003), (0.94537812471389771, 0.058823529630899429, 0.058823529630899429), (0.94957983493804932, 0.054901961237192154, 0.054901961237192154), (0.95378148555755615, 0.050980392843484879, 0.050980392843484879), (0.95798319578170776, 0.047058824449777603, 0.047058824449777603), (0.9621848464012146, 0.043137256056070328, 0.043137256056070328), (0.96638655662536621, 0.039215687662363052, 0.039215687662363052), (0.97058820724487305, 0.035294119268655777, 0.035294119268655777), (0.97478991746902466, 0.031372550874948502, 0.031372550874948502), (0.97899156808853149, 0.023529412224888802, 0.023529412224888802), (0.98319327831268311, 0.019607843831181526, 0.019607843831181526), (0.98739492893218994, 0.015686275437474251, 0.015686275437474251), (0.99159663915634155, 0.011764706112444401, 0.011764706112444401), (0.99579828977584839, 0.0078431377187371254, 0.0078431377187371254), (1.0, 0.0039215688593685627, 0.0039215688593685627)], 'green': [(0.0, 1.0, 1.0), (0.0042016808874905109, 0.99607843160629272, 0.99607843160629272), (0.0084033617749810219, 0.99215686321258545, 0.99215686321258545), (0.012605042196810246, 0.98823529481887817, 0.98823529481887817), (0.016806723549962044, 0.9843137264251709, 0.9843137264251709), (0.021008403971791267, 0.98039215803146362, 0.98039215803146362), (0.025210084393620491, 0.97647058963775635, 0.97647058963775635), (0.029411764815449715, 0.97254902124404907, 0.97254902124404907), (0.033613447099924088, 0.96470588445663452, 0.96470588445663452), (0.037815127521753311, 0.96078431606292725, 0.96078431606292725), (0.042016807943582535, 0.95686274766921997, 0.95686274766921997), (0.046218488365411758, 0.9529411792755127, 0.9529411792755127), (0.050420168787240982, 0.94901961088180542, 0.94901961088180542), (0.054621849209070206, 0.94509804248809814, 0.94509804248809814), (0.058823529630899429, 0.94117647409439087, 0.94117647409439087), (0.063025213778018951, 0.93725490570068359, 0.93725490570068359), (0.067226894199848175, 0.93333333730697632, 0.93333333730697632), (0.071428574621677399, 0.92941176891326904, 0.92941176891326904), (0.075630255043506622, 0.92549020051956177, 0.92549020051956177), (0.079831935465335846, 0.92156863212585449, 0.92156863212585449), (0.08403361588716507, 0.91764706373214722, 0.91764706373214722), (0.088235296308994293, 0.91372549533843994, 0.91372549533843994), (0.092436976730823517, 0.90980392694473267, 0.90980392694473267), (0.09663865715265274, 0.90196079015731812, 0.90196079015731812), (0.10084033757448196, 0.89803922176361084, 0.89803922176361084), (0.10504201799631119, 0.89411765336990356, 0.89411765336990356), (0.10924369841814041, 0.89019608497619629, 0.89019608497619629), (0.11344537883996964, 0.88627451658248901, 0.88627451658248901), (0.11764705926179886, 0.88235294818878174, 0.88235294818878174), (0.12184873968362808, 0.87843137979507446, 0.87843137979507446), (0.1260504275560379, 0.87450981140136719, 0.87450981140136719), (0.13025210797786713, 0.87058824300765991, 0.87058824300765991), (0.13445378839969635, 0.86666667461395264, 0.86666667461395264), (0.13865546882152557, 0.86274510622024536, 0.86274510622024536), (0.1428571492433548, 0.85882353782653809, 0.85882353782653809), (0.14705882966518402, 0.85490196943283081, 0.85490196943283081), (0.15126051008701324, 0.85098040103912354, 0.85098040103912354), (0.15546219050884247, 0.84705883264541626, 0.84705883264541626), (0.15966387093067169, 0.83921569585800171, 0.83921569585800171), (0.16386555135250092, 0.83529412746429443, 0.83529412746429443), (0.16806723177433014, 0.83137255907058716, 0.83137255907058716), (0.17226891219615936, 0.82745099067687988, 0.82745099067687988), (0.17647059261798859, 0.82352942228317261, 0.82352942228317261), (0.18067227303981781, 0.81960785388946533, 0.81960785388946533), (0.18487395346164703, 0.81568628549575806, 0.81568628549575806), (0.18907563388347626, 0.81176471710205078, 0.81176471710205078), (0.19327731430530548, 0.80784314870834351, 0.80784314870834351), (0.1974789947271347, 0.80392158031463623, 0.80392158031463623), (0.20168067514896393, 0.80000001192092896, 0.80000001192092896), (0.20588235557079315, 0.79607844352722168, 0.79607844352722168), (0.21008403599262238, 0.7921568751335144, 0.7921568751335144), (0.2142857164144516, 0.78823530673980713, 0.78823530673980713), (0.21848739683628082, 0.78431373834609985, 0.78431373834609985), (0.22268907725811005, 0.7764706015586853, 0.7764706015586853), (0.22689075767993927, 0.77254903316497803, 0.77254903316497803), (0.23109243810176849, 0.76862746477127075, 0.76862746477127075), (0.23529411852359772, 0.76470589637756348, 0.76470589637756348), (0.23949579894542694, 0.7607843279838562, 0.7607843279838562), (0.24369747936725616, 0.75686275959014893, 0.75686275959014893), (0.24789915978908539, 0.75294119119644165, 0.75294119119644165), (0.25210085511207581, 0.74901962280273438, 0.74901962280273438), (0.25630253553390503, 0.7450980544090271, 0.7450980544090271), (0.26050421595573425, 0.74117648601531982, 0.74117648601531982), (0.26470589637756348, 0.73725491762161255, 0.73725491762161255), (0.2689075767993927, 0.73333334922790527, 0.73333334922790527), (0.27310925722122192, 0.729411780834198, 0.729411780834198), (0.27731093764305115, 0.72549021244049072, 0.72549021244049072), (0.28151261806488037, 0.72156864404678345, 0.72156864404678345), (0.28571429848670959, 0.7137255072593689, 0.7137255072593689), (0.28991597890853882, 0.70980393886566162, 0.70980393886566162), (0.29411765933036804, 0.70588237047195435, 0.70588237047195435), (0.29831933975219727, 0.70196080207824707, 0.70196080207824707), (0.30252102017402649, 0.69803923368453979, 0.69803923368453979), (0.30672270059585571, 0.69411766529083252, 0.69411766529083252), (0.31092438101768494, 0.69019609689712524, 0.69019609689712524), (0.31512606143951416, 0.68627452850341797, 0.68627452850341797), (0.31932774186134338, 0.68235296010971069, 0.68235296010971069), (0.32352942228317261, 0.67843139171600342, 0.67843139171600342), (0.32773110270500183, 0.67450982332229614, 0.67450982332229614), (0.33193278312683105, 0.67058825492858887, 0.67058825492858887), (0.33613446354866028, 0.66666668653488159, 0.66666668653488159), (0.3403361439704895, 0.66274511814117432, 0.66274511814117432), (0.34453782439231873, 0.65882354974746704, 0.65882354974746704), (0.34873950481414795, 0.65098041296005249, 0.65098041296005249), (0.35294118523597717, 0.64705884456634521, 0.64705884456634521), (0.3571428656578064, 0.64313727617263794, 0.64313727617263794), (0.36134454607963562, 0.63921570777893066, 0.63921570777893066), (0.36554622650146484, 0.63529413938522339, 0.63529413938522339), (0.36974790692329407, 0.63137257099151611, 0.63137257099151611), (0.37394958734512329, 0.62745100259780884, 0.62745100259780884), (0.37815126776695251, 0.62352943420410156, 0.62352943420410156), (0.38235294818878174, 0.61960786581039429, 0.61960786581039429), (0.38655462861061096, 0.61568629741668701, 0.61568629741668701), (0.39075630903244019, 0.61176472902297974, 0.61176472902297974), (0.39495798945426941, 0.60784316062927246, 0.60784316062927246), (0.39915966987609863, 0.60392159223556519, 0.60392159223556519), (0.40336135029792786, 0.60000002384185791, 0.60000002384185791), (0.40756303071975708, 0.59607845544815063, 0.59607845544815063), (0.4117647111415863, 0.58823531866073608, 0.58823531866073608), (0.41596639156341553, 0.58431375026702881, 0.58431375026702881), (0.42016807198524475, 0.58039218187332153, 0.58039218187332153), (0.42436975240707397, 0.57647061347961426, 0.57647061347961426), (0.4285714328289032, 0.57254904508590698, 0.57254904508590698), (0.43277311325073242, 0.56862747669219971, 0.56862747669219971), (0.43697479367256165, 0.56470590829849243, 0.56470590829849243), (0.44117647409439087, 0.56078433990478516, 0.56078433990478516), (0.44537815451622009, 0.55686277151107788, 0.55686277151107788), (0.44957983493804932, 0.55294120311737061, 0.55294120311737061), (0.45378151535987854, 0.54901963472366333, 0.54901963472366333), (0.45798319578170776, 0.54509806632995605, 0.54509806632995605), (0.46218487620353699, 0.54117649793624878, 0.54117649793624878), (0.46638655662536621, 0.5372549295425415, 0.5372549295425415), (0.47058823704719543, 0.53333336114883423, 0.53333336114883423), (0.47478991746902466, 0.52549022436141968, 0.52549022436141968), (0.47899159789085388, 0.5215686559677124, 0.5215686559677124), (0.48319327831268311, 0.51764708757400513, 0.51764708757400513), (0.48739495873451233, 0.51372551918029785, 0.51372551918029785), (0.49159663915634155, 0.50980395078659058, 0.50980395078659058), (0.49579831957817078, 0.5058823823928833, 0.5058823823928833), (0.5, 0.50196081399917603, 0.50196081399917603), (0.50420171022415161, 0.49803921580314636, 0.49803921580314636), (0.50840336084365845, 0.49411764740943909, 0.49411764740943909), (0.51260507106781006, 0.49019607901573181, 0.49019607901573181), (0.51680672168731689, 0.48627451062202454, 0.48627451062202454), (0.52100843191146851, 0.48235294222831726, 0.48235294222831726), (0.52521008253097534, 0.47843137383460999, 0.47843137383460999), (0.52941179275512695, 0.47450980544090271, 0.47450980544090271), (0.53361344337463379, 0.47058823704719543, 0.47058823704719543), (0.5378151535987854, 0.46274510025978088, 0.46274510025978088), (0.54201680421829224, 0.45882353186607361, 0.45882353186607361), (0.54621851444244385, 0.45490196347236633, 0.45490196347236633), (0.55042016506195068, 0.45098039507865906, 0.45098039507865906), (0.55462187528610229, 0.44705882668495178, 0.44705882668495178), (0.55882352590560913, 0.44313725829124451, 0.44313725829124451), (0.56302523612976074, 0.43921568989753723, 0.43921568989753723), (0.56722688674926758, 0.43529412150382996, 0.43529412150382996), (0.57142859697341919, 0.43137255311012268, 0.43137255311012268), (0.57563024759292603, 0.42745098471641541, 0.42745098471641541), (0.57983195781707764, 0.42352941632270813, 0.42352941632270813), (0.58403360843658447, 0.41960784792900085, 0.41960784792900085), (0.58823531866073608, 0.41568627953529358, 0.41568627953529358), (0.59243696928024292, 0.4117647111415863, 0.4117647111415863), (0.59663867950439453, 0.40784314274787903, 0.40784314274787903), (0.60084033012390137, 0.40000000596046448, 0.40000000596046448), (0.60504204034805298, 0.3960784375667572, 0.3960784375667572), (0.60924369096755981, 0.39215686917304993, 0.39215686917304993), (0.61344540119171143, 0.38823530077934265, 0.38823530077934265), (0.61764705181121826, 0.38431373238563538, 0.38431373238563538), (0.62184876203536987, 0.3803921639919281, 0.3803921639919281), (0.62605041265487671, 0.37647059559822083, 0.37647059559822083), (0.63025212287902832, 0.37254902720451355, 0.37254902720451355), (0.63445377349853516, 0.36862745881080627, 0.36862745881080627), (0.63865548372268677, 0.364705890417099, 0.364705890417099), (0.6428571343421936, 0.36078432202339172, 0.36078432202339172), (0.64705884456634521, 0.35686275362968445, 0.35686275362968445), (0.65126049518585205, 0.35294118523597717, 0.35294118523597717), (0.65546220541000366, 0.3490196168422699, 0.3490196168422699), (0.6596638560295105, 0.34509804844856262, 0.34509804844856262), (0.66386556625366211, 0.33725491166114807, 0.33725491166114807), (0.66806721687316895, 0.3333333432674408, 0.3333333432674408), (0.67226892709732056, 0.32941177487373352, 0.32941177487373352), (0.67647057771682739, 0.32549020648002625, 0.32549020648002625), (0.680672287940979, 0.32156863808631897, 0.32156863808631897), (0.68487393856048584, 0.31764706969261169, 0.31764706969261169), (0.68907564878463745, 0.31372550129890442, 0.31372550129890442), (0.69327729940414429, 0.30980393290519714, 0.30980393290519714), (0.6974790096282959, 0.30588236451148987, 0.30588236451148987), (0.70168066024780273, 0.30196079611778259, 0.30196079611778259), (0.70588237047195435, 0.29803922772407532, 0.29803922772407532), (0.71008402109146118, 0.29411765933036804, 0.29411765933036804), (0.71428573131561279, 0.29019609093666077, 0.29019609093666077), (0.71848738193511963, 0.28627452254295349, 0.28627452254295349), (0.72268909215927124, 0.28235295414924622, 0.28235295414924622), (0.72689074277877808, 0.27450981736183167, 0.27450981736183167), (0.73109245300292969, 0.27058824896812439, 0.27058824896812439), (0.73529410362243652, 0.26666668057441711, 0.26666668057441711), (0.73949581384658813, 0.26274511218070984, 0.26274511218070984), (0.74369746446609497, 0.25882354378700256, 0.25882354378700256), (0.74789917469024658, 0.25490197539329529, 0.25490197539329529), (0.75210082530975342, 0.25098040699958801, 0.25098040699958801), (0.75630253553390503, 0.24705882370471954, 0.24705882370471954), (0.76050418615341187, 0.24313725531101227, 0.24313725531101227), (0.76470589637756348, 0.23921568691730499, 0.23921568691730499), (0.76890754699707031, 0.23529411852359772, 0.23529411852359772), (0.77310925722122192, 0.23137255012989044, 0.23137255012989044), (0.77731090784072876, 0.22745098173618317, 0.22745098173618317), (0.78151261806488037, 0.22352941334247589, 0.22352941334247589), (0.78571426868438721, 0.21960784494876862, 0.21960784494876862), (0.78991597890853882, 0.21176470816135406, 0.21176470816135406), (0.79411762952804565, 0.20784313976764679, 0.20784313976764679), (0.79831933975219727, 0.20392157137393951, 0.20392157137393951), (0.8025209903717041, 0.20000000298023224, 0.20000000298023224), (0.80672270059585571, 0.19607843458652496, 0.19607843458652496), (0.81092435121536255, 0.19215686619281769, 0.19215686619281769), (0.81512606143951416, 0.18823529779911041, 0.18823529779911041), (0.819327712059021, 0.18431372940540314, 0.18431372940540314), (0.82352942228317261, 0.18039216101169586, 0.18039216101169586), (0.82773107290267944, 0.17647059261798859, 0.17647059261798859), (0.83193278312683105, 0.17254902422428131, 0.17254902422428131), (0.83613443374633789, 0.16862745583057404, 0.16862745583057404), (0.8403361439704895, 0.16470588743686676, 0.16470588743686676), (0.84453779458999634, 0.16078431904315948, 0.16078431904315948), (0.84873950481414795, 0.15686275064945221, 0.15686275064945221), (0.85294115543365479, 0.14901961386203766, 0.14901961386203766), (0.8571428656578064, 0.14509804546833038, 0.14509804546833038), (0.86134451627731323, 0.14117647707462311, 0.14117647707462311), (0.86554622650146484, 0.13725490868091583, 0.13725490868091583), (0.86974787712097168, 0.13333334028720856, 0.13333334028720856), (0.87394958734512329, 0.12941177189350128, 0.12941177189350128), (0.87815123796463013, 0.12549020349979401, 0.12549020349979401), (0.88235294818878174, 0.12156862765550613, 0.12156862765550613), (0.88655459880828857, 0.11764705926179886, 0.11764705926179886), (0.89075630903244019, 0.11372549086809158, 0.11372549086809158), (0.89495795965194702, 0.10980392247438431, 0.10980392247438431), (0.89915966987609863, 0.10588235408067703, 0.10588235408067703), (0.90336132049560547, 0.10196078568696976, 0.10196078568696976), (0.90756303071975708, 0.098039217293262482, 0.098039217293262482), (0.91176468133926392, 0.094117648899555206, 0.094117648899555206), (0.91596639156341553, 0.086274512112140656, 0.086274512112140656), (0.92016804218292236, 0.08235294371843338, 0.08235294371843338), (0.92436975240707397, 0.078431375324726105, 0.078431375324726105), (0.92857140302658081, 0.074509806931018829, 0.074509806931018829), (0.93277311325073242, 0.070588238537311554, 0.070588238537311554), (0.93697476387023926, 0.066666670143604279, 0.066666670143604279), (0.94117647409439087, 0.062745101749897003, 0.062745101749897003), (0.94537812471389771, 0.058823529630899429, 0.058823529630899429), (0.94957983493804932, 0.054901961237192154, 0.054901961237192154), (0.95378148555755615, 0.050980392843484879, 0.050980392843484879), (0.95798319578170776, 0.047058824449777603, 0.047058824449777603), (0.9621848464012146, 0.043137256056070328, 0.043137256056070328), (0.96638655662536621, 0.039215687662363052, 0.039215687662363052), (0.97058820724487305, 0.035294119268655777, 0.035294119268655777), (0.97478991746902466, 0.031372550874948502, 0.031372550874948502), (0.97899156808853149, 0.023529412224888802, 0.023529412224888802), (0.98319327831268311, 0.019607843831181526, 0.019607843831181526), (0.98739492893218994, 0.015686275437474251, 0.015686275437474251), (0.99159663915634155, 0.011764706112444401, 0.011764706112444401), (0.99579828977584839, 0.0078431377187371254, 0.0078431377187371254), (1.0, 0.0039215688593685627, 0.0039215688593685627)], 'red': [(0.0, 1.0, 1.0), (0.0042016808874905109, 0.99607843160629272, 0.99607843160629272), (0.0084033617749810219, 0.99215686321258545, 0.99215686321258545), (0.012605042196810246, 0.98823529481887817, 0.98823529481887817), (0.016806723549962044, 0.9843137264251709, 0.9843137264251709), (0.021008403971791267, 0.98039215803146362, 0.98039215803146362), (0.025210084393620491, 0.97647058963775635, 0.97647058963775635), (0.029411764815449715, 0.97254902124404907, 0.97254902124404907), (0.033613447099924088, 0.96470588445663452, 0.96470588445663452), (0.037815127521753311, 0.96078431606292725, 0.96078431606292725), (0.042016807943582535, 0.95686274766921997, 0.95686274766921997), (0.046218488365411758, 0.9529411792755127, 0.9529411792755127), (0.050420168787240982, 0.94901961088180542, 0.94901961088180542), (0.054621849209070206, 0.94509804248809814, 0.94509804248809814), (0.058823529630899429, 0.94117647409439087, 0.94117647409439087), (0.063025213778018951, 0.93725490570068359, 0.93725490570068359), (0.067226894199848175, 0.93333333730697632, 0.93333333730697632), (0.071428574621677399, 0.92941176891326904, 0.92941176891326904), (0.075630255043506622, 0.92549020051956177, 0.92549020051956177), (0.079831935465335846, 0.92156863212585449, 0.92156863212585449), (0.08403361588716507, 0.91764706373214722, 0.91764706373214722), (0.088235296308994293, 0.91372549533843994, 0.91372549533843994), (0.092436976730823517, 0.90980392694473267, 0.90980392694473267), (0.09663865715265274, 0.90196079015731812, 0.90196079015731812), (0.10084033757448196, 0.89803922176361084, 0.89803922176361084), (0.10504201799631119, 0.89411765336990356, 0.89411765336990356), (0.10924369841814041, 0.89019608497619629, 0.89019608497619629), (0.11344537883996964, 0.88627451658248901, 0.88627451658248901), (0.11764705926179886, 0.88235294818878174, 0.88235294818878174), (0.12184873968362808, 0.87843137979507446, 0.87843137979507446), (0.1260504275560379, 0.87450981140136719, 0.87450981140136719), (0.13025210797786713, 0.87058824300765991, 0.87058824300765991), (0.13445378839969635, 0.86666667461395264, 0.86666667461395264), (0.13865546882152557, 0.86274510622024536, 0.86274510622024536), (0.1428571492433548, 0.85882353782653809, 0.85882353782653809), (0.14705882966518402, 0.85490196943283081, 0.85490196943283081), (0.15126051008701324, 0.85098040103912354, 0.85098040103912354), (0.15546219050884247, 0.84705883264541626, 0.84705883264541626), (0.15966387093067169, 0.83921569585800171, 0.83921569585800171), (0.16386555135250092, 0.83529412746429443, 0.83529412746429443), (0.16806723177433014, 0.83137255907058716, 0.83137255907058716), (0.17226891219615936, 0.82745099067687988, 0.82745099067687988), (0.17647059261798859, 0.82352942228317261, 0.82352942228317261), (0.18067227303981781, 0.81960785388946533, 0.81960785388946533), (0.18487395346164703, 0.81568628549575806, 0.81568628549575806), (0.18907563388347626, 0.81176471710205078, 0.81176471710205078), (0.19327731430530548, 0.80784314870834351, 0.80784314870834351), (0.1974789947271347, 0.80392158031463623, 0.80392158031463623), (0.20168067514896393, 0.80000001192092896, 0.80000001192092896), (0.20588235557079315, 0.79607844352722168, 0.79607844352722168), (0.21008403599262238, 0.7921568751335144, 0.7921568751335144), (0.2142857164144516, 0.78823530673980713, 0.78823530673980713), (0.21848739683628082, 0.78431373834609985, 0.78431373834609985), (0.22268907725811005, 0.7764706015586853, 0.7764706015586853), (0.22689075767993927, 0.77254903316497803, 0.77254903316497803), (0.23109243810176849, 0.76862746477127075, 0.76862746477127075), (0.23529411852359772, 0.76470589637756348, 0.76470589637756348), (0.23949579894542694, 0.7607843279838562, 0.7607843279838562), (0.24369747936725616, 0.75686275959014893, 0.75686275959014893), (0.24789915978908539, 0.75294119119644165, 0.75294119119644165), (0.25210085511207581, 0.74901962280273438, 0.74901962280273438), (0.25630253553390503, 0.7450980544090271, 0.7450980544090271), (0.26050421595573425, 0.74117648601531982, 0.74117648601531982), (0.26470589637756348, 0.73725491762161255, 0.73725491762161255), (0.2689075767993927, 0.73333334922790527, 0.73333334922790527), (0.27310925722122192, 0.729411780834198, 0.729411780834198), (0.27731093764305115, 0.72549021244049072, 0.72549021244049072), (0.28151261806488037, 0.72156864404678345, 0.72156864404678345), (0.28571429848670959, 0.7137255072593689, 0.7137255072593689), (0.28991597890853882, 0.70980393886566162, 0.70980393886566162), (0.29411765933036804, 0.70588237047195435, 0.70588237047195435), (0.29831933975219727, 0.70196080207824707, 0.70196080207824707), (0.30252102017402649, 0.69803923368453979, 0.69803923368453979), (0.30672270059585571, 0.69411766529083252, 0.69411766529083252), (0.31092438101768494, 0.69019609689712524, 0.69019609689712524), (0.31512606143951416, 0.68627452850341797, 0.68627452850341797), (0.31932774186134338, 0.68235296010971069, 0.68235296010971069), (0.32352942228317261, 0.67843139171600342, 0.67843139171600342), (0.32773110270500183, 0.67450982332229614, 0.67450982332229614), (0.33193278312683105, 0.67058825492858887, 0.67058825492858887), (0.33613446354866028, 0.66666668653488159, 0.66666668653488159), (0.3403361439704895, 0.66274511814117432, 0.66274511814117432), (0.34453782439231873, 0.65882354974746704, 0.65882354974746704), (0.34873950481414795, 0.65098041296005249, 0.65098041296005249), (0.35294118523597717, 0.64705884456634521, 0.64705884456634521), (0.3571428656578064, 0.64313727617263794, 0.64313727617263794), (0.36134454607963562, 0.63921570777893066, 0.63921570777893066), (0.36554622650146484, 0.63529413938522339, 0.63529413938522339), (0.36974790692329407, 0.63137257099151611, 0.63137257099151611), (0.37394958734512329, 0.62745100259780884, 0.62745100259780884), (0.37815126776695251, 0.62352943420410156, 0.62352943420410156), (0.38235294818878174, 0.61960786581039429, 0.61960786581039429), (0.38655462861061096, 0.61568629741668701, 0.61568629741668701), (0.39075630903244019, 0.61176472902297974, 0.61176472902297974), (0.39495798945426941, 0.60784316062927246, 0.60784316062927246), (0.39915966987609863, 0.60392159223556519, 0.60392159223556519), (0.40336135029792786, 0.60000002384185791, 0.60000002384185791), (0.40756303071975708, 0.59607845544815063, 0.59607845544815063), (0.4117647111415863, 0.58823531866073608, 0.58823531866073608), (0.41596639156341553, 0.58431375026702881, 0.58431375026702881), (0.42016807198524475, 0.58039218187332153, 0.58039218187332153), (0.42436975240707397, 0.57647061347961426, 0.57647061347961426), (0.4285714328289032, 0.57254904508590698, 0.57254904508590698), (0.43277311325073242, 0.56862747669219971, 0.56862747669219971), (0.43697479367256165, 0.56470590829849243, 0.56470590829849243), (0.44117647409439087, 0.56078433990478516, 0.56078433990478516), (0.44537815451622009, 0.55686277151107788, 0.55686277151107788), (0.44957983493804932, 0.55294120311737061, 0.55294120311737061), (0.45378151535987854, 0.54901963472366333, 0.54901963472366333), (0.45798319578170776, 0.54509806632995605, 0.54509806632995605), (0.46218487620353699, 0.54117649793624878, 0.54117649793624878), (0.46638655662536621, 0.5372549295425415, 0.5372549295425415), (0.47058823704719543, 0.53333336114883423, 0.53333336114883423), (0.47478991746902466, 0.52549022436141968, 0.52549022436141968), (0.47899159789085388, 0.5215686559677124, 0.5215686559677124), (0.48319327831268311, 0.51764708757400513, 0.51764708757400513), (0.48739495873451233, 0.51372551918029785, 0.51372551918029785), (0.49159663915634155, 0.50980395078659058, 0.50980395078659058), (0.49579831957817078, 0.5058823823928833, 0.5058823823928833), (0.5, 0.50196081399917603, 0.50196081399917603), (0.50420171022415161, 0.49803921580314636, 0.49803921580314636), (0.50840336084365845, 0.49411764740943909, 0.49411764740943909), (0.51260507106781006, 0.49019607901573181, 0.49019607901573181), (0.51680672168731689, 0.48627451062202454, 0.48627451062202454), (0.52100843191146851, 0.48235294222831726, 0.48235294222831726), (0.52521008253097534, 0.47843137383460999, 0.47843137383460999), (0.52941179275512695, 0.47450980544090271, 0.47450980544090271), (0.53361344337463379, 0.47058823704719543, 0.47058823704719543), (0.5378151535987854, 0.46274510025978088, 0.46274510025978088), (0.54201680421829224, 0.45882353186607361, 0.45882353186607361), (0.54621851444244385, 0.45490196347236633, 0.45490196347236633), (0.55042016506195068, 0.45098039507865906, 0.45098039507865906), (0.55462187528610229, 0.44705882668495178, 0.44705882668495178), (0.55882352590560913, 0.44313725829124451, 0.44313725829124451), (0.56302523612976074, 0.43921568989753723, 0.43921568989753723), (0.56722688674926758, 0.43529412150382996, 0.43529412150382996), (0.57142859697341919, 0.43137255311012268, 0.43137255311012268), (0.57563024759292603, 0.42745098471641541, 0.42745098471641541), (0.57983195781707764, 0.42352941632270813, 0.42352941632270813), (0.58403360843658447, 0.41960784792900085, 0.41960784792900085), (0.58823531866073608, 0.41568627953529358, 0.41568627953529358), (0.59243696928024292, 0.4117647111415863, 0.4117647111415863), (0.59663867950439453, 0.40784314274787903, 0.40784314274787903), (0.60084033012390137, 0.40000000596046448, 0.40000000596046448), (0.60504204034805298, 0.3960784375667572, 0.3960784375667572), (0.60924369096755981, 0.39215686917304993, 0.39215686917304993), (0.61344540119171143, 0.38823530077934265, 0.38823530077934265), (0.61764705181121826, 0.38431373238563538, 0.38431373238563538), (0.62184876203536987, 0.3803921639919281, 0.3803921639919281), (0.62605041265487671, 0.37647059559822083, 0.37647059559822083), (0.63025212287902832, 0.37254902720451355, 0.37254902720451355), (0.63445377349853516, 0.36862745881080627, 0.36862745881080627), (0.63865548372268677, 0.364705890417099, 0.364705890417099), (0.6428571343421936, 0.36078432202339172, 0.36078432202339172), (0.64705884456634521, 0.35686275362968445, 0.35686275362968445), (0.65126049518585205, 0.35294118523597717, 0.35294118523597717), (0.65546220541000366, 0.3490196168422699, 0.3490196168422699), (0.6596638560295105, 0.34509804844856262, 0.34509804844856262), (0.66386556625366211, 0.33725491166114807, 0.33725491166114807), (0.66806721687316895, 0.3333333432674408, 0.3333333432674408), (0.67226892709732056, 0.32941177487373352, 0.32941177487373352), (0.67647057771682739, 0.32549020648002625, 0.32549020648002625), (0.680672287940979, 0.32156863808631897, 0.32156863808631897), (0.68487393856048584, 0.31764706969261169, 0.31764706969261169), (0.68907564878463745, 0.31372550129890442, 0.31372550129890442), (0.69327729940414429, 0.30980393290519714, 0.30980393290519714), (0.6974790096282959, 0.30588236451148987, 0.30588236451148987), (0.70168066024780273, 0.30196079611778259, 0.30196079611778259), (0.70588237047195435, 0.29803922772407532, 0.29803922772407532), (0.71008402109146118, 0.29411765933036804, 0.29411765933036804), (0.71428573131561279, 0.29019609093666077, 0.29019609093666077), (0.71848738193511963, 0.28627452254295349, 0.28627452254295349), (0.72268909215927124, 0.28235295414924622, 0.28235295414924622), (0.72689074277877808, 0.27450981736183167, 0.27450981736183167), (0.73109245300292969, 0.27058824896812439, 0.27058824896812439), (0.73529410362243652, 0.26666668057441711, 0.26666668057441711), (0.73949581384658813, 0.26274511218070984, 0.26274511218070984), (0.74369746446609497, 0.25882354378700256, 0.25882354378700256), (0.74789917469024658, 0.25490197539329529, 0.25490197539329529), (0.75210082530975342, 0.25098040699958801, 0.25098040699958801), (0.75630253553390503, 0.24705882370471954, 0.24705882370471954), (0.76050418615341187, 0.24313725531101227, 0.24313725531101227), (0.76470589637756348, 0.23921568691730499, 0.23921568691730499), (0.76890754699707031, 0.23529411852359772, 0.23529411852359772), (0.77310925722122192, 0.23137255012989044, 0.23137255012989044), (0.77731090784072876, 0.22745098173618317, 0.22745098173618317), (0.78151261806488037, 0.22352941334247589, 0.22352941334247589), (0.78571426868438721, 0.21960784494876862, 0.21960784494876862), (0.78991597890853882, 0.21176470816135406, 0.21176470816135406), (0.79411762952804565, 0.20784313976764679, 0.20784313976764679), (0.79831933975219727, 0.20392157137393951, 0.20392157137393951), (0.8025209903717041, 0.20000000298023224, 0.20000000298023224), (0.80672270059585571, 0.19607843458652496, 0.19607843458652496), (0.81092435121536255, 0.19215686619281769, 0.19215686619281769), (0.81512606143951416, 0.18823529779911041, 0.18823529779911041), (0.819327712059021, 0.18431372940540314, 0.18431372940540314), (0.82352942228317261, 0.18039216101169586, 0.18039216101169586), (0.82773107290267944, 0.17647059261798859, 0.17647059261798859), (0.83193278312683105, 0.17254902422428131, 0.17254902422428131), (0.83613443374633789, 0.16862745583057404, 0.16862745583057404), (0.8403361439704895, 0.16470588743686676, 0.16470588743686676), (0.84453779458999634, 0.16078431904315948, 0.16078431904315948), (0.84873950481414795, 0.15686275064945221, 0.15686275064945221), (0.85294115543365479, 0.14901961386203766, 0.14901961386203766), (0.8571428656578064, 0.14509804546833038, 0.14509804546833038), (0.86134451627731323, 0.14117647707462311, 0.14117647707462311), (0.86554622650146484, 0.13725490868091583, 0.13725490868091583), (0.86974787712097168, 0.13333334028720856, 0.13333334028720856), (0.87394958734512329, 0.12941177189350128, 0.12941177189350128), (0.87815123796463013, 0.12549020349979401, 0.12549020349979401), (0.88235294818878174, 0.12156862765550613, 0.12156862765550613), (0.88655459880828857, 0.11764705926179886, 0.11764705926179886), (0.89075630903244019, 0.11372549086809158, 0.11372549086809158), (0.89495795965194702, 0.10980392247438431, 0.10980392247438431), (0.89915966987609863, 0.10588235408067703, 0.10588235408067703), (0.90336132049560547, 0.10196078568696976, 0.10196078568696976), (0.90756303071975708, 0.098039217293262482, 0.098039217293262482), (0.91176468133926392, 0.094117648899555206, 0.094117648899555206), (0.91596639156341553, 0.086274512112140656, 0.086274512112140656), (0.92016804218292236, 0.08235294371843338, 0.08235294371843338), (0.92436975240707397, 0.078431375324726105, 0.078431375324726105), (0.92857140302658081, 0.074509806931018829, 0.074509806931018829), (0.93277311325073242, 0.070588238537311554, 0.070588238537311554), (0.93697476387023926, 0.066666670143604279, 0.066666670143604279), (0.94117647409439087, 0.062745101749897003, 0.062745101749897003), (0.94537812471389771, 0.058823529630899429, 0.058823529630899429), (0.94957983493804932, 0.054901961237192154, 0.054901961237192154), (0.95378148555755615, 0.050980392843484879, 0.050980392843484879), (0.95798319578170776, 0.047058824449777603, 0.047058824449777603), (0.9621848464012146, 0.043137256056070328, 0.043137256056070328), (0.96638655662536621, 0.039215687662363052, 0.039215687662363052), (0.97058820724487305, 0.035294119268655777, 0.035294119268655777), (0.97478991746902466, 0.031372550874948502, 0.031372550874948502), (0.97899156808853149, 0.023529412224888802, 0.023529412224888802), (0.98319327831268311, 0.019607843831181526, 0.019607843831181526), (0.98739492893218994, 0.015686275437474251, 0.015686275437474251), (0.99159663915634155, 0.011764706112444401, 0.011764706112444401), (0.99579828977584839, 0.0078431377187371254, 0.0078431377187371254), (1.0, 0.0039215688593685627, 0.0039215688593685627)]} Accent = colors.LinearSegmentedColormap('Accent', _Accent_data, LUTSIZE) Blues = colors.LinearSegmentedColormap('Blues', _Blues_data, LUTSIZE) BrBG = colors.LinearSegmentedColormap('BrBG', _BrBG_data, LUTSIZE) BuGn = colors.LinearSegmentedColormap('BuGn', _BuGn_data, LUTSIZE) BuPu = colors.LinearSegmentedColormap('BuPu', _BuPu_data, LUTSIZE) Dark2 = colors.LinearSegmentedColormap('Dark2', _Dark2_data, LUTSIZE) GnBu = colors.LinearSegmentedColormap('GnBu', _GnBu_data, LUTSIZE) Greens = colors.LinearSegmentedColormap('Greens', _Greens_data, LUTSIZE) Greys = colors.LinearSegmentedColormap('Greys', _Greys_data, LUTSIZE) Oranges = colors.LinearSegmentedColormap('Oranges', _Oranges_data, LUTSIZE) OrRd = colors.LinearSegmentedColormap('OrRd', _OrRd_data, LUTSIZE) Paired = colors.LinearSegmentedColormap('Paired', _Paired_data, LUTSIZE) Pastel1 = colors.LinearSegmentedColormap('Pastel1', _Pastel1_data, LUTSIZE) Pastel2 = colors.LinearSegmentedColormap('Pastel2', _Pastel2_data, LUTSIZE) PiYG = colors.LinearSegmentedColormap('PiYG', _PiYG_data, LUTSIZE) PRGn = colors.LinearSegmentedColormap('PRGn', _PRGn_data, LUTSIZE) PuBu = colors.LinearSegmentedColormap('PuBu', _PuBu_data, LUTSIZE) PuBuGn = colors.LinearSegmentedColormap('PuBuGn', _PuBuGn_data, LUTSIZE) PuOr = colors.LinearSegmentedColormap('PuOr', _PuOr_data, LUTSIZE) PuRd = colors.LinearSegmentedColormap('PuRd', _PuRd_data, LUTSIZE) Purples = colors.LinearSegmentedColormap('Purples', _Purples_data, LUTSIZE) RdBu = colors.LinearSegmentedColormap('RdBu', _RdBu_data, LUTSIZE) RdGy = colors.LinearSegmentedColormap('RdGy', _RdGy_data, LUTSIZE) RdPu = colors.LinearSegmentedColormap('RdPu', _RdPu_data, LUTSIZE) RdYlBu = colors.LinearSegmentedColormap('RdYlBu', _RdYlBu_data, LUTSIZE) RdYlGn = colors.LinearSegmentedColormap('RdYlGn', _RdYlGn_data, LUTSIZE) Reds = colors.LinearSegmentedColormap('Reds', _Reds_data, LUTSIZE) Set1 = colors.LinearSegmentedColormap('Set1', _Set1_data, LUTSIZE) Set2 = colors.LinearSegmentedColormap('Set2', _Set2_data, LUTSIZE) Set3 = colors.LinearSegmentedColormap('Set3', _Set3_data, LUTSIZE) Spectral = colors.LinearSegmentedColormap('Spectral', _Spectral_data, LUTSIZE) YlGn = colors.LinearSegmentedColormap('YlGn', _YlGn_data, LUTSIZE) YlGnBu = colors.LinearSegmentedColormap('YlGnBu', _YlGnBu_data, LUTSIZE) YlOrBr = colors.LinearSegmentedColormap('YlOrBr', _YlOrBr_data, LUTSIZE) YlOrRd = colors.LinearSegmentedColormap('YlOrRd', _YlOrRd_data, LUTSIZE) gist_earth = colors.LinearSegmentedColormap('gist_earth', _gist_earth_data, LUTSIZE) gist_gray = colors.LinearSegmentedColormap('gist_gray', _gist_gray_data, LUTSIZE) gist_heat = colors.LinearSegmentedColormap('gist_heat', _gist_heat_data, LUTSIZE) gist_ncar = colors.LinearSegmentedColormap('gist_ncar', _gist_ncar_data, LUTSIZE) gist_rainbow = colors.LinearSegmentedColormap('gist_rainbow', _gist_rainbow_data, LUTSIZE) gist_stern = colors.LinearSegmentedColormap('gist_stern', _gist_stern_data, LUTSIZE) gist_yarg = colors.LinearSegmentedColormap('gist_yarg', _gist_yarg_data, LUTSIZE) datad['Accent']=_Accent_data datad['Blues']=_Blues_data datad['BrBG']=_BrBG_data datad['BuGn']=_BuGn_data datad['BuPu']=_BuPu_data datad['Dark2']=_Dark2_data datad['GnBu']=_GnBu_data datad['Greens']=_Greens_data datad['Greys']=_Greys_data datad['Oranges']=_Oranges_data datad['OrRd']=_OrRd_data datad['Paired']=_Paired_data datad['Pastel1']=_Pastel1_data datad['Pastel2']=_Pastel2_data datad['PiYG']=_PiYG_data datad['PRGn']=_PRGn_data datad['PuBu']=_PuBu_data datad['PuBuGn']=_PuBuGn_data datad['PuOr']=_PuOr_data datad['PuRd']=_PuRd_data datad['Purples']=_Purples_data datad['RdBu']=_RdBu_data datad['RdGy']=_RdGy_data datad['RdPu']=_RdPu_data datad['RdYlBu']=_RdYlBu_data datad['RdYlGn']=_RdYlGn_data datad['Reds']=_Reds_data datad['Set1']=_Set1_data datad['Set2']=_Set2_data datad['Set3']=_Set3_data datad['Spectral']=_Spectral_data datad['YlGn']=_YlGn_data datad['YlGnBu']=_YlGnBu_data datad['YlOrBr']=_YlOrBr_data datad['YlOrRd']=_YlOrRd_data datad['gist_earth']=_gist_earth_data datad['gist_gray']=_gist_gray_data datad['gist_heat']=_gist_heat_data datad['gist_ncar']=_gist_ncar_data datad['gist_rainbow']=_gist_rainbow_data datad['gist_stern']=_gist_stern_data datad['gist_yarg']=_gist_yarg_data # reverse all the colormaps. # reversed colormaps have '_r' appended to the name. def revcmap(data): data_r = {} for key, val in data.iteritems(): valnew = [(1.-a, b, c) for a, b, c in reversed(val)] data_r[key] = valnew return data_r cmapnames = datad.keys() for cmapname in cmapnames: cmapname_r = cmapname+'_r' cmapdat_r = revcmap(datad[cmapname]) datad[cmapname_r] = cmapdat_r locals()[cmapname_r] = colors.LinearSegmentedColormap(cmapname_r, cmapdat_r, LUTSIZE)
agpl-3.0
dagnir/servo
python/mach/mach/registrar.py
46
3774
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. from __future__ import absolute_import, unicode_literals from .base import MachError INVALID_COMMAND_CONTEXT = r''' It looks like you tried to run a mach command from an invalid context. The %s command failed to meet the following conditions: %s Run |mach help| to show a list of all commands available to the current context. '''.lstrip() class MachRegistrar(object): """Container for mach command and config providers.""" def __init__(self): self.command_handlers = {} self.commands_by_category = {} self.settings_providers = set() self.categories = {} self.require_conditions = False def register_command_handler(self, handler): name = handler.name if not handler.category: raise MachError('Cannot register a mach command without a ' 'category: %s' % name) if handler.category not in self.categories: raise MachError('Cannot register a command to an undefined ' 'category: %s -> %s' % (name, handler.category)) self.command_handlers[name] = handler self.commands_by_category[handler.category].add(name) def register_settings_provider(self, cls): self.settings_providers.add(cls) def register_category(self, name, title, description, priority=50): self.categories[name] = (title, description, priority) self.commands_by_category[name] = set() @classmethod def _condition_failed_message(cls, name, conditions): msg = ['\n'] for c in conditions: part = [' %s' % c.__name__] if c.__doc__ is not None: part.append(c.__doc__) msg.append(' - '.join(part)) return INVALID_COMMAND_CONTEXT % (name, '\n'.join(msg)) def _run_command_handler(self, handler, context=None, debug_command=False, **kwargs): cls = handler.cls if handler.pass_context and not context: raise Exception('mach command class requires context.') if handler.pass_context: instance = cls(context) else: instance = cls() if handler.conditions: fail_conditions = [] for c in handler.conditions: if not c(instance): fail_conditions.append(c) if fail_conditions: print(self._condition_failed_message(handler.name, fail_conditions)) return 1 fn = getattr(instance, handler.method) if debug_command: import pdb result = pdb.runcall(fn, **kwargs) else: result = fn(**kwargs) result = result or 0 assert isinstance(result, (int, long)) return result def dispatch(self, name, context=None, argv=None, **kwargs): """Dispatch/run a command. Commands can use this to call other commands. """ # TODO handler.subcommand_handlers are ignored handler = self.command_handlers[name] if handler.parser: parser = handler.parser # save and restore existing defaults so **kwargs don't persist across # subsequent invocations of Registrar.dispatch() old_defaults = parser._defaults.copy() parser.set_defaults(**kwargs) kwargs, _ = parser.parse_known_args(argv or []) kwargs = vars(kwargs) parser._defaults = old_defaults return self._run_command_handler(handler, context=context, **kwargs) Registrar = MachRegistrar()
mpl-2.0
wangzhangup/cuda-convnet2
layer.py
162
82481
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from math import exp import sys import ConfigParser as cfg import os import numpy as n import numpy.random as nr from math import ceil, floor from collections import OrderedDict from os import linesep as NL from python_util.options import OptionsParser import re class LayerParsingError(Exception): pass # A neuron that doesn't take parameters class NeuronParser: def __init__(self, type, func_str, uses_acts=True, uses_inputs=True): self.type = type self.func_str = func_str self.uses_acts = uses_acts self.uses_inputs = uses_inputs def parse(self, type): if type == self.type: return {'type': self.type, 'params': {}, 'usesActs': self.uses_acts, 'usesInputs': self.uses_inputs} return None # A neuron that takes parameters class ParamNeuronParser(NeuronParser): neuron_regex = re.compile(r'^\s*(\w+)\s*\[\s*(\w+(\s*,\w+)*)\s*\]\s*$') def __init__(self, type, func_str, uses_acts=True, uses_inputs=True): NeuronParser.__init__(self, type, func_str, uses_acts, uses_inputs) m = self.neuron_regex.match(type) self.base_type = m.group(1) self.param_names = m.group(2).split(',') assert len(set(self.param_names)) == len(self.param_names) def parse(self, type): m = re.match(r'^%s\s*\[([\d,\.\s\-]*)\]\s*$' % self.base_type, type) if m: try: param_vals = [float(v.strip()) for v in m.group(1).split(',')] if len(param_vals) == len(self.param_names): return {'type': self.base_type, 'params': dict(zip(self.param_names, param_vals)), 'usesActs': self.uses_acts, 'usesInputs': self.uses_inputs} except TypeError: pass return None class AbsTanhNeuronParser(ParamNeuronParser): def __init__(self): ParamNeuronParser.__init__(self, 'abstanh[a,b]', 'f(x) = a * |tanh(b * x)|') def parse(self, type): dic = ParamNeuronParser.parse(self, type) # Make b positive, since abs(tanh(bx)) = abs(tanh(-bx)) and the C++ code # assumes b is positive. if dic: dic['params']['b'] = abs(dic['params']['b']) return dic class ParamParser: lrs_regex = re.compile(r'^\s*(\w+)\s*(?:\[\s*(\w+(\s*;\w+)*)\s*\])?\s*$') param_converters = {'i': int, 'f': float} def __init__(self, type): m = self.lrs_regex.match(type) self.base_type = m.group(1) param_names_with_type = m.group(2).split(';') if m.group(2) is not None else [] self.param_names = [p[1:] for p in param_names_with_type] self.param_types = [self.param_converters[p[0]] for p in param_names_with_type] self.param_regex_inner = ";".join([('\s*%s\s*=\s*[^;,\s=]+\s*' % p) for p in self.param_names]) self.regex_str = ('^%s\s*(?:\[(%s)\])?\s*$') % (self.base_type, self.param_regex_inner) assert len(set(self.param_names)) == len(self.param_names) def parse(self, type): m = re.match(self.regex_str, type, flags=re.IGNORECASE) if m: try: param_vals = [ptype(v.split('=')[1].strip()) for ptype,v in zip(self.param_types, m.group(1).split(';'))] if m.group(1) is not None else [] if len(param_vals) == len(self.param_names): return {'type': self.base_type, 'params': dict(zip(self.param_names, param_vals))} except TypeError: pass return None # Subclass that throws more convnet-specific exceptions than the default class MyConfigParser(cfg.SafeConfigParser): def safe_get(self, section, option, f=cfg.SafeConfigParser.get, typestr=None, default=None): try: return f(self, section, option) except cfg.NoOptionError, e: if default is not None: return default raise LayerParsingError("Layer '%s': required parameter '%s' missing" % (section, option)) except ValueError, e: if typestr is None: raise e raise LayerParsingError("Layer '%s': parameter '%s' must be %s" % (section, option, typestr)) def safe_get_list(self, section, option, f=str, typestr='strings', default=None): v = self.safe_get(section, option, default=default) if type(v) == list: return v try: return [f(x.strip()) for x in v.split(',')] except: raise LayerParsingError("Layer '%s': parameter '%s' must be ','-delimited list of %s" % (section, option, typestr)) def safe_get_int(self, section, option, default=None): return self.safe_get(section, option, f=cfg.SafeConfigParser.getint, typestr='int', default=default) def safe_get_float(self, section, option, default=None): return self.safe_get(section, option, f=cfg.SafeConfigParser.getfloat, typestr='float', default=default) def safe_get_bool(self, section, option, default=None): return self.safe_get(section, option, f=cfg.SafeConfigParser.getboolean, typestr='bool', default=default) def safe_get_float_list(self, section, option, default=None): return self.safe_get_list(section, option, float, typestr='floats', default=default) def safe_get_int_list(self, section, option, default=None): return self.safe_get_list(section, option, int, typestr='ints', default=default) def safe_get_bool_list(self, section, option, default=None): return self.safe_get_list(section, option, lambda x: x.lower() in ('true', '1'), typestr='bools', default=default) # A class that implements part of the interface of MyConfigParser class FakeConfigParser(object): def __init__(self, dic): self.dic = dic def safe_get(self, section, option, default=None): if option in self.dic: return self.dic[option] return default def safe_get_int(self, section, option, default=None): return int(self.safe_get(section, option, default)) def safe_get_int_list(self, section, option, default=None): return list(self.safe_get(section, option, default)) class LayerParser: def __init__(self): self.dic = {} self.set_defaults() # Post-processing step -- this is called after all layers have been initialized def optimize(self, layers): self.dic['actsTarget'] = -1 self.dic['actsGradTarget'] = -1 if len(set(len(l['gpu']) for l in layers.values() if 'inputs' in l and self.dic['name'] in l['inputs'])) > 1: # print set(len(l['gpu']) for l in layers.values()) raise LayerParsingError("Layer '%s': all next layers must have equal number of replicas." % (self.dic['name'])) def parse_params(self, vals, parsers, param_name, human_name, num_params=1): dic, name = self.dic, self.dic['name'] # print vals if len(vals) != num_params and len(vals) != 1: raise LayerParsingError("Layer '%s': expected list of length %d for %s but got list of length %d."% (name, num_params, param_name, len(vals))) parsed = [] # print vals for v in vals: for p in parsers: parsedv = p.parse(v) if parsedv: parsed += [parsedv] break if len(parsed) == 1 and num_params > 1: parsed = parsed * num_params if len(parsed) == num_params: return parsed # print parsed, vals raise LayerParsingError("Layer '%s': unable to parse %s %s=%s." % (name, human_name, param_name, ",".join(vals))) # Add parameters from layer parameter file def add_params(self, mcp): pass # self.dic['conserveMem'] = mcp.convnet.op.get_value('conserve_mem') if mcp.convnet is not None else 0 def init(self, dic): self.dic = dic return self def set_defaults(self): self.dic['outputs'] = 0 self.dic['parser'] = self self.dic['requiresParams'] = False # Does this layer use its own activity matrix # for some purpose other than computing its output? # Usually, this will only be true for layers that require their # own activity matrix for gradient computations. For example, layers # with logistic units must compute the gradient y * (1 - y), where y is # the activity matrix. # # Layers that do not not use their own activity matrix should advertise # this, since this will enable memory-saving matrix re-use optimizations. # # The default value of this property is True, for safety purposes. # If a layer advertises that it does not use its own activity matrix when # in fact it does, bad things will happen. self.dic['usesActs'] = True # Does this layer use the activity matrices of its input layers # for some purpose other than computing its output? # # Again true by default for safety self.dic['usesInputs'] = True # Force this layer to use its own activity gradient matrix, # instead of borrowing one from one of its inputs. # # This should be true for layers where the mapping from output # gradient to input gradient is non-elementwise. self.dic['forceOwnActs'] = True # Does this layer need the gradient at all? # Should only be true for layers with parameters (weights). self.dic['gradConsumer'] = False # The gpu indices on which this layer runs self.dic['gpu'] = [-1] def parse(self, name, mcp, prev_layers, model=None): self.prev_layers = prev_layers self.dic['name'] = name self.dic['type'] = mcp.safe_get(name, 'type') self.dic['id'] = len(prev_layers) return self.dic def verify_float_range(self, v, param_name, _min, _max): self.verify_num_range(v, param_name, _min, _max, strconv=lambda x: '%.3f' % x) def verify_num_range(self, v, param_name, _min, _max, strconv=lambda x:'%d' % x): if type(v) == list: for i,vv in enumerate(v): self._verify_num_range(vv, param_name, _min, _max, i, strconv=strconv) else: self._verify_num_range(v, param_name, _min, _max, strconv=strconv) def _verify_num_range(self, v, param_name, _min, _max, input=-1, strconv=lambda x:'%d' % x): layer_name = self.dic['name'] if input < 0 else '%s[%d]' % (self.dic['name'], input) if _min is not None and _max is not None and (v < _min or v > _max): raise LayerParsingError("Layer '%s': parameter '%s' must be in the range %s-%s" % (layer_name, param_name, strconv(_min), strconv(_max))) elif _min is not None and v < _min: raise LayerParsingError("Layer '%s': parameter '%s' must be greater than or equal to %s" % (layer_name, param_name, strconv(_min))) elif _max is not None and v > _max: raise LayerParsingError("Layer '%s': parameter '%s' must be smaller than or equal to %s" % (layer_name, param_name, strconv(_max))) def verify_divisible(self, value, div, value_name, div_name=None, input_idx=0): layer_name = self.dic['name'] if len(self.dic['inputs']) == 0 else '%s[%d]' % (self.dic['name'], input_idx) if value % div != 0: raise LayerParsingError("Layer '%s': parameter '%s' must be divisible by %s" % (layer_name, value_name, str(div) if div_name is None else "'%s'" % div_name)) def verify_str_in(self, value, param_name, lst, input_idx=-1): lname = self.dic['name'] if input_idx == -1 else ('%s[%d]' % (self.dic['name'], input_idx)) if value not in lst: raise LayerParsingError("Layer '%s': parameter '%s' must be one of %s" % (lname, param_name, ", ".join("'%s'" % s for s in lst))) def verify_int_in(self, value, param_name, lst): if value not in lst: raise LayerParsingError("Layer '%s': parameter '%s' must be one of %s" % (self.dic['name'], param_name, ", ".join("'%d'" % s for s in lst))) def verify_all_ints_in(self, values, param_name, lst): if len([v for v in values if v not in lst]) > 0: raise LayerParsingError("Layer '%s': all parameters to '%s' must be among %s" % (self.dic['name'], param_name, ", ".join("'%d'" % s for s in lst))) def verify_input_dims(self, dims): for i,d in enumerate(dims): if d is not None and self.dic['numInputs'][i] != d: # first input must be labels raise LayerParsingError("Layer '%s': dimensionality of input %d must be %d" % (self.dic['name'], i, d)) # This looks for neuron=x arguments in various layers, and creates # separate layer definitions for them. @staticmethod def detach_neuron_layers(layers): for name,l in layers.items(): if l['type'] != 'neuron' and 'neuron' in l and l['neuron']: NeuronLayerParser().detach_neuron_layer(name, layers) @staticmethod def parse_layers(layer_cfg_path, param_cfg_path, model, layers={}): try: if not os.path.exists(layer_cfg_path): raise LayerParsingError("Layer definition file '%s' does not exist" % layer_cfg_path) if not os.path.exists(param_cfg_path): raise LayerParsingError("Layer parameter file '%s' does not exist" % param_cfg_path) if len(layers) == 0: mcp = MyConfigParser(dict_type=OrderedDict) mcp.readfp(open(layer_cfg_path)) for name in mcp.sections(): if not mcp.has_option(name, 'type'): raise LayerParsingError("Layer '%s': no type given" % name) ltype = mcp.safe_get(name, 'type') if ltype not in layer_parsers: raise LayerParsingError("Layer '%s': Unknown layer type: '%s'" % (name, ltype)) layers[name] = layer_parsers[ltype]().parse(name, mcp, layers, model) LayerParser.detach_neuron_layers(layers) for l in layers.values(): l['parser'].optimize(layers) del l['parser'] for name,l in layers.items(): if not l['type'].startswith('cost.'): found = max(name in l2['inputs'] for l2 in layers.values() if 'inputs' in l2) if not found: raise LayerParsingError("Layer '%s' of type '%s' is unused" % (name, l['type'])) mcp = MyConfigParser(dict_type=OrderedDict) mcp.readfp(open(param_cfg_path)) # mcp.convnet = model for name,l in layers.items(): if not mcp.has_section(name) and l['requiresParams']: raise LayerParsingError("Layer '%s' of type '%s' requires extra parameters, but none given in file '%s'." % (name, l['type'], param_cfg_path)) lp = layer_parsers[l['type']]().init(l) lp.add_params(mcp) except LayerParsingError, e: print e sys.exit(1) return layers @staticmethod def register_layer_parser(ltype, cls): if ltype in layer_parsers: raise LayerParsingError("Layer type '%s' already registered" % ltype) layer_parsers[ltype] = cls # Any layer that takes an input (i.e. non-data layer) class LayerWithInputParser(LayerParser): def __init__(self, num_inputs=-1): LayerParser.__init__(self) self.num_inputs = num_inputs def verify_num_params(self, params, auto_expand=True): for param in params: if len(self.dic[param]) != len(self.dic['inputs']): if auto_expand and len(self.dic[param]) == 1: self.dic[param] *= len(self.dic['inputs']) else: raise LayerParsingError("Layer '%s': %s list length does not match number of inputs" % (self.dic['name'], param)) # layers: dictionary: name -> layer def optimize(self, layers): LayerParser.optimize(self, layers) dic = self.dic # Check if I have an input that no one else uses. #print "Layer %s optimizing" % dic['name'] if not dic['forceOwnActs']: for i, inp in enumerate(dic['inputLayers']): if inp['outputs'] == dic['outputs'] and sum(('inputs' in ll) and (inp['name'] in ll['inputs']) for ll in layers.itervalues()) == 1: # I can share my activity matrix with this layer # if it does not use its activity matrix, and I # do not need to remember my inputs. # TODO: a dropout layer should always be able to overwrite # its input. Make it so. # print "Layer %s(uses inputs=%d), input %s(uses acts = %d)" % (dic['name'], dic['usesInputs'], inp['name'], inp['usesActs']) if not inp['usesActs'] and not dic['usesInputs']: dic['actsTarget'] = i print "Layer %s using acts from layer %s" % (dic['name'], inp['name']) # print "Layer '%s' sharing activity matrix with layer '%s'" % (dic['name'], l['name']) # I can share my gradient matrix with this layer if we're on the same GPU. # This is different from the logic for actsTarget because this guy doesn't # have an actsGrad matrix on my GPU if our GPUs are different, so there's # nothing to share. if dic['gpu'] == inp['gpu']: dic['actsGradTarget'] = i # print "Layer '%s' sharing activity gradient matrix with layer '%s'" % (dic['name'], l['name']) def parse(self, name, mcp, prev_layers, model=None): dic = LayerParser.parse(self, name, mcp, prev_layers, model) dic['inputs'] = [inp.strip() for inp in mcp.safe_get(name, 'inputs').split(',')] for inp in dic['inputs']: if inp not in prev_layers: raise LayerParsingError("Layer '%s': input layer '%s' not defined" % (name, inp)) dic['inputLayers'] = [prev_layers[inp] for inp in dic['inputs']] dic['gpu'] = mcp.safe_get_int_list(name, 'gpu', default=dic['inputLayers'][0]['gpu']) dic['gpus'] = ", ".join('%s' % d for d in dic['gpu']) dic['numReplicas'] = len(dic['gpu']) if len(set(dic['gpu'])) != len(dic['gpu']): raise LayerParsingError("Layer '%s': all replicas must run on different GPUs." % (name)) for inp in dic['inputs']: # Data layers do not explicitly define how many replicas they have. # The number of replicas for a data layer is given by the number of replicas # in the next layer(s). So we set that here. inpl = prev_layers[inp] if inpl['type'] == 'data': inpl['numReplicas'] = dic['numReplicas'] if inpl['numReplicas'] % dic['numReplicas'] != 0: raise LayerParsingError("Layer '%s': number of replicas (%d) must divide number of replicas in all input layers (input %s has %d replicas)." % (name, dic['numReplicas'], inpl['name'], inpl['numReplicas'])) if len(set(inp['numReplicas'] for inp in dic['inputLayers'])) != 1: raise LayerParsingError("Layer '%s': all input layers must have equal numbers of replicas." % (name)) # Need to also assert that all *next* layers have equal number of replicas but this is hard so it's done in Layer.optimize for inp in dic['inputLayers']: if inp['outputs'] == 0: raise LayerParsingError("Layer '%s': input layer '%s' does not produce any output" % (name, inp['name'])) dic['numInputs'] = [inp['outputs'] for inp in dic['inputLayers']] # Layers can declare a neuron activation function to apply to their output, as a shortcut # to avoid declaring a separate neuron layer above themselves. dic['neuron'] = mcp.safe_get(name, 'neuron', default="") if self.num_inputs > 0 and len(dic['numInputs']) != self.num_inputs: raise LayerParsingError("Layer '%s': number of inputs must be %d" % (name, self.num_inputs)) if model: self.verify_all_ints_in(dic['gpu'], 'gpu', range(len(model.op.get_value('gpu')))) return dic def verify_img_size(self): dic = self.dic if dic['numInputs'][0] % dic['imgPixels'] != 0 or dic['imgSize'] * dic['imgSize'] != dic['imgPixels']: raise LayerParsingError("Layer '%s': has %-d dimensional input, not interpretable as %d-channel images" % (dic['name'], dic['numInputs'][0], dic['channels'])) @staticmethod def grad_consumers_below(dic): if dic['gradConsumer']: return True if 'inputLayers' in dic: return any(LayerWithInputParser.grad_consumers_below(l) for l in dic['inputLayers']) def verify_no_grads(self): if LayerWithInputParser.grad_consumers_below(self.dic): raise LayerParsingError("Layer '%s': layers of type '%s' cannot propagate gradient and must not be placed over layers with parameters." % (self.dic['name'], self.dic['type'])) class NailbedLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False dic['channels'] = mcp.safe_get_int(name, 'channels') dic['stride'] = mcp.safe_get_int(name, 'stride') self.verify_num_range(dic['channels'], 'channels', 1, None) # Computed values dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['outputsX'] = (dic['imgSize'] + dic['stride'] - 1) / dic['stride'] dic['start'] = (dic['imgSize'] - dic['stride'] * (dic['outputsX'] - 1)) / 2 dic['outputs'] = dic['channels'] * dic['outputsX']**2 self.verify_num_range(dic['outputsX'], 'outputsX', 0, None) self.verify_img_size() print "Initialized bed-of-nails layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (name, dic['gpus'], dic['outputsX'], dic['outputsX'], dic['channels']) return dic class GaussianBlurLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False dic['outputs'] = dic['numInputs'][0] dic['channels'] = mcp.safe_get_int(name, 'channels') dic['filterSize'] = mcp.safe_get_int(name, 'filterSize') dic['stdev'] = mcp.safe_get_float(name, 'stdev') self.verify_num_range(dic['channels'], 'channels', 1, None) self.verify_int_in(dic['filterSize'], 'filterSize', [3, 5, 7, 9]) # Computed values dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['filter'] = n.array([exp(-(dic['filterSize']/2 - i)**2 / float(2 * dic['stdev']**2)) for i in xrange(dic['filterSize'])], dtype=n.float32).reshape(1, dic['filterSize']) dic['filter'] /= dic['filter'].sum() self.verify_img_size() if dic['filterSize'] > dic['imgSize']: raise LayerParsingError("Later '%s': filter size (%d) must be smaller than image size (%d)." % (dic['name'], dic['filterSize'], dic['imgSize'])) print "Initialized Gaussian blur layer '%s', producing %dx%d %d-channel output" % (name, dic['imgSize'], dic['imgSize'], dic['channels']) return dic class HorizontalReflectionLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['outputs'] = dic['numInputs'][0] dic['channels'] = mcp.safe_get_int(name, 'channels') self.verify_num_range(dic['channels'], 'channels', 1, 3) # Computed values dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) self.verify_img_size() print "Initialized horizontal reflection layer '%s', producing %dx%d %d-channel output" % (name, dic['imgSize'], dic['imgSize'], dic['channels']) return dic class ResizeLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False dic['channels'] = mcp.safe_get_int(name, 'channels') dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['scale'] = mcp.safe_get_float(name, 'scale') dic['tgtSize'] = int(floor(dic['imgSize'] / dic['scale'])) dic['tgtPixels'] = dic['tgtSize']**2 self.verify_num_range(dic['channels'], 'channels', 1, None) # Really not recommended to use this for such severe scalings self.verify_float_range(dic['scale'], 'scale', 0.5, 2) dic['outputs'] = dic['channels'] * dic['tgtPixels'] self.verify_img_size() self.verify_no_grads() print "Initialized resize layer '%s', producing %dx%d %d-channel output" % (name, dic['tgtSize'], dic['tgtSize'], dic['channels']) return dic class RandomScaleLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False dic['channels'] = mcp.safe_get_int(name, 'channels') self.verify_num_range(dic['channels'], 'channels', 1, None) # Computed values dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['maxScale'] = mcp.safe_get_float(name, 'maxScale') dic['tgtSize'] = mcp.safe_get_int(name, 'tgtSize') min_size = int(floor(dic['imgSize'] / dic['maxScale'])) max_size = dic['imgSize'] #int(floor(dic['imgSize'] * dic['maxScale'])) if dic['tgtSize'] < min_size: raise LayerParsingError("Layer '%s': target size must be greater than minimum image size after rescaling (%d)" % (name, min_size)) if dic['tgtSize'] > max_size: raise LayerParsingError("Layer '%s': target size must be smaller than maximum image size after rescaling (%d)" % (name, max_size)) dic['tgtPixels'] = dic['tgtSize']**2 self.verify_float_range(dic['maxScale'], 'maxScale', 1, 2) dic['outputs'] = dic['channels'] * dic['tgtPixels'] self.verify_img_size() self.verify_no_grads() print "Initialized random scale layer '%s', producing %dx%d %d-channel output" % (name, dic['tgtSize'], dic['tgtSize'], dic['channels']) return dic class CropLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False dic['channels'] = mcp.safe_get_int(name, 'channels') self.verify_num_range(dic['channels'], 'channels', 1, None) dic['startX'] = mcp.safe_get_int(name, 'startX') dic['startY'] = mcp.safe_get_int(name, 'startY', default=dic['startX']) dic['sizeX'] = mcp.safe_get_int(name, 'sizeX') # Computed values dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['outputs'] = dic['channels'] * (dic['sizeX']**2) self.verify_num_range(dic['startX'], 'startX', 0, dic['imgSize']-1) self.verify_num_range(dic['sizeX'], 'sizeX', 1, dic['imgSize']) self.verify_num_range(dic['startY'], 'startY', 0, dic['imgSize']-1) self.verify_img_size() self.verify_no_grads() if dic['startX'] + dic['sizeX'] > dic['imgSize']: raise LayerParsingError("Layer '%s': startX (%d) + sizeX (%d) > imgSize (%d)" % (name, dic['startX'], dic['sizeX'], dic['imgSize'])) print "Initialized cropping layer '%s', producing %dx%d %d-channel output" % (name, dic['sizeX'], dic['sizeX'], dic['channels']) return dic class ColorTransformLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False # Computed values dic['imgPixels'] = dic['numInputs'][0] / 3 dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['channels'] = 3 dic['outputs'] = dic['numInputs'][0] self.verify_img_size() self.verify_no_grads() return dic class RGBToYUVLayerParser(ColorTransformLayerParser): def __init__(self): ColorTransformLayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model=None): dic = ColorTransformLayerParser.parse(self, name, mcp, prev_layers, model) print "Initialized RGB --> YUV layer '%s', producing %dx%d %d-channel output" % (name, dic['imgSize'], dic['imgSize'], dic['channels']) return dic class RGBToLABLayerParser(ColorTransformLayerParser): def __init__(self): ColorTransformLayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model=None): dic = ColorTransformLayerParser.parse(self, name, mcp, prev_layers, model) dic['center'] = mcp.safe_get_bool(name, 'center', default=False) print "Initialized RGB --> LAB layer '%s', producing %dx%d %d-channel output" % (name, dic['imgSize'], dic['imgSize'], dic['channels']) return dic class NeuronLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) @staticmethod def get_unused_layer_name(layers, wish): if wish not in layers: return wish for i in xrange(1, 100): name = '%s.%d' % (wish, i) if name not in layers: return name raise LayerParsingError("This is insane.") def parse_neuron(self, neuron_str): for n in neuron_parsers: p = n.parse(neuron_str) if p: # Successfully parsed neuron, return it self.dic['neuron'] = p self.dic['usesActs'] = self.dic['neuron']['usesActs'] self.dic['usesInputs'] = self.dic['neuron']['usesInputs'] return # Could not parse neuron # Print available neuron types colnames = ['Neuron type', 'Function'] m = max(len(colnames[0]), OptionsParser._longest_value(neuron_parsers, key=lambda x:x.type)) + 2 ntypes = [OptionsParser._bold(colnames[0].ljust(m))] + [n.type.ljust(m) for n in neuron_parsers] fnames = [OptionsParser._bold(colnames[1])] + [n.func_str for n in neuron_parsers] usage_lines = NL.join(ntype + fname for ntype,fname in zip(ntypes, fnames)) raise LayerParsingError("Layer '%s': unable to parse neuron type '%s'. Valid neuron types: %sWhere neurons have parameters, they must be floats." % (self.dic['name'], neuron_str, NL + usage_lines + NL)) def detach_neuron_layer(self, src_name, layers): dic = self.dic # self.set_defaults() dic['name'] = NeuronLayerParser.get_unused_layer_name(layers, '%s_neuron' % src_name) dic['type'] = 'neuron' dic['inputs'] = src_name dic['neuron'] = layers[src_name]['neuron'] dic['gpu'] = layers[src_name]['gpu'] # Yes it's not entirely correct to pass all of layers as prev_layers, but it's harmless dic = self.parse(dic['name'], FakeConfigParser(dic), layers) dic['src_layer'] = src_name # Link upper layers to this new one for l in layers.values(): if 'inputs' in l: l['inputs'] = [inp if inp != src_name else dic['name'] for inp in l['inputs']] l['inputLayers'] = [inp if inp['name'] != src_name else dic for inp in l['inputLayers']] layers[dic['name']] = dic def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['outputs'] = dic['numInputs'][0] self.parse_neuron(dic['neuron']) dic['forceOwnActs'] = False print "Initialized neuron layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class EltwiseSumLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self) def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['coeffs'] = mcp.safe_get_float_list(name, 'coeffs', default=[1.0] * len(dic['inputs'])) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) if len(set(dic['numInputs'])) != 1: raise LayerParsingError("Layer '%s': all inputs must have the same dimensionality. Got dimensionalities: %s" % (name, ", ".join(str(s) for s in dic['numInputs']))) dic['outputs'] = dic['numInputs'][0] dic['usesInputs'] = False dic['usesActs'] = False dic['forceOwnActs'] = False dic['requiresParams'] = True print "Initialized elementwise sum layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class EltwiseMaxLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) if len(dic['inputs']) < 2: raise LayerParsingError("Layer '%s': elementwise max layer must have at least 2 inputs, got %d." % (name, len(dic['inputs']))) if len(set(dic['numInputs'])) != 1: raise LayerParsingError("Layer '%s': all inputs must have the same dimensionality. Got dimensionalities: %s" % (name, ", ".join(str(s) for s in dic['numInputs']))) dic['outputs'] = dic['numInputs'][0] print "Initialized elementwise max layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class SumLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['stride'] = mcp.safe_get_int(name, 'stride', default=1) self.verify_divisible(dic['numInputs'][0], dic['stride'], 'input dimensionality', 'stride') dic['outputs'] = dic['numInputs'][0] / dic['stride'] print "Initialized sum layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class DropoutLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['enable'] = mcp.safe_get_bool(name, 'enable', default=True) dic['keep'] = mcp.safe_get_float(name, 'keep', default=0.5) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True dic['usesInputs'] = False dic['usesActs'] = False dic['forceOwnActs'] = False dic['outputs'] = dic['numInputs'][0] print "Initialized %s layer '%s' on GPUs %s, producing %d outputs" % (dic['type'], name, dic['gpus'], dic['outputs']) return dic class Dropout2LayerParser(DropoutLayerParser): def __init__(self): DropoutLayerParser.__init__(self) class WeightLayerParser(LayerWithInputParser): LAYER_PAT = re.compile(r'^\s*([^\s\[]+)(?:\[(\d+)\])?\s*$') # matches things like layername[5], etc def __init__(self, num_inputs=-1): LayerWithInputParser.__init__(self, num_inputs=num_inputs) @staticmethod def get_layer_name(name_str): m = WeightLayerParser.LAYER_PAT.match(name_str) if not m: return None return m.group(1), m.group(2) def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['momW'] = mcp.safe_get_float_list(name, 'momW') dic['momB'] = mcp.safe_get_float(name, 'momB') dic['superEps'] = mcp.safe_get_float(name, 'superEps', default=0.0) dic['superMom'] = mcp.safe_get_float(name, 'superMom', default=0.0) dic['wc'] = mcp.safe_get_float_list(name, 'wc', default=[0.0] * len(dic['inputs'])) dic['wball'] = mcp.safe_get_float_list(name, 'wball', default=[0.0] * len(dic['inputs'])) self.verify_num_params(['momW', 'wc', 'wball']) # dic['wballNormed'] = [wball * nweights for wball,nweights in zip(dic['wball'], dic['weightsPerFilter'])] dic['wballNormed'] = dic['wball'] # Convert from old-style 0.001,0.02 hyperparam specification to new-stye # const[base=0.001],const[base=0.02] and so forth def convert_scalars_to_schedules(scalars): parts = scalars.split(',') for i,p in enumerate(parts): p = p.strip() if re.match('(?:\d*\.)?\d+$', p): parts[i] = 'const[base=%s]' % p return parts dic['epsW'] = self.parse_params(convert_scalars_to_schedules(mcp.safe_get(name, 'epsW')), lrs_parsers, 'epsW', 'learning rate schedule', num_params=len(dic['inputs'])) dic['epsB'] = self.parse_params(convert_scalars_to_schedules(mcp.safe_get(name, 'epsB')), lrs_parsers, 'epsB', 'learning rate schedule', num_params=1)[0] dic['updatePeriod'] = mcp.safe_get_int(name, 'updatePeriod', default=0) # 0 means update as often as possible # TODO: assert that updatePeriod is a multiple of active pass period, which is unknown here. # the assert has to go in some post-processing step.. dic['gradConsumer'] = dic['epsB']['params']['base'] > 0 or any(w['params']['base'] > 0 for w in dic['epsW']) @staticmethod def unshare_weights(layer, layers, matrix_idx=None): def unshare(layer, layers, indices): for i in indices: if layer['weightSourceLayers'][i] >= 0: src_matrix_idx = layer['weightSourceMatrixIndices'][i] layer['weightSourceLayers'][i] = "" layer['weightSourceMatrixIndices'][i] = -1 layer['weights'][i] = layer['weights'][i].copy() layer['weightsInc'][i] = n.zeros_like(layer['weights'][i]) print "Unshared weight matrix %s[%d] from %s[%d]." % (layer['name'], i, layer['weightSourceLayers'][i], src_matrix_idx) else: print "Weight matrix %s[%d] already unshared." % (layer['name'], i) if 'weightSourceLayers' in layer: unshare(layer, layers, range(len(layer['inputs'])) if matrix_idx is None else [matrix_idx]) # Load weight/biases initialization module def call_init_func(self, param_name, shapes, input_idx=-1): dic = self.dic func_pat = re.compile('^([^\.]+)\.([^\(\)]+)\s*(?:\(([^,]+(?:,[^,]+)*)\))?$') m = func_pat.match(dic[param_name]) if not m: raise LayerParsingError("Layer '%s': '%s' parameter must have format 'moduleName.functionName(param1,param2,...)'; got: %s." % (dic['name'], param_name, dic['initWFunc'])) module, func = m.group(1), m.group(2) params = m.group(3).split(',') if m.group(3) is not None else [] try: mod = __import__(module) return getattr(mod, func)(dic['name'], input_idx, shapes, params=params) if input_idx >= 0 else getattr(mod, func)(dic['name'], shapes, params=params) except (ImportError, AttributeError, TypeError), e: raise LayerParsingError("Layer '%s': %s." % (dic['name'], e)) def make_weights(self, initW, rows, cols, order='C'): dic = self.dic dic['weights'], dic['weightsInc'] = [], [] if dic['initWFunc']: # Initialize weights from user-supplied python function # Initialization function is supplied in the format # module.func for i in xrange(len(dic['inputs'])): dic['weights'] += [self.call_init_func('initWFunc', (rows[i], cols[i]), input_idx=i)] if type(dic['weights'][i]) != n.ndarray: raise LayerParsingError("Layer '%s[%d]': weight initialization function %s must return numpy.ndarray object. Got: %s." % (dic['name'], i, dic['initWFunc'], type(dic['weights'][i]))) if dic['weights'][i].dtype != n.float32: raise LayerParsingError("Layer '%s[%d]': weight initialization function %s must weight matrices consisting of single-precision floats. Got: %s." % (dic['name'], i, dic['initWFunc'], dic['weights'][i].dtype)) if dic['weights'][i].shape != (rows[i], cols[i]): raise LayerParsingError("Layer '%s[%d]': weight matrix returned by weight initialization function %s has wrong shape. Should be: %s; got: %s." % (dic['name'], i, dic['initWFunc'], (rows[i], cols[i]), dic['weights'][i].shape)) # Convert to desired order dic['weights'][i] = n.require(dic['weights'][i], requirements=order) dic['weightsInc'] += [n.zeros_like(dic['weights'][i])] print "Layer '%s[%d]' initialized weight matrices from function %s" % (dic['name'], i, dic['initWFunc']) else: for i in xrange(len(dic['inputs'])): if dic['weightSourceLayers'][i] != '': # Shared weight matrix src_layer = self.prev_layers[dic['weightSourceLayers'][i]] if dic['weightSourceLayers'][i] != dic['name'] else dic dic['weights'] += [src_layer['weights'][dic['weightSourceMatrixIndices'][i]]] dic['weightsInc'] += [src_layer['weightsInc'][dic['weightSourceMatrixIndices'][i]]] if dic['weights'][i].shape != (rows[i], cols[i]): raise LayerParsingError("Layer '%s': weight sharing source matrix '%s' has shape %dx%d; should be %dx%d." % (dic['name'], dic['weightSource'][i], dic['weights'][i].shape[0], dic['weights'][i].shape[1], rows[i], cols[i])) print "Layer '%s' initialized weight matrix %d from %s" % (dic['name'], i, dic['weightSource'][i]) else: dic['weights'] += [n.array(initW[i] * nr.randn(rows[i], cols[i]), dtype=n.single, order=order)] dic['weightsInc'] += [n.zeros_like(dic['weights'][i])] def make_biases(self, rows, cols, order='C'): dic = self.dic if dic['initBFunc']: dic['biases'] = self.call_init_func('initBFunc', (rows, cols)) if type(dic['biases']) != n.ndarray: raise LayerParsingError("Layer '%s': bias initialization function %s must return numpy.ndarray object. Got: %s." % (dic['name'], dic['initBFunc'], type(dic['biases']))) if dic['biases'].dtype != n.float32: raise LayerParsingError("Layer '%s': bias initialization function %s must return numpy.ndarray object consisting of single-precision floats. Got: %s." % (dic['name'], dic['initBFunc'], dic['biases'].dtype)) if dic['biases'].shape != (rows, cols): raise LayerParsingError("Layer '%s': bias vector returned by bias initialization function %s has wrong shape. Should be: %s; got: %s." % (dic['name'], dic['initBFunc'], (rows, cols), dic['biases'].shape)) dic['biases'] = n.require(dic['biases'], requirements=order) print "Layer '%s' initialized bias vector from function %s" % (dic['name'], dic['initBFunc']) else: dic['biases'] = dic['initB'] * n.ones((rows, cols), order=order, dtype=n.single) dic['biasesInc'] = n.zeros_like(dic['biases']) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True dic['gradConsumer'] = True dic['usesActs'] = False dic['initW'] = mcp.safe_get_float_list(name, 'initW', default=0.01) dic['initB'] = mcp.safe_get_float(name, 'initB', default=0) dic['initWFunc'] = mcp.safe_get(name, 'initWFunc', default="") dic['initBFunc'] = mcp.safe_get(name, 'initBFunc', default="") # Find shared weight matrices dic['weightSource'] = mcp.safe_get_list(name, 'weightSource', default=[''] * len(dic['inputs'])) self.verify_num_params(['initW']) self.verify_num_params(['weightSource'], auto_expand=False) dic['weightSourceLayers'] = [] dic['weightSourceMatrixIndices'] = [] for i, src_name in enumerate(dic['weightSource']): src_layer_matrix_idx = -1 src_layer_name = '' if src_name != '': src_layer_match = WeightLayerParser.get_layer_name(src_name) if src_layer_match is None: raise LayerParsingError("Layer '%s': unable to parse weight sharing source '%s'. Format is layer[idx] or just layer, in which case idx=0 is used." % (name, src_name)) src_layer_name = src_layer_match[0] src_layer_matrix_idx = int(src_layer_match[1]) if src_layer_match[1] is not None else 0 if src_layer_name not in prev_layers and src_layer_name != name: raise LayerParsingError("Layer '%s': weight sharing source layer '%s' does not exist." % (name, src_layer_name)) # src_layer_idx = prev_names.index(src_layer_name) if src_layer_name != name else len(prev_names) src_layer = prev_layers[src_layer_name] if src_layer_name != name else dic if src_layer['gpu'] != dic['gpu']: raise LayerParsingError("Layer '%s': weight sharing source layer '%s' runs on GPUs %s, while '%s' runs on GPUs %s." % (name, src_layer_name, src_layer['gpu'], name, dic['gpu'])) if src_layer['type'] != dic['type']: raise LayerParsingError("Layer '%s': weight sharing source layer '%s' is of type '%s'; should be '%s'." % (name, src_layer_name, src_layer['type'], dic['type'])) if src_layer_name != name and len(src_layer['weights']) <= src_layer_matrix_idx: raise LayerParsingError("Layer '%s': weight sharing source layer '%s' has %d weight matrices, but '%s[%d]' requested." % (name, src_layer_name, len(src_layer['weights']), src_name, src_layer_matrix_idx)) if src_layer_name == name and src_layer_matrix_idx >= i: raise LayerParsingError("Layer '%s': weight sharing source '%s[%d]' not defined yet." % (name, name, src_layer_matrix_idx)) dic['weightSourceLayers'] += [src_layer_name] dic['weightSourceMatrixIndices'] += [src_layer_matrix_idx] return dic class FCLayerParser(WeightLayerParser): def __init__(self): WeightLayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = WeightLayerParser.parse(self, name, mcp, prev_layers, model) dic['outputs'] = mcp.safe_get_int(name, 'outputs') dic['weightsPerFilter'] = dic['numInputs'] self.verify_num_range(dic['outputs'], 'outputs', 1, None) self.make_weights(dic['initW'], dic['numInputs'], [dic['outputs']] * len(dic['numInputs']), order='F') self.make_biases(1, dic['outputs'], order='F') print "Initialized fully-connected layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class SplitFCLayerParser(WeightLayerParser): def __init__(self): WeightLayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = WeightLayerParser.parse(self, name, mcp, prev_layers, model) dic['parts'] = mcp.safe_get_int(name, 'parts') dic['outputs'] = mcp.safe_get_int(name, 'outputs') * dic['parts'] dic['weightsPerFilter'] = dic['numInputs'] self.verify_num_range(dic['parts'], 'parts', 1, None) self.make_weights(dic['initW'], dic['numInputs'], [dic['outputs']/dic['parts']] * len(dic['numInputs']), order='F') self.make_biases(1, dic['outputs'], order='F') for i in xrange(len(dic['numInputs'])): self.verify_divisible(dic['numInputs'][i], dic['parts'], 'numInputs', 'parts', input_idx=i) print "Initialized split fully-connected layer '%s' on GPUs %s, producing %d outputs in %d parts" % (name, dic['gpus'], dic['outputs'], dic['parts']) return dic class LocalLayerParser(WeightLayerParser): def __init__(self): WeightLayerParser.__init__(self) # Convert convolutional layer to unshared, locally-connected layer @staticmethod def conv_to_local(layers, lname): layer = layers[lname] if layer['type'] == 'conv': layer['type'] = 'local' for inp,inpname in enumerate(layer['inputs']): src_layer_name = layer['weightSourceLayers'][inp] if src_layer_name != '': src_layer = layers[src_layer_name] src_matrix_idx = layer['weightSourceMatrixIndices'][inp] LocalLayerParser.conv_to_local(layers, src_layer_name) for w in ('weights', 'weightsInc'): layer[w][inp] = src_layer[w][src_matrix_idx] else: layer['weights'][inp] = n.require(n.reshape(n.tile(n.reshape(layer['weights'][inp], (1, n.prod(layer['weights'][inp].shape))), (layer['modules'], 1)), (layer['modules'] * layer['filterChannels'][inp] * layer['filterPixels'][inp], layer['filters'])), requirements='C') layer['weightsInc'][inp] = n.zeros_like(layer['weights'][inp]) if layer['sharedBiases']: layer['biases'] = n.require(n.repeat(layer['biases'], layer['modules'], axis=0), requirements='C') layer['biasesInc'] = n.zeros_like(layer['biases']) print "Converted layer '%s' from convolutional to unshared, locally-connected" % layer['name'] # Also call this function on any layers sharing my weights for l in layers: if 'weightSourceLayers' in l and lname in l['weightSourceLayers']: LocalLayerParser.conv_to_local(layers, l) return layer def parse(self, name, mcp, prev_layers, model): dic = WeightLayerParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True dic['usesActs'] = False # Supplied values dic['channels'] = mcp.safe_get_int_list(name, 'channels') dic['padding'] = mcp.safe_get_int_list(name, 'padding', default=[0]*len(dic['inputs'])) dic['stride'] = mcp.safe_get_int_list(name, 'stride', default=[1]*len(dic['inputs'])) dic['filterSize'] = mcp.safe_get_int_list(name, 'filterSize') dic['filters'] = mcp.safe_get_int_list(name, 'filters') dic['groups'] = mcp.safe_get_int_list(name, 'groups', default=[1]*len(dic['inputs'])) dic['initW'] = mcp.safe_get_float_list(name, 'initW') dic['initCFunc'] = mcp.safe_get(name, 'initCFunc', default='') dic['modulesX'] = mcp.safe_get_int(name, 'modulesX', default=0) self.verify_num_params(['channels', 'padding', 'stride', 'filterSize', \ 'filters', 'groups', 'initW']) self.verify_num_range(dic['stride'], 'stride', 1, None) self.verify_num_range(dic['filterSize'],'filterSize', 1, None) self.verify_num_range(dic['padding'], 'padding', 0, None) self.verify_num_range(dic['channels'], 'channels', 1, None) self.verify_num_range(dic['groups'], 'groups', 1, None) self.verify_num_range(dic['modulesX'], 'modulesX', 0, None) for i in xrange(len(dic['filters'])): self.verify_divisible(dic['filters'][i], 16, 'filters', input_idx=i) # Computed values dic['imgPixels'] = [numInputs/channels for numInputs,channels in zip(dic['numInputs'], dic['channels'])] dic['imgSize'] = [int(n.sqrt(imgPixels)) for imgPixels in dic['imgPixels']] self.verify_num_range(dic['imgSize'], 'imgSize', 1, None) dic['filters'] = [filters*groups for filters,groups in zip(dic['filters'], dic['groups'])] dic['filterPixels'] = [filterSize**2 for filterSize in dic['filterSize']] if dic['modulesX'] <= 0: dic['modulesX'] = [1 + int(ceil((2*padding + imgSize - filterSize) / float(stride))) for padding,imgSize,filterSize,stride in zip(dic['padding'], dic['imgSize'], dic['filterSize'], dic['stride'])] else: dic['modulesX'] = [dic['modulesX']] * len(dic['inputs']) dic['filterChannels'] = [channels/groups for channels,groups in zip(dic['channels'], dic['groups'])] if len(set(dic['modulesX'])) != 1 or len(set(dic['filters'])) != 1: raise LayerParsingError("Layer '%s': all inputs must produce equally-dimensioned output. Dimensions are: %s." % (name, ", ".join("%dx%dx%d" % (filters, modulesX, modulesX) for filters,modulesX in zip(dic['filters'], dic['modulesX'])))) dic['modulesX'] = dic['modulesX'][0] dic['modules'] = dic['modulesX']**2 dic['filters'] = dic['filters'][0] dic['outputs'] = dic['modules'] * dic['filters'] # dic['filterConns'] = [[]] * len(dic['inputs']) for i in xrange(len(dic['inputs'])): if dic['numInputs'][i] % dic['imgPixels'][i] != 0 or dic['imgSize'][i] * dic['imgSize'][i] != dic['imgPixels'][i]: raise LayerParsingError("Layer '%s[%d]': has %-d dimensional input, not interpretable as square %d-channel images" % (name, i, dic['numInputs'][i], dic['channels'][i])) if dic['channels'][i] > 3 and dic['channels'][i] % 4 != 0: raise LayerParsingError("Layer '%s[%d]': number of channels must be smaller than 4 or divisible by 4" % (name, i)) # if dic['filterSize'][i] > totalPadding[i] + dic['imgSize'][i]: # raise LayerParsingError("Layer '%s[%d]': filter size (%d) greater than image size + padding (%d)" % (name, i, dic['filterSize'][i], dic['padding'][i] + dic['imgSize'][i])) if -dic['padding'][i] + dic['stride'][i] * (dic['modulesX'] - 1) + dic['filterSize'][i] < dic['imgSize'][i]: raise LayerParsingError("Layer '%s[%d]': %dx%d output map with padding=%d, stride=%d does not cover entire input image." % (name, i, dic['modulesX'], dic['outputsX'], dic['padding'][i], dic['stride'][i])) if dic['groups'][i] > 1: self.verify_divisible(dic['channels'][i], 4*dic['groups'][i], 'channels', '4 * groups', input_idx=i) self.verify_divisible(dic['channels'][i], dic['groups'][i], 'channels', 'groups', input_idx=i) self.verify_divisible(dic['filters'], 16*dic['groups'][i], 'filters * groups', input_idx=i) dic['padding'][i] = -dic['padding'][i] # dic['overSample'] = [groups*filterChannels/channels for groups,filterChannels,channels in zip(dic['groups'], dic['filterChannels'], dic['channels'])] dic['weightsPerFilter'] = [fc * (fz**2) for fc, fz in zip(dic['filterChannels'], dic['filterSize'])] return dic class ConvLayerParser(LocalLayerParser): def __init__(self): LocalLayerParser.__init__(self) def add_params(self, mcp): LocalLayerParser.add_params(self, mcp) self.dic['wcNormMax'] = mcp.safe_get_float_list(self.dic['name'], 'wcNormMax', default=[0.0] * len(self.dic['inputs'])) self.dic['wcNormMin'] = mcp.safe_get_float_list(self.dic['name'], 'wcNormMin', default=[0.0] * len(self.dic['inputs'])) self.verify_num_params(['wcNormMax', 'wcNormMin']) for min,max in zip(self.dic['wcNormMin'], self.dic['wcNormMax']): if min > max: raise LayerParsingError("Layer '%s': wcNormMin must be <= wcNormMax." % (self.dic['name'])) def parse(self, name, mcp, prev_layers, model): dic = LocalLayerParser.parse(self, name, mcp, prev_layers, model) dic['sumWidth'] = mcp.safe_get_int(name, 'sumWidth') dic['sharedBiases'] = mcp.safe_get_bool(name, 'sharedBiases', default=True) num_biases = dic['filters'] if dic['sharedBiases'] else dic['modules']*dic['filters'] eltmult = lambda list1, list2: [l1 * l2 for l1,l2 in zip(list1, list2)] self.make_weights(dic['initW'], eltmult(dic['filterPixels'], dic['filterChannels']), [dic['filters']] * len(dic['inputs']), order='C') self.make_biases(num_biases, 1, order='C') print "Initialized convolutional layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (name, dic['gpus'], dic['modulesX'], dic['modulesX'], dic['filters']) return dic class LocalUnsharedLayerParser(LocalLayerParser): def __init__(self): LocalLayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = LocalLayerParser.parse(self, name, mcp, prev_layers, model) eltmult = lambda list1, list2: [l1 * l2 for l1,l2 in zip(list1, list2)] scmult = lambda x, lst: [x * l for l in lst] self.make_weights(dic['initW'], scmult(dic['modules'], eltmult(dic['filterPixels'], dic['filterChannels'])), [dic['filters']] * len(dic['inputs']), order='C') self.make_biases(dic['modules'] * dic['filters'], 1, order='C') print "Initialized locally-connected layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (name, dic['gpus'], dic['modulesX'], dic['modulesX'], dic['filters']) return dic class DataLayerParser(LayerParser): def __init__(self): LayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = LayerParser.parse(self, name, mcp, prev_layers, model) dic['dataIdx'] = mcp.safe_get_int(name, 'dataIdx') dic['start'] = mcp.safe_get_int(name, 'start', default=0) dic['end'] = mcp.safe_get_int(name, 'end', default=model.train_data_provider.get_data_dims(idx=dic['dataIdx'])) dic['outputs'] = dic['end'] - dic['start'] # dic['usesActs'] = False print "Initialized data layer '%s', producing %d outputs" % (name, dic['outputs']) return dic class SoftmaxLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['outputs'] = dic['inputLayers'][0]['outputs'] print "Initialized softmax layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class ConcatentionLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['outputs'] = sum(l['outputs'] for l in dic['inputLayers']) dic['copyOffsets'] = [sum(dic['inputLayers'][j]['outputs'] for j in xrange(i)) for i in xrange(len(dic['inputLayers']))] print "Initialized concatenation layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class PassThroughLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self) # Note: this doesn't verify all the necessary constraints. Layer construction may still fail in C++ code. # For example, it does not verify that every layer only has one pass-through parent. Obviously having # two such parents is incoherent. def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) # if len(dic['inputLayers']) == 1: # raise LayerParsingError("Layer %s: pass-through layer must have more than one input." % dic['name']) if len(dic['gpu']) != len(dic['inputLayers'][0]['gpu']): raise LayerParsingError("Layer '%s': number of replicas in pass-through layer must be equivalent to number of replicas in input layers." % dic['name']) for inp in dic['inputLayers']: conflicting_layers = [l for l in prev_layers.values() if l['type'] == 'pass' and inp['name'] in l['inputs'] and len(set(dic['gpu']).intersection(set(l['gpu']))) > 0] if len(conflicting_layers) > 0: raise LayerParsingError("Layer '%s' conflicts with layer '%s'. Both pass-through layers take layer '%s' as input and operate on an overlapping set of GPUs." % (dic['name'], conflicting_layers[0]['name'], inp['name'])) dic['outputs'] = sum(l['outputs'] for l in dic['inputLayers']) # dic['copyOffsets'] = [sum(dic['inputLayers'][j]['outputs'] for j in xrange(i)) for i in xrange(len(dic['inputLayers']))] print "Initialized pass-through layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class PoolLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['channels'] = mcp.safe_get_int(name, 'channels') dic['sizeX'] = mcp.safe_get_int(name, 'sizeX') dic['start'] = mcp.safe_get_int(name, 'start', default=0) dic['stride'] = mcp.safe_get_int(name, 'stride') dic['outputsX'] = mcp.safe_get_int(name, 'outputsX', default=0) dic['pool'] = mcp.safe_get(name, 'pool') # Avg pooler does not use its acts or inputs dic['usesActs'] = dic['pool'] != 'avg' dic['usesInputs'] = dic['pool'] != 'avg' dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) if dic['pool'] == 'avg': dic['sum'] = mcp.safe_get_bool(name, 'sum', default=False) self.verify_num_range(dic['sizeX'], 'sizeX', 1, dic['imgSize']) self.verify_num_range(dic['stride'], 'stride', 1, dic['sizeX']) self.verify_num_range(dic['outputsX'], 'outputsX', 0, None) self.verify_num_range(dic['channels'], 'channels', 1, None) if LayerWithInputParser.grad_consumers_below(dic): self.verify_divisible(dic['channels'], 16, 'channels') self.verify_str_in(dic['pool'], 'pool', ['max', 'maxabs', 'avg']) self.verify_img_size() if dic['outputsX'] <= 0: dic['outputsX'] = int(ceil((dic['imgSize'] - dic['start'] - dic['sizeX']) / float(dic['stride']))) + 1; dic['outputs'] = dic['outputsX']**2 * dic['channels'] print "Initialized %s-pooling layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (dic['pool'], name, dic['gpus'], dic['outputsX'], dic['outputsX'], dic['channels']) return dic class CrossMapPoolLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['channels'] = mcp.safe_get_int(name, 'channels') dic['size'] = mcp.safe_get_int(name, 'size') dic['start'] = mcp.safe_get_int(name, 'start', default=0) dic['stride'] = mcp.safe_get_int(name, 'stride') dic['outputChannels'] = mcp.safe_get_int(name, 'outputs', default=0) dic['pool'] = mcp.safe_get(name, 'pool') dic['requiresParams'] = False # Avg pooler does not use its acts or inputs dic['usesActs'] = 'pool' != 'avg' dic['usesInputs'] = 'pool' != 'avg' dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['outputs'] = dic['outputChannels'] * dic['imgPixels'] self.verify_num_range(dic['size'], 'size', 1, dic['channels']) self.verify_num_range(dic['stride'], 'stride', 1, dic['size']) self.verify_num_range(dic['outputChannels'], 'outputChannels', 0, None) self.verify_num_range(dic['channels'], 'channels', 1, None) self.verify_num_range(dic['start'], 'start', None, 0) self.verify_str_in(dic['pool'], 'pool', ['max']) self.verify_img_size() covered_chans = dic['start'] + (dic['outputChannels'] - 1) * dic['stride'] + dic['size'] if covered_chans < dic['channels']: raise LayerParsingError("Layer '%s': cross-map pooling with start=%d, stride=%d, size=%d, outputs=%d covers only %d of %d input channels." % \ (name, dic['start'], dic['stride'], dic['size'], dic['outputChannels'], covered_chans, dic['channels'])) print "Initialized cross-map %s-pooling layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (dic['pool'], name, dic['gpus'], dic['imgSize'], dic['imgSize'], dic['outputChannels']) return dic class NormLayerParser(LayerWithInputParser): RESPONSE_NORM = 'response' CONTRAST_NORM = 'contrast' CROSSMAP_RESPONSE_NORM = 'cross-map response' def __init__(self, norm_type): LayerWithInputParser.__init__(self, num_inputs=1) self.norm_type = norm_type def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['scale'] = mcp.safe_get_float(name, 'scale') dic['scale'] /= dic['size'] if self.norm_type == self.CROSSMAP_RESPONSE_NORM else dic['size']**2 dic['pow'] = mcp.safe_get_float(name, 'pow') dic['minDiv'] = mcp.safe_get_float(name, 'minDiv', default=1.0) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True dic['channels'] = mcp.safe_get_int(name, 'channels') dic['size'] = mcp.safe_get_int(name, 'size') dic['blocked'] = mcp.safe_get_bool(name, 'blocked', default=False) dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) # Contrast normalization layer does not use its inputs dic['usesInputs'] = self.norm_type != self.CONTRAST_NORM self.verify_num_range(dic['channels'], 'channels', 1, None) if self.norm_type == self.CROSSMAP_RESPONSE_NORM: self.verify_num_range(dic['size'], 'size', 2, dic['channels']) if dic['channels'] % 16 != 0: raise LayerParsingError("Layer '%s': number of channels must be divisible by 16 when using crossMap" % name) else: self.verify_num_range(dic['size'], 'size', 1, dic['imgSize']) if self.norm_type != self.CROSSMAP_RESPONSE_NORM and dic['channels'] > 3 and dic['channels'] % 4 != 0: raise LayerParsingError("Layer '%s': number of channels must be smaller than 4 or divisible by 4" % name) self.verify_img_size() dic['outputs'] = dic['imgPixels'] * dic['channels'] print "Initialized %s-normalization layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (self.norm_type, name, dic['gpus'], dic['imgSize'], dic['imgSize'], dic['channels']) return dic class CostParser(LayerWithInputParser): def __init__(self, num_inputs=-1): LayerWithInputParser.__init__(self, num_inputs=num_inputs) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True # Stored as string because python can't pickle lambda functions dic['outputFilter'] = 'lambda costs,num_cases: [c/num_cases for c in costs]' dic['children'] = mcp.safe_get_list(name, 'children', default=[]) # Aggregated costs only produce outputs which are additive. for c in dic['children']: if c not in prev_layers: raise LayerParsingError("Layer '%s': child cost layer '%s' not defined" % (name, c)) if prev_layers[c]['type'] != dic['type']: raise LayerParsingError("Layer '%s': child cost layer '%s' must have same type as parent" % (name, c)) prev_layers[c]['aggregated'] = 1 dic['aggregated'] = dic['children'] != [] del dic['neuron'] return dic def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['coeff'] = mcp.safe_get_float(name, 'coeff') dic['gradConsumer'] = dic['coeff'] > 0 class CrossEntCostParser(CostParser): def __init__(self): CostParser.__init__(self, num_inputs=2) def parse(self, name, mcp, prev_layers, model): dic = CostParser.parse(self, name, mcp, prev_layers, model) if dic['numInputs'][0] != model.train_data_provider.get_num_classes(): # first input must be labels raise LayerParsingError("Layer '%s': Dimensionality of first input must be equal to number of labels" % name) if dic['inputLayers'][1]['type'] != 'softmax': raise LayerParsingError("Layer '%s': Second input must be softmax layer" % name) if dic['numInputs'][1] != model.train_data_provider.get_num_classes(): raise LayerParsingError("Layer '%s': Softmax input '%s' must produce %d outputs, because that is the number of classes in the dataset" \ % (name, dic['inputs'][1], model.train_data_provider.get_num_classes())) print "Initialized cross-entropy cost '%s' on GPUs %s" % (name, dic['gpus']) return dic class LogregCostParser(CostParser): def __init__(self): CostParser.__init__(self, num_inputs=2) def add_params(self, mcp): CostParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['topk'] = mcp.safe_get_int(name, 'topk', default=1) if dic['topk'] > dic['numInputs'][1]: raise LayerParsingError("Layer '%s': parameter 'topk'must not have value greater than the number of classess." % (name)) def parse(self, name, mcp, prev_layers, model): dic = CostParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True if dic['numInputs'][0] != 1: # first input must be labels raise LayerParsingError("Layer '%s': dimensionality of first input must be 1" % name) if dic['inputLayers'][1]['type'] != 'softmax': raise LayerParsingError("Layer '%s': second input must be softmax layer" % name) if dic['numInputs'][1] != model.train_data_provider.get_num_classes(): raise LayerParsingError("Layer '%s': softmax input '%s' must produce %d outputs, because that is the number of classes in the dataset" \ % (name, dic['inputs'][1], model.train_data_provider.get_num_classes())) print "Initialized logistic regression cost '%s' on GPUs %s" % (name, dic['gpus']) return dic class BinomialCrossEntCostParser(CostParser): def __init__(self): CostParser.__init__(self, num_inputs=2) def add_params(self, mcp): CostParser.add_params(self, mcp) self.dic['posWeight'] = mcp.safe_get_float(self.dic['name'], 'posWeight', default=1.0) def parse(self, name, mcp, prev_layers, model): dic = CostParser.parse(self, name, mcp, prev_layers, model) if dic['numInputs'][0] != dic['numInputs'][1]: raise LayerParsingError("Layer '%s': both inputs must produce the same number of outputs" % (name)) if 'neuron' not in dic['inputLayers'][1] or dic['inputLayers'][1]['neuron'] != 'logistic': print "WARNING: Layer '%s': input '%s' is not logistic, results may not be what you intend." % (dic['name'], dic['inputs'][1]) if dic['type'] == 'cost.bce': print "Initialized binomial cross-entropy cost '%s' on GPUs %s" % (name, dic['gpus']) dic['computeSoftmaxErrorRate'] = True return dic class DetectionCrossEntCostParser(BinomialCrossEntCostParser): def __init__(self): BinomialCrossEntCostParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = BinomialCrossEntCostParser.parse(self, name, mcp, prev_layers, model) if dic['numInputs'][0] != model.train_data_provider.get_num_classes(): # first input must be labels raise LayerParsingError("Layer '%s': Dimensionality of first input must be equal to number of labels" % name) dic['computeSoftmaxErrorRate'] = False dic['outputFilter'] = 'lambda costs,num_cases: [c/num_cases for c in costs[:2]] + [(class_cost[2] / class_cost[j] if class_cost[j] > 0 else n.inf) for class_cost in [costs[2:][i*3:(i+1)*3] for i in range(len(costs[2:])/3)] for j in range(2)]' dic['outputFilterFormatter'] = 'lambda self,costs: "(crossent) %.6f, (err) %.6f, " % (costs[0], costs[1]) + ", ".join("(%s) %.6f, %.6f" % (self.train_data_provider.batch_meta["label_names"][i/2-1],costs[i],costs[i+1]) for i in xrange(2, len(costs), 2))' print "Initialized detection cross-entropy cost '%s' on GPUs %s" % (name, dic['gpus']) return dic class SumOfSquaresCostParser(CostParser): def __init__(self): CostParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model): dic = CostParser.parse(self, name, mcp, prev_layers, model) print "Initialized sum-of-squares cost '%s' on GPUs %s" % (name, dic['gpus']) return dic # All the layer parsers layer_parsers = {'data' : lambda : DataLayerParser(), 'fc': lambda : FCLayerParser(), 'sfc': lambda : SplitFCLayerParser(), 'conv': lambda : ConvLayerParser(), 'local': lambda : LocalUnsharedLayerParser(), 'softmax': lambda : SoftmaxLayerParser(), 'eltsum': lambda : EltwiseSumLayerParser(), 'eltmax': lambda : EltwiseMaxLayerParser(), 'sum': lambda : SumLayerParser(), 'neuron': lambda : NeuronLayerParser(), 'pool': lambda : PoolLayerParser(), 'cmpool': lambda : CrossMapPoolLayerParser(), 'rnorm': lambda : NormLayerParser(NormLayerParser.RESPONSE_NORM), 'cnorm': lambda : NormLayerParser(NormLayerParser.CONTRAST_NORM), 'cmrnorm': lambda : NormLayerParser(NormLayerParser.CROSSMAP_RESPONSE_NORM), 'nailbed': lambda : NailbedLayerParser(), 'blur': lambda : GaussianBlurLayerParser(), 'href': lambda : HorizontalReflectionLayerParser(), 'resize': lambda : ResizeLayerParser(), 'rgb2yuv': lambda : RGBToYUVLayerParser(), 'rgb2lab': lambda : RGBToLABLayerParser(), 'rscale': lambda : RandomScaleLayerParser(), 'crop': lambda : CropLayerParser(), 'concat': lambda : ConcatentionLayerParser(), 'pass': lambda : PassThroughLayerParser(), 'dropout': lambda : DropoutLayerParser(), 'dropout2': lambda : Dropout2LayerParser(), 'cost.logreg': lambda : LogregCostParser(), 'cost.crossent': lambda : CrossEntCostParser(), 'cost.bce': lambda : BinomialCrossEntCostParser(), 'cost.dce': lambda : DetectionCrossEntCostParser(), 'cost.sum2': lambda : SumOfSquaresCostParser()} # All the neuron parsers # This isn't a name --> parser mapping as the layer parsers above because neurons don't have fixed names. # A user may write tanh[0.5,0.25], etc. neuron_parsers = sorted([NeuronParser('ident', 'f(x) = x', uses_acts=False, uses_inputs=False), NeuronParser('logistic', 'f(x) = 1 / (1 + e^-x)', uses_acts=True, uses_inputs=False), NeuronParser('abs', 'f(x) = |x|', uses_acts=False, uses_inputs=True), NeuronParser('relu', 'f(x) = max(0, x)', uses_acts=True, uses_inputs=False), NeuronParser('nrelu', 'f(x) = max(0, x) + noise', uses_acts=True, uses_inputs=False), NeuronParser('softrelu', 'f(x) = log(1 + e^x)', uses_acts=True, uses_inputs=False), NeuronParser('square', 'f(x) = x^2', uses_acts=False, uses_inputs=True), NeuronParser('sqrt', 'f(x) = sqrt(x)', uses_acts=True, uses_inputs=False), ParamNeuronParser('log[a]', 'f(x) = log(a + x)', uses_acts=False, uses_inputs=True), ParamNeuronParser('tanh[a,b]', 'f(x) = a * tanh(b * x)', uses_acts=True, uses_inputs=False), ParamNeuronParser('brelu[a]', 'f(x) = min(a, max(0, x))', uses_acts=True, uses_inputs=False), ParamNeuronParser('linear[a,b]', 'f(x) = a * x + b', uses_acts=True, uses_inputs=False), ParamNeuronParser('drelu[a]', 'f(x) = x - a * tanh(x / a)', uses_acts=False, uses_inputs=True)], key=lambda x:x.type) # Learning rate schedules lrs_parsers = sorted([ParamParser('const[fbase]'), ParamParser('linear[fbase;ftgtFactor]'), ParamParser('exp[fbase;ftgtFactor]'), ParamParser('dexp[fbase;ftgtFactor;inumSteps]')])
apache-2.0
tiagofrepereira2012/tensorflow
tensorflow/python/debug/cli/tensor_format_test.py
41
37994
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Unit tests for tensor formatter.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.core.framework import tensor_pb2 from tensorflow.core.framework import tensor_shape_pb2 from tensorflow.core.framework import types_pb2 from tensorflow.python.debug.cli import tensor_format from tensorflow.python.debug.lib import debug_data from tensorflow.python.framework import test_util from tensorflow.python.platform import googletest class RichTextLinesTest(test_util.TensorFlowTestCase): def setUp(self): np.set_printoptions( precision=8, threshold=1000, edgeitems=3, linewidth=75) def _checkTensorMetadata(self, tensor, annotations): self.assertEqual( {"dtype": tensor.dtype, "shape": tensor.shape}, annotations["tensor_metadata"]) def _checkBeginIndices(self, expected_indices, annot): self.assertEqual({tensor_format.BEGIN_INDICES_KEY: expected_indices}, annot) def _checkOmittedIndices(self, expected_indices, annot): self.assertEqual({tensor_format.OMITTED_INDICES_KEY: expected_indices}, annot) def testFormatZeroDimensionTensor(self): a = np.array(42.0, dtype=np.float32) out = tensor_format.format_tensor(a, "a") self.assertEqual(["Tensor \"a\":", "", "array(42.0, dtype=float32)"], out.lines) self._checkTensorMetadata(a, out.annotations) def testFormatTensorHighlightsTensorNameWithoutDebugOp(self): tensor_name = "a_tensor:0" a = np.zeros(2) out = tensor_format.format_tensor( a, tensor_name, np_printoptions={"linewidth": 40}) self.assertEqual([(8, 8 + len(tensor_name), "bold")], out.font_attr_segs[0]) def testFormatTensorHighlightsTensorNameWithDebugOp(self): tensor_name = "a_tensor:0" debug_op = "DebugIdentity" a = np.zeros(2) out = tensor_format.format_tensor( a, "%s:%s" % (tensor_name, debug_op), np_printoptions={"linewidth": 40}) self.assertEqual([(8, 8 + len(tensor_name), "bold"), (8 + len(tensor_name) + 1, 8 + len(tensor_name) + 1 + len(debug_op), "yellow")], out.font_attr_segs[0]) def testFormatTensor1DNoEllipsis(self): a = np.zeros(20) out = tensor_format.format_tensor( a, "a", np_printoptions={"linewidth": 40}) self.assertEqual([ "Tensor \"a\":", "", "array([ 0., 0., 0., 0., 0., 0.,", " 0., 0., 0., 0., 0., 0.,", " 0., 0., 0., 0., 0., 0.,", " 0., 0.])", ], out.lines) self._checkTensorMetadata(a, out.annotations) # Check annotations for beginning indices of the lines. self._checkBeginIndices([0], out.annotations[2]) self._checkBeginIndices([6], out.annotations[3]) self._checkBeginIndices([12], out.annotations[4]) self._checkBeginIndices([18], out.annotations[5]) def testFormatTensor2DNoEllipsisNoRowBreak(self): a = np.linspace(0.0, 1.0 - 1.0 / 16.0, 16).reshape([4, 4]) out = tensor_format.format_tensor(a, "a") self.assertEqual([ "Tensor \"a\":", "", "array([[ 0. , 0.0625, 0.125 , 0.1875],", " [ 0.25 , 0.3125, 0.375 , 0.4375],", " [ 0.5 , 0.5625, 0.625 , 0.6875],", " [ 0.75 , 0.8125, 0.875 , 0.9375]])", ], out.lines) self._checkTensorMetadata(a, out.annotations) # Check annotations for the beginning indices of the lines. for i in xrange(2, 6): self._checkBeginIndices([i - 2, 0], out.annotations[i]) def testFormatTensorSuppressingTensorName(self): a = np.linspace(0.0, 1.0 - 1.0 / 16.0, 16).reshape([4, 4]) out = tensor_format.format_tensor(a, None) self.assertEqual([ "array([[ 0. , 0.0625, 0.125 , 0.1875],", " [ 0.25 , 0.3125, 0.375 , 0.4375],", " [ 0.5 , 0.5625, 0.625 , 0.6875],", " [ 0.75 , 0.8125, 0.875 , 0.9375]])", ], out.lines) self._checkTensorMetadata(a, out.annotations) # Check annotations for the beginning indices of the lines. for i in xrange(4): self._checkBeginIndices([i, 0], out.annotations[i]) def testFormatTensorWithMetadata(self): a = np.linspace(0.0, 1.0 - 1.0 / 16.0, 16).reshape([4, 4]) out = tensor_format.format_tensor(a, "a", include_metadata=True) self.assertEqual([ "Tensor \"a\":", " dtype: float64", " shape: (4, 4)", "", "array([[ 0. , 0.0625, 0.125 , 0.1875],", " [ 0.25 , 0.3125, 0.375 , 0.4375],", " [ 0.5 , 0.5625, 0.625 , 0.6875],", " [ 0.75 , 0.8125, 0.875 , 0.9375]])", ], out.lines) self._checkTensorMetadata(a, out.annotations) # Check annotations for the beginning indices of the lines. for i in xrange(4, 7): self._checkBeginIndices([i - 4, 0], out.annotations[i]) def testFormatTensor2DNoEllipsisWithRowBreak(self): a = np.linspace(0.0, 1.0 - 1.0 / 40.0, 40).reshape([2, 20]) out = tensor_format.format_tensor( a, "a", np_printoptions={"linewidth": 50}) self.assertEqual( {"dtype": a.dtype, "shape": a.shape}, out.annotations["tensor_metadata"]) self.assertEqual([ "Tensor \"a\":", "", "array([[ 0. , 0.025, 0.05 , 0.075, 0.1 ,", " 0.125, 0.15 , 0.175, 0.2 , 0.225,", " 0.25 , 0.275, 0.3 , 0.325, 0.35 ,", " 0.375, 0.4 , 0.425, 0.45 , 0.475],", " [ 0.5 , 0.525, 0.55 , 0.575, 0.6 ,", " 0.625, 0.65 , 0.675, 0.7 , 0.725,", " 0.75 , 0.775, 0.8 , 0.825, 0.85 ,", " 0.875, 0.9 , 0.925, 0.95 , 0.975]])", ], out.lines) self._checkTensorMetadata(a, out.annotations) # Check annotations for the beginning indices of the lines. self._checkBeginIndices([0, 0], out.annotations[2]) self._checkBeginIndices([0, 5], out.annotations[3]) self._checkBeginIndices([0, 10], out.annotations[4]) self._checkBeginIndices([0, 15], out.annotations[5]) self._checkBeginIndices([1, 0], out.annotations[6]) self._checkBeginIndices([1, 5], out.annotations[7]) self._checkBeginIndices([1, 10], out.annotations[8]) self._checkBeginIndices([1, 15], out.annotations[9]) def testFormatTensor3DNoEllipsis(self): # TODO(cais): Test name. a = np.linspace(0.0, 1.0 - 1.0 / 24.0, 24).reshape([2, 3, 4]) out = tensor_format.format_tensor(a, "a") self.assertEqual([ "Tensor \"a\":", "", "array([[[ 0. , 0.04166667, 0.08333333, 0.125 ],", " [ 0.16666667, 0.20833333, 0.25 , 0.29166667],", " [ 0.33333333, 0.375 , 0.41666667, 0.45833333]],", "", " [[ 0.5 , 0.54166667, 0.58333333, 0.625 ],", " [ 0.66666667, 0.70833333, 0.75 , 0.79166667],", " [ 0.83333333, 0.875 , 0.91666667, 0.95833333]]])", ], out.lines) self._checkTensorMetadata(a, out.annotations) # Check annotations for beginning indices of the lines. self._checkBeginIndices([0, 0, 0], out.annotations[2]) self._checkBeginIndices([0, 1, 0], out.annotations[3]) self._checkBeginIndices([0, 2, 0], out.annotations[4]) self.assertNotIn(5, out.annotations) self._checkBeginIndices([1, 0, 0], out.annotations[6]) self._checkBeginIndices([1, 1, 0], out.annotations[7]) self._checkBeginIndices([1, 2, 0], out.annotations[8]) def testFormatTensor3DNoEllipsisWithArgwhereHighlightWithMatches(self): a = np.linspace(0.0, 1.0 - 1.0 / 24.0, 24).reshape([2, 3, 4]) lower_bound = 0.26 upper_bound = 0.5 def highlight_filter(x): return np.logical_and(x > lower_bound, x < upper_bound) highlight_options = tensor_format.HighlightOptions( highlight_filter, description="between 0.26 and 0.5") out = tensor_format.format_tensor( a, "a", highlight_options=highlight_options) self.assertEqual([ "Tensor \"a\": " "Highlighted(between 0.26 and 0.5): 5 of 24 element(s) (20.83%)", "", "array([[[ 0. , 0.04166667, 0.08333333, 0.125 ],", " [ 0.16666667, 0.20833333, 0.25 , 0.29166667],", " [ 0.33333333, 0.375 , 0.41666667, 0.45833333]],", "", " [[ 0.5 , 0.54166667, 0.58333333, 0.625 ],", " [ 0.66666667, 0.70833333, 0.75 , 0.79166667],", " [ 0.83333333, 0.875 , 0.91666667, 0.95833333]]])", ], out.lines) self._checkTensorMetadata(a, out.annotations) # Check annotations for beginning indices of the lines. self._checkBeginIndices([0, 0, 0], out.annotations[2]) self._checkBeginIndices([0, 1, 0], out.annotations[3]) self._checkBeginIndices([0, 2, 0], out.annotations[4]) self.assertNotIn(5, out.annotations) self._checkBeginIndices([1, 0, 0], out.annotations[6]) self._checkBeginIndices([1, 1, 0], out.annotations[7]) self._checkBeginIndices([1, 2, 0], out.annotations[8]) # Check font attribute segments for highlighted elements. self.assertNotIn(2, out.font_attr_segs) self.assertEqual([(49, 59, "bold")], out.font_attr_segs[3]) self.assertEqual([(10, 20, "bold"), (23, 28, "bold"), (36, 46, "bold"), (49, 59, "bold")], out.font_attr_segs[4]) self.assertNotIn(5, out.font_attr_segs) self.assertNotIn(6, out.font_attr_segs) self.assertNotIn(7, out.font_attr_segs) self.assertNotIn(8, out.font_attr_segs) def testFormatTensor3DNoEllipsisWithArgwhereHighlightWithNoMatches(self): a = np.linspace(0.0, 1.0 - 1.0 / 24.0, 24).reshape([2, 3, 4]) def highlight_filter(x): return x > 10.0 highlight_options = tensor_format.HighlightOptions(highlight_filter) out = tensor_format.format_tensor( a, "a", highlight_options=highlight_options) self.assertEqual([ "Tensor \"a\": Highlighted: 0 of 24 element(s) (0.00%)", "", "array([[[ 0. , 0.04166667, 0.08333333, 0.125 ],", " [ 0.16666667, 0.20833333, 0.25 , 0.29166667],", " [ 0.33333333, 0.375 , 0.41666667, 0.45833333]],", "", " [[ 0.5 , 0.54166667, 0.58333333, 0.625 ],", " [ 0.66666667, 0.70833333, 0.75 , 0.79166667],", " [ 0.83333333, 0.875 , 0.91666667, 0.95833333]]])" ], out.lines) self._checkTensorMetadata(a, out.annotations) # Check annotations for beginning indices of the lines. self._checkBeginIndices([0, 0, 0], out.annotations[2]) self._checkBeginIndices([0, 1, 0], out.annotations[3]) self._checkBeginIndices([0, 2, 0], out.annotations[4]) self.assertNotIn(5, out.annotations) self._checkBeginIndices([1, 0, 0], out.annotations[6]) self._checkBeginIndices([1, 1, 0], out.annotations[7]) self._checkBeginIndices([1, 2, 0], out.annotations[8]) # Check font attribute segments for highlighted elements. self.assertNotIn(2, out.font_attr_segs) self.assertNotIn(3, out.font_attr_segs) self.assertNotIn(4, out.font_attr_segs) self.assertNotIn(5, out.font_attr_segs) self.assertNotIn(6, out.font_attr_segs) self.assertNotIn(7, out.font_attr_segs) self.assertNotIn(8, out.font_attr_segs) def testFormatTensorWithEllipses(self): a = np.zeros([11, 11, 11]) out = tensor_format.format_tensor( a, "a", False, np_printoptions={"threshold": 100, "edgeitems": 2}) self.assertEqual([ "Tensor \"a\":", "", "array([[[ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.],", " ..., ", " [ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.]],", "", " [[ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.],", " ..., ", " [ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.]],", "", " ..., ", " [[ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.],", " ..., ", " [ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.]],", "", " [[ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.],", " ..., ", " [ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.]]])", ], out.lines) self._checkTensorMetadata(a, out.annotations) # Check annotations for beginning indices of the lines. for i in xrange(2): self._checkBeginIndices([i, 0, 0], out.annotations[i * 6 + 2]) self._checkBeginIndices([i, 1, 0], out.annotations[i * 6 + 3]) self._checkOmittedIndices([i, 2, 0], out.annotations[i * 6 + 4]) self._checkBeginIndices([i, 9, 0], out.annotations[i * 6 + 5]) self._checkBeginIndices([i, 10, 0], out.annotations[i * 6 + 6]) self.assertNotIn(i * 6 + 7, out.annotations) p = 15 for i in xrange(2): self._checkBeginIndices([9 + i, 0, 0], out.annotations[p + i * 6]) self._checkBeginIndices([9 + i, 1, 0], out.annotations[p + i * 6 + 1]) self._checkOmittedIndices( [9 + i, 2, 0], out.annotations[p + i * 6 + 2]) self._checkBeginIndices([9 + i, 9, 0], out.annotations[p + i * 6 + 3]) self._checkBeginIndices([9 + i, 10, 0], out.annotations[p + i * 6 + 4]) if i < 1: self.assertNotIn(p + i * 6 + 5, out.annotations) def testFormatUninitializedTensor(self): tensor_proto = tensor_pb2.TensorProto( dtype=types_pb2.DataType.Value("DT_FLOAT"), tensor_shape=tensor_shape_pb2.TensorShapeProto( dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=1)])) out = tensor_format.format_tensor( debug_data.InconvertibleTensorProto(tensor_proto, False), "a") self.assertEqual(["Tensor \"a\":", "", "Uninitialized tensor:"], out.lines[:3]) self.assertEqual(str(tensor_proto).split("\n"), out.lines[3:]) def testFormatResourceTypeTensor(self): tensor_proto = tensor_pb2.TensorProto( dtype=types_pb2.DataType.Value("DT_RESOURCE"), tensor_shape=tensor_shape_pb2.TensorShapeProto( dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=1)])) out = tensor_format.format_tensor( debug_data.InconvertibleTensorProto(tensor_proto), "a") self.assertEqual(["Tensor \"a\":", ""], out.lines[:2]) self.assertEqual(str(tensor_proto).split("\n"), out.lines[2:]) def testLocateTensorElement1DNoEllipsis(self): a = np.zeros(20) out = tensor_format.format_tensor( a, "a", np_printoptions={"linewidth": 40}) self.assertEqual([ "Tensor \"a\":", "", "array([ 0., 0., 0., 0., 0., 0.,", " 0., 0., 0., 0., 0., 0.,", " 0., 0., 0., 0., 0., 0.,", " 0., 0.])", ], out.lines) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [0]) self.assertFalse(is_omitted) self.assertEqual(2, row) self.assertEqual(8, start_col) self.assertEqual(10, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [5]) self.assertFalse(is_omitted) self.assertEqual(2, row) self.assertEqual(33, start_col) self.assertEqual(35, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [6]) self.assertFalse(is_omitted) self.assertEqual(3, row) self.assertEqual(8, start_col) self.assertEqual(10, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [11]) self.assertFalse(is_omitted) self.assertEqual(3, row) self.assertEqual(33, start_col) self.assertEqual(35, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [12]) self.assertFalse(is_omitted) self.assertEqual(4, row) self.assertEqual(8, start_col) self.assertEqual(10, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [18]) self.assertFalse(is_omitted) self.assertEqual(5, row) self.assertEqual(8, start_col) self.assertEqual(10, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [19]) self.assertFalse(is_omitted) self.assertEqual(5, row) self.assertEqual(13, start_col) self.assertEqual(15, end_col) with self.assertRaisesRegexp( ValueError, "Indices exceed tensor dimensions"): tensor_format.locate_tensor_element(out, [20]) with self.assertRaisesRegexp( ValueError, "Indices contain negative"): tensor_format.locate_tensor_element(out, [-1]) with self.assertRaisesRegexp( ValueError, "Dimensions mismatch"): tensor_format.locate_tensor_element(out, [0, 0]) def testLocateTensorElement1DNoEllipsisBatchMode(self): a = np.zeros(20) out = tensor_format.format_tensor( a, "a", np_printoptions={"linewidth": 40}) self.assertEqual([ "Tensor \"a\":", "", "array([ 0., 0., 0., 0., 0., 0.,", " 0., 0., 0., 0., 0., 0.,", " 0., 0., 0., 0., 0., 0.,", " 0., 0.])", ], out.lines) (are_omitted, rows, start_cols, end_cols) = tensor_format.locate_tensor_element(out, [[0]]) self.assertEqual([False], are_omitted) self.assertEqual([2], rows) self.assertEqual([8], start_cols) self.assertEqual([10], end_cols) (are_omitted, rows, start_cols, end_cols) = tensor_format.locate_tensor_element(out, [[0], [5]]) self.assertEqual([False, False], are_omitted) self.assertEqual([2, 2], rows) self.assertEqual([8, 33], start_cols) self.assertEqual([10, 35], end_cols) (are_omitted, rows, start_cols, end_cols) = tensor_format.locate_tensor_element(out, [[0], [6]]) self.assertEqual([False, False], are_omitted) self.assertEqual([2, 3], rows) self.assertEqual([8, 8], start_cols) self.assertEqual([10, 10], end_cols) (are_omitted, rows, start_cols, end_cols) = tensor_format.locate_tensor_element(out, [[0], [5], [6]]) self.assertEqual([False, False, False], are_omitted) self.assertEqual([2, 2, 3], rows) self.assertEqual([8, 33, 8], start_cols) self.assertEqual([10, 35, 10], end_cols) (are_omitted, rows, start_cols, end_cols) = tensor_format.locate_tensor_element(out, [[0], [5], [6], [19]]) self.assertEqual([False, False, False, False], are_omitted) self.assertEqual([2, 2, 3, 5], rows) self.assertEqual([8, 33, 8, 13], start_cols) self.assertEqual([10, 35, 10, 15], end_cols) def testBatchModeWithErrors(self): a = np.zeros(20) out = tensor_format.format_tensor( a, "a", np_printoptions={"linewidth": 40}) self.assertEqual([ "Tensor \"a\":", "", "array([ 0., 0., 0., 0., 0., 0.,", " 0., 0., 0., 0., 0., 0.,", " 0., 0., 0., 0., 0., 0.,", " 0., 0.])", ], out.lines) with self.assertRaisesRegexp(ValueError, "Dimensions mismatch"): tensor_format.locate_tensor_element(out, [[0, 0], [0]]) with self.assertRaisesRegexp(ValueError, "Indices exceed tensor dimensions"): tensor_format.locate_tensor_element(out, [[0], [20]]) with self.assertRaisesRegexp(ValueError, r"Indices contain negative value\(s\)"): tensor_format.locate_tensor_element(out, [[0], [-1]]) with self.assertRaisesRegexp( ValueError, "Input indices sets are not in ascending order"): tensor_format.locate_tensor_element(out, [[5], [0]]) def testLocateTensorElement1DTinyAndNanValues(self): a = np.ones([3, 3]) * 1e-8 a[1, 0] = np.nan a[1, 2] = np.inf out = tensor_format.format_tensor( a, "a", np_printoptions={"linewidth": 100}) self.assertEqual([ "Tensor \"a\":", "", "array([[ 1.00000000e-08, 1.00000000e-08, 1.00000000e-08],", " [ nan, 1.00000000e-08, inf],", " [ 1.00000000e-08, 1.00000000e-08, 1.00000000e-08]])", ], out.lines) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [0, 0]) self.assertFalse(is_omitted) self.assertEqual(2, row) self.assertEqual(10, start_col) self.assertEqual(24, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [0, 2]) self.assertFalse(is_omitted) self.assertEqual(2, row) self.assertEqual(46, start_col) self.assertEqual(60, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [1, 0]) self.assertFalse(is_omitted) self.assertEqual(3, row) self.assertEqual(21, start_col) self.assertEqual(24, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [1, 1]) self.assertFalse(is_omitted) self.assertEqual(3, row) self.assertEqual(28, start_col) self.assertEqual(42, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [1, 2]) self.assertFalse(is_omitted) self.assertEqual(3, row) self.assertEqual(57, start_col) self.assertEqual(60, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [2, 2]) self.assertFalse(is_omitted) self.assertEqual(4, row) self.assertEqual(46, start_col) self.assertEqual(60, end_col) def testLocateTensorElement2DNoEllipsis(self): a = np.linspace(0.0, 1.0 - 1.0 / 16.0, 16).reshape([4, 4]) out = tensor_format.format_tensor(a, "a") self.assertEqual([ "Tensor \"a\":", "", "array([[ 0. , 0.0625, 0.125 , 0.1875],", " [ 0.25 , 0.3125, 0.375 , 0.4375],", " [ 0.5 , 0.5625, 0.625 , 0.6875],", " [ 0.75 , 0.8125, 0.875 , 0.9375]])", ], out.lines) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [0, 0]) self.assertFalse(is_omitted) self.assertEqual(2, row) self.assertEqual(9, start_col) self.assertEqual(11, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [0, 3]) self.assertFalse(is_omitted) self.assertEqual(2, row) self.assertEqual(36, start_col) self.assertEqual(42, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [1, 0]) self.assertFalse(is_omitted) self.assertEqual(3, row) self.assertEqual(9, start_col) self.assertEqual(13, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [1, 3]) self.assertFalse(is_omitted) self.assertEqual(3, row) self.assertEqual(36, start_col) self.assertEqual(42, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [3, 3]) self.assertFalse(is_omitted) self.assertEqual(5, row) self.assertEqual(36, start_col) self.assertEqual(42, end_col) with self.assertRaisesRegexp( ValueError, "Indices exceed tensor dimensions"): tensor_format.locate_tensor_element(out, [1, 4]) with self.assertRaisesRegexp( ValueError, "Indices contain negative"): tensor_format.locate_tensor_element(out, [-1, 2]) with self.assertRaisesRegexp( ValueError, "Dimensions mismatch"): tensor_format.locate_tensor_element(out, [0]) def testLocateTensorElement2DNoEllipsisWithNumericSummary(self): a = np.linspace(0.0, 1.0 - 1.0 / 16.0, 16).reshape([4, 4]) out = tensor_format.format_tensor(a, "a", include_numeric_summary=True) self.assertEqual([ "Tensor \"a\":", "", "Numeric summary:", "| 0 + | total |", "| 1 15 | 16 |", "| min max mean std |", "| 0.0 0.9375 0.46875 0.28811076429 |", "", "array([[ 0. , 0.0625, 0.125 , 0.1875],", " [ 0.25 , 0.3125, 0.375 , 0.4375],", " [ 0.5 , 0.5625, 0.625 , 0.6875],", " [ 0.75 , 0.8125, 0.875 , 0.9375]])", ], out.lines) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [0, 0]) self.assertFalse(is_omitted) self.assertEqual(8, row) self.assertEqual(9, start_col) self.assertEqual(11, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [0, 3]) self.assertFalse(is_omitted) self.assertEqual(8, row) self.assertEqual(36, start_col) self.assertEqual(42, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [1, 0]) self.assertFalse(is_omitted) self.assertEqual(9, row) self.assertEqual(9, start_col) self.assertEqual(13, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [1, 3]) self.assertFalse(is_omitted) self.assertEqual(9, row) self.assertEqual(36, start_col) self.assertEqual(42, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [3, 3]) self.assertFalse(is_omitted) self.assertEqual(11, row) self.assertEqual(36, start_col) self.assertEqual(42, end_col) with self.assertRaisesRegexp( ValueError, "Indices exceed tensor dimensions"): tensor_format.locate_tensor_element(out, [1, 4]) with self.assertRaisesRegexp( ValueError, "Indices contain negative"): tensor_format.locate_tensor_element(out, [-1, 2]) with self.assertRaisesRegexp( ValueError, "Dimensions mismatch"): tensor_format.locate_tensor_element(out, [0]) def testLocateTensorElement3DWithEllipses(self): a = np.zeros([11, 11, 11]) out = tensor_format.format_tensor( a, "a", False, np_printoptions={"threshold": 100, "edgeitems": 2}) self.assertEqual([ "Tensor \"a\":", "", "array([[[ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.],", " ..., ", " [ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.]],", "", " [[ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.],", " ..., ", " [ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.]],", "", " ..., ", " [[ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.],", " ..., ", " [ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.]],", "", " [[ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.],", " ..., ", " [ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.]]])", ], out.lines) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [0, 0, 0]) self.assertFalse(is_omitted) self.assertEqual(2, row) self.assertEqual(10, start_col) self.assertEqual(12, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [0, 0, 10]) self.assertFalse(is_omitted) self.assertEqual(2, row) self.assertIsNone(start_col) # Passes ellipsis. self.assertIsNone(end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [0, 1, 0]) self.assertFalse(is_omitted) self.assertEqual(3, row) self.assertEqual(10, start_col) self.assertEqual(12, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [0, 2, 0]) self.assertTrue(is_omitted) # In omitted line. self.assertEqual(4, row) self.assertIsNone(start_col) self.assertIsNone(end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [0, 2, 10]) self.assertTrue(is_omitted) # In omitted line. self.assertEqual(4, row) self.assertIsNone(start_col) self.assertIsNone(end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [0, 8, 10]) self.assertTrue(is_omitted) # In omitted line. self.assertEqual(4, row) self.assertIsNone(start_col) self.assertIsNone(end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [0, 10, 1]) self.assertFalse(is_omitted) self.assertEqual(6, row) self.assertEqual(15, start_col) self.assertEqual(17, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [5, 1, 1]) self.assertTrue(is_omitted) # In omitted line. self.assertEqual(14, row) self.assertIsNone(start_col) self.assertIsNone(end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [10, 10, 10]) self.assertFalse(is_omitted) self.assertEqual(25, row) self.assertIsNone(start_col) # Past ellipsis. self.assertIsNone(end_col) with self.assertRaisesRegexp( ValueError, "Indices exceed tensor dimensions"): tensor_format.locate_tensor_element(out, [11, 5, 5]) with self.assertRaisesRegexp( ValueError, "Indices contain negative"): tensor_format.locate_tensor_element(out, [-1, 5, 5]) with self.assertRaisesRegexp( ValueError, "Dimensions mismatch"): tensor_format.locate_tensor_element(out, [5, 5]) def testLocateTensorElement3DWithEllipsesBatchMode(self): a = np.zeros([11, 11, 11]) out = tensor_format.format_tensor( a, "a", False, np_printoptions={"threshold": 100, "edgeitems": 2}) self.assertEqual([ "Tensor \"a\":", "", "array([[[ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.],", " ..., ", " [ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.]],", "", " [[ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.],", " ..., ", " [ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.]],", "", " ..., ", " [[ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.],", " ..., ", " [ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.]],", "", " [[ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.],", " ..., ", " [ 0., 0., ..., 0., 0.],", " [ 0., 0., ..., 0., 0.]]])", ], out.lines) (are_omitted, rows, start_cols, end_cols) = tensor_format.locate_tensor_element(out, [[0, 0, 0]]) self.assertEqual([False], are_omitted) self.assertEqual([2], rows) self.assertEqual([10], start_cols) self.assertEqual([12], end_cols) (are_omitted, rows, start_cols, end_cols) = tensor_format.locate_tensor_element(out, [[0, 0, 0], [0, 0, 10]]) self.assertEqual([False, False], are_omitted) self.assertEqual([2, 2], rows) self.assertEqual([10, None], start_cols) self.assertEqual([12, None], end_cols) (are_omitted, rows, start_cols, end_cols) = tensor_format.locate_tensor_element(out, [[0, 0, 0], [0, 2, 0]]) self.assertEqual([False, True], are_omitted) self.assertEqual([2, 4], rows) self.assertEqual([10, None], start_cols) self.assertEqual([12, None], end_cols) (are_omitted, rows, start_cols, end_cols) = tensor_format.locate_tensor_element(out, [[0, 0, 0], [10, 10, 10]]) self.assertEqual([False, False], are_omitted) self.assertEqual([2, 25], rows) self.assertEqual([10, None], start_cols) self.assertEqual([12, None], end_cols) def testLocateTensorElementAnnotationsUnavailable(self): tensor_proto = tensor_pb2.TensorProto( dtype=types_pb2.DataType.Value("DT_FLOAT"), tensor_shape=tensor_shape_pb2.TensorShapeProto( dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=1)])) out = tensor_format.format_tensor( debug_data.InconvertibleTensorProto(tensor_proto, False), "a") self.assertEqual(["Tensor \"a\":", "", "Uninitialized tensor:"], out.lines[:3]) with self.assertRaisesRegexp( AttributeError, "tensor_metadata is not available in annotations"): tensor_format.locate_tensor_element(out, [0]) class NumericSummaryTest(test_util.TensorFlowTestCase): def testNumericSummaryOnFloatFullHouse(self): x = np.array([np.nan, np.nan, -np.inf, np.inf, np.inf, np.inf, -2, -3, -4, 0, 1, 2, 2, 2, 2, 0, 0, 0, np.inf, np.inf, np.inf]) out = tensor_format.numeric_summary(x) self.assertEqual( "| nan -inf - 0 + +inf | total |", out.lines[0]) self.assertEqual( "| 2 1 3 4 5 6 | 21 |", out.lines[1]) self.assertEqual( "| min max mean std |", out.lines[2]) self.assertEqual( "| -4.0 2.0 0.0 1.95789002075 |", out.lines[3]) def testNumericSummaryOnFloatMissingCategories(self): x = np.array([np.nan, np.nan]) out = tensor_format.numeric_summary(x) self.assertEqual(2, len(out.lines)) self.assertEqual("| nan | total |", out.lines[0]) self.assertEqual("| 2 | 2 |", out.lines[1]) x = np.array([-np.inf, np.inf, 0, 0, np.inf, np.inf]) out = tensor_format.numeric_summary(x) self.assertEqual("| -inf 0 +inf | total |", out.lines[0]) self.assertEqual("| 1 2 3 | 6 |", out.lines[1]) self.assertEqual("| min max mean std |", out.lines[2]) self.assertEqual("| 0.0 0.0 0.0 0.0 |", out.lines[3]) x = np.array([-120, 120, 130]) out = tensor_format.numeric_summary(x) self.assertEqual("| - + | total |", out.lines[0]) self.assertEqual("| 1 2 | 3 |", out.lines[1]) self.assertEqual( "| min max mean std |", out.lines[2]) self.assertEqual( "| -120 130 43.3333333333 115.566238822 |", out.lines[3]) def testNumericSummaryOnEmptyFloat(self): x = np.array([], dtype=np.float32) out = tensor_format.numeric_summary(x) self.assertEqual(["No numeric summary available due to empty tensor."], out.lines) def testNumericSummaryOnInt(self): x = np.array([-3] * 50 + [3] * 200 + [0], dtype=np.int32) out = tensor_format.numeric_summary(x) self.assertEqual("| - 0 + | total |", out.lines[0]) self.assertEqual("| 50 1 200 | 251 |", out.lines[1]) self.assertEqual( "| min max mean std |", out.lines[2]) self.assertEqual( "| -3 3 1.79282868526 2.39789673081 |", out.lines[3]) def testNumericSummaryOnBool(self): x = np.array([False, True, True, False], dtype=np.bool) out = tensor_format.numeric_summary(x) self.assertEqual(2, len(out.lines)) self.assertEqual("| False True | total |", out.lines[0]) self.assertEqual("| 2 2 | 4 |", out.lines[1]) x = np.array([True] * 10, dtype=np.bool) out = tensor_format.numeric_summary(x) self.assertEqual(2, len(out.lines)) self.assertEqual("| True | total |", out.lines[0]) self.assertEqual("| 10 | 10 |", out.lines[1]) x = np.array([False] * 10, dtype=np.bool) out = tensor_format.numeric_summary(x) self.assertEqual(2, len(out.lines)) self.assertEqual("| False | total |", out.lines[0]) self.assertEqual("| 10 | 10 |", out.lines[1]) x = np.array([], dtype=np.bool) out = tensor_format.numeric_summary(x) self.assertEqual(["No numeric summary available due to empty tensor."], out.lines) def testNumericSummaryOnStrTensor(self): x = np.array(["spam", "egg"], dtype=np.object) out = tensor_format.numeric_summary(x) self.assertEqual( ["No numeric summary available due to tensor dtype: object."], out.lines) if __name__ == "__main__": googletest.main()
apache-2.0
tashaxe/Red-DiscordBot
lib/youtube_dl/extractor/uol.py
43
4977
# coding: utf-8 from __future__ import unicode_literals from .common import InfoExtractor from ..utils import ( clean_html, int_or_none, parse_duration, update_url_query, str_or_none, ) class UOLIE(InfoExtractor): IE_NAME = 'uol.com.br' _VALID_URL = r'https?://(?:.+?\.)?uol\.com\.br/.*?(?:(?:mediaId|v)=|view/(?:[a-z0-9]+/)?|video(?:=|/(?:\d{4}/\d{2}/\d{2}/)?))(?P<id>\d+|[\w-]+-[A-Z0-9]+)' _TESTS = [{ 'url': 'http://player.mais.uol.com.br/player_video_v3.swf?mediaId=15951931', 'md5': '25291da27dc45e0afb5718a8603d3816', 'info_dict': { 'id': '15951931', 'ext': 'mp4', 'title': 'Miss simpatia é encontrada morta', 'description': 'md5:3f8c11a0c0556d66daf7e5b45ef823b2', } }, { 'url': 'http://tvuol.uol.com.br/video/incendio-destroi-uma-das-maiores-casas-noturnas-de-londres-04024E9A3268D4C95326', 'md5': 'e41a2fb7b7398a3a46b6af37b15c00c9', 'info_dict': { 'id': '15954259', 'ext': 'mp4', 'title': 'Incêndio destrói uma das maiores casas noturnas de Londres', 'description': 'Em Londres, um incêndio destruiu uma das maiores boates da cidade. Não há informações sobre vítimas.', } }, { 'url': 'http://mais.uol.com.br/static/uolplayer/index.html?mediaId=15951931', 'only_matching': True, }, { 'url': 'http://mais.uol.com.br/view/15954259', 'only_matching': True, }, { 'url': 'http://noticias.band.uol.com.br/brasilurgente/video/2016/08/05/15951931/miss-simpatia-e-encontrada-morta.html', 'only_matching': True, }, { 'url': 'http://videos.band.uol.com.br/programa.asp?e=noticias&pr=brasil-urgente&v=15951931&t=Policia-desmonte-base-do-PCC-na-Cracolandia', 'only_matching': True, }, { 'url': 'http://mais.uol.com.br/view/cphaa0gl2x8r/incendio-destroi-uma-das-maiores-casas-noturnas-de-londres-04024E9A3268D4C95326', 'only_matching': True, }, { 'url': 'http://noticias.uol.com.br//videos/assistir.htm?video=rafaela-silva-inspira-criancas-no-judo-04024D983968D4C95326', 'only_matching': True, }, { 'url': 'http://mais.uol.com.br/view/e0qbgxid79uv/15275470', 'only_matching': True, }] _FORMATS = { '2': { 'width': 640, 'height': 360, }, '5': { 'width': 1080, 'height': 720, }, '6': { 'width': 426, 'height': 240, }, '7': { 'width': 1920, 'height': 1080, }, '8': { 'width': 192, 'height': 144, }, '9': { 'width': 568, 'height': 320, }, } def _real_extract(self, url): video_id = self._match_id(url) media_id = None if video_id.isdigit(): media_id = video_id if not media_id: embed_page = self._download_webpage( 'https://jsuol.com.br/c/tv/uol/embed/?params=[embed,%s]' % video_id, video_id, 'Downloading embed page', fatal=False) if embed_page: media_id = self._search_regex( (r'uol\.com\.br/(\d+)', r'mediaId=(\d+)'), embed_page, 'media id', default=None) if not media_id: webpage = self._download_webpage(url, video_id) media_id = self._search_regex(r'mediaId=(\d+)', webpage, 'media id') video_data = self._download_json( 'http://mais.uol.com.br/apiuol/v3/player/getMedia/%s.json' % media_id, media_id)['item'] title = video_data['title'] query = { 'ver': video_data.get('numRevision', 2), 'r': 'http://mais.uol.com.br', } formats = [] for f in video_data.get('formats', []): f_url = f.get('url') or f.get('secureUrl') if not f_url: continue format_id = str_or_none(f.get('id')) fmt = { 'format_id': format_id, 'url': update_url_query(f_url, query), } fmt.update(self._FORMATS.get(format_id, {})) formats.append(fmt) self._sort_formats(formats) tags = [] for tag in video_data.get('tags', []): tag_description = tag.get('description') if not tag_description: continue tags.append(tag_description) return { 'id': media_id, 'title': title, 'description': clean_html(video_data.get('desMedia')), 'thumbnail': video_data.get('thumbnail'), 'duration': int_or_none(video_data.get('durationSeconds')) or parse_duration(video_data.get('duration')), 'tags': tags, 'formats': formats, }
gpl-3.0
kxliugang/edx-platform
common/test/acceptance/pages/lms/pay_and_verify.py
110
6385
"""Payment and verification pages""" import re from bok_choy.page_object import PageObject from bok_choy.promise import Promise from . import BASE_URL from .dashboard import DashboardPage class PaymentAndVerificationFlow(PageObject): """Interact with the split payment and verification flow. The flow can be accessed at the following URLs: `/verify_student/start-flow/{course}/` `/verify_student/upgrade/{course}/` `/verify_student/verify-now/{course}/` `/verify_student/verify-later/{course}/` `/verify_student/payment-confirmation/{course}/` Users can reach the flow when attempting to enroll in a course's verified mode, either directly from the track selection page, or by upgrading from the honor mode. Users can also reach the flow when attempting to complete a deferred verification, or when attempting to view a receipt corresponding to an earlier payment. """ def __init__(self, browser, course_id, entry_point='start-flow'): """Initialize the page. Arguments: browser (Browser): The browser instance. course_id (unicode): The course in which the user is enrolling. Keyword Arguments: entry_point (str): Where to begin the flow; must be one of 'start-flow', 'upgrade', 'verify-now', verify-later', or 'payment-confirmation'. Raises: ValueError """ super(PaymentAndVerificationFlow, self).__init__(browser) self._course_id = course_id if entry_point not in ['start-flow', 'upgrade', 'verify-now', 'verify-later', 'payment-confirmation']: raise ValueError( "Entry point must be either 'start-flow', 'upgrade', 'verify-now', 'verify-later', or 'payment-confirmation'." ) self._entry_point = entry_point @property def url(self): """Return the URL corresponding to the initial position in the flow.""" url = "{base}/verify_student/{entry_point}/{course}/".format( base=BASE_URL, entry_point=self._entry_point, course=self._course_id ) return url def is_browser_on_page(self): """Check if a step in the payment and verification flow has loaded.""" return ( self.q(css="div .make-payment-step").is_present() or self.q(css="div .payment-confirmation-step").is_present() or self.q(css="div .face-photo-step").is_present() or self.q(css="div .id-photo-step").is_present() or self.q(css="div .review-photos-step").is_present() or self.q(css="div .enrollment-confirmation-step").is_present() ) def indicate_contribution(self): """Interact with the radio buttons appearing on the first page of the upgrade flow.""" self.q(css=".contribution-option > input").first.click() def proceed_to_payment(self): """Interact with the payment button.""" self.q(css=".payment-button").click() FakePaymentPage(self.browser, self._course_id).wait_for_page() def immediate_verification(self): """Interact with the immediate verification button.""" self.q(css="#verify_now_button").click() PaymentAndVerificationFlow(self.browser, self._course_id, entry_point='verify-now').wait_for_page() def defer_verification(self): """Interact with the link allowing the user to defer their verification.""" self.q(css="#verify_later_button").click() DashboardPage(self.browser).wait_for_page() def webcam_capture(self): """Interact with a webcam capture button.""" self.q(css="#webcam_capture_button").click() def _check_func(): next_step_button_classes = self.q(css="#next_step_button").attrs('class') next_step_button_enabled = 'is-disabled' not in next_step_button_classes return (next_step_button_enabled, next_step_button_classes) # Check that the #next_step_button is enabled before returning control to the caller Promise(_check_func, "The 'Next Step' button is enabled.").fulfill() def next_verification_step(self, next_page_object): """Interact with the 'Next' step button found in the verification flow.""" self.q(css="#next_step_button").click() next_page_object.wait_for_page() def go_to_dashboard(self): """Interact with the link to the dashboard appearing on the enrollment confirmation page.""" if self.q(css="div .enrollment-confirmation-step").is_present(): self.q(css=".action-primary").click() else: raise Exception("The dashboard can only be accessed from the enrollment confirmation.") DashboardPage(self.browser).wait_for_page() class FakePaymentPage(PageObject): """Interact with the fake payment endpoint. This page is hidden behind the feature flag `ENABLE_PAYMENT_FAKE`, which is enabled in the Bok Choy env settings. Configuring this payment endpoint also requires configuring the Bok Choy auth settings with the following: "CC_PROCESSOR_NAME": "CyberSource2", "CC_PROCESSOR": { "CyberSource2": { "SECRET_KEY": <string>, "ACCESS_KEY": <string>, "PROFILE_ID": "edx", "PURCHASE_ENDPOINT": "/shoppingcart/payment_fake" } } """ def __init__(self, browser, course_id): """Initialize the page. Arguments: browser (Browser): The browser instance. course_id (unicode): The course in which the user is enrolling. """ super(FakePaymentPage, self).__init__(browser) self._course_id = course_id url = BASE_URL + "/shoppingcart/payment_fake/" def is_browser_on_page(self): """Check if a step in the payment and verification flow has loaded.""" message = self.q(css='BODY').text[0] match = re.search('Payment page', message) return True if match else False def submit_payment(self): """Interact with the payment submission button.""" self.q(css="input[value='Submit']").click() return PaymentAndVerificationFlow(self.browser, self._course_id, entry_point='payment-confirmation').wait_for_page()
agpl-3.0
WorldMG/production-email
lib/werkzeug/exceptions.py
316
17799
# -*- coding: utf-8 -*- """ werkzeug.exceptions ~~~~~~~~~~~~~~~~~~~ This module implements a number of Python exceptions you can raise from within your views to trigger a standard non-200 response. Usage Example ------------- :: from werkzeug.wrappers import BaseRequest from werkzeug.wsgi import responder from werkzeug.exceptions import HTTPException, NotFound def view(request): raise NotFound() @responder def application(environ, start_response): request = BaseRequest(environ) try: return view(request) except HTTPException as e: return e As you can see from this example those exceptions are callable WSGI applications. Because of Python 2.4 compatibility those do not extend from the response objects but only from the python exception class. As a matter of fact they are not Werkzeug response objects. However you can get a response object by calling ``get_response()`` on a HTTP exception. Keep in mind that you have to pass an environment to ``get_response()`` because some errors fetch additional information from the WSGI environment. If you want to hook in a different exception page to say, a 404 status code, you can add a second except for a specific subclass of an error:: @responder def application(environ, start_response): request = BaseRequest(environ) try: return view(request) except NotFound, e: return not_found(request) except HTTPException, e: return e :copyright: (c) 2013 by the Werkzeug Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ import sys # Because of bootstrapping reasons we need to manually patch ourselves # onto our parent module. import werkzeug werkzeug.exceptions = sys.modules[__name__] from werkzeug._internal import _get_environ from werkzeug._compat import iteritems, integer_types, text_type, \ implements_to_string from werkzeug.wrappers import Response @implements_to_string class HTTPException(Exception): """ Baseclass for all HTTP exceptions. This exception can be called as WSGI application to render a default error page or you can catch the subclasses of it independently and render nicer error messages. """ code = None description = None def __init__(self, description=None, response=None): Exception.__init__(self) if description is not None: self.description = description self.response = response @classmethod def wrap(cls, exception, name=None): """This method returns a new subclass of the exception provided that also is a subclass of `BadRequest`. """ class newcls(cls, exception): def __init__(self, arg=None, *args, **kwargs): cls.__init__(self, *args, **kwargs) exception.__init__(self, arg) newcls.__module__ = sys._getframe(1).f_globals.get('__name__') newcls.__name__ = name or cls.__name__ + exception.__name__ return newcls @property def name(self): """The status name.""" return HTTP_STATUS_CODES.get(self.code, 'Unknown Error') def get_description(self, environ=None): """Get the description.""" return u'<p>%s</p>' % escape(self.description) def get_body(self, environ=None): """Get the HTML body.""" return text_type(( u'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">\n' u'<title>%(code)s %(name)s</title>\n' u'<h1>%(name)s</h1>\n' u'%(description)s\n' ) % { 'code': self.code, 'name': escape(self.name), 'description': self.get_description(environ) }) def get_headers(self, environ=None): """Get a list of headers.""" return [('Content-Type', 'text/html')] def get_response(self, environ=None): """Get a response object. If one was passed to the exception it's returned directly. :param environ: the optional environ for the request. This can be used to modify the response depending on how the request looked like. :return: a :class:`Response` object or a subclass thereof. """ if self.response is not None: return self.response if environ is not None: environ = _get_environ(environ) headers = self.get_headers(environ) return Response(self.get_body(environ), self.code, headers) def __call__(self, environ, start_response): """Call the exception as WSGI application. :param environ: the WSGI environment. :param start_response: the response callable provided by the WSGI server. """ response = self.get_response(environ) return response(environ, start_response) def __str__(self): return '%d: %s' % (self.code, self.name) def __repr__(self): return '<%s \'%s\'>' % (self.__class__.__name__, self) class BadRequest(HTTPException): """*400* `Bad Request` Raise if the browser sends something to the application the application or server cannot handle. """ code = 400 description = ( 'The browser (or proxy) sent a request that this server could ' 'not understand.' ) class ClientDisconnected(BadRequest): """Internal exception that is raised if Werkzeug detects a disconnected client. Since the client is already gone at that point attempting to send the error message to the client might not work and might ultimately result in another exception in the server. Mainly this is here so that it is silenced by default as far as Werkzeug is concerned. Since disconnections cannot be reliably detected and are unspecified by WSGI to a large extend this might or might not be raised if a client is gone. .. versionadded:: 0.8 """ class SecurityError(BadRequest): """Raised if something triggers a security error. This is otherwise exactly like a bad request error. .. versionadded:: 0.9 """ class Unauthorized(HTTPException): """*401* `Unauthorized` Raise if the user is not authorized. Also used if you want to use HTTP basic auth. """ code = 401 description = ( 'The server could not verify that you are authorized to access ' 'the URL requested. You either supplied the wrong credentials (e.g. ' 'a bad password), or your browser doesn\'t understand how to supply ' 'the credentials required.' ) class Forbidden(HTTPException): """*403* `Forbidden` Raise if the user doesn't have the permission for the requested resource but was authenticated. """ code = 403 description = ( 'You don\'t have the permission to access the requested resource. ' 'It is either read-protected or not readable by the server.' ) class NotFound(HTTPException): """*404* `Not Found` Raise if a resource does not exist and never existed. """ code = 404 description = ( 'The requested URL was not found on the server. ' 'If you entered the URL manually please check your spelling and ' 'try again.' ) class MethodNotAllowed(HTTPException): """*405* `Method Not Allowed` Raise if the server used a method the resource does not handle. For example `POST` if the resource is view only. Especially useful for REST. The first argument for this exception should be a list of allowed methods. Strictly speaking the response would be invalid if you don't provide valid methods in the header which you can do with that list. """ code = 405 description = 'The method is not allowed for the requested URL.' def __init__(self, valid_methods=None, description=None): """Takes an optional list of valid http methods starting with werkzeug 0.3 the list will be mandatory.""" HTTPException.__init__(self, description) self.valid_methods = valid_methods def get_headers(self, environ): headers = HTTPException.get_headers(self, environ) if self.valid_methods: headers.append(('Allow', ', '.join(self.valid_methods))) return headers class NotAcceptable(HTTPException): """*406* `Not Acceptable` Raise if the server can't return any content conforming to the `Accept` headers of the client. """ code = 406 description = ( 'The resource identified by the request is only capable of ' 'generating response entities which have content characteristics ' 'not acceptable according to the accept headers sent in the ' 'request.' ) class RequestTimeout(HTTPException): """*408* `Request Timeout` Raise to signalize a timeout. """ code = 408 description = ( 'The server closed the network connection because the browser ' 'didn\'t finish the request within the specified time.' ) class Conflict(HTTPException): """*409* `Conflict` Raise to signal that a request cannot be completed because it conflicts with the current state on the server. .. versionadded:: 0.7 """ code = 409 description = ( 'A conflict happened while processing the request. The resource ' 'might have been modified while the request was being processed.' ) class Gone(HTTPException): """*410* `Gone` Raise if a resource existed previously and went away without new location. """ code = 410 description = ( 'The requested URL is no longer available on this server and ' 'there is no forwarding address.</p><p>If you followed a link ' 'from a foreign page, please contact the author of this page.' ) class LengthRequired(HTTPException): """*411* `Length Required` Raise if the browser submitted data but no ``Content-Length`` header which is required for the kind of processing the server does. """ code = 411 description = ( 'A request with this method requires a valid <code>Content-' 'Length</code> header.' ) class PreconditionFailed(HTTPException): """*412* `Precondition Failed` Status code used in combination with ``If-Match``, ``If-None-Match``, or ``If-Unmodified-Since``. """ code = 412 description = ( 'The precondition on the request for the URL failed positive ' 'evaluation.' ) class RequestEntityTooLarge(HTTPException): """*413* `Request Entity Too Large` The status code one should return if the data submitted exceeded a given limit. """ code = 413 description = ( 'The data value transmitted exceeds the capacity limit.' ) class RequestURITooLarge(HTTPException): """*414* `Request URI Too Large` Like *413* but for too long URLs. """ code = 414 description = ( 'The length of the requested URL exceeds the capacity limit ' 'for this server. The request cannot be processed.' ) class UnsupportedMediaType(HTTPException): """*415* `Unsupported Media Type` The status code returned if the server is unable to handle the media type the client transmitted. """ code = 415 description = ( 'The server does not support the media type transmitted in ' 'the request.' ) class RequestedRangeNotSatisfiable(HTTPException): """*416* `Requested Range Not Satisfiable` The client asked for a part of the file that lies beyond the end of the file. .. versionadded:: 0.7 """ code = 416 description = ( 'The server cannot provide the requested range.' ) class ExpectationFailed(HTTPException): """*417* `Expectation Failed` The server cannot meet the requirements of the Expect request-header. .. versionadded:: 0.7 """ code = 417 description = ( 'The server could not meet the requirements of the Expect header' ) class ImATeapot(HTTPException): """*418* `I'm a teapot` The server should return this if it is a teapot and someone attempted to brew coffee with it. .. versionadded:: 0.7 """ code = 418 description = ( 'This server is a teapot, not a coffee machine' ) class UnprocessableEntity(HTTPException): """*422* `Unprocessable Entity` Used if the request is well formed, but the instructions are otherwise incorrect. """ code = 422 description = ( 'The request was well-formed but was unable to be followed ' 'due to semantic errors.' ) class PreconditionRequired(HTTPException): """*428* `Precondition Required` The server requires this request to be conditional, typically to prevent the lost update problem, which is a race condition between two or more clients attempting to update a resource through PUT or DELETE. By requiring each client to include a conditional header ("If-Match" or "If-Unmodified- Since") with the proper value retained from a recent GET request, the server ensures that each client has at least seen the previous revision of the resource. """ code = 428 description = ( 'This request is required to be conditional; try using "If-Match" ' 'or "If-Unmodified-Since".' ) class TooManyRequests(HTTPException): """*429* `Too Many Requests` The server is limiting the rate at which this user receives responses, and this request exceeds that rate. (The server may use any convenient method to identify users and their request rates). The server may include a "Retry-After" header to indicate how long the user should wait before retrying. """ code = 429 description = ( 'This user has exceeded an allotted request count. Try again later.' ) class RequestHeaderFieldsTooLarge(HTTPException): """*431* `Request Header Fields Too Large` The server refuses to process the request because the header fields are too large. One or more individual fields may be too large, or the set of all headers is too large. """ code = 431 description = ( 'One or more header fields exceeds the maximum size.' ) class InternalServerError(HTTPException): """*500* `Internal Server Error` Raise if an internal server error occurred. This is a good fallback if an unknown error occurred in the dispatcher. """ code = 500 description = ( 'The server encountered an internal error and was unable to ' 'complete your request. Either the server is overloaded or there ' 'is an error in the application.' ) class NotImplemented(HTTPException): """*501* `Not Implemented` Raise if the application does not support the action requested by the browser. """ code = 501 description = ( 'The server does not support the action requested by the ' 'browser.' ) class BadGateway(HTTPException): """*502* `Bad Gateway` If you do proxying in your application you should return this status code if you received an invalid response from the upstream server it accessed in attempting to fulfill the request. """ code = 502 description = ( 'The proxy server received an invalid response from an upstream ' 'server.' ) class ServiceUnavailable(HTTPException): """*503* `Service Unavailable` Status code you should return if a service is temporarily unavailable. """ code = 503 description = ( 'The server is temporarily unable to service your request due to ' 'maintenance downtime or capacity problems. Please try again ' 'later.' ) default_exceptions = {} __all__ = ['HTTPException'] def _find_exceptions(): for name, obj in iteritems(globals()): try: if getattr(obj, 'code', None) is not None: default_exceptions[obj.code] = obj __all__.append(obj.__name__) except TypeError: # pragma: no cover continue _find_exceptions() del _find_exceptions class Aborter(object): """ When passed a dict of code -> exception items it can be used as callable that raises exceptions. If the first argument to the callable is an integer it will be looked up in the mapping, if it's a WSGI application it will be raised in a proxy exception. The rest of the arguments are forwarded to the exception constructor. """ def __init__(self, mapping=None, extra=None): if mapping is None: mapping = default_exceptions self.mapping = dict(mapping) if extra is not None: self.mapping.update(extra) def __call__(self, code, *args, **kwargs): if not args and not kwargs and not isinstance(code, integer_types): raise HTTPException(response=code) if code not in self.mapping: raise LookupError('no exception for %r' % code) raise self.mapping[code](*args, **kwargs) abort = Aborter() #: an exception that is used internally to signal both a key error and a #: bad request. Used by a lot of the datastructures. BadRequestKeyError = BadRequest.wrap(KeyError) # imported here because of circular dependencies of werkzeug.utils from werkzeug.utils import escape from werkzeug.http import HTTP_STATUS_CODES
apache-2.0
naresh21/synergetics-edx-platform
lms/djangoapps/notes/models.py
13
3225
from django.db import models from django.contrib.auth.models import User from django.core.urlresolvers import reverse from django.core.exceptions import ValidationError from django.utils.html import strip_tags import json from openedx.core.djangoapps.xmodule_django.models import CourseKeyField class Note(models.Model): user = models.ForeignKey(User, db_index=True) course_id = CourseKeyField(max_length=255, db_index=True) uri = models.CharField(max_length=255, db_index=True) text = models.TextField(default="") quote = models.TextField(default="") range_start = models.CharField(max_length=2048) # xpath string range_start_offset = models.IntegerField() range_end = models.CharField(max_length=2048) # xpath string range_end_offset = models.IntegerField() tags = models.TextField(default="") # comma-separated string created = models.DateTimeField(auto_now_add=True, null=True, db_index=True) updated = models.DateTimeField(auto_now=True, db_index=True) class Meta: app_label = 'notes' def clean(self, json_body): """ Cleans the note object or raises a ValidationError. """ if json_body is None: raise ValidationError('Note must have a body.') body = json.loads(json_body) if not isinstance(body, dict): raise ValidationError('Note body must be a dictionary.') # NOTE: all three of these fields should be considered user input # and may be output back to the user, so we need to sanitize them. # These fields should only contain _plain text_. self.uri = strip_tags(body.get('uri', '')) self.text = strip_tags(body.get('text', '')) self.quote = strip_tags(body.get('quote', '')) ranges = body.get('ranges') if ranges is None or len(ranges) != 1: raise ValidationError('Note must contain exactly one range.') self.range_start = ranges[0]['start'] self.range_start_offset = ranges[0]['startOffset'] self.range_end = ranges[0]['end'] self.range_end_offset = ranges[0]['endOffset'] self.tags = "" tags = [strip_tags(tag) for tag in body.get('tags', [])] if len(tags) > 0: self.tags = ",".join(tags) def get_absolute_url(self): """ Returns the absolute url for the note object. """ # pylint: disable=no-member kwargs = {'course_id': self.course_id.to_deprecated_string(), 'note_id': str(self.pk)} return reverse('notes_api_note', kwargs=kwargs) def as_dict(self): """ Returns the note object as a dictionary. """ return { 'id': self.pk, 'user_id': self.user.pk, 'uri': self.uri, 'text': self.text, 'quote': self.quote, 'ranges': [{ 'start': self.range_start, 'startOffset': self.range_start_offset, 'end': self.range_end, 'endOffset': self.range_end_offset }], 'tags': self.tags.split(","), 'created': str(self.created), 'updated': str(self.updated) }
agpl-3.0
swarna-k/MyDiary
flask/lib/python2.7/site-packages/wheel/archive.py
239
1559
""" Archive tools for wheel. """ import logging import os.path import zipfile log = logging.getLogger("wheel") def archive_wheelfile(base_name, base_dir): '''Archive all files under `base_dir` in a whl file and name it like `base_name`. ''' olddir = os.path.abspath(os.curdir) base_name = os.path.abspath(base_name) try: os.chdir(base_dir) return make_wheelfile_inner(base_name) finally: os.chdir(olddir) def make_wheelfile_inner(base_name, base_dir='.'): """Create a whl file from all the files under 'base_dir'. Places .dist-info at the end of the archive.""" zip_filename = base_name + ".whl" log.info("creating '%s' and adding '%s' to it", zip_filename, base_dir) # XXX support bz2, xz when available zip = zipfile.ZipFile(open(zip_filename, "wb+"), "w", compression=zipfile.ZIP_DEFLATED) score = {'WHEEL': 1, 'METADATA': 2, 'RECORD': 3} deferred = [] def writefile(path): zip.write(path, path) log.info("adding '%s'" % path) for dirpath, dirnames, filenames in os.walk(base_dir): for name in filenames: path = os.path.normpath(os.path.join(dirpath, name)) if os.path.isfile(path): if dirpath.endswith('.dist-info'): deferred.append((score.get(name, 0), path)) else: writefile(path) deferred.sort() for score, path in deferred: writefile(path) zip.close() return zip_filename
bsd-3-clause
ComputationalPhysics/atomify-lammps
libs/lammps/tools/i-pi/ipi/engine/properties.py
18
57969
"""Holds the class which computes important properties of the system, and prepares them for output. Copyright (C) 2013, Joshua More and Michele Ceriotti This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http.//www.gnu.org/licenses/>. Classes: Properties: This is the class that holds all the algorithms to calculate the important properties that should be output. Trajectories: This class deals with outputting all position data in the appropriate format. Functions: getkey: This function strips the units and argument list specification from a string specifying an output parameter. getall: This function gives the keyword, units and argument list specification from a string specifying an output parameter. help_latex: This returns a string that can be used in the manual to specify the different available outputs. """ __all__ = ['Properties', 'Trajectories', 'getkey', 'getall', 'help_latex'] import os import numpy as np from ipi.utils.messages import verbosity, info, warning from ipi.utils.depend import * from ipi.utils.units import Constants, unit_to_internal, unit_to_user from ipi.utils.mathtools import logsumlog, h2abc_deg from ipi.utils.io import * from ipi.engine.atoms import * from ipi.engine.cell import * from ipi.engine.ensembles import * from ipi.engine.forces import * def getkey(pstring): """Strips units and argument lists from a property/trajectory keyword. Args: pstring: The string input by the user that specifies an output, which in general will specify units and argument lists. Returns: A string giving the keyword for the property, stripped of the argument lists and units key words. """ pa = pstring.find('(') if pa < 0: pa = len(pstring) pu = pstring.find('{') if pu < 0: pu = len(pstring) return pstring[0:min(pa,pu)].strip() def getall(pstring): """Returns the keyword, units and argument list separately. Args: pstring: The string input by the user that specifies an output, which in general will specify units and argument lists. Returns: A tuple giving the keyword for the property, and its units argument list and key word argument list. """ unit = "" arglist = () kwarglist = {} unstart = len(pstring) argstart = unstart if '}' in pstring: # the property has a user-defined unit unstart = pstring.find('{') unstop = pstring.find('}', unstart) if unstop == -1: raise ValueError("Incorrect format in units specification " + pstring) unit = pstring[unstart+1:unstop] if '(' in pstring: # If the property has additional arguments argstart = pstring.find('(') argstop = pstring.find(')', argstart) if argstop == -1: raise ValueError("Incorrect format in argument list " + pstring) argstr = pstring[argstart:argstop+1] arglist = io_xml.read_tuple(argstr, delims="()", split=";", arg_type=str) for arg in arglist: # If a keyword argument is used equals = arg.find('=') if equals >= 0: kwarglist[arg[0:equals].strip()] = arg[equals+1:].strip() arglist = tuple(a for a in arglist if not a == arg) pstring = pstring[0:min(unstart,argstart)].strip() # strips the arguments from pstring name return (pstring, unit, arglist, kwarglist) def help_latex(idict, standalone=True): """Function to generate a LaTeX formatted file. Args: idict: Either property_dict or traj_dict, to be used to generate the help file. standalone: A boolean giving whether the latex file produced will be a stand-alone document, or will be intended as a section of a larger document with cross-references between the different sections. Returns: A LaTeX formatted string. """ rstr = "" if standalone: #assumes that it is a stand-alone document, so must have document #options. rstr += r"\documentclass[12pt,fleqn]{report}" rstr += r""" \usepackage{etoolbox} \usepackage{suffix} \newcommand{\ipiitem}[3]{% \ifblank{#1}{}{\ifstrequal{#1}{\underline{}}{}{ {\noindent\textbf{#1}:\rule{0.0pt}{1.05\baselineskip}\quad}}}% uses a strut to add a bit of vertical space {#2}\parskip=0pt\par \ifblank{#3}{}% { {\hfill\raggedleft\textit{\small #3}\par} } } """ rstr += "\n\\begin{document}\n" rstr += "The following are the different allowable ouputs:\n\\par" for out in sorted(idict): rstr += "\\ipiitem{" + out + "}" if "longhelp" in idict[out]: rstr += "{" + idict[out]['longhelp'] +"}" else: rstr += "{" + idict[out]['help'] +"}" #see if there are additional attributes to print out xstr = "" if "dimension" in idict[out] and idict[out]['dimension'] != "undefined": #doesn't print out dimension if not necessary. xstr += "dimension: " + idict[out]['dimension'] + '; ' if "size" in idict[out]: xstr += "size: " + str(idict[out]['size']) +"; " rstr += "{" + xstr + "}" if standalone: #ends the created document if it is not part of a larger document rstr += "\\end{document}" # Some escape characters are necessary for the proper latex formatting rstr = rstr.replace('_', '\\_') rstr = rstr.replace('\\\\_', '\\_') rstr = rstr.replace('...', '\\ldots ') rstr = rstr.replace('<', '$<$') rstr = rstr.replace('>', '$>$') rstr = rstr.replace('[', '$[$') rstr = rstr.replace(']', '$]$') return rstr class Properties(dobject): """A proxy to compute and output properties of the system. Takes the fundamental properties calculated during the simulation, and prepares them for output. It also contains simple algorithms to calculate other properties not calculated during the simulation itself, so that these can also be output. Attributes: fd_delta: A float giving the size of the finite difference parameter used in the Yamamoto kinetic energy estimator. Defaults to _DEFAULT_FINDIFF. _DEFAULT_FDERROR: A float giving the size of the minimum precision allowed for the finite difference calculation in the Yamamoto kinetic energy estimator. _DEFAULT_MINFID: A float giving the maximum displacement in the Yamamoto kinetic energy estimator. dbeads: A dummy Beads object used in the Yamamoto kinetic energy estimator. dforces: A dummy Forces object used in the Yamamoto kinetic energy estimator. simul: The Simulation object containing the data to be output. ensemble: An ensemble object giving the objects necessary for producing the correct ensemble. beads: A beads object giving the atoms positions. nm: A normal modes object giving the normal mode representation. cell: A cell object giving the system box. forces: A forcefield object giving the force calculator for each replica of the system. property_dict: A dictionary containing all the properties that can be output. """ _DEFAULT_FINDIFF = 1e-5 _DEFAULT_FDERROR = 1e-9 _DEFAULT_MINFID = 1e-12 def __init__(self): """Initialises Properties.""" self.property_dict = { "step": { "dimension" : "number", "help" : "The current simulation time step.", 'func': (lambda: (1 + self.simul.step))}, "time": { "dimension": "time", "help": "The elapsed simulation time.", 'func': (lambda: (1 + self.simul.step)*self.ensemble.dt)}, "temperature": {"dimension": "temperature", "help": "The current temperature, as obtained from the MD kinetic energy.", "longhelp" : """The current temperature, as obtained from the MD kinetic energy of the (extended) ring polymer. Takes a single, optional argument 'atom', which can be either an atom label or an index (zero-based) to specify which species or individual atom to output the temperature of. If not specified, all atoms are used and averaged.""", 'func': self.get_temp }, "density": { "dimension": "density", "help": "The mass density of the physical system.", 'func': (lambda: self.beads.m.sum()/self.cell.V)}, "volume": { "dimension": "volume", "help": "The volume of the cell box.", 'func': (lambda: self.cell.V) }, "cell_h": { "dimension" : "length", "help": "The simulation cell as a matrix. Returns the 6 non-zero components in the form [xx, yy, zz, xy, xz, yz].", "size": 6, "func": (lambda: self.tensor2vec(self.cell.h))}, "cell_abcABC": {"dimension" : "undefined", "help": "The lengths of the cell vectors and the angles between them in degrees as a list of the form [a, b, c, A, B, C]", "longhelp": """The lengths of the cell vectors and the angles between them in degrees as a list of the form [a, b, c, A, B, C], where A is the angle between the sides of length b and c in degrees, and B and C are defined similarly. Since the output mixes different units, a, b and c can only be output in bohr.""", "size": 6, 'func': (lambda: np.asarray(h2abc_deg(self.cell.h)))}, "conserved": { "dimension": "energy", "help": "The value of the conserved energy quantity per bead.", 'func': (lambda: self.ensemble.econs/float(self.beads.nbeads))}, "potential": { "dimension" : "energy", "help": "The physical system potential energy.", 'func': (lambda: self.forces.pot/self.beads.nbeads)}, "spring": { "dimension" : "energy", "help": "The total spring potential energy between the beads of all the ring polymers in the system.", 'func': (lambda: self.beads.vpath*self.nm.omegan2/self.beads.nbeads)}, "kinetic_md": {"dimension" : "energy", "help": "The kinetic energy of the (extended) classical system.", "longhelp" : """The kinetic energy of the (extended) classical system. Takes an argument 'atom', which can be either an atom label or index (zero based) to specify which species to find the kinetic energy of. If not specified, all atoms are used.""", 'func': self.get_kinmd}, "kinetic_cv": {"dimension" : "energy", "help": "The centroid-virial quantum kinetic energy of the physical system.", "longhelp": """The centroid-virial quantum kinetic energy of the physical system. Takes an argument 'atom', which can be either an atom label or index (zero based) to specify which species to find the kinetic energy of. If not specified, all atoms are used.""", 'func': self.get_kincv}, "kinetic_tens":{"dimension" : "energy", "help" : "The centroid-virial quantum kinetic energy tensor of the physical system.", "longhelp" : """The centroid-virial quantum kinetic energy tensor of the physical system. Returns the 6 independent components in the form [xx, yy, zz, xy, xz, yz]. Takes an argument 'atom', which can be either an atom label or index (zero based) to specify which species to find the kinetic tensor components of. If not specified, all atoms are used.""", "size" : 6, "func" : self.get_ktens}, "kinetic_ij": {"dimension" : "energy", "help" : "The centroid-virial off-diagonal quantum kinetic energy tensor of the physical system.", "longhelp" : """The centroid-virial off-diagonal quantum kinetic energy tensor of the physical system. This computes the cross terms between atoms i and atom j, whose average is <p_i*p_j/(2*sqrt(m_i*m_j))>. Returns the 6 independent components in the form [xx, yy, zz, xy, xz, yz]. Takes arguments 'i' and 'j', which give the indices of the two desired atoms.""", "size" : 6, "func" : self.get_kij}, "r_gyration": { "dimension" : "length", "help" : "The average radius of gyration of the selected ring polymers.", "longhelp" : """The average radius of gyration of the selected ring polymers. Takes an argument 'atom', which can be either an atom label or index (zero based) to specify which species to find the radius of gyration of. If not specified, all atoms are used and averaged.""", "func": self.get_rg}, "atom_x": { "dimension" : "length", "help": "The position (x,y,z) of a particle given its index.", "longhelp" : """The position (x,y,z) of a particle given its index. Takes arguments index and bead (both zero based). If bead is not specified, refers to the centroid.""", "size" : 3, "func" : (lambda atom="", bead="-1": self.get_atom_vec(self.beads.q, atom=atom, bead=bead))}, "atom_v": { "dimension" : "velocity", "help": "The velocity (x,y,z) of a particle given its index.", "longhelp": """The velocity (x,y,z) of a particle given its index. Takes arguments index and bead (both zero based). If bead is not specified, refers to the centroid.""", "size" : 3, "func" : (lambda atom="", bead="-1": self.get_atom_vec(self.beads.p/self.beads.m3, atom=atom, bead=bead))}, "atom_p": { "dimension" : "momentum", "help": "The momentum (x,y,z) of a particle given its index.", "longhelp": """The momentum (x,y,z) of a particle given its index. Takes arguments index and bead (both zero based). If bead is not specified, refers to the centroid.""", "size" : 3, "func" : (lambda atom="", bead="-1": self.get_atom_vec(self.beads.p, atom=atom, bead=bead))}, "atom_f": { "dimension" : "force", "help": "The force (x,y,z) acting on a particle given its index.", "longhelp": """The force (x,y,z) acting on a particle given its index. Takes arguments index and bead (both zero based). If bead is not specified, refers to the centroid.""", "size" : 3, "func" : (lambda atom="", bead="-1": self.get_atom_vec(self.forces.f, atom=atom, bead=bead))}, "stress_md": { "dimension": "pressure", "size" : 6, "help": "The total stress tensor of the (extended) classical system.", "longhelp": """The total stress tensor of the (extended) classical system. Returns the 6 independent components in the form [xx, yy, zz, xy, xz, yz].""", "func": (lambda: self.tensor2vec((self.forces.vir + self.nm.kstress)/self.cell.V))}, "pressure_md": {"dimension": "pressure", "help": "The pressure of the (extended) classical system.", "func": (lambda: np.trace((self.forces.vir + self.nm.kstress)/(3.0*self.cell.V)))}, "kstress_md": {"dimension": "pressure", "size" : 6, "help": "The kinetic stress tensor of the (extended) classical system.", "longhelp": """The kinetic stress tensor of the (extended) classical system. Returns the 6 independent components in the form [xx, yy, zz, xy, xz, yz].""", "func": (lambda: self.tensor2vec(self.nm.kstress/self.cell.V))}, "virial_md": { "dimension": "pressure", "size" : 6, "help": "The virial tensor of the (extended) classical system.", "longhelp": """The virial tensor of the (extended) classical system. Returns the 6 independent components in the form [xx, yy, zz, xy, xz, yz].""", "func": (lambda: self.tensor2vec(self.forces.vir/self.cell.V))}, "stress_cv": { "dimension": "pressure", "size" : 6, "help": "The total quantum estimator for the stress tensor of the physical system.", "longhelp": """The total quantum estimator for the stress tensor of the physical system. Returns the 6 independent components in the form [xx, yy, zz, xy, xz, yz].""", "func": (lambda: self.tensor2vec(self.forces.vir + self.kstress_cv())/(self.cell.V*self.beads.nbeads))}, "pressure_cv": {"dimension": "pressure", "help": "The quantum estimator for pressure of the physical system.", "func": (lambda: np.trace(self.forces.vir + self.kstress_cv())/(3.0*self.cell.V*self.beads.nbeads))}, "kstress_cv": {"dimension": "pressure", "size" : 6, "help": "The quantum estimator for the kinetic stress tensor of the physical system.", "longhelp": """The quantum estimator for the kinetic stress tensor of the physical system. Returns the 6 independent components in the form [xx, yy, zz, xy, xz, yz].""", "func": (lambda: self.tensor2vec(self.kstress_cv()/(self.cell.V*self.beads.nbeads)))}, "virial_cv": { "dimension": "pressure", "size" : 6, "help": "The quantum estimator for the virial stress tensor of the physical system.", "longhelp": """The quantum estimator for the virial stress tensor of the physical system. Returns the 6 independent components in the form [xx, yy, zz, xy, xz, yz].""", "func": (lambda: self.tensor2vec(self.forces.vir/(self.cell.V*self.beads.nbeads)))}, "displacedpath": { "dimension": "undefined", "help": "The displaced path end-to-end distribution estimator", "longhelp": """This is the estimator for the end-to-end distribution, that can be used to calculate the particle momentum distribution as described in in L. Lin, J. A. Morrone, R. Car and M. Parrinello, 105, 110602 (2010), Phys. Rev. Lett. Takes arguments 'ux', 'uy' and 'uz', which are the components of the path opening vector. Also takes an argument 'atom', which can be either an atom label or index (zero based) to specify which species to find the end-to-end distribution estimator for. If not specified, all atoms are used. Note that one atom is computed at a time, and that each path opening operation costs as much as a PIMD step. Returns the average over the selected atoms of the estimator of exp(-U(u)) for each frame.""", "func": self.get_linlin}, "scaledcoords": { "dimension": "undefined", "help" : "The scaled coordinates estimators that can be used to compute energy and heat capacity", "longhelp": """Returns the estimators that are required to evaluate the scaled-coordinates estimators for total energy and heat capacity, as described in T. M. Yamamoto, J. Chem. Phys., 104101, 123 (2005). Returns eps_v and eps_v', as defined in that paper. As the two estimators have a different dimensions, this can only be output in atomic units. Takes one argument, 'fd_delta', which gives the value of the finite difference parameter used - which defaults to """+ str(-self._DEFAULT_FINDIFF) + """. If the value of 'fd_delta' is negative, then its magnitude will be reduced automatically by the code if the finite difference error becomes too large.""", 'func': self.get_yama_estimators, "size": 2}, "isotope_scfep": {"dimension": "undefined", "size": 7, 'func': self.get_isotope_yama, "help": "The scaled-coordinates free energy perturbation scaled mass KE estimator.", "longhelp" : """Returns the (many) terms needed to compute the scaled-coordinates free energy perturbation scaled mass KE estimator (M. Ceriotti, T. Markland, J. Chem. Phys. 138, 014112 (2013)). Takes two arguments, 'alpha' and 'atom', which give the scaled mass parameter and the atom of interest respectively, and default to '1.0' and ''. The 'atom' argument can either be the label of a particular kind of atom, or an index (zero based) of a specific atom. This property computes, for each atom in the selection, an estimator for the kinetic energy it would have had if it had the mass scaled by alpha. The 7 numbers output are the average over the selected atoms of the log of the weights <h>, the average of the squares <h**2>, the average of the un-weighted scaled-coordinates kinetic energies <T_CV> and of the squares <T_CV**2>, the log sum of the weights LW=ln(sum(e**(-h))), the sum of the re-weighted kinetic energies, stored as a log modulus and sign, LTW=ln(abs(sum(T_CV e**(-h)))) STW=sign(sum(T_CV e**(-h))). In practice, the best estimate of the estimator can be computed as [sum_i exp(LTW_i)*STW_i]/[sum_i exp(LW_i)]. The other terms can be used to compute diagnostics for the statistical accuracy of the re-weighting process. Note that evaluating this estimator costs as much as a PIMD step for each atom in the list. The elements that are output have different units, so the output can be only in atomic units.""" }, "isotope_tdfep": {"dimension" : "undefined", "size" : 7, 'func': self.get_isotope_thermo, "help": "The thermodynamic free energy perturbation scaled mass KE estimator.", "longhelp" : """Returns the (many) terms needed to compute the thermodynamic free energy perturbation scaled mass KE estimator (M. Ceriotti, T. Markland, J. Chem. Phys. 138, 014112 (2013)). Takes two arguments, 'alpha' and 'atom', which give the scaled mass parameter and the atom of interest respectively, and default to '1.0' and ''. The 'atom' argument can either be the label of a particular kind of atom, or an index (zero based) of a specific atom. This property computes, for each atom in the selection, an estimator for the kinetic energy it would have had if it had the mass scaled by alpha. The 7 numbers output are the average over the selected atoms of the log of the weights <h>, the average of the squares <h**2>, the average of the un-weighted scaled-coordinates kinetic energies <T_CV> and of the squares <T_CV**2>, the log sum of the weights LW=ln(sum(e**(-h))), the sum of the re-weighted kinetic energies, stored as a log modulus and sign, LTW=ln(abs(sum(T_CV e**(-h)))) STW=sign(sum(T_CV e**(-h))). In practice, the best estimate of the estimator can be computed as [sum_i exp(LTW_i)*STW_i]/[sum_i exp(LW_i)]. The other terms can be used to compute diagnostics for the statistical accuracy of the re-weighting process. Evaluating this estimator is inexpensive, but typically the statistical accuracy is worse than with the scaled coordinates estimator. The elements that are output have different units, so the output can be only in atomic units.""" } } def bind(self, simul): """Binds the necessary objects from the simulation to calculate the required properties. Args: simul: The Simulation object to be bound. """ self.ensemble = simul.ensemble self.beads = simul.beads self.nm = simul.nm self.cell = simul.cell self.forces = simul.forces self.simul = simul # dummy beads and forcefield objects so that we can use scaled and # displaced path estimators without changing the simulation bead # coordinates self.dbeads = simul.beads.copy() self.dforces = Forces() self.dforces.bind(self.dbeads, self.simul.cell, self.simul.flist) def __getitem__(self, key): """Retrieves the item given by key. Note that if the key contains a string (arg1; arg2; ... ) then it will pass the appropriate positional arguments to the calculation function of the property. Note the brackets and the semi-colon separators. If instead we have the syntax (arg1=val1;arg2; ... ), then the keyword/value pair (arg1,val1) will be added to the keyword argument list. The appropriate key word arguments will then be passed to the calculation function instead. Similarly, if the key contains a string {unit}, then it will take the string 'unit' and use it to define the units that the property is output in. Args: key: A string contained in property_dict. Returns: The property labeled by the keyword key, along with its unit keyword, and the argument lists for the function used to calculate the property specified by the keyword key. """ (key, unit, arglist, kwarglist) = getall(key) pkey = self.property_dict[key] #pkey["func"](*arglist,**kwarglist) gives the value of the property #in atomic units. unit_to_user() returns the value in the user #specified units. if "dimension" in pkey and unit != "": return unit_to_user(pkey["dimension"], unit, pkey["func"](*arglist,**kwarglist)) else: return pkey["func"](*arglist,**kwarglist) def tensor2vec(self, tensor): """Takes a 3*3 symmetric tensor and returns it as a 1D array, containing the elements [xx, yy, zz, xy, xz, yz]. """ return np.array([tensor[0,0], tensor[1,1], tensor[2,2], tensor[0,1], tensor[0,2], tensor[1,2]]) def get_atom_vec(self, prop_vec, atom="", bead="-1"): """Gives a vector for one atom. Args: prop_vec: An array from which to take the atomic vector from. atom: The index of the atom for which the vector will be output. bead: The index of the replica of the atom for which the vector will be output. If less than 0, then the centroid is used. """ if atom == "": raise IndexError("Must specify the index for atom_vec property") atom = int(atom) bead = int(bead) if atom >= self.beads.natoms: raise IndexError("Cannot output atom_vec property as atom index %d is larger than the number of atoms" % atom) if bead >= self.beads.nbeads: raise IndexError("Cannot output atom_vec property as bead index %d is larger than the number of beads" % bead) if bead < 0: atom_vec = np.zeros(3) for b in range(self.beads.nbeads): atom_vec += prop_vec[b,3*atom:3*(atom+1)] return atom_vec/float(self.beads.nbeads) else: return prop_vec[bead,3*atom:3*(atom+1)] def get_temp(self, atom=""): """Calculates the MD kinetic temperature. Note that in the case that the centre of mass constraint there will be 3 fewer degrees of freedom than without, so this has to be taken into account when calculating the kinetic temperature. Args: atom: If given, specifies the atom to give the temperature for. If not, then the simulation temperature. """ if self.ensemble.fixcom: mdof = 3 else: mdof = 0 if atom == "": # use the KE computed in the NM representation in order to avoid problems when mass scaling is used kedof = self.get_kinmd()/(3*self.beads.natoms*self.beads.nbeads - mdof) else: try: #iatom gives the index of the atom to be studied iatom = int(atom) latom = "" if iatom >= self.beads.natoms: raise IndexError("Cannot output temperature as atom index %d is larger than the number of atoms" % iatom) except ValueError: #here 'atom' is a label rather than an index which is stored in latom iatom = -1 latom = atom ncount = 0 for i in range(self.beads.natoms): if (iatom == i or latom == self.beads.names[i]): ncount += 1 if ncount == 0: raise IndexError("Couldn't find an atom which matched the argument of temperature") # "spreads" the COM removal correction evenly over all the atoms... kedof = self.get_kinmd(atom)/ncount*(self.beads.natoms/(3.0*self.beads.natoms*self.beads.nbeads - mdof)) return kedof/(0.5*Constants.kb) def get_kincv(self, atom=""): """Calculates the quantum centroid virial kinetic energy estimator. Args: atom: If given, specifies the atom to give the kinetic energy for. If not, the system kinetic energy is given. """ try: #iatom gives the index of the atom to be studied iatom = int(atom) latom = "" if iatom >= self.beads.natoms: raise IndexError("Cannot output kinetic energy as atom index %d is larger than the number of atoms" % iatom) except ValueError: #here 'atom' is a label rather than an index which is stored in latom iatom = -1 latom = atom q = depstrip(self.beads.q) qc = depstrip(self.beads.qc) f = depstrip(self.forces.f) acv = 0.0 ncount = 0 for i in range(self.beads.natoms): if (atom != "" and iatom != i and latom != self.beads.names[i]): continue kcv = 0.0 k = 3*i for b in range(self.beads.nbeads): kcv += (q[b,k] - qc[k])* f[b,k] + (q[b,k+1] - qc[k+1])* f[b,k+1] + (q[b,k+2] - qc[k+2])* f[b,k+2] kcv *= -0.5/self.beads.nbeads kcv += 1.5*Constants.kb*self.ensemble.temp acv += kcv ncount += 1 if ncount == 0: warning("Couldn't find an atom which matched the argument of kinetic energy, setting to zero.", verbosity.medium) return acv def get_kinmd(self, atom=""): """Calculates the classical kinetic energy of the simulation (p^2/2m) Args: atom: If given, specifies the atom to give the kinetic energy for. If not, the simulation kinetic energy is given. """ if atom == "": return self.nm.kin/self.beads.nbeads else: try: #iatom gives the index of the atom to be studied iatom = int(atom) latom = "" if iatom >= self.beads.natoms: raise IndexError("Cannot output kinetic energy as atom index %d is larger than the number of atoms" % iatom) except ValueError: #here 'atom' is a label rather than an index which is stored in latom iatom = -1 latom = atom pnm = depstrip(self.nm.pnm) dm3 = depstrip(self.nm.dynm3) kmd = 0.0 ncount = 0 for i in range(self.beads.natoms): if (atom != "" and iatom != i and latom != self.beads.names[i]): continue k = 3*i for b in range(self.beads.nbeads): kmd += (pnm[b,k]**2 + pnm[b,k+1]**2 + pnm[b,k+2]**2)/(2.0*dm3[b,k]) ncount += 1 if ncount == 0: warning("Couldn't find an atom which matched the argument of kinetic energy, setting to zero.", verbosity.medium) return kmd/self.beads.nbeads def get_ktens(self, atom=""): """Calculates the quantum centroid virial kinetic energy TENSOR estimator. Args: atom: The index of the atom for which the kinetic energy tensor is to be output, or the index of the type of atoms for which it should be output. """ try: #iatom gives the index of the atom to be studied iatom = int(atom) latom = "" if iatom >= self.beads.natoms: raise IndexError("Cannot output kinetic tensor as atom index %d is larger than the number of atoms" % iatom) except ValueError: #here 'atom' is a label rather than an index which is stored in latom iatom = -1 latom = atom tkcv = np.zeros((6),float) ncount = 0 for i in range(self.beads.natoms): if (atom != "" and iatom != i and latom != self.beads.names[i]): continue tkcv += self.get_kij(str(i), str(i)) ncount += 1 if ncount == 0: warning("Couldn't find an atom which matched the argument of kinetic tensor, setting to zero.", verbosity.medium) return tkcv def get_kij(self, ni="0", nj="0"): """Calculates the quantum centroid virial kinetic energy TENSOR estimator for two possibly different atom indices. Args: ni: The index of atom i. nj: The index of atom j. Returns: The contribution to the kinetic energy tensor estimator from the interactions between atom i and atom j. """ i = int(ni) j = int(nj) if i >= self.beads.natoms: raise IndexError("Cannot output kinetic_ij as atom index %d is larger than the number of atoms" % i) if j >= self.beads.natoms: raise IndexError("Cannot output kinetic_ij as atom index %d is larger than the number of atoms" % j) mi = self.beads.m[i] mj = self.beads.m[j] ai = 3*i aj = 3*j q = depstrip(self.beads.q) qc = depstrip(self.beads.qc) f = depstrip(self.forces.f) # I implement this for the most general case. In practice T_ij = <p_i p_j>/(2sqrt(m_i m_j)) kcv = np.zeros((6),float) for b in range(self.beads.nbeads): kcv[0] += mi*(q[b,ai] - qc[ai]) *f[b,aj] + mj*(q[b,aj] - qc[aj]) *f[b,ai] #Txx kcv[1] += mi*(q[b,ai+1] - qc[ai+1])*f[b,aj+1] + mj*(q[b,aj+1] - qc[aj+1])*f[b,ai+1] #Tyy kcv[2] += mi*(q[b,ai+2] - qc[ai+2])*f[b,aj+2] + mj*(q[b,aj+2] - qc[aj+2])*f[b,ai+2] #Tzz kcv[3] += mi*(q[b,ai] - qc[ai])* f[b,aj+1] + mj*(q[b,aj+1] - qc[aj+1])*f[b,ai] #Txy kcv[4] += mi*(q[b,ai] - qc[ai])* f[b,aj+2] + mj*(q[b,aj+2] - qc[aj+2])*f[b,ai] #Txz kcv[5] += mi*(q[b,ai+1] - qc[ai+1])*f[b,aj+2] + mj*(q[b,aj+2] - qc[aj+2])*f[b,ai+1] #Tyz kcv *= -0.5/(self.beads.nbeads*2*np.sqrt(mi*mj)) if i == j: kcv[0:3] += 0.5*Constants.kb*self.ensemble.temp return kcv def get_rg(self, atom=""): """Calculates the radius of gyration of the ring polymers. Args: atom: If given, specifies the atom to give the gyration radius for. If not, the system average gyration radius is given. """ try: #iatom gives the index of the atom to be studied iatom = int(atom) latom = "" if iatom >= self.beads.natoms: raise IndexError("Cannot output gyration radius as atom index %d is larger than the number of atoms" % iatom) except ValueError: #here 'atom' is a label rather than an index which is stored in latom iatom = -1 latom = atom q = depstrip(self.beads.q) qc = depstrip(self.beads.qc) nat = self.beads.natoms nb = self.beads.nbeads rg_tot = 0.0 ncount = 0 for i in range(nat): if (atom != "" and iatom != i and latom != self.beads.names[i]): continue rg_at = 0.0 for j in range(nb): dq = q[j,3*i:3*(i+1)] - qc[3*i:3*(i+1)] rg_at += np.dot(dq, dq) ncount += 1 rg_tot += np.sqrt(rg_at/float(nb)) if ncount == 0: raise IndexError("Couldn't find an atom which matched the argument of r_gyration") return rg_tot/float(ncount) def kstress_cv(self): """Calculates the quantum centroid virial kinetic stress tensor estimator. Note that this is not divided by the volume or the number of beads. Returns: A 3*3 tensor with all the components of the tensor. """ kst = np.zeros((3,3),float) q = depstrip(self.beads.q) qc = depstrip(self.beads.qc) pc = depstrip(self.beads.pc) m = depstrip(self.beads.m) fall = depstrip(self.forces.f) na3 = 3*self.beads.natoms for b in range(self.beads.nbeads): for i in range(3): for j in range(i,3): kst[i,j] -= np.dot(q[b,i:na3:3] - qc[i:na3:3], fall[b,j:na3:3]) # return the CV estimator MULTIPLIED BY NBEADS -- again for consistency with the virial, kstress_MD, etc... for i in range(3): kst[i,i] += self.beads.nbeads * ( np.dot(pc[i:na3:3],pc[i:na3:3]/m) ) return kst def opening(self, bead): """Path opening function, used in linlin momentum distribution estimator. Args: bead: The index of the bead to shift. """ return bead/float(self.beads.nbeads) + 0.5*(1.0/self.beads.nbeads - 1) def get_linlin(self, ux="0", uy="0", uz="0", atom=""): """Calculates the end-to-end distribution for a particular path opening vector. Args: ux: The x-component of the path opening vector. uy: The y-component of the path opening vector. uz: The z-component of the path opening vector. atom: If given, specifies the atom to give the kinetic energy for. If not, the simulation kinetic energy is given. """ try: #iatom gives the index of the atom to be studied iatom = int(atom) latom = "" if iatom >= self.beads.natoms: raise IndexError("Cannot output linlin estimator as atom index %d is larger than the number of atoms" % iatom) except ValueError: #here 'atom' is a label rather than an index which is stored in latom iatom = -1 latom = atom beta = 1.0/(self.ensemble.temp*Constants.kb) u = np.array([float(ux), float(uy), float(uz)]) u_size = np.dot(u,u) q = depstrip(self.beads.q) nat = self.beads.natoms nb = self.beads.nbeads nx_tot = 0.0 ncount = 0 for i in range(nat): if (atom != "" and iatom != i and latom != self.beads.names[i]): continue mass = self.beads.m[i] self.dbeads.q[:] = q for b in range(nb): self.dbeads.q[b,3*i:3*(i+1)] += self.opening(b)*u dV = self.dforces.pot - self.forces.pot n0 = np.exp(-mass*u_size/(2.0*beta*Constants.hbar**2)) nx_tot += n0*np.exp(-dV*beta/float(self.beads.nbeads)) ncount += 1 if ncount == 0: raise IndexError("Couldn't find an atom which matched the argument of linlin") return nx_tot/float(ncount) def get_yama_estimators(self, fd_delta= - _DEFAULT_FINDIFF): """Calculates the quantum scaled coordinate kinetic energy estimator. Uses a finite difference method to calculate the estimators needed to calculate the energy and heat capacity of the system, as shown in Takeshi M. Yamamoto, Journal of Chemical Physics, 104101, 123 (2005). Returns both eps_v and eps_v' as defined in the above article. Note that heat capacity is calculated as beta**2*kboltzmann*(<eps_v**2> - <eps_v>**2 - <eps_v'>), and the energy of the system as <eps_v>. Args: fd_delta: the relative finite difference in temperature to apply in computing finite-difference quantities. If it is negative, will be scaled down automatically to avoid discontinuities in the potential. """ dbeta = abs(float(fd_delta)) beta = 1.0/(Constants.kb*self.ensemble.temp) qc = depstrip(self.beads.centroid.q) q = depstrip(self.beads.q) v0 = self.forces.pot/self.beads.nbeads while True: splus = np.sqrt(1.0 + dbeta) sminus = np.sqrt(1.0 - dbeta) for b in range(self.beads.nbeads): self.dbeads[b].q = qc*(1.0 - splus) + splus*q[b,:] vplus = self.dforces.pot/self.beads.nbeads for b in range(self.beads.nbeads): self.dbeads[b].q = qc*(1.0 - sminus) + sminus*q[b,:] vminus = self.dforces.pot/self.beads.nbeads if (fd_delta < 0 and abs((vplus + vminus)/(v0*2) - 1.0) > self._DEFAULT_FDERROR and dbeta > self._DEFAULT_MINFID): dbeta *= 0.5 info("Reducing displacement in Yamamoto kinetic estimator", verbosity.low) continue else: eps = ((1.0 + dbeta)*vplus - (1.0 - dbeta)*vminus)/(2*dbeta) eps += 0.5*(3*self.beads.natoms)/beta eps_prime = ((1.0 + dbeta)*vplus + (1.0 - dbeta)*vminus - 2*v0)/(dbeta**2*beta) eps_prime -= 0.5*(3*self.beads.natoms)/beta**2 break return np.asarray([eps, eps_prime]) def get_isotope_yama(self, alpha="1.0", atom=""): """Gives the components of the yamamoto scaled-mass KE estimator for a given atom index. Args: alpha: m'/m the mass ratio atom: the index of the atom to compute the isotope fractionation pair for, or a label Returns: a tuple from which one can reconstruct all that is needed to compute the SMKEE, and its statistical accuracy: (sum_deltah, sum_ke, log(sum(weights)), log(sum(weight*ke)), sign(sum(weight*ke)) ) """ try: #iatom gives the index of the atom to be studied iatom = int(atom) latom = "" if iatom >= self.beads.natoms: raise IndexError("Cannot output scaled-mass kinetic energy estimator as atom index %d is larger than the number of atoms" % iatom) except ValueError: #here 'atom' is a label rather than an index which is stored in latom iatom = -1 latom = atom alpha = float(alpha) atcv = 0.0 atcv2 = 0.0 alogr = 0.0 alogr2 = 0.0 law = 0.0 lawke = 0.0 sawke = 1.0 ni = 0 # strips dependency control since we are not gonna change the true beads in what follows q = depstrip(self.beads.q) f = depstrip(self.forces.f) qc = depstrip(self.beads.qc) for i in range(self.beads.natoms): # selects only the atoms we care about if (atom != "" and iatom != i and latom != self.beads.names[i]): continue ni += 1 # arranges coordinate-scaled beads in a auxiliary beads object self.dbeads.q[:] = q[:] for b in range(self.beads.nbeads): self.dbeads.q[b,3*i:3*(i+1)] = ( qc[3*i:3*(i+1)]+ np.sqrt(1.0/alpha)*(q[b,3*i:3*(i+1)]-qc[3*i:3*(i+1)]) ) tcv = 0.0 for b in range(self.beads.nbeads): tcv += np.dot( (self.dbeads.q[b,3*i:3*(i+1)]-self.dbeads.qc[3*i:3*(i+1)]), self.dforces.f[b,3*i:3*(i+1)] ) tcv *= -0.5/self.beads.nbeads tcv += 1.5*Constants.kb*self.simul.ensemble.temp logr = (self.dforces.pot-self.forces.pot)/(Constants.kb*self.simul.ensemble.temp*self.beads.nbeads) atcv += tcv atcv2 += tcv*tcv alogr += logr alogr2 += logr*logr; #accumulates log averages in a way which preserves accuracy if (ni == 1): law = -logr else: (law, drop) = logsumlog( (law,1.0), (-logr,1.0)) #here we need to take care of the sign of tcv, which might as well be #negative... almost never but... if (ni == 1): lawke = -logr + np.log(abs(tcv)) sawke = np.sign(tcv); else: (lawke, sawke) = logsumlog( (lawke, sawke), (-logr+np.log(abs(tcv)), np.sign(tcv)) ) if ni == 0: raise IndexError("Couldn't find an atom which matched the argument of isotope_y") return np.asarray([alogr/ni, alogr2/ni, atcv/ni, atcv2/ni, law, lawke, sawke]) def get_isotope_thermo(self, alpha="1.0", atom=""): """Gives the components of the thermodynamic scaled-mass KE estimator for a given atom index. Args: alpha: m'/m the mass ratio atom: the index of the atom to compute the isotope fractionation pair for, or a label Returns: a tuple from which one can reconstruct all that is needed to compute the SMKEE: (sum_deltah, sum_ke, log(sum(weights)), log(sum(weight*ke)), sign(sum(weight*ke)) ) """ try: #iatom gives the index of the atom to be studied iatom = int(atom) latom = "" if iatom >= self.beads.natoms: raise IndexError("Cannot output scaled-mass kinetic energy estimator as atom index %d is larger than the number of atoms" % iatom) except ValueError: #here 'atom' is a label rather than an index which is stored in latom iatom = -1 latom = atom alpha = float(alpha) atcv = 0.0 alogr = 0.0 atcv2 = 0.0 alogr2 = 0.0 law = 0.0 lawke = 0.0 sawke = 1.0 ni = 0 # strips dependency control since we are not gonna change the true beads in what follows q = depstrip(self.beads.q) f = depstrip(self.forces.f) qc = depstrip(self.beads.qc) for i in range(self.beads.natoms): # selects only the atoms we care about if (atom != "" and iatom != i and latom != self.beads.names[i]): continue ni += 1 spr = 0.0 for b in range(1,self.beads.nbeads): for j in range(3*i,3*(i+1)): spr += (q[b,j]-q[b-1,j])**2 for j in range(3*i,3*(i+1)): spr += (q[self.beads.nbeads-1,j]-q[0,j])**2 spr *= 0.5*self.beads.m[i]*self.nm.omegan2 # centroid virial contribution from atom i tcv = 0.0 for b in range(self.beads.nbeads): tcv += np.dot( (q[b,3*i:3*(i+1)]-qc[3*i:3*(i+1)]), f[b,3*i:3*(i+1)]) tcv *= -0.5/self.beads.nbeads tcv += 1.5*Constants.kb*self.simul.ensemble.temp logr = (alpha-1)*spr/(Constants.kb*self.simul.ensemble.temp*self.beads.nbeads) atcv += tcv atcv2 += tcv*tcv alogr += logr alogr2 += logr*logr #accumulates log averages in a way which preserves accuracy if (ni == 1): law = -logr else: (law, drop) = logsumlog( (law,1.0), (-logr,1.0)) #here we need to take care of the sign of tcv, which might as well be #negative... almost never but... if (ni == 1): lawke = -logr + np.log(abs(tcv)) sawke = np.sign(tcv) else: (lawke, sawke) = logsumlog( (lawke, sawke), (-logr+np.log(abs(tcv)), np.sign(tcv)) ) if ni == 0: raise IndexError("Couldn't find an atom which matched the argument of isotope_y") return np.asarray([alogr/ni, alogr2/ni, atcv/ni, atcv2/ni, law, lawke, sawke]) class Trajectories(dobject): """A simple class to take care of output of trajectory data. Attributes: simul: The simulation object from which the position data will be obtained. fatom: A dummy beads object used so that individual replica trajectories can be output. traj_dict: A dictionary containing all the trajectories that can be output. """ def __init__(self): """Initialises a Trajectories object.""" self.traj_dict = { # Note that here we want to return COPIES of the different arrays, so we make sure to make an operation in order not to return a reference. "positions": { "dimension" : "length", "help": "The atomic coordinate trajectories. Will print out one file per bead, unless the bead attribute is set by the user.", 'func': (lambda : 1.0*self.simul.beads.q)}, "velocities": {"dimension" : "velocity", "help": "The velocity trajectories. Will print out one file per bead, unless the bead attribute is set by the user.", 'func': (lambda : self.simul.beads.p/self.simul.beads.m3)}, "momenta": {"dimension" : "momentum", "help": "The momentum trajectories. Will print out one file per bead, unless the bead attribute is set by the user.", 'func': (lambda : 1.0*self.simul.beads.p)}, "forces": { "dimension" : "force", "help": "The force trajectories. Will print out one file per bead, unless the bead attribute is set by the user.", 'func': (lambda : 1.0*self.simul.forces.f)}, "x_centroid": {"dimension" : "length", "help": "The centroid coordinates.", 'func': (lambda : 1.0*self.simul.beads.qc)}, "v_centroid": {"dimension" : "velocity", "help": "The centroid velocity.", 'func': (lambda : self.simul.beads.pc/self.simul.beads.m3[0])}, "p_centroid": {"dimension" : "momentum", "help": "The centroid momentum.", 'func': (lambda : 1.0*self.simul.beads.pc)}, "f_centroid": {"dimension" : "force", "help": "The force acting on the centroid.", 'func': (lambda : np.sum(self.simul.forces.f,0)/float(self.simul.beads.nbeads))}, "kinetic_cv": {"dimension" : "energy", "help": "The centroid virial quantum kinetic energy estimator for each atom, resolved into Cartesian components [xx, yy, zz]", 'func': self.get_akcv}, "kinetic_od": {"dimension" : "energy", "help": "The off diagonal elements of the centroid virial quantum kinetic energy tensor [xy, xz, yz]", 'func': self.get_akcv_od}, "r_gyration": {"dimension" : "length", "help": "The radius of gyration of the ring polymer, for each atom and resolved into Cartesian components [xx, yy, zz]", 'func': self.get_rg}, "extras": { "help": """The additional data returned by the client code, printed verbatim. Will print out one file per bead, unless the bead attribute is set by the user.""", 'func': (lambda : self.simul.forces.extras)} } def bind(self, simul): """ Binds to a simulation object to fetch atomic and force data. Args: simul: The simulation object that will be managed by this Trajectories. """ self.simul = simul self.fatom = simul.beads[0].copy() def get_akcv(self): """Calculates the contribution to the kinetic energy due to each degree of freedom. """ rv = np.zeros(self.simul.beads.natoms*3) for b in range(self.simul.beads.nbeads): rv[:] += (self.simul.beads.q[b]-self.simul.beads.qc)*self.simul.forces.f[b] rv *= -0.5/self.simul.beads.nbeads rv += 0.5*Constants.kb*self.simul.ensemble.temp return rv def get_akcv_od(self): """Calculates the "off-diagonal" contribution to the kinetic energy tensor due to each atom. """ rv = np.zeros((self.simul.beads.natoms,3)) # helper arrays to make it more obvious what we are computing dq = np.zeros((self.simul.beads.natoms,3)) f = np.zeros((self.simul.beads.natoms,3)) for b in range(self.simul.beads.nbeads): dq[:] = (self.simul.beads.q[b]-self.simul.beads.qc).reshape((self.simul.beads.natoms,3)) f[:] = self.simul.forces.f[b].reshape((self.simul.beads.natoms,3)) rv[:,0] += dq[:,0]*f[:,1] + dq[:,1]*f[:,0] rv[:,1] += dq[:,0]*f[:,2] + dq[:,2]*f[:,0] rv[:,2] += dq[:,1]*f[:,2] + dq[:,2]*f[:,1] rv *= 0.5 rv *= -0.5/self.simul.beads.nbeads return rv.reshape(self.simul.beads.natoms*3) def get_rg(self): """Calculates the radius of gyration of the ring polymers. Computes separately the x, y, z contributions so that the actual gyration radius can be recovered as sqrt(rx^2+ry^2+rz^2). """ q = depstrip(self.simul.beads.q) qc = depstrip(self.simul.beads.qc) nat = self.simul.beads.natoms nb = self.simul.beads.nbeads rg = np.zeros(3*nat) for i in range(nb): for j in range(nat): dq = q[i,3*j:3*(j+1)] - qc[3*j:3*(j+1)] rg[3*j:3*(j+1)] += dq*dq return np.sqrt(rg/float(nb)) def __getitem__(self, key): """Retrieves the item given by key. Note that if the key contains a string (arg1; arg2; ... ) then it will pass the appropriate positional arguments to the calculation function of the property. Note the brackets and the semi-colon separators. If instead we have the syntax (arg1=val1;arg2; ... ), then the keyword/value pair (arg1,val1) will be added to the keyword argument list. The appropriate key word arguments will then be passed to the calculation function instead. Similarly, if the key contains a string {unit}, then it will take the string 'unit' and use it to define the units that the trajectory is output in. Args: key: A string contained in trajectory_dict. Returns: The trajectory labeled by the keyword key, along with its unit keyword, and the argument lists for the function used to calculate the trajectory specified by the keyword key. """ (key, unit, arglist, kwarglist) = getall(key) pkey = self.traj_dict[key] #pkey["func"](*arglist,**kwarglist) gives the value of the trajectory #in atomic units. unit_to_user() returns the value in the user #specified units. if "dimension" in pkey and unit != "": return unit_to_user(pkey["dimension"], unit, 1.0) * pkey["func"](*arglist,**kwarglist) else: return pkey["func"](*arglist,**kwarglist) def print_traj(self, what, stream, b=0, format="pdb", cell_units="atomic_unit", flush=True): """Prints out a frame of a trajectory for the specified quantity and bead. Args: what: A string specifying what to print. b: The bead index. Defaults to 0. stream: A reference to the stream on which data will be printed. format: The output file format. cell_units: The units used to specify the cell parameters. flush: A boolean which specifies whether to flush the output buffer after each write to file or not. """ cq = self[what] if getkey(what) in [ "extras" ] : stream.write(" #*EXTRAS*# Step: %10d Bead: %5d \n" % (self.simul.step+1, b) ) stream.write(cq[b]) stream.write("\n") if flush : stream.flush() os.fsync(stream) return elif getkey(what) in [ "positions", "velocities", "forces" ] : self.fatom.q[:] = cq[b] else: self.fatom.q[:] = cq fcell = Cell() fcell.h = self.simul.cell.h*unit_to_user("length", cell_units, 1.0) if format == "pdb": io_pdb.print_pdb(self.fatom, fcell, stream, title=("Traj: %s Step: %10d Bead: %5d " % (what, self.simul.step+1, b) ) ) elif format == "xyz": io_xyz.print_xyz(self.fatom, fcell, stream, title=("Traj: %s Step: %10d Bead: %5d " % (what, self.simul.step+1, b) ) ) elif format == "bin": io_binary.print_bin(self.fatom, fcell, stream, title=("Traj: %s Step: %10d Bead: %5d " % (what, self.simul.step+1, b) ) ) if flush : stream.flush() os.fsync(stream)
gpl-3.0
rymate1234/rymate-blog
migrations/versions/413f129e8b07_.py
1
1535
"""empty message Revision ID: 413f129e8b07 Revises: None Create Date: 2014-05-02 08:09:09.906725 """ # revision identifiers, used by Alembic. revision = '413f129e8b07' down_revision = None from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.create_table('users', sa.Column('id', sa.Integer(), nullable=False), sa.Column('username', sa.String(length=80), nullable=False), sa.Column('email', sa.String(length=80), nullable=False), sa.Column('password', sa.String(length=128), nullable=True), sa.Column('created_at', sa.DateTime(), nullable=False), sa.Column('first_name', sa.String(length=30), nullable=True), sa.Column('last_name', sa.String(length=30), nullable=True), sa.Column('active', sa.Boolean(), nullable=True), sa.Column('is_admin', sa.Boolean(), nullable=True), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('email'), sa.UniqueConstraint('username') ) op.create_table('roles', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=80), nullable=False), sa.Column('user_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('name') ) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_table('roles') op.drop_table('users') ### end Alembic commands ###
bsd-3-clause
IronManMark20/pyside2
tests/QtGui/deepcopy_test.py
3
4226
import unittest from copy import deepcopy from PySide2.QtCore import QPoint from PySide2.QtGui import QMatrix from PySide2.QtGui import QMatrix2x2, QMatrix2x3, QMatrix2x4 from PySide2.QtGui import QMatrix3x2, QMatrix3x3, QMatrix3x4 from PySide2.QtGui import QMatrix4x2, QMatrix4x3, QMatrix4x4 from PySide2.QtGui import QVector2D, QVector3D, QVector4D from PySide2.QtGui import QColor, QTransform, QKeySequence, QQuaternion from PySide2.QtGui import QPolygon class DeepCopyHelper: def testCopy(self): copy = deepcopy([self.original])[0] self.assert_(copy is not self.original) self.assertEqual(copy, self.original) class DeepCopyColorHelperF: def testCopy(self): copy = deepcopy([self.original])[0] self.assert_(copy is not self.original) self.assertEqual(copy.spec(), self.original.spec()) # impossible to compare float point # self.assertEqual(copy, self.original) class QColorDeepCopy(DeepCopyHelper, unittest.TestCase): def setUp(self): self.original = QColor("red") class QColorRGBDeepCopy(DeepCopyColorHelperF, unittest.TestCase): def setUp(self): self.original = QColor.fromRgbF(0.2, 0.3, 0.4, 0.5) class QColorHSLDeepCopy(DeepCopyColorHelperF, unittest.TestCase): def setUp(self): self.original = QColor.fromHslF(0.2, 0.3, 0.4, 0.5) class QColorHSVDeepCopy(DeepCopyColorHelperF, unittest.TestCase): def setUp(self): self.original = QColor.fromHsvF(0.2, 0.3, 0.4, 0.5) class QColorCMYKDeepCopy(DeepCopyColorHelperF, unittest.TestCase): def setUp(self): self.original = QColor.fromCmykF(0.2, 0.3, 0.4, 0.5, 0.6) class QTransformDeepCopy(DeepCopyHelper, unittest.TestCase): def setUp(self): self.original = QTransform(1, 2, 3, 4, 5, 6, 7, 8) class QKeySequenceDeepCopy(DeepCopyHelper, unittest.TestCase): def setUp(self): self.original = QKeySequence("Ctrl+P") class QQuaternionDeepCopy(DeepCopyHelper, unittest.TestCase): def setUp(self): self.original = QQuaternion(1, 2, 3, 4) class QVector2DDeepCopy(DeepCopyHelper, unittest.TestCase): def setUp(self): self.original = QVector2D(1, 2) class QVector3DDeepCopy(DeepCopyHelper, unittest.TestCase): def setUp(self): self.original = QVector3D(1, 2, 3) class QVector4DDeepCopy(DeepCopyHelper, unittest.TestCase): def setUp(self): self.original = QVector4D(1, 2, 3, 4) class QPolygonDeepCopy(DeepCopyHelper, unittest.TestCase): def setUp(self): self.original = QPolygon([QPoint(1, 2), QPoint(3, 4), QPoint(5, 6)]) class QMatrixDeepCopy(DeepCopyHelper, unittest.TestCase): def setUp(self): self.original = QMatrix(1, 2, 3, 4, 5, 6) # Avoid these tests until get gcc fixed # Related bug: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43247 """ class QMatrix2x2DeepCopy(DeepCopyHelper, unittest.TestCase): def setUp(self): self.original = QMatrix2x2([1, 2, 3, 4]) class QMatrix2x3DeepCopy(DeepCopyHelper, unittest.TestCase): def setUp(self): self.original = QMatrix2x3([1, 2, 3, 4, 5, 6]) class QMatrix2x4DeepCopy(DeepCopyHelper, unittest.TestCase): def setUp(self): self.original = QMatrix2x4([1, 2, 3, 4, 5, 6, 7, 8]) class QMatrix3x2DeepCopy(DeepCopyHelper, unittest.TestCase): def setUp(self): self.original = QMatrix3x2([1, 2, 3, 4, 5, 6]) class QMatrix3x3DeepCopy(DeepCopyHelper, unittest.TestCase): def setUp(self): self.original = QMatrix3x3([1, 2, 3, 4, 5, 6, 7, 8, 9]) class QMatrix3x4DeepCopy(DeepCopyHelper, unittest.TestCase): def setUp(self): self.original = QMatrix3x4([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) class QMatrix4x2DeepCopy(DeepCopyHelper, unittest.TestCase): def setUp(self): self.original = QMatrix4x2([1, 2, 3, 4, 5, 6, 7, 8]) class QMatrix4x3DeepCopy(DeepCopyHelper, unittest.TestCase): def setUp(self): self.original = QMatrix4x3([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) class QMatrix4x4DeepCopy(DeepCopyHelper, unittest.TestCase): def setUp(self): self.original = QMatrix4x4([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]) """ if __name__ == '__main__': unittest.main()
lgpl-2.1
zdomjus60/astrometry
tools.py
1
10051
# -*- coding: utf-8 -*- """ helper functions for time management """ import math def sin(x): return math.sin(math.radians(x)) def cos(x): return math.cos(math.radians(x)) def atan2(y , x): return math.degrees(math.atan2(y, x)) def reduce360(x): return x % 360.0 def dms2ddd(hour, minute, second): """ from sexagesimal to decimal """ return hour+minute/60.0+second/3600.0 def ddd2dms(dec_hour): """ from decimal to sexagesimal representation of hours and angles.""" if dec_hour < 0: sign = -1 dec_hour *= sign else: sign = 1 total_seconds = int(dec_hour * 3600.0+.5) seconds = total_seconds % 60 total_minutes = int((total_seconds - seconds)/60.0) minutes = total_minutes % 60 hours = int((total_minutes - minutes)/60.0) return (hours * sign, minutes * sign, seconds * sign) def cal2jul(year, month, day, hour=0, minute=0, second=0): """ converts calendar date to julian date this routine and the following are built following Duffet Smith /Zwart instructions as given in Peter Duffett-Smith-Zwart Practical Astronomy with your Calculator or Spreadsheet Fourth Edition, Cambridge University Press, Fourth Ed. 2011 For an easier use of the function, hours minutes and seconds are defaulted to 0, so it's not necessary to give them as parameters when the hour is 00:00:00 """ month2 = month year2 = year if month2 <= 2: year2 -= 1 month2 += 12 else: pass if (year*10000 + month*100 + day) >= 15821015: a = math.trunc(year2/100.0) b = 2 - a + math.trunc(a/4.0) else: a = 0 b = 0 if year < 0: c = math.trunc((365.25 * year2)-0.75) else: c = math.trunc(365.25 * year2) d = math.trunc(30.6001 *(month2 + 1)) return b + c + d + day + hour / 24.0 + minute / 1440.0 + second / 86400.0 + 1720994.5 def jul2cal(jd): """ converts julian date to calendar date """ jd += 0.5 i = math.modf(jd)[1] f = math.modf(jd)[0] if i > 2299160: a = math.trunc((i-1867216.25)/36524.25) b = i + a - math.trunc(a/4)+1 else: b = i c = b + 1524 d = math.trunc((c-122.1)/365.25) e = math.trunc(365.25 * d) g = math.trunc((c-e)/30.6001) day = c-e+f-math.trunc(30.6001*g) if g < 13.5: month = g - 1 else: month = g - 13 if month > 2.5: year = d - 4716 else: year = d - 4715 hours_frac = math.modf(day)[0]*24 day = int(day) hour, minute, second = ddd2dms(hours_frac) return (year, month, day, hour, minute, second) def day_of_the_week(year, month, day): """ given a calendar date, the routine returns a tuple with the Day Of The Week in number and in plaintext 0 for Sunday 1 for Monday and so on up to 6 Saturday """ doth = {0:'Sunday', 1:'Monday', 2:'Tuesday', 3:'Wednesday', 4:'Thursday', 5:'Friday', 6:'Saturday'} jd = cal2jul(year, month, day, 0, 0, 0) a = (jd+1.5)/7 f = math.trunc((a % 1)*7 +.5) return (f,doth[f]) def lt2ut(year, month, day, hour=0, minute=0, second=0, timezone=0, DS=0): """ Given, for a location on the Earth,a date, a time, a timezone (East + West - in hours) and the Daylight Savings (0 normal time 1 Daylight Savings), this routine gives back a calendar date in Universal Time representation (year, month, day, hour, minute, second). It aims to restore a common date and time for all places in the Earth. Timezone and Daylight Savings can be automized knowing the location using the pytz module (Olson database) """ ut = dms2ddd(hour,minute,second) - timezone - DS greenwich_calendar_date = day + ut/24 jd = cal2jul(year, month, greenwich_calendar_date) greenwich_calendar_date = jul2cal(jd) return greenwich_calendar_date def ut2lt(year, month, day, hour=0, minute=0, second=0, timezone=0, DS=0): """ Given a date, a time for Greenwich in UT format this routine gives back a calendar date in local time representation (year, month, day, hour, minute, second). It's the inverse function of the previous formula """ lt = dms2ddd(hour,minute,second) + timezone +DS local_calendar_date = day + lt/24 jd = cal2jul(year, month, local_calendar_date) local_calendar_date = jul2cal(jd) return local_calendar_date def ut2gst(year, month, day, hour, minute, second): """ Sidereal time is a time-keeping system astronomers use to keep track of the direction to point their telescopes to view a given star in the night sky. Briefly, sidereal time is a "time scale that is based on the Earth's rate of rotation measured relative to the fixed stars." (source Wikipedia) This routine converts Universal Time to Sidereal Time for Greenwich (Greenwich Sidereal Time) """ jd = cal2jul(year, month, day) S = jd - 2451545.0 T = S/36525.0 T0 = (6.697374558 + (2400.051336 * T)+ 0.000025862 *T*T) % 24 UT = dms2ddd(hour, minute, second)*1.002737909 GST = ddd2dms((UT + T0) % 24) return GST def gst2ut( year, month, day, hour, minute, second): """ Inverse of the previous function """ jd = cal2jul(year, month, day, 0,0,0) S = jd - 2451545.0 T = S/36525.0 T0 = (6.697374558 + 2400.051336 * T + 0.000025862 *T*T) % 24 GST = (dms2ddd(hour, minute, second) - T0) % 24 while GST <0: GST += 24 UT = GST * .9972695663 return ddd2dms(UT) def gst2lst( hour, minute, second, long_degree, long_minute, long_second=0): """ Corrects GST for a different location on the Earth """ GST = dms2ddd(hour,minute,second) lg = dms2ddd(long_degree, long_minute, long_second)/15.0 lst = ddd2dms((GST + lg) % 24) return lst def lst2gst( hour, minute, second, long_degree, long_minute, long_second=0): """ Inverse of the previous method """ lst = dms2ddd(hour,minute,second) lg = dms2ddd(long_degree, long_minute, long_second)/15.0 GST = ddd2dms((lst + lg) % 24) return GST def julian_centuries(year, month, day, hour=0, minute =0, second=0): d1 = cal2jul(year, month, day, hour, minute, second) d2 = cal2jul(2000,1,1,12) return (d1-d2) / 36525.0 def julian_millennia(year, month, day, hour=0, minute =0, second=0): return julian_centuries(year, month, day, hour, minute, second) / 10.0 def julian_decamillennia(year, month, day, hour=0, minute =0, second=0): return julian_centuries(year, month, day, hour, minute, second) / 100.0 def obl_ecl_JPL(year, month, day, hour=0, minute = 0, second = 0): t = julian_centuries(year, month, day, hour, minute, second) """ from JPL Astronomical Almanac 2010 """ return (23 * 3600 + 26*60 + 21.406 - 46.836769 * t - 0.0001831 * t * t + 0.00200340 * t * t * t - 0.576e-6 * t * t * t * t - 4.34e-8 * t * t * t * t * t) / 3600.0 def obl_ecl_Laskar(year, month, day, hour = 0, minute = 0, second = 0): """ Original work from Jay Tanner - converted to Python code by Domenico Mustara 2015 This PHP function computes the mean obliquity of the ecliptic given a JD argument corresponding to any given date and time. Author: Jay Tanner - 2010 The algorithm used here is based on work published by J. Laskar Astronomy and Astrophysics, Vol 157, p68 (1986), New Formulas for the Precession, Valid Over 10000 years, Table 8. Source code provided under the provisions of the GNU Affero General Public License (AGPL), version 3. http://www.gnu.org/licenses/agpl.html // ----------------------------------------------------------- // Compute the (t) value in Julian decamillennia corresponding // to the JD argument and reckoned from J2000. $t = ($JD - 2451545.0) / 3652500.0; // -------------------------------------- """ t = julian_decamillennia(year, month, day, hour, minute, second) w = 84381.448 w -= 4680.93 * t w -= 1.55 * t * t w += 1999.25 * t * t * t w -= 51.38 * t * t * t * t w -= 249.67 * t * t * t * t * t w -= 39.05 * t * t * t * t * t * t w += 7.12 * t * t * t * t * t * t * t w += 27.87 * t * t * t * t * t * t * t * t w += 5.79 * t * t * t * t * t * t * t * t * t w += 2.45 * t * t * t * t * t * t * t * t * t * t return w / 3600.0 """ Some conversion utilities between various coordinate systems """ def sph_ecl2rect_ecl(r, longitude, latitude): x = r * cos(latitude) * cos(longitude) y = r * cos(latitude) * sin(longitude) z = r * sin(latitude) return (x,y,z) def rect_ecl2sph_ecl(x,y,z): r = math.sqrt(x*x + y*y + z*z) longitude = atan2(y,x) latitude = atan2(z, math.sqrt(x*x + y*y)) return (r, longitude, latitude) def sph_equat2rect_equat(r, RA, Declination): x = r * cos(RA) * cos(Declination) y = r * sin(RA) * cos(Declination) z = r * sin(Declination) return (x,y,x) def rect_equat2sph_equat(x,y,z): r = math.sqrt(x*x + y*y +z*z) RA = atan2(y, x) Decl = atan2(z, math.sqrt(x*x + y*y)) return (r, RA, Decl) def rect_ecl2rect_equat(xeclip, yeclip, zeclip, year, month, day, hour = 0, minute = 0, second = 0): oblecl = obl_ecl_JPL(year, month, day, hour, minute, second) xequat = xeclip yequat = yeclip * cos(oblecl) - zeclip * sin(oblecl) zequat = yeclip * sin(oblecl) + zeclip * cos(oblecl) return (xequat, yequat, zequat) def rect_equat2rect_ecl(xequat, yequat, zequat, year, month, day, hour = 0, minute = 0, second = 0): oblecl = obl_ecl_JPL(year, month, day, hour, minute, second) xeclip = xequat yeclip = yequat * cos(- oblecl) - zequat * sin(- oblecl) zeclip = yequat * sin(- oblecl) + zequat * cos(- oblecl) return (xeclip, yeclip, zeclip)
cc0-1.0
Aploium/MagicWebsiteMirror
zmirror/lru_dict.py
3
1167
# coding=utf-8 from collections import OrderedDict class LRUDictManual(OrderedDict): # pragma: no cover """一个手动实现的LRUDict""" def __init__(self, size=32): super().__init__() self.maxsize = size def __getitem__(self, key): value = super().__getitem__(key) try: self.move_to_end(key) except: pass return value # noinspection PyMethodOverriding def __setitem__(self, key, value): if len(self) >= self.maxsize: self.popitem(last=False) if key in self: del self[key] super().__setitem__(key, value) def keys(self): return list(reversed(list(super().keys()))) def values(self): return list(reversed(list(super().values()))) def items(self): return list(reversed(list(super().items()))) def get_size(self): return len(self) def set_size(self, size): self.maxsize = size try: # 如果安装了 lru-dict, 则导入, 否则使用上面的手动实现的 LRUDict from lru import LRU except: LRUDict = LRUDictManual else: LRUDict = LRU
mit
stoeckli/iMatrixSpray
octoprint/printer.py
1
20362
# coding=utf-8 __author__ = "Gina Häußge <[email protected]>" __license__ = 'GNU Affero General Public License http://www.gnu.org/licenses/agpl.html' import time import datetime import threading import copy import os #import logging, logging.config import octoprint.util.comm as comm import octoprint.util as util from octoprint.settings import settings from octoprint.events import eventManager def getConnectionOptions(): """ Retrieves the available ports, baudrates, prefered port and baudrate for connecting to the printer. """ return { "ports": comm.serialList(), "baudrates": comm.baudrateList(), "portPreference": settings().get(["serial", "port"]), "baudratePreference": settings().getInt(["serial", "baudrate"]), "autoconnect": settings().getBoolean(["serial", "autoconnect"]) } class Printer(): def __init__(self, gcodeManager): from collections import deque self._gcodeManager = gcodeManager self._gcodeManager.registerCallback(self) # state self._temp = None self._bedTemp = None self._targetTemp = None self._targetBedTemp = None self._temps = { "actual": deque([], 300), "target": deque([], 300), "actualBed": deque([], 300), "targetBed": deque([], 300) } self._tempBacklog = [] self._latestMessage = None self._messages = deque([], 300) self._messageBacklog = [] self._latestLog = None self._log = deque([], 300) self._logBacklog = [] self._state = None self._currentZ = None self._progress = None self._printTime = None self._printTimeLeft = None self._printAfterSelect = False # sd handling self._sdPrinting = False self._sdStreaming = False self._selectedFile = None # comm self._comm = None # callbacks self._callbacks = [] self._lastProgressReport = None self._stateMonitor = StateMonitor( ratelimit=0.5, updateCallback=self._sendCurrentDataCallbacks, addTemperatureCallback=self._sendAddTemperatureCallbacks, addLogCallback=self._sendAddLogCallbacks, addMessageCallback=self._sendAddMessageCallbacks ) self._stateMonitor.reset( state={"state": None, "stateString": self.getStateString(), "flags": self._getStateFlags()}, jobData={"filename": None, "filesize": None, "estimatedSprayTime": None, "filament": None}, progress={"progress": None, "filepos": None, "sprayTime": None, "sprayTimeLeft": None}, currentZ=None ) #~~ callback handling def registerCallback(self, callback): self._callbacks.append(callback) self._sendInitialStateUpdate(callback) def unregisterCallback(self, callback): if callback in self._callbacks: self._callbacks.remove(callback) def _sendAddTemperatureCallbacks(self, data): for callback in self._callbacks: try: callback.addTemperature(data) except: pass def _sendAddLogCallbacks(self, data): for callback in self._callbacks: try: callback.addLog(data) except: pass def _sendAddMessageCallbacks(self, data): for callback in self._callbacks: try: callback.addMessage(data) except: pass def _sendCurrentDataCallbacks(self, data): for callback in self._callbacks: try: callback.sendCurrentData(copy.deepcopy(data)) except: pass def _sendTriggerUpdateCallbacks(self, type): for callback in self._callbacks: try: callback.sendUpdateTrigger(type) except: pass def _sendFeedbackCommandOutput(self, name, output): for callback in self._callbacks: try: callback.sendFeedbackCommandOutput(name, output) except: pass #~~ callback from gcodemanager def sendUpdateTrigger(self, type): if type == "gcodeFiles" and self._selectedFile: self._setJobData(self._selectedFile["filename"], self._selectedFile["filesize"], self._selectedFile["sd"]) #~~ printer commands def connect(self, port=None, baudrate=None): """ Connects to the printer. If port and/or baudrate is provided, uses these settings, otherwise autodetection will be attempted. """ if self._comm is not None: self._comm.close() self._comm = comm.MachineCom(port, baudrate, callbackObject=self) def disconnect(self): """ Closes the connection to the printer. """ if self._comm is not None: self._comm.close() self._comm = None eventManager().fire("Disconnected") def command(self, command): """ Sends a single gcode command to the printer. """ self.commands([command]) def commands(self, commands): """ Sends multiple gcode commands (provided as a list) to the printer. """ for command in commands: self._comm.sendCommand(command) def selectFile(self, filename, sd, printAfterSelect=False): if self._comm is None or (self._comm.isBusy() or self._comm.isStreaming()): return self._printAfterSelect = printAfterSelect self._comm.selectFile(filename, sd) self._setProgressData(0, None, None, None) self._setCurrentZ(None) def unselectFile(self): if self._comm is not None and (self._comm.isBusy() or self._comm.isStreaming()): return self._comm.unselectFile() self._setProgressData(0, None, None, None) self._setCurrentZ(None) def startPrint(self): """ Starts the currently loaded print job. Only starts if the printer is connected and operational, not currently printing and a printjob is loaded """ if self._comm is None or not self._comm.isOperational() or self._comm.isPrinting(): return if self._selectedFile is None: return self._setCurrentZ(None) self._comm.startPrint() def togglePausePrint(self): """ Pause the current printjob. """ if self._comm is None: return self._comm.setPause(not self._comm.isPaused()) def cancelPrint(self, disableMotorsAndHeater=True): """ Cancel the current printjob. """ if self._comm is None: return self._comm.cancelPrint() if disableMotorsAndHeater: self.commands(["M84", "M104 S0", "M140 S0", "M106 S0"]) # disable motors, switch off heaters and fan # reset progress, height, print time self._setCurrentZ(None) self._setProgressData(None, None, None, None) # mark print as failure if self._selectedFile is not None: self._gcodeManager.printFailed(self._selectedFile["filename"]) eventManager().fire("PrintFailed", self._selectedFile["filename"]) #~~ state monitoring def _setCurrentZ(self, currentZ): self._currentZ = currentZ formattedCurrentZ = None if self._currentZ: formattedCurrentZ = "%.2f mm" % (self._currentZ) self._stateMonitor.setCurrentZ(formattedCurrentZ) def _setState(self, state): self._state = state self._stateMonitor.setState({"state": self._state, "stateString": self.getStateString(), "flags": self._getStateFlags()}) def _addLog(self, log): self._log.append(log) self._stateMonitor.addLog(log) def _addMessage(self, message): self._messages.append(message) self._stateMonitor.addMessage(message) def _setProgressData(self, progress, filepos, printTime, printTimeLeft): self._progress = progress self._printTime = printTime self._printTimeLeft = printTimeLeft formattedPrintTime = None if (self._printTime): formattedPrintTime = util.getFormattedTimeDelta(datetime.timedelta(seconds=self._printTime)) formattedPrintTimeLeft = None if (self._printTimeLeft): formattedPrintTimeLeft = util.getFormattedTimeDelta(datetime.timedelta(minutes=self._printTimeLeft)) formattedFilePos = None if (filepos): formattedFilePos = util.getFormattedSize(filepos) self._stateMonitor.setProgress({"progress": self._progress, "filepos": formattedFilePos, "printTime": formattedPrintTime, "printTimeLeft": formattedPrintTimeLeft}) def _addTemperatureData(self, temp, bedTemp, targetTemp, bedTargetTemp): currentTimeUtc = int(time.time() * 1000) self._temps["actual"].append((currentTimeUtc, temp)) self._temps["target"].append((currentTimeUtc, targetTemp)) self._temps["actualBed"].append((currentTimeUtc, bedTemp)) self._temps["targetBed"].append((currentTimeUtc, bedTargetTemp)) self._temp = temp self._bedTemp = bedTemp self._targetTemp = targetTemp self._targetBedTemp = bedTargetTemp self._stateMonitor.addTemperature({"currentTime": currentTimeUtc, "temp": self._temp, "bedTemp": self._bedTemp, "targetTemp": self._targetTemp, "targetBedTemp": self._targetBedTemp}) def _setJobData(self, filename, filesize, sd): if filename is not None: self._selectedFile = { "filename": filename, "filesize": filesize, "sd": sd } else: self._selectedFile = None formattedFilename = None formattedFilesize = None estimatedPrintTime = None fileMTime = None filament = None if filename: formattedFilename = os.path.basename(filename) # Use a string for mtime because it could be float and the # javascript needs to exact match if not sd: fileMTime = str(os.stat(filename).st_mtime) if filesize: formattedFilesize = util.getFormattedSize(filesize) fileData = self._gcodeManager.getFileData(filename) if fileData is not None and "gcodeAnalysis" in fileData.keys(): if "estimatedPrintTime" in fileData["gcodeAnalysis"].keys(): estimatedPrintTime = fileData["gcodeAnalysis"]["estimatedPrintTime"] if "filament" in fileData["gcodeAnalysis"].keys(): filament = fileData["gcodeAnalysis"]["filament"] self._stateMonitor.setJobData({"filename": formattedFilename, "filesize": formattedFilesize, "estimatedPrintTime": estimatedPrintTime, "filament": filament, "sd": sd, "mtime": fileMTime}) def _sendInitialStateUpdate(self, callback): try: data = self._stateMonitor.getCurrentData() # convert the dict of deques to a dict of lists temps = {k: list(v) for (k,v) in self._temps.iteritems()} data.update({ "temperatureHistory": temps, "logHistory": list(self._log), "messageHistory": list(self._messages) }) callback.sendHistoryData(data) except Exception, err: import sys sys.stderr.write("ERROR: %s\n" % str(err)) pass def _getStateFlags(self): if not settings().getBoolean(["feature", "sdSupport"]) or self._comm is None: sdReady = False else: sdReady = self._comm.isSdReady() return { "operational": self.isOperational(), "printing": self.isPrinting(), "closedOrError": self.isClosedOrError(), "error": self.isError(), "paused": self.isPaused(), "ready": self.isReady(), "sdReady": sdReady } def getCurrentData(self): return self._stateMonitor.getCurrentData() #~~ callbacks triggered from self._comm def mcLog(self, message): """ Callback method for the comm object, called upon log output. """ self._addLog(message) def mcTempUpdate(self, temp, bedTemp, targetTemp, bedTargetTemp): self._addTemperatureData(temp, bedTemp, targetTemp, bedTargetTemp) def mcStateChange(self, state): """ Callback method for the comm object, called if the connection state changes. """ oldState = self._state # forward relevant state changes to gcode manager if self._comm is not None and oldState == self._comm.STATE_PRINTING: if self._selectedFile is not None: if state == self._comm.STATE_OPERATIONAL: self._gcodeManager.printSucceeded(self._selectedFile["filename"]) elif state == self._comm.STATE_CLOSED or state == self._comm.STATE_ERROR or state == self._comm.STATE_CLOSED_WITH_ERROR: self._gcodeManager.printFailed(self._selectedFile["filename"]) self._gcodeManager.resumeAnalysis() # printing done, put those cpu cycles to good use elif self._comm is not None and state == self._comm.STATE_PRINTING: self._gcodeManager.pauseAnalysis() # do not analyse gcode while printing self._setState(state) def mcMessage(self, message): """ Callback method for the comm object, called upon message exchanges via serial. Stores the message in the message buffer, truncates buffer to the last 300 lines. """ self._addMessage(message) def mcProgress(self): """ Callback method for the comm object, called upon any change in progress of the printjob. Triggers storage of new values for printTime, printTimeLeft and the current progress. """ self._setProgressData(self._comm.getPrintProgress(), self._comm.getPrintFilepos(), self._comm.getPrintTime(), self._comm.getPrintTimeRemainingEstimate()) def mcZChange(self, newZ): """ Callback method for the comm object, called upon change of the z-layer. """ oldZ = self._currentZ if newZ != oldZ: # we have to react to all z-changes, even those that might "go backward" due to a slicer's retraction or # anti-backlash-routines. Event subscribes should individually take care to filter out "wrong" z-changes eventManager().fire("ZChange", newZ) self._setCurrentZ(newZ) def mcSdStateChange(self, sdReady): self._stateMonitor.setState({"state": self._state, "stateString": self.getStateString(), "flags": self._getStateFlags()}) def mcSdFiles(self, files): self._sendTriggerUpdateCallbacks("gcodeFiles") def mcFileSelected(self, filename, filesize, sd): self._setJobData(filename, filesize, sd) self._stateMonitor.setState({"state": self._state, "stateString": self.getStateString(), "flags": self._getStateFlags()}) if self._printAfterSelect: self.startPrint() def mcPrintjobDone(self): self._setProgressData(1.0, self._selectedFile["filesize"], self._comm.getPrintTime(), 0) self._stateMonitor.setState({"state": self._state, "stateString": self.getStateString(), "flags": self._getStateFlags()}) def mcFileTransferStarted(self, filename, filesize): self._sdStreaming = True self._setJobData(filename, filesize, True) self._setProgressData(0.0, 0, 0, None) self._stateMonitor.setState({"state": self._state, "stateString": self.getStateString(), "flags": self._getStateFlags()}) def mcFileTransferDone(self): self._sdStreaming = False self._setCurrentZ(None) self._setJobData(None, None, None) self._setProgressData(None, None, None, None) self._stateMonitor.setState({"state": self._state, "stateString": self.getStateString(), "flags": self._getStateFlags()}) def mcReceivedRegisteredMessage(self, command, output): self._sendFeedbackCommandOutput(command, output) #~~ sd file handling def getSdFiles(self): if self._comm is None: return return self._comm.getSdFiles() def addSdFile(self, filename, path): if not self._comm or self._comm.isBusy(): return self._comm.startFileTransfer(path, filename[:8].lower() + ".gco") def deleteSdFile(self, filename): if not self._comm: return self._comm.deleteSdFile(filename) def initSdCard(self): if not self._comm: return self._comm.initSdCard() def releaseSdCard(self): if not self._comm: return self._comm.releaseSdCard() def refreshSdFiles(self): if not self._comm: return self._comm.refreshSdFiles() #~~ state reports def getStateString(self): """ Returns a human readable string corresponding to the current communication state. """ if self._comm is None: return "Offline" else: return self._comm.getStateString() def getCurrentData(self): return self._stateMonitor.getCurrentData() def getCurrentJob(self): currentData = self._stateMonitor.getCurrentData() return currentData["job"] def getCurrentTemperatures(self): return { "extruder": { "current": self._temp, "target": self._targetTemp }, "bed": { "current": self._bedTemp, "target": self._targetBedTemp } } def isClosedOrError(self): return self._comm is None or self._comm.isClosedOrError() def isOperational(self): return self._comm is not None and self._comm.isOperational() def isPrinting(self): return self._comm is not None and self._comm.isPrinting() def isPaused(self): return self._comm is not None and self._comm.isPaused() def isError(self): return self._comm is not None and self._comm.isError() def isReady(self): return self.isOperational() and not self._comm.isStreaming() def isLoading(self): return self._gcodeLoader is not None class GcodeLoader(threading.Thread): """ The GcodeLoader takes care of loading a gcode-File from disk and parsing it into a gcode object in a separate thread while constantly notifying interested listeners about the current progress. The progress is returned as a float value between 0 and 1 which is to be interpreted as the percentage of completion. """ def __init__(self, filename, progressCallback, loadedCallback): threading.Thread.__init__(self) self._progressCallback = progressCallback self._loadedCallback = loadedCallback self._filename = filename self._gcodeList = None def run(self): #Send an initial M110 to reset the line counter to zero. prevLineType = lineType = "CUSTOM" gcodeList = ["M110 N0"] filesize = os.stat(self._filename).st_size with open(self._filename, "r") as file: for line in file: if line.startswith(";TYPE:"): lineType = line[6:].strip() if ";" in line: line = line[0:line.find(";")] line = line.strip() if len(line) > 0: if prevLineType != lineType: gcodeList.append((line, lineType, )) else: gcodeList.append(line) prevLineType = lineType self._onLoadingProgress(float(file.tell()) / float(filesize)) self._gcodeList = gcodeList self._loadedCallback(self._filename, self._gcodeList) def _onLoadingProgress(self, progress): self._progressCallback(self._filename, progress, "loading") def _onParsingProgress(self, progress): self._progressCallback(self._filename, progress, "parsing") class SdFileStreamer(threading.Thread): def __init__(self, comm, filename, file, progressCallback, finishCallback): threading.Thread.__init__(self) self._comm = comm self._filename = filename self._file = file self._progressCallback = progressCallback self._finishCallback = finishCallback def run(self): if self._comm.isBusy(): return name = self._filename[:self._filename.rfind(".")] sdFilename = name[:8].lower() + ".gco" try: size = os.stat(self._file).st_size with open(self._file, "r") as f: self._comm.startSdFileTransfer(sdFilename) for line in f: if ";" in line: line = line[0:line.find(";")] line = line.strip() if len(line) > 0: self._comm.sendCommand(line) time.sleep(0.001) # do not send too fast self._progressCallback(sdFilename, float(f.tell()) / float(size)) finally: self._comm.endSdFileTransfer(sdFilename) self._finishCallback(sdFilename) class StateMonitor(object): def __init__(self, ratelimit, updateCallback, addTemperatureCallback, addLogCallback, addMessageCallback): self._ratelimit = ratelimit self._updateCallback = updateCallback self._addTemperatureCallback = addTemperatureCallback self._addLogCallback = addLogCallback self._addMessageCallback = addMessageCallback self._state = None self._jobData = None self._gcodeData = None self._sdUploadData = None self._currentZ = None self._progress = None self._changeEvent = threading.Event() self._lastUpdate = time.time() self._worker = threading.Thread(target=self._work) self._worker.daemon = True self._worker.start() def reset(self, state=None, jobData=None, progress=None, currentZ=None): self.setState(state) self.setJobData(jobData) self.setProgress(progress) self.setCurrentZ(currentZ) def addTemperature(self, temperature): self._addTemperatureCallback(temperature) self._changeEvent.set() def addLog(self, log): self._addLogCallback(log) self._changeEvent.set() def addMessage(self, message): self._addMessageCallback(message) self._changeEvent.set() def setCurrentZ(self, currentZ): self._currentZ = currentZ self._changeEvent.set() def setState(self, state): self._state = state self._changeEvent.set() def setJobData(self, jobData): self._jobData = jobData self._changeEvent.set() def setProgress(self, progress): self._progress = progress self._changeEvent.set() def _work(self): while True: self._changeEvent.wait() now = time.time() delta = now - self._lastUpdate additionalWaitTime = self._ratelimit - delta if additionalWaitTime > 0: time.sleep(additionalWaitTime) data = self.getCurrentData() self._updateCallback(data) self._lastUpdate = time.time() self._changeEvent.clear() def getCurrentData(self): return { "state": self._state, "job": self._jobData, "currentZ": self._currentZ, "progress": self._progress }
agpl-3.0
photoninger/ansible
lib/ansible/modules/network/nxos/nxos_config.py
6
19603
#!/usr/bin/python # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'network'} DOCUMENTATION = """ --- module: nxos_config extends_documentation_fragment: nxos version_added: "2.1" author: "Peter Sprygada (@privateip)" short_description: Manage Cisco NXOS configuration sections description: - Cisco NXOS configurations use a simple block indent file syntax for segmenting configuration into sections. This module provides an implementation for working with NXOS configuration sections in a deterministic way. This module works with either CLI or NXAPI transports. options: lines: description: - The ordered set of commands that should be configured in the section. The commands must be the exact same commands as found in the device running-config. Be sure to note the configuration command syntax as some commands are automatically modified by the device config parser. required: false default: null aliases: ['commands'] parents: description: - The ordered set of parents that uniquely identify the section the commands should be checked against. If the parents argument is omitted, the commands are checked against the set of top level or global commands. required: false default: null src: description: - The I(src) argument provides a path to the configuration file to load into the remote system. The path can either be a full system path to the configuration file if the value starts with / or relative to the root of the implemented role or playbook. This argument is mutually exclusive with the I(lines) and I(parents) arguments. required: false default: null version_added: "2.2" replace_src: description: - The I(replace_src) argument provides path to the configuration file to load into the remote system. This argument is used to replace the entire config with a flat-file. This is used with argument I(replace) with value I(config). This is mutually exclusive with the I(lines) and I(src) arguments. This argument is supported on Nexus 9K device. Use I(nxos_file_copy) module to copy the flat file to remote device and then use the path with this argument. required: false default: null version_added: "2.5" before: description: - The ordered set of commands to push on to the command stack if a change needs to be made. This allows the playbook designer the opportunity to perform configuration commands prior to pushing any changes without affecting how the set of commands are matched against the system. required: false default: null after: description: - The ordered set of commands to append to the end of the command stack if a change needs to be made. Just like with I(before) this allows the playbook designer to append a set of commands to be executed after the command set. required: false default: null match: description: - Instructs the module on the way to perform the matching of the set of commands against the current device config. If match is set to I(line), commands are matched line by line. If match is set to I(strict), command lines are matched with respect to position. If match is set to I(exact), command lines must be an equal match. Finally, if match is set to I(none), the module will not attempt to compare the source configuration with the running configuration on the remote device. required: false default: line choices: ['line', 'strict', 'exact', 'none'] replace: description: - Instructs the module on the way to perform the configuration on the device. If the replace argument is set to I(line) then the modified lines are pushed to the device in configuration mode. If the replace argument is set to I(block) then the entire command block is pushed to the device in configuration mode if any line is not correct. I(replace config) is supported on Nexus 9K device. required: false default: lineo choices: ['line', 'block', 'config'] force: description: - The force argument instructs the module to not consider the current devices running-config. When set to true, this will cause the module to push the contents of I(src) into the device without first checking if already configured. - Note this argument should be considered deprecated. To achieve the equivalent, set the C(match=none) which is idempotent. This argument will be removed in a future release. required: false default: false type: bool backup: description: - This argument will cause the module to create a full backup of the current C(running-config) from the remote device before any changes are made. The backup file is written to the C(backup) folder in the playbook root directory. If the directory does not exist, it is created. required: false default: false type: bool version_added: "2.2" running_config: description: - The module, by default, will connect to the remote device and retrieve the current running-config to use as a base for comparing against the contents of source. There are times when it is not desirable to have the task get the current running-config for every task in a playbook. The I(running_config) argument allows the implementer to pass in the configuration to use as the base config for comparison. required: false default: null aliases: ['config'] version_added: "2.4" defaults: description: - The I(defaults) argument will influence how the running-config is collected from the device. When the value is set to true, the command used to collect the running-config is append with the all keyword. When the value is set to false, the command is issued without the all keyword required: false default: false type: bool version_added: "2.2" save: description: - The C(save) argument instructs the module to save the running-config to startup-config. This operation is performed after any changes are made to the current running config. If no changes are made, the configuration is still saved to the startup config. This option will always cause the module to return changed. - This option is deprecated as of Ansible 2.4, use C(save_when) required: false default: false type: bool version_added: "2.2" save_when: description: - When changes are made to the device running-configuration, the changes are not copied to non-volatile storage by default. Using this argument will change that before. If the argument is set to I(always), then the running-config will always be copied to the startup-config and the I(modified) flag will always be set to True. If the argument is set to I(modified), then the running-config will only be copied to the startup-config if it has changed since the last save to startup-config. If the argument is set to I(never), the running-config will never be copied to the startup-config required: false default: never choices: ['always', 'never', 'modified'] version_added: "2.4" diff_against: description: - When using the C(ansible-playbook --diff) command line argument the module can generate diffs against different sources. - When this option is configure as I(startup), the module will return the diff of the running-config against the startup-config. - When this option is configured as I(intended), the module will return the diff of the running-config against the configuration provided in the C(intended_config) argument. - When this option is configured as I(running), the module will return the before and after diff of the running-config with respect to any changes made to the device configuration. required: false default: startup choices: ['startup', 'intended', 'running'] version_added: "2.4" diff_ignore_lines: description: - Use this argument to specify one or more lines that should be ignored during the diff. This is used for lines in the configuration that are automatically updated by the system. This argument takes a list of regular expressions or exact line matches. required: false version_added: "2.4" intended_config: description: - The C(intended_config) provides the master configuration that the node should conform to and is used to check the final running-config against. This argument will not modify any settings on the remote device and is strictly used to check the compliance of the current device's configuration against. When specifying this argument, the task should also modify the C(diff_against) value and set it to I(intended). required: false version_added: "2.4" """ EXAMPLES = """ --- - name: configure top level configuration and save it nxos_config: lines: hostname {{ inventory_hostname }} save_when: modified - name: diff the running-config against a provided config nxos_config: diff_against: intended intended_config: "{{ lookup('file', 'master.cfg') }}" - nxos_config: lines: - 10 permit ip 1.1.1.1/32 any log - 20 permit ip 2.2.2.2/32 any log - 30 permit ip 3.3.3.3/32 any log - 40 permit ip 4.4.4.4/32 any log - 50 permit ip 5.5.5.5/32 any log parents: ip access-list test before: no ip access-list test match: exact - nxos_config: lines: - 10 permit ip 1.1.1.1/32 any log - 20 permit ip 2.2.2.2/32 any log - 30 permit ip 3.3.3.3/32 any log - 40 permit ip 4.4.4.4/32 any log parents: ip access-list test before: no ip access-list test replace: block - name: replace config with flat file nxos_config: replace_src: config.txt replace: config """ RETURN = """ commands: description: The set of commands that will be pushed to the remote device returned: always type: list sample: ['hostname foo', 'vlan 1', 'name default'] updates: description: The set of commands that will be pushed to the remote device returned: always type: list sample: ['hostname foo', 'vlan 1', 'name default'] backup_path: description: The full path to the backup file returned: when backup is yes type: string sample: /playbooks/ansible/backup/nxos_config.2016-07-16@22:28:34 """ from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.network.common.config import NetworkConfig, dumps from ansible.module_utils.network.nxos.nxos import get_config, load_config, run_commands from ansible.module_utils.network.nxos.nxos import get_capabilities from ansible.module_utils.network.nxos.nxos import nxos_argument_spec from ansible.module_utils.network.nxos.nxos import check_args as nxos_check_args from ansible.module_utils.network.common.utils import to_list def get_running_config(module, config=None): contents = module.params['running_config'] if not contents: if not module.params['defaults'] and config: contents = config else: flags = ['all'] contents = get_config(module, flags=flags) return NetworkConfig(indent=2, contents=contents) def get_candidate(module): candidate = NetworkConfig(indent=2) if module.params['src']: if module.params['replace'] != 'config': candidate.load(module.params['src']) if module.params['replace'] == 'config': candidate.load('config replace {0}'.format(module.params['replace_src'])) elif module.params['lines']: parents = module.params['parents'] or list() candidate.add(module.params['lines'], parents=parents) return candidate def execute_show_commands(module, commands, output='text'): cmds = [] for command in to_list(commands): cmd = {'command': command, 'output': output, } cmds.append(cmd) body = run_commands(module, cmds) return body def main(): """ main entry point for module execution """ argument_spec = dict( src=dict(type='path'), replace_src=dict(), lines=dict(aliases=['commands'], type='list'), parents=dict(type='list'), before=dict(type='list'), after=dict(type='list'), match=dict(default='line', choices=['line', 'strict', 'exact', 'none']), replace=dict(default='line', choices=['line', 'block', 'config']), running_config=dict(aliases=['config']), intended_config=dict(), defaults=dict(type='bool', default=False), backup=dict(type='bool', default=False), save_when=dict(choices=['always', 'never', 'modified'], default='never'), diff_against=dict(choices=['running', 'startup', 'intended']), diff_ignore_lines=dict(type='list'), # save is deprecated as of ans2.4, use save_when instead save=dict(default=False, type='bool', removed_in_version='2.4'), # force argument deprecated in ans2.2 force=dict(default=False, type='bool', removed_in_version='2.2') ) argument_spec.update(nxos_argument_spec) mutually_exclusive = [('lines', 'src', 'replace_src'), ('parents', 'src'), ('save', 'save_when')] required_if = [('match', 'strict', ['lines']), ('match', 'exact', ['lines']), ('replace', 'block', ['lines']), ('replace', 'config', ['replace_src']), ('diff_against', 'intended', ['intended_config'])] module = AnsibleModule(argument_spec=argument_spec, mutually_exclusive=mutually_exclusive, required_if=required_if, supports_check_mode=True) warnings = list() nxos_check_args(module, warnings) result = {'changed': False, 'warnings': warnings} config = None info = get_capabilities(module).get('device_info', {}) os_platform = info.get('network_os_platform', '') if module.params['replace'] == 'config': if '9K' not in os_platform: module.fail_json(msg='replace: config is supported only for Nexus 9K series switches') if module.params['replace_src']: if module.params['replace'] != 'config': module.fail_json(msg='replace: config is required with replace_src') if module.params['backup'] or (module._diff and module.params['diff_against'] == 'running'): contents = get_config(module) config = NetworkConfig(indent=2, contents=contents) if module.params['backup']: result['__backup__'] = contents if any((module.params['src'], module.params['lines'], module.params['replace_src'])): match = module.params['match'] replace = module.params['replace'] candidate = get_candidate(module) if match != 'none' and replace != 'config': config = get_running_config(module, config) path = module.params['parents'] configobjs = candidate.difference(config, match=match, replace=replace, path=path) else: configobjs = candidate.items if configobjs: commands = dumps(configobjs, 'commands').split('\n') if module.params['before']: commands[:0] = module.params['before'] if module.params['after']: commands.extend(module.params['after']) result['commands'] = commands result['updates'] = commands if not module.check_mode: load_config(module, commands) result['changed'] = True running_config = None startup_config = None diff_ignore_lines = module.params['diff_ignore_lines'] if module.params['save']: module.params['save_when'] = 'always' if module.params['save_when'] != 'never': output = execute_show_commands(module, ['show running-config', 'show startup-config']) running_config = NetworkConfig(indent=1, contents=output[0], ignore_lines=diff_ignore_lines) startup_config = NetworkConfig(indent=1, contents=output[1], ignore_lines=diff_ignore_lines) if running_config.sha1 != startup_config.sha1 or module.params['save_when'] == 'always': result['changed'] = True if not module.check_mode: cmd = {'command': 'copy running-config startup-config', 'output': 'text'} run_commands(module, [cmd]) else: module.warn('Skipping command `copy running-config startup-config` ' 'due to check_mode. Configuration not copied to ' 'non-volatile storage') if module._diff: if not running_config: output = execute_show_commands(module, 'show running-config') contents = output[0] else: contents = running_config.config_text # recreate the object in order to process diff_ignore_lines running_config = NetworkConfig(indent=1, contents=contents, ignore_lines=diff_ignore_lines) if module.params['diff_against'] == 'running': if module.check_mode: module.warn("unable to perform diff against running-config due to check mode") contents = None else: contents = config.config_text elif module.params['diff_against'] == 'startup': if not startup_config: output = execute_show_commands(module, 'show startup-config') contents = output[0] else: contents = output[0] contents = startup_config.config_text elif module.params['diff_against'] == 'intended': contents = module.params['intended_config'] if contents is not None: base_config = NetworkConfig(indent=1, contents=contents, ignore_lines=diff_ignore_lines) if running_config.sha1 != base_config.sha1: result.update({ 'changed': True, 'diff': {'before': str(base_config), 'after': str(running_config)} }) module.exit_json(**result) if __name__ == '__main__': main()
gpl-3.0
ekr/nss-old
external_tests/google_test/gtest/xcode/Scripts/versiongenerate.py
3088
4536
#!/usr/bin/env python # # Copyright 2008, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """A script to prepare version informtion for use the gtest Info.plist file. This script extracts the version information from the configure.ac file and uses it to generate a header file containing the same information. The #defines in this header file will be included in during the generation of the Info.plist of the framework, giving the correct value to the version shown in the Finder. This script makes the following assumptions (these are faults of the script, not problems with the Autoconf): 1. The AC_INIT macro will be contained within the first 1024 characters of configure.ac 2. The version string will be 3 integers separated by periods and will be surrounded by squre brackets, "[" and "]" (e.g. [1.0.1]). The first segment represents the major version, the second represents the minor version and the third represents the fix version. 3. No ")" character exists between the opening "(" and closing ")" of AC_INIT, including in comments and character strings. """ import sys import re # Read the command line argument (the output directory for Version.h) if (len(sys.argv) < 3): print "Usage: versiongenerate.py input_dir output_dir" sys.exit(1) else: input_dir = sys.argv[1] output_dir = sys.argv[2] # Read the first 1024 characters of the configure.ac file config_file = open("%s/configure.ac" % input_dir, 'r') buffer_size = 1024 opening_string = config_file.read(buffer_size) config_file.close() # Extract the version string from the AC_INIT macro # The following init_expression means: # Extract three integers separated by periods and surrounded by squre # brackets(e.g. "[1.0.1]") between "AC_INIT(" and ")". Do not be greedy # (*? is the non-greedy flag) since that would pull in everything between # the first "(" and the last ")" in the file. version_expression = re.compile(r"AC_INIT\(.*?\[(\d+)\.(\d+)\.(\d+)\].*?\)", re.DOTALL) version_values = version_expression.search(opening_string) major_version = version_values.group(1) minor_version = version_values.group(2) fix_version = version_values.group(3) # Write the version information to a header file to be included in the # Info.plist file. file_data = """// // DO NOT MODIFY THIS FILE (but you can delete it) // // This file is autogenerated by the versiongenerate.py script. This script // is executed in a "Run Script" build phase when creating gtest.framework. This // header file is not used during compilation of C-source. Rather, it simply // defines some version strings for substitution in the Info.plist. Because of // this, we are not not restricted to C-syntax nor are we using include guards. // #define GTEST_VERSIONINFO_SHORT %s.%s #define GTEST_VERSIONINFO_LONG %s.%s.%s """ % (major_version, minor_version, major_version, minor_version, fix_version) version_file = open("%s/Version.h" % output_dir, 'w') version_file.write(file_data) version_file.close()
mpl-2.0
nimasmi/wagtail
wagtail/core/blocks/struct_block.py
1
8310
import collections from django import forms from django.core.exceptions import ValidationError from django.forms.utils import ErrorList from django.template.loader import render_to_string from django.utils.functional import cached_property from django.utils.html import format_html, format_html_join from django.utils.safestring import mark_safe from wagtail.admin.staticfiles import versioned_static from .base import Block, DeclarativeSubBlocksMetaclass from .utils import js_dict __all__ = ['BaseStructBlock', 'StructBlock', 'StructValue'] class StructValue(collections.OrderedDict): """ A class that generates a StructBlock value from provded sub-blocks """ def __init__(self, block, *args): super().__init__(*args) self.block = block def __html__(self): return self.block.render(self) def render_as_block(self, context=None): return self.block.render(self, context=context) @cached_property def bound_blocks(self): return collections.OrderedDict([ (name, block.bind(self.get(name))) for name, block in self.block.child_blocks.items() ]) class BaseStructBlock(Block): def __init__(self, local_blocks=None, **kwargs): self._constructor_kwargs = kwargs super().__init__(**kwargs) # create a local (shallow) copy of base_blocks so that it can be supplemented by local_blocks self.child_blocks = self.base_blocks.copy() if local_blocks: for name, block in local_blocks: block.set_name(name) self.child_blocks[name] = block self.child_js_initializers = {} for name, block in self.child_blocks.items(): js_initializer = block.js_initializer() if js_initializer is not None: self.child_js_initializers[name] = js_initializer self.dependencies = self.child_blocks.values() def get_default(self): """ Any default value passed in the constructor or self.meta is going to be a dict rather than a StructValue; for consistency, we need to convert it to a StructValue for StructBlock to work with """ return self._to_struct_value(self.meta.default.items()) def js_initializer(self): # skip JS setup entirely if no children have js_initializers if not self.child_js_initializers: return None return "StructBlock(%s)" % js_dict(self.child_js_initializers) @property def media(self): return forms.Media(js=[versioned_static('wagtailadmin/js/blocks/struct.js')]) def get_form_context(self, value, prefix='', errors=None): if errors: if len(errors) > 1: # We rely on StructBlock.clean throwing a single ValidationError with a specially crafted # 'params' attribute that we can pull apart and distribute to the child blocks raise TypeError('StructBlock.render_form unexpectedly received multiple errors') error_dict = errors.as_data()[0].params else: error_dict = {} bound_child_blocks = collections.OrderedDict([ ( name, block.bind(value.get(name, block.get_default()), prefix="%s-%s" % (prefix, name), errors=error_dict.get(name)) ) for name, block in self.child_blocks.items() ]) return { 'children': bound_child_blocks, 'help_text': getattr(self.meta, 'help_text', None), 'classname': self.meta.form_classname, 'block_definition': self, 'prefix': prefix, } def render_form(self, value, prefix='', errors=None): context = self.get_form_context(value, prefix=prefix, errors=errors) return mark_safe(render_to_string(self.meta.form_template, context)) def value_from_datadict(self, data, files, prefix): return self._to_struct_value([ (name, block.value_from_datadict(data, files, '%s-%s' % (prefix, name))) for name, block in self.child_blocks.items() ]) def value_omitted_from_data(self, data, files, prefix): return all( block.value_omitted_from_data(data, files, '%s-%s' % (prefix, name)) for name, block in self.child_blocks.items() ) def clean(self, value): result = [] # build up a list of (name, value) tuples to be passed to the StructValue constructor errors = {} for name, val in value.items(): try: result.append((name, self.child_blocks[name].clean(val))) except ValidationError as e: errors[name] = ErrorList([e]) if errors: # The message here is arbitrary - StructBlock.render_form will suppress it # and delegate the errors contained in the 'params' dict to the child blocks instead raise ValidationError('Validation error in StructBlock', params=errors) return self._to_struct_value(result) def to_python(self, value): """ Recursively call to_python on children and return as a StructValue """ return self._to_struct_value([ ( name, (child_block.to_python(value[name]) if name in value else child_block.get_default()) # NB the result of get_default is NOT passed through to_python, as it's expected # to be in the block's native type already ) for name, child_block in self.child_blocks.items() ]) def _to_struct_value(self, block_items): """ Return a Structvalue representation of the sub-blocks in this block """ return self.meta.value_class(self, block_items) def get_prep_value(self, value): """ Recursively call get_prep_value on children and return as a plain dict """ return dict([ (name, self.child_blocks[name].get_prep_value(val)) for name, val in value.items() ]) def get_api_representation(self, value, context=None): """ Recursively call get_api_representation on children and return as a plain dict """ return dict([ (name, self.child_blocks[name].get_api_representation(val, context=context)) for name, val in value.items() ]) def get_searchable_content(self, value): content = [] for name, block in self.child_blocks.items(): content.extend(block.get_searchable_content(value.get(name, block.get_default()))) return content def deconstruct(self): """ Always deconstruct StructBlock instances as if they were plain StructBlocks with all of the field definitions passed to the constructor - even if in reality this is a subclass of StructBlock with the fields defined declaratively, or some combination of the two. This ensures that the field definitions get frozen into migrations, rather than leaving a reference to a custom subclass in the user's models.py that may or may not stick around. """ path = 'wagtail.core.blocks.StructBlock' args = [list(self.child_blocks.items())] kwargs = self._constructor_kwargs return (path, args, kwargs) def check(self, **kwargs): errors = super().check(**kwargs) for name, child_block in self.child_blocks.items(): errors.extend(child_block.check(**kwargs)) errors.extend(child_block._check_name(**kwargs)) return errors def render_basic(self, value, context=None): return format_html('<dl>\n{}\n</dl>', format_html_join( '\n', ' <dt>{}</dt>\n <dd>{}</dd>', value.items())) class Meta: default = {} form_classname = 'struct-block' form_template = 'wagtailadmin/block_forms/struct.html' value_class = StructValue # No icon specified here, because that depends on the purpose that the # block is being used for. Feel encouraged to specify an icon in your # descendant block type icon = "placeholder" class StructBlock(BaseStructBlock, metaclass=DeclarativeSubBlocksMetaclass): pass
bsd-3-clause
nkgilley/home-assistant
homeassistant/components/spc/binary_sensor.py
6
2100
"""Support for Vanderbilt (formerly Siemens) SPC alarm systems.""" import logging from pyspcwebgw.const import ZoneInput, ZoneType from homeassistant.components.binary_sensor import BinarySensorEntity from homeassistant.core import callback from homeassistant.helpers.dispatcher import async_dispatcher_connect from . import DATA_API, SIGNAL_UPDATE_SENSOR _LOGGER = logging.getLogger(__name__) def _get_device_class(zone_type): return { ZoneType.ALARM: "motion", ZoneType.ENTRY_EXIT: "opening", ZoneType.FIRE: "smoke", ZoneType.TECHNICAL: "power", }.get(zone_type) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the SPC binary sensor.""" if discovery_info is None: return api = hass.data[DATA_API] async_add_entities( [ SpcBinarySensor(zone) for zone in api.zones.values() if _get_device_class(zone.type) ] ) class SpcBinarySensor(BinarySensorEntity): """Representation of a sensor based on a SPC zone.""" def __init__(self, zone): """Initialize the sensor device.""" self._zone = zone async def async_added_to_hass(self): """Call for adding new entities.""" self.async_on_remove( async_dispatcher_connect( self.hass, SIGNAL_UPDATE_SENSOR.format(self._zone.id), self._update_callback, ) ) @callback def _update_callback(self): """Call update method.""" self.async_schedule_update_ha_state(True) @property def name(self): """Return the name of the device.""" return self._zone.name @property def is_on(self): """Whether the device is switched on.""" return self._zone.input == ZoneInput.OPEN @property def should_poll(self): """No polling needed.""" return False @property def device_class(self): """Return the device class.""" return _get_device_class(self._zone.type)
apache-2.0
ypid/series60-remote
pc/devices/status_numbers.py
1
2071
# -*- coding: utf-8 -*- # Copyright (c) 2008 - 2010 Lukas Hetzenecker <[email protected]> NUM_CONNECTED = 100 NUM_HELLO_REQUEST = 110 NUM_HELLO_REPLY = 111 NUM_QUIT = 120 NUM_PARTIAL_MESSAGE = 130 NUM_CONTACTS_REQUEST_HASH_ALL = 200 NUM_CONTACTS_REQUEST_HASH_SINGLE= 201 NUM_CONTACTS_REQUEST_CONTACT = 204 NUM_CONTACTS_REQUEST_CONTACTS_ALL = 205 NUM_CONTACTS_REPLY_HASH_ALL= 210 NUM_CONTACTS_REPLY_HASH_SINGLE_START= 211 NUM_CONTACTS_REPLY_HASH_SINGLE_LINE= 212 NUM_CONTACTS_REPLY_HASH_SINGLE_END= 213 NUM_CONTACTS_REPLY_CONTACT_START = 220 NUM_CONTACTS_REPLY_CONTACT_LINE = 221 NUM_CONTACTS_REPLY_CONTACT_END = 222 NUM_CONTACTS_REPLY_CONTACTS_ALL_END = 223 NUM_CONTACTS_ADD = 230 NUM_CONTACTS_ADD_REPLY_ID = 231 NUM_CONTACTS_DELETE = 232 NUM_CONTACTS_CHANGE_ADDFIELD = 233 NUM_CONTACTS_CHANGE_REMOVEFIELD = 234 NUM_SYSINFO_REQUEST = 250 NUM_SYSINFO_REPLY_START = 260 NUM_SYSINFO_REPLY_LINE = 261 NUM_SYSINFO_REPLY_END = 262 NUM_MESSAGE_SEND_REQUEST = 300 NUM_MESSAGE_SEND_REPLY_OK = 301 NUM_MESSAGE_SEND_REPLY_STATUS = 302 NUM_MESSAGE_SEND_REPLY_FAILURE = 303 NUM_MESSAGE_SEND_REPLY_RETRY = 304 NUM_SET_READ = 320 NUM_MESSAGE_NEW = 350 NUM_MESSAGE_REQUEST = 351 NUM_MESSAGE_REPLY_LINE = 352 NUM_MESSAGE_REPLY_END = 353 NUM_MESSAGE_REQUEST_UNREAD = 370 NUM_MESSAGE_REPLY_UNREAD = 371 NUM_CALENDAR_REQUEST_HASH_ALL = 380 #NUM_CALENDAR_REQUEST_HASH_SINGLE = 381 NUM_CALENDAR_REQUEST_ENTRY = 382 NUM_CALENDAR_REQUEST_ENTRIES_ALL = 383 NUM_CALENDAR_REPLY_HASH_ALL= 384 #NUM_CALENDAR_REPLY_HASH_SINGLE_START= 385 #NUM_CALENDAR_REPLY_HASH_SINGLE_LINE= 386 #NUM_CALENDAR_REPLY_HASH_SINGLE_END= 387 NUM_CALENDAR_REPLY_ENTRIES_START = 388 NUM_CALENDAR_REPLY_ENTRY = 389 NUM_CALENDAR_REPLY_ENTRIES_END = 390 NUM_CALENDAR_ENTRY_ADD = 395 NUM_CALENDAR_ENTRY_ADD_REPLY = 396 NUM_CALENDAR_ENTRY_DELETE = 397 NUM_CALENDAR_ENTRY_CHANGE = 398 NUM_CALENDAR_ENTRY_CHANGE_REPLY_TIME = 399 NUM_INCOMING_CALL = 400 NUM_DEBUG = 999 NUM_END_HEADER = chr(0x02) # Start of Text NUM_SEPERATOR = chr(0x1E) # Record Separator NUM_END_TEXT = chr(0x03) # End of Text PROTOCOL_VERSION = 1.5
gpl-2.0
DooMLoRD/android_kernel_sony_msm8960t_aosp
tools/perf/scripts/python/futex-contention.py
11261
1486
# futex contention # (c) 2010, Arnaldo Carvalho de Melo <[email protected]> # Licensed under the terms of the GNU GPL License version 2 # # Translation of: # # http://sourceware.org/systemtap/wiki/WSFutexContention # # to perf python scripting. # # Measures futex contention import os, sys sys.path.append(os.environ['PERF_EXEC_PATH'] + '/scripts/python/Perf-Trace-Util/lib/Perf/Trace') from Util import * process_names = {} thread_thislock = {} thread_blocktime = {} lock_waits = {} # long-lived stats on (tid,lock) blockage elapsed time process_names = {} # long-lived pid-to-execname mapping def syscalls__sys_enter_futex(event, ctxt, cpu, s, ns, tid, comm, nr, uaddr, op, val, utime, uaddr2, val3): cmd = op & FUTEX_CMD_MASK if cmd != FUTEX_WAIT: return # we don't care about originators of WAKE events process_names[tid] = comm thread_thislock[tid] = uaddr thread_blocktime[tid] = nsecs(s, ns) def syscalls__sys_exit_futex(event, ctxt, cpu, s, ns, tid, comm, nr, ret): if thread_blocktime.has_key(tid): elapsed = nsecs(s, ns) - thread_blocktime[tid] add_stats(lock_waits, (tid, thread_thislock[tid]), elapsed) del thread_blocktime[tid] del thread_thislock[tid] def trace_begin(): print "Press control+C to stop and show the summary" def trace_end(): for (tid, lock) in lock_waits: min, max, avg, count = lock_waits[tid, lock] print "%s[%d] lock %x contended %d times, %d avg ns" % \ (process_names[tid], tid, lock, count, avg)
gpl-2.0
kpespinosa/BuildingMachineLearningSystemsWithPython
ch04/blei_lda.py
21
2601
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License from __future__ import print_function from wordcloud import create_cloud try: from gensim import corpora, models, matutils except: print("import gensim failed.") print() print("Please install it") raise import matplotlib.pyplot as plt import numpy as np from os import path NUM_TOPICS = 100 # Check that data exists if not path.exists('./data/ap/ap.dat'): print('Error: Expected data to be present at data/ap/') print('Please cd into ./data & run ./download_ap.sh') # Load the data corpus = corpora.BleiCorpus('./data/ap/ap.dat', './data/ap/vocab.txt') # Build the topic model model = models.ldamodel.LdaModel( corpus, num_topics=NUM_TOPICS, id2word=corpus.id2word, alpha=None) # Iterate over all the topics in the model for ti in range(model.num_topics): words = model.show_topic(ti, 64) tf = sum(f for f, w in words) with open('topics.txt', 'w') as output: output.write('\n'.join('{}:{}'.format(w, int(1000. * f / tf)) for f, w in words)) output.write("\n\n\n") # We first identify the most discussed topic, i.e., the one with the # highest total weight topics = matutils.corpus2dense(model[corpus], num_terms=model.num_topics) weight = topics.sum(1) max_topic = weight.argmax() # Get the top 64 words for this topic # Without the argument, show_topic would return only 10 words words = model.show_topic(max_topic, 64) # This function will actually check for the presence of pytagcloud and is otherwise a no-op create_cloud('cloud_blei_lda.png', words) num_topics_used = [len(model[doc]) for doc in corpus] fig,ax = plt.subplots() ax.hist(num_topics_used, np.arange(42)) ax.set_ylabel('Nr of documents') ax.set_xlabel('Nr of topics') fig.tight_layout() fig.savefig('Figure_04_01.png') # Now, repeat the same exercise using alpha=1.0 # You can edit the constant below to play around with this parameter ALPHA = 1.0 model1 = models.ldamodel.LdaModel( corpus, num_topics=NUM_TOPICS, id2word=corpus.id2word, alpha=ALPHA) num_topics_used1 = [len(model1[doc]) for doc in corpus] fig,ax = plt.subplots() ax.hist([num_topics_used, num_topics_used1], np.arange(42)) ax.set_ylabel('Nr of documents') ax.set_xlabel('Nr of topics') # The coordinates below were fit by trial and error to look good ax.text(9, 223, r'default alpha') ax.text(26, 156, 'alpha=1.0') fig.tight_layout() fig.savefig('Figure_04_02.png')
mit
daenamkim/ansible
test/units/modules/network/junos/test_junos_config.py
35
8141
# # (c) 2017 Red Hat Inc. # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # Make coding more python3-ish from __future__ import (absolute_import, division, print_function) __metaclass__ = type from ansible.compat.tests.mock import patch from ansible.modules.network.junos import junos_config from units.modules.utils import set_module_args from .junos_module import TestJunosModule, load_fixture class TestJunosConfigModule(TestJunosModule): module = junos_config def setUp(self): super(TestJunosConfigModule, self).setUp() self.mock_get_config = patch('ansible.modules.network.junos.junos_config.get_configuration') self.get_config = self.mock_get_config.start() self.mock_load_config = patch('ansible.modules.network.junos.junos_config.load_config') self.load_config = self.mock_load_config.start() self.mock_load_configuration = patch('ansible.modules.network.junos.junos_config.load_configuration') self.load_configuration = self.mock_load_configuration.start() self.mock_lock_configuration = patch('ansible.module_utils.network.junos.junos.lock_configuration') self.lock_configuration = self.mock_lock_configuration.start() self.mock_unlock_configuration = patch('ansible.module_utils.network.junos.junos.unlock_configuration') self.unlock_configuration = self.mock_unlock_configuration.start() self.mock_commit_configuration = patch('ansible.modules.network.junos.junos_config.commit_configuration') self.commit_configuration = self.mock_commit_configuration.start() self.mock_get_diff = patch('ansible.modules.network.junos.junos_config.get_diff') self.get_diff = self.mock_get_diff.start() self.mock_conn = patch('ansible.module_utils.connection.Connection') self.conn = self.mock_conn.start() self.mock_netconf = patch('ansible.module_utils.network.junos.junos.NetconfConnection') self.netconf_conn = self.mock_netconf.start() self.mock_exec_rpc = patch('ansible.modules.network.junos.junos_config.exec_rpc') self.exec_rpc = self.mock_exec_rpc.start() self.mock_netconf_rpc = patch('ansible.module_utils.network.common.netconf.NetconfConnection') self.netconf_rpc = self.mock_netconf_rpc.start() def tearDown(self): super(TestJunosConfigModule, self).tearDown() self.mock_get_config.stop() self.mock_load_config.stop() self.mock_lock_configuration.stop() self.mock_unlock_configuration.stop() self.mock_commit_configuration.stop() self.mock_get_diff.stop() self.load_configuration.stop() self.mock_conn.stop() self.mock_netconf.stop() self.mock_exec_rpc.stop() self.mock_netconf_rpc.stop() def load_fixtures(self, commands=None, format='text', changed=False): self.get_config.return_value = load_fixture('get_configuration_rpc_reply.txt') if changed: self.load_config.return_value = load_fixture('get_configuration_rpc_reply_diff.txt') else: self.load_config.return_value = None def test_junos_config_unchanged(self): src = load_fixture('junos_config.set', content='str') set_module_args(dict(src=src)) self.execute_module() def test_junos_config_src_set(self): src = load_fixture('junos_config.set', content='str') set_module_args(dict(src=src)) self.execute_module(changed=True) args, kwargs = self.load_config.call_args self.assertEqual(kwargs['action'], 'set') self.assertEqual(kwargs['format'], 'text') def test_junos_config_backup(self): set_module_args(dict(backup=True)) result = self.execute_module() self.assertIn('__backup__', result) def test_junos_config_lines(self): set_module_args(dict(lines=['delete interfaces ae11', 'set interfaces ae11 unit 0 description Test'])) self.execute_module(changed=True) args, kwargs = self.load_config.call_args self.assertEqual(args[1][0], 'set interfaces ae11 unit 0 description Test') self.assertEqual(kwargs['action'], 'set') self.assertEqual(kwargs['format'], 'text') def test_junos_config_confirm(self): src = load_fixture('junos_config.set', content='str') set_module_args(dict(src=src, confirm=40)) self.execute_module(changed=True) args, kwargs = self.commit_configuration.call_args self.assertEqual(kwargs['confirm_timeout'], 40) def test_junos_config_rollback(self): rollback = 10 set_module_args(dict(rollback=rollback)) self.execute_module(changed=True) self.assertEqual(self.get_diff.call_count, 1) self.assertEqual(self.load_configuration.call_count, 1) self.assertEqual(self.commit_configuration.call_count, 1) load_configuration_args = self.load_configuration.call_args self.assertEqual(rollback, load_configuration_args[1].get('rollback')) def test_junos_config_src_text(self): src = load_fixture('junos_config.text', content='str') set_module_args(dict(src=src)) self.execute_module(changed=True) args, kwargs = self.load_config.call_args self.assertEqual(kwargs['action'], 'merge') self.assertEqual(kwargs['format'], 'text') def test_junos_config_src_xml(self): src = load_fixture('junos_config.xml', content='str') set_module_args(dict(src=src)) self.execute_module(changed=True) args, kwargs = self.load_config.call_args self.assertEqual(kwargs['action'], 'merge') self.assertEqual(kwargs['format'], 'xml') def test_junos_config_src_json(self): src = load_fixture('junos_config.json', content='str') set_module_args(dict(src=src)) self.execute_module(changed=True) args, kwargs = self.load_config.call_args self.assertEqual(kwargs['action'], 'merge') self.assertEqual(kwargs['format'], 'json') def test_junos_config_update_override(self): src = load_fixture('junos_config.xml', content='str') set_module_args(dict(src=src, update='override')) self.execute_module() args, kwargs = self.load_config.call_args self.assertEqual(kwargs['action'], 'override') self.assertEqual(kwargs['format'], 'xml') def test_junos_config_update_replace(self): src = load_fixture('junos_config.json', content='str') set_module_args(dict(src=src, update='replace')) self.execute_module() args, kwargs = self.load_config.call_args self.assertEqual(kwargs['action'], 'replace') self.assertEqual(kwargs['format'], 'json') def test_junos_config_zeroize(self): src = load_fixture('junos_config.json', content='str') set_module_args(dict(zeroize='yes')) self.execute_module(changed=True) self.assertEqual(self.exec_rpc.call_count, 1) def test_junos_config_src_format_xml(self): src = load_fixture('junos_config.json', content='str') set_module_args(dict(src=src, src_format='xml')) self.execute_module() args, kwargs = self.load_config.call_args self.assertEqual(kwargs['format'], 'xml') def test_junos_config_confirm_commit(self): set_module_args(dict(confirm_commit=True)) self.execute_module(changed=True) self.assertEqual(self.commit_configuration.call_count, 1)
gpl-3.0
AlexCaranha/Wox
PythonHome/Lib/site-packages/chardet/big5freq.py
3133
82594
######################## BEGIN LICENSE BLOCK ######################## # The Original Code is Mozilla Communicator client code. # # The Initial Developer of the Original Code is # Netscape Communications Corporation. # Portions created by the Initial Developer are Copyright (C) 1998 # the Initial Developer. All Rights Reserved. # # Contributor(s): # Mark Pilgrim - port to Python # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA # 02110-1301 USA ######################### END LICENSE BLOCK ######################### # Big5 frequency table # by Taiwan's Mandarin Promotion Council # <http://www.edu.tw:81/mandr/> # # 128 --> 0.42261 # 256 --> 0.57851 # 512 --> 0.74851 # 1024 --> 0.89384 # 2048 --> 0.97583 # # Ideal Distribution Ratio = 0.74851/(1-0.74851) =2.98 # Random Distribution Ration = 512/(5401-512)=0.105 # # Typical Distribution Ratio about 25% of Ideal one, still much higher than RDR BIG5_TYPICAL_DISTRIBUTION_RATIO = 0.75 #Char to FreqOrder table BIG5_TABLE_SIZE = 5376 Big5CharToFreqOrder = ( 1,1801,1506, 255,1431, 198, 9, 82, 6,5008, 177, 202,3681,1256,2821, 110, # 16 3814, 33,3274, 261, 76, 44,2114, 16,2946,2187,1176, 659,3971, 26,3451,2653, # 32 1198,3972,3350,4202, 410,2215, 302, 590, 361,1964, 8, 204, 58,4510,5009,1932, # 48 63,5010,5011, 317,1614, 75, 222, 159,4203,2417,1480,5012,3555,3091, 224,2822, # 64 3682, 3, 10,3973,1471, 29,2787,1135,2866,1940, 873, 130,3275,1123, 312,5013, # 80 4511,2052, 507, 252, 682,5014, 142,1915, 124, 206,2947, 34,3556,3204, 64, 604, # 96 5015,2501,1977,1978, 155,1991, 645, 641,1606,5016,3452, 337, 72, 406,5017, 80, # 112 630, 238,3205,1509, 263, 939,1092,2654, 756,1440,1094,3453, 449, 69,2987, 591, # 128 179,2096, 471, 115,2035,1844, 60, 50,2988, 134, 806,1869, 734,2036,3454, 180, # 144 995,1607, 156, 537,2907, 688,5018, 319,1305, 779,2145, 514,2379, 298,4512, 359, # 160 2502, 90,2716,1338, 663, 11, 906,1099,2553, 20,2441, 182, 532,1716,5019, 732, # 176 1376,4204,1311,1420,3206, 25,2317,1056, 113, 399, 382,1950, 242,3455,2474, 529, # 192 3276, 475,1447,3683,5020, 117, 21, 656, 810,1297,2300,2334,3557,5021, 126,4205, # 208 706, 456, 150, 613,4513, 71,1118,2037,4206, 145,3092, 85, 835, 486,2115,1246, # 224 1426, 428, 727,1285,1015, 800, 106, 623, 303,1281,5022,2128,2359, 347,3815, 221, # 240 3558,3135,5023,1956,1153,4207, 83, 296,1199,3093, 192, 624, 93,5024, 822,1898, # 256 2823,3136, 795,2065, 991,1554,1542,1592, 27, 43,2867, 859, 139,1456, 860,4514, # 272 437, 712,3974, 164,2397,3137, 695, 211,3037,2097, 195,3975,1608,3559,3560,3684, # 288 3976, 234, 811,2989,2098,3977,2233,1441,3561,1615,2380, 668,2077,1638, 305, 228, # 304 1664,4515, 467, 415,5025, 262,2099,1593, 239, 108, 300, 200,1033, 512,1247,2078, # 320 5026,5027,2176,3207,3685,2682, 593, 845,1062,3277, 88,1723,2038,3978,1951, 212, # 336 266, 152, 149, 468,1899,4208,4516, 77, 187,5028,3038, 37, 5,2990,5029,3979, # 352 5030,5031, 39,2524,4517,2908,3208,2079, 55, 148, 74,4518, 545, 483,1474,1029, # 368 1665, 217,1870,1531,3138,1104,2655,4209, 24, 172,3562, 900,3980,3563,3564,4519, # 384 32,1408,2824,1312, 329, 487,2360,2251,2717, 784,2683, 4,3039,3351,1427,1789, # 400 188, 109, 499,5032,3686,1717,1790, 888,1217,3040,4520,5033,3565,5034,3352,1520, # 416 3687,3981, 196,1034, 775,5035,5036, 929,1816, 249, 439, 38,5037,1063,5038, 794, # 432 3982,1435,2301, 46, 178,3278,2066,5039,2381,5040, 214,1709,4521, 804, 35, 707, # 448 324,3688,1601,2554, 140, 459,4210,5041,5042,1365, 839, 272, 978,2262,2580,3456, # 464 2129,1363,3689,1423, 697, 100,3094, 48, 70,1231, 495,3139,2196,5043,1294,5044, # 480 2080, 462, 586,1042,3279, 853, 256, 988, 185,2382,3457,1698, 434,1084,5045,3458, # 496 314,2625,2788,4522,2335,2336, 569,2285, 637,1817,2525, 757,1162,1879,1616,3459, # 512 287,1577,2116, 768,4523,1671,2868,3566,2526,1321,3816, 909,2418,5046,4211, 933, # 528 3817,4212,2053,2361,1222,4524, 765,2419,1322, 786,4525,5047,1920,1462,1677,2909, # 544 1699,5048,4526,1424,2442,3140,3690,2600,3353,1775,1941,3460,3983,4213, 309,1369, # 560 1130,2825, 364,2234,1653,1299,3984,3567,3985,3986,2656, 525,1085,3041, 902,2001, # 576 1475, 964,4527, 421,1845,1415,1057,2286, 940,1364,3141, 376,4528,4529,1381, 7, # 592 2527, 983,2383, 336,1710,2684,1846, 321,3461, 559,1131,3042,2752,1809,1132,1313, # 608 265,1481,1858,5049, 352,1203,2826,3280, 167,1089, 420,2827, 776, 792,1724,3568, # 624 4214,2443,3281,5050,4215,5051, 446, 229, 333,2753, 901,3818,1200,1557,4530,2657, # 640 1921, 395,2754,2685,3819,4216,1836, 125, 916,3209,2626,4531,5052,5053,3820,5054, # 656 5055,5056,4532,3142,3691,1133,2555,1757,3462,1510,2318,1409,3569,5057,2146, 438, # 672 2601,2910,2384,3354,1068, 958,3043, 461, 311,2869,2686,4217,1916,3210,4218,1979, # 688 383, 750,2755,2627,4219, 274, 539, 385,1278,1442,5058,1154,1965, 384, 561, 210, # 704 98,1295,2556,3570,5059,1711,2420,1482,3463,3987,2911,1257, 129,5060,3821, 642, # 720 523,2789,2790,2658,5061, 141,2235,1333, 68, 176, 441, 876, 907,4220, 603,2602, # 736 710, 171,3464, 404, 549, 18,3143,2398,1410,3692,1666,5062,3571,4533,2912,4534, # 752 5063,2991, 368,5064, 146, 366, 99, 871,3693,1543, 748, 807,1586,1185, 22,2263, # 768 379,3822,3211,5065,3212, 505,1942,2628,1992,1382,2319,5066, 380,2362, 218, 702, # 784 1818,1248,3465,3044,3572,3355,3282,5067,2992,3694, 930,3283,3823,5068, 59,5069, # 800 585, 601,4221, 497,3466,1112,1314,4535,1802,5070,1223,1472,2177,5071, 749,1837, # 816 690,1900,3824,1773,3988,1476, 429,1043,1791,2236,2117, 917,4222, 447,1086,1629, # 832 5072, 556,5073,5074,2021,1654, 844,1090, 105, 550, 966,1758,2828,1008,1783, 686, # 848 1095,5075,2287, 793,1602,5076,3573,2603,4536,4223,2948,2302,4537,3825, 980,2503, # 864 544, 353, 527,4538, 908,2687,2913,5077, 381,2629,1943,1348,5078,1341,1252, 560, # 880 3095,5079,3467,2870,5080,2054, 973, 886,2081, 143,4539,5081,5082, 157,3989, 496, # 896 4224, 57, 840, 540,2039,4540,4541,3468,2118,1445, 970,2264,1748,1966,2082,4225, # 912 3144,1234,1776,3284,2829,3695, 773,1206,2130,1066,2040,1326,3990,1738,1725,4226, # 928 279,3145, 51,1544,2604, 423,1578,2131,2067, 173,4542,1880,5083,5084,1583, 264, # 944 610,3696,4543,2444, 280, 154,5085,5086,5087,1739, 338,1282,3096, 693,2871,1411, # 960 1074,3826,2445,5088,4544,5089,5090,1240, 952,2399,5091,2914,1538,2688, 685,1483, # 976 4227,2475,1436, 953,4228,2055,4545, 671,2400, 79,4229,2446,3285, 608, 567,2689, # 992 3469,4230,4231,1691, 393,1261,1792,2401,5092,4546,5093,5094,5095,5096,1383,1672, # 1008 3827,3213,1464, 522,1119, 661,1150, 216, 675,4547,3991,1432,3574, 609,4548,2690, # 1024 2402,5097,5098,5099,4232,3045, 0,5100,2476, 315, 231,2447, 301,3356,4549,2385, # 1040 5101, 233,4233,3697,1819,4550,4551,5102, 96,1777,1315,2083,5103, 257,5104,1810, # 1056 3698,2718,1139,1820,4234,2022,1124,2164,2791,1778,2659,5105,3097, 363,1655,3214, # 1072 5106,2993,5107,5108,5109,3992,1567,3993, 718, 103,3215, 849,1443, 341,3357,2949, # 1088 1484,5110,1712, 127, 67, 339,4235,2403, 679,1412, 821,5111,5112, 834, 738, 351, # 1104 2994,2147, 846, 235,1497,1881, 418,1993,3828,2719, 186,1100,2148,2756,3575,1545, # 1120 1355,2950,2872,1377, 583,3994,4236,2581,2995,5113,1298,3699,1078,2557,3700,2363, # 1136 78,3829,3830, 267,1289,2100,2002,1594,4237, 348, 369,1274,2197,2178,1838,4552, # 1152 1821,2830,3701,2757,2288,2003,4553,2951,2758, 144,3358, 882,4554,3995,2759,3470, # 1168 4555,2915,5114,4238,1726, 320,5115,3996,3046, 788,2996,5116,2831,1774,1327,2873, # 1184 3997,2832,5117,1306,4556,2004,1700,3831,3576,2364,2660, 787,2023, 506, 824,3702, # 1200 534, 323,4557,1044,3359,2024,1901, 946,3471,5118,1779,1500,1678,5119,1882,4558, # 1216 165, 243,4559,3703,2528, 123, 683,4239, 764,4560, 36,3998,1793, 589,2916, 816, # 1232 626,1667,3047,2237,1639,1555,1622,3832,3999,5120,4000,2874,1370,1228,1933, 891, # 1248 2084,2917, 304,4240,5121, 292,2997,2720,3577, 691,2101,4241,1115,4561, 118, 662, # 1264 5122, 611,1156, 854,2386,1316,2875, 2, 386, 515,2918,5123,5124,3286, 868,2238, # 1280 1486, 855,2661, 785,2216,3048,5125,1040,3216,3578,5126,3146, 448,5127,1525,5128, # 1296 2165,4562,5129,3833,5130,4242,2833,3579,3147, 503, 818,4001,3148,1568, 814, 676, # 1312 1444, 306,1749,5131,3834,1416,1030, 197,1428, 805,2834,1501,4563,5132,5133,5134, # 1328 1994,5135,4564,5136,5137,2198, 13,2792,3704,2998,3149,1229,1917,5138,3835,2132, # 1344 5139,4243,4565,2404,3580,5140,2217,1511,1727,1120,5141,5142, 646,3836,2448, 307, # 1360 5143,5144,1595,3217,5145,5146,5147,3705,1113,1356,4002,1465,2529,2530,5148, 519, # 1376 5149, 128,2133, 92,2289,1980,5150,4003,1512, 342,3150,2199,5151,2793,2218,1981, # 1392 3360,4244, 290,1656,1317, 789, 827,2365,5152,3837,4566, 562, 581,4004,5153, 401, # 1408 4567,2252, 94,4568,5154,1399,2794,5155,1463,2025,4569,3218,1944,5156, 828,1105, # 1424 4245,1262,1394,5157,4246, 605,4570,5158,1784,2876,5159,2835, 819,2102, 578,2200, # 1440 2952,5160,1502, 436,3287,4247,3288,2836,4005,2919,3472,3473,5161,2721,2320,5162, # 1456 5163,2337,2068, 23,4571, 193, 826,3838,2103, 699,1630,4248,3098, 390,1794,1064, # 1472 3581,5164,1579,3099,3100,1400,5165,4249,1839,1640,2877,5166,4572,4573, 137,4250, # 1488 598,3101,1967, 780, 104, 974,2953,5167, 278, 899, 253, 402, 572, 504, 493,1339, # 1504 5168,4006,1275,4574,2582,2558,5169,3706,3049,3102,2253, 565,1334,2722, 863, 41, # 1520 5170,5171,4575,5172,1657,2338, 19, 463,2760,4251, 606,5173,2999,3289,1087,2085, # 1536 1323,2662,3000,5174,1631,1623,1750,4252,2691,5175,2878, 791,2723,2663,2339, 232, # 1552 2421,5176,3001,1498,5177,2664,2630, 755,1366,3707,3290,3151,2026,1609, 119,1918, # 1568 3474, 862,1026,4253,5178,4007,3839,4576,4008,4577,2265,1952,2477,5179,1125, 817, # 1584 4254,4255,4009,1513,1766,2041,1487,4256,3050,3291,2837,3840,3152,5180,5181,1507, # 1600 5182,2692, 733, 40,1632,1106,2879, 345,4257, 841,2531, 230,4578,3002,1847,3292, # 1616 3475,5183,1263, 986,3476,5184, 735, 879, 254,1137, 857, 622,1300,1180,1388,1562, # 1632 4010,4011,2954, 967,2761,2665,1349, 592,2134,1692,3361,3003,1995,4258,1679,4012, # 1648 1902,2188,5185, 739,3708,2724,1296,1290,5186,4259,2201,2202,1922,1563,2605,2559, # 1664 1871,2762,3004,5187, 435,5188, 343,1108, 596, 17,1751,4579,2239,3477,3709,5189, # 1680 4580, 294,3582,2955,1693, 477, 979, 281,2042,3583, 643,2043,3710,2631,2795,2266, # 1696 1031,2340,2135,2303,3584,4581, 367,1249,2560,5190,3585,5191,4582,1283,3362,2005, # 1712 240,1762,3363,4583,4584, 836,1069,3153, 474,5192,2149,2532, 268,3586,5193,3219, # 1728 1521,1284,5194,1658,1546,4260,5195,3587,3588,5196,4261,3364,2693,1685,4262, 961, # 1744 1673,2632, 190,2006,2203,3841,4585,4586,5197, 570,2504,3711,1490,5198,4587,2633, # 1760 3293,1957,4588, 584,1514, 396,1045,1945,5199,4589,1968,2449,5200,5201,4590,4013, # 1776 619,5202,3154,3294, 215,2007,2796,2561,3220,4591,3221,4592, 763,4263,3842,4593, # 1792 5203,5204,1958,1767,2956,3365,3712,1174, 452,1477,4594,3366,3155,5205,2838,1253, # 1808 2387,2189,1091,2290,4264, 492,5206, 638,1169,1825,2136,1752,4014, 648, 926,1021, # 1824 1324,4595, 520,4596, 997, 847,1007, 892,4597,3843,2267,1872,3713,2405,1785,4598, # 1840 1953,2957,3103,3222,1728,4265,2044,3714,4599,2008,1701,3156,1551, 30,2268,4266, # 1856 5207,2027,4600,3589,5208, 501,5209,4267, 594,3478,2166,1822,3590,3479,3591,3223, # 1872 829,2839,4268,5210,1680,3157,1225,4269,5211,3295,4601,4270,3158,2341,5212,4602, # 1888 4271,5213,4015,4016,5214,1848,2388,2606,3367,5215,4603, 374,4017, 652,4272,4273, # 1904 375,1140, 798,5216,5217,5218,2366,4604,2269, 546,1659, 138,3051,2450,4605,5219, # 1920 2254, 612,1849, 910, 796,3844,1740,1371, 825,3845,3846,5220,2920,2562,5221, 692, # 1936 444,3052,2634, 801,4606,4274,5222,1491, 244,1053,3053,4275,4276, 340,5223,4018, # 1952 1041,3005, 293,1168, 87,1357,5224,1539, 959,5225,2240, 721, 694,4277,3847, 219, # 1968 1478, 644,1417,3368,2666,1413,1401,1335,1389,4019,5226,5227,3006,2367,3159,1826, # 1984 730,1515, 184,2840, 66,4607,5228,1660,2958, 246,3369, 378,1457, 226,3480, 975, # 2000 4020,2959,1264,3592, 674, 696,5229, 163,5230,1141,2422,2167, 713,3593,3370,4608, # 2016 4021,5231,5232,1186, 15,5233,1079,1070,5234,1522,3224,3594, 276,1050,2725, 758, # 2032 1126, 653,2960,3296,5235,2342, 889,3595,4022,3104,3007, 903,1250,4609,4023,3481, # 2048 3596,1342,1681,1718, 766,3297, 286, 89,2961,3715,5236,1713,5237,2607,3371,3008, # 2064 5238,2962,2219,3225,2880,5239,4610,2505,2533, 181, 387,1075,4024, 731,2190,3372, # 2080 5240,3298, 310, 313,3482,2304, 770,4278, 54,3054, 189,4611,3105,3848,4025,5241, # 2096 1230,1617,1850, 355,3597,4279,4612,3373, 111,4280,3716,1350,3160,3483,3055,4281, # 2112 2150,3299,3598,5242,2797,4026,4027,3009, 722,2009,5243,1071, 247,1207,2343,2478, # 2128 1378,4613,2010, 864,1437,1214,4614, 373,3849,1142,2220, 667,4615, 442,2763,2563, # 2144 3850,4028,1969,4282,3300,1840, 837, 170,1107, 934,1336,1883,5244,5245,2119,4283, # 2160 2841, 743,1569,5246,4616,4284, 582,2389,1418,3484,5247,1803,5248, 357,1395,1729, # 2176 3717,3301,2423,1564,2241,5249,3106,3851,1633,4617,1114,2086,4285,1532,5250, 482, # 2192 2451,4618,5251,5252,1492, 833,1466,5253,2726,3599,1641,2842,5254,1526,1272,3718, # 2208 4286,1686,1795, 416,2564,1903,1954,1804,5255,3852,2798,3853,1159,2321,5256,2881, # 2224 4619,1610,1584,3056,2424,2764, 443,3302,1163,3161,5257,5258,4029,5259,4287,2506, # 2240 3057,4620,4030,3162,2104,1647,3600,2011,1873,4288,5260,4289, 431,3485,5261, 250, # 2256 97, 81,4290,5262,1648,1851,1558, 160, 848,5263, 866, 740,1694,5264,2204,2843, # 2272 3226,4291,4621,3719,1687, 950,2479, 426, 469,3227,3720,3721,4031,5265,5266,1188, # 2288 424,1996, 861,3601,4292,3854,2205,2694, 168,1235,3602,4293,5267,2087,1674,4622, # 2304 3374,3303, 220,2565,1009,5268,3855, 670,3010, 332,1208, 717,5269,5270,3603,2452, # 2320 4032,3375,5271, 513,5272,1209,2882,3376,3163,4623,1080,5273,5274,5275,5276,2534, # 2336 3722,3604, 815,1587,4033,4034,5277,3605,3486,3856,1254,4624,1328,3058,1390,4035, # 2352 1741,4036,3857,4037,5278, 236,3858,2453,3304,5279,5280,3723,3859,1273,3860,4625, # 2368 5281, 308,5282,4626, 245,4627,1852,2480,1307,2583, 430, 715,2137,2454,5283, 270, # 2384 199,2883,4038,5284,3606,2727,1753, 761,1754, 725,1661,1841,4628,3487,3724,5285, # 2400 5286, 587, 14,3305, 227,2608, 326, 480,2270, 943,2765,3607, 291, 650,1884,5287, # 2416 1702,1226, 102,1547, 62,3488, 904,4629,3489,1164,4294,5288,5289,1224,1548,2766, # 2432 391, 498,1493,5290,1386,1419,5291,2056,1177,4630, 813, 880,1081,2368, 566,1145, # 2448 4631,2291,1001,1035,2566,2609,2242, 394,1286,5292,5293,2069,5294, 86,1494,1730, # 2464 4039, 491,1588, 745, 897,2963, 843,3377,4040,2767,2884,3306,1768, 998,2221,2070, # 2480 397,1827,1195,1970,3725,3011,3378, 284,5295,3861,2507,2138,2120,1904,5296,4041, # 2496 2151,4042,4295,1036,3490,1905, 114,2567,4296, 209,1527,5297,5298,2964,2844,2635, # 2512 2390,2728,3164, 812,2568,5299,3307,5300,1559, 737,1885,3726,1210, 885, 28,2695, # 2528 3608,3862,5301,4297,1004,1780,4632,5302, 346,1982,2222,2696,4633,3863,1742, 797, # 2544 1642,4043,1934,1072,1384,2152, 896,4044,3308,3727,3228,2885,3609,5303,2569,1959, # 2560 4634,2455,1786,5304,5305,5306,4045,4298,1005,1308,3728,4299,2729,4635,4636,1528, # 2576 2610, 161,1178,4300,1983, 987,4637,1101,4301, 631,4046,1157,3229,2425,1343,1241, # 2592 1016,2243,2570, 372, 877,2344,2508,1160, 555,1935, 911,4047,5307, 466,1170, 169, # 2608 1051,2921,2697,3729,2481,3012,1182,2012,2571,1251,2636,5308, 992,2345,3491,1540, # 2624 2730,1201,2071,2406,1997,2482,5309,4638, 528,1923,2191,1503,1874,1570,2369,3379, # 2640 3309,5310, 557,1073,5311,1828,3492,2088,2271,3165,3059,3107, 767,3108,2799,4639, # 2656 1006,4302,4640,2346,1267,2179,3730,3230, 778,4048,3231,2731,1597,2667,5312,4641, # 2672 5313,3493,5314,5315,5316,3310,2698,1433,3311, 131, 95,1504,4049, 723,4303,3166, # 2688 1842,3610,2768,2192,4050,2028,2105,3731,5317,3013,4051,1218,5318,3380,3232,4052, # 2704 4304,2584, 248,1634,3864, 912,5319,2845,3732,3060,3865, 654, 53,5320,3014,5321, # 2720 1688,4642, 777,3494,1032,4053,1425,5322, 191, 820,2121,2846, 971,4643, 931,3233, # 2736 135, 664, 783,3866,1998, 772,2922,1936,4054,3867,4644,2923,3234, 282,2732, 640, # 2752 1372,3495,1127, 922, 325,3381,5323,5324, 711,2045,5325,5326,4055,2223,2800,1937, # 2768 4056,3382,2224,2255,3868,2305,5327,4645,3869,1258,3312,4057,3235,2139,2965,4058, # 2784 4059,5328,2225, 258,3236,4646, 101,1227,5329,3313,1755,5330,1391,3314,5331,2924, # 2800 2057, 893,5332,5333,5334,1402,4305,2347,5335,5336,3237,3611,5337,5338, 878,1325, # 2816 1781,2801,4647, 259,1385,2585, 744,1183,2272,4648,5339,4060,2509,5340, 684,1024, # 2832 4306,5341, 472,3612,3496,1165,3315,4061,4062, 322,2153, 881, 455,1695,1152,1340, # 2848 660, 554,2154,4649,1058,4650,4307, 830,1065,3383,4063,4651,1924,5342,1703,1919, # 2864 5343, 932,2273, 122,5344,4652, 947, 677,5345,3870,2637, 297,1906,1925,2274,4653, # 2880 2322,3316,5346,5347,4308,5348,4309, 84,4310, 112, 989,5349, 547,1059,4064, 701, # 2896 3613,1019,5350,4311,5351,3497, 942, 639, 457,2306,2456, 993,2966, 407, 851, 494, # 2912 4654,3384, 927,5352,1237,5353,2426,3385, 573,4312, 680, 921,2925,1279,1875, 285, # 2928 790,1448,1984, 719,2168,5354,5355,4655,4065,4066,1649,5356,1541, 563,5357,1077, # 2944 5358,3386,3061,3498, 511,3015,4067,4068,3733,4069,1268,2572,3387,3238,4656,4657, # 2960 5359, 535,1048,1276,1189,2926,2029,3167,1438,1373,2847,2967,1134,2013,5360,4313, # 2976 1238,2586,3109,1259,5361, 700,5362,2968,3168,3734,4314,5363,4315,1146,1876,1907, # 2992 4658,2611,4070, 781,2427, 132,1589, 203, 147, 273,2802,2407, 898,1787,2155,4071, # 3008 4072,5364,3871,2803,5365,5366,4659,4660,5367,3239,5368,1635,3872, 965,5369,1805, # 3024 2699,1516,3614,1121,1082,1329,3317,4073,1449,3873, 65,1128,2848,2927,2769,1590, # 3040 3874,5370,5371, 12,2668, 45, 976,2587,3169,4661, 517,2535,1013,1037,3240,5372, # 3056 3875,2849,5373,3876,5374,3499,5375,2612, 614,1999,2323,3877,3110,2733,2638,5376, # 3072 2588,4316, 599,1269,5377,1811,3735,5378,2700,3111, 759,1060, 489,1806,3388,3318, # 3088 1358,5379,5380,2391,1387,1215,2639,2256, 490,5381,5382,4317,1759,2392,2348,5383, # 3104 4662,3878,1908,4074,2640,1807,3241,4663,3500,3319,2770,2349, 874,5384,5385,3501, # 3120 3736,1859, 91,2928,3737,3062,3879,4664,5386,3170,4075,2669,5387,3502,1202,1403, # 3136 3880,2969,2536,1517,2510,4665,3503,2511,5388,4666,5389,2701,1886,1495,1731,4076, # 3152 2370,4667,5390,2030,5391,5392,4077,2702,1216, 237,2589,4318,2324,4078,3881,4668, # 3168 4669,2703,3615,3504, 445,4670,5393,5394,5395,5396,2771, 61,4079,3738,1823,4080, # 3184 5397, 687,2046, 935, 925, 405,2670, 703,1096,1860,2734,4671,4081,1877,1367,2704, # 3200 3389, 918,2106,1782,2483, 334,3320,1611,1093,4672, 564,3171,3505,3739,3390, 945, # 3216 2641,2058,4673,5398,1926, 872,4319,5399,3506,2705,3112, 349,4320,3740,4082,4674, # 3232 3882,4321,3741,2156,4083,4675,4676,4322,4677,2408,2047, 782,4084, 400, 251,4323, # 3248 1624,5400,5401, 277,3742, 299,1265, 476,1191,3883,2122,4324,4325,1109, 205,5402, # 3264 2590,1000,2157,3616,1861,5403,5404,5405,4678,5406,4679,2573, 107,2484,2158,4085, # 3280 3507,3172,5407,1533, 541,1301, 158, 753,4326,2886,3617,5408,1696, 370,1088,4327, # 3296 4680,3618, 579, 327, 440, 162,2244, 269,1938,1374,3508, 968,3063, 56,1396,3113, # 3312 2107,3321,3391,5409,1927,2159,4681,3016,5410,3619,5411,5412,3743,4682,2485,5413, # 3328 2804,5414,1650,4683,5415,2613,5416,5417,4086,2671,3392,1149,3393,4087,3884,4088, # 3344 5418,1076, 49,5419, 951,3242,3322,3323, 450,2850, 920,5420,1812,2805,2371,4328, # 3360 1909,1138,2372,3885,3509,5421,3243,4684,1910,1147,1518,2428,4685,3886,5422,4686, # 3376 2393,2614, 260,1796,3244,5423,5424,3887,3324, 708,5425,3620,1704,5426,3621,1351, # 3392 1618,3394,3017,1887, 944,4329,3395,4330,3064,3396,4331,5427,3744, 422, 413,1714, # 3408 3325, 500,2059,2350,4332,2486,5428,1344,1911, 954,5429,1668,5430,5431,4089,2409, # 3424 4333,3622,3888,4334,5432,2307,1318,2512,3114, 133,3115,2887,4687, 629, 31,2851, # 3440 2706,3889,4688, 850, 949,4689,4090,2970,1732,2089,4335,1496,1853,5433,4091, 620, # 3456 3245, 981,1242,3745,3397,1619,3746,1643,3326,2140,2457,1971,1719,3510,2169,5434, # 3472 3246,5435,5436,3398,1829,5437,1277,4690,1565,2048,5438,1636,3623,3116,5439, 869, # 3488 2852, 655,3890,3891,3117,4092,3018,3892,1310,3624,4691,5440,5441,5442,1733, 558, # 3504 4692,3747, 335,1549,3065,1756,4336,3748,1946,3511,1830,1291,1192, 470,2735,2108, # 3520 2806, 913,1054,4093,5443,1027,5444,3066,4094,4693, 982,2672,3399,3173,3512,3247, # 3536 3248,1947,2807,5445, 571,4694,5446,1831,5447,3625,2591,1523,2429,5448,2090, 984, # 3552 4695,3749,1960,5449,3750, 852, 923,2808,3513,3751, 969,1519, 999,2049,2325,1705, # 3568 5450,3118, 615,1662, 151, 597,4095,2410,2326,1049, 275,4696,3752,4337, 568,3753, # 3584 3626,2487,4338,3754,5451,2430,2275, 409,3249,5452,1566,2888,3514,1002, 769,2853, # 3600 194,2091,3174,3755,2226,3327,4339, 628,1505,5453,5454,1763,2180,3019,4096, 521, # 3616 1161,2592,1788,2206,2411,4697,4097,1625,4340,4341, 412, 42,3119, 464,5455,2642, # 3632 4698,3400,1760,1571,2889,3515,2537,1219,2207,3893,2643,2141,2373,4699,4700,3328, # 3648 1651,3401,3627,5456,5457,3628,2488,3516,5458,3756,5459,5460,2276,2092, 460,5461, # 3664 4701,5462,3020, 962, 588,3629, 289,3250,2644,1116, 52,5463,3067,1797,5464,5465, # 3680 5466,1467,5467,1598,1143,3757,4342,1985,1734,1067,4702,1280,3402, 465,4703,1572, # 3696 510,5468,1928,2245,1813,1644,3630,5469,4704,3758,5470,5471,2673,1573,1534,5472, # 3712 5473, 536,1808,1761,3517,3894,3175,2645,5474,5475,5476,4705,3518,2929,1912,2809, # 3728 5477,3329,1122, 377,3251,5478, 360,5479,5480,4343,1529, 551,5481,2060,3759,1769, # 3744 2431,5482,2930,4344,3330,3120,2327,2109,2031,4706,1404, 136,1468,1479, 672,1171, # 3760 3252,2308, 271,3176,5483,2772,5484,2050, 678,2736, 865,1948,4707,5485,2014,4098, # 3776 2971,5486,2737,2227,1397,3068,3760,4708,4709,1735,2931,3403,3631,5487,3895, 509, # 3792 2854,2458,2890,3896,5488,5489,3177,3178,4710,4345,2538,4711,2309,1166,1010, 552, # 3808 681,1888,5490,5491,2972,2973,4099,1287,1596,1862,3179, 358, 453, 736, 175, 478, # 3824 1117, 905,1167,1097,5492,1854,1530,5493,1706,5494,2181,3519,2292,3761,3520,3632, # 3840 4346,2093,4347,5495,3404,1193,2489,4348,1458,2193,2208,1863,1889,1421,3331,2932, # 3856 3069,2182,3521, 595,2123,5496,4100,5497,5498,4349,1707,2646, 223,3762,1359, 751, # 3872 3121, 183,3522,5499,2810,3021, 419,2374, 633, 704,3897,2394, 241,5500,5501,5502, # 3888 838,3022,3763,2277,2773,2459,3898,1939,2051,4101,1309,3122,2246,1181,5503,1136, # 3904 2209,3899,2375,1446,4350,2310,4712,5504,5505,4351,1055,2615, 484,3764,5506,4102, # 3920 625,4352,2278,3405,1499,4353,4103,5507,4104,4354,3253,2279,2280,3523,5508,5509, # 3936 2774, 808,2616,3765,3406,4105,4355,3123,2539, 526,3407,3900,4356, 955,5510,1620, # 3952 4357,2647,2432,5511,1429,3766,1669,1832, 994, 928,5512,3633,1260,5513,5514,5515, # 3968 1949,2293, 741,2933,1626,4358,2738,2460, 867,1184, 362,3408,1392,5516,5517,4106, # 3984 4359,1770,1736,3254,2934,4713,4714,1929,2707,1459,1158,5518,3070,3409,2891,1292, # 4000 1930,2513,2855,3767,1986,1187,2072,2015,2617,4360,5519,2574,2514,2170,3768,2490, # 4016 3332,5520,3769,4715,5521,5522, 666,1003,3023,1022,3634,4361,5523,4716,1814,2257, # 4032 574,3901,1603, 295,1535, 705,3902,4362, 283, 858, 417,5524,5525,3255,4717,4718, # 4048 3071,1220,1890,1046,2281,2461,4107,1393,1599, 689,2575, 388,4363,5526,2491, 802, # 4064 5527,2811,3903,2061,1405,2258,5528,4719,3904,2110,1052,1345,3256,1585,5529, 809, # 4080 5530,5531,5532, 575,2739,3524, 956,1552,1469,1144,2328,5533,2329,1560,2462,3635, # 4096 3257,4108, 616,2210,4364,3180,2183,2294,5534,1833,5535,3525,4720,5536,1319,3770, # 4112 3771,1211,3636,1023,3258,1293,2812,5537,5538,5539,3905, 607,2311,3906, 762,2892, # 4128 1439,4365,1360,4721,1485,3072,5540,4722,1038,4366,1450,2062,2648,4367,1379,4723, # 4144 2593,5541,5542,4368,1352,1414,2330,2935,1172,5543,5544,3907,3908,4724,1798,1451, # 4160 5545,5546,5547,5548,2936,4109,4110,2492,2351, 411,4111,4112,3637,3333,3124,4725, # 4176 1561,2674,1452,4113,1375,5549,5550, 47,2974, 316,5551,1406,1591,2937,3181,5552, # 4192 1025,2142,3125,3182, 354,2740, 884,2228,4369,2412, 508,3772, 726,3638, 996,2433, # 4208 3639, 729,5553, 392,2194,1453,4114,4726,3773,5554,5555,2463,3640,2618,1675,2813, # 4224 919,2352,2975,2353,1270,4727,4115, 73,5556,5557, 647,5558,3259,2856,2259,1550, # 4240 1346,3024,5559,1332, 883,3526,5560,5561,5562,5563,3334,2775,5564,1212, 831,1347, # 4256 4370,4728,2331,3909,1864,3073, 720,3910,4729,4730,3911,5565,4371,5566,5567,4731, # 4272 5568,5569,1799,4732,3774,2619,4733,3641,1645,2376,4734,5570,2938, 669,2211,2675, # 4288 2434,5571,2893,5572,5573,1028,3260,5574,4372,2413,5575,2260,1353,5576,5577,4735, # 4304 3183, 518,5578,4116,5579,4373,1961,5580,2143,4374,5581,5582,3025,2354,2355,3912, # 4320 516,1834,1454,4117,2708,4375,4736,2229,2620,1972,1129,3642,5583,2776,5584,2976, # 4336 1422, 577,1470,3026,1524,3410,5585,5586, 432,4376,3074,3527,5587,2594,1455,2515, # 4352 2230,1973,1175,5588,1020,2741,4118,3528,4737,5589,2742,5590,1743,1361,3075,3529, # 4368 2649,4119,4377,4738,2295, 895, 924,4378,2171, 331,2247,3076, 166,1627,3077,1098, # 4384 5591,1232,2894,2231,3411,4739, 657, 403,1196,2377, 542,3775,3412,1600,4379,3530, # 4400 5592,4740,2777,3261, 576, 530,1362,4741,4742,2540,2676,3776,4120,5593, 842,3913, # 4416 5594,2814,2032,1014,4121, 213,2709,3413, 665, 621,4380,5595,3777,2939,2435,5596, # 4432 2436,3335,3643,3414,4743,4381,2541,4382,4744,3644,1682,4383,3531,1380,5597, 724, # 4448 2282, 600,1670,5598,1337,1233,4745,3126,2248,5599,1621,4746,5600, 651,4384,5601, # 4464 1612,4385,2621,5602,2857,5603,2743,2312,3078,5604, 716,2464,3079, 174,1255,2710, # 4480 4122,3645, 548,1320,1398, 728,4123,1574,5605,1891,1197,3080,4124,5606,3081,3082, # 4496 3778,3646,3779, 747,5607, 635,4386,4747,5608,5609,5610,4387,5611,5612,4748,5613, # 4512 3415,4749,2437, 451,5614,3780,2542,2073,4388,2744,4389,4125,5615,1764,4750,5616, # 4528 4390, 350,4751,2283,2395,2493,5617,4391,4126,2249,1434,4127, 488,4752, 458,4392, # 4544 4128,3781, 771,1330,2396,3914,2576,3184,2160,2414,1553,2677,3185,4393,5618,2494, # 4560 2895,2622,1720,2711,4394,3416,4753,5619,2543,4395,5620,3262,4396,2778,5621,2016, # 4576 2745,5622,1155,1017,3782,3915,5623,3336,2313, 201,1865,4397,1430,5624,4129,5625, # 4592 5626,5627,5628,5629,4398,1604,5630, 414,1866, 371,2595,4754,4755,3532,2017,3127, # 4608 4756,1708, 960,4399, 887, 389,2172,1536,1663,1721,5631,2232,4130,2356,2940,1580, # 4624 5632,5633,1744,4757,2544,4758,4759,5634,4760,5635,2074,5636,4761,3647,3417,2896, # 4640 4400,5637,4401,2650,3418,2815, 673,2712,2465, 709,3533,4131,3648,4402,5638,1148, # 4656 502, 634,5639,5640,1204,4762,3649,1575,4763,2623,3783,5641,3784,3128, 948,3263, # 4672 121,1745,3916,1110,5642,4403,3083,2516,3027,4132,3785,1151,1771,3917,1488,4133, # 4688 1987,5643,2438,3534,5644,5645,2094,5646,4404,3918,1213,1407,2816, 531,2746,2545, # 4704 3264,1011,1537,4764,2779,4405,3129,1061,5647,3786,3787,1867,2897,5648,2018, 120, # 4720 4406,4407,2063,3650,3265,2314,3919,2678,3419,1955,4765,4134,5649,3535,1047,2713, # 4736 1266,5650,1368,4766,2858, 649,3420,3920,2546,2747,1102,2859,2679,5651,5652,2000, # 4752 5653,1111,3651,2977,5654,2495,3921,3652,2817,1855,3421,3788,5655,5656,3422,2415, # 4768 2898,3337,3266,3653,5657,2577,5658,3654,2818,4135,1460, 856,5659,3655,5660,2899, # 4784 2978,5661,2900,3922,5662,4408, 632,2517, 875,3923,1697,3924,2296,5663,5664,4767, # 4800 3028,1239, 580,4768,4409,5665, 914, 936,2075,1190,4136,1039,2124,5666,5667,5668, # 4816 5669,3423,1473,5670,1354,4410,3925,4769,2173,3084,4137, 915,3338,4411,4412,3339, # 4832 1605,1835,5671,2748, 398,3656,4413,3926,4138, 328,1913,2860,4139,3927,1331,4414, # 4848 3029, 937,4415,5672,3657,4140,4141,3424,2161,4770,3425, 524, 742, 538,3085,1012, # 4864 5673,5674,3928,2466,5675, 658,1103, 225,3929,5676,5677,4771,5678,4772,5679,3267, # 4880 1243,5680,4142, 963,2250,4773,5681,2714,3658,3186,5682,5683,2596,2332,5684,4774, # 4896 5685,5686,5687,3536, 957,3426,2547,2033,1931,2941,2467, 870,2019,3659,1746,2780, # 4912 2781,2439,2468,5688,3930,5689,3789,3130,3790,3537,3427,3791,5690,1179,3086,5691, # 4928 3187,2378,4416,3792,2548,3188,3131,2749,4143,5692,3428,1556,2549,2297, 977,2901, # 4944 2034,4144,1205,3429,5693,1765,3430,3189,2125,1271, 714,1689,4775,3538,5694,2333, # 4960 3931, 533,4417,3660,2184, 617,5695,2469,3340,3539,2315,5696,5697,3190,5698,5699, # 4976 3932,1988, 618, 427,2651,3540,3431,5700,5701,1244,1690,5702,2819,4418,4776,5703, # 4992 3541,4777,5704,2284,1576, 473,3661,4419,3432, 972,5705,3662,5706,3087,5707,5708, # 5008 4778,4779,5709,3793,4145,4146,5710, 153,4780, 356,5711,1892,2902,4420,2144, 408, # 5024 803,2357,5712,3933,5713,4421,1646,2578,2518,4781,4782,3934,5714,3935,4422,5715, # 5040 2416,3433, 752,5716,5717,1962,3341,2979,5718, 746,3030,2470,4783,4423,3794, 698, # 5056 4784,1893,4424,3663,2550,4785,3664,3936,5719,3191,3434,5720,1824,1302,4147,2715, # 5072 3937,1974,4425,5721,4426,3192, 823,1303,1288,1236,2861,3542,4148,3435, 774,3938, # 5088 5722,1581,4786,1304,2862,3939,4787,5723,2440,2162,1083,3268,4427,4149,4428, 344, # 5104 1173, 288,2316, 454,1683,5724,5725,1461,4788,4150,2597,5726,5727,4789, 985, 894, # 5120 5728,3436,3193,5729,1914,2942,3795,1989,5730,2111,1975,5731,4151,5732,2579,1194, # 5136 425,5733,4790,3194,1245,3796,4429,5734,5735,2863,5736, 636,4791,1856,3940, 760, # 5152 1800,5737,4430,2212,1508,4792,4152,1894,1684,2298,5738,5739,4793,4431,4432,2213, # 5168 479,5740,5741, 832,5742,4153,2496,5743,2980,2497,3797, 990,3132, 627,1815,2652, # 5184 4433,1582,4434,2126,2112,3543,4794,5744, 799,4435,3195,5745,4795,2113,1737,3031, # 5200 1018, 543, 754,4436,3342,1676,4796,4797,4154,4798,1489,5746,3544,5747,2624,2903, # 5216 4155,5748,5749,2981,5750,5751,5752,5753,3196,4799,4800,2185,1722,5754,3269,3270, # 5232 1843,3665,1715, 481, 365,1976,1857,5755,5756,1963,2498,4801,5757,2127,3666,3271, # 5248 433,1895,2064,2076,5758, 602,2750,5759,5760,5761,5762,5763,3032,1628,3437,5764, # 5264 3197,4802,4156,2904,4803,2519,5765,2551,2782,5766,5767,5768,3343,4804,2905,5769, # 5280 4805,5770,2864,4806,4807,1221,2982,4157,2520,5771,5772,5773,1868,1990,5774,5775, # 5296 5776,1896,5777,5778,4808,1897,4158, 318,5779,2095,4159,4437,5780,5781, 485,5782, # 5312 938,3941, 553,2680, 116,5783,3942,3667,5784,3545,2681,2783,3438,3344,2820,5785, # 5328 3668,2943,4160,1747,2944,2983,5786,5787, 207,5788,4809,5789,4810,2521,5790,3033, # 5344 890,3669,3943,5791,1878,3798,3439,5792,2186,2358,3440,1652,5793,5794,5795, 941, # 5360 2299, 208,3546,4161,2020, 330,4438,3944,2906,2499,3799,4439,4811,5796,5797,5798, # 5376 #last 512 #Everything below is of no interest for detection purpose 2522,1613,4812,5799,3345,3945,2523,5800,4162,5801,1637,4163,2471,4813,3946,5802, # 5392 2500,3034,3800,5803,5804,2195,4814,5805,2163,5806,5807,5808,5809,5810,5811,5812, # 5408 5813,5814,5815,5816,5817,5818,5819,5820,5821,5822,5823,5824,5825,5826,5827,5828, # 5424 5829,5830,5831,5832,5833,5834,5835,5836,5837,5838,5839,5840,5841,5842,5843,5844, # 5440 5845,5846,5847,5848,5849,5850,5851,5852,5853,5854,5855,5856,5857,5858,5859,5860, # 5456 5861,5862,5863,5864,5865,5866,5867,5868,5869,5870,5871,5872,5873,5874,5875,5876, # 5472 5877,5878,5879,5880,5881,5882,5883,5884,5885,5886,5887,5888,5889,5890,5891,5892, # 5488 5893,5894,5895,5896,5897,5898,5899,5900,5901,5902,5903,5904,5905,5906,5907,5908, # 5504 5909,5910,5911,5912,5913,5914,5915,5916,5917,5918,5919,5920,5921,5922,5923,5924, # 5520 5925,5926,5927,5928,5929,5930,5931,5932,5933,5934,5935,5936,5937,5938,5939,5940, # 5536 5941,5942,5943,5944,5945,5946,5947,5948,5949,5950,5951,5952,5953,5954,5955,5956, # 5552 5957,5958,5959,5960,5961,5962,5963,5964,5965,5966,5967,5968,5969,5970,5971,5972, # 5568 5973,5974,5975,5976,5977,5978,5979,5980,5981,5982,5983,5984,5985,5986,5987,5988, # 5584 5989,5990,5991,5992,5993,5994,5995,5996,5997,5998,5999,6000,6001,6002,6003,6004, # 5600 6005,6006,6007,6008,6009,6010,6011,6012,6013,6014,6015,6016,6017,6018,6019,6020, # 5616 6021,6022,6023,6024,6025,6026,6027,6028,6029,6030,6031,6032,6033,6034,6035,6036, # 5632 6037,6038,6039,6040,6041,6042,6043,6044,6045,6046,6047,6048,6049,6050,6051,6052, # 5648 6053,6054,6055,6056,6057,6058,6059,6060,6061,6062,6063,6064,6065,6066,6067,6068, # 5664 6069,6070,6071,6072,6073,6074,6075,6076,6077,6078,6079,6080,6081,6082,6083,6084, # 5680 6085,6086,6087,6088,6089,6090,6091,6092,6093,6094,6095,6096,6097,6098,6099,6100, # 5696 6101,6102,6103,6104,6105,6106,6107,6108,6109,6110,6111,6112,6113,6114,6115,6116, # 5712 6117,6118,6119,6120,6121,6122,6123,6124,6125,6126,6127,6128,6129,6130,6131,6132, # 5728 6133,6134,6135,6136,6137,6138,6139,6140,6141,6142,6143,6144,6145,6146,6147,6148, # 5744 6149,6150,6151,6152,6153,6154,6155,6156,6157,6158,6159,6160,6161,6162,6163,6164, # 5760 6165,6166,6167,6168,6169,6170,6171,6172,6173,6174,6175,6176,6177,6178,6179,6180, # 5776 6181,6182,6183,6184,6185,6186,6187,6188,6189,6190,6191,6192,6193,6194,6195,6196, # 5792 6197,6198,6199,6200,6201,6202,6203,6204,6205,6206,6207,6208,6209,6210,6211,6212, # 5808 6213,6214,6215,6216,6217,6218,6219,6220,6221,6222,6223,3670,6224,6225,6226,6227, # 5824 6228,6229,6230,6231,6232,6233,6234,6235,6236,6237,6238,6239,6240,6241,6242,6243, # 5840 6244,6245,6246,6247,6248,6249,6250,6251,6252,6253,6254,6255,6256,6257,6258,6259, # 5856 6260,6261,6262,6263,6264,6265,6266,6267,6268,6269,6270,6271,6272,6273,6274,6275, # 5872 6276,6277,6278,6279,6280,6281,6282,6283,6284,6285,4815,6286,6287,6288,6289,6290, # 5888 6291,6292,4816,6293,6294,6295,6296,6297,6298,6299,6300,6301,6302,6303,6304,6305, # 5904 6306,6307,6308,6309,6310,6311,4817,4818,6312,6313,6314,6315,6316,6317,6318,4819, # 5920 6319,6320,6321,6322,6323,6324,6325,6326,6327,6328,6329,6330,6331,6332,6333,6334, # 5936 6335,6336,6337,4820,6338,6339,6340,6341,6342,6343,6344,6345,6346,6347,6348,6349, # 5952 6350,6351,6352,6353,6354,6355,6356,6357,6358,6359,6360,6361,6362,6363,6364,6365, # 5968 6366,6367,6368,6369,6370,6371,6372,6373,6374,6375,6376,6377,6378,6379,6380,6381, # 5984 6382,6383,6384,6385,6386,6387,6388,6389,6390,6391,6392,6393,6394,6395,6396,6397, # 6000 6398,6399,6400,6401,6402,6403,6404,6405,6406,6407,6408,6409,6410,3441,6411,6412, # 6016 6413,6414,6415,6416,6417,6418,6419,6420,6421,6422,6423,6424,6425,4440,6426,6427, # 6032 6428,6429,6430,6431,6432,6433,6434,6435,6436,6437,6438,6439,6440,6441,6442,6443, # 6048 6444,6445,6446,6447,6448,6449,6450,6451,6452,6453,6454,4821,6455,6456,6457,6458, # 6064 6459,6460,6461,6462,6463,6464,6465,6466,6467,6468,6469,6470,6471,6472,6473,6474, # 6080 6475,6476,6477,3947,3948,6478,6479,6480,6481,3272,4441,6482,6483,6484,6485,4442, # 6096 6486,6487,6488,6489,6490,6491,6492,6493,6494,6495,6496,4822,6497,6498,6499,6500, # 6112 6501,6502,6503,6504,6505,6506,6507,6508,6509,6510,6511,6512,6513,6514,6515,6516, # 6128 6517,6518,6519,6520,6521,6522,6523,6524,6525,6526,6527,6528,6529,6530,6531,6532, # 6144 6533,6534,6535,6536,6537,6538,6539,6540,6541,6542,6543,6544,6545,6546,6547,6548, # 6160 6549,6550,6551,6552,6553,6554,6555,6556,2784,6557,4823,6558,6559,6560,6561,6562, # 6176 6563,6564,6565,6566,6567,6568,6569,3949,6570,6571,6572,4824,6573,6574,6575,6576, # 6192 6577,6578,6579,6580,6581,6582,6583,4825,6584,6585,6586,3950,2785,6587,6588,6589, # 6208 6590,6591,6592,6593,6594,6595,6596,6597,6598,6599,6600,6601,6602,6603,6604,6605, # 6224 6606,6607,6608,6609,6610,6611,6612,4826,6613,6614,6615,4827,6616,6617,6618,6619, # 6240 6620,6621,6622,6623,6624,6625,4164,6626,6627,6628,6629,6630,6631,6632,6633,6634, # 6256 3547,6635,4828,6636,6637,6638,6639,6640,6641,6642,3951,2984,6643,6644,6645,6646, # 6272 6647,6648,6649,4165,6650,4829,6651,6652,4830,6653,6654,6655,6656,6657,6658,6659, # 6288 6660,6661,6662,4831,6663,6664,6665,6666,6667,6668,6669,6670,6671,4166,6672,4832, # 6304 3952,6673,6674,6675,6676,4833,6677,6678,6679,4167,6680,6681,6682,3198,6683,6684, # 6320 6685,6686,6687,6688,6689,6690,6691,6692,6693,6694,6695,6696,6697,4834,6698,6699, # 6336 6700,6701,6702,6703,6704,6705,6706,6707,6708,6709,6710,6711,6712,6713,6714,6715, # 6352 6716,6717,6718,6719,6720,6721,6722,6723,6724,6725,6726,6727,6728,6729,6730,6731, # 6368 6732,6733,6734,4443,6735,6736,6737,6738,6739,6740,6741,6742,6743,6744,6745,4444, # 6384 6746,6747,6748,6749,6750,6751,6752,6753,6754,6755,6756,6757,6758,6759,6760,6761, # 6400 6762,6763,6764,6765,6766,6767,6768,6769,6770,6771,6772,6773,6774,6775,6776,6777, # 6416 6778,6779,6780,6781,4168,6782,6783,3442,6784,6785,6786,6787,6788,6789,6790,6791, # 6432 4169,6792,6793,6794,6795,6796,6797,6798,6799,6800,6801,6802,6803,6804,6805,6806, # 6448 6807,6808,6809,6810,6811,4835,6812,6813,6814,4445,6815,6816,4446,6817,6818,6819, # 6464 6820,6821,6822,6823,6824,6825,6826,6827,6828,6829,6830,6831,6832,6833,6834,6835, # 6480 3548,6836,6837,6838,6839,6840,6841,6842,6843,6844,6845,6846,4836,6847,6848,6849, # 6496 6850,6851,6852,6853,6854,3953,6855,6856,6857,6858,6859,6860,6861,6862,6863,6864, # 6512 6865,6866,6867,6868,6869,6870,6871,6872,6873,6874,6875,6876,6877,3199,6878,6879, # 6528 6880,6881,6882,4447,6883,6884,6885,6886,6887,6888,6889,6890,6891,6892,6893,6894, # 6544 6895,6896,6897,6898,6899,6900,6901,6902,6903,6904,4170,6905,6906,6907,6908,6909, # 6560 6910,6911,6912,6913,6914,6915,6916,6917,6918,6919,6920,6921,6922,6923,6924,6925, # 6576 6926,6927,4837,6928,6929,6930,6931,6932,6933,6934,6935,6936,3346,6937,6938,4838, # 6592 6939,6940,6941,4448,6942,6943,6944,6945,6946,4449,6947,6948,6949,6950,6951,6952, # 6608 6953,6954,6955,6956,6957,6958,6959,6960,6961,6962,6963,6964,6965,6966,6967,6968, # 6624 6969,6970,6971,6972,6973,6974,6975,6976,6977,6978,6979,6980,6981,6982,6983,6984, # 6640 6985,6986,6987,6988,6989,6990,6991,6992,6993,6994,3671,6995,6996,6997,6998,4839, # 6656 6999,7000,7001,7002,3549,7003,7004,7005,7006,7007,7008,7009,7010,7011,7012,7013, # 6672 7014,7015,7016,7017,7018,7019,7020,7021,7022,7023,7024,7025,7026,7027,7028,7029, # 6688 7030,4840,7031,7032,7033,7034,7035,7036,7037,7038,4841,7039,7040,7041,7042,7043, # 6704 7044,7045,7046,7047,7048,7049,7050,7051,7052,7053,7054,7055,7056,7057,7058,7059, # 6720 7060,7061,7062,7063,7064,7065,7066,7067,7068,7069,7070,2985,7071,7072,7073,7074, # 6736 7075,7076,7077,7078,7079,7080,4842,7081,7082,7083,7084,7085,7086,7087,7088,7089, # 6752 7090,7091,7092,7093,7094,7095,7096,7097,7098,7099,7100,7101,7102,7103,7104,7105, # 6768 7106,7107,7108,7109,7110,7111,7112,7113,7114,7115,7116,7117,7118,4450,7119,7120, # 6784 7121,7122,7123,7124,7125,7126,7127,7128,7129,7130,7131,7132,7133,7134,7135,7136, # 6800 7137,7138,7139,7140,7141,7142,7143,4843,7144,7145,7146,7147,7148,7149,7150,7151, # 6816 7152,7153,7154,7155,7156,7157,7158,7159,7160,7161,7162,7163,7164,7165,7166,7167, # 6832 7168,7169,7170,7171,7172,7173,7174,7175,7176,7177,7178,7179,7180,7181,7182,7183, # 6848 7184,7185,7186,7187,7188,4171,4172,7189,7190,7191,7192,7193,7194,7195,7196,7197, # 6864 7198,7199,7200,7201,7202,7203,7204,7205,7206,7207,7208,7209,7210,7211,7212,7213, # 6880 7214,7215,7216,7217,7218,7219,7220,7221,7222,7223,7224,7225,7226,7227,7228,7229, # 6896 7230,7231,7232,7233,7234,7235,7236,7237,7238,7239,7240,7241,7242,7243,7244,7245, # 6912 7246,7247,7248,7249,7250,7251,7252,7253,7254,7255,7256,7257,7258,7259,7260,7261, # 6928 7262,7263,7264,7265,7266,7267,7268,7269,7270,7271,7272,7273,7274,7275,7276,7277, # 6944 7278,7279,7280,7281,7282,7283,7284,7285,7286,7287,7288,7289,7290,7291,7292,7293, # 6960 7294,7295,7296,4844,7297,7298,7299,7300,7301,7302,7303,7304,7305,7306,7307,7308, # 6976 7309,7310,7311,7312,7313,7314,7315,7316,4451,7317,7318,7319,7320,7321,7322,7323, # 6992 7324,7325,7326,7327,7328,7329,7330,7331,7332,7333,7334,7335,7336,7337,7338,7339, # 7008 7340,7341,7342,7343,7344,7345,7346,7347,7348,7349,7350,7351,7352,7353,4173,7354, # 7024 7355,4845,7356,7357,7358,7359,7360,7361,7362,7363,7364,7365,7366,7367,7368,7369, # 7040 7370,7371,7372,7373,7374,7375,7376,7377,7378,7379,7380,7381,7382,7383,7384,7385, # 7056 7386,7387,7388,4846,7389,7390,7391,7392,7393,7394,7395,7396,7397,7398,7399,7400, # 7072 7401,7402,7403,7404,7405,3672,7406,7407,7408,7409,7410,7411,7412,7413,7414,7415, # 7088 7416,7417,7418,7419,7420,7421,7422,7423,7424,7425,7426,7427,7428,7429,7430,7431, # 7104 7432,7433,7434,7435,7436,7437,7438,7439,7440,7441,7442,7443,7444,7445,7446,7447, # 7120 7448,7449,7450,7451,7452,7453,4452,7454,3200,7455,7456,7457,7458,7459,7460,7461, # 7136 7462,7463,7464,7465,7466,7467,7468,7469,7470,7471,7472,7473,7474,4847,7475,7476, # 7152 7477,3133,7478,7479,7480,7481,7482,7483,7484,7485,7486,7487,7488,7489,7490,7491, # 7168 7492,7493,7494,7495,7496,7497,7498,7499,7500,7501,7502,3347,7503,7504,7505,7506, # 7184 7507,7508,7509,7510,7511,7512,7513,7514,7515,7516,7517,7518,7519,7520,7521,4848, # 7200 7522,7523,7524,7525,7526,7527,7528,7529,7530,7531,7532,7533,7534,7535,7536,7537, # 7216 7538,7539,7540,7541,7542,7543,7544,7545,7546,7547,7548,7549,3801,4849,7550,7551, # 7232 7552,7553,7554,7555,7556,7557,7558,7559,7560,7561,7562,7563,7564,7565,7566,7567, # 7248 7568,7569,3035,7570,7571,7572,7573,7574,7575,7576,7577,7578,7579,7580,7581,7582, # 7264 7583,7584,7585,7586,7587,7588,7589,7590,7591,7592,7593,7594,7595,7596,7597,7598, # 7280 7599,7600,7601,7602,7603,7604,7605,7606,7607,7608,7609,7610,7611,7612,7613,7614, # 7296 7615,7616,4850,7617,7618,3802,7619,7620,7621,7622,7623,7624,7625,7626,7627,7628, # 7312 7629,7630,7631,7632,4851,7633,7634,7635,7636,7637,7638,7639,7640,7641,7642,7643, # 7328 7644,7645,7646,7647,7648,7649,7650,7651,7652,7653,7654,7655,7656,7657,7658,7659, # 7344 7660,7661,7662,7663,7664,7665,7666,7667,7668,7669,7670,4453,7671,7672,7673,7674, # 7360 7675,7676,7677,7678,7679,7680,7681,7682,7683,7684,7685,7686,7687,7688,7689,7690, # 7376 7691,7692,7693,7694,7695,7696,7697,3443,7698,7699,7700,7701,7702,4454,7703,7704, # 7392 7705,7706,7707,7708,7709,7710,7711,7712,7713,2472,7714,7715,7716,7717,7718,7719, # 7408 7720,7721,7722,7723,7724,7725,7726,7727,7728,7729,7730,7731,3954,7732,7733,7734, # 7424 7735,7736,7737,7738,7739,7740,7741,7742,7743,7744,7745,7746,7747,7748,7749,7750, # 7440 3134,7751,7752,4852,7753,7754,7755,4853,7756,7757,7758,7759,7760,4174,7761,7762, # 7456 7763,7764,7765,7766,7767,7768,7769,7770,7771,7772,7773,7774,7775,7776,7777,7778, # 7472 7779,7780,7781,7782,7783,7784,7785,7786,7787,7788,7789,7790,7791,7792,7793,7794, # 7488 7795,7796,7797,7798,7799,7800,7801,7802,7803,7804,7805,4854,7806,7807,7808,7809, # 7504 7810,7811,7812,7813,7814,7815,7816,7817,7818,7819,7820,7821,7822,7823,7824,7825, # 7520 4855,7826,7827,7828,7829,7830,7831,7832,7833,7834,7835,7836,7837,7838,7839,7840, # 7536 7841,7842,7843,7844,7845,7846,7847,3955,7848,7849,7850,7851,7852,7853,7854,7855, # 7552 7856,7857,7858,7859,7860,3444,7861,7862,7863,7864,7865,7866,7867,7868,7869,7870, # 7568 7871,7872,7873,7874,7875,7876,7877,7878,7879,7880,7881,7882,7883,7884,7885,7886, # 7584 7887,7888,7889,7890,7891,4175,7892,7893,7894,7895,7896,4856,4857,7897,7898,7899, # 7600 7900,2598,7901,7902,7903,7904,7905,7906,7907,7908,4455,7909,7910,7911,7912,7913, # 7616 7914,3201,7915,7916,7917,7918,7919,7920,7921,4858,7922,7923,7924,7925,7926,7927, # 7632 7928,7929,7930,7931,7932,7933,7934,7935,7936,7937,7938,7939,7940,7941,7942,7943, # 7648 7944,7945,7946,7947,7948,7949,7950,7951,7952,7953,7954,7955,7956,7957,7958,7959, # 7664 7960,7961,7962,7963,7964,7965,7966,7967,7968,7969,7970,7971,7972,7973,7974,7975, # 7680 7976,7977,7978,7979,7980,7981,4859,7982,7983,7984,7985,7986,7987,7988,7989,7990, # 7696 7991,7992,7993,7994,7995,7996,4860,7997,7998,7999,8000,8001,8002,8003,8004,8005, # 7712 8006,8007,8008,8009,8010,8011,8012,8013,8014,8015,8016,4176,8017,8018,8019,8020, # 7728 8021,8022,8023,4861,8024,8025,8026,8027,8028,8029,8030,8031,8032,8033,8034,8035, # 7744 8036,4862,4456,8037,8038,8039,8040,4863,8041,8042,8043,8044,8045,8046,8047,8048, # 7760 8049,8050,8051,8052,8053,8054,8055,8056,8057,8058,8059,8060,8061,8062,8063,8064, # 7776 8065,8066,8067,8068,8069,8070,8071,8072,8073,8074,8075,8076,8077,8078,8079,8080, # 7792 8081,8082,8083,8084,8085,8086,8087,8088,8089,8090,8091,8092,8093,8094,8095,8096, # 7808 8097,8098,8099,4864,4177,8100,8101,8102,8103,8104,8105,8106,8107,8108,8109,8110, # 7824 8111,8112,8113,8114,8115,8116,8117,8118,8119,8120,4178,8121,8122,8123,8124,8125, # 7840 8126,8127,8128,8129,8130,8131,8132,8133,8134,8135,8136,8137,8138,8139,8140,8141, # 7856 8142,8143,8144,8145,4865,4866,8146,8147,8148,8149,8150,8151,8152,8153,8154,8155, # 7872 8156,8157,8158,8159,8160,8161,8162,8163,8164,8165,4179,8166,8167,8168,8169,8170, # 7888 8171,8172,8173,8174,8175,8176,8177,8178,8179,8180,8181,4457,8182,8183,8184,8185, # 7904 8186,8187,8188,8189,8190,8191,8192,8193,8194,8195,8196,8197,8198,8199,8200,8201, # 7920 8202,8203,8204,8205,8206,8207,8208,8209,8210,8211,8212,8213,8214,8215,8216,8217, # 7936 8218,8219,8220,8221,8222,8223,8224,8225,8226,8227,8228,8229,8230,8231,8232,8233, # 7952 8234,8235,8236,8237,8238,8239,8240,8241,8242,8243,8244,8245,8246,8247,8248,8249, # 7968 8250,8251,8252,8253,8254,8255,8256,3445,8257,8258,8259,8260,8261,8262,4458,8263, # 7984 8264,8265,8266,8267,8268,8269,8270,8271,8272,4459,8273,8274,8275,8276,3550,8277, # 8000 8278,8279,8280,8281,8282,8283,8284,8285,8286,8287,8288,8289,4460,8290,8291,8292, # 8016 8293,8294,8295,8296,8297,8298,8299,8300,8301,8302,8303,8304,8305,8306,8307,4867, # 8032 8308,8309,8310,8311,8312,3551,8313,8314,8315,8316,8317,8318,8319,8320,8321,8322, # 8048 8323,8324,8325,8326,4868,8327,8328,8329,8330,8331,8332,8333,8334,8335,8336,8337, # 8064 8338,8339,8340,8341,8342,8343,8344,8345,8346,8347,8348,8349,8350,8351,8352,8353, # 8080 8354,8355,8356,8357,8358,8359,8360,8361,8362,8363,4869,4461,8364,8365,8366,8367, # 8096 8368,8369,8370,4870,8371,8372,8373,8374,8375,8376,8377,8378,8379,8380,8381,8382, # 8112 8383,8384,8385,8386,8387,8388,8389,8390,8391,8392,8393,8394,8395,8396,8397,8398, # 8128 8399,8400,8401,8402,8403,8404,8405,8406,8407,8408,8409,8410,4871,8411,8412,8413, # 8144 8414,8415,8416,8417,8418,8419,8420,8421,8422,4462,8423,8424,8425,8426,8427,8428, # 8160 8429,8430,8431,8432,8433,2986,8434,8435,8436,8437,8438,8439,8440,8441,8442,8443, # 8176 8444,8445,8446,8447,8448,8449,8450,8451,8452,8453,8454,8455,8456,8457,8458,8459, # 8192 8460,8461,8462,8463,8464,8465,8466,8467,8468,8469,8470,8471,8472,8473,8474,8475, # 8208 8476,8477,8478,4180,8479,8480,8481,8482,8483,8484,8485,8486,8487,8488,8489,8490, # 8224 8491,8492,8493,8494,8495,8496,8497,8498,8499,8500,8501,8502,8503,8504,8505,8506, # 8240 8507,8508,8509,8510,8511,8512,8513,8514,8515,8516,8517,8518,8519,8520,8521,8522, # 8256 8523,8524,8525,8526,8527,8528,8529,8530,8531,8532,8533,8534,8535,8536,8537,8538, # 8272 8539,8540,8541,8542,8543,8544,8545,8546,8547,8548,8549,8550,8551,8552,8553,8554, # 8288 8555,8556,8557,8558,8559,8560,8561,8562,8563,8564,4872,8565,8566,8567,8568,8569, # 8304 8570,8571,8572,8573,4873,8574,8575,8576,8577,8578,8579,8580,8581,8582,8583,8584, # 8320 8585,8586,8587,8588,8589,8590,8591,8592,8593,8594,8595,8596,8597,8598,8599,8600, # 8336 8601,8602,8603,8604,8605,3803,8606,8607,8608,8609,8610,8611,8612,8613,4874,3804, # 8352 8614,8615,8616,8617,8618,8619,8620,8621,3956,8622,8623,8624,8625,8626,8627,8628, # 8368 8629,8630,8631,8632,8633,8634,8635,8636,8637,8638,2865,8639,8640,8641,8642,8643, # 8384 8644,8645,8646,8647,8648,8649,8650,8651,8652,8653,8654,8655,8656,4463,8657,8658, # 8400 8659,4875,4876,8660,8661,8662,8663,8664,8665,8666,8667,8668,8669,8670,8671,8672, # 8416 8673,8674,8675,8676,8677,8678,8679,8680,8681,4464,8682,8683,8684,8685,8686,8687, # 8432 8688,8689,8690,8691,8692,8693,8694,8695,8696,8697,8698,8699,8700,8701,8702,8703, # 8448 8704,8705,8706,8707,8708,8709,2261,8710,8711,8712,8713,8714,8715,8716,8717,8718, # 8464 8719,8720,8721,8722,8723,8724,8725,8726,8727,8728,8729,8730,8731,8732,8733,4181, # 8480 8734,8735,8736,8737,8738,8739,8740,8741,8742,8743,8744,8745,8746,8747,8748,8749, # 8496 8750,8751,8752,8753,8754,8755,8756,8757,8758,8759,8760,8761,8762,8763,4877,8764, # 8512 8765,8766,8767,8768,8769,8770,8771,8772,8773,8774,8775,8776,8777,8778,8779,8780, # 8528 8781,8782,8783,8784,8785,8786,8787,8788,4878,8789,4879,8790,8791,8792,4880,8793, # 8544 8794,8795,8796,8797,8798,8799,8800,8801,4881,8802,8803,8804,8805,8806,8807,8808, # 8560 8809,8810,8811,8812,8813,8814,8815,3957,8816,8817,8818,8819,8820,8821,8822,8823, # 8576 8824,8825,8826,8827,8828,8829,8830,8831,8832,8833,8834,8835,8836,8837,8838,8839, # 8592 8840,8841,8842,8843,8844,8845,8846,8847,4882,8848,8849,8850,8851,8852,8853,8854, # 8608 8855,8856,8857,8858,8859,8860,8861,8862,8863,8864,8865,8866,8867,8868,8869,8870, # 8624 8871,8872,8873,8874,8875,8876,8877,8878,8879,8880,8881,8882,8883,8884,3202,8885, # 8640 8886,8887,8888,8889,8890,8891,8892,8893,8894,8895,8896,8897,8898,8899,8900,8901, # 8656 8902,8903,8904,8905,8906,8907,8908,8909,8910,8911,8912,8913,8914,8915,8916,8917, # 8672 8918,8919,8920,8921,8922,8923,8924,4465,8925,8926,8927,8928,8929,8930,8931,8932, # 8688 4883,8933,8934,8935,8936,8937,8938,8939,8940,8941,8942,8943,2214,8944,8945,8946, # 8704 8947,8948,8949,8950,8951,8952,8953,8954,8955,8956,8957,8958,8959,8960,8961,8962, # 8720 8963,8964,8965,4884,8966,8967,8968,8969,8970,8971,8972,8973,8974,8975,8976,8977, # 8736 8978,8979,8980,8981,8982,8983,8984,8985,8986,8987,8988,8989,8990,8991,8992,4885, # 8752 8993,8994,8995,8996,8997,8998,8999,9000,9001,9002,9003,9004,9005,9006,9007,9008, # 8768 9009,9010,9011,9012,9013,9014,9015,9016,9017,9018,9019,9020,9021,4182,9022,9023, # 8784 9024,9025,9026,9027,9028,9029,9030,9031,9032,9033,9034,9035,9036,9037,9038,9039, # 8800 9040,9041,9042,9043,9044,9045,9046,9047,9048,9049,9050,9051,9052,9053,9054,9055, # 8816 9056,9057,9058,9059,9060,9061,9062,9063,4886,9064,9065,9066,9067,9068,9069,4887, # 8832 9070,9071,9072,9073,9074,9075,9076,9077,9078,9079,9080,9081,9082,9083,9084,9085, # 8848 9086,9087,9088,9089,9090,9091,9092,9093,9094,9095,9096,9097,9098,9099,9100,9101, # 8864 9102,9103,9104,9105,9106,9107,9108,9109,9110,9111,9112,9113,9114,9115,9116,9117, # 8880 9118,9119,9120,9121,9122,9123,9124,9125,9126,9127,9128,9129,9130,9131,9132,9133, # 8896 9134,9135,9136,9137,9138,9139,9140,9141,3958,9142,9143,9144,9145,9146,9147,9148, # 8912 9149,9150,9151,4888,9152,9153,9154,9155,9156,9157,9158,9159,9160,9161,9162,9163, # 8928 9164,9165,9166,9167,9168,9169,9170,9171,9172,9173,9174,9175,4889,9176,9177,9178, # 8944 9179,9180,9181,9182,9183,9184,9185,9186,9187,9188,9189,9190,9191,9192,9193,9194, # 8960 9195,9196,9197,9198,9199,9200,9201,9202,9203,4890,9204,9205,9206,9207,9208,9209, # 8976 9210,9211,9212,9213,9214,9215,9216,9217,9218,9219,9220,9221,9222,4466,9223,9224, # 8992 9225,9226,9227,9228,9229,9230,9231,9232,9233,9234,9235,9236,9237,9238,9239,9240, # 9008 9241,9242,9243,9244,9245,4891,9246,9247,9248,9249,9250,9251,9252,9253,9254,9255, # 9024 9256,9257,4892,9258,9259,9260,9261,4893,4894,9262,9263,9264,9265,9266,9267,9268, # 9040 9269,9270,9271,9272,9273,4467,9274,9275,9276,9277,9278,9279,9280,9281,9282,9283, # 9056 9284,9285,3673,9286,9287,9288,9289,9290,9291,9292,9293,9294,9295,9296,9297,9298, # 9072 9299,9300,9301,9302,9303,9304,9305,9306,9307,9308,9309,9310,9311,9312,9313,9314, # 9088 9315,9316,9317,9318,9319,9320,9321,9322,4895,9323,9324,9325,9326,9327,9328,9329, # 9104 9330,9331,9332,9333,9334,9335,9336,9337,9338,9339,9340,9341,9342,9343,9344,9345, # 9120 9346,9347,4468,9348,9349,9350,9351,9352,9353,9354,9355,9356,9357,9358,9359,9360, # 9136 9361,9362,9363,9364,9365,9366,9367,9368,9369,9370,9371,9372,9373,4896,9374,4469, # 9152 9375,9376,9377,9378,9379,4897,9380,9381,9382,9383,9384,9385,9386,9387,9388,9389, # 9168 9390,9391,9392,9393,9394,9395,9396,9397,9398,9399,9400,9401,9402,9403,9404,9405, # 9184 9406,4470,9407,2751,9408,9409,3674,3552,9410,9411,9412,9413,9414,9415,9416,9417, # 9200 9418,9419,9420,9421,4898,9422,9423,9424,9425,9426,9427,9428,9429,3959,9430,9431, # 9216 9432,9433,9434,9435,9436,4471,9437,9438,9439,9440,9441,9442,9443,9444,9445,9446, # 9232 9447,9448,9449,9450,3348,9451,9452,9453,9454,9455,9456,9457,9458,9459,9460,9461, # 9248 9462,9463,9464,9465,9466,9467,9468,9469,9470,9471,9472,4899,9473,9474,9475,9476, # 9264 9477,4900,9478,9479,9480,9481,9482,9483,9484,9485,9486,9487,9488,3349,9489,9490, # 9280 9491,9492,9493,9494,9495,9496,9497,9498,9499,9500,9501,9502,9503,9504,9505,9506, # 9296 9507,9508,9509,9510,9511,9512,9513,9514,9515,9516,9517,9518,9519,9520,4901,9521, # 9312 9522,9523,9524,9525,9526,4902,9527,9528,9529,9530,9531,9532,9533,9534,9535,9536, # 9328 9537,9538,9539,9540,9541,9542,9543,9544,9545,9546,9547,9548,9549,9550,9551,9552, # 9344 9553,9554,9555,9556,9557,9558,9559,9560,9561,9562,9563,9564,9565,9566,9567,9568, # 9360 9569,9570,9571,9572,9573,9574,9575,9576,9577,9578,9579,9580,9581,9582,9583,9584, # 9376 3805,9585,9586,9587,9588,9589,9590,9591,9592,9593,9594,9595,9596,9597,9598,9599, # 9392 9600,9601,9602,4903,9603,9604,9605,9606,9607,4904,9608,9609,9610,9611,9612,9613, # 9408 9614,4905,9615,9616,9617,9618,9619,9620,9621,9622,9623,9624,9625,9626,9627,9628, # 9424 9629,9630,9631,9632,4906,9633,9634,9635,9636,9637,9638,9639,9640,9641,9642,9643, # 9440 4907,9644,9645,9646,9647,9648,9649,9650,9651,9652,9653,9654,9655,9656,9657,9658, # 9456 9659,9660,9661,9662,9663,9664,9665,9666,9667,9668,9669,9670,9671,9672,4183,9673, # 9472 9674,9675,9676,9677,4908,9678,9679,9680,9681,4909,9682,9683,9684,9685,9686,9687, # 9488 9688,9689,9690,4910,9691,9692,9693,3675,9694,9695,9696,2945,9697,9698,9699,9700, # 9504 9701,9702,9703,9704,9705,4911,9706,9707,9708,9709,9710,9711,9712,9713,9714,9715, # 9520 9716,9717,9718,9719,9720,9721,9722,9723,9724,9725,9726,9727,9728,9729,9730,9731, # 9536 9732,9733,9734,9735,4912,9736,9737,9738,9739,9740,4913,9741,9742,9743,9744,9745, # 9552 9746,9747,9748,9749,9750,9751,9752,9753,9754,9755,9756,9757,9758,4914,9759,9760, # 9568 9761,9762,9763,9764,9765,9766,9767,9768,9769,9770,9771,9772,9773,9774,9775,9776, # 9584 9777,9778,9779,9780,9781,9782,4915,9783,9784,9785,9786,9787,9788,9789,9790,9791, # 9600 9792,9793,4916,9794,9795,9796,9797,9798,9799,9800,9801,9802,9803,9804,9805,9806, # 9616 9807,9808,9809,9810,9811,9812,9813,9814,9815,9816,9817,9818,9819,9820,9821,9822, # 9632 9823,9824,9825,9826,9827,9828,9829,9830,9831,9832,9833,9834,9835,9836,9837,9838, # 9648 9839,9840,9841,9842,9843,9844,9845,9846,9847,9848,9849,9850,9851,9852,9853,9854, # 9664 9855,9856,9857,9858,9859,9860,9861,9862,9863,9864,9865,9866,9867,9868,4917,9869, # 9680 9870,9871,9872,9873,9874,9875,9876,9877,9878,9879,9880,9881,9882,9883,9884,9885, # 9696 9886,9887,9888,9889,9890,9891,9892,4472,9893,9894,9895,9896,9897,3806,9898,9899, # 9712 9900,9901,9902,9903,9904,9905,9906,9907,9908,9909,9910,9911,9912,9913,9914,4918, # 9728 9915,9916,9917,4919,9918,9919,9920,9921,4184,9922,9923,9924,9925,9926,9927,9928, # 9744 9929,9930,9931,9932,9933,9934,9935,9936,9937,9938,9939,9940,9941,9942,9943,9944, # 9760 9945,9946,4920,9947,9948,9949,9950,9951,9952,9953,9954,9955,4185,9956,9957,9958, # 9776 9959,9960,9961,9962,9963,9964,9965,4921,9966,9967,9968,4473,9969,9970,9971,9972, # 9792 9973,9974,9975,9976,9977,4474,9978,9979,9980,9981,9982,9983,9984,9985,9986,9987, # 9808 9988,9989,9990,9991,9992,9993,9994,9995,9996,9997,9998,9999,10000,10001,10002,10003, # 9824 10004,10005,10006,10007,10008,10009,10010,10011,10012,10013,10014,10015,10016,10017,10018,10019, # 9840 10020,10021,4922,10022,4923,10023,10024,10025,10026,10027,10028,10029,10030,10031,10032,10033, # 9856 10034,10035,10036,10037,10038,10039,10040,10041,10042,10043,10044,10045,10046,10047,10048,4924, # 9872 10049,10050,10051,10052,10053,10054,10055,10056,10057,10058,10059,10060,10061,10062,10063,10064, # 9888 10065,10066,10067,10068,10069,10070,10071,10072,10073,10074,10075,10076,10077,10078,10079,10080, # 9904 10081,10082,10083,10084,10085,10086,10087,4475,10088,10089,10090,10091,10092,10093,10094,10095, # 9920 10096,10097,4476,10098,10099,10100,10101,10102,10103,10104,10105,10106,10107,10108,10109,10110, # 9936 10111,2174,10112,10113,10114,10115,10116,10117,10118,10119,10120,10121,10122,10123,10124,10125, # 9952 10126,10127,10128,10129,10130,10131,10132,10133,10134,10135,10136,10137,10138,10139,10140,3807, # 9968 4186,4925,10141,10142,10143,10144,10145,10146,10147,4477,4187,10148,10149,10150,10151,10152, # 9984 10153,4188,10154,10155,10156,10157,10158,10159,10160,10161,4926,10162,10163,10164,10165,10166, #10000 10167,10168,10169,10170,10171,10172,10173,10174,10175,10176,10177,10178,10179,10180,10181,10182, #10016 10183,10184,10185,10186,10187,10188,10189,10190,10191,10192,3203,10193,10194,10195,10196,10197, #10032 10198,10199,10200,4478,10201,10202,10203,10204,4479,10205,10206,10207,10208,10209,10210,10211, #10048 10212,10213,10214,10215,10216,10217,10218,10219,10220,10221,10222,10223,10224,10225,10226,10227, #10064 10228,10229,10230,10231,10232,10233,10234,4927,10235,10236,10237,10238,10239,10240,10241,10242, #10080 10243,10244,10245,10246,10247,10248,10249,10250,10251,10252,10253,10254,10255,10256,10257,10258, #10096 10259,10260,10261,10262,10263,10264,10265,10266,10267,10268,10269,10270,10271,10272,10273,4480, #10112 4928,4929,10274,10275,10276,10277,10278,10279,10280,10281,10282,10283,10284,10285,10286,10287, #10128 10288,10289,10290,10291,10292,10293,10294,10295,10296,10297,10298,10299,10300,10301,10302,10303, #10144 10304,10305,10306,10307,10308,10309,10310,10311,10312,10313,10314,10315,10316,10317,10318,10319, #10160 10320,10321,10322,10323,10324,10325,10326,10327,10328,10329,10330,10331,10332,10333,10334,4930, #10176 10335,10336,10337,10338,10339,10340,10341,10342,4931,10343,10344,10345,10346,10347,10348,10349, #10192 10350,10351,10352,10353,10354,10355,3088,10356,2786,10357,10358,10359,10360,4189,10361,10362, #10208 10363,10364,10365,10366,10367,10368,10369,10370,10371,10372,10373,10374,10375,4932,10376,10377, #10224 10378,10379,10380,10381,10382,10383,10384,10385,10386,10387,10388,10389,10390,10391,10392,4933, #10240 10393,10394,10395,4934,10396,10397,10398,10399,10400,10401,10402,10403,10404,10405,10406,10407, #10256 10408,10409,10410,10411,10412,3446,10413,10414,10415,10416,10417,10418,10419,10420,10421,10422, #10272 10423,4935,10424,10425,10426,10427,10428,10429,10430,4936,10431,10432,10433,10434,10435,10436, #10288 10437,10438,10439,10440,10441,10442,10443,4937,10444,10445,10446,10447,4481,10448,10449,10450, #10304 10451,10452,10453,10454,10455,10456,10457,10458,10459,10460,10461,10462,10463,10464,10465,10466, #10320 10467,10468,10469,10470,10471,10472,10473,10474,10475,10476,10477,10478,10479,10480,10481,10482, #10336 10483,10484,10485,10486,10487,10488,10489,10490,10491,10492,10493,10494,10495,10496,10497,10498, #10352 10499,10500,10501,10502,10503,10504,10505,4938,10506,10507,10508,10509,10510,2552,10511,10512, #10368 10513,10514,10515,10516,3447,10517,10518,10519,10520,10521,10522,10523,10524,10525,10526,10527, #10384 10528,10529,10530,10531,10532,10533,10534,10535,10536,10537,10538,10539,10540,10541,10542,10543, #10400 4482,10544,4939,10545,10546,10547,10548,10549,10550,10551,10552,10553,10554,10555,10556,10557, #10416 10558,10559,10560,10561,10562,10563,10564,10565,10566,10567,3676,4483,10568,10569,10570,10571, #10432 10572,3448,10573,10574,10575,10576,10577,10578,10579,10580,10581,10582,10583,10584,10585,10586, #10448 10587,10588,10589,10590,10591,10592,10593,10594,10595,10596,10597,10598,10599,10600,10601,10602, #10464 10603,10604,10605,10606,10607,10608,10609,10610,10611,10612,10613,10614,10615,10616,10617,10618, #10480 10619,10620,10621,10622,10623,10624,10625,10626,10627,4484,10628,10629,10630,10631,10632,4940, #10496 10633,10634,10635,10636,10637,10638,10639,10640,10641,10642,10643,10644,10645,10646,10647,10648, #10512 10649,10650,10651,10652,10653,10654,10655,10656,4941,10657,10658,10659,2599,10660,10661,10662, #10528 10663,10664,10665,10666,3089,10667,10668,10669,10670,10671,10672,10673,10674,10675,10676,10677, #10544 10678,10679,10680,4942,10681,10682,10683,10684,10685,10686,10687,10688,10689,10690,10691,10692, #10560 10693,10694,10695,10696,10697,4485,10698,10699,10700,10701,10702,10703,10704,4943,10705,3677, #10576 10706,10707,10708,10709,10710,10711,10712,4944,10713,10714,10715,10716,10717,10718,10719,10720, #10592 10721,10722,10723,10724,10725,10726,10727,10728,4945,10729,10730,10731,10732,10733,10734,10735, #10608 10736,10737,10738,10739,10740,10741,10742,10743,10744,10745,10746,10747,10748,10749,10750,10751, #10624 10752,10753,10754,10755,10756,10757,10758,10759,10760,10761,4946,10762,10763,10764,10765,10766, #10640 10767,4947,4948,10768,10769,10770,10771,10772,10773,10774,10775,10776,10777,10778,10779,10780, #10656 10781,10782,10783,10784,10785,10786,10787,10788,10789,10790,10791,10792,10793,10794,10795,10796, #10672 10797,10798,10799,10800,10801,10802,10803,10804,10805,10806,10807,10808,10809,10810,10811,10812, #10688 10813,10814,10815,10816,10817,10818,10819,10820,10821,10822,10823,10824,10825,10826,10827,10828, #10704 10829,10830,10831,10832,10833,10834,10835,10836,10837,10838,10839,10840,10841,10842,10843,10844, #10720 10845,10846,10847,10848,10849,10850,10851,10852,10853,10854,10855,10856,10857,10858,10859,10860, #10736 10861,10862,10863,10864,10865,10866,10867,10868,10869,10870,10871,10872,10873,10874,10875,10876, #10752 10877,10878,4486,10879,10880,10881,10882,10883,10884,10885,4949,10886,10887,10888,10889,10890, #10768 10891,10892,10893,10894,10895,10896,10897,10898,10899,10900,10901,10902,10903,10904,10905,10906, #10784 10907,10908,10909,10910,10911,10912,10913,10914,10915,10916,10917,10918,10919,4487,10920,10921, #10800 10922,10923,10924,10925,10926,10927,10928,10929,10930,10931,10932,4950,10933,10934,10935,10936, #10816 10937,10938,10939,10940,10941,10942,10943,10944,10945,10946,10947,10948,10949,4488,10950,10951, #10832 10952,10953,10954,10955,10956,10957,10958,10959,4190,10960,10961,10962,10963,10964,10965,10966, #10848 10967,10968,10969,10970,10971,10972,10973,10974,10975,10976,10977,10978,10979,10980,10981,10982, #10864 10983,10984,10985,10986,10987,10988,10989,10990,10991,10992,10993,10994,10995,10996,10997,10998, #10880 10999,11000,11001,11002,11003,11004,11005,11006,3960,11007,11008,11009,11010,11011,11012,11013, #10896 11014,11015,11016,11017,11018,11019,11020,11021,11022,11023,11024,11025,11026,11027,11028,11029, #10912 11030,11031,11032,4951,11033,11034,11035,11036,11037,11038,11039,11040,11041,11042,11043,11044, #10928 11045,11046,11047,4489,11048,11049,11050,11051,4952,11052,11053,11054,11055,11056,11057,11058, #10944 4953,11059,11060,11061,11062,11063,11064,11065,11066,11067,11068,11069,11070,11071,4954,11072, #10960 11073,11074,11075,11076,11077,11078,11079,11080,11081,11082,11083,11084,11085,11086,11087,11088, #10976 11089,11090,11091,11092,11093,11094,11095,11096,11097,11098,11099,11100,11101,11102,11103,11104, #10992 11105,11106,11107,11108,11109,11110,11111,11112,11113,11114,11115,3808,11116,11117,11118,11119, #11008 11120,11121,11122,11123,11124,11125,11126,11127,11128,11129,11130,11131,11132,11133,11134,4955, #11024 11135,11136,11137,11138,11139,11140,11141,11142,11143,11144,11145,11146,11147,11148,11149,11150, #11040 11151,11152,11153,11154,11155,11156,11157,11158,11159,11160,11161,4956,11162,11163,11164,11165, #11056 11166,11167,11168,11169,11170,11171,11172,11173,11174,11175,11176,11177,11178,11179,11180,4957, #11072 11181,11182,11183,11184,11185,11186,4958,11187,11188,11189,11190,11191,11192,11193,11194,11195, #11088 11196,11197,11198,11199,11200,3678,11201,11202,11203,11204,11205,11206,4191,11207,11208,11209, #11104 11210,11211,11212,11213,11214,11215,11216,11217,11218,11219,11220,11221,11222,11223,11224,11225, #11120 11226,11227,11228,11229,11230,11231,11232,11233,11234,11235,11236,11237,11238,11239,11240,11241, #11136 11242,11243,11244,11245,11246,11247,11248,11249,11250,11251,4959,11252,11253,11254,11255,11256, #11152 11257,11258,11259,11260,11261,11262,11263,11264,11265,11266,11267,11268,11269,11270,11271,11272, #11168 11273,11274,11275,11276,11277,11278,11279,11280,11281,11282,11283,11284,11285,11286,11287,11288, #11184 11289,11290,11291,11292,11293,11294,11295,11296,11297,11298,11299,11300,11301,11302,11303,11304, #11200 11305,11306,11307,11308,11309,11310,11311,11312,11313,11314,3679,11315,11316,11317,11318,4490, #11216 11319,11320,11321,11322,11323,11324,11325,11326,11327,11328,11329,11330,11331,11332,11333,11334, #11232 11335,11336,11337,11338,11339,11340,11341,11342,11343,11344,11345,11346,11347,4960,11348,11349, #11248 11350,11351,11352,11353,11354,11355,11356,11357,11358,11359,11360,11361,11362,11363,11364,11365, #11264 11366,11367,11368,11369,11370,11371,11372,11373,11374,11375,11376,11377,3961,4961,11378,11379, #11280 11380,11381,11382,11383,11384,11385,11386,11387,11388,11389,11390,11391,11392,11393,11394,11395, #11296 11396,11397,4192,11398,11399,11400,11401,11402,11403,11404,11405,11406,11407,11408,11409,11410, #11312 11411,4962,11412,11413,11414,11415,11416,11417,11418,11419,11420,11421,11422,11423,11424,11425, #11328 11426,11427,11428,11429,11430,11431,11432,11433,11434,11435,11436,11437,11438,11439,11440,11441, #11344 11442,11443,11444,11445,11446,11447,11448,11449,11450,11451,11452,11453,11454,11455,11456,11457, #11360 11458,11459,11460,11461,11462,11463,11464,11465,11466,11467,11468,11469,4963,11470,11471,4491, #11376 11472,11473,11474,11475,4964,11476,11477,11478,11479,11480,11481,11482,11483,11484,11485,11486, #11392 11487,11488,11489,11490,11491,11492,4965,11493,11494,11495,11496,11497,11498,11499,11500,11501, #11408 11502,11503,11504,11505,11506,11507,11508,11509,11510,11511,11512,11513,11514,11515,11516,11517, #11424 11518,11519,11520,11521,11522,11523,11524,11525,11526,11527,11528,11529,3962,11530,11531,11532, #11440 11533,11534,11535,11536,11537,11538,11539,11540,11541,11542,11543,11544,11545,11546,11547,11548, #11456 11549,11550,11551,11552,11553,11554,11555,11556,11557,11558,11559,11560,11561,11562,11563,11564, #11472 4193,4194,11565,11566,11567,11568,11569,11570,11571,11572,11573,11574,11575,11576,11577,11578, #11488 11579,11580,11581,11582,11583,11584,11585,11586,11587,11588,11589,11590,11591,4966,4195,11592, #11504 11593,11594,11595,11596,11597,11598,11599,11600,11601,11602,11603,11604,3090,11605,11606,11607, #11520 11608,11609,11610,4967,11611,11612,11613,11614,11615,11616,11617,11618,11619,11620,11621,11622, #11536 11623,11624,11625,11626,11627,11628,11629,11630,11631,11632,11633,11634,11635,11636,11637,11638, #11552 11639,11640,11641,11642,11643,11644,11645,11646,11647,11648,11649,11650,11651,11652,11653,11654, #11568 11655,11656,11657,11658,11659,11660,11661,11662,11663,11664,11665,11666,11667,11668,11669,11670, #11584 11671,11672,11673,11674,4968,11675,11676,11677,11678,11679,11680,11681,11682,11683,11684,11685, #11600 11686,11687,11688,11689,11690,11691,11692,11693,3809,11694,11695,11696,11697,11698,11699,11700, #11616 11701,11702,11703,11704,11705,11706,11707,11708,11709,11710,11711,11712,11713,11714,11715,11716, #11632 11717,11718,3553,11719,11720,11721,11722,11723,11724,11725,11726,11727,11728,11729,11730,4969, #11648 11731,11732,11733,11734,11735,11736,11737,11738,11739,11740,4492,11741,11742,11743,11744,11745, #11664 11746,11747,11748,11749,11750,11751,11752,4970,11753,11754,11755,11756,11757,11758,11759,11760, #11680 11761,11762,11763,11764,11765,11766,11767,11768,11769,11770,11771,11772,11773,11774,11775,11776, #11696 11777,11778,11779,11780,11781,11782,11783,11784,11785,11786,11787,11788,11789,11790,4971,11791, #11712 11792,11793,11794,11795,11796,11797,4972,11798,11799,11800,11801,11802,11803,11804,11805,11806, #11728 11807,11808,11809,11810,4973,11811,11812,11813,11814,11815,11816,11817,11818,11819,11820,11821, #11744 11822,11823,11824,11825,11826,11827,11828,11829,11830,11831,11832,11833,11834,3680,3810,11835, #11760 11836,4974,11837,11838,11839,11840,11841,11842,11843,11844,11845,11846,11847,11848,11849,11850, #11776 11851,11852,11853,11854,11855,11856,11857,11858,11859,11860,11861,11862,11863,11864,11865,11866, #11792 11867,11868,11869,11870,11871,11872,11873,11874,11875,11876,11877,11878,11879,11880,11881,11882, #11808 11883,11884,4493,11885,11886,11887,11888,11889,11890,11891,11892,11893,11894,11895,11896,11897, #11824 11898,11899,11900,11901,11902,11903,11904,11905,11906,11907,11908,11909,11910,11911,11912,11913, #11840 11914,11915,4975,11916,11917,11918,11919,11920,11921,11922,11923,11924,11925,11926,11927,11928, #11856 11929,11930,11931,11932,11933,11934,11935,11936,11937,11938,11939,11940,11941,11942,11943,11944, #11872 11945,11946,11947,11948,11949,4976,11950,11951,11952,11953,11954,11955,11956,11957,11958,11959, #11888 11960,11961,11962,11963,11964,11965,11966,11967,11968,11969,11970,11971,11972,11973,11974,11975, #11904 11976,11977,11978,11979,11980,11981,11982,11983,11984,11985,11986,11987,4196,11988,11989,11990, #11920 11991,11992,4977,11993,11994,11995,11996,11997,11998,11999,12000,12001,12002,12003,12004,12005, #11936 12006,12007,12008,12009,12010,12011,12012,12013,12014,12015,12016,12017,12018,12019,12020,12021, #11952 12022,12023,12024,12025,12026,12027,12028,12029,12030,12031,12032,12033,12034,12035,12036,12037, #11968 12038,12039,12040,12041,12042,12043,12044,12045,12046,12047,12048,12049,12050,12051,12052,12053, #11984 12054,12055,12056,12057,12058,12059,12060,12061,4978,12062,12063,12064,12065,12066,12067,12068, #12000 12069,12070,12071,12072,12073,12074,12075,12076,12077,12078,12079,12080,12081,12082,12083,12084, #12016 12085,12086,12087,12088,12089,12090,12091,12092,12093,12094,12095,12096,12097,12098,12099,12100, #12032 12101,12102,12103,12104,12105,12106,12107,12108,12109,12110,12111,12112,12113,12114,12115,12116, #12048 12117,12118,12119,12120,12121,12122,12123,4979,12124,12125,12126,12127,12128,4197,12129,12130, #12064 12131,12132,12133,12134,12135,12136,12137,12138,12139,12140,12141,12142,12143,12144,12145,12146, #12080 12147,12148,12149,12150,12151,12152,12153,12154,4980,12155,12156,12157,12158,12159,12160,4494, #12096 12161,12162,12163,12164,3811,12165,12166,12167,12168,12169,4495,12170,12171,4496,12172,12173, #12112 12174,12175,12176,3812,12177,12178,12179,12180,12181,12182,12183,12184,12185,12186,12187,12188, #12128 12189,12190,12191,12192,12193,12194,12195,12196,12197,12198,12199,12200,12201,12202,12203,12204, #12144 12205,12206,12207,12208,12209,12210,12211,12212,12213,12214,12215,12216,12217,12218,12219,12220, #12160 12221,4981,12222,12223,12224,12225,12226,12227,12228,12229,12230,12231,12232,12233,12234,12235, #12176 4982,12236,12237,12238,12239,12240,12241,12242,12243,12244,12245,4983,12246,12247,12248,12249, #12192 4984,12250,12251,12252,12253,12254,12255,12256,12257,12258,12259,12260,12261,12262,12263,12264, #12208 4985,12265,4497,12266,12267,12268,12269,12270,12271,12272,12273,12274,12275,12276,12277,12278, #12224 12279,12280,12281,12282,12283,12284,12285,12286,12287,4986,12288,12289,12290,12291,12292,12293, #12240 12294,12295,12296,2473,12297,12298,12299,12300,12301,12302,12303,12304,12305,12306,12307,12308, #12256 12309,12310,12311,12312,12313,12314,12315,12316,12317,12318,12319,3963,12320,12321,12322,12323, #12272 12324,12325,12326,12327,12328,12329,12330,12331,12332,4987,12333,12334,12335,12336,12337,12338, #12288 12339,12340,12341,12342,12343,12344,12345,12346,12347,12348,12349,12350,12351,12352,12353,12354, #12304 12355,12356,12357,12358,12359,3964,12360,12361,12362,12363,12364,12365,12366,12367,12368,12369, #12320 12370,3965,12371,12372,12373,12374,12375,12376,12377,12378,12379,12380,12381,12382,12383,12384, #12336 12385,12386,12387,12388,12389,12390,12391,12392,12393,12394,12395,12396,12397,12398,12399,12400, #12352 12401,12402,12403,12404,12405,12406,12407,12408,4988,12409,12410,12411,12412,12413,12414,12415, #12368 12416,12417,12418,12419,12420,12421,12422,12423,12424,12425,12426,12427,12428,12429,12430,12431, #12384 12432,12433,12434,12435,12436,12437,12438,3554,12439,12440,12441,12442,12443,12444,12445,12446, #12400 12447,12448,12449,12450,12451,12452,12453,12454,12455,12456,12457,12458,12459,12460,12461,12462, #12416 12463,12464,4989,12465,12466,12467,12468,12469,12470,12471,12472,12473,12474,12475,12476,12477, #12432 12478,12479,12480,4990,12481,12482,12483,12484,12485,12486,12487,12488,12489,4498,12490,12491, #12448 12492,12493,12494,12495,12496,12497,12498,12499,12500,12501,12502,12503,12504,12505,12506,12507, #12464 12508,12509,12510,12511,12512,12513,12514,12515,12516,12517,12518,12519,12520,12521,12522,12523, #12480 12524,12525,12526,12527,12528,12529,12530,12531,12532,12533,12534,12535,12536,12537,12538,12539, #12496 12540,12541,12542,12543,12544,12545,12546,12547,12548,12549,12550,12551,4991,12552,12553,12554, #12512 12555,12556,12557,12558,12559,12560,12561,12562,12563,12564,12565,12566,12567,12568,12569,12570, #12528 12571,12572,12573,12574,12575,12576,12577,12578,3036,12579,12580,12581,12582,12583,3966,12584, #12544 12585,12586,12587,12588,12589,12590,12591,12592,12593,12594,12595,12596,12597,12598,12599,12600, #12560 12601,12602,12603,12604,12605,12606,12607,12608,12609,12610,12611,12612,12613,12614,12615,12616, #12576 12617,12618,12619,12620,12621,12622,12623,12624,12625,12626,12627,12628,12629,12630,12631,12632, #12592 12633,12634,12635,12636,12637,12638,12639,12640,12641,12642,12643,12644,12645,12646,4499,12647, #12608 12648,12649,12650,12651,12652,12653,12654,12655,12656,12657,12658,12659,12660,12661,12662,12663, #12624 12664,12665,12666,12667,12668,12669,12670,12671,12672,12673,12674,12675,12676,12677,12678,12679, #12640 12680,12681,12682,12683,12684,12685,12686,12687,12688,12689,12690,12691,12692,12693,12694,12695, #12656 12696,12697,12698,4992,12699,12700,12701,12702,12703,12704,12705,12706,12707,12708,12709,12710, #12672 12711,12712,12713,12714,12715,12716,12717,12718,12719,12720,12721,12722,12723,12724,12725,12726, #12688 12727,12728,12729,12730,12731,12732,12733,12734,12735,12736,12737,12738,12739,12740,12741,12742, #12704 12743,12744,12745,12746,12747,12748,12749,12750,12751,12752,12753,12754,12755,12756,12757,12758, #12720 12759,12760,12761,12762,12763,12764,12765,12766,12767,12768,12769,12770,12771,12772,12773,12774, #12736 12775,12776,12777,12778,4993,2175,12779,12780,12781,12782,12783,12784,12785,12786,4500,12787, #12752 12788,12789,12790,12791,12792,12793,12794,12795,12796,12797,12798,12799,12800,12801,12802,12803, #12768 12804,12805,12806,12807,12808,12809,12810,12811,12812,12813,12814,12815,12816,12817,12818,12819, #12784 12820,12821,12822,12823,12824,12825,12826,4198,3967,12827,12828,12829,12830,12831,12832,12833, #12800 12834,12835,12836,12837,12838,12839,12840,12841,12842,12843,12844,12845,12846,12847,12848,12849, #12816 12850,12851,12852,12853,12854,12855,12856,12857,12858,12859,12860,12861,4199,12862,12863,12864, #12832 12865,12866,12867,12868,12869,12870,12871,12872,12873,12874,12875,12876,12877,12878,12879,12880, #12848 12881,12882,12883,12884,12885,12886,12887,4501,12888,12889,12890,12891,12892,12893,12894,12895, #12864 12896,12897,12898,12899,12900,12901,12902,12903,12904,12905,12906,12907,12908,12909,12910,12911, #12880 12912,4994,12913,12914,12915,12916,12917,12918,12919,12920,12921,12922,12923,12924,12925,12926, #12896 12927,12928,12929,12930,12931,12932,12933,12934,12935,12936,12937,12938,12939,12940,12941,12942, #12912 12943,12944,12945,12946,12947,12948,12949,12950,12951,12952,12953,12954,12955,12956,1772,12957, #12928 12958,12959,12960,12961,12962,12963,12964,12965,12966,12967,12968,12969,12970,12971,12972,12973, #12944 12974,12975,12976,12977,12978,12979,12980,12981,12982,12983,12984,12985,12986,12987,12988,12989, #12960 12990,12991,12992,12993,12994,12995,12996,12997,4502,12998,4503,12999,13000,13001,13002,13003, #12976 4504,13004,13005,13006,13007,13008,13009,13010,13011,13012,13013,13014,13015,13016,13017,13018, #12992 13019,13020,13021,13022,13023,13024,13025,13026,13027,13028,13029,3449,13030,13031,13032,13033, #13008 13034,13035,13036,13037,13038,13039,13040,13041,13042,13043,13044,13045,13046,13047,13048,13049, #13024 13050,13051,13052,13053,13054,13055,13056,13057,13058,13059,13060,13061,13062,13063,13064,13065, #13040 13066,13067,13068,13069,13070,13071,13072,13073,13074,13075,13076,13077,13078,13079,13080,13081, #13056 13082,13083,13084,13085,13086,13087,13088,13089,13090,13091,13092,13093,13094,13095,13096,13097, #13072 13098,13099,13100,13101,13102,13103,13104,13105,13106,13107,13108,13109,13110,13111,13112,13113, #13088 13114,13115,13116,13117,13118,3968,13119,4995,13120,13121,13122,13123,13124,13125,13126,13127, #13104 4505,13128,13129,13130,13131,13132,13133,13134,4996,4506,13135,13136,13137,13138,13139,4997, #13120 13140,13141,13142,13143,13144,13145,13146,13147,13148,13149,13150,13151,13152,13153,13154,13155, #13136 13156,13157,13158,13159,4998,13160,13161,13162,13163,13164,13165,13166,13167,13168,13169,13170, #13152 13171,13172,13173,13174,13175,13176,4999,13177,13178,13179,13180,13181,13182,13183,13184,13185, #13168 13186,13187,13188,13189,13190,13191,13192,13193,13194,13195,13196,13197,13198,13199,13200,13201, #13184 13202,13203,13204,13205,13206,5000,13207,13208,13209,13210,13211,13212,13213,13214,13215,13216, #13200 13217,13218,13219,13220,13221,13222,13223,13224,13225,13226,13227,4200,5001,13228,13229,13230, #13216 13231,13232,13233,13234,13235,13236,13237,13238,13239,13240,3969,13241,13242,13243,13244,3970, #13232 13245,13246,13247,13248,13249,13250,13251,13252,13253,13254,13255,13256,13257,13258,13259,13260, #13248 13261,13262,13263,13264,13265,13266,13267,13268,3450,13269,13270,13271,13272,13273,13274,13275, #13264 13276,5002,13277,13278,13279,13280,13281,13282,13283,13284,13285,13286,13287,13288,13289,13290, #13280 13291,13292,13293,13294,13295,13296,13297,13298,13299,13300,13301,13302,3813,13303,13304,13305, #13296 13306,13307,13308,13309,13310,13311,13312,13313,13314,13315,13316,13317,13318,13319,13320,13321, #13312 13322,13323,13324,13325,13326,13327,13328,4507,13329,13330,13331,13332,13333,13334,13335,13336, #13328 13337,13338,13339,13340,13341,5003,13342,13343,13344,13345,13346,13347,13348,13349,13350,13351, #13344 13352,13353,13354,13355,13356,13357,13358,13359,13360,13361,13362,13363,13364,13365,13366,13367, #13360 5004,13368,13369,13370,13371,13372,13373,13374,13375,13376,13377,13378,13379,13380,13381,13382, #13376 13383,13384,13385,13386,13387,13388,13389,13390,13391,13392,13393,13394,13395,13396,13397,13398, #13392 13399,13400,13401,13402,13403,13404,13405,13406,13407,13408,13409,13410,13411,13412,13413,13414, #13408 13415,13416,13417,13418,13419,13420,13421,13422,13423,13424,13425,13426,13427,13428,13429,13430, #13424 13431,13432,4508,13433,13434,13435,4201,13436,13437,13438,13439,13440,13441,13442,13443,13444, #13440 13445,13446,13447,13448,13449,13450,13451,13452,13453,13454,13455,13456,13457,5005,13458,13459, #13456 13460,13461,13462,13463,13464,13465,13466,13467,13468,13469,13470,4509,13471,13472,13473,13474, #13472 13475,13476,13477,13478,13479,13480,13481,13482,13483,13484,13485,13486,13487,13488,13489,13490, #13488 13491,13492,13493,13494,13495,13496,13497,13498,13499,13500,13501,13502,13503,13504,13505,13506, #13504 13507,13508,13509,13510,13511,13512,13513,13514,13515,13516,13517,13518,13519,13520,13521,13522, #13520 13523,13524,13525,13526,13527,13528,13529,13530,13531,13532,13533,13534,13535,13536,13537,13538, #13536 13539,13540,13541,13542,13543,13544,13545,13546,13547,13548,13549,13550,13551,13552,13553,13554, #13552 13555,13556,13557,13558,13559,13560,13561,13562,13563,13564,13565,13566,13567,13568,13569,13570, #13568 13571,13572,13573,13574,13575,13576,13577,13578,13579,13580,13581,13582,13583,13584,13585,13586, #13584 13587,13588,13589,13590,13591,13592,13593,13594,13595,13596,13597,13598,13599,13600,13601,13602, #13600 13603,13604,13605,13606,13607,13608,13609,13610,13611,13612,13613,13614,13615,13616,13617,13618, #13616 13619,13620,13621,13622,13623,13624,13625,13626,13627,13628,13629,13630,13631,13632,13633,13634, #13632 13635,13636,13637,13638,13639,13640,13641,13642,5006,13643,13644,13645,13646,13647,13648,13649, #13648 13650,13651,5007,13652,13653,13654,13655,13656,13657,13658,13659,13660,13661,13662,13663,13664, #13664 13665,13666,13667,13668,13669,13670,13671,13672,13673,13674,13675,13676,13677,13678,13679,13680, #13680 13681,13682,13683,13684,13685,13686,13687,13688,13689,13690,13691,13692,13693,13694,13695,13696, #13696 13697,13698,13699,13700,13701,13702,13703,13704,13705,13706,13707,13708,13709,13710,13711,13712, #13712 13713,13714,13715,13716,13717,13718,13719,13720,13721,13722,13723,13724,13725,13726,13727,13728, #13728 13729,13730,13731,13732,13733,13734,13735,13736,13737,13738,13739,13740,13741,13742,13743,13744, #13744 13745,13746,13747,13748,13749,13750,13751,13752,13753,13754,13755,13756,13757,13758,13759,13760, #13760 13761,13762,13763,13764,13765,13766,13767,13768,13769,13770,13771,13772,13773,13774,3273,13775, #13776 13776,13777,13778,13779,13780,13781,13782,13783,13784,13785,13786,13787,13788,13789,13790,13791, #13792 13792,13793,13794,13795,13796,13797,13798,13799,13800,13801,13802,13803,13804,13805,13806,13807, #13808 13808,13809,13810,13811,13812,13813,13814,13815,13816,13817,13818,13819,13820,13821,13822,13823, #13824 13824,13825,13826,13827,13828,13829,13830,13831,13832,13833,13834,13835,13836,13837,13838,13839, #13840 13840,13841,13842,13843,13844,13845,13846,13847,13848,13849,13850,13851,13852,13853,13854,13855, #13856 13856,13857,13858,13859,13860,13861,13862,13863,13864,13865,13866,13867,13868,13869,13870,13871, #13872 13872,13873,13874,13875,13876,13877,13878,13879,13880,13881,13882,13883,13884,13885,13886,13887, #13888 13888,13889,13890,13891,13892,13893,13894,13895,13896,13897,13898,13899,13900,13901,13902,13903, #13904 13904,13905,13906,13907,13908,13909,13910,13911,13912,13913,13914,13915,13916,13917,13918,13919, #13920 13920,13921,13922,13923,13924,13925,13926,13927,13928,13929,13930,13931,13932,13933,13934,13935, #13936 13936,13937,13938,13939,13940,13941,13942,13943,13944,13945,13946,13947,13948,13949,13950,13951, #13952 13952,13953,13954,13955,13956,13957,13958,13959,13960,13961,13962,13963,13964,13965,13966,13967, #13968 13968,13969,13970,13971,13972) #13973 # flake8: noqa
mit
majidaldo/ansible
lib/ansible/utils/module_docs_fragments/rackspace.py
232
4190
# (c) 2014, Matt Martz <[email protected]> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. class ModuleDocFragment(object): # Standard Rackspace only documentation fragment DOCUMENTATION = """ options: api_key: description: - Rackspace API key (overrides I(credentials)) aliases: - password credentials: description: - File to find the Rackspace credentials in (ignored if I(api_key) and I(username) are provided) default: null aliases: - creds_file env: description: - Environment as configured in ~/.pyrax.cfg, see U(https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#pyrax-configuration) version_added: 1.5 region: description: - Region to create an instance in default: DFW username: description: - Rackspace username (overrides I(credentials)) verify_ssl: description: - Whether or not to require SSL validation of API endpoints version_added: 1.5 requirements: - "python >= 2.6" - pyrax notes: - The following environment variables can be used, C(RAX_USERNAME), C(RAX_API_KEY), C(RAX_CREDS_FILE), C(RAX_CREDENTIALS), C(RAX_REGION). - C(RAX_CREDENTIALS) and C(RAX_CREDS_FILE) points to a credentials file appropriate for pyrax. See U(https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating) - C(RAX_USERNAME) and C(RAX_API_KEY) obviate the use of a credentials file - C(RAX_REGION) defines a Rackspace Public Cloud region (DFW, ORD, LON, ...) """ # Documentation fragment including attributes to enable communication # of other OpenStack clouds. Not all rax modules support this. OPENSTACK = """ options: api_key: description: - Rackspace API key (overrides I(credentials)) aliases: - password auth_endpoint: description: - The URI of the authentication service default: https://identity.api.rackspacecloud.com/v2.0/ version_added: 1.5 credentials: description: - File to find the Rackspace credentials in (ignored if I(api_key) and I(username) are provided) default: null aliases: - creds_file env: description: - Environment as configured in ~/.pyrax.cfg, see U(https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#pyrax-configuration) version_added: 1.5 identity_type: description: - Authentication machanism to use, such as rackspace or keystone default: rackspace version_added: 1.5 region: description: - Region to create an instance in default: DFW tenant_id: description: - The tenant ID used for authentication version_added: 1.5 tenant_name: description: - The tenant name used for authentication version_added: 1.5 username: description: - Rackspace username (overrides I(credentials)) verify_ssl: description: - Whether or not to require SSL validation of API endpoints version_added: 1.5 requirements: - "python >= 2.6" - pyrax notes: - The following environment variables can be used, C(RAX_USERNAME), C(RAX_API_KEY), C(RAX_CREDS_FILE), C(RAX_CREDENTIALS), C(RAX_REGION). - C(RAX_CREDENTIALS) and C(RAX_CREDS_FILE) points to a credentials file appropriate for pyrax. See U(https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating) - C(RAX_USERNAME) and C(RAX_API_KEY) obviate the use of a credentials file - C(RAX_REGION) defines a Rackspace Public Cloud region (DFW, ORD, LON, ...) """
gpl-3.0
tspus/python-matchingPursuit
src/utils.py
1
5766
#!/usr/bin/env python #-*- coding: utf-8 -*- ''' # This file is part of Matching Pursuit Python program (python-MP). # # python-MP is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # python-MP is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with python-MP. If not, see <http://www.gnu.org/licenses/>. author: Tomasz Spustek e-mail: [email protected] University of Warsaw, July 06, 2015 ''' from __future__ import division import numpy as np from scipy.io import savemat from src.processing import calculateMP def saveBookAsMat(book , data , config , nameOfFile): # matrix2save = np.zeros([data.shape[0],data.shape[1],config['maxNumberOfIterations']] , dtype='complex') # trials x channels x iterations results = {} for indTrial in np.arange(data.shape[0]): for indChannel in np.arange(data.shape[1]): partialBook = book[indTrial,indChannel] nameOfStruct = 'trial_' + str(indTrial) + 'channel_' + str(indChannel) results[nameOfStruct] = {col_name : partialBook[col_name].values for col_name in partialBook.columns.values} savemat(nameOfFile , results) return 'ok' def generateFinalConfig(dictionaryConfig , dataInfo , algorithmConfig): flags = {} flags['useAsymA'] = dictionaryConfig['useAsym'] flags['useRectA'] = dictionaryConfig['useRect'] flags['useGradientOptimization'] = algorithmConfig['useGradient'] flags['displayInfo'] = algorithmConfig['displayInfo'] config = {} config['flags'] = flags config['algorithm'] = algorithmConfig['algorithmType'] config['minS'] = dictionaryConfig['minS_samples'] config['maxS'] = dictionaryConfig['maxS_samples'] config['density'] = dictionaryConfig['dictionaryDensity'] config['maxNumberOfIterations'] = algorithmConfig['iterationsLimit'] config['minEnergyExplained'] = algorithmConfig['energyLimit'] config['samplingFrequency'] = dataInfo['samplingFreq'] config['minNFFT'] = algorithmConfig['nfft'] config['channels2calc'] = algorithmConfig['channelsRange'] config['trials2calc'] = algorithmConfig['trialsRange'] return config def retranslateDictionaryConfig(dictionaryConfig): config = {} flags = {} flags['useAsymA'] = dictionaryConfig['useAsym'] flags['useRectA'] = dictionaryConfig['useRect'] config['flags'] = flags config['minS'] = dictionaryConfig['minS_samples'] config['maxS'] = dictionaryConfig['maxS_samples'] config['density'] = dictionaryConfig['dictionaryDensity'] return config def generateRangeFromString(text): text = text.replace(' ' , '') text = text.replace(',' , ' ') text = text.split() finalRange = [] iterator = 0 for element in text: f1 = element.find(':') f2 = element.find('-') f3 = element.find(';') if f1 != -1: start = int(element[0:f1]) end = int(element[f1+1:len(element)])+1 for number in range(start , end): finalRange.append(number) elif f2 != -1: start = int(element[0:f2]) end = int(element[f2+1:len(element)])+1 for number in range(start , end): finalRange.append(number) elif f3 != -1: start = int(element[0:f3]) end = int(element[f3+1:len(element)])+1 for number in range(start , end): finalRange.append(number) else: finalRange.append(int(element)) finalRange = np.array(finalRange) finalRange.sort() finalRange = np.unique(finalRange) return finalRange def determineAlgorithmConfig(dataInfo): config = {} config['algorithmType'] = 'smp' config['useGradient'] = 1 config['displayInfo'] = 0 config['nfft'] = 1 << (int(dataInfo['samplingFreq'])-1).bit_length() config['energyLimit'] = 0.99 config['iterationsLimit'] = 20 config['channels2calc'] = '1:' + str(dataInfo['numberOfChannels']) config['channelsRange'] = generateRangeFromString(config['channels2calc']) config['trials2calc'] = '1:' + str(dataInfo['numberOfTrials']) config['trialsRange'] = generateRangeFromString(config['trials2calc']) return config def determineDictionaryConfig(dictionaryConfig , energyLimit , dataInfo): density = 1.0 - energyLimit if dictionaryConfig == {}: dictionaryConfig['useAsym'] = 0 dictionaryConfig['useRect'] = 0 dictionaryConfig['minS_samples'] = int((dataInfo['numberOfSeconds']/16)*dataInfo['samplingFreq']) dictionaryConfig['minS_seconds'] = float(dataInfo['numberOfSeconds']/16) dictionaryConfig['maxS_samples'] = int(dataInfo['numberOfSamples']) dictionaryConfig['maxS_seconds'] = float(dataInfo['numberOfSeconds']) dictionaryConfig['dictionaryDensity'] = density else: if dataInfo['numberOfSamples'] > dictionaryConfig['maxS_samples']: dictionaryConfig['maxS_samples'] = int(dataInfo['numberOfSamples']) dictionaryConfig['maxS_seconds'] = float(dataInfo['numberOfSamples'] / dataInfo['samplingFreq']) if (dataInfo['numberOfSeconds']/8)*dataInfo['samplingFreq'] < dictionaryConfig['minS_samples']: dictionaryConfig['minS_samples'] = int((dataInfo['numberOfSeconds']/16)*dataInfo['samplingFreq']) dictionaryConfig['minS_seconds'] = float(dataInfo['numberOfSeconds']/16) if dictionaryConfig['dictionaryDensity'] > density: dictionaryConfig['dictionaryDensity'] = density return dictionaryConfig
gpl-3.0
samchrisinger/osf.io
scripts/analytics/tasks.py
14
1913
import os import matplotlib from framework.celery_tasks import app as celery_app from scripts import utils as script_utils from scripts.analytics import settings from scripts.analytics import utils from website import models from website import settings as website_settings from website.app import init_app from .logger import logger @celery_app.task(name='scripts.analytics.tasks') def analytics(): matplotlib.use('Agg') init_app(routes=False) script_utils.add_file_logger(logger, __file__) from scripts.analytics import ( logs, addons, comments, folders, links, watch, email_invites, permissions, profile, benchmarks ) modules = ( logs, addons, comments, folders, links, watch, email_invites, permissions, profile, benchmarks ) for module in modules: logger.info('Starting: {}'.format(module.__name__)) module.main() logger.info('Finished: {}'.format(module.__name__)) upload_analytics() def upload_analytics(local_path=None, remote_path='/'): node = models.Node.load(settings.TABULATE_LOGS_NODE_ID) user = models.User.load(settings.TABULATE_LOGS_USER_ID) if not local_path: local_path = website_settings.ANALYTICS_PATH for name in os.listdir(local_path): if not os.path.isfile(os.path.join(local_path, name)): logger.info('create directory: {}'.format(os.path.join(local_path, name))) metadata = utils.create_object(name, 'folder-update', node, user, kind='folder', path=remote_path) upload_analytics(os.path.join(local_path, name), metadata['attributes']['path']) else: logger.info('update file: {}'.format(os.path.join(local_path, name))) with open(os.path.join(local_path, name), 'rb') as fp: utils.create_object(name, 'file-update', node, user, stream=fp, kind='file', path=remote_path)
apache-2.0
gmalmquist/pants
contrib/cpp/src/python/pants/contrib/cpp/register.py
23
1198
# coding=utf-8 # Copyright 2015 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) from pants.build_graph.build_file_aliases import BuildFileAliases from pants.goal.task_registrar import TaskRegistrar as task from pants.contrib.cpp.targets.cpp_binary import CppBinary from pants.contrib.cpp.targets.cpp_library import CppLibrary from pants.contrib.cpp.tasks.cpp_binary_create import CppBinaryCreate from pants.contrib.cpp.tasks.cpp_compile import CppCompile from pants.contrib.cpp.tasks.cpp_library_create import CppLibraryCreate from pants.contrib.cpp.tasks.cpp_run import CppRun def build_file_aliases(): return BuildFileAliases( targets={ 'cpp_library': CppLibrary, 'cpp_binary': CppBinary, } ) def register_goals(): task(name='cpp', action=CppCompile).install('compile') task(name='cpplib', action=CppLibraryCreate).install('binary') task(name='cpp', action=CppBinaryCreate).install('binary') task(name='cpp', action=CppRun).install('run')
apache-2.0
ClearCorp-dev/server-tools
__unported__/scheduler_error_mailer/__init__.py
65
1129
# -*- coding: utf-8 -*- ############################################################################## # # Scheduler Error Mailer module for OpenERP # Copyright (C) 2012-2013 Akretion (http://www.akretion.com/) # @author: Sébastien Beau <[email protected]> # @author Alexis de Lattre <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from . import ir_cron
agpl-3.0
mazaclub/p2pool
p2pool/util/p2protocol.py
216
4144
''' Generic message-based protocol used by Bitcoin and P2Pool for P2P communication ''' import hashlib import struct from twisted.internet import protocol from twisted.python import log import p2pool from p2pool.util import datachunker, variable class TooLong(Exception): pass class Protocol(protocol.Protocol): def __init__(self, message_prefix, max_payload_length, traffic_happened=variable.Event(), ignore_trailing_payload=False): self._message_prefix = message_prefix self._max_payload_length = max_payload_length self.dataReceived2 = datachunker.DataChunker(self.dataReceiver()) self.traffic_happened = traffic_happened self.ignore_trailing_payload = ignore_trailing_payload def dataReceived(self, data): self.traffic_happened.happened('p2p/in', len(data)) self.dataReceived2(data) def dataReceiver(self): while True: start = '' while start != self._message_prefix: start = (start + (yield 1))[-len(self._message_prefix):] command = (yield 12).rstrip('\0') length, = struct.unpack('<I', (yield 4)) if length > self._max_payload_length: print 'length too large' continue checksum = yield 4 payload = yield length if hashlib.sha256(hashlib.sha256(payload).digest()).digest()[:4] != checksum: print 'invalid hash for', self.transport.getPeer().host, repr(command), length, checksum.encode('hex') if p2pool.DEBUG: print hashlib.sha256(hashlib.sha256(payload).digest()).digest()[:4].encode('hex'), payload.encode('hex') self.badPeerHappened() continue type_ = getattr(self, 'message_' + command, None) if type_ is None: if p2pool.DEBUG: print 'no type for', repr(command) continue try: self.packetReceived(command, type_.unpack(payload, self.ignore_trailing_payload)) except: print 'RECV', command, payload[:100].encode('hex') + ('...' if len(payload) > 100 else '') log.err(None, 'Error handling message: (see RECV line)') self.disconnect() def packetReceived(self, command, payload2): handler = getattr(self, 'handle_' + command, None) if handler is None: if p2pool.DEBUG: print 'no handler for', repr(command) return if getattr(self, 'connected', True) and not getattr(self, 'disconnecting', False): handler(**payload2) def disconnect(self): if hasattr(self.transport, 'abortConnection'): # Available since Twisted 11.1 self.transport.abortConnection() else: # This doesn't always close timed out connections! warned about in main self.transport.loseConnection() def badPeerHappened(self): self.disconnect() def sendPacket(self, command, payload2): if len(command) >= 12: raise ValueError('command too long') type_ = getattr(self, 'message_' + command, None) if type_ is None: raise ValueError('invalid command') #print 'SEND', command, repr(payload2)[:500] payload = type_.pack(payload2) if len(payload) > self._max_payload_length: raise TooLong('payload too long') data = self._message_prefix + struct.pack('<12sI', command, len(payload)) + hashlib.sha256(hashlib.sha256(payload).digest()).digest()[:4] + payload self.traffic_happened.happened('p2p/out', len(data)) self.transport.write(data) def __getattr__(self, attr): prefix = 'send_' if attr.startswith(prefix): command = attr[len(prefix):] return lambda **payload2: self.sendPacket(command, payload2) #return protocol.Protocol.__getattr__(self, attr) raise AttributeError(attr)
gpl-3.0
gnieboer/tensorflow
tensorflow/contrib/tfprof/python/tools/tfprof/model_analyzer_test.py
8
12550
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session from tensorflow.python.framework import ops from tensorflow.python.ops import variables from tensorflow.python.platform import gfile from tensorflow.python.platform import test # XXX: this depends on pywrap_tensorflow and must come later from tensorflow.contrib.tfprof.python.tools.tfprof import model_analyzer from tensorflow.contrib.tfprof.python.tools.tfprof import model_analyzer_testlib as lib class PrintModelAnalysisTest(test.TestCase): def testDumpToFile(self): ops.reset_default_graph() opts = model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS outfile = os.path.join(test.get_temp_dir(), 'dump') opts['output'] = 'file:outfile=' + outfile with session.Session() as sess, ops.device('/cpu:0'): _ = lib.BuildSmallModel() model_analyzer.print_model_analysis(sess.graph, tfprof_options=opts) with gfile.Open(outfile, 'r') as f: self.assertEqual(u'_TFProfRoot (--/451 params)\n' ' DW (3x3x3x6, 162/162 params)\n' ' DW2 (2x2x6x12, 288/288 params)\n' ' ScalarW (1, 1/1 params)\n', f.read()) def testSelectEverything(self): ops.reset_default_graph() opts = model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS outfile = os.path.join(test.get_temp_dir(), 'dump') opts['output'] = 'file:outfile=' + outfile opts['account_type_regexes'] = ['.*'] opts['select'] = [ 'bytes', 'params', 'float_ops', 'num_hidden_ops', 'device', 'op_types' ] with session.Session() as sess, ops.device('/cpu:0'): x = lib.BuildSmallModel() sess.run(variables.global_variables_initializer()) run_meta = config_pb2.RunMetadata() _ = sess.run(x, options=config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE), run_metadata=run_meta) model_analyzer.print_model_analysis( sess.graph, run_meta, tfprof_options=opts) with gfile.Open(outfile, 'r') as f: # pylint: disable=line-too-long self.assertEqual( '_TFProfRoot (0/451 params, 0/10.44k flops, 0B/5.28KB, _kTFScopeParent)\n Conv2D (0/0 params, 5.83k/5.83k flops, 432B/432B, /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/cpu:0|Conv2D)\n Conv2D_1 (0/0 params, 4.61k/4.61k flops, 384B/384B, /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/cpu:0|Conv2D)\n DW (3x3x3x6, 162/162 params, 0/0 flops, 648B/1.30KB, /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/cpu:0|VariableV2|_trainable_variables)\n DW/Assign (0/0 params, 0/0 flops, 0B/0B, Assign)\n DW/Initializer (0/0 params, 0/0 flops, 0B/0B, _kTFScopeParent)\n DW/Initializer/random_normal (0/0 params, 0/0 flops, 0B/0B, Add)\n DW/Initializer/random_normal/RandomStandardNormal (0/0 params, 0/0 flops, 0B/0B, RandomStandardNormal)\n DW/Initializer/random_normal/mean (0/0 params, 0/0 flops, 0B/0B, Const)\n DW/Initializer/random_normal/mul (0/0 params, 0/0 flops, 0B/0B, Mul)\n DW/Initializer/random_normal/shape (0/0 params, 0/0 flops, 0B/0B, Const)\n DW/Initializer/random_normal/stddev (0/0 params, 0/0 flops, 0B/0B, Const)\n DW/read (0/0 params, 0/0 flops, 648B/648B, /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/cpu:0|Identity)\n DW2 (2x2x6x12, 288/288 params, 0/0 flops, 1.15KB/2.30KB, /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/cpu:0|VariableV2|_trainable_variables)\n DW2/Assign (0/0 params, 0/0 flops, 0B/0B, Assign)\n DW2/Initializer (0/0 params, 0/0 flops, 0B/0B, _kTFScopeParent)\n DW2/Initializer/random_normal (0/0 params, 0/0 flops, 0B/0B, Add)\n DW2/Initializer/random_normal/RandomStandardNormal (0/0 params, 0/0 flops, 0B/0B, RandomStandardNormal)\n DW2/Initializer/random_normal/mean (0/0 params, 0/0 flops, 0B/0B, Const)\n DW2/Initializer/random_normal/mul (0/0 params, 0/0 flops, 0B/0B, Mul)\n DW2/Initializer/random_normal/shape (0/0 params, 0/0 flops, 0B/0B, Const)\n DW2/Initializer/random_normal/stddev (0/0 params, 0/0 flops, 0B/0B, Const)\n DW2/read (0/0 params, 0/0 flops, 1.15KB/1.15KB, /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/cpu:0|Identity)\n ScalarW (1, 1/1 params, 0/0 flops, 0B/0B, VariableV2|_trainable_variables)\n ScalarW/Assign (0/0 params, 0/0 flops, 0B/0B, Assign)\n ScalarW/Initializer (0/0 params, 0/0 flops, 0B/0B, _kTFScopeParent)\n ScalarW/Initializer/random_normal (0/0 params, 0/0 flops, 0B/0B, Add)\n ScalarW/Initializer/random_normal/RandomStandardNormal (0/0 params, 0/0 flops, 0B/0B, RandomStandardNormal)\n ScalarW/Initializer/random_normal/mean (0/0 params, 0/0 flops, 0B/0B, Const)\n ScalarW/Initializer/random_normal/mul (0/0 params, 0/0 flops, 0B/0B, Mul)\n ScalarW/Initializer/random_normal/shape (0/0 params, 0/0 flops, 0B/0B, Const)\n ScalarW/Initializer/random_normal/stddev (0/0 params, 0/0 flops, 0B/0B, Const)\n ScalarW/read (0/0 params, 0/0 flops, 0B/0B, Identity)\n init (0/0 params, 0/0 flops, 0B/0B, NoOp)\n zeros (0/0 params, 0/0 flops, 864B/864B, /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/cpu:0|Const)\n', f.read()) # pylint: enable=line-too-long def testSimpleCodeView(self): ops.reset_default_graph() opts = model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS.copy() outfile = os.path.join(test.get_temp_dir(), 'dump') opts['output'] = 'file:outfile=' + outfile opts['account_type_regexes'] = ['.*'] opts['show_name_regexes'] = ['.*model_analyzer_testlib.*'] opts['account_displayed_op_only'] = False # TODO(xpan): Test 'micros'. Since the execution time changes each run, # it's a bit difficult to test it now. opts['select'] = [ 'bytes', 'params', 'float_ops', 'num_hidden_ops', 'device', ] with session.Session() as sess, ops.device('/cpu:0'): x = lib.BuildSmallModel() sess.run(variables.global_variables_initializer()) run_meta = config_pb2.RunMetadata() _ = sess.run(x, options=config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE), run_metadata=run_meta) model_analyzer.print_model_analysis( sess.graph, run_meta, tfprof_cmd='code', tfprof_options=opts) with gfile.Open(outfile, 'r') as f: # pylint: disable=line-too-long self.assertEqual( '_TFProfRoot (0/451 params, 0/10.44k flops, 0B/5.28KB)\n model_analyzer_testlib.py:33:BuildSmallModel:image = array_ops... (0/0 params, 0/0 flops, 0B/864B)\n model_analyzer_testlib.py:37:BuildSmallModel:initializer=init_... (0/1 params, 0/0 flops, 0B/0B)\n model_analyzer_testlib.py:41:BuildSmallModel:initializer=init_... (0/162 params, 0/0 flops, 0B/1.30KB)\n model_analyzer_testlib.py:42:BuildSmallModel:x = nn_ops.conv2d... (0/0 params, 0/5.83k flops, 0B/432B)\n model_analyzer_testlib.py:46:BuildSmallModel:initializer=init_... (0/288 params, 0/0 flops, 0B/2.30KB)\n model_analyzer_testlib.py:47:BuildSmallModel:x = nn_ops.conv2d... (0/0 params, 0/4.61k flops, 0B/384B)\n', f.read()) # pylint: enable=line-too-long def testComplexCodeView(self): ops.reset_default_graph() opts = model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS.copy() outfile = os.path.join(test.get_temp_dir(), 'dump') opts['output'] = 'file:outfile=' + outfile opts['account_type_regexes'] = ['.*'] opts['show_name_regexes'] = ['.*model_analyzer_testlib.py.*'] opts['account_displayed_op_only'] = False opts['select'] = ['params', 'float_ops'] with session.Session() as sess, ops.device('/cpu:0'): x = lib.BuildFullModel() sess.run(variables.global_variables_initializer()) run_meta = config_pb2.RunMetadata() _ = sess.run(x, options=config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE), run_metadata=run_meta) tfprof_node = model_analyzer.print_model_analysis( sess.graph, run_meta, tfprof_cmd='code', tfprof_options=opts) # pylint: disable=line-too-long with gfile.Open(outfile, 'r') as f: self.assertEqual( '_TFProfRoot (0/2.84k params, 0/54.08k flops)\n model_analyzer_testlib.py:56:BuildFullModel:seq.append(array_... (0/1.80k params, 0/41.76k flops)\n model_analyzer_testlib.py:33:BuildSmallModel:image = array_ops... (0/0 params, 0/0 flops)\n model_analyzer_testlib.py:37:BuildSmallModel:initializer=init_... (0/4 params, 0/0 flops)\n model_analyzer_testlib.py:41:BuildSmallModel:initializer=init_... (0/648 params, 0/0 flops)\n model_analyzer_testlib.py:42:BuildSmallModel:x = nn_ops.conv2d... (0/0 params, 0/23.33k flops)\n model_analyzer_testlib.py:46:BuildSmallModel:initializer=init_... (0/1.15k params, 0/0 flops)\n model_analyzer_testlib.py:47:BuildSmallModel:x = nn_ops.conv2d... (0/0 params, 0/18.43k flops)\n model_analyzer_testlib.py:60:BuildFullModel:cell, array_ops.c... (0/1.04k params, 0/4.13k flops)\n model_analyzer_testlib.py:62:BuildFullModel:target = array_op... (0/0 params, 0/0 flops)\n model_analyzer_testlib.py:63:BuildFullModel:loss = nn_ops.l2_... (0/0 params, 0/0 flops)\n model_analyzer_testlib.py:65:BuildFullModel:return sgd_op.min... (0/0 params, 0/8.19k flops)\n', f.read()) self.assertLess(0, tfprof_node.total_exec_micros) self.assertEqual(2844, tfprof_node.total_parameters) self.assertEqual(54080, tfprof_node.total_float_ops) self.assertEqual(5, len(tfprof_node.children)) self.assertEqual('_TFProfRoot', tfprof_node.name) self.assertEqual('model_analyzer_testlib.py:56:BuildFullModel:seq.append(array_...', tfprof_node.children[0].name) self.assertEqual('model_analyzer_testlib.py:60:BuildFullModel:cell, array_ops.c...', tfprof_node.children[1].name) self.assertEqual('model_analyzer_testlib.py:62:BuildFullModel:target = array_op...', tfprof_node.children[2].name) self.assertEqual('model_analyzer_testlib.py:63:BuildFullModel:loss = nn_ops.l2_...', tfprof_node.children[3].name) self.assertEqual('model_analyzer_testlib.py:65:BuildFullModel:return sgd_op.min...', tfprof_node.children[4].name) # pylint: enable=line-too-long def testCodeViewLeafGraphNode(self): ops.reset_default_graph() opts = model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS.copy() opts['account_type_regexes'] = ['.*'] opts['account_displayed_op_only'] = False opts['select'] = [ 'bytes', 'params', 'float_ops', 'num_hidden_ops', 'device' ] with session.Session() as sess, ops.device('/cpu:0'): x = lib.BuildSmallModel() sess.run(variables.global_variables_initializer()) run_meta = config_pb2.RunMetadata() _ = sess.run(x, options=config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE), run_metadata=run_meta) tfprof_node = model_analyzer.print_model_analysis( sess.graph, run_meta, tfprof_cmd='code', tfprof_options=opts) leaf = tfprof_node while leaf.children: self.assertEqual(0, len(leaf.graph_nodes)) leaf = leaf.children[0] self.assertEqual(1, len(leaf.graph_nodes)) if __name__ == '__main__': test.main()
apache-2.0
SrNetoChan/Quantum-GIS
python/plugins/processing/tests/SagaAlgorithmsTest.py
36
6002
# -*- coding: utf-8 -*- """ *************************************************************************** SagaAlgorithmsTests.py --------------------- Date : September 2017 Copyright : (C) 2017 by Alexander Bruy Email : alexander dot bruy at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Alexander Bruy' __date__ = 'September 2017' __copyright__ = '(C) 2017, Alexander Bruy' import os import nose2 import shutil import tempfile from qgis.core import (QgsProcessingParameterNumber, QgsProcessingParameterDefinition, QgsVectorLayer, QgsApplication, QgsFeature, QgsGeometry, QgsPointXY, QgsProcessingContext, QgsProject, QgsProcessingFeedback, QgsProcessingFeatureSourceDefinition) from qgis.testing import start_app, unittest from processing.algs.saga.SagaParameters import Parameters, SagaImageOutputParam import AlgorithmsTestBase class TestSagaAlgorithms(unittest.TestCase, AlgorithmsTestBase.AlgorithmsTest): @classmethod def setUpClass(cls): start_app() from processing.core.Processing import Processing Processing.initialize() cls.cleanup_paths = [] cls.temp_dir = tempfile.mkdtemp() cls.cleanup_paths.append(cls.temp_dir) @classmethod def tearDownClass(cls): from processing.core.Processing import Processing Processing.deinitialize() for path in cls.cleanup_paths: shutil.rmtree(path) def test_definition_file(self): return 'saga_algorithm_tests.yaml' def test_is_parameter_line(self): # Test determining whether a line is a parameter line self.assertFalse(Parameters.is_parameter_line('')) self.assertFalse(Parameters.is_parameter_line('xxxxxxxxx')) self.assertTrue(Parameters.is_parameter_line('QgsProcessingParameterNumber|R_PERCTL_MIN|Percentiles Range for RED max|QgsProcessingParameterNumber.Integer|1|False|1|99')) self.assertTrue(Parameters.is_parameter_line('*QgsProcessingParameterNumber|R_PERCTL_MIN|Percentiles Range for RED max|QgsProcessingParameterNumber.Integer|1|False|1|99')) self.assertTrue(Parameters.is_parameter_line('SagaImageOutput|RGB|Output RGB')) def test_param_line(self): # Test creating a parameter from a description line param = Parameters.create_parameter_from_line('QgsProcessingParameterNumber|R_PERCTL_MIN|Percentiles Range for RED max|QgsProcessingParameterNumber.Integer|1|False|1|99') self.assertIsInstance(param, QgsProcessingParameterNumber) self.assertEqual(param.name(), 'R_PERCTL_MIN') self.assertEqual(param.description(), 'Percentiles Range for RED max') self.assertEqual(param.dataType(), QgsProcessingParameterNumber.Integer) self.assertFalse(param.flags() & QgsProcessingParameterDefinition.FlagOptional) self.assertEqual(param.minimum(), 1) self.assertEqual(param.maximum(), 99) # Test SagaImageOutputParam line param = Parameters.create_parameter_from_line('SagaImageOutput|RGB|Output RGB') self.assertIsInstance(param, SagaImageOutputParam) self.assertEqual(param.name(), 'RGB') self.assertEqual(param.description(), 'Output RGB') self.assertEqual(param.defaultFileExtension(), 'tif') self.assertEqual(param.supportedOutputRasterLayerExtensions(), ['tif']) def test_non_ascii_output(self): # create a memory layer and add to project and context layer = QgsVectorLayer("Point?crs=epsg:3857&field=fldtxt:string&field=fldint:integer", "testmem", "memory") self.assertTrue(layer.isValid()) pr = layer.dataProvider() f = QgsFeature() f.setAttributes(["test", 123]) f.setGeometry(QgsGeometry.fromPointXY(QgsPointXY(100, 200))) f2 = QgsFeature() f2.setAttributes(["test2", 457]) f2.setGeometry(QgsGeometry.fromPointXY(QgsPointXY(110, 200))) self.assertTrue(pr.addFeatures([f, f2])) self.assertEqual(layer.featureCount(), 2) QgsProject.instance().addMapLayer(layer) context = QgsProcessingContext() context.setProject(QgsProject.instance()) alg = QgsApplication.processingRegistry().createAlgorithmById('saga:fixeddistancebuffer') self.assertIsNotNone(alg) temp_file = os.path.join(self.temp_dir, 'non_ascii_ñññ.shp') parameters = {'SHAPES': 'testmem', 'DIST_FIELD_DEFAULT': 5, 'NZONES': 1, 'DARC': 5, 'DISSOLVE': False, 'POLY_INNER': False, 'BUFFER': temp_file} feedback = QgsProcessingFeedback() results, ok = alg.run(parameters, context, feedback) self.assertTrue(ok) self.assertTrue(os.path.exists(temp_file)) # make sure that layer has correct features res = QgsVectorLayer(temp_file, 'res') self.assertTrue(res.isValid()) self.assertEqual(res.featureCount(), 2) QgsProject.instance().removeMapLayer(layer) if __name__ == '__main__': nose2.main()
gpl-2.0
ngmiller/mipsy
mipsy/encoder.py
1
8100
""" mipsy.encoder Instruction encoder. See README.md for usage and general information. """ # system imports import bitstring # application imports from mipsy.arch import MIPS from mipsy.util import LabelCache, ParseInfo class Encoder(object): """ Responsible for encoding individual instructions and querying the label cache. """ class tokenizer(object): """ Defines a 'list' of tokenizing functions used for varying instructions. Each 'tokenizer' returns a dictionary mapping the specified operands to their tokens from the instruction data (the portion of the instruction following the operation) instruction = (operation) (instruction_data) <-- here, we're only concerned with instruction_data """ def map_operands(self, to_split, operands): """ Helper method. Maps operands to the preprocessed instruction data string. """ operand_values = to_split.split() if len(operands) != len(operand_values): raise RuntimeError('instruction contains too many operands') operand_map = {} for i in range(len(operands)): operand_map[operands[i]] = operand_values[i] return operand_map def RI_type(self, operands, instruction_data): """ The RI_type tokenizer takes instructions with the format: (operation) [(operand1), (operand2), (operand3)] """ to_split = instruction_data.replace(',', ' ') return self.map_operands(to_split, operands) def J_type(self, operands, instruction_data): """ The J_type tokenizer takes jump (j, jal, jr) instructions with the format: (operation) [operand] """ return self.map_operands(instruction_data, operands) def load_store(self, operands, instruction_data): """ The load_store tokenizer takes instructions with the format: (operation) [operand1, (operand2)(operand3)] """ # Clear out commas and the parenthesis surrounding the base register to_split = instruction_data.replace(',', ' ').replace('(', ' ').replace(')', ' ') return self.map_operands(to_split, operands) def nop(self, operands, instruction_data): """ The nop tokenizer simply maps all the given operands to register $zero. """ return {operand: '$zero' for operand in operands} # The assembler operation table defines the parsing rules # for a given instruction. The parsing rules are used to # map tokens in the instruction string to register address # and immediate value positions. (rs, rt, rd, etc) t = tokenizer() operations = { 'nop' : ParseInfo(['rd', 'rs', 'rt'], t.nop), 'add' : ParseInfo(['rd', 'rs', 'rt'], t.RI_type), 'addi' : ParseInfo(['rt', 'rs', 'imm'], t.RI_type), 'and' : ParseInfo(['rd', 'rs', 'rt'], t.RI_type), 'beq' : ParseInfo(['rs', 'rt', 'label'], t.RI_type), 'j' : ParseInfo(['label'], t.J_type), 'jal' : ParseInfo(['label'], t.J_type), 'jr' : ParseInfo(['rs'], t.RI_type), 'lw' : ParseInfo(['rt', 'imm', 'rs'], t.load_store), 'or' : ParseInfo(['rd', 'rs', 'rt'], t.RI_type), 'slt' : ParseInfo(['rd', 'rs', 'rt'], t.RI_type), 'sll' : ParseInfo(['rd', 'rt', 'shamt'], t.RI_type), 'sw' : ParseInfo(['rt', 'imm', 'rs'], t.load_store), 'sub' : ParseInfo(['rd', 'rs', 'rt'], t.RI_type), # TODO ... } def __init__(self): # ISA definitions self.mips = MIPS() # Label resolution cache self.label_cache = LabelCache() def encode_instruction(self, pc, instr): """ Given an instruction string, generate the encoded bit string. PC (instruction index is used for branch label resolution) """ data = instr.split() operation = data[0] try: mips_op_info = MIPS.operations[operation] except KeyError, e: raise RuntimeError('Unknown operation: {}'.format(operation)) # Grab the parsing info from the assembler operations table # Generate the initial operand map using the specified tokenizer parse_info = self.operations[operation] encoding_map = parse_info.tokenizer(parse_info.tokens, ''.join(data[1:])) # Get the binary equivalents of the operands and MIPS operation information self.resolve_operands(encoding_map, operation, pc) # Pull MIPS operation info into encoding map self.resolve_operation_info(encoding_map, mips_op_info) instruction = self.mips.generate_instruction(mips_op_info.format) return instruction.encode(encoding_map) def resolve_operation_info(self, encoding_map, mips_op_info): """ Adds the predefined operation info (opcode, funct) to the current encoding map. """ encoding_map['opcode'] = mips_op_info.opcode encoding_map['funct'] = mips_op_info.funct def resolve_operands(self, encoding_map, operation, pc): """ Converts generic register references (such as $t0, $t1, etc), immediate values, and jump addresses to their binary equivalents. """ convert = Encoder.to_binary branch_replace = False jump_replace = False for operand, value in encoding_map.iteritems(): if (operand == 'rs' or operand == 'rt' or operand == 'rd'): encoding_map[operand] = MIPS.registers[value] elif (operand == 'imm'): encoding_map[operand] = convert(int(value), MIPS.IMMEDIATE_SIZE) elif (operand == 'addr'): encoding_map[operand] = convert(int(value), MIPS.ADDRESS_SIZE) elif (operand == 'shamt'): encoding_map[operand] = convert(int(value), MIPS.SHAMT_SIZE) elif (operand == 'label'): label = encoding_map[operand] hit, index = self.label_cache.query(label) if not hit: raise RuntimeError('No address found for label: {}'.format(label)) if ((operation == 'beq') or (operation == 'bne')): # Calculate the relative instruction offset. The MIPS ISA uses # PC + 4 + (branch offset) to resolve branch targets. if index > pc: encoding_map[operand] = convert(index - pc - 1, MIPS.IMMEDIATE_SIZE) elif index < pc: encoding_map[operand] = convert((pc + 1) - index, MIPS.IMMEDIATE_SIZE) else: # Not sure why a branch would resolve to itself, but ok # (PC + 4) - 4 = encoding_map[operand] = convert(-1, MIPS.IMMEDIATE_SIZE) branch_replace = True elif ((operation == 'j') or (operation == 'jal')): # Jump addresses are absolute encoding_map[operand] = convert(index, MIPS.ADDRESS_SIZE) jump_replace = True # Need to convert references to 'label' back to references the instruction # encoding string recognizes, otherwise we end up with the default value (zero) # This doesn't feel very clean, but working on a fix. if branch_replace: encoding_map['imm'] = encoding_map['label'] elif jump_replace: encoding_map['addr'] = encoding_map['label'] @staticmethod def to_binary(decimal, length): """ Given a decimal, generate the binary equivalent string of given length. e.g. binary(2, 5) = 00010 """ b = bitstring.Bits(int=decimal, length=length) return b.bin
mit
atsolakid/edx-platform
common/djangoapps/dark_lang/tests.py
80
10264
""" Tests of DarkLangMiddleware """ from django.contrib.auth.models import User from django.http import HttpRequest import ddt from django.test import TestCase from mock import Mock import unittest from dark_lang.middleware import DarkLangMiddleware from dark_lang.models import DarkLangConfig # TODO PLAT-671 Import from Django 1.8 # from django.utils.translation import LANGUAGE_SESSION_KEY from django_locale.trans_real import LANGUAGE_SESSION_KEY from student.tests.factories import UserFactory UNSET = object() def set_if_set(dct, key, value): """ Sets ``key`` in ``dct`` to ``value`` unless ``value`` is ``UNSET`` """ if value is not UNSET: dct[key] = value @ddt.ddt class DarkLangMiddlewareTests(TestCase): """ Tests of DarkLangMiddleware """ def setUp(self): super(DarkLangMiddlewareTests, self).setUp() self.user = User() self.user.save() DarkLangConfig( released_languages='rel', changed_by=self.user, enabled=True ).save() def process_request(self, language_session_key=UNSET, accept=UNSET, preview_lang=UNSET, clear_lang=UNSET): """ Build a request and then process it using the ``DarkLangMiddleware``. Args: language_session_key (str): The language code to set in request.session[LANUGAGE_SESSION_KEY] accept (str): The accept header to set in request.META['HTTP_ACCEPT_LANGUAGE'] preview_lang (str): The value to set in request.GET['preview_lang'] clear_lang (str): The value to set in request.GET['clear_lang'] """ session = {} set_if_set(session, LANGUAGE_SESSION_KEY, language_session_key) meta = {} set_if_set(meta, 'HTTP_ACCEPT_LANGUAGE', accept) get = {} set_if_set(get, 'preview-lang', preview_lang) set_if_set(get, 'clear-lang', clear_lang) request = Mock( spec=HttpRequest, session=session, META=meta, GET=get, user=UserFactory() ) self.assertIsNone(DarkLangMiddleware().process_request(request)) return request def assertAcceptEquals(self, value, request): """ Assert that the HTML_ACCEPT_LANGUAGE header in request is equal to value """ self.assertEquals( value, request.META.get('HTTP_ACCEPT_LANGUAGE', UNSET) ) def test_empty_accept(self): self.assertAcceptEquals(UNSET, self.process_request()) def test_wildcard_accept(self): self.assertAcceptEquals('*', self.process_request(accept='*')) def test_malformed_accept(self): self.assertAcceptEquals('', self.process_request(accept='xxxxxxxxxxxx')) self.assertAcceptEquals('', self.process_request(accept='en;q=1.0, es-419:q-0.8')) def test_released_accept(self): self.assertAcceptEquals( 'rel;q=1.0', self.process_request(accept='rel;q=1.0') ) def test_unreleased_accept(self): self.assertAcceptEquals( 'rel;q=1.0', self.process_request(accept='rel;q=1.0, unrel;q=0.5') ) def test_accept_with_syslang(self): self.assertAcceptEquals( 'en;q=1.0, rel;q=0.8', self.process_request(accept='en;q=1.0, rel;q=0.8, unrel;q=0.5') ) def test_accept_multiple_released_langs(self): DarkLangConfig( released_languages=('rel, unrel'), changed_by=self.user, enabled=True ).save() self.assertAcceptEquals( 'rel;q=1.0, unrel;q=0.5', self.process_request(accept='rel;q=1.0, unrel;q=0.5') ) self.assertAcceptEquals( 'rel;q=1.0, unrel;q=0.5', self.process_request(accept='rel;q=1.0, notrel;q=0.3, unrel;q=0.5') ) self.assertAcceptEquals( 'rel;q=1.0, unrel;q=0.5', self.process_request(accept='notrel;q=0.3, rel;q=1.0, unrel;q=0.5') ) def test_accept_released_territory(self): # We will munge 'rel-ter' to be 'rel', so the 'rel-ter' # user will actually receive the released language 'rel' # (Otherwise, the user will actually end up getting the server default) self.assertAcceptEquals( 'rel;q=1.0, rel;q=0.5', self.process_request(accept='rel-ter;q=1.0, rel;q=0.5') ) def test_accept_mixed_case(self): self.assertAcceptEquals( 'rel;q=1.0, rel;q=0.5', self.process_request(accept='rel-TER;q=1.0, REL;q=0.5') ) DarkLangConfig( released_languages=('REL-TER'), changed_by=self.user, enabled=True ).save() # Since we have only released "rel-ter", the requested code "rel" will # fuzzy match to "rel-ter", in addition to "rel-ter" exact matching "rel-ter" self.assertAcceptEquals( 'rel-ter;q=1.0, rel-ter;q=0.5', self.process_request(accept='rel-ter;q=1.0, rel;q=0.5') ) @ddt.data( ('es;q=1.0, pt;q=0.5', 'es-419;q=1.0'), # 'es' should get 'es-419', not English ('es-AR;q=1.0, pt;q=0.5', 'es-419;q=1.0'), # 'es-AR' should get 'es-419', not English ) @ddt.unpack def test_partial_match_es419(self, accept_header, expected): # Release es-419 DarkLangConfig( released_languages=('es-419, en'), changed_by=self.user, enabled=True ).save() self.assertAcceptEquals( expected, self.process_request(accept=accept_header) ) def test_partial_match_esar_es(self): # If I release 'es', 'es-AR' should get 'es', not English DarkLangConfig( released_languages=('es, en'), changed_by=self.user, enabled=True ).save() self.assertAcceptEquals( 'es;q=1.0', self.process_request(accept='es-AR;q=1.0, pt;q=0.5') ) @ddt.data( # Test condition: If I release 'es-419, es, es-es'... ('es;q=1.0, pt;q=0.5', 'es;q=1.0'), # 1. es should get es ('es-419;q=1.0, pt;q=0.5', 'es-419;q=1.0'), # 2. es-419 should get es-419 ('es-es;q=1.0, pt;q=0.5', 'es-es;q=1.0'), # 3. es-es should get es-es ) @ddt.unpack def test_exact_match_gets_priority(self, accept_header, expected): # Release 'es-419, es, es-es' DarkLangConfig( released_languages=('es-419, es, es-es'), changed_by=self.user, enabled=True ).save() self.assertAcceptEquals( expected, self.process_request(accept=accept_header) ) @unittest.skip("This won't work until fallback is implemented for LA country codes. See LOC-86") @ddt.data( 'es-AR', # Argentina 'es-PY', # Paraguay ) def test_partial_match_es_la(self, latin_america_code): # We need to figure out the best way to implement this. There are a ton of LA country # codes that ought to fall back to 'es-419' rather than 'es-es'. # http://unstats.un.org/unsd/methods/m49/m49regin.htm#americas # If I release 'es, es-419' # Latin American codes should get es-419 DarkLangConfig( released_languages=('es, es-419'), changed_by=self.user, enabled=True ).save() self.assertAcceptEquals( 'es-419;q=1.0', self.process_request(accept='{};q=1.0, pt;q=0.5'.format(latin_america_code)) ) def assertSessionLangEquals(self, value, request): """ Assert that the LANGUAGE_SESSION_KEY set in request.session is equal to value """ self.assertEquals( value, request.session.get(LANGUAGE_SESSION_KEY, UNSET) ) def test_preview_lang_with_released_language(self): # Preview lang should always override selection. self.assertSessionLangEquals( 'rel', self.process_request(preview_lang='rel') ) self.assertSessionLangEquals( 'rel', self.process_request(preview_lang='rel', language_session_key='notrel') ) def test_preview_lang_with_dark_language(self): self.assertSessionLangEquals( 'unrel', self.process_request(preview_lang='unrel') ) self.assertSessionLangEquals( 'unrel', self.process_request(preview_lang='unrel', language_session_key='notrel') ) def test_clear_lang(self): self.assertSessionLangEquals( UNSET, self.process_request(clear_lang=True) ) self.assertSessionLangEquals( UNSET, self.process_request(clear_lang=True, language_session_key='rel') ) self.assertSessionLangEquals( UNSET, self.process_request(clear_lang=True, language_session_key='unrel') ) def test_disabled(self): DarkLangConfig(enabled=False, changed_by=self.user).save() self.assertAcceptEquals( 'notrel;q=0.3, rel;q=1.0, unrel;q=0.5', self.process_request(accept='notrel;q=0.3, rel;q=1.0, unrel;q=0.5') ) self.assertSessionLangEquals( 'rel', self.process_request(clear_lang=True, language_session_key='rel') ) self.assertSessionLangEquals( 'unrel', self.process_request(clear_lang=True, language_session_key='unrel') ) self.assertSessionLangEquals( 'rel', self.process_request(preview_lang='unrel', language_session_key='rel') ) def test_accept_chinese_language_codes(self): DarkLangConfig( released_languages=('zh-cn, zh-hk, zh-tw'), changed_by=self.user, enabled=True ).save() self.assertAcceptEquals( 'zh-cn;q=1.0, zh-tw;q=0.5, zh-hk;q=0.3', self.process_request(accept='zh-Hans;q=1.0, zh-Hant-TW;q=0.5, zh-HK;q=0.3') )
agpl-3.0
sunqb/oa_qian
flask/Lib/site-packages/unidecode/x07e.py
252
4682
data = ( 'Xia ', # 0x00 'Yuan ', # 0x01 'Zong ', # 0x02 'Xu ', # 0x03 'Nawa ', # 0x04 'Odoshi ', # 0x05 'Geng ', # 0x06 'Sen ', # 0x07 'Ying ', # 0x08 'Jin ', # 0x09 'Yi ', # 0x0a 'Zhui ', # 0x0b 'Ni ', # 0x0c 'Bang ', # 0x0d 'Gu ', # 0x0e 'Pan ', # 0x0f 'Zhou ', # 0x10 'Jian ', # 0x11 'Cuo ', # 0x12 'Quan ', # 0x13 'Shuang ', # 0x14 'Yun ', # 0x15 'Xia ', # 0x16 'Shuai ', # 0x17 'Xi ', # 0x18 'Rong ', # 0x19 'Tao ', # 0x1a 'Fu ', # 0x1b 'Yun ', # 0x1c 'Zhen ', # 0x1d 'Gao ', # 0x1e 'Ru ', # 0x1f 'Hu ', # 0x20 'Zai ', # 0x21 'Teng ', # 0x22 'Xian ', # 0x23 'Su ', # 0x24 'Zhen ', # 0x25 'Zong ', # 0x26 'Tao ', # 0x27 'Horo ', # 0x28 'Cai ', # 0x29 'Bi ', # 0x2a 'Feng ', # 0x2b 'Cu ', # 0x2c 'Li ', # 0x2d 'Suo ', # 0x2e 'Yin ', # 0x2f 'Xi ', # 0x30 'Zong ', # 0x31 'Lei ', # 0x32 'Zhuan ', # 0x33 'Qian ', # 0x34 'Man ', # 0x35 'Zhi ', # 0x36 'Lu ', # 0x37 'Mo ', # 0x38 'Piao ', # 0x39 'Lian ', # 0x3a 'Mi ', # 0x3b 'Xuan ', # 0x3c 'Zong ', # 0x3d 'Ji ', # 0x3e 'Shan ', # 0x3f 'Sui ', # 0x40 'Fan ', # 0x41 'Shuai ', # 0x42 'Beng ', # 0x43 'Yi ', # 0x44 'Sao ', # 0x45 'Mou ', # 0x46 'Zhou ', # 0x47 'Qiang ', # 0x48 'Hun ', # 0x49 'Sem ', # 0x4a 'Xi ', # 0x4b 'Jung ', # 0x4c 'Xiu ', # 0x4d 'Ran ', # 0x4e 'Xuan ', # 0x4f 'Hui ', # 0x50 'Qiao ', # 0x51 'Zeng ', # 0x52 'Zuo ', # 0x53 'Zhi ', # 0x54 'Shan ', # 0x55 'San ', # 0x56 'Lin ', # 0x57 'Yu ', # 0x58 'Fan ', # 0x59 'Liao ', # 0x5a 'Chuo ', # 0x5b 'Zun ', # 0x5c 'Jian ', # 0x5d 'Rao ', # 0x5e 'Chan ', # 0x5f 'Rui ', # 0x60 'Xiu ', # 0x61 'Hui ', # 0x62 'Hua ', # 0x63 'Zuan ', # 0x64 'Xi ', # 0x65 'Qiang ', # 0x66 'Un ', # 0x67 'Da ', # 0x68 'Sheng ', # 0x69 'Hui ', # 0x6a 'Xi ', # 0x6b 'Se ', # 0x6c 'Jian ', # 0x6d 'Jiang ', # 0x6e 'Huan ', # 0x6f 'Zao ', # 0x70 'Cong ', # 0x71 'Jie ', # 0x72 'Jiao ', # 0x73 'Bo ', # 0x74 'Chan ', # 0x75 'Yi ', # 0x76 'Nao ', # 0x77 'Sui ', # 0x78 'Yi ', # 0x79 'Shai ', # 0x7a 'Xu ', # 0x7b 'Ji ', # 0x7c 'Bin ', # 0x7d 'Qian ', # 0x7e 'Lan ', # 0x7f 'Pu ', # 0x80 'Xun ', # 0x81 'Zuan ', # 0x82 'Qi ', # 0x83 'Peng ', # 0x84 'Li ', # 0x85 'Mo ', # 0x86 'Lei ', # 0x87 'Xie ', # 0x88 'Zuan ', # 0x89 'Kuang ', # 0x8a 'You ', # 0x8b 'Xu ', # 0x8c 'Lei ', # 0x8d 'Xian ', # 0x8e 'Chan ', # 0x8f 'Kou ', # 0x90 'Lu ', # 0x91 'Chan ', # 0x92 'Ying ', # 0x93 'Cai ', # 0x94 'Xiang ', # 0x95 'Xian ', # 0x96 'Zui ', # 0x97 'Zuan ', # 0x98 'Luo ', # 0x99 'Xi ', # 0x9a 'Dao ', # 0x9b 'Lan ', # 0x9c 'Lei ', # 0x9d 'Lian ', # 0x9e 'Si ', # 0x9f 'Jiu ', # 0xa0 'Yu ', # 0xa1 'Hong ', # 0xa2 'Zhou ', # 0xa3 'Xian ', # 0xa4 'He ', # 0xa5 'Yue ', # 0xa6 'Ji ', # 0xa7 'Wan ', # 0xa8 'Kuang ', # 0xa9 'Ji ', # 0xaa 'Ren ', # 0xab 'Wei ', # 0xac 'Yun ', # 0xad 'Hong ', # 0xae 'Chun ', # 0xaf 'Pi ', # 0xb0 'Sha ', # 0xb1 'Gang ', # 0xb2 'Na ', # 0xb3 'Ren ', # 0xb4 'Zong ', # 0xb5 'Lun ', # 0xb6 'Fen ', # 0xb7 'Zhi ', # 0xb8 'Wen ', # 0xb9 'Fang ', # 0xba 'Zhu ', # 0xbb 'Yin ', # 0xbc 'Niu ', # 0xbd 'Shu ', # 0xbe 'Xian ', # 0xbf 'Gan ', # 0xc0 'Xie ', # 0xc1 'Fu ', # 0xc2 'Lian ', # 0xc3 'Zu ', # 0xc4 'Shen ', # 0xc5 'Xi ', # 0xc6 'Zhi ', # 0xc7 'Zhong ', # 0xc8 'Zhou ', # 0xc9 'Ban ', # 0xca 'Fu ', # 0xcb 'Zhuo ', # 0xcc 'Shao ', # 0xcd 'Yi ', # 0xce 'Jing ', # 0xcf 'Dai ', # 0xd0 'Bang ', # 0xd1 'Rong ', # 0xd2 'Jie ', # 0xd3 'Ku ', # 0xd4 'Rao ', # 0xd5 'Die ', # 0xd6 'Heng ', # 0xd7 'Hui ', # 0xd8 'Gei ', # 0xd9 'Xuan ', # 0xda 'Jiang ', # 0xdb 'Luo ', # 0xdc 'Jue ', # 0xdd 'Jiao ', # 0xde 'Tong ', # 0xdf 'Geng ', # 0xe0 'Xiao ', # 0xe1 'Juan ', # 0xe2 'Xiu ', # 0xe3 'Xi ', # 0xe4 'Sui ', # 0xe5 'Tao ', # 0xe6 'Ji ', # 0xe7 'Ti ', # 0xe8 'Ji ', # 0xe9 'Xu ', # 0xea 'Ling ', # 0xeb '[?] ', # 0xec 'Xu ', # 0xed 'Qi ', # 0xee 'Fei ', # 0xef 'Chuo ', # 0xf0 'Zhang ', # 0xf1 'Gun ', # 0xf2 'Sheng ', # 0xf3 'Wei ', # 0xf4 'Mian ', # 0xf5 'Shou ', # 0xf6 'Beng ', # 0xf7 'Chou ', # 0xf8 'Tao ', # 0xf9 'Liu ', # 0xfa 'Quan ', # 0xfb 'Zong ', # 0xfc 'Zhan ', # 0xfd 'Wan ', # 0xfe 'Lu ', # 0xff )
apache-2.0
rohit12/opencog
opencog/python/pln_old/examples/attentionallocation/socrates_attention_agent.py
26
2275
__author__ = 'sebastian' from opencog.cogserver import MindAgent from opencog.atomspace import types from pln.chainers import Chainer from pln.rules import * class SocratesAgent(MindAgent): def __init__(self): self.chainer = None def create_chainer(self, atomspace): self.chainer = Chainer(atomspace, agent=self, stimulateAtoms=True, preferAttentionalFocus=True, allow_output_with_variables=True, delete_temporary_variables=True) self.chainer.add_rule( GeneralEvaluationToMemberRule(self.chainer, 0, 2)) self.chainer.add_rule(MemberToInheritanceRule(self.chainer)) self.chainer.add_rule( DeductionRule(self.chainer, types.InheritanceLink)) self.chainer.add_rule( InheritanceToMemberRule(self.chainer)) self.chainer.add_rule( MemberToEvaluationRule(self.chainer)) self.chainer.add_rule( AbductionRule(self.chainer, types.InheritanceLink)) def run(self, atomspace): if self.chainer is None: self.create_chainer(atomspace) print("PLN Chainer created.") return print("PLN continuing.") # there is no query here, so it doesn't give any stimulus if not check_result(atomspace): result = self.chainer.forward_step() return result def check_result(atomspace): """ Searches for an instance of EvaluationLink PredicateNode "breathe" ListLink ConceptNode "Socrates" ConceptNode "air" """ result_found = False eval_links = atomspace.get_atoms_by_type(types.EvaluationLink) for eval_link in eval_links: out = atomspace.get_outgoing(eval_link.h) if out[0].is_a(types.PredicateNode) and "breathe" in out[0].name\ and out[1].is_a(types.ListLink)\ and "Socrates" in out[1].out[0].name\ and "air" in out[1].out[1].name: result_found = True break if result_found: print("Result found? {0}.".format(result_found)) return result_found
agpl-3.0
ARM-software/lisa
lisa/typeclass.py
2
30480
# SPDX-License-Identifier: Apache-2.0 # # Copyright (C) 2020, Arm Limited and contributors. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This module provides a trait system known as typeclasses in Haskell and Scala, and known as trait in Rust. The fundamental idea is to decouple the followings: 1. definition of an interface as a set of methods to implement. 2. implementation of the aforementioned methods for a given class. 3. the class definitions themselves. Decoupling *2.* and *3.* allows providing implementation of the interface on any type, including foreign types coming from other libraries, or even builtin types. This is the core benefit from typeclasses as opposed to regular classes in Object Oriented Programming. They allow extending existing types without having to modify their inheritance hierarchy. .. note:: The names of the concepts are drawn from Haskell typeclasses: * *typeclass*: This is the description of an interface, as a set of mandatory methods to implement, and optionally helper functions with default implementations. It's pretty close in concept to abstract base classes. * *superclass*: The mother typeclass of a given typeclass. * *instance*: This is the implementation of a given typeclass for a given (set of) type. * *values*: Values as opposed to types. Since *instance* is already used to refer to the implementation of a typeclass, we use the word *value*. * *type*: That is just a type, also known as *class* in Python. Here is an example on how to work with typeclasses as provided by this module:: from lisa.typeclass import TypeClass class FooBar(TypeClass): "Foobar interface" # TypeClass.required is an equivalent of abc.abstractmethod: It forces # implementations of a given set of method @TypeClass.required def my_method(self): pass # This helper can be used in the implementation of the typeclass, and # can be overriden by any instance. def extra_helper(self): return 42 class ARandomClass: "Just a random class, it could be anything" pass # ``types`` can be either a tuple of types or a single type class ARandomClassFooBarInstance(FooBar, types=(ARandomClass, int)): "Implement the FooBar typeclass for both ARandomClass type and int at once." def my_method(self): return 'ARandomClass or int value' value = ARandomClass() # Both are equivalent # The @ version is more useful when combining multiple typeclasses on the fly value_as_foobar = FooBar(value) value_as_foobar = value @ FooBar # Inplace variant allows to "cast" the value directly. # These are all equivalent: # value @= FooBar # value = value @ FooBar # value = FooBar(value) # The typeclass machinery will dispatch the call to my_method() to the # right implementation value_as_foobar.my_method() # We also implemented FooBar for int type FooBar(3).my_method() # Raises a TypeError, since there is no instance for float FooBar(3.0).my_method() # Add an instance of FooBar for float type class FloatFooBarInstance(FooBar, types=float): def my_method(self): return 'float' # Now works once we added the instance FooBar(3.0).my_method() Classmethod also work, so typeclasses can be used to define factory interfaces:: from lisa.typeclass import TypeClass class FromString(TypeClass): "Build a value by parsing a string" @TypeClass.required @classmethod def from_str(cls, string): pass class IntFromStringInstance(FromString, types=int): @classmethod def from_str(cls, string): # Although cls is a value of type TypeProxy, it can be called just # like a regular class return cls(string) # Types can be cast just like values, so we can use the classmethods and # the staticmethods on them as well assert 33 == FromString(int).from_str('33') A more advanced usage can involve a hierarchy of typeclasses that gets combined together:: from lisa.typeclass import TypeClass class MyTP1(TypeClass): @TypeClass.required def meth1(self): pass @TypeClass.required def another_meth(self): pass class MyTP2(TypeClass): @TypeClass.required def meth2(self): pass class IntTP1Instance(MyTP1, types=int): def meth1(self): return 'int' def another_meth(self): return 42 class IntTP2Instance(MyTP2, types=int): def meth2(self): return 'int' # Reuse an existing function implementation another_meth = IntTP1Instance.another_meth # Both are equivalent and allow creating a typeclass that provides # interfaces of both MyTP1 and MyTP2. If some methods are required by both # MyTP1 and MyTP2, the conflict is detected and a TypeError is raised: MyTP1AndMyTP2 = MyTP1 & MyTP2 # This combined typeclass will automatically get the instances from its # superclasses class MyTP1AndMyTP2(MyTP1, MyTP2): pass # All are equivalent value = 2 @ (MyTP1 & MyTP2) value = 2 @ MyTP1AndMyTP2 value = MyTP1AndMyTP2(2) value = (MyTP1 & MyTP2)(2) # We can now use the API of both MyTP1 and MyTP2 value.meth1() value.meth2() Note that it's possible to implement a typeclass for a type that has no values, but for which ``isinstance(value, thetype)`` will return true. This can be achieved using ``__instancecheck__`` or ``__subclasscheck__`` and is used in particular by the abstract base classes provided by :mod:`collections.abc`. :class:`lisa.generic.TypedList` is another example. Casting values "registered" as instances of these types is expensive though, as validity of the cast depends on the value itself. That means it's not possible to memoize the result of the cast associated it with the type of the value. One might wonder what casting a value to a typeclass gives. When possible, a new value with a synthetic type is returned. That is implemented using a shallow copy of the value, and then updating its ``__class__`` attribute. This will provide native attribute lookup speed, and casting will be efficient. If that is not possible (non-heap types, types using ``__slots__`` etc), an instance of :class:`lisa.typeclass.ValueProxy` will be returned for values, and a synthetic type will be created for types. """ import ast import copy import inspect import itertools import contextlib import textwrap from collections.abc import Iterable from devlib.utils.misc import ranges_to_list from lisa.utils import deduplicate # TODO: revisit pylint annotation once this is solved: # https://github.com/PyCQA/pylint/issues/1630 from lisa.generic import TypedList # pylint: disable=unused-import class TypeClassMeta(type): """ Metaclass of all typeclasses. This implements most of the typeclass magic. :param name: Name of the typeclass or instance being created. :type name: str :param bases: tuple of superclasses of the typeclass being defined. When an instance is created, bases must have exactly one element, which is the typeclass being implemented. :type bases: tuple(type) :param dct: Dictionary of attributes defined in the body of the ``class`` statement. :type dct: dict(str, object) :param types: Type or tuple of types for which the typeclass instance is provided. :type types: type or tuple(type) or None """ # Python <= 3.5 does cannot cope with custom arguments passed to # type.__init__(), so filter them out: # https://stackoverflow.com/questions/27258557/how-to-pass-arguments-to-the-metaclass-from-the-class-definition-in-python-3-x/27259275#27259275 def __init__(cls, name, bases, dct, *args, types=None, **kwargs): # pylint: disable=unused-argument super().__init__(name, bases, dct) def __new__(cls, name, bases, dct, *args, types=None, **kwargs): try: typeclass = bases[0] # That's TypeClass itself except IndexError: return super().__new__(cls, name, bases, dct, *args, **kwargs) # That's a typeclass being defined if types is None: dct.update( INSTANCES={}, DEFAULTS={}, REQUIRED=dict(), ) superclasses = deduplicate(bases, keep_last=False) with contextlib.suppress(ValueError): superclasses.remove(TypeClass) dct['SUPERCLASSES'] = superclasses for typeclass in superclasses: conflicting = { name for name in dct['REQUIRED'].keys() & typeclass.REQUIRED.keys() # If required method was specified in a base typeclass that # happens to be shared, there is no problem if dct['REQUIRED'][name] is not typeclass.REQUIRED[name] } if conflicting: def flatten(l): return list(itertools.chain.from_iterable(l)) # DFS traversal of superclass hierarchy, removing # intermediate node that are just there to merge parent # nodes without adding anything else. This avoids having # intermediate classes created by __and__ for example, for # better error reporting. def expand(superclass): # If that typeclass is an empty shim that just combines other typeclasses if not (superclass.__dict__.keys() - _EmptyTypeClass.__dict__.keys()): return flatten(map(expand, superclass.SUPERCLASSES)) else: return [superclass] superclasses = flatten(map(expand, superclasses)) superclasses = deduplicate(superclasses, keep_last=False) def format_method(name): return '{} (defined in: {} and {})'.format( name, dct['REQUIRED'][name].__qualname__, typeclass.REQUIRED[name].__qualname__, ) raise TypeError('Cannot merge typeclasses {} since the following methods conflict: {}'.format( ', '.join(sorted(tp.__qualname__ for tp in superclasses)), ', '.join(map(format_method, sorted(conflicting))), )) else: dct['DEFAULTS'].update(typeclass.DEFAULTS) dct['REQUIRED'].update(typeclass.REQUIRED) typeclass = super().__new__(cls, name, bases, dct, *args, **kwargs) typeclass.REQUIRED.update({ name: typeclass for name, attr in dct.items() if getattr(attr, '__required__', False) }) not_copied = set(dict(inspect.getmembers(_EmptyTypeClass)).keys()) not_copied |= dct['REQUIRED'].keys() | {'__qualname__', '__name__'} typeclass.DEFAULTS.update({ attr: val for attr, val in dct.items() if attr not in not_copied }) return typeclass # Someone tries to inherit from the typeclass to make an instance else: if len(bases) != 1: raise TypeError('A typeclass instance can only implement the methods of one typeclass, but multiple typeclasses were provided: {}'.format( ', '.join(sorted(base.__qualname__ for base in bases)) )) missing = typeclass.REQUIRED.keys() - dct.keys() if missing: raise NotImplementedError('Following methods are missing in {} instance and must be defined for instances of the {} typeclass: {}'.format( name, typeclass.__name__, ', '.join(sorted(missing)), )) # Merge-in the typeclass default implementations before using it, # so each instance contains all the methods of the typeclass dct = {**typeclass.DEFAULTS, **dct} types = types if isinstance(types, Iterable) else [types] for type_ in types: # Create an instance for each type, with the type as base class. bases = (type_,) try: instance = type(name, bases, dct, *args, **kwargs) # Some classes like bool cannot be subclassed. Work around by # listing all their attributes and making a new class that has # all of them. except TypeError: total_dct = {**dict(inspect.getmembers(type_)), **dct} instance = type(name, tuple(), total_dct, *args, **kwargs) typeclass.INSTANCES[type_] = (instance, dct) # Monkey patch the types so that the typeclass methods can be # called "natively" on them if wanted get_top_package = lambda mod: mod.split('.')[0] # Only add the attribute if it does not exist already on the # target class def update_attr(attr, val): # pylint: disable=cell-var-from-loop if not hasattr(type_, attr): setattr(type_, attr, val) # If the instance is declared in the same top-level package, # update the type itself. This prevents foreign packages from # monkey patching types but allows instances anywhere in a # given package if get_top_package(type_.__module__) == dct['__module__']: # Then the attributes defined in the instance for attr, val in dct.items(): update_attr(attr, val) # We scavanged all what we needed, the class has just been used to # as a vehicle to create a scope but will not be used directly. It # will still live a secrete life internally for casting though. # # Instead, return a class that is equivalent to the typeclass but # with the docstring of the instance. This allows Sphinx to pick up # the instance's docstring. dct = {**dct, **{'__doc__': dct.get('__doc__')}} return type(name, (typeclass,), dct) @staticmethod def required(f): """ Decorator used in a typeclass to flag a method to be required to be implemented by all instances. This is very similar to :func:`abc.abstractmethod`. """ f.__required__ = True return f def __matmul__(cls, obj): """ Use the matrix multiplication operator (``@``) as a "cast" operator, to cast a value or a type to a typeclass. """ # pylint: disable=no-value-for-parameter return cls(obj) # Also makes it work when operands are swapped. __rmatmul__ = __matmul__ def __and__(cls, other): """ Allow quick combination of multiple typeclasses with bitwise ``&`` operator. """ class Combined(cls, other): pass return Combined class TypeClass(metaclass=TypeClassMeta): """ Base class to inherit from to define a new typeclass. """ def __new__(cls, obj): safe_to_memoize, instance, dct = cls._find_instance_dct(obj) # pylint: disable=unused-variable # Shallow copy to allow "casting" to the right type. Using a made-up # class allows piggy backing on regular attribute lookup, which is much # faster than any pure-python __getattribute__ implementation try: new_obj = obj.__class__.__new__(obj.__class__) # Objects using __slots__ are not really handled anyway since # changing __class__ on them can lead to segfault in the # interpreter new_obj.__dict__ = copy.copy(obj.__dict__) new_obj.__class__ = instance # If obj.__class__ is not a heap type, it's not possible to "cast" the # value by modifying __class__ parameter (TypeError). Instead, we make # a proxy object, that has the typeclass attribute lookup implemented # with __getattribute__ # # AttributeError can be raised if there is no __dict__ (e.g. if using # __slots__). except (TypeError, AttributeError): # Wrap the object in a proxy value that will implement the # typeclass-aware attribute lookup if isinstance(obj, type): new_obj = cls._make_type_proxy(obj, dct) else: new_obj = ValueProxy(obj, dct) return new_obj @staticmethod def _make_type_proxy(obj, dct): """ Make a proxy object for given type. The proxy is itself a type inheriting from the original type, along with all the methods in ``dct``. ``__call__`` is overrident in the metaclass to make sure that invoking the type will yield instances of the original type. """ class TypeProxyMeta(type): def __instancecheck__(cls, x): return isinstance(x, obj) def __subclasscheck__(cls, x): return issubclass(x, obj) # Allow calling the class as usual, which is necessary to # use factory classmethod that return new instances # (alternative constructors). __call__ = obj.__call__ class TypeProxyBase(metaclass=TypeProxyMeta): pass try: class TypeProxy(obj, TypeProxyBase): pass # If we cannot inherit from the class (like bool), pick the first base # class that is suitable. That is a tad ugly but better than nothing except TypeError: # Make sure we get all the methods as on the original type we # wanted to subclass dct = {**dict(inspect.getmembers(obj)), **dct} for obj_ in inspect.getmro(obj): try: class TypeProxy(obj_, TypeProxyBase): pass except TypeError: continue else: break for attr, val in dct.items(): with contextlib.suppress(TypeError, AttributeError): setattr(TypeProxy, attr, val) TypeProxy.__name__ = obj.__name__ TypeProxy.__qualname__ = obj.__qualname__ return TypeProxy @classmethod def _find_instance_dct(cls, obj): """ Find the relevant instance and attribute dictionary for the given object. """ from_type = isinstance(obj, type) if from_type: type_ = obj else: type_ = obj.__class__ safe_to_memoize = True leaf_instance = None # Find the most derived class (according to MRO) with an instance # implemented for that typeclass for i, base in enumerate(type_.__mro__): try: instance, dct = cls.INSTANCES[base] except KeyError: pass else: # We got a "perfect" match on the first item of the MRO (a leaf # in class hierarchy), so we wont need to create any wrapper # class if i == 0: leaf_instance = instance break # No instance was registered already else: # If we do have superclasses, we find their instance for the type # at hand and merge their dict dct = {} # Traverse the superclasses in reverse order, so that the leftmost # superclass has priority. This matches usual inheritance # precedence rule (i.e. MRO computed according to the C3 class # graph linearization algo). for typeclass in reversed(cls.SUPERCLASSES): safe_to_memoize_, instance_, dct_ = typeclass._find_instance_dct(obj) # pylint: disable=unused-variable dct.update(dct_) # As soon as part of the methods are not safe to memoize, the # whole instance becomes unsafe safe_to_memoize &= safe_to_memoize_ # Attempt with isinstance. It may succeed since some # classes register themselves as base classes without appearing # in the MRO of the "subclass". This can happen when # implementing __subclasscheck__ or __instancecheck__, such as # in abc.ABCMeta . instances = { instance: dct for cls, (instance, dct) in cls.INSTANCES.items() if isinstance(obj, cls) } if instances: # Do not register a new instance, since it's value-dependent. # Therefore, it has to be re-evaluated for every new value safe_to_memoize = False # Check that all dct are the same. If not, there is no way of # choosing one over the others, so we bail out dct_list = list(instances.values()) if all(dct1 is dct2 for dct1, dct2 in zip(dct_list, dct_list[1:])): dct.update(dct_list[0]) else: # TODO: attempt to find the most derived class among #instances.keys(). If there is no most derived class, #then raise the exception. raise TypeError('Ambiguous instance for {} typeclass: {} could all be used'.format( cls.__name__, ', '.join(sorted(cls.__name__ for cls in instances.keys())) )) else: # Check if all the required # methods are actually implemented. If so, it's enough to proceed. dct.update({ attr: getattr(type_, attr) for attr in cls.REQUIRED.keys() if hasattr(type_, attr) }) # If there are some missing methods, then we cannot infer any # instance if cls.REQUIRED.keys() > dct.keys(): raise NotImplementedError(f'No instance of {cls.__name__} typeclass for {type_.__name__} type') # If all required methods are there, carry on with that else: dct = {**cls.DEFAULTS, **dct} if leaf_instance: instance = leaf_instance else: # Since no existing instance was registered for the specific class # of the object, we create a synthetic one for it, so attribute # resolution works as expected instance_name = f'{cls.__qualname__}InstanceOf{obj.__class__.__name__}' instance = type(instance_name, (obj.__class__,), dct) # Register that instance for faster future lookup if safe_to_memoize: cls.INSTANCES[type_] = (instance, dct) return (safe_to_memoize, instance, dct) class ValueProxy: """ Values of this class are returned when casting a value to a typeclass, if the value does not support shallow copy or ``__class__`` attribute assignment. It implements the modified attribute lookup, so we can use the typeclass methods. All other attribute lookups will go through untouched, except magic methods lookup (also known as dunder names). """ def __init__(self, obj, dct): self._obj = obj self._instance_dct = dct def __getattribute__(self, attr): get = super().__getattribute__ dct = get('_instance_dct') obj = get('_obj') try: val = dct[attr] # If that is not an method of the typeclass instance, fallback to # regular attribute lookup except KeyError: return obj.__class__.__getattribute__(obj, attr) # Otherwise, give priority to instance definition over inheritance else: # Bind descriptors if hasattr(val, '__get__'): if isinstance(obj, type): # Bind to "self", so the method can use any other method of # the typeclass owner = self value = None else: owner = obj.__class__ # Bind to "self", so the method can use any other method of # the typeclass value = self return val.__get__(value, owner) else: return val # Just to have something available to define the final _EmptyTypeClass class _EmptyTypeClass: pass # Serves to know the base set of attributes to not copy over when instantiating # the typeclass class _EmptyTypeClass(TypeClass): pass class FromString(TypeClass): """ Build values by parsing a string. """ @TypeClass.required @classmethod def from_str(cls, string): """ Parse the given string into a value of ``cls``. """ pass @TypeClass.required @classmethod def get_format_description(cls, short): """ Returns the description of the format parsed by :meth:`from_str`. :param short: If ``True``, a short description should be returned. Otherwise a more more lengthy description is acceptable :type short: bool """ pass class BuiltinFromStringInstance(FromString, types=(int, float, TypedList[float])): """ Parse the following types from a string: * ``int`` * ``float`` * ``str`` Plus all the :class:`lisa.generic.TypedList` subtypes of the above types. """ @classmethod def from_str(cls, string): val = ast.literal_eval(string) if not isinstance(val, cls): raise ValueError(f'Value "{val}" is of type {type(val).__qualname__} but should be of type {cls.__qualname__}') return val @classmethod def get_format_description(cls, short): return cls.__name__ class BoolFromStringInstance(FromString, types=bool): """ Parse boolean from a string. """ @classmethod def from_str(cls, string): """ Accepted formats (case insensitive): * ``0``, ``n``, ``false`` * ``1``, ``y``, ``true`` """ string = string.casefold().strip() if string in ('0', 'n', 'false'): return False elif string in ('1', 'y', 'true'): return True else: raise ValueError(f'Cannot parse string as a boolean: {string}') @classmethod def get_format_description(cls, short): return 'bool' class IntListFromStringInstance(FromString, types=TypedList[int]): """ Instance of :class:`lisa.typeclass.FromString` for :class:`int` type. """ @classmethod def from_str(cls, string): """ Accepts following inputs: * ``0``: a single integer * ``4-0``: and inclusive range of integers * ``1,2,10,55-99``: a comma separated list of the previous formats """ return ranges_to_list(string) @classmethod def get_format_description(cls, short): if short: return 'comma-separated integers' else: return textwrap.dedent(""" Can be any of: * ``0``: a single integer * ``4-0``: and inclusive range of integers * ``1,2,10,55-99``: a comma separated list of the previous formats """).strip() class StrFromStringInstance(FromString, types=str): """ Instance of :class:`lisa.typeclass.FromString` for :class:`str` type. """ @classmethod def from_str(cls, string): return string @classmethod def get_format_description(cls, short): return 'str' class StrListFromStringInstance(FromString, types=TypedList[str]): """ Instance of :class:`lisa.typeclass.FromString` for :class:`str` type. """ @classmethod def from_str(cls, string): """ The accepted format is a comma-separated list of string. If commas are needed inside the string, you can use quoted string list instead. Note that in this case, *all* items need to be quoted, like ``"foo,bar", "baz"``. Both single quotes and double quotes are accepted. """ # If quotes are found, parse it as a Python string literal after adding # brackets around if '"' in string or "'" in string: string = '[' + string + ']' l = ast.literal_eval(string) return [str(x) for x in l] # Otherwise, just split on commas else: return string.split(',') @classmethod def get_format_description(cls, short): if short: return 'comma-separated string' else: return textwrap.dedent(""" Can be either a comma separated string, or a comma-separated quoted string if commas are needed inside elements. """).strip() # vim :set tabstop=4 shiftwidth=4 textwidth=80 expandtab
apache-2.0
malayaleecoder/servo
tests/wpt/web-platform-tests/tools/pytest/testing/python/integration.py
171
11677
import pytest from _pytest import python from _pytest import runner class TestOEJSKITSpecials: def test_funcarg_non_pycollectobj(self, testdir): # rough jstests usage testdir.makeconftest(""" import pytest def pytest_pycollect_makeitem(collector, name, obj): if name == "MyClass": return MyCollector(name, parent=collector) class MyCollector(pytest.Collector): def reportinfo(self): return self.fspath, 3, "xyz" """) modcol = testdir.getmodulecol(""" def pytest_funcarg__arg1(request): return 42 class MyClass: pass """) # this hook finds funcarg factories rep = runner.collect_one_node(collector=modcol) clscol = rep.result[0] clscol.obj = lambda arg1: None clscol.funcargs = {} pytest._fillfuncargs(clscol) assert clscol.funcargs['arg1'] == 42 def test_autouse_fixture(self, testdir): # rough jstests usage testdir.makeconftest(""" import pytest def pytest_pycollect_makeitem(collector, name, obj): if name == "MyClass": return MyCollector(name, parent=collector) class MyCollector(pytest.Collector): def reportinfo(self): return self.fspath, 3, "xyz" """) modcol = testdir.getmodulecol(""" import pytest @pytest.fixture(autouse=True) def hello(): pass def pytest_funcarg__arg1(request): return 42 class MyClass: pass """) # this hook finds funcarg factories rep = runner.collect_one_node(modcol) clscol = rep.result[0] clscol.obj = lambda: None clscol.funcargs = {} pytest._fillfuncargs(clscol) assert not clscol.funcargs def test_wrapped_getfslineno(): def func(): pass def wrap(f): func.__wrapped__ = f func.patchings = ["qwe"] return func @wrap def wrapped_func(x, y, z): pass fs, lineno = python.getfslineno(wrapped_func) fs2, lineno2 = python.getfslineno(wrap) assert lineno > lineno2, "getfslineno does not unwrap correctly" class TestMockDecoration: def test_wrapped_getfuncargnames(self): from _pytest.python import getfuncargnames def wrap(f): def func(): pass func.__wrapped__ = f return func @wrap def f(x): pass l = getfuncargnames(f) assert l == ("x",) def test_wrapped_getfuncargnames_patching(self): from _pytest.python import getfuncargnames def wrap(f): def func(): pass func.__wrapped__ = f func.patchings = ["qwe"] return func @wrap def f(x, y, z): pass l = getfuncargnames(f) assert l == ("y", "z") def test_unittest_mock(self, testdir): pytest.importorskip("unittest.mock") testdir.makepyfile(""" import unittest.mock class T(unittest.TestCase): @unittest.mock.patch("os.path.abspath") def test_hello(self, abspath): import os os.path.abspath("hello") abspath.assert_any_call("hello") """) reprec = testdir.inline_run() reprec.assertoutcome(passed=1) def test_unittest_mock_and_fixture(self, testdir): pytest.importorskip("unittest.mock") testdir.makepyfile(""" import os.path import unittest.mock import pytest @pytest.fixture def inject_me(): pass @unittest.mock.patch.object(os.path, "abspath", new=unittest.mock.MagicMock) def test_hello(inject_me): import os os.path.abspath("hello") """) reprec = testdir.inline_run() reprec.assertoutcome(passed=1) def test_mock(self, testdir): pytest.importorskip("mock", "1.0.1") testdir.makepyfile(""" import os import unittest import mock class T(unittest.TestCase): @mock.patch("os.path.abspath") def test_hello(self, abspath): os.path.abspath("hello") abspath.assert_any_call("hello") def mock_basename(path): return "mock_basename" @mock.patch("os.path.abspath") @mock.patch("os.path.normpath") @mock.patch("os.path.basename", new=mock_basename) def test_someting(normpath, abspath, tmpdir): abspath.return_value = "this" os.path.normpath(os.path.abspath("hello")) normpath.assert_any_call("this") assert os.path.basename("123") == "mock_basename" """) reprec = testdir.inline_run() reprec.assertoutcome(passed=2) calls = reprec.getcalls("pytest_runtest_logreport") funcnames = [call.report.location[2] for call in calls if call.report.when == "call"] assert funcnames == ["T.test_hello", "test_someting"] def test_mock_sorting(self, testdir): pytest.importorskip("mock", "1.0.1") testdir.makepyfile(""" import os import mock @mock.patch("os.path.abspath") def test_one(abspath): pass @mock.patch("os.path.abspath") def test_two(abspath): pass @mock.patch("os.path.abspath") def test_three(abspath): pass """) reprec = testdir.inline_run() calls = reprec.getreports("pytest_runtest_logreport") calls = [x for x in calls if x.when == "call"] names = [x.nodeid.split("::")[-1] for x in calls] assert names == ["test_one", "test_two", "test_three"] def test_mock_double_patch_issue473(self, testdir): pytest.importorskip("mock", "1.0.1") testdir.makepyfile(""" from mock import patch from pytest import mark @patch('os.getcwd') @patch('os.path') @mark.slow class TestSimple: def test_simple_thing(self, mock_path, mock_getcwd): pass """) reprec = testdir.inline_run() reprec.assertoutcome(passed=1) class TestReRunTests: def test_rerun(self, testdir): testdir.makeconftest(""" from _pytest.runner import runtestprotocol def pytest_runtest_protocol(item, nextitem): runtestprotocol(item, log=False, nextitem=nextitem) runtestprotocol(item, log=True, nextitem=nextitem) """) testdir.makepyfile(""" import pytest count = 0 req = None @pytest.fixture def fix(request): global count, req assert request != req req = request print ("fix count %s" % count) count += 1 def test_fix(fix): pass """) result = testdir.runpytest("-s") result.stdout.fnmatch_lines(""" *fix count 0* *fix count 1* """) result.stdout.fnmatch_lines(""" *2 passed* """) def test_pytestconfig_is_session_scoped(): from _pytest.python import pytestconfig assert pytestconfig._pytestfixturefunction.scope == "session" class TestNoselikeTestAttribute: def test_module_with_global_test(self, testdir): testdir.makepyfile(""" __test__ = False def test_hello(): pass """) reprec = testdir.inline_run() assert not reprec.getfailedcollections() calls = reprec.getreports("pytest_runtest_logreport") assert not calls def test_class_and_method(self, testdir): testdir.makepyfile(""" __test__ = True def test_func(): pass test_func.__test__ = False class TestSome: __test__ = False def test_method(self): pass """) reprec = testdir.inline_run() assert not reprec.getfailedcollections() calls = reprec.getreports("pytest_runtest_logreport") assert not calls def test_unittest_class(self, testdir): testdir.makepyfile(""" import unittest class TC(unittest.TestCase): def test_1(self): pass class TC2(unittest.TestCase): __test__ = False def test_2(self): pass """) reprec = testdir.inline_run() assert not reprec.getfailedcollections() call = reprec.getcalls("pytest_collection_modifyitems")[0] assert len(call.items) == 1 assert call.items[0].cls.__name__ == "TC" def test_class_with_nasty_getattr(self, testdir): """Make sure we handle classes with a custom nasty __getattr__ right. With a custom __getattr__ which e.g. returns a function (like with a RPC wrapper), we shouldn't assume this meant "__test__ = True". """ # https://github.com/pytest-dev/pytest/issues/1204 testdir.makepyfile(""" class MetaModel(type): def __getattr__(cls, key): return lambda: None BaseModel = MetaModel('Model', (), {}) class Model(BaseModel): __metaclass__ = MetaModel def test_blah(self): pass """) reprec = testdir.inline_run() assert not reprec.getfailedcollections() call = reprec.getcalls("pytest_collection_modifyitems")[0] assert not call.items @pytest.mark.issue351 class TestParameterize: def test_idfn_marker(self, testdir): testdir.makepyfile(""" import pytest def idfn(param): if param == 0: return 'spam' elif param == 1: return 'ham' else: return None @pytest.mark.parametrize('a,b', [(0, 2), (1, 2)], ids=idfn) def test_params(a, b): pass """) res = testdir.runpytest('--collect-only') res.stdout.fnmatch_lines([ "*spam-2*", "*ham-2*", ]) def test_idfn_fixture(self, testdir): testdir.makepyfile(""" import pytest def idfn(param): if param == 0: return 'spam' elif param == 1: return 'ham' else: return None @pytest.fixture(params=[0, 1], ids=idfn) def a(request): return request.param @pytest.fixture(params=[1, 2], ids=idfn) def b(request): return request.param def test_params(a, b): pass """) res = testdir.runpytest('--collect-only') res.stdout.fnmatch_lines([ "*spam-2*", "*ham-2*", ])
mpl-2.0
xpol/gyp
pylib/gyp/mac_tool.py
8
27016
#!/usr/bin/env python # Copyright (c) 2012 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Utility functions to perform Xcode-style build steps. These functions are executed via gyp-mac-tool when using the Makefile generator. """ import fcntl import fnmatch import glob import json import os import plistlib import re import shutil import string import struct import subprocess import sys import tempfile def main(args): executor = MacTool() exit_code = executor.Dispatch(args) if exit_code is not None: sys.exit(exit_code) class MacTool(object): """This class performs all the Mac tooling steps. The methods can either be executed directly, or dispatched from an argument list.""" def Dispatch(self, args): """Dispatches a string command to a method.""" if len(args) < 1: raise Exception("Not enough arguments") method = "Exec%s" % self._CommandifyName(args[0]) return getattr(self, method)(*args[1:]) def _CommandifyName(self, name_string): """Transforms a tool name like copy-info-plist to CopyInfoPlist""" return name_string.title().replace('-', '') def ExecCopyBundleResource(self, source, dest, convert_to_binary): """Copies a resource file to the bundle/Resources directory, performing any necessary compilation on each resource.""" convert_to_binary = convert_to_binary == 'True' extension = os.path.splitext(source)[1].lower() if os.path.isdir(source): # Copy tree. # TODO(thakis): This copies file attributes like mtime, while the # single-file branch below doesn't. This should probably be changed to # be consistent with the single-file branch. if os.path.exists(dest): shutil.rmtree(dest) shutil.copytree(source, dest) elif extension == '.xib': return self._CopyXIBFile(source, dest) elif extension == '.storyboard': return self._CopyXIBFile(source, dest) elif extension == '.strings' and not convert_to_binary: self._CopyStringsFile(source, dest) else: if os.path.exists(dest): os.unlink(dest) shutil.copy(source, dest) if convert_to_binary and extension in ('.plist', '.strings'): self._ConvertToBinary(dest) def _CopyXIBFile(self, source, dest): """Compiles a XIB file with ibtool into a binary plist in the bundle.""" # ibtool sometimes crashes with relative paths. See crbug.com/314728. base = os.path.dirname(os.path.realpath(__file__)) if os.path.relpath(source): source = os.path.join(base, source) if os.path.relpath(dest): dest = os.path.join(base, dest) args = ['xcrun', 'ibtool', '--errors', '--warnings', '--notices'] if os.environ['XCODE_VERSION_ACTUAL'] > '0700': args.extend(['--auto-activate-custom-fonts']) if 'IPHONEOS_DEPLOYMENT_TARGET' in os.environ: args.extend([ '--target-device', 'iphone', '--target-device', 'ipad', '--minimum-deployment-target', os.environ['IPHONEOS_DEPLOYMENT_TARGET'], ]) else: args.extend([ '--target-device', 'mac', '--minimum-deployment-target', os.environ['MACOSX_DEPLOYMENT_TARGET'], ]) args.extend(['--output-format', 'human-readable-text', '--compile', dest, source]) ibtool_section_re = re.compile(r'/\*.*\*/') ibtool_re = re.compile(r'.*note:.*is clipping its content') ibtoolout = subprocess.Popen(args, stdout=subprocess.PIPE) current_section_header = None for line in ibtoolout.stdout: if ibtool_section_re.match(line): current_section_header = line elif not ibtool_re.match(line): if current_section_header: sys.stdout.write(current_section_header) current_section_header = None sys.stdout.write(line) return ibtoolout.returncode def _ConvertToBinary(self, dest): subprocess.check_call([ 'xcrun', 'plutil', '-convert', 'binary1', '-o', dest, dest]) def _CopyStringsFile(self, source, dest): """Copies a .strings file using iconv to reconvert the input into UTF-16.""" input_code = self._DetectInputEncoding(source) or "UTF-8" # Xcode's CpyCopyStringsFile / builtin-copyStrings seems to call # CFPropertyListCreateFromXMLData() behind the scenes; at least it prints # CFPropertyListCreateFromXMLData(): Old-style plist parser: missing # semicolon in dictionary. # on invalid files. Do the same kind of validation. import CoreFoundation s = open(source, 'rb').read() d = CoreFoundation.CFDataCreate(None, s, len(s)) _, error = CoreFoundation.CFPropertyListCreateFromXMLData(None, d, 0, None) if error: return fp = open(dest, 'wb') fp.write(s.decode(input_code).encode('UTF-16')) fp.close() def _DetectInputEncoding(self, file_name): """Reads the first few bytes from file_name and tries to guess the text encoding. Returns None as a guess if it can't detect it.""" fp = open(file_name, 'rb') try: header = fp.read(3) except: fp.close() return None fp.close() if header.startswith("\xFE\xFF"): return "UTF-16" elif header.startswith("\xFF\xFE"): return "UTF-16" elif header.startswith("\xEF\xBB\xBF"): return "UTF-8" else: return None def ExecCopyInfoPlist(self, source, dest, convert_to_binary, *keys): """Copies the |source| Info.plist to the destination directory |dest|.""" # Read the source Info.plist into memory. fd = open(source, 'r') lines = fd.read() fd.close() # Insert synthesized key/value pairs (e.g. BuildMachineOSBuild). plist = plistlib.readPlistFromString(lines) if keys: plist = dict(plist.items() + json.loads(keys[0]).items()) lines = plistlib.writePlistToString(plist) # Go through all the environment variables and replace them as variables in # the file. IDENT_RE = re.compile(r'[_/\s]') for key in os.environ: if key.startswith('_'): continue evar = '${%s}' % key evalue = os.environ[key] lines = string.replace(lines, evar, evalue) # Xcode supports various suffices on environment variables, which are # all undocumented. :rfc1034identifier is used in the standard project # template these days, and :identifier was used earlier. They are used to # convert non-url characters into things that look like valid urls -- # except that the replacement character for :identifier, '_' isn't valid # in a URL either -- oops, hence :rfc1034identifier was born. evar = '${%s:identifier}' % key evalue = IDENT_RE.sub('_', os.environ[key]) lines = string.replace(lines, evar, evalue) evar = '${%s:rfc1034identifier}' % key evalue = IDENT_RE.sub('-', os.environ[key]) lines = string.replace(lines, evar, evalue) # Remove any keys with values that haven't been replaced. lines = lines.split('\n') for i in range(len(lines)): if lines[i].strip().startswith("<string>${"): lines[i] = None lines[i - 1] = None lines = '\n'.join(filter(lambda x: x is not None, lines)) # Write out the file with variables replaced. fd = open(dest, 'w') fd.write(lines) fd.close() # Now write out PkgInfo file now that the Info.plist file has been # "compiled". self._WritePkgInfo(dest) if convert_to_binary == 'True': self._ConvertToBinary(dest) def _WritePkgInfo(self, info_plist): """This writes the PkgInfo file from the data stored in Info.plist.""" plist = plistlib.readPlist(info_plist) if not plist: return # Only create PkgInfo for executable types. package_type = plist['CFBundlePackageType'] if package_type != 'APPL': return # The format of PkgInfo is eight characters, representing the bundle type # and bundle signature, each four characters. If that is missing, four # '?' characters are used instead. signature_code = plist.get('CFBundleSignature', '????') if len(signature_code) != 4: # Wrong length resets everything, too. signature_code = '?' * 4 dest = os.path.join(os.path.dirname(info_plist), 'PkgInfo') fp = open(dest, 'w') fp.write('%s%s' % (package_type, signature_code)) fp.close() def ExecFlock(self, lockfile, *cmd_list): """Emulates the most basic behavior of Linux's flock(1).""" # Rely on exception handling to report errors. fd = os.open(lockfile, os.O_RDONLY|os.O_NOCTTY|os.O_CREAT, 0o666) fcntl.flock(fd, fcntl.LOCK_EX) return subprocess.call(cmd_list) def ExecFilterLibtool(self, *cmd_list): """Calls libtool and filters out '/path/to/libtool: file: foo.o has no symbols'.""" libtool_re = re.compile(r'^.*libtool: (?:for architecture: \S* )?' r'file: .* has no symbols$') libtool_re5 = re.compile( r'^.*libtool: warning for library: ' + r'.* the table of contents is empty ' + r'\(no object file members in the library define global symbols\)$') env = os.environ.copy() # Ref: # http://www.opensource.apple.com/source/cctools/cctools-809/misc/libtool.c # The problem with this flag is that it resets the file mtime on the file to # epoch=0, e.g. 1970-1-1 or 1969-12-31 depending on timezone. env['ZERO_AR_DATE'] = '1' libtoolout = subprocess.Popen(cmd_list, stderr=subprocess.PIPE, env=env) _, err = libtoolout.communicate() for line in err.splitlines(): if not libtool_re.match(line) and not libtool_re5.match(line): print >>sys.stderr, line # Unconditionally touch the output .a file on the command line if present # and the command succeeded. A bit hacky. if not libtoolout.returncode: for i in range(len(cmd_list) - 1): if cmd_list[i] == "-o" and cmd_list[i+1].endswith('.a'): os.utime(cmd_list[i+1], None) break return libtoolout.returncode def ExecPackageIosFramework(self, framework): # Find the name of the binary based on the part before the ".framework". binary = os.path.basename(framework).split('.')[0] module_path = os.path.join(framework, 'Modules'); if not os.path.exists(module_path): os.mkdir(module_path) module_template = 'framework module %s {\n' \ ' umbrella header "%s.h"\n' \ '\n' \ ' export *\n' \ ' module * { export * }\n' \ '}\n' % (binary, binary) module_file = open(os.path.join(module_path, 'module.modulemap'), "w") module_file.write(module_template) module_file.close() def ExecPackageFramework(self, framework, version): """Takes a path to Something.framework and the Current version of that and sets up all the symlinks.""" # Find the name of the binary based on the part before the ".framework". binary = os.path.basename(framework).split('.')[0] CURRENT = 'Current' RESOURCES = 'Resources' VERSIONS = 'Versions' if not os.path.exists(os.path.join(framework, VERSIONS, version, binary)): # Binary-less frameworks don't seem to contain symlinks (see e.g. # chromium's out/Debug/org.chromium.Chromium.manifest/ bundle). return # Move into the framework directory to set the symlinks correctly. pwd = os.getcwd() os.chdir(framework) # Set up the Current version. self._Relink(version, os.path.join(VERSIONS, CURRENT)) # Set up the root symlinks. self._Relink(os.path.join(VERSIONS, CURRENT, binary), binary) self._Relink(os.path.join(VERSIONS, CURRENT, RESOURCES), RESOURCES) # Back to where we were before! os.chdir(pwd) def _Relink(self, dest, link): """Creates a symlink to |dest| named |link|. If |link| already exists, it is overwritten.""" if os.path.lexists(link): os.remove(link) os.symlink(dest, link) def ExecCompileIosFrameworkHeaderMap(self, out, framework, *all_headers): framework_name = os.path.basename(framework).split('.')[0] all_headers = map(os.path.abspath, all_headers) filelist = {} for header in all_headers: filename = os.path.basename(header) filelist[filename] = header filelist[os.path.join(framework_name, filename)] = header WriteHmap(out, filelist) def ExecCopyIosFrameworkHeaders(self, framework, *copy_headers): header_path = os.path.join(framework, 'Headers'); if not os.path.exists(header_path): os.makedirs(header_path) for header in copy_headers: shutil.copy(header, os.path.join(header_path, os.path.basename(header))) def ExecCompileXcassets(self, keys, *inputs): """Compiles multiple .xcassets files into a single .car file. This invokes 'actool' to compile all the inputs .xcassets files. The |keys| arguments is a json-encoded dictionary of extra arguments to pass to 'actool' when the asset catalogs contains an application icon or a launch image. Note that 'actool' does not create the Assets.car file if the asset catalogs does not contains imageset. """ command_line = [ 'xcrun', 'actool', '--output-format', 'human-readable-text', '--compress-pngs', '--notices', '--warnings', '--errors', ] is_iphone_target = 'IPHONEOS_DEPLOYMENT_TARGET' in os.environ if is_iphone_target: platform = os.environ['CONFIGURATION'].split('-')[-1] if platform not in ('iphoneos', 'iphonesimulator'): platform = 'iphonesimulator' command_line.extend([ '--platform', platform, '--target-device', 'iphone', '--target-device', 'ipad', '--minimum-deployment-target', os.environ['IPHONEOS_DEPLOYMENT_TARGET'], '--compile', os.path.abspath(os.environ['CONTENTS_FOLDER_PATH']), ]) else: command_line.extend([ '--platform', 'macosx', '--target-device', 'mac', '--minimum-deployment-target', os.environ['MACOSX_DEPLOYMENT_TARGET'], '--compile', os.path.abspath(os.environ['UNLOCALIZED_RESOURCES_FOLDER_PATH']), ]) if keys: keys = json.loads(keys) for key, value in keys.iteritems(): arg_name = '--' + key if isinstance(value, bool): if value: command_line.append(arg_name) elif isinstance(value, list): for v in value: command_line.append(arg_name) command_line.append(str(v)) else: command_line.append(arg_name) command_line.append(str(value)) # Note: actool crashes if inputs path are relative, so use os.path.abspath # to get absolute path name for inputs. command_line.extend(map(os.path.abspath, inputs)) subprocess.check_call(command_line) def ExecMergeInfoPlist(self, output, *inputs): """Merge multiple .plist files into a single .plist file.""" merged_plist = {} for path in inputs: plist = self._LoadPlistMaybeBinary(path) self._MergePlist(merged_plist, plist) plistlib.writePlist(merged_plist, output) def ExecCodeSignBundle(self, key, entitlements, provisioning, path, preserve): """Code sign a bundle. This function tries to code sign an iOS bundle, following the same algorithm as Xcode: 1. pick the provisioning profile that best match the bundle identifier, and copy it into the bundle as embedded.mobileprovision, 2. copy Entitlements.plist from user or SDK next to the bundle, 3. code sign the bundle. """ substitutions, overrides = self._InstallProvisioningProfile( provisioning, self._GetCFBundleIdentifier()) entitlements_path = self._InstallEntitlements( entitlements, substitutions, overrides) args = ['codesign', '--force', '--sign', key] if preserve == 'True': args.extend(['--deep', '--preserve-metadata=identifier,entitlements']) else: args.extend(['--entitlements', entitlements_path]) args.extend(['--timestamp=none', path]) subprocess.check_call(args) def _InstallProvisioningProfile(self, profile, bundle_identifier): """Installs embedded.mobileprovision into the bundle. Args: profile: string, optional, short name of the .mobileprovision file to use, if empty or the file is missing, the best file installed will be used bundle_identifier: string, value of CFBundleIdentifier from Info.plist Returns: A tuple containing two dictionary: variables substitutions and values to overrides when generating the entitlements file. """ source_path, provisioning_data, team_id = self._FindProvisioningProfile( profile, bundle_identifier) target_path = os.path.join( os.environ['BUILT_PRODUCTS_DIR'], os.environ['CONTENTS_FOLDER_PATH'], 'embedded.mobileprovision') shutil.copy2(source_path, target_path) substitutions = self._GetSubstitutions(bundle_identifier, team_id + '.') return substitutions, provisioning_data['Entitlements'] def _FindProvisioningProfile(self, profile, bundle_identifier): """Finds the .mobileprovision file to use for signing the bundle. Checks all the installed provisioning profiles (or if the user specified the PROVISIONING_PROFILE variable, only consult it) and select the most specific that correspond to the bundle identifier. Args: profile: string, optional, short name of the .mobileprovision file to use, if empty or the file is missing, the best file installed will be used bundle_identifier: string, value of CFBundleIdentifier from Info.plist Returns: A tuple of the path to the selected provisioning profile, the data of the embedded plist in the provisioning profile and the team identifier to use for code signing. Raises: SystemExit: if no .mobileprovision can be used to sign the bundle. """ profiles_dir = os.path.join( os.environ['HOME'], 'Library', 'MobileDevice', 'Provisioning Profiles') if not os.path.isdir(profiles_dir): print >>sys.stderr, ( 'cannot find mobile provisioning for %s' % bundle_identifier) sys.exit(1) provisioning_profiles = None if profile: profile_path = os.path.join(profiles_dir, profile + '.mobileprovision') if os.path.exists(profile_path): provisioning_profiles = [profile_path] if not provisioning_profiles: provisioning_profiles = glob.glob( os.path.join(profiles_dir, '*.mobileprovision')) valid_provisioning_profiles = {} for profile_path in provisioning_profiles: profile_data = self._LoadProvisioningProfile(profile_path) app_id_pattern = profile_data.get( 'Entitlements', {}).get('application-identifier', '') for team_identifier in profile_data.get('TeamIdentifier', []): app_id = '%s.%s' % (team_identifier, bundle_identifier) if fnmatch.fnmatch(app_id, app_id_pattern): valid_provisioning_profiles[app_id_pattern] = ( profile_path, profile_data, team_identifier) if not valid_provisioning_profiles: print >>sys.stderr, ( 'cannot find mobile provisioning for %s' % bundle_identifier) sys.exit(1) # If the user has multiple provisioning profiles installed that can be # used for ${bundle_identifier}, pick the most specific one (ie. the # provisioning profile whose pattern is the longest). selected_key = max(valid_provisioning_profiles, key=lambda v: len(v)) return valid_provisioning_profiles[selected_key] def _LoadProvisioningProfile(self, profile_path): """Extracts the plist embedded in a provisioning profile. Args: profile_path: string, path to the .mobileprovision file Returns: Content of the plist embedded in the provisioning profile as a dictionary. """ with tempfile.NamedTemporaryFile() as temp: subprocess.check_call([ 'security', 'cms', '-D', '-i', profile_path, '-o', temp.name]) return self._LoadPlistMaybeBinary(temp.name) def _MergePlist(self, merged_plist, plist): """Merge |plist| into |merged_plist|.""" for key, value in plist.iteritems(): if isinstance(value, dict): merged_value = merged_plist.get(key, {}) if isinstance(merged_value, dict): self._MergePlist(merged_value, value) merged_plist[key] = merged_value else: merged_plist[key] = value else: merged_plist[key] = value def _LoadPlistMaybeBinary(self, plist_path): """Loads into a memory a plist possibly encoded in binary format. This is a wrapper around plistlib.readPlist that tries to convert the plist to the XML format if it can't be parsed (assuming that it is in the binary format). Args: plist_path: string, path to a plist file, in XML or binary format Returns: Content of the plist as a dictionary. """ try: # First, try to read the file using plistlib that only supports XML, # and if an exception is raised, convert a temporary copy to XML and # load that copy. return plistlib.readPlist(plist_path) except: pass with tempfile.NamedTemporaryFile() as temp: shutil.copy2(plist_path, temp.name) subprocess.check_call(['plutil', '-convert', 'xml1', temp.name]) return plistlib.readPlist(temp.name) def _GetSubstitutions(self, bundle_identifier, app_identifier_prefix): """Constructs a dictionary of variable substitutions for Entitlements.plist. Args: bundle_identifier: string, value of CFBundleIdentifier from Info.plist app_identifier_prefix: string, value for AppIdentifierPrefix Returns: Dictionary of substitutions to apply when generating Entitlements.plist. """ return { 'CFBundleIdentifier': bundle_identifier, 'AppIdentifierPrefix': app_identifier_prefix, } def _GetCFBundleIdentifier(self): """Extracts CFBundleIdentifier value from Info.plist in the bundle. Returns: Value of CFBundleIdentifier in the Info.plist located in the bundle. """ info_plist_path = os.path.join( os.environ['TARGET_BUILD_DIR'], os.environ['INFOPLIST_PATH']) info_plist_data = self._LoadPlistMaybeBinary(info_plist_path) return info_plist_data['CFBundleIdentifier'] def _InstallEntitlements(self, entitlements, substitutions, overrides): """Generates and install the ${BundleName}.xcent entitlements file. Expands variables "$(variable)" pattern in the source entitlements file, add extra entitlements defined in the .mobileprovision file and the copy the generated plist to "${BundlePath}.xcent". Args: entitlements: string, optional, path to the Entitlements.plist template to use, defaults to "${SDKROOT}/Entitlements.plist" substitutions: dictionary, variable substitutions overrides: dictionary, values to add to the entitlements Returns: Path to the generated entitlements file. """ source_path = entitlements target_path = os.path.join( os.environ['BUILT_PRODUCTS_DIR'], os.environ['PRODUCT_NAME'] + '.xcent') if not source_path: source_path = os.path.join( os.environ['SDKROOT'], 'Entitlements.plist') shutil.copy2(source_path, target_path) data = self._LoadPlistMaybeBinary(target_path) data = self._ExpandVariables(data, substitutions) if overrides: for key in overrides: if key not in data: data[key] = overrides[key] plistlib.writePlist(data, target_path) return target_path def _ExpandVariables(self, data, substitutions): """Expands variables "$(variable)" in data. Args: data: object, can be either string, list or dictionary substitutions: dictionary, variable substitutions to perform Returns: Copy of data where each references to "$(variable)" has been replaced by the corresponding value found in substitutions, or left intact if the key was not found. """ if isinstance(data, str): for key, value in substitutions.iteritems(): data = data.replace('$(%s)' % key, value) return data if isinstance(data, list): return [self._ExpandVariables(v, substitutions) for v in data] if isinstance(data, dict): return {k: self._ExpandVariables(data[k], substitutions) for k in data} return data def NextGreaterPowerOf2(x): return 2**(x).bit_length() def WriteHmap(output_name, filelist): """Generates a header map based on |filelist|. Per Mark Mentovai: A header map is structured essentially as a hash table, keyed by names used in #includes, and providing pathnames to the actual files. The implementation below and the comment above comes from inspecting: http://www.opensource.apple.com/source/distcc/distcc-2503/distcc_dist/include_server/headermap.py?txt while also looking at the implementation in clang in: https://llvm.org/svn/llvm-project/cfe/trunk/lib/Lex/HeaderMap.cpp """ magic = 1751998832 version = 1 _reserved = 0 count = len(filelist) capacity = NextGreaterPowerOf2(count) strings_offset = 24 + (12 * capacity) max_value_length = len(max(filelist.items(), key=lambda (k,v):len(v))[1]) out = open(output_name, "wb") out.write(struct.pack('<LHHLLLL', magic, version, _reserved, strings_offset, count, capacity, max_value_length)) # Create empty hashmap buckets. buckets = [None] * capacity for file, path in filelist.items(): key = 0 for c in file: key += ord(c.lower()) * 13 # Fill next empty bucket. while buckets[key & capacity - 1] is not None: key = key + 1 buckets[key & capacity - 1] = (file, path) next_offset = 1 for bucket in buckets: if bucket is None: out.write(struct.pack('<LLL', 0, 0, 0)) else: (file, path) = bucket key_offset = next_offset prefix_offset = key_offset + len(file) + 1 suffix_offset = prefix_offset + len(os.path.dirname(path) + os.sep) + 1 next_offset = suffix_offset + len(os.path.basename(path)) + 1 out.write(struct.pack('<LLL', key_offset, prefix_offset, suffix_offset)) # Pad byte since next offset starts at 1. out.write(struct.pack('<x')) for bucket in buckets: if bucket is not None: (file, path) = bucket out.write(struct.pack('<%ds' % len(file), file)) out.write(struct.pack('<s', '\0')) base = os.path.dirname(path) + os.sep out.write(struct.pack('<%ds' % len(base), base)) out.write(struct.pack('<s', '\0')) path = os.path.basename(path) out.write(struct.pack('<%ds' % len(path), path)) out.write(struct.pack('<s', '\0')) if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
bsd-3-clause
mancoast/CPythonPyc_test
cpython/279_test_contextlib.py
125
9103
"""Unit tests for contextlib.py, and other context managers.""" import sys import tempfile import unittest from contextlib import * # Tests __all__ from test import test_support try: import threading except ImportError: threading = None class ContextManagerTestCase(unittest.TestCase): def test_contextmanager_plain(self): state = [] @contextmanager def woohoo(): state.append(1) yield 42 state.append(999) with woohoo() as x: self.assertEqual(state, [1]) self.assertEqual(x, 42) state.append(x) self.assertEqual(state, [1, 42, 999]) def test_contextmanager_finally(self): state = [] @contextmanager def woohoo(): state.append(1) try: yield 42 finally: state.append(999) with self.assertRaises(ZeroDivisionError): with woohoo() as x: self.assertEqual(state, [1]) self.assertEqual(x, 42) state.append(x) raise ZeroDivisionError() self.assertEqual(state, [1, 42, 999]) def test_contextmanager_no_reraise(self): @contextmanager def whee(): yield ctx = whee() ctx.__enter__() # Calling __exit__ should not result in an exception self.assertFalse(ctx.__exit__(TypeError, TypeError("foo"), None)) def test_contextmanager_trap_yield_after_throw(self): @contextmanager def whoo(): try: yield except: yield ctx = whoo() ctx.__enter__() self.assertRaises( RuntimeError, ctx.__exit__, TypeError, TypeError("foo"), None ) def test_contextmanager_except(self): state = [] @contextmanager def woohoo(): state.append(1) try: yield 42 except ZeroDivisionError, e: state.append(e.args[0]) self.assertEqual(state, [1, 42, 999]) with woohoo() as x: self.assertEqual(state, [1]) self.assertEqual(x, 42) state.append(x) raise ZeroDivisionError(999) self.assertEqual(state, [1, 42, 999]) def _create_contextmanager_attribs(self): def attribs(**kw): def decorate(func): for k,v in kw.items(): setattr(func,k,v) return func return decorate @contextmanager @attribs(foo='bar') def baz(spam): """Whee!""" return baz def test_contextmanager_attribs(self): baz = self._create_contextmanager_attribs() self.assertEqual(baz.__name__,'baz') self.assertEqual(baz.foo, 'bar') @unittest.skipIf(sys.flags.optimize >= 2, "Docstrings are omitted with -O2 and above") def test_contextmanager_doc_attrib(self): baz = self._create_contextmanager_attribs() self.assertEqual(baz.__doc__, "Whee!") class NestedTestCase(unittest.TestCase): # XXX This needs more work def test_nested(self): @contextmanager def a(): yield 1 @contextmanager def b(): yield 2 @contextmanager def c(): yield 3 with nested(a(), b(), c()) as (x, y, z): self.assertEqual(x, 1) self.assertEqual(y, 2) self.assertEqual(z, 3) def test_nested_cleanup(self): state = [] @contextmanager def a(): state.append(1) try: yield 2 finally: state.append(3) @contextmanager def b(): state.append(4) try: yield 5 finally: state.append(6) with self.assertRaises(ZeroDivisionError): with nested(a(), b()) as (x, y): state.append(x) state.append(y) 1 // 0 self.assertEqual(state, [1, 4, 2, 5, 6, 3]) def test_nested_right_exception(self): @contextmanager def a(): yield 1 class b(object): def __enter__(self): return 2 def __exit__(self, *exc_info): try: raise Exception() except: pass with self.assertRaises(ZeroDivisionError): with nested(a(), b()) as (x, y): 1 // 0 self.assertEqual((x, y), (1, 2)) def test_nested_b_swallows(self): @contextmanager def a(): yield @contextmanager def b(): try: yield except: # Swallow the exception pass try: with nested(a(), b()): 1 // 0 except ZeroDivisionError: self.fail("Didn't swallow ZeroDivisionError") def test_nested_break(self): @contextmanager def a(): yield state = 0 while True: state += 1 with nested(a(), a()): break state += 10 self.assertEqual(state, 1) def test_nested_continue(self): @contextmanager def a(): yield state = 0 while state < 3: state += 1 with nested(a(), a()): continue state += 10 self.assertEqual(state, 3) def test_nested_return(self): @contextmanager def a(): try: yield except: pass def foo(): with nested(a(), a()): return 1 return 10 self.assertEqual(foo(), 1) class ClosingTestCase(unittest.TestCase): # XXX This needs more work def test_closing(self): state = [] class C: def close(self): state.append(1) x = C() self.assertEqual(state, []) with closing(x) as y: self.assertEqual(x, y) self.assertEqual(state, [1]) def test_closing_error(self): state = [] class C: def close(self): state.append(1) x = C() self.assertEqual(state, []) with self.assertRaises(ZeroDivisionError): with closing(x) as y: self.assertEqual(x, y) 1 // 0 self.assertEqual(state, [1]) class FileContextTestCase(unittest.TestCase): def testWithOpen(self): tfn = tempfile.mktemp() try: f = None with open(tfn, "w") as f: self.assertFalse(f.closed) f.write("Booh\n") self.assertTrue(f.closed) f = None with self.assertRaises(ZeroDivisionError): with open(tfn, "r") as f: self.assertFalse(f.closed) self.assertEqual(f.read(), "Booh\n") 1 // 0 self.assertTrue(f.closed) finally: test_support.unlink(tfn) @unittest.skipUnless(threading, 'Threading required for this test.') class LockContextTestCase(unittest.TestCase): def boilerPlate(self, lock, locked): self.assertFalse(locked()) with lock: self.assertTrue(locked()) self.assertFalse(locked()) with self.assertRaises(ZeroDivisionError): with lock: self.assertTrue(locked()) 1 // 0 self.assertFalse(locked()) def testWithLock(self): lock = threading.Lock() self.boilerPlate(lock, lock.locked) def testWithRLock(self): lock = threading.RLock() self.boilerPlate(lock, lock._is_owned) def testWithCondition(self): lock = threading.Condition() def locked(): return lock._is_owned() self.boilerPlate(lock, locked) def testWithSemaphore(self): lock = threading.Semaphore() def locked(): if lock.acquire(False): lock.release() return False else: return True self.boilerPlate(lock, locked) def testWithBoundedSemaphore(self): lock = threading.BoundedSemaphore() def locked(): if lock.acquire(False): lock.release() return False else: return True self.boilerPlate(lock, locked) # This is needed to make the test actually run under regrtest.py! def test_main(): with test_support.check_warnings(("With-statements now directly support " "multiple context managers", DeprecationWarning)): test_support.run_unittest(__name__) if __name__ == "__main__": test_main()
gpl-3.0
Akson/RemoteConsolePlus3
RemoteConsolePlus3/RCP3/Backends/Processors/Graphs/Plot1D.py
1
2341
#Created by Dmytro Konobrytskyi, 2014 (github.com/Akson) import numpy as np import matplotlib import matplotlib.pyplot from RCP3.Infrastructure import TmpFilesStorage class Backend(object): def __init__(self, parentNode): self._parentNode = parentNode def Delete(self): """ This method is called when a parent node is deleted. """ pass def GetParameters(self): """ Returns a dictionary with object parameters, their values, limits and ways to change them. """ return {} def SetParameters(self, parameters): """ Gets a dictionary with parameter values and update object parameters accordingly """ pass def ProcessMessage(self, message): """ This message is called when a new message comes. If an incoming message should be processed by following nodes, the 'self._parentNode.SendMessage(message)' should be called with an appropriate message. """ dataArray = np.asarray(message["Data"]) fig = matplotlib.pyplot.figure(figsize=(6, 4), dpi=float(96)) ax=fig.add_subplot(111) #n, bins, patches = ax.hist(dataArray, bins=50) ax.plot(range(len(dataArray)), dataArray) processedMessage = {"Stream":message["Stream"], "Info":message["Info"]} filePath, link = TmpFilesStorage.NewTemporaryFile("png") fig.savefig(filePath,format='png') matplotlib.pyplot.close(fig) html = '<img src="http://{}" alt="Image should come here">'.format(link) processedMessage["Data"] = html self._parentNode.SendMessage(processedMessage) """ print len(message["Data"]) import numpy as np import matplotlib.pyplot as plt x = np.array(message["Data"]) num_bins = 50 # the histogram of the data n, bins, patches = plt.hist(x, num_bins, normed=1, facecolor='green', alpha=0.5) plt.subplots_adjust(left=0.15) plt.show() """ def AppendContextMenuItems(self, menu): """ Append backend specific menu items to a context menu that user will see when he clicks on a node. """ pass
lgpl-3.0
MagicAttacker/APM602
Tools/LogAnalyzer/tests/TestParams.py
261
3119
from LogAnalyzer import Test,TestResult import DataflashLog import math # for isnan() class TestParams(Test): '''test for any obviously bad parameters in the config''' def __init__(self): Test.__init__(self) self.name = "Parameters" # helper functions def __checkParamIsEqual(self, paramName, expectedValue, logdata): value = logdata.parameters[paramName] if value != expectedValue: self.result.status = TestResult.StatusType.FAIL self.result.statusMessage = self.result.statusMessage + "%s set to %s, expecting %s\n" % (paramName, `value`, `expectedValue`) def __checkParamIsLessThan(self, paramName, maxValue, logdata): value = logdata.parameters[paramName] if value >= maxValue: self.result.status = TestResult.StatusType.FAIL self.result.statusMessage = self.result.statusMessage + "%s set to %s, expecting less than %s\n" % (paramName, `value`, `maxValue`) def __checkParamIsMoreThan(self, paramName, minValue, logdata): value = logdata.parameters[paramName] if value <= minValue: self.result.status = TestResult.StatusType.FAIL self.result.statusMessage = self.result.statusMessage + "%s set to %s, expecting less than %s\n" % (paramName, `value`, `minValue`) def run(self, logdata, verbose): self.result = TestResult() self.result.status = TestResult.StatusType.GOOD # GOOD by default, tests below will override it if they fail # check all params for NaN for name,value in logdata.parameters.iteritems(): if math.isnan(value): self.result.status = TestResult.StatusType.FAIL self.result.statusMessage = self.result.statusMessage + name + " is NaN\n" try: # add parameter checks below using the helper functions, any failures will trigger a FAIL status and accumulate info in statusMessage # if more complex checking or correlations are required you can access parameter values directly using the logdata.parameters[paramName] dict if logdata.vehicleType == "ArduCopter": self.__checkParamIsEqual ("MAG_ENABLE", 1, logdata) self.__checkParamIsLessThan("THR_MIN", 200, logdata) self.__checkParamIsLessThan("THR_MID", 701, logdata) self.__checkParamIsMoreThan("THR_MID", 299, logdata) # TODO: add more parameter tests, these are just an example... elif logdata.vehicleType == "ArduPlane": # TODO: add parameter checks for plane... pass elif logdata.vehicleType == "ArduRover": # TODO: add parameter checks for rover... pass if self.result.status == TestResult.StatusType.FAIL: self.result.statusMessage = "Bad parameters found:\n" + self.result.statusMessage except KeyError as e: self.result.status = TestResult.StatusType.FAIL self.result.statusMessage = str(e) + ' not found'
gpl-3.0
BarusXXX/K-Tree
TreeLogic.py
1
3884
import os from copy import deepcopy class RecursiveTree: def __init__(self, dir_name): self.dir_name = dir_name self.files = [] self.folders = [] #Tuple Absolute address, branch, level self.branches = [] self.children_n = [] self.currentlevel = 0 self.level=[] #len(self.branches) self.level.append(0) self.folder_n = len(self.folders) self.parentIndex = [] self.parentbranch = [] self.iterator = 0 self.reversead = 0 self.parentIndex.append(None) self.branches.append([0]) self.folders.append((dir_name, "{0}", 0)) RecursiveTree.get_immediate_subdirectories(self, self.dir_name, 0) self.level_max = max(self.level) def Branch(self): pass def PrintTree(self): print("#Folders#") for x in self.folders: print(x) print("#Branches#") for x in self.branches: print(x) print("#Parent Branches#") for x in self.parentbranch: print(x) print("#Files#") for x in self.files: print(x) def subdir(self): return self.folders def filedir(self): return self.files def sortedbranches(self): STree = [] CountX = 0 for x in self.branches: STree.append([]) for y in x: STree[CountX].append(int(y)) CountX += 1 SSum = [] CountX = 0 TTree = deepcopy(STree) for x in TTree: CountY = 0 for y in x: TTree[CountX][CountY] = y + 1 CountY += 1 CountX += 1 SSum.append(sum(x)) SortedTree = [x for y, x in sorted(list(zip(SSum, STree)))] def get_immediate_subdirectories(self, a_dir, curadd): nextadd = 0 relocator = 0 cancleNo = self.reversead for name in os.listdir(a_dir): if os.path.isdir(os.path.join(a_dir, name)): curaddstr = str(curadd) + ";" + str(nextadd) relocator += 1 self.iterator += 1 self.currentlevel += 1 ContainsSub = False ContainsNo = 0 for x in os.listdir(a_dir + "/" + name): if os.path.isdir(a_dir + "/" + name + "/" + x): ContainsSub = True ContainsNo += 1 self.children_n.append(ContainsNo) PathConstructor = "{" + str(curadd) + ";" + str(nextadd) + "}" + ":" + os.path.join(a_dir, name) AbsAddressConstructor = (PathConstructor.split(":")[1]), (PathConstructor.split(":")[2]) self.folders.append((":".join(AbsAddressConstructor), PathConstructor.split(":")[0], self.currentlevel)) self.branches.append((((((PathConstructor.split(":")[0]).split("{")[1])).split("}")[0]).split(";"))) self.parentbranch.append(str(curadd).split(";")) self.level.append(self.currentlevel) self.parentIndex.append(self.iterator - relocator - self.reversead + cancleNo) #Cannot negate 1 RecursiveTree.get_immediate_subdirectories(self, (a_dir + "/" + name), curaddstr) self.currentlevel -= 1 if ContainsSub == True: self.reversead += ContainsNo nextadd += 1 else: self.files.append((self.iterator - relocator - self.reversead + cancleNo, os.path.join(a_dir, name))) #index of parent, direct links to file #print("file found:", self.iterator - relocator - self.reversead + cancleNo, name) #print("{"+str(curadd) + ";" + str(nextadd) + "}" + ":" + os.path.join(a_dir, name))
mit
Ecotrust/F2S-MOI
moi/indicators/migrations/0009_auto_20160506_1658.py
1
4006
# -*- coding: utf-8 -*- # Generated by Django 1.9.4 on 2016-05-06 16:58 from __future__ import unicode_literals from django.db import migrations import wagtail.wagtailcore.blocks import wagtail.wagtailcore.fields import wagtail.wagtailimages.blocks class Migration(migrations.Migration): dependencies = [ ('indicators', '0008_auto_20160504_2309'), ] operations = [ migrations.AlterField( model_name='indicator', name='body_content', field=wagtail.wagtailcore.fields.StreamField([(b'number_count_up', wagtail.wagtailcore.blocks.StructBlock([(b'content', wagtail.wagtailcore.blocks.RichTextBlock(help_text=b'Enter your main content above. Do not use commas for larger numbers.', label=b'Text')), (b'numbers', wagtail.wagtailcore.blocks.CharBlock(help_text=b"Enter the numbers you'd like to count up - seperated by a semicolon. Do not use commas for larger numbers. Ex: 4; 51000; 15", label=b'Numbers to count', required=False)), (b'colored_text', wagtail.wagtailcore.blocks.CharBlock(help_text=b"Enter the content you'd like to be a different color - each set of content is seperated by a semicolon", required=False)), (b'source', wagtail.wagtailcore.blocks.CharBlock(help_text=b'Enter a source for the associated information.', required=False))], icon=b'order', label=b'Content and Number Counter Block')), (b'basic_content', wagtail.wagtailcore.blocks.StructBlock([(b'content', wagtail.wagtailcore.blocks.RichTextBlock(help_text=b'Add your text and/or image content above', label=b'Content Area'))], icon=b'pilcrow', label=b'Basic Content Block')), (b'two_column', wagtail.wagtailcore.blocks.StructBlock([(b'left_column', wagtail.wagtailcore.blocks.StreamBlock([(b'heading', wagtail.wagtailcore.blocks.CharBlock(classname=b'full title', icon=b'title')), (b'paragraph', wagtail.wagtailcore.blocks.RichTextBlock(icon=b'pilcrow')), (b'number_count_up', wagtail.wagtailcore.blocks.StructBlock([(b'content', wagtail.wagtailcore.blocks.RichTextBlock(help_text=b'Enter your main content above. Do not use commas for larger numbers.', label=b'Text')), (b'numbers', wagtail.wagtailcore.blocks.CharBlock(help_text=b"Enter the numbers you'd like to count up - seperated by a semicolon. Do not use commas for larger numbers. Ex: 4; 51000; 15", label=b'Numbers to count', required=False)), (b'colored_text', wagtail.wagtailcore.blocks.CharBlock(help_text=b"Enter the content you'd like to be a different color - each set of content is seperated by a semicolon", required=False)), (b'source', wagtail.wagtailcore.blocks.CharBlock(help_text=b'Enter a source for the associated information.', required=False))], icon=b'collapse-up')), (b'image', wagtail.wagtailimages.blocks.ImageChooserBlock(icon=b'image'))], icon=b'arrow-left', label=b'Left content')), (b'right_column', wagtail.wagtailcore.blocks.StreamBlock([(b'heading', wagtail.wagtailcore.blocks.CharBlock(classname=b'full title', icon=b'title')), (b'paragraph', wagtail.wagtailcore.blocks.RichTextBlock(icon=b'pilcrow')), (b'number_count_up', wagtail.wagtailcore.blocks.StructBlock([(b'content', wagtail.wagtailcore.blocks.RichTextBlock(help_text=b'Enter your main content above. Do not use commas for larger numbers.', label=b'Text')), (b'numbers', wagtail.wagtailcore.blocks.CharBlock(help_text=b"Enter the numbers you'd like to count up - seperated by a semicolon. Do not use commas for larger numbers. Ex: 4; 51000; 15", label=b'Numbers to count', required=False)), (b'colored_text', wagtail.wagtailcore.blocks.CharBlock(help_text=b"Enter the content you'd like to be a different color - each set of content is seperated by a semicolon", required=False)), (b'source', wagtail.wagtailcore.blocks.CharBlock(help_text=b'Enter a source for the associated information.', required=False))], icon=b'collapse-up')), (b'image', wagtail.wagtailimages.blocks.ImageChooserBlock(icon=b'image'))], icon=b'arrow-right', label=b'Right content'))]))], blank=True, default=None, null=True), ), ]
apache-2.0
thurt/arangodb
3rdParty/V8-4.3.61/third_party/python_26/Lib/site-packages/win32/Demos/service/pipeTestServiceClient.py
17
4173
# A Test Program for pipeTestService.py # # Install and start the Pipe Test service, then run this test # either from the same machine, or from another using the "-s" param. # # Eg: pipeTestServiceClient.py -s server_name Hi There # Should work. from win32pipe import * from win32file import * from win32event import * import pywintypes import win32api import winerror import sys, os, traceback verbose = 0 #def ReadFromPipe(pipeName): # Could (Should?) use CallNamedPipe, but this technique allows variable size # messages (whereas you must supply a buffer size for CallNamedPipe! # hPipe = CreateFile(pipeName, GENERIC_WRITE, 0, None, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0) # more = 1 # while more: # hr = ReadFile(hPipe, 256) # if hr==0: # more = 0 # except win32api.error (hr, fn, desc): # if hr==winerror.ERROR_MORE_DATA: # data = dat # def CallPipe(fn, args): ret = None retryCount = 0 while retryCount < 8: # Keep looping until user cancels. retryCount = retryCount + 1 try: return apply(fn, args) except win32api.error, (rc, fnerr, msg): if rc==winerror.ERROR_PIPE_BUSY: win32api.Sleep(5000) continue else: raise win32api.error, (rc, fnerr, msg) raise RuntimeError, "Could not make a connection to the server" def testClient(server,msg): if verbose: print "Sending", msg data = CallPipe(CallNamedPipe, ("\\\\%s\\pipe\\PyPipeTest" % server, msg, 256, NMPWAIT_WAIT_FOREVER)) if verbose: print "Server sent back '%s'" % data print "Sent and received a message!" def testLargeMessage(server, size = 4096): if verbose: print "Sending message of size %d" % (size) msg = "*" * size data = CallPipe(CallNamedPipe, ("\\\\%s\\pipe\\PyPipeTest" % server, msg, 512, NMPWAIT_WAIT_FOREVER)) if len(data)-size: print "Sizes are all wrong - send %d, got back %d" % (size, len(data)) def stressThread(server, numMessages, wait): try: try: for i in xrange(numMessages): r = CallPipe(CallNamedPipe, ("\\\\%s\\pipe\\PyPipeTest" % server, "#" * 512, 1024, NMPWAIT_WAIT_FOREVER)) except: traceback.print_exc() print "Failed after %d messages" % i finally: SetEvent(wait) def stressTestClient(server, numThreads, numMessages): import thread thread_waits = [] for t_num in xrange(numThreads): # Note I could just wait on thread handles (after calling DuplicateHandle) # See the service itself for an example of waiting for the clients... wait = CreateEvent(None, 0, 0, None) thread_waits.append(wait) thread.start_new_thread(stressThread, (server,numMessages, wait)) # Wait for all threads to finish. WaitForMultipleObjects(thread_waits, 1, INFINITE) def main(): import sys, getopt, string server = "." thread_count = 0 msg_count = 500 try: opts, args = getopt.getopt(sys.argv[1:], 's:t:m:vl') for o,a in opts: if o=='-s': server = a if o=='-m': msg_count = string.atoi(a) if o=='-t': thread_count = string.atoi(a) if o=='-v': global verbose verbose = 1 if o=='-l': testLargeMessage(server) msg = string.join(args) except getopt.error, msg: print msg my_name = os.path.split(sys.argv[0])[1] print "Usage: %s [-v] [-s server] [-t thread_count=0] [-m msg_count=500] msg ..." % my_name print " -v = verbose" print " Specifying a value for -t will stress test using that many threads." return testClient(server, msg) if thread_count > 0: print "Spawning %d threads each sending %d messages..." % (thread_count, msg_count) stressTestClient(server, thread_count, msg_count) if __name__=='__main__': main()
apache-2.0
ndparker/wolfe
wolfe/scheduler/_job_queue.py
1
4458
# -*- coding: ascii -*- r""" :Copyright: Copyright 2014 - 2016 Andr\xe9 Malo or his licensors, as applicable :License: Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. =========== Job Queue =========== Job Queue. The queue is implemented as priority queue using a heap. """ if __doc__: # pragma: no cover # pylint: disable = redefined-builtin __doc__ = __doc__.encode('ascii').decode('unicode_escape') __author__ = r"Andr\xe9 Malo".encode('ascii').decode('unicode_escape') __docformat__ = "restructuredtext en" import heapq as _heapq class JobQueue(object): """ Job queue This container utilizes a heap structure to implement a more or less generic priority queue (see below). The sorting order of the items is defined by a wrapper class passed to the constructor. The queue is made for jobs. That's why wrapper classes have to provide a job attribute for unwrapping and items passed into the queue are expected to provide a valid ``id`` attribute. Additionally the queue implements boolean operations (it's false if it's empty) and a __contains__ operation based on job IDs. >>> class Wrapper(object): ... def __init__(self, job): ... self.job = job ... def __lt__(self, other): ... return self.job.id > other.job.id >>> class Job(object): ... def __init__(self, job_id): ... self.id = job_id >>> queue = JobQueue(Wrapper) >>> queue.put(Job(2)) >>> bool(queue) True >>> 1 in queue False >>> 2 in queue True >>> len(queue) 1 :IVariables: `_queue` : ``list`` actual heap containing wrapped jobs `_wrapper` : callable Wrapper class factory `_ids` : ``set`` Set of job IDs currently queued """ def __init__(self, wrapper_class): """ Initialization :Parameters: `wrapper_class` : any class factory expected to take a job and represent it inside the queue. The object should be comparable with other instances (``__lt__`` is the proper method) and should provide a ``job`` attribute pointing to the original object. """ self._queue = [] self._wrapper = wrapper_class self._ids = set() def __nonzero__(self): """ Return false if the queue is empty, true otherwise :Return: Is there something in the queue? :Rtype: ``bool`` """ return bool(self._queue) def __contains__(self, job_id): """ Check if the passed job_id is currently enqueued :Return: Is it? :Rtype: ``bool`` """ return job_id in self._ids def __len__(self): """ Find queue length """ return len(self._queue) def __iter__(self): """ Iterate over the queue until it's exhausted """ try: while True: yield self.get() except IndexError: pass def put(self, job): """ Put a job into the queue :Parameters: `job` : any The job to put in. The object must have an ``id`` attribute, which must be hashable. """ self._ids.add(job.id) _heapq.heappush(self._queue, self._wrapper(job)) def get(self): """ Get the next job from the queue :Return: A job :Rtype: any :Exceptions: - `IndexError` : Queue was empty """ job = _heapq.heappop(self._queue).job self._ids.remove(job.id) return job def peek(self): """ Return the next job without removing it from the queue The job will still be wrapped in the wrapper_class container :Return: wrapped job :Rtype: any :Exceptions: - `IndexError` : Queue was empty """ return self._queue[0]
apache-2.0
ar7z1/ansible
lib/ansible/modules/windows/win_eventlog.py
28
4997
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: (c) 2017, Andrew Saraceni <[email protected]> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # this is a windows documentation stub. actual code lives in the .ps1 # file of the same name ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = r''' --- module: win_eventlog version_added: "2.4" short_description: Manage Windows event logs description: - Allows the addition, clearing and removal of local Windows event logs, and the creation and removal of sources from a given event log. Also allows the specification of settings per log and source. options: name: description: - Name of the event log to manage. required: yes state: description: - Desired state of the log and/or sources. - When C(sources) is populated, state is checked for sources. - When C(sources) is not populated, state is checked for the specified log itself. - If C(state) is C(clear), event log entries are cleared for the target log. choices: [ absent, clear, present ] default: present sources: description: - A list of one or more sources to ensure are present/absent in the log. - When C(category_file), C(message_file) and/or C(parameter_file) are specified, these values are applied across all sources. type: list category_file: description: - For one or more sources specified, the path to a custom category resource file. type: path message_file: description: - For one or more sources specified, the path to a custom event message resource file. type: path parameter_file: description: - For one or more sources specified, the path to a custom parameter resource file. type: path maximum_size: description: - The maximum size of the event log. - Value must be between 64KB and 4GB, and divisible by 64KB. - Size can be specified in KB, MB or GB (e.g. 128KB, 16MB, 2.5GB). overflow_action: description: - The action for the log to take once it reaches its maximum size. - For C(OverwriteOlder), new log entries overwrite those older than the C(retention_days) value. - For C(OverwriteAsNeeded), each new entry overwrites the oldest entry. - For C(DoNotOverwrite), all existing entries are kept and new entries are not retained. choices: - OverwriteOlder - OverwriteAsNeeded - DoNotOverwrite retention_days: description: - The minimum number of days event entries must remain in the log. - This option is only used when C(overflow_action) is C(OverwriteOlder). type: int author: - Andrew Saraceni (@andrewsaraceni) ''' EXAMPLES = r''' - name: Add a new event log with two custom sources win_eventlog: name: MyNewLog sources: - NewLogSource1 - NewLogSource2 state: present - name: Change the category and message resource files used for NewLogSource1 win_eventlog: name: MyNewLog sources: - NewLogSource1 category_file: C:\NewApp\CustomCategories.dll message_file: C:\NewApp\CustomMessages.dll state: present - name: Change the maximum size and overflow action for MyNewLog win_eventlog: name: MyNewLog maximum_size: 16MB overflow_action: DoNotOverwrite state: present - name: Clear event entries for MyNewLog win_eventlog: name: MyNewLog state: clear - name: Remove NewLogSource2 from MyNewLog win_eventlog: name: MyNewLog sources: - NewLogSource2 state: absent - name: Remove MyNewLog and all remaining sources win_eventlog: name: MyNewLog state: absent ''' RETURN = r''' name: description: The name of the event log. returned: always type: string sample: MyNewLog exists: description: Whether the event log exists or not. returned: success type: boolean sample: true entries: description: The count of entries present in the event log. returned: success type: int sample: 50 maximum_size_kb: description: Maximum size of the log in KB. returned: success type: int sample: 512 overflow_action: description: The action the log takes once it reaches its maximum size. returned: success type: string sample: OverwriteOlder retention_days: description: The minimum number of days entries are retained in the log. returned: success type: int sample: 7 sources: description: A list of the current sources for the log. returned: success type: list sample: ["MyNewLog", "NewLogSource1", "NewLogSource2"] sources_changed: description: A list of sources changed (e.g. re/created, removed) for the log; this is empty if no sources are changed. returned: always type: list sample: ["NewLogSource2"] '''
gpl-3.0
bvanrijn/debianpaste-clients
old-paste.py
1
7602
#!/usr/bin/python # Filename: paste # Purpose: XmlRpc interface client to paste.debian.net # Author: Copyright (C) 2007-2011 Michael Gebetsroither <[email protected]> # License: This file is licensed under the GPL v2+. Full license text in LICENSE # Modified original: No modifications have been made # # This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. # This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. # You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ################################################################################ import sys import xmlrpclib import optparse import inspect import getpass # program defaults DEFAULT_SERVER='http://paste.debian.net/server.pl' class ActionFailedException(Exception): '''Thrown if server returned an error''' def __init__(self, errormsg, ret): Exception.__init__(self, errormsg, ret) def what(self): '''Get errormessage''' return self.args[0] def dwhat(self): '''Get more verbose errormessage''' return self.args[1] class Action(object): def __init__(self, args, opts): self.args_ = args self.opts_ = opts def _createProxy(self): return xmlrpclib.ServerProxy(self.opts_.server, verbose=False) def _callProxy(self, functor, server=None): '''Wrapper for xml-rpc calls to server which throws an ActionFailedException on error''' if server is None: server = self._createProxy() ret = functor(server) if ret['rc'] != 0: raise ActionFailedException(ret['statusmessage'], ret) return ret def call(self, method_name): '''External Interface to call the appropriate action''' return self.__getattribute__(method_name)() def actionAddPaste(self): '''Add paste to the server: <1.line> <2.line> ... default Read paste from stdin. [text] Every argument on the commandline will be interpreted as a seperate line of paste. ''' server = self._createProxy() o = self.opts_ code = self.args_ if len(self.args_) == 0: code = [ i.rstrip() for i in sys.stdin.readlines() ] code = '\n'.join(code) result = self._callProxy(lambda s: s.paste.addPaste(code, o.name, o.expire * 3600, o.lang, o.private), server) return (result['statusmessage'], result) def actionDelPaste(self): '''Delete paste from server: <digest> <digest> Digest of paste you want to remove. ''' digest = self.args_.pop(0) result = self._callProxy(lambda s: s.paste.deletePaste(digest)) return (result['statusmessage'], result) def actionGetPaste(self): '''Get paste from server: <id> <id> Id of paste you want to receive. ''' id = self.args_.pop(0) result = self._callProxy(lambda s: s.paste.getPaste(id)) return (result['code'], result) def actionGetLangs(self): '''Get supported language highlighting types from server''' result = self._callProxy(lambda s: s.paste.getLanguages()) return ('\n'.join(result['langs']), result) def actionAddShortUrl(self): '''Add short-URL: <url> <url> Short-URL to add ''' url = self.args_.pop(0) result = self._callProxy(lambda s: s.paste.addShortURL(url)) return (result['url'], result) def actionGetShortUrl(self): '''Resolve short-URL: <url> <url> Short-URL to get clicks of ''' url = self.args_.pop(0) result = self._callProxy(lambda s: s.paste.resolveShortURL(url)) return (result['url'], result) def actionGetShortUrlClicks(self): '''Get clicks of short-URL: <url> <url> Short-URL to get clicks of ''' url = self.args_.pop(0) result = self._callProxy(lambda s: s.paste.ShortURLClicks(url)) return (result['count'], result) def actionHelp(self): '''Print more verbose help about specific action: <action> <action> Topic on which you need more verbose help. ''' if len(self.args_) < 1: alias = "help" else: alias = self.args_.pop(0) if alias in actions: fun = actions[alias] print inspect.getdoc(self.__getattribute__(fun)) print "\naliase: " + " ".join([i for i in actions_r[fun] if i != alias]) else: print "Error: No such command - %s" % (alias) OPT_PARSER.print_usage() sys.exit(0) # actionAddPaste -> [add, a] actions_r = {} # add -> actionAddPaste # a -> actionAddPaste actions = {} # option parser OPT_PARSER = None ## # MAIN ## if __name__ == "__main__": action_spec = ['actionAddPaste add a', 'actionDelPaste del d rm', 'actionGetPaste get g', 'actionGetLangs getlangs gl langs l', 'actionAddShortUrl addurl', 'actionGetShortUrl geturl', 'actionGetShortUrlClicks getclicks', 'actionHelp help'] for i in action_spec: aliases = i.split() cmd = aliases.pop(0) actions_r[cmd] = aliases for (k,v) in actions_r.items(): for i in v: actions[i] = k usage = "usage: %prog [options] ACTION <args>\n\n" +\ "actions:\n" +\ "\n".join(["%12s\t%s" % (v[0], inspect.getdoc(getattr(Action, k)).split('\n')[0]) \ for (k,v) in actions_r.items()]) running_user = getpass.getuser() parser = optparse.OptionParser(usage=usage) parser.add_option('-n', '--name', default=running_user, help="Name of poster") parser.add_option('-e', '--expire', type=int, default=72, metavar='HOURS', help='Time at wich paste should expire') parser.add_option('-l', '--lang', default='Plain', help='Type of language to highlight') parser.add_option("-p", "--private", action="count", dest="private", default=0, help='Create hidden paste'), parser.add_option('-s', '--server', default=DEFAULT_SERVER, help='Paste server') parser.add_option('-v', '--verbose', action='count', default=0, help='More output') (opts, args) = parser.parse_args() OPT_PARSER = parser if len(args) == 0: parser.error('Please provide me with an action') elif args[0] in actions: cmd = args.pop(0) action = Action(args, opts) try: (msg, ret) = action.call(actions[cmd]) if opts.verbose == 0: print msg else: print ret except ActionFailedException, e: sys.stderr.write('Server Error: %s\n' % e.what()) if opts.verbose >0: print e.dwhat() sys.exit(1) else: parser.error('Unknown action: %s' % args[0])
gpl-2.0
wjakob/layerlab
recipes/coated-gold-with-scatmedium.py
1
2082
# Creates a rough gold layer with a rough dielectric coating containing an # anisotropic scattering medium import sys sys.path.append('.') from utils.materials import gold from utils.cie import get_rgb import layerlab as ll eta_top = 1.5 # This step integrates the spectral IOR against the CIE XYZ curves to obtain # equivalent sRGB values. This may seem fairly approximate but turns out to # yield excellent agreement with spectral reference renders print('Computing gold IOR parameters') eta_bot = get_rgb(gold) alpha_top = 0.1 # Beckmann roughness of top layer (coating) alpha_bot = 0.1 # Beckmann roughness of bottom layer (gold) # Medium parameters g = 0.5 # Scattering anisotropy albedo = [0.25, 0.0, 0.95] # Single scattering albedo tau = 0.5 # Optical depth # Construct quadrature scheme suitable for the material n_top, m_top = ll.parameterHeuristicMicrofacet(eta=eta_top, alpha=alpha_top) n_bot, m_bot = ll.parameterHeuristicMicrofacet(eta=eta_bot[0], alpha=alpha_bot) n_med, m_med = ll.parameterHeuristicHG(g=g) n = max(n_top, n_bot) # Max of zenith angle discretization m = m_top # Number of Fourier orders determined by top layer mu, w = ll.quad.gaussLobatto(n) print("# of nodes = %i, fourier orders = %i" % (n, m)) # Construct coating layer print("Creating coating layer") coating = ll.Layer(mu, w, m) coating.setMicrofacet(eta=eta_top, alpha=alpha_top) output = [] for channel in range(3): # Construct diffuse bottom layer for each channel print("Creating metal layer") l = ll.Layer(mu, w, m) l.setMicrofacet(eta=eta_bot[channel], alpha=alpha_bot) # Construct medium layer print("Creating medium layer") l2 = ll.Layer(mu, w, m) l2.setHenyeyGreenstein(g=g, albedo=albedo[channel]) l2.expand(tau) # Apply medium layer print("Applying medium ..") l.addToTop(l2) # Apply coating print("Applying coating..") l.addToTop(coating) output.append(l) # .. and write to disk print("Writing to disk..") storage = ll.BSDFStorage.fromLayerRGB("output.bsdf", *output) storage.close()
bsd-2-clause
plumer/codana
projectdata.py
1
5358
class VersionDataManager: """Manager of all the information of files and packages in a specific version Attributes: packages (list of str): List of packages name files (list of str): List of all the files in the project packagedict (dict): Map of packages(key) and filenames(value) filebugnum (dict): Map of filename(key) and bug numbers(value) fileattr (dict): Map of filename(key) and the attributes of the file(value) packageattr (dict): Map of package(key) and the attributes of the package(value) filedepends (list of tuple): List of all the edges in the dependence graph of all files packagedepends (list of tuple) : List of all the edges in the dependence graph of all packages """ def __init__(self, version='6.0.0'): self.packagedict = {} self.fileattr = {} self.files = [] self.filebugnum = {} self.packageattr = {} self.versionArray = [] datafile = open(r'tomcat_history/tomcat' + version + r'/tomcat_pack.txt', 'r') for packs in datafile: packslice = packs.strip(' \t\n').split('\t') self.packagedict[packslice[0]] = [] self.packageattr[packslice[0]] = self.packPackageAttr(packslice[1:]) filenum = 0 if int(packslice[1]) == 0: continue for files in datafile: fileattr = files.strip(' \t\n').split('\t') if not fileattr[0] in self.packagedict[packslice[0]]: self.files.append(fileattr[0]) self.packagedict[packslice[0]].append(fileattr[0]) self.fileattr[fileattr[0]] = self.packFileAttr(fileattr[1:]) filenum = filenum + 1 if filenum >= int(packslice[1]): break datafile.close() datafile = open(r'tomcat_history/tomcat' + version + r'/log.txt', 'r') for record in datafile: recordslice = record.strip(' \t\n').split('\t') self.filebugnum[recordslice[0]] = int(recordslice[1]) datafile.close() self.packages = self.packagedict.keys() self.packagedepends = [] packdependfile = open(r'tomcat_history/tomcat' + version + r'/tomcat_pack_depends.txt', 'r') for e in packdependfile: vertices = e.strip(' \t\n').split(' ') self.packagedepends.append( (vertices[0], vertices[-1]) ) packdependfile.close() self.filedepends = [] filedependfile = open(r'tomcat_history/tomcat' + version + r'/tomcat_depends.txt', 'r') for e in filedependfile: vertices = e.strip(' \t\n').split('\t') self.filedepends.append( (vertices[0], vertices[-1]) ) filedependfile.close() def packPackageAttr(self, attrs): return {'filenum' : attrs[0], 'codelines' : attrs[1], 'cyclomatic' : attrs[2]} def packFileAttr(self, attrs): return {'codelines' : attrs[0], 'cyclomatic' : attrs[1]} def listFileAttr(self): return ('codelines', 'cyclomatic') def listPackageAttr(self): return ('filenum', 'codelines' , 'cyclomatic') def getPackages(self): return self.packages def getFilenames(self): return self.files def getFilesOfPackage(self, package): return self.packagedict[package] def getPackageOfFile(self, filename): return self.filedict[filename] def getFileAttr(self, filename): return self.fileattr[filename] def getPackageAttr(self, package): return self.packageattr[package] def getFileDependence(self): return self.filedepends def getPackageDependence(self): return self.packagedepends def getFileDependenceOfPackage(self, package): deplist = [] filelist = self.getFilesOfPackage(package) for dep in self.filedepends: if dep[0] in filelist and dep[1] in filelist: deplist.append(dep) return deplist def getBugNumberOfFile(self, filename): if filename in self.filebugnum: return self.filebugnum[filename] return 0 def getBugNumberOfPackage(self, package): bugnum = 0 for filename in self.packagedict[package]: if filename in self.filebugnum: bugnum = bugnum + self.filebugnum[filename] return bugnum class DataManager: '''Manage all the data in all versions Attributes: versionArray (list): List of all the versions dataManages (dict): Map of the version(key) and the specified data manager(value) ''' def __init__(self): self.versionArray = [] datafile = open(r'tomcat_history/tomcat_list.txt', 'r') for line in datafile: self.versionArray.append(line.strip(' \n').strip('tomcat')) datafile.close() self.dataManages = {} for version in self.versionArray: self.dataManages[version] = VersionDataManager(version) def getManager(self, version): return self.dataManages[version] def getVersionArray(self): return self.versionArray if __name__ == '__main__': dm = DataManager() dm.getFileDependenceOfPackage('apache.catalina')
mit
apache8080/NVIDIABot
old_robot_code/driverStation.py
2
3817
''' Copyright (c) 2014, Rishi Desai All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' import Tkinter import tkMessageBox import socket import pickle import pygame top = Tkinter.Tk() joyFrame = Tkinter.Frame(top) noJoyFrame = Tkinter.Frame(top) port = 8081 host = "10.99.99.2" #host = "192.168.1.83" pygame.init() s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) #j =0; s.bind(("", 0)) started = False def startSession(): global started started= True s.sendto(pickle.dumps(started), (host, port)) # change wait to 2 after done testing top.after(200, sendJoystickVal) def endSession(): global started started= False #s.bind(("", 0)) s.sendto(pickle.dumps(started), (host, port)) #top.destroy() def closeProgram(): s.close() top.destroy() sessionStart = Tkinter.Button(top, text ="Start Session", command = startSession) sessionEnd = Tkinter.Button(top, text="End Session", command=endSession) programClose= Tkinter.Button(top, text="Close Program", command=closeProgram) def isJoystick(): return pygame.joystick.get_count()>0 def whileJoyCon(): if(isJoystick()): sessionStart.config(state="normal") sessionStart.pack() sessionEnd.config(state="normal") sessionEnd.pack() programClose.config(state="normal") programClose.pack() howTo = Tkinter.Text(top) howTo.insert(Tkinter.INSERT, "Press Start on the Joystick or end session to stop the program") howTo.pack() else: print isJoystick() sessionStart.config(state="disable") sessionStart.pack() sessionEnd.config(state="disable") sessionEnd.pack() programClose.config(state="normal") programClose.pack() noJoy = Tkinter.Text(top) noJoy.insert(Tkinter.INSERT, "No Joystick Connected. Please connect a Joystick and Restart the program") noJoy.pack() def sendJoystickVal(): #print isJoy #if(isJoystick): pygame.event.pump() j = pygame.joystick.Joystick(0) j.init() xAxis = j.get_axis(1) yAxis=j.get_axis(3) i=1 button =-1; for i in range(j.get_numbuttons()): if(j.get_button(i)==True): button = i break data = [started, xAxis, -yAxis, button] s.sendto(pickle.dumps(data), (host, port)) print data #change wait to 2 after done testing top.after(200, sendJoystickVal) whileJoyCon() #rint started #f(started): #top.after(2000, sendJoystickVal) top.mainloop()
bsd-2-clause
ondra-novak/chromium.src
build/mac/change_mach_o_flags.py
232
10318
#!/usr/bin/env python # Copyright (c) 2011 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Usage: change_mach_o_flags.py [--executable-heap] [--no-pie] <executablepath> Arranges for the executable at |executable_path| to have its data (heap) pages protected to prevent execution on Mac OS X 10.7 ("Lion"), and to have the PIE (position independent executable) bit set to enable ASLR (address space layout randomization). With --executable-heap or --no-pie, the respective bits are cleared instead of set, making the heap executable or disabling PIE/ASLR. This script is able to operate on thin (single-architecture) Mach-O files and fat (universal, multi-architecture) files. When operating on fat files, it will set or clear the bits for each architecture contained therein. NON-EXECUTABLE HEAP Traditionally in Mac OS X, 32-bit processes did not have data pages set to prohibit execution. Although user programs could call mprotect and mach_vm_protect to deny execution of code in data pages, the kernel would silently ignore such requests without updating the page tables, and the hardware would happily execute code on such pages. 64-bit processes were always given proper hardware protection of data pages. This behavior was controllable on a system-wide level via the vm.allow_data_exec sysctl, which is set by default to 1. The bit with value 1 (set by default) allows code execution on data pages for 32-bit processes, and the bit with value 2 (clear by default) does the same for 64-bit processes. In Mac OS X 10.7, executables can "opt in" to having hardware protection against code execution on data pages applied. This is done by setting a new bit in the |flags| field of an executable's |mach_header|. When MH_NO_HEAP_EXECUTION is set, proper protections will be applied, regardless of the setting of vm.allow_data_exec. See xnu-1699.22.73/osfmk/vm/vm_map.c override_nx and xnu-1699.22.73/bsd/kern/mach_loader.c load_machfile. The Apple toolchain has been revised to set the MH_NO_HEAP_EXECUTION when producing executables, provided that -allow_heap_execute is not specified at link time. Only linkers shipping with Xcode 4.0 and later (ld64-123.2 and later) have this ability. See ld64-123.2.1/src/ld/Options.cpp Options::reconfigureDefaults() and ld64-123.2.1/src/ld/HeaderAndLoadCommands.hpp HeaderAndLoadCommandsAtom<A>::flags(). This script sets the MH_NO_HEAP_EXECUTION bit on Mach-O executables. It is intended for use with executables produced by a linker that predates Apple's modifications to set this bit itself. It is also useful for setting this bit for non-i386 executables, including x86_64 executables. Apple's linker only sets it for 32-bit i386 executables, presumably under the assumption that the value of vm.allow_data_exec is set in stone. However, if someone were to change vm.allow_data_exec to 2 or 3, 64-bit x86_64 executables would run without hardware protection against code execution on data pages. This script can set the bit for x86_64 executables, guaranteeing that they run with appropriate protection even when vm.allow_data_exec has been tampered with. POSITION-INDEPENDENT EXECUTABLES/ADDRESS SPACE LAYOUT RANDOMIZATION This script sets or clears the MH_PIE bit in an executable's Mach-O header, enabling or disabling position independence on Mac OS X 10.5 and later. Processes running position-independent executables have varying levels of ASLR protection depending on the OS release. The main executable's load address, shared library load addresess, and the heap and stack base addresses may be randomized. Position-independent executables are produced by supplying the -pie flag to the linker (or defeated by supplying -no_pie). Executables linked with a deployment target of 10.7 or higher have PIE on by default. This script is never strictly needed during the build to enable PIE, as all linkers used are recent enough to support -pie. However, it's used to disable the PIE bit as needed on already-linked executables. """ import optparse import os import struct import sys # <mach-o/fat.h> FAT_MAGIC = 0xcafebabe FAT_CIGAM = 0xbebafeca # <mach-o/loader.h> MH_MAGIC = 0xfeedface MH_CIGAM = 0xcefaedfe MH_MAGIC_64 = 0xfeedfacf MH_CIGAM_64 = 0xcffaedfe MH_EXECUTE = 0x2 MH_PIE = 0x00200000 MH_NO_HEAP_EXECUTION = 0x01000000 class MachOError(Exception): """A class for exceptions thrown by this module.""" pass def CheckedSeek(file, offset): """Seeks the file-like object at |file| to offset |offset| and raises a MachOError if anything funny happens.""" file.seek(offset, os.SEEK_SET) new_offset = file.tell() if new_offset != offset: raise MachOError, \ 'seek: expected offset %d, observed %d' % (offset, new_offset) def CheckedRead(file, count): """Reads |count| bytes from the file-like |file| object, raising a MachOError if any other number of bytes is read.""" bytes = file.read(count) if len(bytes) != count: raise MachOError, \ 'read: expected length %d, observed %d' % (count, len(bytes)) return bytes def ReadUInt32(file, endian): """Reads an unsinged 32-bit integer from the file-like |file| object, treating it as having endianness specified by |endian| (per the |struct| module), and returns it as a number. Raises a MachOError if the proper length of data can't be read from |file|.""" bytes = CheckedRead(file, 4) (uint32,) = struct.unpack(endian + 'I', bytes) return uint32 def ReadMachHeader(file, endian): """Reads an entire |mach_header| structure (<mach-o/loader.h>) from the file-like |file| object, treating it as having endianness specified by |endian| (per the |struct| module), and returns a 7-tuple of its members as numbers. Raises a MachOError if the proper length of data can't be read from |file|.""" bytes = CheckedRead(file, 28) magic, cputype, cpusubtype, filetype, ncmds, sizeofcmds, flags = \ struct.unpack(endian + '7I', bytes) return magic, cputype, cpusubtype, filetype, ncmds, sizeofcmds, flags def ReadFatArch(file): """Reads an entire |fat_arch| structure (<mach-o/fat.h>) from the file-like |file| object, treating it as having endianness specified by |endian| (per the |struct| module), and returns a 5-tuple of its members as numbers. Raises a MachOError if the proper length of data can't be read from |file|.""" bytes = CheckedRead(file, 20) cputype, cpusubtype, offset, size, align = struct.unpack('>5I', bytes) return cputype, cpusubtype, offset, size, align def WriteUInt32(file, uint32, endian): """Writes |uint32| as an unsinged 32-bit integer to the file-like |file| object, treating it as having endianness specified by |endian| (per the |struct| module).""" bytes = struct.pack(endian + 'I', uint32) assert len(bytes) == 4 file.write(bytes) def HandleMachOFile(file, options, offset=0): """Seeks the file-like |file| object to |offset|, reads its |mach_header|, and rewrites the header's |flags| field if appropriate. The header's endianness is detected. Both 32-bit and 64-bit Mach-O headers are supported (mach_header and mach_header_64). Raises MachOError if used on a header that does not have a known magic number or is not of type MH_EXECUTE. The MH_PIE and MH_NO_HEAP_EXECUTION bits are set or cleared in the |flags| field according to |options| and written to |file| if any changes need to be made. If already set or clear as specified by |options|, nothing is written.""" CheckedSeek(file, offset) magic = ReadUInt32(file, '<') if magic == MH_MAGIC or magic == MH_MAGIC_64: endian = '<' elif magic == MH_CIGAM or magic == MH_CIGAM_64: endian = '>' else: raise MachOError, \ 'Mach-O file at offset %d has illusion of magic' % offset CheckedSeek(file, offset) magic, cputype, cpusubtype, filetype, ncmds, sizeofcmds, flags = \ ReadMachHeader(file, endian) assert magic == MH_MAGIC or magic == MH_MAGIC_64 if filetype != MH_EXECUTE: raise MachOError, \ 'Mach-O file at offset %d is type 0x%x, expected MH_EXECUTE' % \ (offset, filetype) original_flags = flags if options.no_heap_execution: flags |= MH_NO_HEAP_EXECUTION else: flags &= ~MH_NO_HEAP_EXECUTION if options.pie: flags |= MH_PIE else: flags &= ~MH_PIE if flags != original_flags: CheckedSeek(file, offset + 24) WriteUInt32(file, flags, endian) def HandleFatFile(file, options, fat_offset=0): """Seeks the file-like |file| object to |offset| and loops over its |fat_header| entries, calling HandleMachOFile for each.""" CheckedSeek(file, fat_offset) magic = ReadUInt32(file, '>') assert magic == FAT_MAGIC nfat_arch = ReadUInt32(file, '>') for index in xrange(0, nfat_arch): cputype, cpusubtype, offset, size, align = ReadFatArch(file) assert size >= 28 # HandleMachOFile will seek around. Come back here after calling it, in # case it sought. fat_arch_offset = file.tell() HandleMachOFile(file, options, offset) CheckedSeek(file, fat_arch_offset) def main(me, args): parser = optparse.OptionParser('%prog [options] <executable_path>') parser.add_option('--executable-heap', action='store_false', dest='no_heap_execution', default=True, help='Clear the MH_NO_HEAP_EXECUTION bit') parser.add_option('--no-pie', action='store_false', dest='pie', default=True, help='Clear the MH_PIE bit') (options, loose_args) = parser.parse_args(args) if len(loose_args) != 1: parser.print_usage() return 1 executable_path = loose_args[0] executable_file = open(executable_path, 'rb+') magic = ReadUInt32(executable_file, '<') if magic == FAT_CIGAM: # Check FAT_CIGAM and not FAT_MAGIC because the read was little-endian. HandleFatFile(executable_file, options) elif magic == MH_MAGIC or magic == MH_CIGAM or \ magic == MH_MAGIC_64 or magic == MH_CIGAM_64: HandleMachOFile(executable_file, options) else: raise MachOError, '%s is not a Mach-O or fat file' % executable_file executable_file.close() return 0 if __name__ == '__main__': sys.exit(main(sys.argv[0], sys.argv[1:]))
bsd-3-clause
3dfxmadscientist/odoo_vi
addons/account_voucher/account_voucher.py
16
86218
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import time from lxml import etree from openerp.osv import fields, osv import openerp.addons.decimal_precision as dp from openerp.tools.translate import _ from openerp.tools import float_compare from openerp.report import report_sxw class res_currency(osv.osv): _inherit = "res.currency" def _get_current_rate(self, cr, uid, ids, raise_on_no_rate=True, context=None): if context is None: context = {} res = super(res_currency, self)._get_current_rate(cr, uid, ids, raise_on_no_rate, context=context) if context.get('voucher_special_currency') in ids and context.get('voucher_special_currency_rate'): res[context.get('voucher_special_currency')] = context.get('voucher_special_currency_rate') return res class res_company(osv.osv): _inherit = "res.company" _columns = { 'income_currency_exchange_account_id': fields.many2one( 'account.account', string="Gain Exchange Rate Account", domain="[('type', '=', 'other')]",), 'expense_currency_exchange_account_id': fields.many2one( 'account.account', string="Loss Exchange Rate Account", domain="[('type', '=', 'other')]",), } class account_config_settings(osv.osv_memory): _inherit = 'account.config.settings' _columns = { 'income_currency_exchange_account_id': fields.related( 'company_id', 'income_currency_exchange_account_id', type='many2one', relation='account.account', string="Gain Exchange Rate Account", domain="[('type', '=', 'other')]"), 'expense_currency_exchange_account_id': fields.related( 'company_id', 'expense_currency_exchange_account_id', type="many2one", relation='account.account', string="Loss Exchange Rate Account", domain="[('type', '=', 'other')]"), } def onchange_company_id(self, cr, uid, ids, company_id, context=None): res = super(account_config_settings, self).onchange_company_id(cr, uid, ids, company_id, context=context) if company_id: company = self.pool.get('res.company').browse(cr, uid, company_id, context=context) res['value'].update({'income_currency_exchange_account_id': company.income_currency_exchange_account_id and company.income_currency_exchange_account_id.id or False, 'expense_currency_exchange_account_id': company.expense_currency_exchange_account_id and company.expense_currency_exchange_account_id.id or False}) else: res['value'].update({'income_currency_exchange_account_id': False, 'expense_currency_exchange_account_id': False}) return res class account_voucher(osv.osv): def _check_paid(self, cr, uid, ids, name, args, context=None): res = {} for voucher in self.browse(cr, uid, ids, context=context): res[voucher.id] = any([((line.account_id.type, 'in', ('receivable', 'payable')) and line.reconcile_id) for line in voucher.move_ids]) return res def _get_type(self, cr, uid, context=None): if context is None: context = {} return context.get('type', False) def _get_period(self, cr, uid, context=None): if context is None: context = {} if context.get('period_id', False): return context.get('period_id') periods = self.pool.get('account.period').find(cr, uid, context=context) return periods and periods[0] or False def _make_journal_search(self, cr, uid, ttype, context=None): journal_pool = self.pool.get('account.journal') return journal_pool.search(cr, uid, [('type', '=', ttype)], limit=1) def _get_journal(self, cr, uid, context=None): if context is None: context = {} invoice_pool = self.pool.get('account.invoice') journal_pool = self.pool.get('account.journal') if context.get('invoice_id', False): currency_id = invoice_pool.browse(cr, uid, context['invoice_id'], context=context).currency_id.id journal_id = journal_pool.search(cr, uid, [('currency', '=', currency_id)], limit=1) return journal_id and journal_id[0] or False if context.get('journal_id', False): return context.get('journal_id') if not context.get('journal_id', False) and context.get('search_default_journal_id', False): return context.get('search_default_journal_id') ttype = context.get('type', 'bank') if ttype in ('payment', 'receipt'): ttype = 'bank' res = self._make_journal_search(cr, uid, ttype, context=context) return res and res[0] or False def _get_tax(self, cr, uid, context=None): if context is None: context = {} journal_pool = self.pool.get('account.journal') journal_id = context.get('journal_id', False) if not journal_id: ttype = context.get('type', 'bank') res = journal_pool.search(cr, uid, [('type', '=', ttype)], limit=1) if not res: return False journal_id = res[0] if not journal_id: return False journal = journal_pool.browse(cr, uid, journal_id, context=context) account_id = journal.default_credit_account_id or journal.default_debit_account_id if account_id and account_id.tax_ids: tax_id = account_id.tax_ids[0].id return tax_id return False def _get_payment_rate_currency(self, cr, uid, context=None): """ Return the default value for field payment_rate_currency_id: the currency of the journal if there is one, otherwise the currency of the user's company """ if context is None: context = {} journal_pool = self.pool.get('account.journal') journal_id = context.get('journal_id', False) if journal_id: journal = journal_pool.browse(cr, uid, journal_id, context=context) if journal.currency: return journal.currency.id #no journal given in the context, use company currency as default return self.pool.get('res.users').browse(cr, uid, uid, context=context).company_id.currency_id.id def _get_currency(self, cr, uid, context=None): if context is None: context = {} journal_pool = self.pool.get('account.journal') journal_id = context.get('journal_id', False) if journal_id: journal = journal_pool.browse(cr, uid, journal_id, context=context) if journal.currency: return journal.currency.id return self.pool.get('res.users').browse(cr, uid, uid, context=context).company_id.currency_id.id def _get_partner(self, cr, uid, context=None): if context is None: context = {} return context.get('partner_id', False) def _get_reference(self, cr, uid, context=None): if context is None: context = {} return context.get('reference', False) def _get_narration(self, cr, uid, context=None): if context is None: context = {} return context.get('narration', False) def _get_amount(self, cr, uid, context=None): if context is None: context= {} return context.get('amount', 0.0) def name_get(self, cr, uid, ids, context=None): if not ids: return [] if context is None: context = {} return [(r['id'], (r['number'] or _('Voucher'))) for r in self.read(cr, uid, ids, ['number'], context, load='_classic_write')] def fields_view_get(self, cr, uid, view_id=None, view_type=False, context=None, toolbar=False, submenu=False): mod_obj = self.pool.get('ir.model.data') if context is None: context = {} if view_type == 'form': if not view_id and context.get('invoice_type'): if context.get('invoice_type') in ('out_invoice', 'out_refund'): result = mod_obj.get_object_reference(cr, uid, 'account_voucher', 'view_vendor_receipt_form') else: result = mod_obj.get_object_reference(cr, uid, 'account_voucher', 'view_vendor_payment_form') result = result and result[1] or False view_id = result if not view_id and context.get('line_type'): if context.get('line_type') == 'customer': result = mod_obj.get_object_reference(cr, uid, 'account_voucher', 'view_vendor_receipt_form') else: result = mod_obj.get_object_reference(cr, uid, 'account_voucher', 'view_vendor_payment_form') result = result and result[1] or False view_id = result res = super(account_voucher, self).fields_view_get(cr, uid, view_id=view_id, view_type=view_type, context=context, toolbar=toolbar, submenu=submenu) doc = etree.XML(res['arch']) if context.get('type', 'sale') in ('purchase', 'payment'): nodes = doc.xpath("//field[@name='partner_id']") for node in nodes: node.set('context', "{'default_customer': 0, 'search_default_supplier': 1, 'default_supplier': 1}") if context.get('invoice_type','') in ('in_invoice', 'in_refund'): node.set('string', _("Supplier")) res['arch'] = etree.tostring(doc) return res def _compute_writeoff_amount(self, cr, uid, line_dr_ids, line_cr_ids, amount, type): debit = credit = 0.0 sign = type == 'payment' and -1 or 1 for l in line_dr_ids: debit += l['amount'] for l in line_cr_ids: credit += l['amount'] return amount - sign * (credit - debit) def onchange_line_ids(self, cr, uid, ids, line_dr_ids, line_cr_ids, amount, voucher_currency, type, context=None): context = context or {} if not line_dr_ids and not line_cr_ids: return {'value':{'writeoff_amount': 0.0}} line_osv = self.pool.get("account.voucher.line") line_dr_ids = resolve_o2m_operations(cr, uid, line_osv, line_dr_ids, ['amount'], context) line_cr_ids = resolve_o2m_operations(cr, uid, line_osv, line_cr_ids, ['amount'], context) #compute the field is_multi_currency that is used to hide/display options linked to secondary currency on the voucher is_multi_currency = False #loop on the voucher lines to see if one of these has a secondary currency. If yes, we need to see the options for voucher_line in line_dr_ids+line_cr_ids: line_id = voucher_line.get('id') and self.pool.get('account.voucher.line').browse(cr, uid, voucher_line['id'], context=context).move_line_id.id or voucher_line.get('move_line_id') if line_id and self.pool.get('account.move.line').browse(cr, uid, line_id, context=context).currency_id: is_multi_currency = True break return {'value': {'writeoff_amount': self._compute_writeoff_amount(cr, uid, line_dr_ids, line_cr_ids, amount, type), 'is_multi_currency': is_multi_currency}} def _get_journal_currency(self, cr, uid, ids, name, args, context=None): res = {} for voucher in self.browse(cr, uid, ids, context=context): res[voucher.id] = voucher.journal_id.currency and voucher.journal_id.currency.id or voucher.company_id.currency_id.id return res def _get_writeoff_amount(self, cr, uid, ids, name, args, context=None): if not ids: return {} currency_obj = self.pool.get('res.currency') res = {} debit = credit = 0.0 for voucher in self.browse(cr, uid, ids, context=context): sign = voucher.type == 'payment' and -1 or 1 for l in voucher.line_dr_ids: debit += l.amount for l in voucher.line_cr_ids: credit += l.amount currency = voucher.currency_id or voucher.company_id.currency_id res[voucher.id] = currency_obj.round(cr, uid, currency, voucher.amount - sign * (credit - debit)) return res def _paid_amount_in_company_currency(self, cr, uid, ids, name, args, context=None): if context is None: context = {} res = {} ctx = context.copy() for v in self.browse(cr, uid, ids, context=context): ctx.update({'date': v.date}) #make a new call to browse in order to have the right date in the context, to get the right currency rate voucher = self.browse(cr, uid, v.id, context=ctx) ctx.update({ 'voucher_special_currency': voucher.payment_rate_currency_id and voucher.payment_rate_currency_id.id or False, 'voucher_special_currency_rate': voucher.currency_id.rate * voucher.payment_rate,}) res[voucher.id] = self.pool.get('res.currency').compute(cr, uid, voucher.currency_id.id, voucher.company_id.currency_id.id, voucher.amount, context=ctx) return res def _get_currency_help_label(self, cr, uid, currency_id, payment_rate, payment_rate_currency_id, context=None): """ This function builds a string to help the users to understand the behavior of the payment rate fields they can specify on the voucher. This string is only used to improve the usability in the voucher form view and has no other effect. :param currency_id: the voucher currency :type currency_id: integer :param payment_rate: the value of the payment_rate field of the voucher :type payment_rate: float :param payment_rate_currency_id: the value of the payment_rate_currency_id field of the voucher :type payment_rate_currency_id: integer :return: translated string giving a tip on what's the effect of the current payment rate specified :rtype: str """ rml_parser = report_sxw.rml_parse(cr, uid, 'currency_help_label', context=context) currency_pool = self.pool.get('res.currency') currency_str = payment_rate_str = '' if currency_id: currency_str = rml_parser.formatLang(1, currency_obj=currency_pool.browse(cr, uid, currency_id, context=context)) if payment_rate_currency_id: payment_rate_str = rml_parser.formatLang(payment_rate, currency_obj=currency_pool.browse(cr, uid, payment_rate_currency_id, context=context)) currency_help_label = _('At the operation date, the exchange rate was\n%s = %s') % (currency_str, payment_rate_str) return currency_help_label def _fnct_currency_help_label(self, cr, uid, ids, name, args, context=None): res = {} for voucher in self.browse(cr, uid, ids, context=context): res[voucher.id] = self._get_currency_help_label(cr, uid, voucher.currency_id.id, voucher.payment_rate, voucher.payment_rate_currency_id.id, context=context) return res _name = 'account.voucher' _description = 'Accounting Voucher' _inherit = ['mail.thread'] _order = "date desc, id desc" # _rec_name = 'number' _track = { 'state': { 'account_voucher.mt_voucher_state_change': lambda self, cr, uid, obj, ctx=None: True, }, } _columns = { 'type':fields.selection([ ('sale','Sale'), ('purchase','Purchase'), ('payment','Payment'), ('receipt','Receipt'), ],'Default Type', readonly=True, states={'draft':[('readonly',False)]}), 'name':fields.char('Memo', size=256, readonly=True, states={'draft':[('readonly',False)]}), 'date':fields.date('Date', readonly=True, select=True, states={'draft':[('readonly',False)]}, help="Effective date for accounting entries"), 'journal_id':fields.many2one('account.journal', 'Journal', required=True, readonly=True, states={'draft':[('readonly',False)]}), 'account_id':fields.many2one('account.account', 'Account', required=True, readonly=True, states={'draft':[('readonly',False)]}), 'line_ids':fields.one2many('account.voucher.line','voucher_id','Voucher Lines', readonly=True, states={'draft':[('readonly',False)]}), 'line_cr_ids':fields.one2many('account.voucher.line','voucher_id','Credits', domain=[('type','=','cr')], context={'default_type':'cr'}, readonly=True, states={'draft':[('readonly',False)]}), 'line_dr_ids':fields.one2many('account.voucher.line','voucher_id','Debits', domain=[('type','=','dr')], context={'default_type':'dr'}, readonly=True, states={'draft':[('readonly',False)]}), 'period_id': fields.many2one('account.period', 'Period', required=True, readonly=True, states={'draft':[('readonly',False)]}), 'narration':fields.text('Notes', readonly=True, states={'draft':[('readonly',False)]}), 'currency_id': fields.function(_get_journal_currency, type='many2one', relation='res.currency', string='Currency', readonly=True, required=True), 'company_id': fields.many2one('res.company', 'Company', required=True, readonly=True, states={'draft':[('readonly',False)]}), 'state':fields.selection( [('draft','Draft'), ('cancel','Cancelled'), ('proforma','Pro-forma'), ('posted','Posted') ], 'Status', readonly=True, size=32, track_visibility='onchange', help=' * The \'Draft\' status is used when a user is encoding a new and unconfirmed Voucher. \ \n* The \'Pro-forma\' when voucher is in Pro-forma status,voucher does not have an voucher number. \ \n* The \'Posted\' status is used when user create voucher,a voucher number is generated and voucher entries are created in account \ \n* The \'Cancelled\' status is used when user cancel voucher.'), 'amount': fields.float('Total', digits_compute=dp.get_precision('Account'), required=True, readonly=True, states={'draft':[('readonly',False)]}), 'tax_amount':fields.float('Tax Amount', digits_compute=dp.get_precision('Account'), readonly=True, states={'draft':[('readonly',False)]}), 'reference': fields.char('Ref #', size=64, readonly=True, states={'draft':[('readonly',False)]}, help="Transaction reference number."), 'number': fields.char('Number', size=32, readonly=True,), 'move_id':fields.many2one('account.move', 'Account Entry'), 'move_ids': fields.related('move_id','line_id', type='one2many', relation='account.move.line', string='Journal Items', readonly=True), 'partner_id':fields.many2one('res.partner', 'Partner', change_default=1, readonly=True, states={'draft':[('readonly',False)]}), 'audit': fields.related('move_id','to_check', type='boolean', help='Check this box if you are unsure of that journal entry and if you want to note it as \'to be reviewed\' by an accounting expert.', relation='account.move', string='To Review'), 'paid': fields.function(_check_paid, string='Paid', type='boolean', help="The Voucher has been totally paid."), 'pay_now':fields.selection([ ('pay_now','Pay Directly'), ('pay_later','Pay Later or Group Funds'), ],'Payment', select=True, readonly=True, states={'draft':[('readonly',False)]}), 'tax_id': fields.many2one('account.tax', 'Tax', readonly=True, states={'draft':[('readonly',False)]}, domain=[('price_include','=', False)], help="Only for tax excluded from price"), 'pre_line':fields.boolean('Previous Payments ?', required=False), 'date_due': fields.date('Due Date', readonly=True, select=True, states={'draft':[('readonly',False)]}), 'payment_option':fields.selection([ ('without_writeoff', 'Keep Open'), ('with_writeoff', 'Reconcile Payment Balance'), ], 'Payment Difference', required=True, readonly=True, states={'draft': [('readonly', False)]}, help="This field helps you to choose what you want to do with the eventual difference between the paid amount and the sum of allocated amounts. You can either choose to keep open this difference on the partner's account, or reconcile it with the payment(s)"), 'writeoff_acc_id': fields.many2one('account.account', 'Counterpart Account', readonly=True, states={'draft': [('readonly', False)]}), 'comment': fields.char('Counterpart Comment', size=64, required=True, readonly=True, states={'draft': [('readonly', False)]}), 'analytic_id': fields.many2one('account.analytic.account','Write-Off Analytic Account', readonly=True, states={'draft': [('readonly', False)]}), 'writeoff_amount': fields.function(_get_writeoff_amount, string='Difference Amount', type='float', readonly=True, help="Computed as the difference between the amount stated in the voucher and the sum of allocation on the voucher lines."), 'payment_rate_currency_id': fields.many2one('res.currency', 'Payment Rate Currency', required=True, readonly=True, states={'draft':[('readonly',False)]}), 'payment_rate': fields.float('Exchange Rate', digits=(12,6), required=True, readonly=True, states={'draft': [('readonly', False)]}, help='The specific rate that will be used, in this voucher, between the selected currency (in \'Payment Rate Currency\' field) and the voucher currency.'), 'paid_amount_in_company_currency': fields.function(_paid_amount_in_company_currency, string='Paid Amount in Company Currency', type='float', readonly=True), 'is_multi_currency': fields.boolean('Multi Currency Voucher', help='Fields with internal purpose only that depicts if the voucher is a multi currency one or not'), 'currency_help_label': fields.function(_fnct_currency_help_label, type='text', string="Helping Sentence", help="This sentence helps you to know how to specify the payment rate by giving you the direct effect it has"), } _defaults = { 'period_id': _get_period, 'partner_id': _get_partner, 'journal_id':_get_journal, 'currency_id': _get_currency, 'reference': _get_reference, 'narration':_get_narration, 'amount': _get_amount, 'type':_get_type, 'state': 'draft', 'pay_now': 'pay_now', 'name': '', 'date': lambda *a: time.strftime('%Y-%m-%d'), 'company_id': lambda self,cr,uid,c: self.pool.get('res.company')._company_default_get(cr, uid, 'account.voucher',context=c), 'tax_id': _get_tax, 'payment_option': 'without_writeoff', 'comment': _('Write-Off'), 'payment_rate': 1.0, 'payment_rate_currency_id': _get_payment_rate_currency, } def compute_tax(self, cr, uid, ids, context=None): tax_pool = self.pool.get('account.tax') partner_pool = self.pool.get('res.partner') position_pool = self.pool.get('account.fiscal.position') voucher_line_pool = self.pool.get('account.voucher.line') voucher_pool = self.pool.get('account.voucher') if context is None: context = {} for voucher in voucher_pool.browse(cr, uid, ids, context=context): voucher_amount = 0.0 for line in voucher.line_ids: voucher_amount += line.untax_amount or line.amount line.amount = line.untax_amount or line.amount voucher_line_pool.write(cr, uid, [line.id], {'amount':line.amount, 'untax_amount':line.untax_amount}) if not voucher.tax_id: self.write(cr, uid, [voucher.id], {'amount':voucher_amount, 'tax_amount':0.0}) continue tax = [tax_pool.browse(cr, uid, voucher.tax_id.id, context=context)] partner = partner_pool.browse(cr, uid, voucher.partner_id.id, context=context) or False taxes = position_pool.map_tax(cr, uid, partner and partner.property_account_position or False, tax) tax = tax_pool.browse(cr, uid, taxes, context=context) total = voucher_amount total_tax = 0.0 if not tax[0].price_include: for line in voucher.line_ids: for tax_line in tax_pool.compute_all(cr, uid, tax, line.amount, 1).get('taxes', []): total_tax += tax_line.get('amount', 0.0) total += total_tax else: for line in voucher.line_ids: line_total = 0.0 line_tax = 0.0 for tax_line in tax_pool.compute_all(cr, uid, tax, line.untax_amount or line.amount, 1).get('taxes', []): line_tax += tax_line.get('amount', 0.0) line_total += tax_line.get('price_unit') total_tax += line_tax untax_amount = line.untax_amount or line.amount voucher_line_pool.write(cr, uid, [line.id], {'amount':line_total, 'untax_amount':untax_amount}) self.write(cr, uid, [voucher.id], {'amount':total, 'tax_amount':total_tax}) return True def onchange_price(self, cr, uid, ids, line_ids, tax_id, partner_id=False, context=None): context = context or {} tax_pool = self.pool.get('account.tax') partner_pool = self.pool.get('res.partner') position_pool = self.pool.get('account.fiscal.position') line_pool = self.pool.get('account.voucher.line') if not line_ids: line_ids = [] res = { 'tax_amount': False, 'amount': False, } voucher_total = 0.0 line_ids = resolve_o2m_operations(cr, uid, line_pool, line_ids, ["amount"], context) total_tax = 0.0 for line in line_ids: line_amount = 0.0 line_amount = line.get('amount',0.0) if tax_id: tax = [tax_pool.browse(cr, uid, tax_id, context=context)] if partner_id: partner = partner_pool.browse(cr, uid, partner_id, context=context) or False taxes = position_pool.map_tax(cr, uid, partner and partner.property_account_position or False, tax) tax = tax_pool.browse(cr, uid, taxes, context=context) if not tax[0].price_include: for tax_line in tax_pool.compute_all(cr, uid, tax, line_amount, 1).get('taxes', []): total_tax += tax_line.get('amount') voucher_total += line_amount total = voucher_total + total_tax res.update({ 'amount': total or voucher_total, 'tax_amount': total_tax }) return { 'value': res } def onchange_term_id(self, cr, uid, ids, term_id, amount): term_pool = self.pool.get('account.payment.term') terms = False due_date = False default = {'date_due':False} if term_id and amount: terms = term_pool.compute(cr, uid, term_id, amount) if terms: due_date = terms[-1][0] default.update({ 'date_due':due_date }) return {'value':default} def onchange_journal_voucher(self, cr, uid, ids, line_ids=False, tax_id=False, price=0.0, partner_id=False, journal_id=False, ttype=False, company_id=False, context=None): """price Returns a dict that contains new values and context @param partner_id: latest value from user input for field partner_id @param args: other arguments @param context: context arguments, like lang, time zone @return: Returns a dict which contains new values, and context """ default = { 'value':{}, } if not partner_id or not journal_id: return default partner_pool = self.pool.get('res.partner') journal_pool = self.pool.get('account.journal') journal = journal_pool.browse(cr, uid, journal_id, context=context) partner = partner_pool.browse(cr, uid, partner_id, context=context) account_id = False tr_type = False if journal.type in ('sale','sale_refund'): account_id = partner.property_account_receivable.id tr_type = 'sale' elif journal.type in ('purchase', 'purchase_refund','expense'): account_id = partner.property_account_payable.id tr_type = 'purchase' else: if not journal.default_credit_account_id or not journal.default_debit_account_id: raise osv.except_osv(_('Error!'), _('Please define default credit/debit accounts on the journal "%s".') % (journal.name)) account_id = journal.default_credit_account_id.id or journal.default_debit_account_id.id tr_type = 'receipt' default['value']['account_id'] = account_id default['value']['type'] = ttype or tr_type vals = self.onchange_journal(cr, uid, ids, journal_id, line_ids, tax_id, partner_id, time.strftime('%Y-%m-%d'), price, ttype, company_id, context) default['value'].update(vals.get('value')) return default def onchange_rate(self, cr, uid, ids, rate, amount, currency_id, payment_rate_currency_id, company_id, context=None): res = {'value': {'paid_amount_in_company_currency': amount, 'currency_help_label': self._get_currency_help_label(cr, uid, currency_id, rate, payment_rate_currency_id, context=context)}} if rate and amount and currency_id: company_currency = self.pool.get('res.company').browse(cr, uid, company_id, context=context).currency_id #context should contain the date, the payment currency and the payment rate specified on the voucher amount_in_company_currency = self.pool.get('res.currency').compute(cr, uid, currency_id, company_currency.id, amount, context=context) res['value']['paid_amount_in_company_currency'] = amount_in_company_currency return res def onchange_amount(self, cr, uid, ids, amount, rate, partner_id, journal_id, currency_id, ttype, date, payment_rate_currency_id, company_id, context=None): if context is None: context = {} ctx = context.copy() ctx.update({'date': date}) #read the voucher rate with the right date in the context currency_id = currency_id or self.pool.get('res.company').browse(cr, uid, company_id, context=ctx).currency_id.id voucher_rate = self.pool.get('res.currency').read(cr, uid, currency_id, ['rate'], context=ctx)['rate'] ctx.update({ 'voucher_special_currency': payment_rate_currency_id, 'voucher_special_currency_rate': rate * voucher_rate}) res = self.recompute_voucher_lines(cr, uid, ids, partner_id, journal_id, amount, currency_id, ttype, date, context=ctx) vals = self.onchange_rate(cr, uid, ids, rate, amount, currency_id, payment_rate_currency_id, company_id, context=ctx) for key in vals.keys(): res[key].update(vals[key]) return res def recompute_payment_rate(self, cr, uid, ids, vals, currency_id, date, ttype, journal_id, amount, context=None): if context is None: context = {} #on change of the journal, we need to set also the default value for payment_rate and payment_rate_currency_id currency_obj = self.pool.get('res.currency') journal = self.pool.get('account.journal').browse(cr, uid, journal_id, context=context) company_id = journal.company_id.id payment_rate = 1.0 currency_id = currency_id or journal.company_id.currency_id.id payment_rate_currency_id = currency_id ctx = context.copy() ctx.update({'date': date}) o2m_to_loop = False if ttype == 'receipt': o2m_to_loop = 'line_cr_ids' elif ttype == 'payment': o2m_to_loop = 'line_dr_ids' if o2m_to_loop and 'value' in vals and o2m_to_loop in vals['value']: for voucher_line in vals['value'][o2m_to_loop]: if voucher_line['currency_id'] != currency_id: # we take as default value for the payment_rate_currency_id, the currency of the first invoice that # is not in the voucher currency payment_rate_currency_id = voucher_line['currency_id'] tmp = currency_obj.browse(cr, uid, payment_rate_currency_id, context=ctx).rate payment_rate = tmp / currency_obj.browse(cr, uid, currency_id, context=ctx).rate break vals['value'].update({ 'payment_rate': payment_rate, 'currency_id': currency_id, 'payment_rate_currency_id': payment_rate_currency_id }) #read the voucher rate with the right date in the context voucher_rate = self.pool.get('res.currency').read(cr, uid, currency_id, ['rate'], context=ctx)['rate'] ctx.update({ 'voucher_special_currency_rate': payment_rate * voucher_rate, 'voucher_special_currency': payment_rate_currency_id}) res = self.onchange_rate(cr, uid, ids, payment_rate, amount, currency_id, payment_rate_currency_id, company_id, context=ctx) for key in res.keys(): vals[key].update(res[key]) return vals def basic_onchange_partner(self, cr, uid, ids, partner_id, journal_id, ttype, context=None): partner_pool = self.pool.get('res.partner') journal_pool = self.pool.get('account.journal') res = {'value': {'account_id': False}} if not partner_id or not journal_id: return res journal = journal_pool.browse(cr, uid, journal_id, context=context) partner = partner_pool.browse(cr, uid, partner_id, context=context) account_id = False if journal.type in ('sale','sale_refund'): account_id = partner.property_account_receivable.id elif journal.type in ('purchase', 'purchase_refund','expense'): account_id = partner.property_account_payable.id else: account_id = journal.default_credit_account_id.id or journal.default_debit_account_id.id res['value']['account_id'] = account_id return res def onchange_partner_id(self, cr, uid, ids, partner_id, journal_id, amount, currency_id, ttype, date, context=None): if not journal_id: return {} if context is None: context = {} #TODO: comment me and use me directly in the sales/purchases views res = self.basic_onchange_partner(cr, uid, ids, partner_id, journal_id, ttype, context=context) if ttype in ['sale', 'purchase']: return res ctx = context.copy() # not passing the payment_rate currency and the payment_rate in the context but it's ok because they are reset in recompute_payment_rate ctx.update({'date': date}) vals = self.recompute_voucher_lines(cr, uid, ids, partner_id, journal_id, amount, currency_id, ttype, date, context=ctx) vals2 = self.recompute_payment_rate(cr, uid, ids, vals, currency_id, date, ttype, journal_id, amount, context=context) for key in vals.keys(): res[key].update(vals[key]) for key in vals2.keys(): res[key].update(vals2[key]) #TODO: can probably be removed now #TODO: onchange_partner_id() should not returns [pre_line, line_dr_ids, payment_rate...] for type sale, and not # [pre_line, line_cr_ids, payment_rate...] for type purchase. # We should definitively split account.voucher object in two and make distinct on_change functions. In the # meanwhile, bellow lines must be there because the fields aren't present in the view, what crashes if the # onchange returns a value for them if ttype == 'sale': del(res['value']['line_dr_ids']) del(res['value']['pre_line']) del(res['value']['payment_rate']) elif ttype == 'purchase': del(res['value']['line_cr_ids']) del(res['value']['pre_line']) del(res['value']['payment_rate']) return res def recompute_voucher_lines(self, cr, uid, ids, partner_id, journal_id, price, currency_id, ttype, date, context=None): """ Returns a dict that contains new values and context @param partner_id: latest value from user input for field partner_id @param args: other arguments @param context: context arguments, like lang, time zone @return: Returns a dict which contains new values, and context """ def _remove_noise_in_o2m(): """if the line is partially reconciled, then we must pay attention to display it only once and in the good o2m. This function returns True if the line is considered as noise and should not be displayed """ if line.reconcile_partial_id: if currency_id == line.currency_id.id: if line.amount_residual_currency <= 0: return True else: if line.amount_residual <= 0: return True return False if context is None: context = {} context_multi_currency = context.copy() currency_pool = self.pool.get('res.currency') move_line_pool = self.pool.get('account.move.line') partner_pool = self.pool.get('res.partner') journal_pool = self.pool.get('account.journal') line_pool = self.pool.get('account.voucher.line') #set default values default = { 'value': {'line_dr_ids': [] ,'line_cr_ids': [] ,'pre_line': False,}, } #drop existing lines line_ids = ids and line_pool.search(cr, uid, [('voucher_id', '=', ids[0])]) or False if line_ids: line_pool.unlink(cr, uid, line_ids) if not partner_id or not journal_id: return default journal = journal_pool.browse(cr, uid, journal_id, context=context) partner = partner_pool.browse(cr, uid, partner_id, context=context) currency_id = currency_id or journal.company_id.currency_id.id total_credit = 0.0 total_debit = 0.0 account_type = None if context.get('account_id'): account_type = self.pool['account.account'].browse(cr, uid, context['account_id'], context=context).type if ttype == 'payment': if not account_type: account_type = 'payable' total_debit = price or 0.0 else: total_credit = price or 0.0 if not account_type: account_type = 'receivable' if not context.get('move_line_ids', False): ids = move_line_pool.search(cr, uid, [('state','=','valid'), ('account_id.type', '=', account_type), ('reconcile_id', '=', False), ('partner_id', '=', partner_id)], context=context) else: ids = context['move_line_ids'] invoice_id = context.get('invoice_id', False) company_currency = journal.company_id.currency_id.id move_lines_found = [] #order the lines by most old first ids.reverse() account_move_lines = move_line_pool.browse(cr, uid, ids, context=context) #compute the total debit/credit and look for a matching open amount or invoice for line in account_move_lines: if _remove_noise_in_o2m(): continue if invoice_id: if line.invoice.id == invoice_id: #if the invoice linked to the voucher line is equal to the invoice_id in context #then we assign the amount on that line, whatever the other voucher lines move_lines_found.append(line.id) elif currency_id == company_currency: #otherwise treatments is the same but with other field names if line.amount_residual == price: #if the amount residual is equal the amount voucher, we assign it to that voucher #line, whatever the other voucher lines move_lines_found.append(line.id) break #otherwise we will split the voucher amount on each line (by most old first) total_credit += line.credit or 0.0 total_debit += line.debit or 0.0 elif currency_id == line.currency_id.id: if line.amount_residual_currency == price: move_lines_found.append(line.id) break total_credit += line.credit and line.amount_currency or 0.0 total_debit += line.debit and line.amount_currency or 0.0 remaining_amount = price #voucher line creation for line in account_move_lines: if _remove_noise_in_o2m(): continue if line.currency_id and currency_id == line.currency_id.id: amount_original = abs(line.amount_currency) amount_unreconciled = abs(line.amount_residual_currency) else: #always use the amount booked in the company currency as the basis of the conversion into the voucher currency amount_original = currency_pool.compute(cr, uid, company_currency, currency_id, line.credit or line.debit or 0.0, context=context_multi_currency) amount_unreconciled = currency_pool.compute(cr, uid, company_currency, currency_id, abs(line.amount_residual), context=context_multi_currency) line_currency_id = line.currency_id and line.currency_id.id or company_currency rs = { 'name':line.move_id.name, 'type': line.credit and 'dr' or 'cr', 'move_line_id':line.id, 'account_id':line.account_id.id, 'amount_original': amount_original, 'amount': (line.id in move_lines_found) and min(abs(remaining_amount), amount_unreconciled) or 0.0, 'date_original':line.date, 'date_due':line.date_maturity, 'amount_unreconciled': amount_unreconciled, 'currency_id': line_currency_id, } remaining_amount -= rs['amount'] #in case a corresponding move_line hasn't been found, we now try to assign the voucher amount #on existing invoices: we split voucher amount by most old first, but only for lines in the same currency if not move_lines_found: if currency_id == line_currency_id: if line.credit: amount = min(amount_unreconciled, abs(total_debit)) rs['amount'] = amount total_debit -= amount else: amount = min(amount_unreconciled, abs(total_credit)) rs['amount'] = amount total_credit -= amount if rs['amount_unreconciled'] == rs['amount']: rs['reconcile'] = True if rs['type'] == 'cr': default['value']['line_cr_ids'].append(rs) else: default['value']['line_dr_ids'].append(rs) if len(default['value']['line_cr_ids']) > 0: default['value']['pre_line'] = 1 elif len(default['value']['line_dr_ids']) > 0: default['value']['pre_line'] = 1 default['value']['writeoff_amount'] = self._compute_writeoff_amount(cr, uid, default['value']['line_dr_ids'], default['value']['line_cr_ids'], price, ttype) return default def onchange_payment_rate_currency(self, cr, uid, ids, currency_id, payment_rate, payment_rate_currency_id, date, amount, company_id, context=None): if context is None: context = {} res = {'value': {}} if currency_id: #set the default payment rate of the voucher and compute the paid amount in company currency ctx = context.copy() ctx.update({'date': date}) #read the voucher rate with the right date in the context voucher_rate = self.pool.get('res.currency').read(cr, uid, currency_id, ['rate'], context=ctx)['rate'] ctx.update({ 'voucher_special_currency_rate': payment_rate * voucher_rate, 'voucher_special_currency': payment_rate_currency_id}) vals = self.onchange_rate(cr, uid, ids, payment_rate, amount, currency_id, payment_rate_currency_id, company_id, context=ctx) for key in vals.keys(): res[key].update(vals[key]) return res def onchange_date(self, cr, uid, ids, date, currency_id, payment_rate_currency_id, amount, company_id, context=None): """ @param date: latest value from user input for field date @param args: other arguments @param context: context arguments, like lang, time zone @return: Returns a dict which contains new values, and context """ if context is None: context ={} res = {'value': {}} #set the period of the voucher period_pool = self.pool.get('account.period') currency_obj = self.pool.get('res.currency') ctx = context.copy() ctx.update({'company_id': company_id, 'account_period_prefer_normal': True}) voucher_currency_id = currency_id or self.pool.get('res.company').browse(cr, uid, company_id, context=ctx).currency_id.id pids = period_pool.find(cr, uid, date, context=ctx) if pids: res['value'].update({'period_id':pids[0]}) if payment_rate_currency_id: ctx.update({'date': date}) payment_rate = 1.0 if payment_rate_currency_id != currency_id: tmp = currency_obj.browse(cr, uid, payment_rate_currency_id, context=ctx).rate payment_rate = tmp / currency_obj.browse(cr, uid, voucher_currency_id, context=ctx).rate vals = self.onchange_payment_rate_currency(cr, uid, ids, voucher_currency_id, payment_rate, payment_rate_currency_id, date, amount, company_id, context=context) vals['value'].update({'payment_rate': payment_rate}) for key in vals.keys(): res[key].update(vals[key]) return res def onchange_journal(self, cr, uid, ids, journal_id, line_ids, tax_id, partner_id, date, amount, ttype, company_id, context=None): if context is None: context = {} if not journal_id: return False journal_pool = self.pool.get('account.journal') journal = journal_pool.browse(cr, uid, journal_id, context=context) account_id = journal.default_credit_account_id or journal.default_debit_account_id tax_id = False if account_id and account_id.tax_ids: tax_id = account_id.tax_ids[0].id vals = {'value':{} } if ttype in ('sale', 'purchase'): vals = self.onchange_price(cr, uid, ids, line_ids, tax_id, partner_id, context) vals['value'].update({'tax_id':tax_id,'amount': amount}) currency_id = False if journal.currency: currency_id = journal.currency.id else: currency_id = journal.company_id.currency_id.id vals['value'].update({'currency_id': currency_id}) #in case we want to register the payment directly from an invoice, it's confusing to allow to switch the journal #without seeing that the amount is expressed in the journal currency, and not in the invoice currency. So to avoid #this common mistake, we simply reset the amount to 0 if the currency is not the invoice currency. if context.get('payment_expected_currency') and currency_id != context.get('payment_expected_currency'): vals['value']['amount'] = 0 amount = 0 if partner_id: res = self.onchange_partner_id(cr, uid, ids, partner_id, journal_id, amount, currency_id, ttype, date, context) for key in res.keys(): vals[key].update(res[key]) return vals def button_proforma_voucher(self, cr, uid, ids, context=None): self.signal_proforma_voucher(cr, uid, ids) return {'type': 'ir.actions.act_window_close'} def proforma_voucher(self, cr, uid, ids, context=None): self.action_move_line_create(cr, uid, ids, context=context) return True def action_cancel_draft(self, cr, uid, ids, context=None): self.create_workflow(cr, uid, ids) self.write(cr, uid, ids, {'state':'draft'}) return True def cancel_voucher(self, cr, uid, ids, context=None): reconcile_pool = self.pool.get('account.move.reconcile') move_pool = self.pool.get('account.move') move_line_pool = self.pool.get('account.move.line') for voucher in self.browse(cr, uid, ids, context=context): # refresh to make sure you don't unlink an already removed move voucher.refresh() for line in voucher.move_ids: if line.reconcile_id: move_lines = [move_line.id for move_line in line.reconcile_id.line_id] move_lines.remove(line.id) reconcile_pool.unlink(cr, uid, [line.reconcile_id.id]) if len(move_lines) >= 2: move_line_pool.reconcile_partial(cr, uid, move_lines, 'auto',context=context) if voucher.move_id: move_pool.button_cancel(cr, uid, [voucher.move_id.id]) move_pool.unlink(cr, uid, [voucher.move_id.id]) res = { 'state':'cancel', 'move_id':False, } self.write(cr, uid, ids, res) return True def unlink(self, cr, uid, ids, context=None): for t in self.read(cr, uid, ids, ['state'], context=context): if t['state'] not in ('draft', 'cancel'): raise osv.except_osv(_('Invalid Action!'), _('Cannot delete voucher(s) which are already opened or paid.')) return super(account_voucher, self).unlink(cr, uid, ids, context=context) def onchange_payment(self, cr, uid, ids, pay_now, journal_id, partner_id, ttype='sale'): res = {} if not partner_id: return res res = {} partner_pool = self.pool.get('res.partner') journal_pool = self.pool.get('account.journal') if pay_now == 'pay_later': partner = partner_pool.browse(cr, uid, partner_id) journal = journal_pool.browse(cr, uid, journal_id) if journal.type in ('sale','sale_refund'): account_id = partner.property_account_receivable.id elif journal.type in ('purchase', 'purchase_refund','expense'): account_id = partner.property_account_payable.id else: account_id = journal.default_credit_account_id.id or journal.default_debit_account_id.id if account_id: res['account_id'] = account_id return {'value':res} def _sel_context(self, cr, uid, voucher_id, context=None): """ Select the context to use accordingly if it needs to be multicurrency or not. :param voucher_id: Id of the actual voucher :return: The returned context will be the same as given in parameter if the voucher currency is the same than the company currency, otherwise it's a copy of the parameter with an extra key 'date' containing the date of the voucher. :rtype: dict """ company_currency = self._get_company_currency(cr, uid, voucher_id, context) current_currency = self._get_current_currency(cr, uid, voucher_id, context) if current_currency <> company_currency: context_multi_currency = context.copy() voucher = self.pool.get('account.voucher').browse(cr, uid, voucher_id, context) context_multi_currency.update({'date': voucher.date}) return context_multi_currency return context def first_move_line_get(self, cr, uid, voucher_id, move_id, company_currency, current_currency, context=None): ''' Return a dict to be use to create the first account move line of given voucher. :param voucher_id: Id of voucher what we are creating account_move. :param move_id: Id of account move where this line will be added. :param company_currency: id of currency of the company to which the voucher belong :param current_currency: id of currency of the voucher :return: mapping between fieldname and value of account move line to create :rtype: dict ''' voucher = self.pool.get('account.voucher').browse(cr,uid,voucher_id,context) debit = credit = 0.0 # TODO: is there any other alternative then the voucher type ?? # ANSWER: We can have payment and receipt "In Advance". # TODO: Make this logic available. # -for sale, purchase we have but for the payment and receipt we do not have as based on the bank/cash journal we can not know its payment or receipt if voucher.type in ('purchase', 'payment'): credit = voucher.paid_amount_in_company_currency elif voucher.type in ('sale', 'receipt'): debit = voucher.paid_amount_in_company_currency if debit < 0: credit = -debit; debit = 0.0 if credit < 0: debit = -credit; credit = 0.0 sign = debit - credit < 0 and -1 or 1 #set the first line of the voucher move_line = { 'name': voucher.name or '/', 'debit': debit, 'credit': credit, 'account_id': voucher.account_id.id, 'move_id': move_id, 'journal_id': voucher.journal_id.id, 'period_id': voucher.period_id.id, 'partner_id': voucher.partner_id.id, 'currency_id': company_currency <> current_currency and current_currency or False, 'amount_currency': company_currency <> current_currency and sign * voucher.amount or 0.0, 'date': voucher.date, 'date_maturity': voucher.date_due } return move_line def account_move_get(self, cr, uid, voucher_id, context=None): ''' This method prepare the creation of the account move related to the given voucher. :param voucher_id: Id of voucher for which we are creating account_move. :return: mapping between fieldname and value of account move to create :rtype: dict ''' seq_obj = self.pool.get('ir.sequence') voucher = self.pool.get('account.voucher').browse(cr,uid,voucher_id,context) if voucher.number: name = voucher.number elif voucher.journal_id.sequence_id: if not voucher.journal_id.sequence_id.active: raise osv.except_osv(_('Configuration Error !'), _('Please activate the sequence of selected journal !')) c = dict(context) c.update({'fiscalyear_id': voucher.period_id.fiscalyear_id.id}) name = seq_obj.next_by_id(cr, uid, voucher.journal_id.sequence_id.id, context=c) else: raise osv.except_osv(_('Error!'), _('Please define a sequence on the journal.')) if not voucher.reference: ref = name.replace('/','') else: ref = voucher.reference move = { 'name': name, 'journal_id': voucher.journal_id.id, 'narration': voucher.narration, 'date': voucher.date, 'ref': ref, 'period_id': voucher.period_id.id, } return move def _get_exchange_lines(self, cr, uid, line, move_id, amount_residual, company_currency, current_currency, context=None): ''' Prepare the two lines in company currency due to currency rate difference. :param line: browse record of the voucher.line for which we want to create currency rate difference accounting entries :param move_id: Account move wher the move lines will be. :param amount_residual: Amount to be posted. :param company_currency: id of currency of the company to which the voucher belong :param current_currency: id of currency of the voucher :return: the account move line and its counterpart to create, depicted as mapping between fieldname and value :rtype: tuple of dict ''' if amount_residual > 0: account_id = line.voucher_id.company_id.expense_currency_exchange_account_id if not account_id: raise osv.except_osv(_('Insufficient Configuration!'),_("You should configure the 'Loss Exchange Rate Account' in the accounting settings, to manage automatically the booking of accounting entries related to differences between exchange rates.")) else: account_id = line.voucher_id.company_id.income_currency_exchange_account_id if not account_id: raise osv.except_osv(_('Insufficient Configuration!'),_("You should configure the 'Gain Exchange Rate Account' in the accounting settings, to manage automatically the booking of accounting entries related to differences between exchange rates.")) # Even if the amount_currency is never filled, we need to pass the foreign currency because otherwise # the receivable/payable account may have a secondary currency, which render this field mandatory if line.account_id.currency_id: account_currency_id = line.account_id.currency_id.id else: account_currency_id = company_currency <> current_currency and current_currency or False move_line = { 'journal_id': line.voucher_id.journal_id.id, 'period_id': line.voucher_id.period_id.id, 'name': _('change')+': '+(line.name or '/'), 'account_id': line.account_id.id, 'move_id': move_id, 'partner_id': line.voucher_id.partner_id.id, 'currency_id': account_currency_id, 'amount_currency': 0.0, 'quantity': 1, 'credit': amount_residual > 0 and amount_residual or 0.0, 'debit': amount_residual < 0 and -amount_residual or 0.0, 'date': line.voucher_id.date, } move_line_counterpart = { 'journal_id': line.voucher_id.journal_id.id, 'period_id': line.voucher_id.period_id.id, 'name': _('change')+': '+(line.name or '/'), 'account_id': account_id.id, 'move_id': move_id, 'amount_currency': 0.0, 'partner_id': line.voucher_id.partner_id.id, 'currency_id': account_currency_id, 'quantity': 1, 'debit': amount_residual > 0 and amount_residual or 0.0, 'credit': amount_residual < 0 and -amount_residual or 0.0, 'date': line.voucher_id.date, } return (move_line, move_line_counterpart) def _convert_amount(self, cr, uid, amount, voucher_id, context=None): ''' This function convert the amount given in company currency. It takes either the rate in the voucher (if the payment_rate_currency_id is relevant) either the rate encoded in the system. :param amount: float. The amount to convert :param voucher: id of the voucher on which we want the conversion :param context: to context to use for the conversion. It may contain the key 'date' set to the voucher date field in order to select the good rate to use. :return: the amount in the currency of the voucher's company :rtype: float ''' if context is None: context = {} currency_obj = self.pool.get('res.currency') voucher = self.browse(cr, uid, voucher_id, context=context) return currency_obj.compute(cr, uid, voucher.currency_id.id, voucher.company_id.currency_id.id, amount, context=context) def voucher_move_line_create(self, cr, uid, voucher_id, line_total, move_id, company_currency, current_currency, context=None): ''' Create one account move line, on the given account move, per voucher line where amount is not 0.0. It returns Tuple with tot_line what is total of difference between debit and credit and a list of lists with ids to be reconciled with this format (total_deb_cred,list_of_lists). :param voucher_id: Voucher id what we are working with :param line_total: Amount of the first line, which correspond to the amount we should totally split among all voucher lines. :param move_id: Account move wher those lines will be joined. :param company_currency: id of currency of the company to which the voucher belong :param current_currency: id of currency of the voucher :return: Tuple build as (remaining amount not allocated on voucher lines, list of account_move_line created in this method) :rtype: tuple(float, list of int) ''' if context is None: context = {} move_line_obj = self.pool.get('account.move.line') currency_obj = self.pool.get('res.currency') tax_obj = self.pool.get('account.tax') tot_line = line_total rec_lst_ids = [] date = self.read(cr, uid, voucher_id, ['date'], context=context)['date'] ctx = context.copy() ctx.update({'date': date}) voucher = self.pool.get('account.voucher').browse(cr, uid, voucher_id, context=ctx) voucher_currency = voucher.journal_id.currency or voucher.company_id.currency_id ctx.update({ 'voucher_special_currency_rate': voucher_currency.rate * voucher.payment_rate , 'voucher_special_currency': voucher.payment_rate_currency_id and voucher.payment_rate_currency_id.id or False,}) prec = self.pool.get('decimal.precision').precision_get(cr, uid, 'Account') for line in voucher.line_ids: #create one move line per voucher line where amount is not 0.0 # AND (second part of the clause) only if the original move line was not having debit = credit = 0 (which is a legal value) if not line.amount and not (line.move_line_id and not float_compare(line.move_line_id.debit, line.move_line_id.credit, precision_digits=prec) and not float_compare(line.move_line_id.debit, 0.0, precision_digits=prec)): continue # convert the amount set on the voucher line into the currency of the voucher's company # this calls res_curreny.compute() with the right context, so that it will take either the rate on the voucher if it is relevant or will use the default behaviour amount = self._convert_amount(cr, uid, line.untax_amount or line.amount, voucher.id, context=ctx) # if the amount encoded in voucher is equal to the amount unreconciled, we need to compute the # currency rate difference if line.amount == line.amount_unreconciled: if not line.move_line_id: raise osv.except_osv(_('Wrong voucher line'),_("The invoice you are willing to pay is not valid anymore.")) sign = voucher.type in ('payment', 'purchase') and -1 or 1 currency_rate_difference = sign * (line.move_line_id.amount_residual - amount) else: currency_rate_difference = 0.0 move_line = { 'journal_id': voucher.journal_id.id, 'period_id': voucher.period_id.id, 'name': line.name or '/', 'account_id': line.account_id.id, 'move_id': move_id, 'partner_id': voucher.partner_id.id, 'currency_id': line.move_line_id and (company_currency <> line.move_line_id.currency_id.id and line.move_line_id.currency_id.id) or False, 'analytic_account_id': line.account_analytic_id and line.account_analytic_id.id or False, 'quantity': 1, 'credit': 0.0, 'debit': 0.0, 'date': voucher.date } if amount < 0: amount = -amount if line.type == 'dr': line.type = 'cr' else: line.type = 'dr' if (line.type=='dr'): tot_line += amount move_line['debit'] = amount else: tot_line -= amount move_line['credit'] = amount if voucher.tax_id and voucher.type in ('sale', 'purchase'): move_line.update({ 'account_tax_id': voucher.tax_id.id, }) if move_line.get('account_tax_id', False): tax_data = tax_obj.browse(cr, uid, [move_line['account_tax_id']], context=context)[0] if not (tax_data.base_code_id and tax_data.tax_code_id): raise osv.except_osv(_('No Account Base Code and Account Tax Code!'),_("You have to configure account base code and account tax code on the '%s' tax!") % (tax_data.name)) # compute the amount in foreign currency foreign_currency_diff = 0.0 amount_currency = False if line.move_line_id: # We want to set it on the account move line as soon as the original line had a foreign currency if line.move_line_id.currency_id and line.move_line_id.currency_id.id != company_currency: # we compute the amount in that foreign currency. if line.move_line_id.currency_id.id == current_currency: # if the voucher and the voucher line share the same currency, there is no computation to do sign = (move_line['debit'] - move_line['credit']) < 0 and -1 or 1 amount_currency = sign * (line.amount) else: # if the rate is specified on the voucher, it will be used thanks to the special keys in the context # otherwise we use the rates of the system amount_currency = currency_obj.compute(cr, uid, company_currency, line.move_line_id.currency_id.id, move_line['debit']-move_line['credit'], context=ctx) if line.amount == line.amount_unreconciled: sign = voucher.type in ('payment', 'purchase') and -1 or 1 foreign_currency_diff = sign * line.move_line_id.amount_residual_currency + amount_currency move_line['amount_currency'] = amount_currency voucher_line = move_line_obj.create(cr, uid, move_line) rec_ids = [voucher_line, line.move_line_id.id] if not currency_obj.is_zero(cr, uid, voucher.company_id.currency_id, currency_rate_difference): # Change difference entry in company currency exch_lines = self._get_exchange_lines(cr, uid, line, move_id, currency_rate_difference, company_currency, current_currency, context=context) new_id = move_line_obj.create(cr, uid, exch_lines[0],context) move_line_obj.create(cr, uid, exch_lines[1], context) rec_ids.append(new_id) if line.move_line_id and line.move_line_id.currency_id and not currency_obj.is_zero(cr, uid, line.move_line_id.currency_id, foreign_currency_diff): # Change difference entry in voucher currency move_line_foreign_currency = { 'journal_id': line.voucher_id.journal_id.id, 'period_id': line.voucher_id.period_id.id, 'name': _('change')+': '+(line.name or '/'), 'account_id': line.account_id.id, 'move_id': move_id, 'partner_id': line.voucher_id.partner_id.id, 'currency_id': line.move_line_id.currency_id.id, 'amount_currency': -1 * foreign_currency_diff, 'quantity': 1, 'credit': 0.0, 'debit': 0.0, 'date': line.voucher_id.date, } new_id = move_line_obj.create(cr, uid, move_line_foreign_currency, context=context) rec_ids.append(new_id) if line.move_line_id.id: rec_lst_ids.append(rec_ids) return (tot_line, rec_lst_ids) def writeoff_move_line_get(self, cr, uid, voucher_id, line_total, move_id, name, company_currency, current_currency, context=None): ''' Set a dict to be use to create the writeoff move line. :param voucher_id: Id of voucher what we are creating account_move. :param line_total: Amount remaining to be allocated on lines. :param move_id: Id of account move where this line will be added. :param name: Description of account move line. :param company_currency: id of currency of the company to which the voucher belong :param current_currency: id of currency of the voucher :return: mapping between fieldname and value of account move line to create :rtype: dict ''' currency_obj = self.pool.get('res.currency') move_line = {} voucher = self.pool.get('account.voucher').browse(cr,uid,voucher_id,context) current_currency_obj = voucher.currency_id or voucher.journal_id.company_id.currency_id if not currency_obj.is_zero(cr, uid, current_currency_obj, line_total): diff = line_total account_id = False write_off_name = '' if voucher.payment_option == 'with_writeoff': account_id = voucher.writeoff_acc_id.id write_off_name = voucher.comment elif voucher.type in ('sale', 'receipt'): account_id = voucher.partner_id.property_account_receivable.id else: account_id = voucher.partner_id.property_account_payable.id sign = voucher.type == 'payment' and -1 or 1 move_line = { 'name': write_off_name or name, 'account_id': account_id, 'move_id': move_id, 'partner_id': voucher.partner_id.id, 'date': voucher.date, 'credit': diff > 0 and diff or 0.0, 'debit': diff < 0 and -diff or 0.0, 'amount_currency': company_currency <> current_currency and (sign * -1 * voucher.writeoff_amount) or 0.0, 'currency_id': company_currency <> current_currency and current_currency or False, 'analytic_account_id': voucher.analytic_id and voucher.analytic_id.id or False, } return move_line def _get_company_currency(self, cr, uid, voucher_id, context=None): ''' Get the currency of the actual company. :param voucher_id: Id of the voucher what i want to obtain company currency. :return: currency id of the company of the voucher :rtype: int ''' return self.pool.get('account.voucher').browse(cr,uid,voucher_id,context).journal_id.company_id.currency_id.id def _get_current_currency(self, cr, uid, voucher_id, context=None): ''' Get the currency of the voucher. :param voucher_id: Id of the voucher what i want to obtain current currency. :return: currency id of the voucher :rtype: int ''' voucher = self.pool.get('account.voucher').browse(cr,uid,voucher_id,context) return voucher.currency_id.id or self._get_company_currency(cr,uid,voucher.id,context) def action_move_line_create(self, cr, uid, ids, context=None): ''' Confirm the vouchers given in ids and create the journal entries for each of them ''' if context is None: context = {} move_pool = self.pool.get('account.move') move_line_pool = self.pool.get('account.move.line') for voucher in self.browse(cr, uid, ids, context=context): local_context = dict(context, force_company=voucher.journal_id.company_id.id) if voucher.move_id: continue company_currency = self._get_company_currency(cr, uid, voucher.id, context) current_currency = self._get_current_currency(cr, uid, voucher.id, context) # we select the context to use accordingly if it's a multicurrency case or not context = self._sel_context(cr, uid, voucher.id, context) # But for the operations made by _convert_amount, we always need to give the date in the context ctx = context.copy() ctx.update({'date': voucher.date}) # Create the account move record. move_id = move_pool.create(cr, uid, self.account_move_get(cr, uid, voucher.id, context=context), context=context) # Get the name of the account_move just created name = move_pool.browse(cr, uid, move_id, context=context).name # Create the first line of the voucher move_line_id = move_line_pool.create(cr, uid, self.first_move_line_get(cr,uid,voucher.id, move_id, company_currency, current_currency, local_context), local_context) move_line_brw = move_line_pool.browse(cr, uid, move_line_id, context=context) line_total = move_line_brw.debit - move_line_brw.credit rec_list_ids = [] if voucher.type == 'sale': line_total = line_total - self._convert_amount(cr, uid, voucher.tax_amount, voucher.id, context=ctx) elif voucher.type == 'purchase': line_total = line_total + self._convert_amount(cr, uid, voucher.tax_amount, voucher.id, context=ctx) # Create one move line per voucher line where amount is not 0.0 line_total, rec_list_ids = self.voucher_move_line_create(cr, uid, voucher.id, line_total, move_id, company_currency, current_currency, context) # Create the writeoff line if needed ml_writeoff = self.writeoff_move_line_get(cr, uid, voucher.id, line_total, move_id, name, company_currency, current_currency, local_context) if ml_writeoff: move_line_pool.create(cr, uid, ml_writeoff, local_context) # We post the voucher. self.write(cr, uid, [voucher.id], { 'move_id': move_id, 'state': 'posted', 'number': name, }) if voucher.journal_id.entry_posted: move_pool.post(cr, uid, [move_id], context={}) # We automatically reconcile the account move lines. reconcile = False for rec_ids in rec_list_ids: if len(rec_ids) >= 2: reconcile = move_line_pool.reconcile_partial(cr, uid, rec_ids, writeoff_acc_id=voucher.writeoff_acc_id.id, writeoff_period_id=voucher.period_id.id, writeoff_journal_id=voucher.journal_id.id) return True def copy(self, cr, uid, id, default=None, context=None): if default is None: default = {} default.update({ 'state': 'draft', 'number': False, 'move_id': False, 'line_cr_ids': False, 'line_dr_ids': False, 'reference': False }) if 'date' not in default: default['date'] = time.strftime('%Y-%m-%d') return super(account_voucher, self).copy(cr, uid, id, default, context) class account_voucher_line(osv.osv): _name = 'account.voucher.line' _description = 'Voucher Lines' _order = "move_line_id" # If the payment is in the same currency than the invoice, we keep the same amount # Otherwise, we compute from invoice currency to payment currency def _compute_balance(self, cr, uid, ids, name, args, context=None): currency_pool = self.pool.get('res.currency') rs_data = {} for line in self.browse(cr, uid, ids, context=context): ctx = context.copy() ctx.update({'date': line.voucher_id.date}) voucher_rate = self.pool.get('res.currency').read(cr, uid, line.voucher_id.currency_id.id, ['rate'], context=ctx)['rate'] ctx.update({ 'voucher_special_currency': line.voucher_id.payment_rate_currency_id and line.voucher_id.payment_rate_currency_id.id or False, 'voucher_special_currency_rate': line.voucher_id.payment_rate * voucher_rate}) res = {} company_currency = line.voucher_id.journal_id.company_id.currency_id.id voucher_currency = line.voucher_id.currency_id and line.voucher_id.currency_id.id or company_currency move_line = line.move_line_id or False if not move_line: res['amount_original'] = 0.0 res['amount_unreconciled'] = 0.0 elif move_line.currency_id and voucher_currency==move_line.currency_id.id: res['amount_original'] = abs(move_line.amount_currency) res['amount_unreconciled'] = abs(move_line.amount_residual_currency) else: #always use the amount booked in the company currency as the basis of the conversion into the voucher currency res['amount_original'] = currency_pool.compute(cr, uid, company_currency, voucher_currency, move_line.credit or move_line.debit or 0.0, context=ctx) res['amount_unreconciled'] = currency_pool.compute(cr, uid, company_currency, voucher_currency, abs(move_line.amount_residual), context=ctx) rs_data[line.id] = res return rs_data def _currency_id(self, cr, uid, ids, name, args, context=None): ''' This function returns the currency id of a voucher line. It's either the currency of the associated move line (if any) or the currency of the voucher or the company currency. ''' res = {} for line in self.browse(cr, uid, ids, context=context): move_line = line.move_line_id if move_line: res[line.id] = move_line.currency_id and move_line.currency_id.id or move_line.company_id.currency_id.id else: res[line.id] = line.voucher_id.currency_id and line.voucher_id.currency_id.id or line.voucher_id.company_id.currency_id.id return res _columns = { 'voucher_id':fields.many2one('account.voucher', 'Voucher', required=1, ondelete='cascade'), 'name':fields.char('Description', size=256), 'account_id':fields.many2one('account.account','Account', required=True), 'partner_id':fields.related('voucher_id', 'partner_id', type='many2one', relation='res.partner', string='Partner'), 'untax_amount':fields.float('Untax Amount'), 'amount':fields.float('Amount', digits_compute=dp.get_precision('Account')), 'reconcile': fields.boolean('Full Reconcile'), 'type':fields.selection([('dr','Debit'),('cr','Credit')], 'Dr/Cr'), 'account_analytic_id': fields.many2one('account.analytic.account', 'Analytic Account'), 'move_line_id': fields.many2one('account.move.line', 'Journal Item'), 'date_original': fields.related('move_line_id','date', type='date', relation='account.move.line', string='Date', readonly=1), 'date_due': fields.related('move_line_id','date_maturity', type='date', relation='account.move.line', string='Due Date', readonly=1), 'amount_original': fields.function(_compute_balance, multi='dc', type='float', string='Original Amount', store=True, digits_compute=dp.get_precision('Account')), 'amount_unreconciled': fields.function(_compute_balance, multi='dc', type='float', string='Open Balance', store=True, digits_compute=dp.get_precision('Account')), 'company_id': fields.related('voucher_id','company_id', relation='res.company', type='many2one', string='Company', store=True, readonly=True), 'currency_id': fields.function(_currency_id, string='Currency', type='many2one', relation='res.currency', readonly=True), } _defaults = { 'name': '', } def onchange_reconcile(self, cr, uid, ids, reconcile, amount, amount_unreconciled, context=None): vals = {'amount': 0.0} if reconcile: vals = { 'amount': amount_unreconciled} return {'value': vals} def onchange_amount(self, cr, uid, ids, amount, amount_unreconciled, context=None): vals = {} if amount: vals['reconcile'] = (amount == amount_unreconciled) return {'value': vals} def onchange_move_line_id(self, cr, user, ids, move_line_id, context=None): """ Returns a dict that contains new values and context @param move_line_id: latest value from user input for field move_line_id @param args: other arguments @param context: context arguments, like lang, time zone @return: Returns a dict which contains new values, and context """ res = {} move_line_pool = self.pool.get('account.move.line') if move_line_id: move_line = move_line_pool.browse(cr, user, move_line_id, context=context) if move_line.credit: ttype = 'dr' else: ttype = 'cr' res.update({ 'account_id': move_line.account_id.id, 'type': ttype, 'currency_id': move_line.currency_id and move_line.currency_id.id or move_line.company_id.currency_id.id, }) return { 'value':res, } def default_get(self, cr, user, fields_list, context=None): """ Returns default values for fields @param fields_list: list of fields, for which default values are required to be read @param context: context arguments, like lang, time zone @return: Returns a dict that contains default values for fields """ if context is None: context = {} journal_id = context.get('journal_id', False) partner_id = context.get('partner_id', False) journal_pool = self.pool.get('account.journal') partner_pool = self.pool.get('res.partner') values = super(account_voucher_line, self).default_get(cr, user, fields_list, context=context) if (not journal_id) or ('account_id' not in fields_list): return values journal = journal_pool.browse(cr, user, journal_id, context=context) account_id = False ttype = 'cr' if journal.type in ('sale', 'sale_refund'): account_id = journal.default_credit_account_id and journal.default_credit_account_id.id or False ttype = 'cr' elif journal.type in ('purchase', 'expense', 'purchase_refund'): account_id = journal.default_debit_account_id and journal.default_debit_account_id.id or False ttype = 'dr' elif partner_id: partner = partner_pool.browse(cr, user, partner_id, context=context) if context.get('type') == 'payment': ttype = 'dr' account_id = partner.property_account_payable.id elif context.get('type') == 'receipt': account_id = partner.property_account_receivable.id values.update({ 'account_id':account_id, 'type':ttype }) return values def resolve_o2m_operations(cr, uid, target_osv, operations, fields, context): results = [] for operation in operations: result = None if not isinstance(operation, (list, tuple)): result = target_osv.read(cr, uid, operation, fields, context=context) elif operation[0] == 0: # may be necessary to check if all the fields are here and get the default values? result = operation[2] elif operation[0] == 1: result = target_osv.read(cr, uid, operation[1], fields, context=context) if not result: result = {} result.update(operation[2]) elif operation[0] == 4: result = target_osv.read(cr, uid, operation[1], fields, context=context) if result != None: results.append(result) return results # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
agpl-3.0
rockyzhang/zhangyanhit-python-for-android-mips
python-modules/twisted/twisted/protocols/basic.py
49
28640
# -*- test-case-name: twisted.test.test_protocols -*- # Copyright (c) 2001-2010 Twisted Matrix Laboratories. # See LICENSE for details. """ Basic protocols, such as line-oriented, netstring, and int prefixed strings. Maintainer: Itamar Shtull-Trauring """ # System imports import re import struct import warnings import cStringIO import math from zope.interface import implements # Twisted imports from twisted.internet import protocol, defer, interfaces, error from twisted.python import log, deprecate, versions LENGTH, DATA, COMMA = range(3) NUMBER = re.compile('(\d*)(:?)') deprecatedSince = versions.Version("Twisted", 10, 2, 0) message = "NetstringReceiver parser state is private." for attr in ["LENGTH", "DATA", "COMMA", "NUMBER"]: deprecate.deprecatedModuleAttribute( deprecatedSince, message, __name__, attr) del deprecatedSince, message, attr DEBUG = 0 class NetstringParseError(ValueError): """ The incoming data is not in valid Netstring format. """ class IncompleteNetstring(Exception): """ Not enough data to complete a netstring. """ class NetstringReceiver(protocol.Protocol): """ A protocol that sends and receives netstrings. See U{http://cr.yp.to/proto/netstrings.txt} for the specification of netstrings. Every netstring starts with digits that specify the length of the data. This length specification is separated from the data by a colon. The data is terminated with a comma. Override L{stringReceived} to handle received netstrings. This method is called with the netstring payload as a single argument whenever a complete netstring is received. Security features: 1. Messages are limited in size, useful if you don't want someone sending you a 500MB netstring (change C{self.MAX_LENGTH} to the maximum length you wish to accept). 2. The connection is lost if an illegal message is received. @ivar MAX_LENGTH: Defines the maximum length of netstrings that can be received. @type MAX_LENGTH: C{int} @ivar _LENGTH: A pattern describing all strings that contain a netstring length specification. Examples for length specifications are '0:', '12:', and '179:'. '007:' is no valid length specification, since leading zeros are not allowed. @type _LENGTH: C{re.Match} @ivar _LENGTH_PREFIX: A pattern describing all strings that contain the first part of a netstring length specification (without the trailing comma). Examples are '0', '12', and '179'. '007' does not start a netstring length specification, since leading zeros are not allowed. @type _LENGTH_PREFIX: C{re.Match} @ivar _PARSING_LENGTH: Indicates that the C{NetstringReceiver} is in the state of parsing the length portion of a netstring. @type _PARSING_LENGTH: C{int} @ivar _PARSING_PAYLOAD: Indicates that the C{NetstringReceiver} is in the state of parsing the payload portion (data and trailing comma) of a netstring. @type _PARSING_PAYLOAD: C{int} @ivar brokenPeer: Indicates if the connection is still functional @type brokenPeer: C{int} @ivar _state: Indicates if the protocol is consuming the length portion (C{PARSING_LENGTH}) or the payload (C{PARSING_PAYLOAD}) of a netstring @type _state: C{int} @ivar _remainingData: Holds the chunk of data that has not yet been consumed @type _remainingData: C{string} @ivar _payload: Holds the payload portion of a netstring including the trailing comma @type _payload: C{cStringIO.StringIO} @ivar _expectedPayloadSize: Holds the payload size plus one for the trailing comma. @type _expectedPayloadSize: C{int} """ MAX_LENGTH = 99999 _LENGTH = re.compile('(0|[1-9]\d*)(:)') _LENGTH_PREFIX = re.compile('(0|[1-9]\d*)$') # Some error information for NetstringParseError instances. _MISSING_LENGTH = ("The received netstring does not start with a " "length specification.") _OVERFLOW = ("The length specification of the received netstring " "cannot be represented in Python - it causes an " "OverflowError!") _TOO_LONG = ("The received netstring is longer than the maximum %s " "specified by self.MAX_LENGTH") _MISSING_COMMA = "The received netstring is not terminated by a comma." _DATA_SUPPORT_DEPRECATED = ("Data passed to sendString() must be a string. " "Non-string support is deprecated since " "Twisted 10.0") # The following constants are used for determining if the NetstringReceiver # is parsing the length portion of a netstring, or the payload. _PARSING_LENGTH, _PARSING_PAYLOAD = range(2) def makeConnection(self, transport): """ Initializes the protocol. """ protocol.Protocol.makeConnection(self, transport) self._remainingData = "" self._currentPayloadSize = 0 self._payload = cStringIO.StringIO() self._state = self._PARSING_LENGTH self._expectedPayloadSize = 0 self.brokenPeer = 0 def sendString(self, string): """ Sends a netstring. Wraps up C{string} by adding length information and a trailing comma; writes the result to the transport. @param string: The string to send. The necessary framing (length prefix, etc) will be added. @type string: C{str} """ if not isinstance(string, str): warnings.warn(self._DATA_SUPPORT_DEPRECATED, DeprecationWarning, 2) string = str(string) self.transport.write('%d:%s,' % (len(string), string)) def dataReceived(self, data): """ Receives some characters of a netstring. Whenever a complete netstring is received, this method extracts its payload and calls L{stringReceived} to process it. @param data: A chunk of data representing a (possibly partial) netstring @type data: C{str} """ self._remainingData += data while self._remainingData: try: self._consumeData() except IncompleteNetstring: break except NetstringParseError: self._handleParseError() break def stringReceived(self, string): """ Override this for notification when each complete string is received. @param string: The complete string which was received with all framing (length prefix, etc) removed. @type string: C{str} @raise NotImplementedError: because the method has to be implemented by the child class. """ raise NotImplementedError() def _maxLengthSize(self): """ Calculate and return the string size of C{self.MAX_LENGTH}. @return: The size of the string representation for C{self.MAX_LENGTH} @rtype: C{float} """ return math.ceil(math.log10(self.MAX_LENGTH)) + 1 def _consumeData(self): """ Consumes the content of C{self._remainingData}. @raise IncompleteNetstring: if C{self._remainingData} does not contain enough data to complete the current netstring. @raise NetstringParseError: if the received data do not form a valid netstring. """ if self._state == self._PARSING_LENGTH: self._consumeLength() self._prepareForPayloadConsumption() if self._state == self._PARSING_PAYLOAD: self._consumePayload() def _consumeLength(self): """ Consumes the length portion of C{self._remainingData}. @raise IncompleteNetstring: if C{self._remainingData} contains a partial length specification (digits without trailing comma). @raise NetstringParseError: if the received data do not form a valid netstring. """ lengthMatch = self._LENGTH.match(self._remainingData) if not lengthMatch: self._checkPartialLengthSpecification() raise IncompleteNetstring() self._processLength(lengthMatch) def _checkPartialLengthSpecification(self): """ Makes sure that the received data represents a valid number. Checks if C{self._remainingData} represents a number smaller or equal to C{self.MAX_LENGTH}. @raise NetstringParseError: if C{self._remainingData} is no number or is too big (checked by L{extractLength}). """ partialLengthMatch = self._LENGTH_PREFIX.match(self._remainingData) if not partialLengthMatch: raise NetstringParseError(self._MISSING_LENGTH) lengthSpecification = (partialLengthMatch.group(1)) self._extractLength(lengthSpecification) def _processLength(self, lengthMatch): """ Processes the length definition of a netstring. Extracts and stores in C{self._expectedPayloadSize} the number representing the netstring size. Removes the prefix representing the length specification from C{self._remainingData}. @raise NetstringParseError: if the received netstring does not start with a number or the number is bigger than C{self.MAX_LENGTH}. @param lengthMatch: A regular expression match object matching a netstring length specification @type lengthMatch: C{re.Match} """ endOfNumber = lengthMatch.end(1) startOfData = lengthMatch.end(2) lengthString = self._remainingData[:endOfNumber] # Expect payload plus trailing comma: self._expectedPayloadSize = self._extractLength(lengthString) + 1 self._remainingData = self._remainingData[startOfData:] def _extractLength(self, lengthAsString): """ Attempts to extract the length information of a netstring. @raise NetstringParseError: if the number is bigger than C{self.MAX_LENGTH}. @param lengthAsString: A chunk of data starting with a length specification @type lengthAsString: C{str} @return: The length of the netstring @rtype: C{int} """ self._checkStringSize(lengthAsString) length = int(lengthAsString) if length > self.MAX_LENGTH: raise NetstringParseError(self._TOO_LONG % (self.MAX_LENGTH,)) return length def _checkStringSize(self, lengthAsString): """ Checks the sanity of lengthAsString. Checks if the size of the length specification exceeds the size of the string representing self.MAX_LENGTH. If this is not the case, the number represented by lengthAsString is certainly bigger than self.MAX_LENGTH, and a NetstringParseError can be raised. This method should make sure that netstrings with extremely long length specifications are refused before even attempting to convert them to an integer (which might trigger a MemoryError). """ if len(lengthAsString) > self._maxLengthSize(): raise NetstringParseError(self._TOO_LONG % (self.MAX_LENGTH,)) def _prepareForPayloadConsumption(self): """ Sets up variables necessary for consuming the payload of a netstring. """ self._state = self._PARSING_PAYLOAD self._currentPayloadSize = 0 self._payload.seek(0) self._payload.truncate() def _consumePayload(self): """ Consumes the payload portion of C{self._remainingData}. If the payload is complete, checks for the trailing comma and processes the payload. If not, raises an L{IncompleteNetstring} exception. @raise IncompleteNetstring: if the payload received so far contains fewer characters than expected. @raise NetstringParseError: if the payload does not end with a comma. """ self._extractPayload() if self._currentPayloadSize < self._expectedPayloadSize: raise IncompleteNetstring() self._checkForTrailingComma() self._state = self._PARSING_LENGTH self._processPayload() def _extractPayload(self): """ Extracts payload information from C{self._remainingData}. Splits C{self._remainingData} at the end of the netstring. The first part becomes C{self._payload}, the second part is stored in C{self._remainingData}. If the netstring is not yet complete, the whole content of C{self._remainingData} is moved to C{self._payload}. """ if self._payloadComplete(): remainingPayloadSize = (self._expectedPayloadSize - self._currentPayloadSize) self._payload.write(self._remainingData[:remainingPayloadSize]) self._remainingData = self._remainingData[remainingPayloadSize:] self._currentPayloadSize = self._expectedPayloadSize else: self._payload.write(self._remainingData) self._currentPayloadSize += len(self._remainingData) self._remainingData = "" def _payloadComplete(self): """ Checks if enough data have been received to complete the netstring. @return: C{True} iff the received data contain at least as many characters as specified in the length section of the netstring @rtype: C{bool} """ return (len(self._remainingData) + self._currentPayloadSize >= self._expectedPayloadSize) def _processPayload(self): """ Processes the actual payload with L{stringReceived}. Strips C{self._payload} of the trailing comma and calls L{stringReceived} with the result. """ self.stringReceived(self._payload.getvalue()[:-1]) def _checkForTrailingComma(self): """ Checks if the netstring has a trailing comma at the expected position. @raise NetstringParseError: if the last payload character is anything but a comma. """ if self._payload.getvalue()[-1] != ",": raise NetstringParseError(self._MISSING_COMMA) def _handleParseError(self): """ Terminates the connection and sets the flag C{self.brokenPeer}. """ self.transport.loseConnection() self.brokenPeer = 1 class LineOnlyReceiver(protocol.Protocol): """ A protocol that receives only lines. This is purely a speed optimisation over LineReceiver, for the cases that raw mode is known to be unnecessary. @cvar delimiter: The line-ending delimiter to use. By default this is '\\r\\n'. @cvar MAX_LENGTH: The maximum length of a line to allow (If a sent line is longer than this, the connection is dropped). Default is 16384. """ _buffer = '' delimiter = '\r\n' MAX_LENGTH = 16384 def dataReceived(self, data): """ Translates bytes into lines, and calls lineReceived. """ lines = (self._buffer+data).split(self.delimiter) self._buffer = lines.pop(-1) for line in lines: if self.transport.disconnecting: # this is necessary because the transport may be told to lose # the connection by a line within a larger packet, and it is # important to disregard all the lines in that packet following # the one that told it to close. return if len(line) > self.MAX_LENGTH: return self.lineLengthExceeded(line) else: self.lineReceived(line) if len(self._buffer) > self.MAX_LENGTH: return self.lineLengthExceeded(self._buffer) def lineReceived(self, line): """ Override this for when each line is received. @param line: The line which was received with the delimiter removed. @type line: C{str} """ raise NotImplementedError def sendLine(self, line): """ Sends a line to the other end of the connection. @param line: The line to send, not including the delimiter. @type line: C{str} """ return self.transport.writeSequence((line, self.delimiter)) def lineLengthExceeded(self, line): """ Called when the maximum line length has been reached. Override if it needs to be dealt with in some special way. """ return error.ConnectionLost('Line length exceeded') class _PauseableMixin: paused = False def pauseProducing(self): self.paused = True self.transport.pauseProducing() def resumeProducing(self): self.paused = False self.transport.resumeProducing() self.dataReceived('') def stopProducing(self): self.paused = True self.transport.stopProducing() class LineReceiver(protocol.Protocol, _PauseableMixin): """ A protocol that receives lines and/or raw data, depending on mode. In line mode, each line that's received becomes a callback to L{lineReceived}. In raw data mode, each chunk of raw data becomes a callback to L{rawDataReceived}. The L{setLineMode} and L{setRawMode} methods switch between the two modes. This is useful for line-oriented protocols such as IRC, HTTP, POP, etc. @cvar delimiter: The line-ending delimiter to use. By default this is '\\r\\n'. @cvar MAX_LENGTH: The maximum length of a line to allow (If a sent line is longer than this, the connection is dropped). Default is 16384. """ line_mode = 1 __buffer = '' delimiter = '\r\n' MAX_LENGTH = 16384 def clearLineBuffer(self): """ Clear buffered data. @return: All of the cleared buffered data. @rtype: C{str} """ b = self.__buffer self.__buffer = "" return b def dataReceived(self, data): """ Protocol.dataReceived. Translates bytes into lines, and calls lineReceived (or rawDataReceived, depending on mode.) """ self.__buffer = self.__buffer+data while self.line_mode and not self.paused: try: line, self.__buffer = self.__buffer.split(self.delimiter, 1) except ValueError: if len(self.__buffer) > self.MAX_LENGTH: line, self.__buffer = self.__buffer, '' return self.lineLengthExceeded(line) break else: linelength = len(line) if linelength > self.MAX_LENGTH: exceeded = line + self.__buffer self.__buffer = '' return self.lineLengthExceeded(exceeded) why = self.lineReceived(line) if why or self.transport and self.transport.disconnecting: return why else: if not self.paused: data=self.__buffer self.__buffer='' if data: return self.rawDataReceived(data) def setLineMode(self, extra=''): """ Sets the line-mode of this receiver. If you are calling this from a rawDataReceived callback, you can pass in extra unhandled data, and that data will be parsed for lines. Further data received will be sent to lineReceived rather than rawDataReceived. Do not pass extra data if calling this function from within a lineReceived callback. """ self.line_mode = 1 if extra: return self.dataReceived(extra) def setRawMode(self): """ Sets the raw mode of this receiver. Further data received will be sent to rawDataReceived rather than lineReceived. """ self.line_mode = 0 def rawDataReceived(self, data): """ Override this for when raw data is received. """ raise NotImplementedError def lineReceived(self, line): """ Override this for when each line is received. @param line: The line which was received with the delimiter removed. @type line: C{str} """ raise NotImplementedError def sendLine(self, line): """ Sends a line to the other end of the connection. @param line: The line to send, not including the delimiter. @type line: C{str} """ return self.transport.write(line + self.delimiter) def lineLengthExceeded(self, line): """ Called when the maximum line length has been reached. Override if it needs to be dealt with in some special way. The argument 'line' contains the remainder of the buffer, starting with (at least some part) of the line which is too long. This may be more than one line, or may be only the initial portion of the line. """ return self.transport.loseConnection() class StringTooLongError(AssertionError): """ Raised when trying to send a string too long for a length prefixed protocol. """ class IntNStringReceiver(protocol.Protocol, _PauseableMixin): """ Generic class for length prefixed protocols. @ivar recvd: buffer holding received data when splitted. @type recvd: C{str} @ivar structFormat: format used for struct packing/unpacking. Define it in subclass. @type structFormat: C{str} @ivar prefixLength: length of the prefix, in bytes. Define it in subclass, using C{struct.calcsize(structFormat)} @type prefixLength: C{int} """ MAX_LENGTH = 99999 recvd = "" def stringReceived(self, string): """ Override this for notification when each complete string is received. @param string: The complete string which was received with all framing (length prefix, etc) removed. @type string: C{str} """ raise NotImplementedError def lengthLimitExceeded(self, length): """ Callback invoked when a length prefix greater than C{MAX_LENGTH} is received. The default implementation disconnects the transport. Override this. @param length: The length prefix which was received. @type length: C{int} """ self.transport.loseConnection() def dataReceived(self, recd): """ Convert int prefixed strings into calls to stringReceived. """ self.recvd = self.recvd + recd while len(self.recvd) >= self.prefixLength and not self.paused: length ,= struct.unpack( self.structFormat, self.recvd[:self.prefixLength]) if length > self.MAX_LENGTH: self.lengthLimitExceeded(length) return if len(self.recvd) < length + self.prefixLength: break packet = self.recvd[self.prefixLength:length + self.prefixLength] self.recvd = self.recvd[length + self.prefixLength:] self.stringReceived(packet) def sendString(self, string): """ Send a prefixed string to the other end of the connection. @param string: The string to send. The necessary framing (length prefix, etc) will be added. @type string: C{str} """ if len(string) >= 2 ** (8 * self.prefixLength): raise StringTooLongError( "Try to send %s bytes whereas maximum is %s" % ( len(string), 2 ** (8 * self.prefixLength))) self.transport.write( struct.pack(self.structFormat, len(string)) + string) class Int32StringReceiver(IntNStringReceiver): """ A receiver for int32-prefixed strings. An int32 string is a string prefixed by 4 bytes, the 32-bit length of the string encoded in network byte order. This class publishes the same interface as NetstringReceiver. """ structFormat = "!I" prefixLength = struct.calcsize(structFormat) class Int16StringReceiver(IntNStringReceiver): """ A receiver for int16-prefixed strings. An int16 string is a string prefixed by 2 bytes, the 16-bit length of the string encoded in network byte order. This class publishes the same interface as NetstringReceiver. """ structFormat = "!H" prefixLength = struct.calcsize(structFormat) class Int8StringReceiver(IntNStringReceiver): """ A receiver for int8-prefixed strings. An int8 string is a string prefixed by 1 byte, the 8-bit length of the string. This class publishes the same interface as NetstringReceiver. """ structFormat = "!B" prefixLength = struct.calcsize(structFormat) class StatefulStringProtocol: """ A stateful string protocol. This is a mixin for string protocols (Int32StringReceiver, NetstringReceiver) which translates stringReceived into a callback (prefixed with 'proto_') depending on state. The state 'done' is special; if a proto_* method returns it, the connection will be closed immediately. """ state = 'init' def stringReceived(self, string): """ Choose a protocol phase function and call it. Call back to the appropriate protocol phase; this begins with the function proto_init and moves on to proto_* depending on what each proto_* function returns. (For example, if self.proto_init returns 'foo', then self.proto_foo will be the next function called when a protocol message is received. """ try: pto = 'proto_'+self.state statehandler = getattr(self,pto) except AttributeError: log.msg('callback',self.state,'not found') else: self.state = statehandler(string) if self.state == 'done': self.transport.loseConnection() class FileSender: """ A producer that sends the contents of a file to a consumer. This is a helper for protocols that, at some point, will take a file-like object, read its contents, and write them out to the network, optionally performing some transformation on the bytes in between. """ implements(interfaces.IProducer) CHUNK_SIZE = 2 ** 14 lastSent = '' deferred = None def beginFileTransfer(self, file, consumer, transform = None): """ Begin transferring a file @type file: Any file-like object @param file: The file object to read data from @type consumer: Any implementor of IConsumer @param consumer: The object to write data to @param transform: A callable taking one string argument and returning the same. All bytes read from the file are passed through this before being written to the consumer. @rtype: C{Deferred} @return: A deferred whose callback will be invoked when the file has been completely written to the consumer. The last byte written to the consumer is passed to the callback. """ self.file = file self.consumer = consumer self.transform = transform self.deferred = deferred = defer.Deferred() self.consumer.registerProducer(self, False) return deferred def resumeProducing(self): chunk = '' if self.file: chunk = self.file.read(self.CHUNK_SIZE) if not chunk: self.file = None self.consumer.unregisterProducer() if self.deferred: self.deferred.callback(self.lastSent) self.deferred = None return if self.transform: chunk = self.transform(chunk) self.consumer.write(chunk) self.lastSent = chunk[-1] def pauseProducing(self): pass def stopProducing(self): if self.deferred: self.deferred.errback( Exception("Consumer asked us to stop producing")) self.deferred = None
apache-2.0
miyakz1192/neutron
neutron/db/migration/migrate_to_ml2.py
10
20722
# Copyright (c) 2014 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ This script will migrate the database of an openvswitch, linuxbridge or Hyper-V plugin so that it can be used with the ml2 plugin. Known Limitations: - THIS SCRIPT IS DESTRUCTIVE! Make sure to backup your Neutron database before running this script, in case anything goes wrong. - It will be necessary to upgrade the database to the target release via neutron-db-manage before attempting to migrate to ml2. Initially, only the icehouse release is supported. - This script does not automate configuration migration. Example usage: python -m neutron.db.migration.migrate_to_ml2 openvswitch \ mysql://login:[email protected]/neutron Note that migration of tunneling state will only be attempted if the --tunnel-type parameter is provided. To manually test migration from ovs to ml2 with devstack: - stack with Q_PLUGIN=openvswitch - boot an instance and validate connectivity - stop the neutron service and all agents - run the neutron-migrate-to-ml2 script - update /etc/neutron/neutron.conf as follows: core_plugin = neutron.plugins.ml2.plugin.Ml2Plugin - Create /etc/neutron/plugins/ml2/ml2_conf.ini and ensure that: - ml2.mechanism_drivers includes 'openvswitch' - ovs.local_ip is set correctly - database.connection is set correctly - Start the neutron service with the ml2 config file created in the previous step in place of the openvswitch config file - Start all the agents - verify that the booted instance still has connectivity - boot a second instance and validate connectivity """ import argparse from oslo_db.sqlalchemy import session import sqlalchemy as sa from neutron.extensions import portbindings from neutron.openstack.common import uuidutils from neutron.plugins.common import constants as p_const # Migration targets LINUXBRIDGE = 'linuxbridge' OPENVSWITCH = 'openvswitch' HYPERV = 'hyperv' # Releases ICEHOUSE = 'icehouse' JUNO = 'juno' SUPPORTED_SCHEMA_VERSIONS = [ICEHOUSE, JUNO] def check_db_schema_version(engine, metadata): """Check that current version of the db schema is supported.""" version_table = sa.Table( 'alembic_version', metadata, autoload=True, autoload_with=engine) versions = [v[0] for v in engine.execute(version_table.select())] if not versions: raise ValueError(_("Missing version in alembic_versions table")) elif len(versions) > 1: raise ValueError(_("Multiple versions in alembic_versions table: %s") % versions) current_version = versions[0] if current_version not in SUPPORTED_SCHEMA_VERSIONS: raise SystemError(_("Unsupported database schema %(current)s. " "Please migrate your database to one of following " "versions: %(supported)s") % {'current': current_version, 'supported': ', '.join(SUPPORTED_SCHEMA_VERSIONS)} ) # Duplicated from neutron.plugins.linuxbridge.common.constants to # avoid having any dependency on the linuxbridge plugin being # installed. def interpret_vlan_id(vlan_id): """Return (network_type, segmentation_id) tuple for encoded vlan_id.""" FLAT_VLAN_ID = -1 LOCAL_VLAN_ID = -2 if vlan_id == LOCAL_VLAN_ID: return (p_const.TYPE_LOCAL, None) elif vlan_id == FLAT_VLAN_ID: return (p_const.TYPE_FLAT, None) else: return (p_const.TYPE_VLAN, vlan_id) class BaseMigrateToMl2(object): def __init__(self, vif_type, driver_type, segment_table_name, vlan_allocation_table_name, old_tables): self.vif_type = vif_type self.driver_type = driver_type self.segment_table_name = segment_table_name self.vlan_allocation_table_name = vlan_allocation_table_name self.old_tables = old_tables def __call__(self, connection_url, save_tables=False, tunnel_type=None, vxlan_udp_port=None): engine = session.create_engine(connection_url) metadata = sa.MetaData() check_db_schema_version(engine, metadata) if hasattr(self, 'define_ml2_tables'): self.define_ml2_tables(metadata) # Autoload the ports table to ensure that foreign keys to it and # the network table can be created for the new tables. sa.Table('ports', metadata, autoload=True, autoload_with=engine) metadata.create_all(engine) self.migrate_network_segments(engine, metadata) if tunnel_type: self.migrate_tunnels(engine, tunnel_type, vxlan_udp_port) self.migrate_vlan_allocations(engine) self.migrate_port_bindings(engine, metadata) if hasattr(self, 'drop_old_tables'): self.drop_old_tables(engine, save_tables) def migrate_segment_dict(self, binding): binding['id'] = uuidutils.generate_uuid() def migrate_network_segments(self, engine, metadata): # Migrating network segments requires loading the data to python # so that a uuid can be generated for each segment. source_table = sa.Table(self.segment_table_name, metadata, autoload=True, autoload_with=engine) source_segments = engine.execute(source_table.select()) ml2_segments = [dict(x) for x in source_segments] for segment in ml2_segments: self.migrate_segment_dict(segment) if ml2_segments: ml2_network_segments = metadata.tables['ml2_network_segments'] engine.execute(ml2_network_segments.insert(), ml2_segments) def migrate_tunnels(self, engine, tunnel_type, vxlan_udp_port=None): """Override this method to perform plugin-specific tunnel migration.""" pass def migrate_vlan_allocations(self, engine): engine.execute((""" INSERT INTO ml2_vlan_allocations SELECT physical_network, vlan_id, allocated FROM %(source_table)s WHERE allocated = TRUE """) % {'source_table': self.vlan_allocation_table_name}) def get_port_segment_map(self, engine): """Retrieve a mapping of port id to segment id. The monolithic plugins only support a single segment per network, so the segment id can be uniquely identified by the network associated with a given port. """ port_segments = engine.execute(""" SELECT ports_network.port_id, ml2_network_segments.id AS segment_id FROM ml2_network_segments, ( SELECT portbindingports.port_id, ports.network_id FROM portbindingports, ports WHERE portbindingports.port_id = ports.id ) AS ports_network WHERE ml2_network_segments.network_id = ports_network.network_id """) return dict(x for x in port_segments) def migrate_port_bindings(self, engine, metadata): port_segment_map = self.get_port_segment_map(engine) port_binding_ports = sa.Table('portbindingports', metadata, autoload=True, autoload_with=engine) source_bindings = engine.execute(port_binding_ports.select()) ml2_bindings = [dict(x) for x in source_bindings] for binding in ml2_bindings: binding['vif_type'] = self.vif_type binding['driver'] = self.driver_type segment = port_segment_map.get(binding['port_id']) if segment: binding['segment'] = segment if ml2_bindings: ml2_port_bindings = metadata.tables['ml2_port_bindings'] engine.execute(ml2_port_bindings.insert(), ml2_bindings) class BaseMigrateToMl2_IcehouseMixin(object): """A mixin to ensure ml2 database schema state for Icehouse. This classes the missing tables for Icehouse schema revisions. In Juno, the schema state has been healed, so we do not need to run these. """ def drop_old_tables(self, engine, save_tables=False): if save_tables: return old_tables = self.old_tables + [self.vlan_allocation_table_name, self.segment_table_name] for table_name in old_tables: engine.execute('DROP TABLE %s' % table_name) def define_ml2_tables(self, metadata): sa.Table( 'arista_provisioned_nets', metadata, sa.Column('tenant_id', sa.String(length=255), nullable=True), sa.Column('id', sa.String(length=36), nullable=False), sa.Column('network_id', sa.String(length=36), nullable=True), sa.Column('segmentation_id', sa.Integer(), autoincrement=False, nullable=True), sa.PrimaryKeyConstraint('id'), ) sa.Table( 'arista_provisioned_vms', metadata, sa.Column('tenant_id', sa.String(length=255), nullable=True), sa.Column('id', sa.String(length=36), nullable=False), sa.Column('vm_id', sa.String(length=255), nullable=True), sa.Column('host_id', sa.String(length=255), nullable=True), sa.Column('port_id', sa.String(length=36), nullable=True), sa.Column('network_id', sa.String(length=36), nullable=True), sa.PrimaryKeyConstraint('id'), ) sa.Table( 'arista_provisioned_tenants', metadata, sa.Column('tenant_id', sa.String(length=255), nullable=True), sa.Column('id', sa.String(length=36), nullable=False), sa.PrimaryKeyConstraint('id'), ) sa.Table( 'cisco_ml2_nexusport_bindings', metadata, sa.Column('binding_id', sa.Integer(), nullable=False), sa.Column('port_id', sa.String(length=255), nullable=True), sa.Column('vlan_id', sa.Integer(), autoincrement=False, nullable=False), sa.Column('switch_ip', sa.String(length=255), nullable=True), sa.Column('instance_id', sa.String(length=255), nullable=True), sa.PrimaryKeyConstraint('binding_id'), ) sa.Table( 'cisco_ml2_credentials', metadata, sa.Column('credential_id', sa.String(length=255), nullable=True), sa.Column('tenant_id', sa.String(length=255), nullable=False), sa.Column('credential_name', sa.String(length=255), nullable=False), sa.Column('user_name', sa.String(length=255), nullable=True), sa.Column('password', sa.String(length=255), nullable=True), sa.PrimaryKeyConstraint('tenant_id', 'credential_name'), ) sa.Table( 'ml2_flat_allocations', metadata, sa.Column('physical_network', sa.String(length=64), nullable=False), sa.PrimaryKeyConstraint('physical_network'), ) sa.Table( 'ml2_gre_allocations', metadata, sa.Column('gre_id', sa.Integer, nullable=False, autoincrement=False), sa.Column('allocated', sa.Boolean, nullable=False), sa.PrimaryKeyConstraint('gre_id'), ) sa.Table( 'ml2_gre_endpoints', metadata, sa.Column('ip_address', sa.String(length=64)), sa.PrimaryKeyConstraint('ip_address'), ) sa.Table( 'ml2_network_segments', metadata, sa.Column('id', sa.String(length=36), nullable=False), sa.Column('network_id', sa.String(length=36), nullable=False), sa.Column('network_type', sa.String(length=32), nullable=False), sa.Column('physical_network', sa.String(length=64), nullable=True), sa.Column('segmentation_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['network_id'], ['networks.id'], ondelete='CASCADE'), sa.PrimaryKeyConstraint('id'), ) sa.Table( 'ml2_port_bindings', metadata, sa.Column('port_id', sa.String(length=36), nullable=False), sa.Column('host', sa.String(length=255), nullable=False), sa.Column('vif_type', sa.String(length=64), nullable=False), sa.Column('driver', sa.String(length=64), nullable=True), sa.Column('segment', sa.String(length=36), nullable=True), sa.Column('vnic_type', sa.String(length=64), nullable=False, server_default='normal'), sa.Column('vif_details', sa.String(4095), nullable=False, server_default=''), sa.Column('profile', sa.String(4095), nullable=False, server_default=''), sa.ForeignKeyConstraint(['port_id'], ['ports.id'], ondelete='CASCADE'), sa.ForeignKeyConstraint(['segment'], ['ml2_network_segments.id'], ondelete='SET NULL'), sa.PrimaryKeyConstraint('port_id'), ) sa.Table( 'ml2_vlan_allocations', metadata, sa.Column('physical_network', sa.String(length=64), nullable=False), sa.Column('vlan_id', sa.Integer(), autoincrement=False, nullable=False), sa.Column('allocated', sa.Boolean(), autoincrement=False, nullable=False), sa.PrimaryKeyConstraint('physical_network', 'vlan_id'), ) sa.Table( 'ml2_vxlan_allocations', metadata, sa.Column('vxlan_vni', sa.Integer, nullable=False, autoincrement=False), sa.Column('allocated', sa.Boolean, nullable=False), sa.PrimaryKeyConstraint('vxlan_vni'), ) sa.Table( 'ml2_vxlan_endpoints', metadata, sa.Column('ip_address', sa.String(length=64)), sa.Column('udp_port', sa.Integer(), nullable=False, autoincrement=False), sa.PrimaryKeyConstraint('ip_address', 'udp_port'), ) class MigrateLinuxBridgeToMl2_Juno(BaseMigrateToMl2): def __init__(self): super(MigrateLinuxBridgeToMl2_Juno, self).__init__( vif_type=portbindings.VIF_TYPE_BRIDGE, driver_type=LINUXBRIDGE, segment_table_name='network_bindings', vlan_allocation_table_name='network_states', old_tables=['portbindingports']) def migrate_segment_dict(self, binding): super(MigrateLinuxBridgeToMl2_Juno, self).migrate_segment_dict( binding) vlan_id = binding.pop('vlan_id') network_type, segmentation_id = interpret_vlan_id(vlan_id) binding['network_type'] = network_type binding['segmentation_id'] = segmentation_id class MigrateHyperVPluginToMl2_Juno(BaseMigrateToMl2): def __init__(self): super(MigrateHyperVPluginToMl2_Juno, self).__init__( vif_type=portbindings.VIF_TYPE_HYPERV, driver_type=HYPERV, segment_table_name='hyperv_network_bindings', vlan_allocation_table_name='hyperv_vlan_allocations', old_tables=['portbindingports']) def migrate_segment_dict(self, binding): super(MigrateHyperVPluginToMl2_Juno, self).migrate_segment_dict( binding) # the 'hyperv_network_bindings' table has the column # 'segmentation_id' instead of 'vlan_id'. vlan_id = binding.pop('segmentation_id') network_type, segmentation_id = interpret_vlan_id(vlan_id) binding['network_type'] = network_type binding['segmentation_id'] = segmentation_id class MigrateOpenvswitchToMl2_Juno(BaseMigrateToMl2): def __init__(self): super(MigrateOpenvswitchToMl2_Juno, self).__init__( vif_type=portbindings.VIF_TYPE_OVS, driver_type=OPENVSWITCH, segment_table_name='ovs_network_bindings', vlan_allocation_table_name='ovs_vlan_allocations', old_tables=[ 'ovs_tunnel_allocations', 'ovs_tunnel_endpoints', 'portbindingports', ]) def migrate_tunnels(self, engine, tunnel_type, vxlan_udp_port=None): if tunnel_type == p_const.TYPE_GRE: engine.execute(""" INSERT INTO ml2_gre_allocations SELECT tunnel_id as gre_id, allocated FROM ovs_tunnel_allocations WHERE allocated = TRUE """) engine.execute(""" INSERT INTO ml2_gre_endpoints SELECT ip_address FROM ovs_tunnel_endpoints """) elif tunnel_type == p_const.TYPE_VXLAN: if not vxlan_udp_port: vxlan_udp_port = p_const.VXLAN_UDP_PORT engine.execute(""" INSERT INTO ml2_vxlan_allocations SELECT tunnel_id as vxlan_vni, allocated FROM ovs_tunnel_allocations WHERE allocated = TRUE """) engine.execute(sa.text(""" INSERT INTO ml2_vxlan_endpoints SELECT ip_address, :udp_port as udp_port FROM ovs_tunnel_endpoints """), udp_port=vxlan_udp_port) else: raise ValueError(_('Unknown tunnel type: %s') % tunnel_type) class MigrateLinuxBridgeToMl2_Icehouse(MigrateLinuxBridgeToMl2_Juno, BaseMigrateToMl2_IcehouseMixin): pass class MigrateOpenvswitchToMl2_Icehouse(MigrateOpenvswitchToMl2_Juno, BaseMigrateToMl2_IcehouseMixin): pass class MigrateHyperVPluginToMl2_Icehouse(MigrateHyperVPluginToMl2_Juno, BaseMigrateToMl2_IcehouseMixin): pass migrate_map = { ICEHOUSE: { OPENVSWITCH: MigrateOpenvswitchToMl2_Icehouse, LINUXBRIDGE: MigrateLinuxBridgeToMl2_Icehouse, HYPERV: MigrateHyperVPluginToMl2_Icehouse, }, JUNO: { OPENVSWITCH: MigrateOpenvswitchToMl2_Juno, LINUXBRIDGE: MigrateLinuxBridgeToMl2_Juno, HYPERV: MigrateHyperVPluginToMl2_Juno, }, } def main(): parser = argparse.ArgumentParser() parser.add_argument('plugin', choices=[OPENVSWITCH, LINUXBRIDGE, HYPERV], help=_('The plugin type whose database will be ' 'migrated')) parser.add_argument('connection', help=_('The connection url for the target db')) parser.add_argument('--tunnel-type', choices=[p_const.TYPE_GRE, p_const.TYPE_VXLAN], help=_('The %s tunnel type to migrate from') % OPENVSWITCH) parser.add_argument('--vxlan-udp-port', default=None, type=int, help=_('The UDP port to use for VXLAN tunnels.')) parser.add_argument('--release', default=JUNO, choices=[ICEHOUSE, JUNO]) parser.add_argument('--save-tables', default=False, action='store_true', help=_("Retain the old plugin's tables")) #TODO(marun) Provide a verbose option args = parser.parse_args() if args.plugin in [LINUXBRIDGE, HYPERV] and (args.tunnel_type or args.vxlan_udp_port): msg = _('Tunnel args (tunnel-type and vxlan-udp-port) are not valid ' 'for the %s plugin') parser.error(msg % args.plugin) try: migrate_func = migrate_map[args.release][args.plugin]() except KeyError: msg = _('Support for migrating %(plugin)s for release ' '%(release)s is not yet implemented') parser.error(msg % {'plugin': args.plugin, 'release': args.release}) else: migrate_func(args.connection, args.save_tables, args.tunnel_type, args.vxlan_udp_port) if __name__ == '__main__': main()
apache-2.0
HybridF5/nova
nova/scheduler/filters/compute_capabilities_filter.py
10
4182
# Copyright (c) 2011 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_log import log as logging from oslo_serialization import jsonutils import six from nova.scheduler import filters from nova.scheduler.filters import extra_specs_ops LOG = logging.getLogger(__name__) class ComputeCapabilitiesFilter(filters.BaseHostFilter): """HostFilter hard-coded to work with InstanceType records.""" # Instance type and host capabilities do not change within a request run_filter_once_per_request = True def _get_capabilities(self, host_state, scope): cap = host_state for index in range(0, len(scope)): try: if isinstance(cap, six.string_types): try: cap = jsonutils.loads(cap) except ValueError as e: LOG.debug("%(host_state)s fails. The capabilities " "'%(cap)s' couldn't be loaded from JSON: " "%(error)s", {'host_state': host_state, 'cap': cap, 'error': e}) return None if not isinstance(cap, dict): if getattr(cap, scope[index], None) is None: # If can't find, check stats dict cap = cap.stats.get(scope[index], None) else: cap = getattr(cap, scope[index], None) else: cap = cap.get(scope[index], None) except AttributeError as e: LOG.debug("%(host_state)s fails. The capabilities couldn't " "be retrieved: %(error)s.", {'host_state': host_state, 'error': e}) return None if cap is None: LOG.debug("%(host_state)s fails. There are no capabilities " "to retrieve.", {'host_state': host_state}) return None return cap def _satisfies_extra_specs(self, host_state, instance_type): """Check that the host_state provided by the compute service satisfies the extra specs associated with the instance type. """ if 'extra_specs' not in instance_type: return True for key, req in six.iteritems(instance_type.extra_specs): # Either not scope format, or in capabilities scope scope = key.split(':') if len(scope) > 1: if scope[0] != "capabilities": continue else: del scope[0] cap = self._get_capabilities(host_state, scope) if cap is None: return False if not extra_specs_ops.match(str(cap), req): LOG.debug("%(host_state)s fails extra_spec requirements. " "'%(req)s' does not match '%(cap)s'", {'host_state': host_state, 'req': req, 'cap': cap}) return False return True def host_passes(self, host_state, spec_obj): """Return a list of hosts that can create instance_type.""" instance_type = spec_obj.flavor if not self._satisfies_extra_specs(host_state, instance_type): LOG.debug("%(host_state)s fails instance_type extra_specs " "requirements", {'host_state': host_state}) return False return True
apache-2.0
thelazier/p2pool-dash
dev/convert_networks.py
2
1614
import sys f = open(sys.argv[1]) while True: if f.readline().strip() == 'nets = dict(': break def nesting(l): res = 0 for c in l: if c == '(': res += 1 if c == ')': res -= 1 return res def write_header(f, name): if sys.argv[3] == 'p2pool': f2.write('from p2pool.dash import networks\n\n') if name == 'bitcoin': f2.write('''# CHAIN_LENGTH = number of shares back client keeps # REAL_CHAIN_LENGTH = maximum number of shares back client uses to compute payout # REAL_CHAIN_LENGTH must always be <= CHAIN_LENGTH # REAL_CHAIN_LENGTH must be changed in sync with all other clients # changes can be done by changing one, then the other ''') elif sys.argv[3] == 'dash': f2.write('''import os import platform from twisted.internet import defer from .. import data, helper from p2pool.util import pack ''') else: assert False, 'invalid type argument' while True: l = f.readline() if not l.strip(): continue if l.strip() == ')': break name = l.strip().split('=')[0] lines = [] while True: l = f.readline() if not l.strip(): continue if l.strip() == '),': break while nesting(l) != 0: l += f.readline() lines.append(l.split('=', 1)) with open(sys.argv[2] + name + '.py', 'wb') as f2: write_header(f2, name) for a, b in lines: if ', #' in b: b = b.replace(', #', ' #') elif b.strip().endswith(','): b = b.strip()[:-1] else: assert False, b f2.write('%s = %s\n' % (a.strip(), b.strip()))
gpl-3.0
skarlekar/chehara
websocket/_core.py
23
16397
""" websocket - WebSocket client library for Python Copyright (C) 2010 Hiroki Ohtani(liris) This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA """ from __future__ import print_function import socket import struct import threading import six # websocket modules from ._abnf import * from ._exceptions import * from ._handshake import * from ._http import * from ._logging import * from ._socket import * from ._utils import * __all__ = ['WebSocket', 'create_connection'] """ websocket python client. ========================= This version support only hybi-13. Please see http://tools.ietf.org/html/rfc6455 for protocol. """ class WebSocket(object): """ Low level WebSocket interface. This class is based on The WebSocket protocol draft-hixie-thewebsocketprotocol-76 http://tools.ietf.org/html/draft-hixie-thewebsocketprotocol-76 We can connect to the websocket server and send/receive data. The following example is an echo client. >>> import websocket >>> ws = websocket.WebSocket() >>> ws.connect("ws://echo.websocket.org") >>> ws.send("Hello, Server") >>> ws.recv() 'Hello, Server' >>> ws.close() get_mask_key: a callable to produce new mask keys, see the set_mask_key function's docstring for more details sockopt: values for socket.setsockopt. sockopt must be tuple and each element is argument of sock.setsockopt. sslopt: dict object for ssl socket option. fire_cont_frame: fire recv event for each cont frame. default is False enable_multithread: if set to True, lock send method. skip_utf8_validation: skip utf8 validation. """ def __init__(self, get_mask_key=None, sockopt=None, sslopt=None, fire_cont_frame=False, enable_multithread=False, skip_utf8_validation=False, **_): """ Initialize WebSocket object. """ self.sock_opt = sock_opt(sockopt, sslopt) self.handshake_response = None self.sock = None self.connected = False self.get_mask_key = get_mask_key # These buffer over the build-up of a single frame. self.frame_buffer = frame_buffer(self._recv, skip_utf8_validation) self.cont_frame = continuous_frame( fire_cont_frame, skip_utf8_validation) if enable_multithread: self.lock = threading.Lock() else: self.lock = NoLock() def __iter__(self): """ Allow iteration over websocket, implying sequential `recv` executions. """ while True: yield self.recv() def __next__(self): return self.recv() def next(self): return self.__next__() def fileno(self): return self.sock.fileno() def set_mask_key(self, func): """ set function to create musk key. You can customize mask key generator. Mainly, this is for testing purpose. func: callable object. the func takes 1 argument as integer. The argument means length of mask key. This func must return string(byte array), which length is argument specified. """ self.get_mask_key = func def gettimeout(self): """ Get the websocket timeout(second). """ return self.sock_opt.timeout def settimeout(self, timeout): """ Set the timeout to the websocket. timeout: timeout time(second). """ self.sock_opt.timeout = timeout if self.sock: self.sock.settimeout(timeout) timeout = property(gettimeout, settimeout) def getsubprotocol(self): """ get subprotocol """ if self.handshake_response: return self.handshake_response.subprotocol else: return None subprotocol = property(getsubprotocol) def getstatus(self): """ get handshake status """ if self.handshake_response: return self.handshake_response.status else: return None status = property(getstatus) def getheaders(self): """ get handshake response header """ if self.handshake_response: return self.handshake_response.headers else: return None headers = property(getheaders) def connect(self, url, **options): """ Connect to url. url is websocket url scheme. ie. ws://host:port/resource You can customize using 'options'. If you set "header" list object, you can set your own custom header. >>> ws = WebSocket() >>> ws.connect("ws://echo.websocket.org/", ... header=["User-Agent: MyProgram", ... "x-custom: header"]) timeout: socket timeout time. This value is integer. if you set None for this value, it means "use default_timeout value" options: "header" -> custom http header list or dict. "cookie" -> cookie value. "origin" -> custom origin url. "host" -> custom host header string. "http_proxy_host" - http proxy host name. "http_proxy_port" - http proxy port. If not set, set to 80. "http_no_proxy" - host names, which doesn't use proxy. "http_proxy_auth" - http proxy auth information. tuple of username and password. default is None "subprotocols" - array of available sub protocols. default is None. "socket" - pre-initialized stream socket. """ self.sock, addrs = connect(url, self.sock_opt, proxy_info(**options), options.pop('socket', None)) try: self.handshake_response = handshake(self.sock, *addrs, **options) self.connected = True except: if self.sock: self.sock.close() self.sock = None raise def send(self, payload, opcode=ABNF.OPCODE_TEXT): """ Send the data as string. payload: Payload must be utf-8 string or unicode, if the opcode is OPCODE_TEXT. Otherwise, it must be string(byte array) opcode: operation code to send. Please see OPCODE_XXX. """ frame = ABNF.create_frame(payload, opcode) return self.send_frame(frame) def send_frame(self, frame): """ Send the data frame. frame: frame data created by ABNF.create_frame >>> ws = create_connection("ws://echo.websocket.org/") >>> frame = ABNF.create_frame("Hello", ABNF.OPCODE_TEXT) >>> ws.send_frame(frame) >>> cont_frame = ABNF.create_frame("My name is ", ABNF.OPCODE_CONT, 0) >>> ws.send_frame(frame) >>> cont_frame = ABNF.create_frame("Foo Bar", ABNF.OPCODE_CONT, 1) >>> ws.send_frame(frame) """ if self.get_mask_key: frame.get_mask_key = self.get_mask_key data = frame.format() length = len(data) trace("send: " + repr(data)) with self.lock: while data: l = self._send(data) data = data[l:] return length def send_binary(self, payload): return self.send(payload, ABNF.OPCODE_BINARY) def ping(self, payload=""): """ send ping data. payload: data payload to send server. """ if isinstance(payload, six.text_type): payload = payload.encode("utf-8") self.send(payload, ABNF.OPCODE_PING) def pong(self, payload): """ send pong data. payload: data payload to send server. """ if isinstance(payload, six.text_type): payload = payload.encode("utf-8") self.send(payload, ABNF.OPCODE_PONG) def recv(self): """ Receive string data(byte array) from the server. return value: string(byte array) value. """ opcode, data = self.recv_data() if six.PY3 and opcode == ABNF.OPCODE_TEXT: return data.decode("utf-8") elif opcode == ABNF.OPCODE_TEXT or opcode == ABNF.OPCODE_BINARY: return data else: return '' def recv_data(self, control_frame=False): """ Receive data with operation code. control_frame: a boolean flag indicating whether to return control frame data, defaults to False return value: tuple of operation code and string(byte array) value. """ opcode, frame = self.recv_data_frame(control_frame) return opcode, frame.data def recv_data_frame(self, control_frame=False): """ Receive data with operation code. control_frame: a boolean flag indicating whether to return control frame data, defaults to False return value: tuple of operation code and string(byte array) value. """ while True: frame = self.recv_frame() if not frame: # handle error: # 'NoneType' object has no attribute 'opcode' raise WebSocketProtocolException( "Not a valid frame %s" % frame) elif frame.opcode in (ABNF.OPCODE_TEXT, ABNF.OPCODE_BINARY, ABNF.OPCODE_CONT): self.cont_frame.validate(frame) self.cont_frame.add(frame) if self.cont_frame.is_fire(frame): return self.cont_frame.extract(frame) elif frame.opcode == ABNF.OPCODE_CLOSE: self.send_close() return frame.opcode, frame elif frame.opcode == ABNF.OPCODE_PING: if len(frame.data) < 126: self.pong(frame.data) else: raise WebSocketProtocolException( "Ping message is too long") if control_frame: return frame.opcode, frame elif frame.opcode == ABNF.OPCODE_PONG: if control_frame: return frame.opcode, frame def recv_frame(self): """ receive data as frame from server. return value: ABNF frame object. """ return self.frame_buffer.recv_frame() def send_close(self, status=STATUS_NORMAL, reason=six.b("")): """ send close data to the server. status: status code to send. see STATUS_XXX. reason: the reason to close. This must be string or bytes. """ if status < 0 or status >= ABNF.LENGTH_16: raise ValueError("code is invalid range") self.connected = False self.send(struct.pack('!H', status) + reason, ABNF.OPCODE_CLOSE) def close(self, status=STATUS_NORMAL, reason=six.b(""), timeout=3): """ Close Websocket object status: status code to send. see STATUS_XXX. reason: the reason to close. This must be string. timeout: timeout until receive a close frame. If None, it will wait forever until receive a close frame. """ if self.connected: if status < 0 or status >= ABNF.LENGTH_16: raise ValueError("code is invalid range") try: self.connected = False self.send(struct.pack('!H', status) + reason, ABNF.OPCODE_CLOSE) sock_timeout = self.sock.gettimeout() self.sock.settimeout(timeout) try: frame = self.recv_frame() if isEnabledForError(): recv_status = struct.unpack("!H", frame.data)[0] if recv_status != STATUS_NORMAL: error("close status: " + repr(recv_status)) except: pass self.sock.settimeout(sock_timeout) self.sock.shutdown(socket.SHUT_RDWR) except: pass self.shutdown() def abort(self): """ Low-level asynchronous abort, wakes up other threads that are waiting in recv_* """ if self.connected: self.sock.shutdown(socket.SHUT_RDWR) def shutdown(self): """close socket, immediately.""" if self.sock: self.sock.close() self.sock = None self.connected = False def _send(self, data): return send(self.sock, data) def _recv(self, bufsize): try: return recv(self.sock, bufsize) except WebSocketConnectionClosedException: if self.sock: self.sock.close() self.sock = None self.connected = False raise def create_connection(url, timeout=None, class_=WebSocket, **options): """ connect to url and return websocket object. Connect to url and return the WebSocket object. Passing optional timeout parameter will set the timeout on the socket. If no timeout is supplied, the global default timeout setting returned by getdefauttimeout() is used. You can customize using 'options'. If you set "header" list object, you can set your own custom header. >>> conn = create_connection("ws://echo.websocket.org/", ... header=["User-Agent: MyProgram", ... "x-custom: header"]) timeout: socket timeout time. This value is integer. if you set None for this value, it means "use default_timeout value" class_: class to instantiate when creating the connection. It has to implement settimeout and connect. It's __init__ should be compatible with WebSocket.__init__, i.e. accept all of it's kwargs. options: "header" -> custom http header list or dict. "cookie" -> cookie value. "origin" -> custom origin url. "host" -> custom host header string. "http_proxy_host" - http proxy host name. "http_proxy_port" - http proxy port. If not set, set to 80. "http_no_proxy" - host names, which doesn't use proxy. "http_proxy_auth" - http proxy auth information. tuple of username and password. default is None "enable_multithread" -> enable lock for multithread. "sockopt" -> socket options "sslopt" -> ssl option "subprotocols" - array of available sub protocols. default is None. "skip_utf8_validation" - skip utf8 validation. "socket" - pre-initialized stream socket. """ sockopt = options.pop("sockopt", []) sslopt = options.pop("sslopt", {}) fire_cont_frame = options.pop("fire_cont_frame", False) enable_multithread = options.pop("enable_multithread", False) skip_utf8_validation = options.pop("skip_utf8_validation", False) websock = class_(sockopt=sockopt, sslopt=sslopt, fire_cont_frame=fire_cont_frame, enable_multithread=enable_multithread, skip_utf8_validation=skip_utf8_validation, **options) websock.settimeout(timeout if timeout is not None else getdefaulttimeout()) websock.connect(url, **options) return websock
mit
jaw20/Crunchyroll-XML-Decoder
crunchy-xml-decoder/requests/packages/urllib3/filepost.py
1009
2281
import codecs from uuid import uuid4 from io import BytesIO from .packages import six from .packages.six import b from .fields import RequestField writer = codecs.lookup('utf-8')[3] def choose_boundary(): """ Our embarassingly-simple replacement for mimetools.choose_boundary. """ return uuid4().hex def iter_field_objects(fields): """ Iterate over fields. Supports list of (k, v) tuples and dicts, and lists of :class:`~urllib3.fields.RequestField`. """ if isinstance(fields, dict): i = six.iteritems(fields) else: i = iter(fields) for field in i: if isinstance(field, RequestField): yield field else: yield RequestField.from_tuples(*field) def iter_fields(fields): """ .. deprecated:: 1.6 Iterate over fields. The addition of :class:`~urllib3.fields.RequestField` makes this function obsolete. Instead, use :func:`iter_field_objects`, which returns :class:`~urllib3.fields.RequestField` objects. Supports list of (k, v) tuples and dicts. """ if isinstance(fields, dict): return ((k, v) for k, v in six.iteritems(fields)) return ((k, v) for k, v in fields) def encode_multipart_formdata(fields, boundary=None): """ Encode a dictionary of ``fields`` using the multipart/form-data MIME format. :param fields: Dictionary of fields or list of (key, :class:`~urllib3.fields.RequestField`). :param boundary: If not specified, then a random boundary will be generated using :func:`mimetools.choose_boundary`. """ body = BytesIO() if boundary is None: boundary = choose_boundary() for field in iter_field_objects(fields): body.write(b('--%s\r\n' % (boundary))) writer(body).write(field.render_headers()) data = field.data if isinstance(data, int): data = str(data) # Backwards compatibility if isinstance(data, six.text_type): writer(body).write(data) else: body.write(data) body.write(b'\r\n') body.write(b('--%s--\r\n' % (boundary))) content_type = str('multipart/form-data; boundary=%s' % boundary) return body.getvalue(), content_type
gpl-2.0
jdsika/TUM_HOly
openrave/sympy/physics/quantum/grover.py
6
9227
"""Grover's algorithm and helper functions. Todo: * W gate construction (or perhaps -W gate based on Mermin's book) * Generalize the algorithm for an unknown function that returns 1 on multiple qubit states, not just one. * Implement _represent_ZGate in OracleGate """ from sympy import sqrt, pi, floor from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.qexpr import QuantumError from sympy.physics.quantum.hilbert import ComplexSpace from sympy.physics.quantum.operator import UnitaryOperator from sympy.physics.quantum.gate import Gate, HadamardGate from sympy.physics.quantum.qubit import IntQubit from sympy.core.compatibility import callable __all__ = [ 'OracleGate', 'WGate', 'superposition_basis', 'grover_iteration', 'apply_grover' ] def superposition_basis(nqubits): """Creates an equal superposition of the computational basis. Parameters ========== nqubits : int The number of qubits. Return ====== state : Qubit An equal superposition of the computational basis with nqubits. Examples ======== Create an equal superposition of 2 qubits:: >>> from sympy.physics.quantum.grover import superposition_basis >>> superposition_basis(2) |0>/2 + |1>/2 + |2>/2 + |3>/2 """ amp = 1/sqrt(2**nqubits) return sum([amp*IntQubit(n, nqubits) for n in range(2**nqubits)]) class OracleGate(Gate): """A black box gate. The gate marks the desired qubits of an unknown function by flipping the sign of the qubits. The unknown function returns true when it finds its desired qubits and false otherwise. Parameters ========== qubits : int Number of qubits. oracle : callable A callable function that returns a boolean on a computational basis. Examples ======== Apply an Oracle gate that flips the sign of |2> on different qubits:: >>> from sympy.physics.quantum.qubit import IntQubit >>> from sympy.physics.quantum.qapply import qapply >>> from sympy.physics.quantum.grover import OracleGate >>> f = lambda qubits: qubits == IntQubit(2) >>> v = OracleGate(2, f) >>> qapply(v*IntQubit(2)) -|2> >>> qapply(v*IntQubit(3)) |3> """ gate_name = u'V' gate_name_latex = u'V' #------------------------------------------------------------------------- # Initialization/creation #------------------------------------------------------------------------- @classmethod def _eval_args(cls, args): if len(args) != 2: raise QuantumError( 'Insufficient/excessive arguments to Oracle. Please ' + 'supply the number of qubits and an unknown function.' ) sub_args = args[0], sub_args = UnitaryOperator._eval_args(sub_args) if not sub_args[0].is_Integer: raise TypeError('Integer expected, got: %r' % sub_args[0]) if not callable(args[1]): raise TypeError('Callable expected, got: %r' % args[1]) sub_args = UnitaryOperator._eval_args(tuple(range(args[0]))) return (sub_args, args[1]) @classmethod def _eval_hilbert_space(cls, args): """This returns the smallest possible Hilbert space.""" return ComplexSpace(2)**(max(args[0])+1) #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def search_function(self): """The unknown function that helps find the sought after qubits.""" return self.label[1] @property def targets(self): """A tuple of target qubits.""" return self.label[0] #------------------------------------------------------------------------- # Apply #------------------------------------------------------------------------- def _apply_operator_Qubit(self, qubits, **options): """Apply this operator to a Qubit subclass. Parameters ========== qubits : Qubit The qubit subclass to apply this operator to. Returns ======= state : Expr The resulting quantum state. """ if qubits.nqubits != self.nqubits: raise QuantumError( 'OracleGate operates on %r qubits, got: %r' (self.nqubits, qubits.nqubits) ) # If function returns 1 on qubits # return the negative of the qubits (flip the sign) if self.search_function(qubits): return -qubits else: return qubits #------------------------------------------------------------------------- # Represent #------------------------------------------------------------------------- def _represent_ZGate(self, basis, **options): raise NotImplementedError( "Represent for the Oracle has not been implemented yet" ) class WGate(Gate): """General n qubit W Gate in Grover's algorithm. The gate performs the operation 2|phi><phi| - 1 on some qubits. |phi> = (tensor product of n Hadamards)*(|0> with n qubits) Parameters ========== nqubits : int The number of qubits to operate on """ gate_name = u'W' gate_name_latex = u'W' @classmethod def _eval_args(cls, args): if len(args) != 1: raise QuantumError( 'Insufficient/excessive arguments to W gate. Please ' + 'supply the number of qubits to operate on.' ) args = UnitaryOperator._eval_args(args) if not args[0].is_Integer: raise TypeError('Integer expected, got: %r' % args[0]) return tuple(reversed(range(args[0]))) #------------------------------------------------------------------------- # Apply #------------------------------------------------------------------------- def _apply_operator_Qubit(self, qubits, **options): """ qubits: a set of qubits (Qubit) Returns: quantum object (quantum expression - QExpr) """ if qubits.nqubits != self.nqubits: raise QuantumError( 'WGate operates on %r qubits, got: %r' (self.nqubits, qubits.nqubits) ) # See 'Quantum Computer Science' by David Mermin p.92 -> W|a> result # Return (2/(sqrt(2^n)))|phi> - |a> where |a> is the current basis # state and phi is the superposition of basis states (see function # create_computational_basis above) basis_states = superposition_basis(self.nqubits) change_to_basis = (2/sqrt(2**self.nqubits))*basis_states return change_to_basis - qubits def grover_iteration(qstate, oracle): """Applies one application of the Oracle and W Gate, WV. Parameters ========== qstate : Qubit A superposition of qubits. oracle : OracleGate The black box operator that flips the sign of the desired basis qubits. Returns ======= Qubit : The qubits after applying the Oracle and W gate. Examples ======== Perform one iteration of grover's algorithm to see a phase change:: >>> from sympy.physics.quantum.qapply import qapply >>> from sympy.physics.quantum.qubit import IntQubit >>> from sympy.physics.quantum.grover import OracleGate >>> from sympy.physics.quantum.grover import superposition_basis >>> from sympy.physics.quantum.grover import grover_iteration >>> numqubits = 2 >>> basis_states = superposition_basis(numqubits) >>> f = lambda qubits: qubits == IntQubit(2) >>> v = OracleGate(numqubits, f) >>> qapply(grover_iteration(basis_states, v)) |2> """ wgate = WGate(oracle.nqubits) return wgate*oracle*qstate def apply_grover(oracle, nqubits, iterations=None): """Applies grover's algorithm. Parameters ========== oracle : callable The unknown callable function that returns true when applied to the desired qubits and false otherwise. Returns ======= state : Expr The resulting state after Grover's algorithm has been iterated. Examples ======== Apply grover's algorithm to an even superposition of 2 qubits:: >>> from sympy.physics.quantum.qapply import qapply >>> from sympy.physics.quantum.qubit import IntQubit >>> from sympy.physics.quantum.grover import apply_grover >>> f = lambda qubits: qubits == IntQubit(2) >>> qapply(apply_grover(f, 2)) |2> """ if nqubits <= 0: raise QuantumError( 'Grover\'s algorithm needs nqubits > 0, received %r qubits' % nqubits ) if iterations is None: iterations = floor(sqrt(2**nqubits)*(pi/4)) v = OracleGate(nqubits, oracle) iterated = superposition_basis(nqubits) for iter in range(iterations): iterated = grover_iteration(iterated, v) iterated = qapply(iterated) return iterated
mit
chutsu/robotics
prototype/models/two_wheel.py
1
3500
from math import cos from math import sin import numpy as np import sympy from sympy import pprint def two_wheel_2d_model(x, u, dt): """Two wheel 2D motion model Parameters ---------- x : np.array Two Wheel model state vector (x, y, theta) u : np.array Input dt : float Time difference Returns ------- np.array (x, y, theta) """ gdot = np.array([[u[0, 0] * cos(x[2, 0]) * dt], [u[0, 0] * sin(x[2, 0]) * dt], [u[1, 0] * dt]]) return x + gdot def two_wheel_2d_linearized_model(x, u, dt): """Two wheel 2D linearized motion model Parameters ---------- x : np.array Two Wheel model state vector (x, y, theta) u : np.array Input dt : float Time difference Returns ------- np.array 3x3 matrix of linearized two wheel model """ G1 = 1.0 G2 = 0.0 G3 = -u[0, 0] * sin(x[2, 0]) * dt G4 = 0.0 G5 = 1.0 G6 = u[0, 0] * cos(x[2, 0]) * dt G7 = 0.0 G8 = 0.0 G9 = 1.0 return np.array([[G1, G2, G3], [G4, G5, G6], [G7, G8, G9]]) def two_wheel_3d_model(x, u, dt): """Two wheel 3D motion model Parameters ---------- x : np.array Two Wheel model state vector (x, y, theta) u : np.array Input dt : float Time difference Returns ------- np.array (x, y, z, theta) """ g1 = x[0] + u[0] * cos(x[3]) * dt g2 = x[1] + u[0] * sin(x[3]) * dt g3 = x[2] + u[1] * dt g4 = x[3] + u[2] * dt return np.array([g1, g2, g3, g4]) def two_wheel_2d_deriv(): """ Symbolic derivation of Jacobian of the 2D two wheel motion model """ x1, x2, x3, x4, x5 = sympy.symbols("x1,x2,x3,x4,x5") dt = sympy.symbols("dt") # x, y, theta, v, omega f1 = x1 + x4 * sympy.cos(x3) * dt f2 = x2 + x4 * sympy.sin(x3) * dt f3 = x3 + x5 * dt f4 = x4 f5 = x5 F = sympy.Matrix([f1, f2, f3, f4, f5]) pprint(F.jacobian([x1, x2, x3, x4, x5])) def two_wheel_3d_deriv(): """ Symbolic derivation of Jacobian of the 3D two wheel motion model """ x1, x2, x3, x4, x5, x6, x7 = sympy.symbols("x1,x2,x3,x4,x5,x6,x7") dt = sympy.symbols("dt") # x1 - x # x2 - y # x3 - z # x4 - theta # x5 - v # x6 - omega # x7 - vz # x, y, z, theta, v, omega, vz f1 = x1 + x5 * sympy.cos(x4) * dt f2 = x2 + x5 * sympy.sin(x4) * dt f3 = x3 + x7 * dt f4 = x4 + x6 * dt f5 = x5 f6 = x6 f7 = x7 F = sympy.Matrix([f1, f2, f3, f4, f5, f6, f7]) pprint(F.jacobian([x1, x2, x3, x4, x5, x6, x7])) def two_wheel_3d_deriv2(): """ Symbolic derivation of Jacobian of the 3D two wheel motion model """ functions = sympy.symbols("f1,f2,f3,f4,f5,f6,f7,f8,f9") variables = sympy.symbols("x1,x2,x3,x4,x5,x6,x7,x8,x9") f1, f2, f3, f4, f5, f6, f7, f8, f9 = functions x1, x2, x3, x4, x5, x6, x7, x8, x9 = variables dt = sympy.symbols("dt") # x1 - x # x2 - y # x3 - z # x4 - theta # x5 - v # x6 - vz # x7 - omega # x8 - a # x9 - az f1 = x1 + x5 * sympy.cos(x4) * dt f2 = x2 + x5 * sympy.sin(x4) * dt f3 = x3 + x6 * dt f4 = x4 + x7 * dt f5 = x5 + x8 * dt f6 = x6 + x9 * dt f7 = x7 f8 = x8 f9 = x9 F = sympy.Matrix([f1, f2, f3, f4, f5, f6, f7, f8, f9]) pprint(F.jacobian([x1, x2, x3, x4, x5, x6, x7, x8, x9]))
gpl-3.0
TheTypoMaster/chromium-crosswalk
third_party/mojo/src/mojo/public/tools/bindings/pylib/mojom/generate/pack.py
22
8235
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import module as mojom # This module provides a mechanism for determining the packed order and offsets # of a mojom.Struct. # # ps = pack.PackedStruct(struct) # ps.packed_fields will access a list of PackedField objects, each of which # will have an offset, a size and a bit (for mojom.BOOLs). # Size of struct header in bytes: num_bytes [4B] + version [4B]. HEADER_SIZE = 8 class PackedField(object): kind_to_size = { mojom.BOOL: 1, mojom.INT8: 1, mojom.UINT8: 1, mojom.INT16: 2, mojom.UINT16: 2, mojom.INT32: 4, mojom.UINT32: 4, mojom.FLOAT: 4, mojom.HANDLE: 4, mojom.MSGPIPE: 4, mojom.SHAREDBUFFER: 4, mojom.DCPIPE: 4, mojom.DPPIPE: 4, mojom.NULLABLE_HANDLE: 4, mojom.NULLABLE_MSGPIPE: 4, mojom.NULLABLE_SHAREDBUFFER: 4, mojom.NULLABLE_DCPIPE: 4, mojom.NULLABLE_DPPIPE: 4, mojom.INT64: 8, mojom.UINT64: 8, mojom.DOUBLE: 8, mojom.STRING: 8, mojom.NULLABLE_STRING: 8 } @classmethod def GetSizeForKind(cls, kind): if isinstance(kind, (mojom.Array, mojom.Map, mojom.Struct, mojom.Interface)): return 8 if isinstance(kind, mojom.Union): return 16 if isinstance(kind, mojom.InterfaceRequest): kind = mojom.MSGPIPE if isinstance(kind, mojom.Enum): # TODO(mpcomplete): what about big enums? return cls.kind_to_size[mojom.INT32] if not kind in cls.kind_to_size: raise Exception("Invalid kind: %s" % kind.spec) return cls.kind_to_size[kind] @classmethod def GetAlignmentForKind(cls, kind): if isinstance(kind, mojom.Interface): return 4 if isinstance(kind, mojom.Union): return 8 return cls.GetSizeForKind(kind) def __init__(self, field, index, ordinal): """ Args: field: the original field. index: the position of the original field in the struct. ordinal: the ordinal of the field for serialization. """ self.field = field self.index = index self.ordinal = ordinal self.size = self.GetSizeForKind(field.kind) self.alignment = self.GetAlignmentForKind(field.kind) self.offset = None self.bit = None self.min_version = None def GetPad(offset, alignment): """Returns the pad necessary to reserve space so that |offset + pad| equals to some multiple of |alignment|.""" return (alignment - (offset % alignment)) % alignment def GetFieldOffset(field, last_field): """Returns a 2-tuple of the field offset and bit (for BOOLs).""" if (field.field.kind == mojom.BOOL and last_field.field.kind == mojom.BOOL and last_field.bit < 7): return (last_field.offset, last_field.bit + 1) offset = last_field.offset + last_field.size pad = GetPad(offset, field.alignment) return (offset + pad, 0) def GetPayloadSizeUpToField(field): """Returns the payload size (not including struct header) if |field| is the last field. """ if not field: return 0 offset = field.offset + field.size pad = GetPad(offset, 8) return offset + pad class PackedStruct(object): def __init__(self, struct): self.struct = struct # |packed_fields| contains all the fields, in increasing offset order. self.packed_fields = [] # |packed_fields_in_ordinal_order| refers to the same fields as # |packed_fields|, but in ordinal order. self.packed_fields_in_ordinal_order = [] # No fields. if (len(struct.fields) == 0): return # Start by sorting by ordinal. src_fields = self.packed_fields_in_ordinal_order ordinal = 0 for index, field in enumerate(struct.fields): if field.ordinal is not None: ordinal = field.ordinal src_fields.append(PackedField(field, index, ordinal)) ordinal += 1 src_fields.sort(key=lambda field: field.ordinal) # Set |min_version| for each field. next_min_version = 0 for packed_field in src_fields: if packed_field.field.min_version is None: assert next_min_version == 0 else: assert packed_field.field.min_version >= next_min_version next_min_version = packed_field.field.min_version packed_field.min_version = next_min_version if (packed_field.min_version != 0 and mojom.IsReferenceKind(packed_field.field.kind) and not packed_field.field.kind.is_nullable): raise Exception("Non-nullable fields are only allowed in version 0 of " "a struct. %s.%s is defined with [MinVersion=%d]." % (self.struct.name, packed_field.field.name, packed_field.min_version)) src_field = src_fields[0] src_field.offset = 0 src_field.bit = 0 dst_fields = self.packed_fields dst_fields.append(src_field) # Then find first slot that each field will fit. for src_field in src_fields[1:]: last_field = dst_fields[0] for i in xrange(1, len(dst_fields)): next_field = dst_fields[i] offset, bit = GetFieldOffset(src_field, last_field) if offset + src_field.size <= next_field.offset: # Found hole. src_field.offset = offset src_field.bit = bit dst_fields.insert(i, src_field) break last_field = next_field if src_field.offset is None: # Add to end src_field.offset, src_field.bit = GetFieldOffset(src_field, last_field) dst_fields.append(src_field) class ByteInfo(object): def __init__(self): self.is_padding = False self.packed_fields = [] def GetByteLayout(packed_struct): total_payload_size = GetPayloadSizeUpToField( packed_struct.packed_fields[-1] if packed_struct.packed_fields else None) bytes = [ByteInfo() for i in xrange(total_payload_size)] limit_of_previous_field = 0 for packed_field in packed_struct.packed_fields: for i in xrange(limit_of_previous_field, packed_field.offset): bytes[i].is_padding = True bytes[packed_field.offset].packed_fields.append(packed_field) limit_of_previous_field = packed_field.offset + packed_field.size for i in xrange(limit_of_previous_field, len(bytes)): bytes[i].is_padding = True for byte in bytes: # A given byte cannot both be padding and have a fields packed into it. assert not (byte.is_padding and byte.packed_fields) return bytes class VersionInfo(object): def __init__(self, version, num_fields, num_bytes): self.version = version self.num_fields = num_fields self.num_bytes = num_bytes def GetVersionInfo(packed_struct): """Get version information for a struct. Args: packed_struct: A PackedStruct instance. Returns: A non-empty list of VersionInfo instances, sorted by version in increasing order. Note: The version numbers may not be consecutive. """ versions = [] last_version = 0 last_num_fields = 0 last_payload_size = 0 for packed_field in packed_struct.packed_fields_in_ordinal_order: if packed_field.min_version != last_version: versions.append( VersionInfo(last_version, last_num_fields, last_payload_size + HEADER_SIZE)) last_version = packed_field.min_version last_num_fields += 1 # The fields are iterated in ordinal order here. However, the size of a # version is determined by the last field of that version in pack order, # instead of ordinal order. Therefore, we need to calculate the max value. last_payload_size = max(GetPayloadSizeUpToField(packed_field), last_payload_size) assert len(versions) == 0 or last_num_fields != versions[-1].num_fields versions.append(VersionInfo(last_version, last_num_fields, last_payload_size + HEADER_SIZE)) return versions
bsd-3-clause
citrix-openstack-build/nova
nova/openstack/common/timeutils.py
24
5623
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2011 OpenStack Foundation. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Time related utilities and helper functions. """ import calendar import datetime import iso8601 import six # ISO 8601 extended time format with microseconds _ISO8601_TIME_FORMAT_SUBSECOND = '%Y-%m-%dT%H:%M:%S.%f' _ISO8601_TIME_FORMAT = '%Y-%m-%dT%H:%M:%S' PERFECT_TIME_FORMAT = _ISO8601_TIME_FORMAT_SUBSECOND def isotime(at=None, subsecond=False): """Stringify time in ISO 8601 format.""" if not at: at = utcnow() st = at.strftime(_ISO8601_TIME_FORMAT if not subsecond else _ISO8601_TIME_FORMAT_SUBSECOND) tz = at.tzinfo.tzname(None) if at.tzinfo else 'UTC' st += ('Z' if tz == 'UTC' else tz) return st def parse_isotime(timestr): """Parse time from ISO 8601 format.""" try: return iso8601.parse_date(timestr) except iso8601.ParseError as e: raise ValueError(e.message) except TypeError as e: raise ValueError(e.message) def strtime(at=None, fmt=PERFECT_TIME_FORMAT): """Returns formatted utcnow.""" if not at: at = utcnow() return at.strftime(fmt) def parse_strtime(timestr, fmt=PERFECT_TIME_FORMAT): """Turn a formatted time back into a datetime.""" return datetime.datetime.strptime(timestr, fmt) def normalize_time(timestamp): """Normalize time in arbitrary timezone to UTC naive object.""" offset = timestamp.utcoffset() if offset is None: return timestamp return timestamp.replace(tzinfo=None) - offset def is_older_than(before, seconds): """Return True if before is older than seconds.""" if isinstance(before, six.string_types): before = parse_strtime(before).replace(tzinfo=None) return utcnow() - before > datetime.timedelta(seconds=seconds) def is_newer_than(after, seconds): """Return True if after is newer than seconds.""" if isinstance(after, six.string_types): after = parse_strtime(after).replace(tzinfo=None) return after - utcnow() > datetime.timedelta(seconds=seconds) def utcnow_ts(): """Timestamp version of our utcnow function.""" return calendar.timegm(utcnow().timetuple()) def utcnow(): """Overridable version of utils.utcnow.""" if utcnow.override_time: try: return utcnow.override_time.pop(0) except AttributeError: return utcnow.override_time return datetime.datetime.utcnow() def iso8601_from_timestamp(timestamp): """Returns a iso8601 formated date from timestamp.""" return isotime(datetime.datetime.utcfromtimestamp(timestamp)) utcnow.override_time = None def set_time_override(override_time=datetime.datetime.utcnow()): """Overrides utils.utcnow. Make it return a constant time or a list thereof, one at a time. """ utcnow.override_time = override_time def advance_time_delta(timedelta): """Advance overridden time using a datetime.timedelta.""" assert(not utcnow.override_time is None) try: for dt in utcnow.override_time: dt += timedelta except TypeError: utcnow.override_time += timedelta def advance_time_seconds(seconds): """Advance overridden time by seconds.""" advance_time_delta(datetime.timedelta(0, seconds)) def clear_time_override(): """Remove the overridden time.""" utcnow.override_time = None def marshall_now(now=None): """Make an rpc-safe datetime with microseconds. Note: tzinfo is stripped, but not required for relative times. """ if not now: now = utcnow() return dict(day=now.day, month=now.month, year=now.year, hour=now.hour, minute=now.minute, second=now.second, microsecond=now.microsecond) def unmarshall_time(tyme): """Unmarshall a datetime dict.""" return datetime.datetime(day=tyme['day'], month=tyme['month'], year=tyme['year'], hour=tyme['hour'], minute=tyme['minute'], second=tyme['second'], microsecond=tyme['microsecond']) def delta_seconds(before, after): """Return the difference between two timing objects. Compute the difference in seconds between two date, time, or datetime objects (as a float, to microsecond resolution). """ delta = after - before try: return delta.total_seconds() except AttributeError: return ((delta.days * 24 * 3600) + delta.seconds + float(delta.microseconds) / (10 ** 6)) def is_soon(dt, window): """Determines if time is going to happen in the next window seconds. :params dt: the time :params window: minimum seconds to remain to consider the time not soon :return: True if expiration is within the given duration """ soon = (utcnow() + datetime.timedelta(seconds=window)) return normalize_time(dt) <= soon
apache-2.0
sysbot/CouchPotatoServer
couchpotato/core/notifications/plex/main.py
86
2356
from couchpotato.core.event import addEvent, fireEvent from couchpotato.core.logger import CPLog from couchpotato.core.notifications.base import Notification from .client import PlexClientHTTP, PlexClientJSON from .server import PlexServer log = CPLog(__name__) class Plex(Notification): http_time_between_calls = 0 def __init__(self): super(Plex, self).__init__() self.server = PlexServer(self) self.client_protocols = { 'http': PlexClientHTTP(self), 'json': PlexClientJSON(self) } addEvent('renamer.after', self.addToLibrary) def addToLibrary(self, message = None, group = None): if self.isDisabled(): return if not group: group = {} return self.server.refresh() def getClientNames(self): return [ x.strip().lower() for x in self.conf('clients').split(',') ] def notifyClients(self, message, client_names): success = True for client_name in client_names: client_success = False client = self.server.clients.get(client_name) if client and client['found']: client_success = fireEvent('notify.plex.notifyClient', client, message, single = True) if not client_success: if self.server.staleClients() or not client: log.info('Failed to send notification to client "%s". ' 'Client list is stale, updating the client list and retrying.', client_name) self.server.updateClients(self.getClientNames()) else: log.warning('Failed to send notification to client %s, skipping this time', client_name) success = False return success def notify(self, message = '', data = None, listener = None): if not data: data = {} return self.notifyClients(message, self.getClientNames()) def test(self, **kwargs): test_type = self.testNotifyName() log.info('Sending test to %s', test_type) notify_success = self.notify( message = self.test_message, data = {}, listener = 'test' ) refresh_success = self.addToLibrary() return {'success': notify_success or refresh_success}
gpl-3.0
aromanovich/kozmic-ci
kozmic/accounts/views.py
3
1103
from flask import current_app, request, render_template, redirect, url_for, flash from flask.ext.login import current_user from kozmic import db from . import bp from .forms import SettingsForm @bp.route('/settings/', methods=('GET', 'POST')) def settings(): form = SettingsForm(request.form, obj=current_user) if form.validate_on_submit(): form.populate_obj(current_user) db.session.add(current_user) db.session.commit() flash('Your settings have been saved.', category='success') return redirect(url_for('.settings')) return render_template('accounts/settings.html', form=form) @bp.route('/memberships/sync/', methods=('POST',)) def sync_memberships(): ok_to_commit = current_user.sync_memberships_with_github() if ok_to_commit: db.session.commit() else: db.session.rollback() flash('Something went wrong (probably there was a problem ' 'communicating with the GitHub API). Please try again later.', 'warning') return redirect(request.referrer or url_for('projects.index'))
bsd-3-clause
redhatrises/freeipa
ipalib/constants.py
2
12530
# Authors: # Martin Nagy <[email protected]> # Jason Gerard DeRose <[email protected]> # # Copyright (C) 2008 Red Hat # see file 'COPYING' for use and warranty information # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ All constants centralised in one file. """ import os import socket from ipapython.dn import DN from ipapython.version import VERSION, API_VERSION try: FQDN = socket.getfqdn() except Exception: try: FQDN = socket.gethostname() except Exception: FQDN = None # regular expression NameSpace member names must match: NAME_REGEX = r'^[a-z][_a-z0-9]*[a-z0-9]$|^[a-z]$' # Format for ValueError raised when name does not match above regex: NAME_ERROR = "name must match '%s'; got '%s'" # Standard format for TypeError message: TYPE_ERROR = '%s: need a %r; got %r (a %r)' # Stardard format for TypeError message when a callable is expected: CALLABLE_ERROR = '%s: need a callable; got %r (which is a %r)' # Standard format for Exception message when overriding an attribute: OVERRIDE_ERROR = 'cannot override %s.%s value %r with %r' # Standard format for AttributeError message when a read-only attribute is # already locked: SET_ERROR = 'locked: cannot set %s.%s to %r' DEL_ERROR = 'locked: cannot delete %s.%s' # Used for a tab (or indentation level) when formatting for CLI: CLI_TAB = ' ' # Two spaces # The section to read in the config files, i.e. [global] CONFIG_SECTION = 'global' # The default configuration for api.env # This is a tuple instead of a dict so that it is immutable. # To create a dict with this config, just "d = dict(DEFAULT_CONFIG)". DEFAULT_CONFIG = ( ('api_version', API_VERSION), ('version', VERSION), # Domain, realm, basedn: ('domain', 'example.com'), ('realm', 'EXAMPLE.COM'), ('basedn', DN(('dc', 'example'), ('dc', 'com'))), # LDAP containers: ('container_accounts', DN(('cn', 'accounts'))), ('container_user', DN(('cn', 'users'), ('cn', 'accounts'))), ('container_deleteuser', DN(('cn', 'deleted users'), ('cn', 'accounts'), ('cn', 'provisioning'))), ('container_stageuser', DN(('cn', 'staged users'), ('cn', 'accounts'), ('cn', 'provisioning'))), ('container_group', DN(('cn', 'groups'), ('cn', 'accounts'))), ('container_service', DN(('cn', 'services'), ('cn', 'accounts'))), ('container_host', DN(('cn', 'computers'), ('cn', 'accounts'))), ('container_hostgroup', DN(('cn', 'hostgroups'), ('cn', 'accounts'))), ('container_rolegroup', DN(('cn', 'roles'), ('cn', 'accounts'))), ('container_permission', DN(('cn', 'permissions'), ('cn', 'pbac'))), ('container_privilege', DN(('cn', 'privileges'), ('cn', 'pbac'))), ('container_automount', DN(('cn', 'automount'))), ('container_policies', DN(('cn', 'policies'))), ('container_configs', DN(('cn', 'configs'), ('cn', 'policies'))), ('container_roles', DN(('cn', 'roles'), ('cn', 'policies'))), ('container_applications', DN(('cn', 'applications'), ('cn', 'configs'), ('cn', 'policies'))), ('container_policygroups', DN(('cn', 'policygroups'), ('cn', 'configs'), ('cn', 'policies'))), ('container_policylinks', DN(('cn', 'policylinks'), ('cn', 'configs'), ('cn', 'policies'))), ('container_netgroup', DN(('cn', 'ng'), ('cn', 'alt'))), ('container_hbac', DN(('cn', 'hbac'))), ('container_hbacservice', DN(('cn', 'hbacservices'), ('cn', 'hbac'))), ('container_hbacservicegroup', DN(('cn', 'hbacservicegroups'), ('cn', 'hbac'))), ('container_dns', DN(('cn', 'dns'))), ('container_vault', DN(('cn', 'vaults'), ('cn', 'kra'))), ('container_virtual', DN(('cn', 'virtual operations'), ('cn', 'etc'))), ('container_sudorule', DN(('cn', 'sudorules'), ('cn', 'sudo'))), ('container_sudocmd', DN(('cn', 'sudocmds'), ('cn', 'sudo'))), ('container_sudocmdgroup', DN(('cn', 'sudocmdgroups'), ('cn', 'sudo'))), ('container_automember', DN(('cn', 'automember'), ('cn', 'etc'))), ('container_selinux', DN(('cn', 'usermap'), ('cn', 'selinux'))), ('container_s4u2proxy', DN(('cn', 's4u2proxy'), ('cn', 'etc'))), ('container_cifsdomains', DN(('cn', 'ad'), ('cn', 'etc'))), ('container_trusts', DN(('cn', 'trusts'))), ('container_adtrusts', DN(('cn', 'ad'), ('cn', 'trusts'))), ('container_ranges', DN(('cn', 'ranges'), ('cn', 'etc'))), ('container_dna', DN(('cn', 'dna'), ('cn', 'ipa'), ('cn', 'etc'))), ('container_dna_posix_ids', DN(('cn', 'posix-ids'), ('cn', 'dna'), ('cn', 'ipa'), ('cn', 'etc'))), ('container_realm_domains', DN(('cn', 'Realm Domains'), ('cn', 'ipa'), ('cn', 'etc'))), ('container_otp', DN(('cn', 'otp'))), ('container_radiusproxy', DN(('cn', 'radiusproxy'))), ('container_views', DN(('cn', 'views'), ('cn', 'accounts'))), ('container_masters', DN(('cn', 'masters'), ('cn', 'ipa'), ('cn', 'etc'))), ('container_certprofile', DN(('cn', 'certprofiles'), ('cn', 'ca'))), ('container_topology', DN(('cn', 'topology'), ('cn', 'ipa'), ('cn', 'etc'))), ('container_caacl', DN(('cn', 'caacls'), ('cn', 'ca'))), ('container_locations', DN(('cn', 'locations'), ('cn', 'etc'))), ('container_ca', DN(('cn', 'cas'), ('cn', 'ca'))), ('container_dnsservers', DN(('cn', 'servers'), ('cn', 'dns'))), ('container_custodia', DN(('cn', 'custodia'), ('cn', 'ipa'), ('cn', 'etc'))), ('container_sysaccounts', DN(('cn', 'sysaccounts'), ('cn', 'etc'))), ('container_certmap', DN(('cn', 'certmap'))), ('container_certmaprules', DN(('cn', 'certmaprules'), ('cn', 'certmap'))), # Ports, hosts, and URIs: ('xmlrpc_uri', 'http://localhost:8888/ipa/xml'), # jsonrpc_uri is set in Env._finalize_core() ('ldap_uri', 'ldap://localhost:389'), ('rpc_protocol', 'jsonrpc'), # Define an inclusive range of SSL/TLS version support ('tls_version_min', 'tls1.0'), ('tls_version_max', 'tls1.2'), # Time to wait for a service to start, in seconds ('startup_timeout', 300), # Web Application mount points ('mount_ipa', '/ipa/'), # WebUI stuff: ('webui_prod', True), # Session stuff: # Maximum time before a session expires forcing credentials to be reacquired. ('session_auth_duration', '20 minutes'), # How a session expiration is computed, see SessionManager.set_session_expiration_time() ('session_duration_type', 'inactivity_timeout'), # Debugging: ('verbose', 0), ('debug', False), ('startup_traceback', False), ('mode', 'production'), ('wait_for_dns', 0), # CA plugin: ('ca_host', FQDN), # Set in Env._finalize_core() ('ca_port', 80), ('ca_agent_port', 443), ('ca_ee_port', 443), # For the following ports, None means a default specific to the installed # Dogtag version. ('ca_install_port', None), ('ca_agent_install_port', None), ('ca_ee_install_port', None), # Topology plugin ('recommended_max_agmts', 4), # Recommended maximum number of replication # agreements # Special CLI: ('prompt_all', False), ('interactive', True), ('fallback', True), ('delegate', False), # Enable certain optional plugins: ('enable_ra', False), ('ra_plugin', 'selfsign'), ('dogtag_version', 9), # Used when verifying that the API hasn't changed. Not for production. ('validate_api', False), # Skip client vs. server API version checking. Can lead to errors/strange # behavior when newer clients talk to older servers. Use with caution. ('skip_version_check', False), # Ignore TTL. Perform schema call and download schema if not in cache. ('force_schema_check', False), # ******************************************************** # The remaining keys are never set from the values here! # ******************************************************** # # Env._bootstrap() or Env._finalize_core() will have filled in all the keys # below by the time DEFAULT_CONFIG is merged in, so the values below are # never actually used. They are listed both to provide a big picture and # also so DEFAULT_CONFIG contains at least all the keys that should be # present after Env._finalize_core() is called. # # Each environment variable below is sent to ``object``, which just happens # to be an invalid value for an environment variable, so if for some reason # any of these keys were set from the values here, an exception will be # raised. # Non-overridable vars set in Env._bootstrap(): ('host', FQDN), ('ipalib', object), # The directory containing ipalib/__init__.py ('site_packages', object), # The directory contaning ipalib ('script', object), # sys.argv[0] ('bin', object), # The directory containing the script ('home', object), # $HOME # Vars set in Env._bootstrap(): ('in_tree', object), # Whether or not running in-tree (bool) ('dot_ipa', object), # ~/.ipa directory ('context', object), # Name of context, default is 'default' ('confdir', object), # Directory containing config files ('env_confdir', None), # conf dir specified by IPA_CONFDIR env variable ('conf', object), # File containing context specific config ('conf_default', object), # File containing context independent config ('plugins_on_demand', object), # Whether to finalize plugins on-demand (bool) ('nss_dir', object), # Path to nssdb, default {confdir}/nssdb ('tls_ca_cert', object), # Path to CA cert file # Set in Env._finalize_core(): ('in_server', object), # Whether or not running in-server (bool) ('logdir', object), # Directory containing log files ('log', object), # Path to context specific log file ('jsonrpc_uri', object), # derived from xmlrpc_uri in Env._finalize_core() ('server', object), # derived from jsonrpc_uri in Env._finalize_core() ) LDAP_GENERALIZED_TIME_FORMAT = "%Y%m%d%H%M%SZ" IPA_ANCHOR_PREFIX = ':IPA:' SID_ANCHOR_PREFIX = ':SID:' # domains levels DOMAIN_LEVEL_0 = 0 # compat DOMAIN_LEVEL_1 = 1 # replica promotion, topology plugin MIN_DOMAIN_LEVEL = DOMAIN_LEVEL_0 MAX_DOMAIN_LEVEL = DOMAIN_LEVEL_1 # Constants used in generation of replication agreements and as topology # defaults # List of attributes that need to be excluded from replication initialization. REPL_AGMT_TOTAL_EXCLUDES = ('entryusn', 'krblastsuccessfulauth', 'krblastfailedauth', 'krbloginfailedcount') # List of attributes that need to be excluded from normal replication. REPL_AGMT_EXCLUDES = ('memberof', 'idnssoaserial') + REPL_AGMT_TOTAL_EXCLUDES # List of attributes that are not updated on empty replication REPL_AGMT_STRIP_ATTRS = ('modifiersName', 'modifyTimestamp', 'internalModifiersName', 'internalModifyTimestamp') DOMAIN_SUFFIX_NAME = 'domain' CA_SUFFIX_NAME = 'ca' PKI_GSSAPI_SERVICE_NAME = 'dogtag' IPA_CA_CN = u'ipa' IPA_CA_RECORD = "ipa-ca" IPA_CA_NICKNAME = 'caSigningCert cert-pki-ca' RENEWAL_CA_NAME = 'dogtag-ipa-ca-renew-agent' # regexp definitions PATTERN_GROUPUSER_NAME = '^[a-zA-Z0-9_.][a-zA-Z0-9_.-]*[a-zA-Z0-9_.$-]?$' # Kerberos Anonymous principal name ANON_USER = 'WELLKNOWN/ANONYMOUS' # IPA API Framework user IPAAPI_USER = 'ipaapi' IPAAPI_GROUP = 'ipaapi' # TLS related constants TLS_VERSIONS = [ "ssl2", "ssl3", "tls1.0", "tls1.1", "tls1.2" ] TLS_VERSION_MINIMAL = "tls1.0" # high ciphers without RC4, MD5, TripleDES, pre-shared key # and secure remote password TLS_HIGH_CIPHERS = "HIGH:!aNULL:!eNULL:!MD5:!RC4:!3DES:!PSK:!SRP" # Use cache path USER_CACHE_PATH = ( os.environ.get('XDG_CACHE_HOME') or os.path.join( os.environ.get( 'HOME', os.path.expanduser('~') ), '.cache' ) ) SOFTHSM_DNSSEC_TOKEN_LABEL = u'ipaDNSSEC'
gpl-3.0
XiangyiKong/flask-snippets
appstructure/zc.buildout/__init__.py
2
1215
# -*- coding: utf-8 -*- """ appstructure.zc.buildout ~~~~~~~~~~~~~~~~~~~~~~~~ Deploy using zc.buildout and PythonPaste http://flask.pocoo.org/snippets/27/ """ """ Deploy the application First, you could save the buildout directory using your favorite DVCS, or create a tarball for future deployments. Then bootstrap the buildout: ~/buildout_env $ python bootstrap.py --distribute Adjust your settings in buildout.cfg, and build the application: ~/buildout_env $ bin/buildout Run the tests: ~/buildout_env $ bin/test Test rendered page. ... ok ------------------------------------------------------------ Ran 1 test in 0.055s OK ~/buildout_env $ Now launch the server: ~/buildout_env $ bin/flask-ctl debug fg bin/paster serve parts/etc/debug.ini --reload Starting subprocess with file monitor Starting server in PID 24862. serving on http://127.0.0.1:5000 Visit http://127.0.0.1:5000 with your browser. Visit http://127.0.0.1:5000/?broken to bring the Werkzeug Debugger. Quit the application with Ctrl+C. Note: when you change the configuration in buildout.cfg, you need to rebuild the application using bin/buildout. Further reading: http://www.buildout.org http://pythonpaste.org """
bsd-3-clause
gurneyalex/stock-logistics-workflow
product_serial/__openerp__.py
17
2709
# -*- encoding: utf-8 -*- ############################################################################## # # Copyright (C) 2008 Raphaël Valyi # Copyright (C) 2013 Akretion (http://www.akretion.com/) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## { "name": "Product Serial", "summary": "Enhance Serial Number management", "version": "1.0", "author": "Akretion, NaN·tic,Odoo Community Association (OCA)", "website": "http://www.akretion.com", "depends": ["stock"], "category": "Generic Modules/Inventory Control", "license": "AGPL-3", "description": """Enhance the management of Production Lots (Serial Numbers) in OpenERP. Here are the additional features proposed by this module: 1. Add a new selection field 'Lot split type' on the product form under the 'Inventory' tab to specify how the Production Lots should be split on the Pickings (you should also enable 'Track Incoming/Outgoing Lots', and the new 'Track internal lots' field). 2. If the option 'Active auto split' is active for the Company, OpenERP will automagically split up picking list movements into one movement per product instance or logistical unit packing quantity (in that case, only the first logistical unit is taken into account at the present time. Improvement to take them all to be done!). 3. Turn Incoming Pickings into an editable grid where you can directly type the codes of a new production lot and/or tracking number to create and associate to the move (it also checks it doesn't exist yet). 4. If the option 'Group invoice lines' is active for the Company, OpenERP will group the invoice lines to make it look like the Sale/Purchase Order when generating an Invoice from a Picking. """, "demo": ["product_demo.xml"], "data": [ "product_view.xml", "company_view.xml", "stock_view.xml", "wizard/prodlot_wizard_view.xml", ], "active": False, 'installable': False }
agpl-3.0
charbeljc/account-financial-tools
__unported__/account_cancel_invoice_check_payment_order/account_invoice.py
44
2589
# -*- coding: utf-8 -*- ############################################################################## # # Author Vincent Renaville. Copyright 2012 Camptocamp SA # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp.tools.translate import _ from openerp.osv import osv, orm class account_invoice(orm.Model): _inherit = "account.invoice" def action_cancel(self, cr, uid, ids, *args): invoices = self.read(cr, uid, ids, ['move_id', 'payment_ids']) for invoice in invoices: if invoice['move_id']: # This invoice have a move line, we search move_line # concerned by this move cr.execute("""SELECT po.reference as payment_name, po.date_done as payment_date, pl.name FROM payment_line as pl INNER JOIN payment_order AS po ON pl.id = order_id WHERE move_line_id IN (SELECT id FROM account_move_line WHERE move_id = %s) LIMIT 1""", (invoice['move_id'][0],)) payment_orders = cr.dictfetchone() if payment_orders: raise osv.except_osv( _('Error !'), _("Invoice already imported in the payment " "order (%s) at %s on line %s" % (payment_orders['payment_name'], payment_orders['payment_date'], payment_orders['name'])) ) return super(account_invoice, self).action_cancel(cr, uid, ids, *args)
agpl-3.0
lingthio/Flask-User
flask_user/user_mixin.py
1
4450
"""This module implements the UserMixin class for Flask-User. This Mixin adds required methods to User data-model. """ from flask import current_app from flask_login import UserMixin as FlaskLoginUserMixin class UserMixin(FlaskLoginUserMixin): """ This class adds required methods to the User data-model. Example: class User(db.Model, UserMixin): ... """ def get_id(self): """Converts a User ID and parts of a User password hash to a token.""" # This function is used by Flask-Login to store a User ID securely as a browser cookie. # The last part of the password is included to invalidate tokens when password change. # user_id and password_ends_with are encrypted, timestamped and signed. # This function works in tandem with UserMixin.get_user_by_token() user_manager = current_app.user_manager user_id = self.id password_ends_with = '' if user_manager.USER_ENABLE_AUTH0 else self.password[-8:] user_token = user_manager.generate_token( user_id, # User ID password_ends_with, # Last 8 characters of user password ) # print("UserMixin.get_id: ID:", self.id, "token:", user_token) return user_token @classmethod def get_user_by_token(cls, token, expiration_in_seconds=None): # This function works in tandem with UserMixin.get_id() # Token signatures and timestamps are verified. # user_id and password_ends_with are decrypted. # Verifies a token and decrypts a User ID and parts of a User password hash user_manager = current_app.user_manager data_items = user_manager.verify_token(token, expiration_in_seconds) # Verify password_ends_with token_is_valid = False if data_items: # Load user by User ID user_id = data_items[0] password_ends_with = data_items[1] user = user_manager.db_manager.get_user_by_id(user_id) user_password = '' if user_manager.USER_ENABLE_AUTH0 else user.password[-8:] # Make sure that last 8 characters of user password matches token_is_valid = user and user_password==password_ends_with return user if token_is_valid else None def has_roles(self, *requirements): """ Return True if the user has all of the specified roles. Return False otherwise. has_roles() accepts a list of requirements: has_role(requirement1, requirement2, requirement3). Each requirement is either a role_name, or a tuple_of_role_names. role_name example: 'manager' tuple_of_role_names: ('funny', 'witty', 'hilarious') A role_name-requirement is accepted when the user has this role. A tuple_of_role_names-requirement is accepted when the user has ONE of these roles. has_roles() returns true if ALL of the requirements have been accepted. For example: has_roles('a', ('b', 'c'), d) Translates to: User has role 'a' AND (role 'b' OR role 'c') AND role 'd'""" # Translates a list of role objects to a list of role_names user_manager = current_app.user_manager role_names = user_manager.db_manager.get_user_roles(self) # has_role() accepts a list of requirements for requirement in requirements: if isinstance(requirement, (list, tuple)): # this is a tuple_of_role_names requirement tuple_of_role_names = requirement authorized = False for role_name in tuple_of_role_names: if role_name in role_names: # tuple_of_role_names requirement was met: break out of loop authorized = True break if not authorized: return False # tuple_of_role_names requirement failed: return False else: # this is a role_name requirement role_name = requirement # the user must have this role if not role_name in role_names: return False # role_name requirement failed: return False # All requirements have been met: return True return True
mit
mathcamp/steward_web
steward_web/__init__.py
1
1965
""" Steward extension providing framework for web interface """ import re import pyramid.renderers from pyramid.request import Request from pyramid.settings import asbool def to_json(value): """ A json filter for jinja2 """ return pyramid.renderers.render('json', value) def do_index(request): """ Render the index page """ return {} def _add_steward_web_app(config, title, name): """ Add a route to the list of steward web apps """ config.registry.steward_web_apps.append((title, name)) def _web_apps(request): """ Get the list of steward web apps """ return tuple(request.registry.steward_web_apps) def _route_names(request, pattern=r'.*'): """ Get a list of route names that match the pattern """ pattern = re.compile('^' + pattern + '$') introspector = request.registry.introspector routes = introspector.get_category('routes') names = [] for route in routes: name = route['introspectable']['name'] if pattern.match(name): names.append(name) return names def _route_map(request, pattern=r'.*'): """ Get a dict of route names to route urls """ return {name: request.route_url(name) for name in request.route_names(pattern)} def includeme(config): """ Configure the app """ settings = config.get_settings() config.add_route('root', '/') config.add_view('steward_web.do_index', route_name='root', renderer='index.jinja2') config.add_route('login', '/login') config.add_route('logout', '/logout') config.registry.steward_web_apps = [] config.add_directive('add_steward_web_app', _add_steward_web_app) config.add_request_method(_web_apps, name='steward_web_apps', reify=True) config.add_request_method(_route_names, name='route_names') config.add_request_method(_route_map, name='route_map') if asbool(settings.get('steward.web.basic_login', True)): config.scan()
mit
eayunstack/fuel-web
nailgun/nailgun/extensions/cluster_upgrade/upgrade.py
3
7844
# -*- coding: utf-8 -*- # Copyright 2015 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections import copy from distutils import version import six from nailgun import consts from nailgun.objects.serializers import network_configuration from nailgun import utils from .objects import adapters def merge_attributes(a, b): """Merge values of editable attributes. The values of the b attributes have precedence over the values of the a attributes. """ attrs = copy.deepcopy(b) for section, pairs in six.iteritems(attrs): if section == "repo_setup" or section not in a: continue a_values = a[section] for key, values in six.iteritems(pairs): if key != "metadata" and key in a_values: values["value"] = a_values[key]["value"] return attrs def merge_nets(a, b): new_settings = copy.deepcopy(b) source_networks = dict((n["name"], n) for n in a["networks"]) for net in new_settings["networks"]: if net["name"] not in source_networks: continue source_net = source_networks[net["name"]] for key, value in six.iteritems(net): if (key not in ("cluster_id", "id", "meta", "group_id") and key in source_net): net[key] = source_net[key] networking_params = new_settings["networking_parameters"] source_params = a["networking_parameters"] for key, value in six.iteritems(networking_params): if key not in source_params: continue networking_params[key] = source_params[key] return new_settings class UpgradeHelper(object): network_serializers = { consts.CLUSTER_NET_PROVIDERS.neutron: network_configuration.NeutronNetworkConfigurationSerializer, consts.CLUSTER_NET_PROVIDERS.nova_network: network_configuration.NovaNetworkConfigurationSerializer, } @classmethod def clone_cluster(cls, orig_cluster, data): from .objects import relations new_cluster = cls.create_cluster_clone(orig_cluster, data) cls.copy_attributes(orig_cluster, new_cluster) cls.copy_network_config(orig_cluster, new_cluster) relations.UpgradeRelationObject.create_relation(orig_cluster.id, new_cluster.id) return new_cluster @classmethod def create_cluster_clone(cls, orig_cluster, data): create_data = orig_cluster.get_create_data() create_data["name"] = data["name"] create_data["release_id"] = data["release_id"] new_cluster = adapters.NailgunClusterAdapter.create(create_data) return new_cluster @classmethod def copy_attributes(cls, orig_cluster, new_cluster): # TODO(akscram): Attributes should be copied including # borderline cases when some parameters are # renamed or moved into plugins. Also, we should # to keep special steps in copying of parameters # that know how to translate parameters from one # version to another. A set of this kind of steps # should define an upgrade path of a particular # cluster. new_cluster.generated_attrs = utils.dict_merge( new_cluster.generated_attrs, orig_cluster.generated_attrs) new_cluster.editable_attrs = merge_attributes( orig_cluster.editable_attrs, new_cluster.editable_attrs) @classmethod def transform_vips_for_net_groups_70(cls, vips): """Rename or remove types of VIPs for 7.0 network groups. This method renames types of VIPs from older releases (<7.0) to be compatible with network groups of the 7.0 release according to the rules: management: haproxy -> management public: haproxy -> public public: vrouter -> vrouter_pub Note, that in the result VIPs are present only those IPs that correspond to the given rules. """ rename_vip_rules = { "management": { "haproxy": "management", "vrouter": "vrouter", }, "public": { "haproxy": "public", "vrouter": "vrouter_pub", }, } renamed_vips = collections.defaultdict(dict) for ng_name, vips in six.iteritems(vips): ng_vip_rules = rename_vip_rules[ng_name] for vip_type, vip_addr in six.iteritems(vips): if vip_type not in ng_vip_rules: continue new_vip_type = ng_vip_rules[vip_type] renamed_vips[ng_name][new_vip_type] = vip_addr return renamed_vips @classmethod def copy_network_config(cls, orig_cluster, new_cluster): nets_serializer = cls.network_serializers[orig_cluster.net_provider] nets = merge_nets( nets_serializer.serialize_for_cluster(orig_cluster.cluster), nets_serializer.serialize_for_cluster(new_cluster.cluster)) orig_net_manager = orig_cluster.get_network_manager() new_net_manager = new_cluster.get_network_manager() new_net_manager.update(nets) vips = orig_net_manager.get_assigned_vips() for ng_name in vips: if ng_name not in (consts.NETWORKS.public, consts.NETWORKS.management): vips.pop(ng_name) # NOTE(akscram): In the 7.0 release was introduced networking # templates that use the vip_type column as # unique names of VIPs. if version.LooseVersion(orig_cluster.release.environment_version) < \ version.LooseVersion("7.0"): vips = cls.transform_vips_for_net_groups_70(vips) new_net_manager.assign_given_vips_for_net_groups(vips) new_net_manager.assign_vips_for_net_groups() @classmethod def assign_node_to_cluster(cls, node, seed_cluster): orig_cluster = adapters.NailgunClusterAdapter.get_by_uid( node.cluster_id) orig_manager = orig_cluster.get_network_manager() seed_manager = seed_cluster.get_network_manager() netgroups_id_mapping = cls.get_netgroups_id_mapping( orig_cluster, seed_cluster) node.update_cluster_assignment(seed_cluster) seed_manager.set_node_netgroups_ids(node, netgroups_id_mapping) orig_manager.set_nic_assignment_netgroups_ids( node, netgroups_id_mapping) orig_manager.set_bond_assignment_netgroups_ids( node, netgroups_id_mapping) node.add_pending_change(consts.CLUSTER_CHANGES.interfaces) @classmethod def get_netgroups_id_mapping(self, orig_cluster, seed_cluster): orig_ng = orig_cluster.get_network_groups() seed_ng = seed_cluster.get_network_groups() seed_ng_dict = dict((ng.name, ng.id) for ng in seed_ng) mapping = dict((ng.id, seed_ng_dict[ng.name]) for ng in orig_ng) mapping[orig_cluster.get_admin_network_group().id] = \ seed_cluster.get_admin_network_group().id return mapping
apache-2.0
zace-yuan/viewfinder
backend/db/async_aws_sts.py
13
4387
#!/bin/env python # # Copyright 2012 bit.ly # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Created by Dan Frank on 2012-01-25. Copyright (c) 2012 bit.ly. All rights reserved. """ import functools from tornado.httpclient import HTTPRequest from tornado.httpclient import AsyncHTTPClient import xml.sax import boto from boto.sts.connection import STSConnection from boto.sts.credentials import Credentials from boto.exception import BotoServerError class InvalidClientTokenIdError(BotoServerError): """Error subclass to indicate that the client's token(s) is/are invalid. """ pass class AsyncAwsSts(STSConnection): """Class that manages session tokens. Users of AsyncDynamoDB should not need to worry about what goes on here. Usage: Keep an instance of this class (though it should be cheap to re instantiate) and periodically call get_session_token to get a new Credentials object when, say, your session token expires. """ def __init__(self, aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, region=None, path='/', converter=None): STSConnection.__init__(self, aws_access_key_id, aws_secret_access_key, is_secure, port, proxy, proxy_port, proxy_user, proxy_pass, debug, https_connection_factory, region, path, converter) def get_session_token(self, callback): """Gets a new Credentials object with a session token, using this instance's aws keys. Callback should operate on the new Credentials obj, or else a boto.exception.BotoServerError. """ return self.get_object('GetSessionToken', {}, Credentials, verb='POST', callback=callback) def get_object(self, action, params, cls, path="/", parent=None, verb="GET", callback=None): """Get an instance of `cls` using `action`.""" if not parent: parent = self self.make_request(action, params, path, verb, functools.partial(self._finish_get_object, callback=callback, parent=parent, cls=cls)) def _finish_get_object(self, response_body, callback, cls=None, parent=None, error=None): """Process the body returned by STS. If an error is present, convert from a tornado error to a boto error. """ if error: if error.code == 403: error_class = InvalidClientTokenIdError else: error_class = BotoServerError return callback(None, error=error_class(error.code, error.message, response_body)) obj = cls(parent) h = boto.handler.XmlHandler(obj, parent) xml.sax.parseString(response_body, h) return callback(obj) def make_request(self, action, params={}, path='/', verb='GET', callback=None): """Make an async request. This handles the logic of translating from boto params to a tornado request obj, issuing the request, and passing back the body. The callback should operate on the body of the response, and take an optional error argument that will be a tornado error. """ request = HTTPRequest('https://%s' % self.host, method=verb) request.params = params request.auth_path = '/' # need this for auth request.host = self.host # need this for auth if action: request.params['Action'] = action if self.APIVersion: request.params['Version'] = self.APIVersion self._auth_handler.add_auth(request) # add signature http_client = AsyncHTTPClient() http_client.fetch(request, functools.partial(self._finish_make_request, callback=callback)) def _finish_make_request(self, response, callback): if response.error: return callback(response.body, error=response.error) return callback(response.body)
apache-2.0
DmitryADP/diff_qc750
external/webkit/Tools/CygwinDownloader/cygwin-downloader.py
20
5471
#!/usr/bin/env python import os, random, sys, time, urllib # # Options # dry_run = len(sys.argv) > 1 and "--dry-run" in set(sys.argv[1:]) quiet = len(sys.argv) > 1 and "--quiet" in set(sys.argv[1:]) # # Functions and constants # def download_progress_hook(block_count, block_size, total_blocks): if quiet or random.random() > 0.5: return sys.stdout.write(".") sys.stdout.flush() def download_url_to_file(url, file, message): if not quiet: print message + " ", if not dry_run: dir = os.path.dirname(file) if len(dir) and not os.path.exists(dir): os.makedirs(dir) urllib.urlretrieve(url, file, download_progress_hook) if not quiet: print # This is mostly just the list of North America http mirrors from http://cygwin.com/mirrors.html, # but a few have been removed that seemed unresponsive from Cupertino. mirror_servers = ["http://cygwin.elite-systems.org/", "http://mirror.mcs.anl.gov/cygwin/", "http://cygwin.osuosl.org/", "http://mirrors.kernel.org/sourceware/cygwin/", "http://mirrors.xmission.com/cygwin/", "http://sourceware.mirrors.tds.net/pub/sourceware.org/cygwin/"] package_mirror_url = mirror_servers[random.choice(range(len(mirror_servers)))] def download_package(package, message): download_url_to_file(package_mirror_url + package["path"], package["path"], message) required_packages = frozenset(["apache", "bc", "bison", "curl", "diffutils", "e2fsprogs", "emacs", "flex", "gcc", "gperf", "keychain", "make", "nano", "openssh", "patch", "perl", "perl-libwin32", "python", "rebase", "rsync", "ruby", "subversion", "unzip", "vim", "zip"]) # # Main # print "Using Cygwin mirror server " + package_mirror_url + " to download setup.ini..." urllib.urlretrieve(package_mirror_url + "setup.ini", "setup.ini.orig") downloaded_packages_file_path = "setup.ini.orig" downloaded_packages_file = file(downloaded_packages_file_path, "r") if not dry_run: modified_packages_file = file("setup.ini", "w") packages = {} current_package = '' for line in downloaded_packages_file.readlines(): if line[0] == "@": current_package = line[2:-1] packages[current_package] = {"name": current_package, "needs_download": False, "requires": [], "path": ""} elif line[:10] == "category: ": if current_package in required_packages: line = "category: Base\n" if "Base" in set(line[10:-1].split()): packages[current_package]["needs_download"] = True elif line[:10] == "requires: ": packages[current_package]["requires"] = line[10:].split() packages[current_package]["requires"].sort() elif line[:9] == "install: " and not len(packages[current_package]["path"]): end_of_path = line.find(" ", 9) if end_of_path != -1: packages[current_package]["path"] = line[9:end_of_path] if not dry_run: modified_packages_file.write(line) downloaded_packages_file.close() os.remove(downloaded_packages_file_path) if not dry_run: modified_packages_file.close() names_to_download = set() package_names = packages.keys() package_names.sort() def add_package_and_dependencies(name): if name in names_to_download: return if not name in packages: return packages[name]["needs_download"] = True names_to_download.add(name) for dep in packages[name]["requires"]: add_package_and_dependencies(dep) for name in package_names: if packages[name]["needs_download"]: add_package_and_dependencies(name) downloaded_so_far = 0 for name in package_names: if packages[name]["needs_download"]: downloaded_so_far += 1 download_package(packages[name], "Downloading package %3d of %3d (%s)" % (downloaded_so_far, len(names_to_download), name)) download_url_to_file("http://cygwin.com/setup.exe", "setup.exe", "Downloading setup.exe") seconds_to_sleep = 10 print """ Finished downloading Cygwin. In %d seconds, I will run setup.exe. Select the "Install from Local Directory" option and browse to "%s" when asked for the "Local Package Directory". """ % (seconds_to_sleep, os.getcwd()) while seconds_to_sleep > 0: print "%d..." % seconds_to_sleep, sys.stdout.flush() time.sleep(1) seconds_to_sleep -= 1 print if not dry_run: os.execl("setup.exe")
gpl-2.0
gavinelliott/patsi
node_modules/node-sass/node_modules/node-gyp/gyp/pylib/gyp/easy_xml.py
1558
4945
# Copyright (c) 2011 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import re import os def XmlToString(content, encoding='utf-8', pretty=False): """ Writes the XML content to disk, touching the file only if it has changed. Visual Studio files have a lot of pre-defined structures. This function makes it easy to represent these structures as Python data structures, instead of having to create a lot of function calls. Each XML element of the content is represented as a list composed of: 1. The name of the element, a string, 2. The attributes of the element, a dictionary (optional), and 3+. The content of the element, if any. Strings are simple text nodes and lists are child elements. Example 1: <test/> becomes ['test'] Example 2: <myelement a='value1' b='value2'> <childtype>This is</childtype> <childtype>it!</childtype> </myelement> becomes ['myelement', {'a':'value1', 'b':'value2'}, ['childtype', 'This is'], ['childtype', 'it!'], ] Args: content: The structured content to be converted. encoding: The encoding to report on the first XML line. pretty: True if we want pretty printing with indents and new lines. Returns: The XML content as a string. """ # We create a huge list of all the elements of the file. xml_parts = ['<?xml version="1.0" encoding="%s"?>' % encoding] if pretty: xml_parts.append('\n') _ConstructContentList(xml_parts, content, pretty) # Convert it to a string return ''.join(xml_parts) def _ConstructContentList(xml_parts, specification, pretty, level=0): """ Appends the XML parts corresponding to the specification. Args: xml_parts: A list of XML parts to be appended to. specification: The specification of the element. See EasyXml docs. pretty: True if we want pretty printing with indents and new lines. level: Indentation level. """ # The first item in a specification is the name of the element. if pretty: indentation = ' ' * level new_line = '\n' else: indentation = '' new_line = '' name = specification[0] if not isinstance(name, str): raise Exception('The first item of an EasyXml specification should be ' 'a string. Specification was ' + str(specification)) xml_parts.append(indentation + '<' + name) # Optionally in second position is a dictionary of the attributes. rest = specification[1:] if rest and isinstance(rest[0], dict): for at, val in sorted(rest[0].iteritems()): xml_parts.append(' %s="%s"' % (at, _XmlEscape(val, attr=True))) rest = rest[1:] if rest: xml_parts.append('>') all_strings = reduce(lambda x, y: x and isinstance(y, str), rest, True) multi_line = not all_strings if multi_line and new_line: xml_parts.append(new_line) for child_spec in rest: # If it's a string, append a text node. # Otherwise recurse over that child definition if isinstance(child_spec, str): xml_parts.append(_XmlEscape(child_spec)) else: _ConstructContentList(xml_parts, child_spec, pretty, level + 1) if multi_line and indentation: xml_parts.append(indentation) xml_parts.append('</%s>%s' % (name, new_line)) else: xml_parts.append('/>%s' % new_line) def WriteXmlIfChanged(content, path, encoding='utf-8', pretty=False, win32=False): """ Writes the XML content to disk, touching the file only if it has changed. Args: content: The structured content to be written. path: Location of the file. encoding: The encoding to report on the first line of the XML file. pretty: True if we want pretty printing with indents and new lines. """ xml_string = XmlToString(content, encoding, pretty) if win32 and os.linesep != '\r\n': xml_string = xml_string.replace('\n', '\r\n') try: xml_string = xml_string.encode(encoding) except Exception: xml_string = unicode(xml_string, 'latin-1').encode(encoding) # Get the old content try: f = open(path, 'r') existing = f.read() f.close() except: existing = None # It has changed, write it if existing != xml_string: f = open(path, 'w') f.write(xml_string) f.close() _xml_escape_map = { '"': '&quot;', "'": '&apos;', '<': '&lt;', '>': '&gt;', '&': '&amp;', '\n': '&#xA;', '\r': '&#xD;', } _xml_escape_re = re.compile( "(%s)" % "|".join(map(re.escape, _xml_escape_map.keys()))) def _XmlEscape(value, attr=False): """ Escape a string for inclusion in XML.""" def replace(match): m = match.string[match.start() : match.end()] # don't replace single quotes in attrs if attr and m == "'": return m return _xml_escape_map[m] return _xml_escape_re.sub(replace, value)
mit
PolicyStat/django
tests/get_or_create/tests.py
19
13380
from __future__ import unicode_literals from datetime import date import traceback import warnings from django.db import IntegrityError, DatabaseError from django.utils.encoding import DjangoUnicodeDecodeError from django.test import TestCase, TransactionTestCase from .models import (DefaultPerson, Person, ManualPrimaryKeyTest, Profile, Tag, Thing, Publisher, Author, Book) class GetOrCreateTests(TestCase): def setUp(self): self.lennon = Person.objects.create( first_name='John', last_name='Lennon', birthday=date(1940, 10, 9) ) def test_get_or_create_method_with_get(self): created = Person.objects.get_or_create( first_name="John", last_name="Lennon", defaults={ "birthday": date(1940, 10, 9) } )[1] self.assertFalse(created) self.assertEqual(Person.objects.count(), 1) def test_get_or_create_method_with_create(self): created = Person.objects.get_or_create( first_name='George', last_name='Harrison', defaults={ 'birthday': date(1943, 2, 25) } )[1] self.assertTrue(created) self.assertEqual(Person.objects.count(), 2) def test_get_or_create_redundant_instance(self): """ If we execute the exact same statement twice, the second time, it won't create a Person. """ Person.objects.get_or_create( first_name='George', last_name='Harrison', defaults={ 'birthday': date(1943, 2, 25) } ) created = Person.objects.get_or_create( first_name='George', last_name='Harrison', defaults={ 'birthday': date(1943, 2, 25) } )[1] self.assertFalse(created) self.assertEqual(Person.objects.count(), 2) def test_get_or_create_invalid_params(self): """ If you don't specify a value or default value for all required fields, you will get an error. """ self.assertRaises( IntegrityError, Person.objects.get_or_create, first_name="Tom", last_name="Smith" ) def test_get_or_create_on_related_manager(self): p = Publisher.objects.create(name="Acme Publishing") # Create a book through the publisher. book, created = p.books.get_or_create(name="The Book of Ed & Fred") self.assertTrue(created) # The publisher should have one book. self.assertEqual(p.books.count(), 1) # Try get_or_create again, this time nothing should be created. book, created = p.books.get_or_create(name="The Book of Ed & Fred") self.assertFalse(created) # And the publisher should still have one book. self.assertEqual(p.books.count(), 1) # Add an author to the book. ed, created = book.authors.get_or_create(name="Ed") self.assertTrue(created) # The book should have one author. self.assertEqual(book.authors.count(), 1) # Try get_or_create again, this time nothing should be created. ed, created = book.authors.get_or_create(name="Ed") self.assertFalse(created) # And the book should still have one author. self.assertEqual(book.authors.count(), 1) # Add a second author to the book. fred, created = book.authors.get_or_create(name="Fred") self.assertTrue(created) # The book should have two authors now. self.assertEqual(book.authors.count(), 2) # Create an Author not tied to any books. Author.objects.create(name="Ted") # There should be three Authors in total. The book object should have two. self.assertEqual(Author.objects.count(), 3) self.assertEqual(book.authors.count(), 2) # Try creating a book through an author. _, created = ed.books.get_or_create(name="Ed's Recipes", publisher=p) self.assertTrue(created) # Now Ed has two Books, Fred just one. self.assertEqual(ed.books.count(), 2) self.assertEqual(fred.books.count(), 1) # Use the publisher's primary key value instead of a model instance. _, created = ed.books.get_or_create(name='The Great Book of Ed', publisher_id=p.id) self.assertTrue(created) # Try get_or_create again, this time nothing should be created. _, created = ed.books.get_or_create(name='The Great Book of Ed', publisher_id=p.id) self.assertFalse(created) # The publisher should have three books. self.assertEqual(p.books.count(), 3) class GetOrCreateTestsWithManualPKs(TestCase): def setUp(self): self.first_pk = ManualPrimaryKeyTest.objects.create(id=1, data="Original") def test_create_with_duplicate_primary_key(self): """ If you specify an existing primary key, but different other fields, then you will get an error and data will not be updated. """ self.assertRaises( IntegrityError, ManualPrimaryKeyTest.objects.get_or_create, id=1, data="Different" ) self.assertEqual(ManualPrimaryKeyTest.objects.get(id=1).data, "Original") def test_get_or_create_raises_IntegrityError_plus_traceback(self): """ get_or_create should raise IntegrityErrors with the full traceback. This is tested by checking that a known method call is in the traceback. We cannot use assertRaises here because we need to inspect the actual traceback. Refs #16340. """ try: ManualPrimaryKeyTest.objects.get_or_create(id=1, data="Different") except IntegrityError: formatted_traceback = traceback.format_exc() self.assertIn(str('obj.save'), formatted_traceback) def test_savepoint_rollback(self): """ Regression test for #20463: the database connection should still be usable after a DataError or ProgrammingError in .get_or_create(). """ try: # Hide warnings when broken data is saved with a warning (MySQL). with warnings.catch_warnings(): warnings.simplefilter('ignore') Person.objects.get_or_create( birthday=date(1970, 1, 1), defaults={'first_name': b"\xff", 'last_name': b"\xff"}) except (DatabaseError, DjangoUnicodeDecodeError): Person.objects.create( first_name="Bob", last_name="Ross", birthday=date(1950, 1, 1)) else: self.skipTest("This backend accepts broken utf-8.") def test_get_or_create_empty(self): """ Regression test for #16137: get_or_create does not require kwargs. """ try: DefaultPerson.objects.get_or_create() except AssertionError: self.fail("If all the attributes on a model have defaults, we " "shouldn't need to pass any arguments.") class GetOrCreateTransactionTests(TransactionTestCase): available_apps = ['get_or_create'] def test_get_or_create_integrityerror(self): """ Regression test for #15117. Requires a TransactionTestCase on databases that delay integrity checks until the end of transactions, otherwise the exception is never raised. """ try: Profile.objects.get_or_create(person=Person(id=1)) except IntegrityError: pass else: self.skipTest("This backend does not support integrity checks.") class GetOrCreateThroughManyToMany(TestCase): def test_get_get_or_create(self): tag = Tag.objects.create(text='foo') a_thing = Thing.objects.create(name='a') a_thing.tags.add(tag) obj, created = a_thing.tags.get_or_create(text='foo') self.assertFalse(created) self.assertEqual(obj.pk, tag.pk) def test_create_get_or_create(self): a_thing = Thing.objects.create(name='a') obj, created = a_thing.tags.get_or_create(text='foo') self.assertTrue(created) self.assertEqual(obj.text, 'foo') self.assertIn(obj, a_thing.tags.all()) def test_something(self): Tag.objects.create(text='foo') a_thing = Thing.objects.create(name='a') self.assertRaises(IntegrityError, a_thing.tags.get_or_create, text='foo') class UpdateOrCreateTests(TestCase): def test_update(self): Person.objects.create( first_name='John', last_name='Lennon', birthday=date(1940, 10, 9) ) p, created = Person.objects.update_or_create( first_name='John', last_name='Lennon', defaults={ 'birthday': date(1940, 10, 10) } ) self.assertFalse(created) self.assertEqual(p.first_name, 'John') self.assertEqual(p.last_name, 'Lennon') self.assertEqual(p.birthday, date(1940, 10, 10)) def test_create(self): p, created = Person.objects.update_or_create( first_name='John', last_name='Lennon', defaults={ 'birthday': date(1940, 10, 10) } ) self.assertTrue(created) self.assertEqual(p.first_name, 'John') self.assertEqual(p.last_name, 'Lennon') self.assertEqual(p.birthday, date(1940, 10, 10)) def test_create_twice(self): params = { 'first_name': 'John', 'last_name': 'Lennon', 'birthday': date(1940, 10, 10), } Person.objects.update_or_create(**params) # If we execute the exact same statement, it won't create a Person. p, created = Person.objects.update_or_create(**params) self.assertFalse(created) def test_integrity(self): """ If you don't specify a value or default value for all required fields, you will get an error. """ self.assertRaises(IntegrityError, Person.objects.update_or_create, first_name="Tom", last_name="Smith") def test_manual_primary_key_test(self): """ If you specify an existing primary key, but different other fields, then you will get an error and data will not be updated. """ ManualPrimaryKeyTest.objects.create(id=1, data="Original") self.assertRaises( IntegrityError, ManualPrimaryKeyTest.objects.update_or_create, id=1, data="Different" ) self.assertEqual(ManualPrimaryKeyTest.objects.get(id=1).data, "Original") def test_error_contains_full_traceback(self): """ update_or_create should raise IntegrityErrors with the full traceback. This is tested by checking that a known method call is in the traceback. We cannot use assertRaises/assertRaises here because we need to inspect the actual traceback. Refs #16340. """ try: ManualPrimaryKeyTest.objects.update_or_create(id=1, data="Different") except IntegrityError: formatted_traceback = traceback.format_exc() self.assertIn('obj.save', formatted_traceback) def test_create_with_related_manager(self): """ Should be able to use update_or_create from the related manager to create a book. Refs #23611. """ p = Publisher.objects.create(name="Acme Publishing") book, created = p.books.update_or_create(name="The Book of Ed & Fred") self.assertTrue(created) self.assertEqual(p.books.count(), 1) def test_update_with_related_manager(self): """ Should be able to use update_or_create from the related manager to update a book. Refs #23611. """ p = Publisher.objects.create(name="Acme Publishing") book = Book.objects.create(name="The Book of Ed & Fred", publisher=p) self.assertEqual(p.books.count(), 1) name = "The Book of Django" book, created = p.books.update_or_create(defaults={'name': name}, id=book.id) self.assertFalse(created) self.assertEqual(book.name, name) self.assertEqual(p.books.count(), 1) def test_create_with_many(self): """ Should be able to use update_or_create from the m2m related manager to create a book. Refs #23611. """ p = Publisher.objects.create(name="Acme Publishing") author = Author.objects.create(name="Ted") book, created = author.books.update_or_create(name="The Book of Ed & Fred", publisher=p) self.assertTrue(created) self.assertEqual(author.books.count(), 1) def test_update_with_many(self): """ Should be able to use update_or_create from the m2m related manager to update a book. Refs #23611. """ p = Publisher.objects.create(name="Acme Publishing") author = Author.objects.create(name="Ted") book = Book.objects.create(name="The Book of Ed & Fred", publisher=p) book.authors.add(author) self.assertEqual(author.books.count(), 1) name = "The Book of Django" book, created = author.books.update_or_create(defaults={'name': name}, id=book.id) self.assertFalse(created) self.assertEqual(book.name, name) self.assertEqual(author.books.count(), 1)
bsd-3-clause
abrt/faf
src/pyfaf/storage/migrations/versions/168c63b81f85_report_history_default_value.py
1
1945
# Copyright (C) 2014 ABRT Team # Copyright (C) 2014 Red Hat, Inc. # # This file is part of faf. # # faf is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # faf is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with faf. If not, see <http://www.gnu.org/licenses/>. """ Report history default value Revision ID: 168c63b81f85 Revises: 183a15e52a4f Create Date: 2016-12-13 15:49:32.883743 """ from alembic.op import alter_column, execute # revision identifiers, used by Alembic. revision = '168c63b81f85' down_revision = '1c4d6317721a' def upgrade() -> None: alter_column('reporthistorydaily', 'unique', server_default="0") alter_column('reporthistoryweekly', 'unique', server_default="0") alter_column('reporthistorymonthly', 'unique', server_default="0") execute('UPDATE reporthistorydaily SET "unique" = 0 WHERE "unique" IS NULL') execute('UPDATE reporthistoryweekly SET "unique" = 0 WHERE "unique" IS NULL') execute('UPDATE reporthistorymonthly SET "unique" = 0 WHERE "unique" IS NULL') def downgrade() -> None: alter_column('reporthistorydaily', 'unique', server_default=None) alter_column('reporthistoryweekly', 'unique', server_default=None) alter_column('reporthistorymonthly', 'unique', server_default=None) execute('UPDATE reporthistorydaily SET "unique" = NULL WHERE "unique" = 0') execute('UPDATE reporthistoryweekly SET "unique" = NULL WHERE "unique" = 0') execute('UPDATE reporthistorymonthly SET "unique" = NULL WHERE "unique" = 0')
gpl-3.0
lancezlin/ml_template_py
lib/python2.7/site-packages/pandas/tests/frame/test_missing.py
7
24048
# -*- coding: utf-8 -*- from __future__ import print_function from distutils.version import LooseVersion from numpy import nan, random import numpy as np from pandas.compat import lrange from pandas import (DataFrame, Series, Timestamp, date_range) import pandas as pd from pandas.util.testing import (assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.util.testing as tm from pandas.tests.frame.common import TestData, _check_mixed_float def _skip_if_no_pchip(): try: from scipy.interpolate import pchip_interpolate # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.pchip missing') class TestDataFrameMissingData(tm.TestCase, TestData): _multiprocess_can_split_ = True def test_dropEmptyRows(self): N = len(self.frame.index) mat = random.randn(N) mat[:5] = nan frame = DataFrame({'foo': mat}, index=self.frame.index) original = Series(mat, index=self.frame.index, name='foo') expected = original.dropna() inplace_frame1, inplace_frame2 = frame.copy(), frame.copy() smaller_frame = frame.dropna(how='all') # check that original was preserved assert_series_equal(frame['foo'], original) inplace_frame1.dropna(how='all', inplace=True) assert_series_equal(smaller_frame['foo'], expected) assert_series_equal(inplace_frame1['foo'], expected) smaller_frame = frame.dropna(how='all', subset=['foo']) inplace_frame2.dropna(how='all', subset=['foo'], inplace=True) assert_series_equal(smaller_frame['foo'], expected) assert_series_equal(inplace_frame2['foo'], expected) def test_dropIncompleteRows(self): N = len(self.frame.index) mat = random.randn(N) mat[:5] = nan frame = DataFrame({'foo': mat}, index=self.frame.index) frame['bar'] = 5 original = Series(mat, index=self.frame.index, name='foo') inp_frame1, inp_frame2 = frame.copy(), frame.copy() smaller_frame = frame.dropna() assert_series_equal(frame['foo'], original) inp_frame1.dropna(inplace=True) exp = Series(mat[5:], index=self.frame.index[5:], name='foo') tm.assert_series_equal(smaller_frame['foo'], exp) tm.assert_series_equal(inp_frame1['foo'], exp) samesize_frame = frame.dropna(subset=['bar']) assert_series_equal(frame['foo'], original) self.assertTrue((frame['bar'] == 5).all()) inp_frame2.dropna(subset=['bar'], inplace=True) self.assert_index_equal(samesize_frame.index, self.frame.index) self.assert_index_equal(inp_frame2.index, self.frame.index) def test_dropna(self): df = DataFrame(np.random.randn(6, 4)) df[2][:2] = nan dropped = df.dropna(axis=1) expected = df.ix[:, [0, 1, 3]] inp = df.copy() inp.dropna(axis=1, inplace=True) assert_frame_equal(dropped, expected) assert_frame_equal(inp, expected) dropped = df.dropna(axis=0) expected = df.ix[lrange(2, 6)] inp = df.copy() inp.dropna(axis=0, inplace=True) assert_frame_equal(dropped, expected) assert_frame_equal(inp, expected) # threshold dropped = df.dropna(axis=1, thresh=5) expected = df.ix[:, [0, 1, 3]] inp = df.copy() inp.dropna(axis=1, thresh=5, inplace=True) assert_frame_equal(dropped, expected) assert_frame_equal(inp, expected) dropped = df.dropna(axis=0, thresh=4) expected = df.ix[lrange(2, 6)] inp = df.copy() inp.dropna(axis=0, thresh=4, inplace=True) assert_frame_equal(dropped, expected) assert_frame_equal(inp, expected) dropped = df.dropna(axis=1, thresh=4) assert_frame_equal(dropped, df) dropped = df.dropna(axis=1, thresh=3) assert_frame_equal(dropped, df) # subset dropped = df.dropna(axis=0, subset=[0, 1, 3]) inp = df.copy() inp.dropna(axis=0, subset=[0, 1, 3], inplace=True) assert_frame_equal(dropped, df) assert_frame_equal(inp, df) # all dropped = df.dropna(axis=1, how='all') assert_frame_equal(dropped, df) df[2] = nan dropped = df.dropna(axis=1, how='all') expected = df.ix[:, [0, 1, 3]] assert_frame_equal(dropped, expected) # bad input self.assertRaises(ValueError, df.dropna, axis=3) def test_drop_and_dropna_caching(self): # tst that cacher updates original = Series([1, 2, np.nan], name='A') expected = Series([1, 2], dtype=original.dtype, name='A') df = pd.DataFrame({'A': original.values.copy()}) df2 = df.copy() df['A'].dropna() assert_series_equal(df['A'], original) df['A'].dropna(inplace=True) assert_series_equal(df['A'], expected) df2['A'].drop([1]) assert_series_equal(df2['A'], original) df2['A'].drop([1], inplace=True) assert_series_equal(df2['A'], original.drop([1])) def test_dropna_corner(self): # bad input self.assertRaises(ValueError, self.frame.dropna, how='foo') self.assertRaises(TypeError, self.frame.dropna, how=None) # non-existent column - 8303 self.assertRaises(KeyError, self.frame.dropna, subset=['A', 'X']) def test_dropna_multiple_axes(self): df = DataFrame([[1, np.nan, 2, 3], [4, np.nan, 5, 6], [np.nan, np.nan, np.nan, np.nan], [7, np.nan, 8, 9]]) cp = df.copy() result = df.dropna(how='all', axis=[0, 1]) result2 = df.dropna(how='all', axis=(0, 1)) expected = df.dropna(how='all').dropna(how='all', axis=1) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) assert_frame_equal(df, cp) inp = df.copy() inp.dropna(how='all', axis=(0, 1), inplace=True) assert_frame_equal(inp, expected) def test_fillna(self): self.tsframe.ix[:5, 'A'] = nan self.tsframe.ix[-5:, 'A'] = nan zero_filled = self.tsframe.fillna(0) self.assertTrue((zero_filled.ix[:5, 'A'] == 0).all()) padded = self.tsframe.fillna(method='pad') self.assertTrue(np.isnan(padded.ix[:5, 'A']).all()) self.assertTrue((padded.ix[-5:, 'A'] == padded.ix[-5, 'A']).all()) # mixed type self.mixed_frame.ix[5:20, 'foo'] = nan self.mixed_frame.ix[-10:, 'A'] = nan result = self.mixed_frame.fillna(value=0) result = self.mixed_frame.fillna(method='pad') self.assertRaises(ValueError, self.tsframe.fillna) self.assertRaises(ValueError, self.tsframe.fillna, 5, method='ffill') # mixed numeric (but no float16) mf = self.mixed_float.reindex(columns=['A', 'B', 'D']) mf.ix[-10:, 'A'] = nan result = mf.fillna(value=0) _check_mixed_float(result, dtype=dict(C=None)) result = mf.fillna(method='pad') _check_mixed_float(result, dtype=dict(C=None)) # empty frame (GH #2778) df = DataFrame(columns=['x']) for m in ['pad', 'backfill']: df.x.fillna(method=m, inplace=1) df.x.fillna(method=m) # with different dtype (GH3386) df = DataFrame([['a', 'a', np.nan, 'a'], [ 'b', 'b', np.nan, 'b'], ['c', 'c', np.nan, 'c']]) result = df.fillna({2: 'foo'}) expected = DataFrame([['a', 'a', 'foo', 'a'], ['b', 'b', 'foo', 'b'], ['c', 'c', 'foo', 'c']]) assert_frame_equal(result, expected) df.fillna({2: 'foo'}, inplace=True) assert_frame_equal(df, expected) # limit and value df = DataFrame(np.random.randn(10, 3)) df.iloc[2:7, 0] = np.nan df.iloc[3:5, 2] = np.nan expected = df.copy() expected.iloc[2, 0] = 999 expected.iloc[3, 2] = 999 result = df.fillna(999, limit=1) assert_frame_equal(result, expected) # with datelike # GH 6344 df = DataFrame({ 'Date': [pd.NaT, Timestamp("2014-1-1")], 'Date2': [Timestamp("2013-1-1"), pd.NaT] }) expected = df.copy() expected['Date'] = expected['Date'].fillna(df.ix[0, 'Date2']) result = df.fillna(value={'Date': df['Date2']}) assert_frame_equal(result, expected) def test_fillna_dtype_conversion(self): # make sure that fillna on an empty frame works df = DataFrame(index=["A", "B", "C"], columns=[1, 2, 3, 4, 5]) result = df.get_dtype_counts().sort_values() expected = Series({'object': 5}) assert_series_equal(result, expected) result = df.fillna(1) expected = DataFrame(1, index=["A", "B", "C"], columns=[1, 2, 3, 4, 5]) result = result.get_dtype_counts().sort_values() expected = Series({'int64': 5}) assert_series_equal(result, expected) # empty block df = DataFrame(index=lrange(3), columns=['A', 'B'], dtype='float64') result = df.fillna('nan') expected = DataFrame('nan', index=lrange(3), columns=['A', 'B']) assert_frame_equal(result, expected) # equiv of replace df = DataFrame(dict(A=[1, np.nan], B=[1., 2.])) for v in ['', 1, np.nan, 1.0]: expected = df.replace(np.nan, v) result = df.fillna(v) assert_frame_equal(result, expected) def test_fillna_datetime_columns(self): # GH 7095 df = pd.DataFrame({'A': [-1, -2, np.nan], 'B': date_range('20130101', periods=3), 'C': ['foo', 'bar', None], 'D': ['foo2', 'bar2', None]}, index=date_range('20130110', periods=3)) result = df.fillna('?') expected = pd.DataFrame({'A': [-1, -2, '?'], 'B': date_range('20130101', periods=3), 'C': ['foo', 'bar', '?'], 'D': ['foo2', 'bar2', '?']}, index=date_range('20130110', periods=3)) self.assert_frame_equal(result, expected) df = pd.DataFrame({'A': [-1, -2, np.nan], 'B': [pd.Timestamp('2013-01-01'), pd.Timestamp('2013-01-02'), pd.NaT], 'C': ['foo', 'bar', None], 'D': ['foo2', 'bar2', None]}, index=date_range('20130110', periods=3)) result = df.fillna('?') expected = pd.DataFrame({'A': [-1, -2, '?'], 'B': [pd.Timestamp('2013-01-01'), pd.Timestamp('2013-01-02'), '?'], 'C': ['foo', 'bar', '?'], 'D': ['foo2', 'bar2', '?']}, index=pd.date_range('20130110', periods=3)) self.assert_frame_equal(result, expected) def test_ffill(self): self.tsframe['A'][:5] = nan self.tsframe['A'][-5:] = nan assert_frame_equal(self.tsframe.ffill(), self.tsframe.fillna(method='ffill')) def test_bfill(self): self.tsframe['A'][:5] = nan self.tsframe['A'][-5:] = nan assert_frame_equal(self.tsframe.bfill(), self.tsframe.fillna(method='bfill')) def test_fillna_skip_certain_blocks(self): # don't try to fill boolean, int blocks df = DataFrame(np.random.randn(10, 4).astype(int)) # it works! df.fillna(np.nan) def test_fillna_inplace(self): df = DataFrame(np.random.randn(10, 4)) df[1][:4] = np.nan df[3][-4:] = np.nan expected = df.fillna(value=0) self.assertIsNot(expected, df) df.fillna(value=0, inplace=True) assert_frame_equal(df, expected) df[1][:4] = np.nan df[3][-4:] = np.nan expected = df.fillna(method='ffill') self.assertIsNot(expected, df) df.fillna(method='ffill', inplace=True) assert_frame_equal(df, expected) def test_fillna_dict_series(self): df = DataFrame({'a': [nan, 1, 2, nan, nan], 'b': [1, 2, 3, nan, nan], 'c': [nan, 1, 2, 3, 4]}) result = df.fillna({'a': 0, 'b': 5}) expected = df.copy() expected['a'] = expected['a'].fillna(0) expected['b'] = expected['b'].fillna(5) assert_frame_equal(result, expected) # it works result = df.fillna({'a': 0, 'b': 5, 'd': 7}) # Series treated same as dict result = df.fillna(df.max()) expected = df.fillna(df.max().to_dict()) assert_frame_equal(result, expected) # disable this for now with assertRaisesRegexp(NotImplementedError, 'column by column'): df.fillna(df.max(1), axis=1) def test_fillna_dataframe(self): # GH 8377 df = DataFrame({'a': [nan, 1, 2, nan, nan], 'b': [1, 2, 3, nan, nan], 'c': [nan, 1, 2, 3, 4]}, index=list('VWXYZ')) # df2 may have different index and columns df2 = DataFrame({'a': [nan, 10, 20, 30, 40], 'b': [50, 60, 70, 80, 90], 'foo': ['bar'] * 5}, index=list('VWXuZ')) result = df.fillna(df2) # only those columns and indices which are shared get filled expected = DataFrame({'a': [nan, 1, 2, nan, 40], 'b': [1, 2, 3, nan, 90], 'c': [nan, 1, 2, 3, 4]}, index=list('VWXYZ')) assert_frame_equal(result, expected) def test_fillna_columns(self): df = DataFrame(np.random.randn(10, 10)) df.values[:, ::2] = np.nan result = df.fillna(method='ffill', axis=1) expected = df.T.fillna(method='pad').T assert_frame_equal(result, expected) df.insert(6, 'foo', 5) result = df.fillna(method='ffill', axis=1) expected = df.astype(float).fillna(method='ffill', axis=1) assert_frame_equal(result, expected) def test_fillna_invalid_method(self): with assertRaisesRegexp(ValueError, 'ffil'): self.frame.fillna(method='ffil') def test_fillna_invalid_value(self): # list self.assertRaises(TypeError, self.frame.fillna, [1, 2]) # tuple self.assertRaises(TypeError, self.frame.fillna, (1, 2)) # frame with series self.assertRaises(ValueError, self.frame.iloc[:, 0].fillna, self.frame) def test_fillna_col_reordering(self): cols = ["COL." + str(i) for i in range(5, 0, -1)] data = np.random.rand(20, 5) df = DataFrame(index=lrange(20), columns=cols, data=data) filled = df.fillna(method='ffill') self.assertEqual(df.columns.tolist(), filled.columns.tolist()) def test_fill_corner(self): self.mixed_frame.ix[5:20, 'foo'] = nan self.mixed_frame.ix[-10:, 'A'] = nan filled = self.mixed_frame.fillna(value=0) self.assertTrue((filled.ix[5:20, 'foo'] == 0).all()) del self.mixed_frame['foo'] empty_float = self.frame.reindex(columns=[]) # TODO(wesm): unused? result = empty_float.fillna(value=0) # noqa def test_fill_value_when_combine_const(self): # GH12723 dat = np.array([0, 1, np.nan, 3, 4, 5], dtype='float') df = DataFrame({'foo': dat}, index=range(6)) exp = df.fillna(0).add(2) res = df.add(2, fill_value=0) assert_frame_equal(res, exp) class TestDataFrameInterpolate(tm.TestCase, TestData): def test_interp_basic(self): df = DataFrame({'A': [1, 2, np.nan, 4], 'B': [1, 4, 9, np.nan], 'C': [1, 2, 3, 5], 'D': list('abcd')}) expected = DataFrame({'A': [1., 2., 3., 4.], 'B': [1., 4., 9., 9.], 'C': [1, 2, 3, 5], 'D': list('abcd')}) result = df.interpolate() assert_frame_equal(result, expected) result = df.set_index('C').interpolate() expected = df.set_index('C') expected.loc[3, 'A'] = 3 expected.loc[5, 'B'] = 9 assert_frame_equal(result, expected) def test_interp_bad_method(self): df = DataFrame({'A': [1, 2, np.nan, 4], 'B': [1, 4, 9, np.nan], 'C': [1, 2, 3, 5], 'D': list('abcd')}) with tm.assertRaises(ValueError): df.interpolate(method='not_a_method') def test_interp_combo(self): df = DataFrame({'A': [1., 2., np.nan, 4.], 'B': [1, 4, 9, np.nan], 'C': [1, 2, 3, 5], 'D': list('abcd')}) result = df['A'].interpolate() expected = Series([1., 2., 3., 4.], name='A') assert_series_equal(result, expected) result = df['A'].interpolate(downcast='infer') expected = Series([1, 2, 3, 4], name='A') assert_series_equal(result, expected) def test_interp_nan_idx(self): df = DataFrame({'A': [1, 2, np.nan, 4], 'B': [np.nan, 2, 3, 4]}) df = df.set_index('A') with tm.assertRaises(NotImplementedError): df.interpolate(method='values') def test_interp_various(self): tm._skip_if_no_scipy() df = DataFrame({'A': [1, 2, np.nan, 4, 5, np.nan, 7], 'C': [1, 2, 3, 5, 8, 13, 21]}) df = df.set_index('C') expected = df.copy() result = df.interpolate(method='polynomial', order=1) expected.A.loc[3] = 2.66666667 expected.A.loc[13] = 5.76923076 assert_frame_equal(result, expected) result = df.interpolate(method='cubic') expected.A.loc[3] = 2.81621174 expected.A.loc[13] = 5.64146581 assert_frame_equal(result, expected) result = df.interpolate(method='nearest') expected.A.loc[3] = 2 expected.A.loc[13] = 5 assert_frame_equal(result, expected, check_dtype=False) result = df.interpolate(method='quadratic') expected.A.loc[3] = 2.82533638 expected.A.loc[13] = 6.02817974 assert_frame_equal(result, expected) result = df.interpolate(method='slinear') expected.A.loc[3] = 2.66666667 expected.A.loc[13] = 5.76923077 assert_frame_equal(result, expected) result = df.interpolate(method='zero') expected.A.loc[3] = 2. expected.A.loc[13] = 5 assert_frame_equal(result, expected, check_dtype=False) result = df.interpolate(method='quadratic') expected.A.loc[3] = 2.82533638 expected.A.loc[13] = 6.02817974 assert_frame_equal(result, expected) def test_interp_alt_scipy(self): tm._skip_if_no_scipy() df = DataFrame({'A': [1, 2, np.nan, 4, 5, np.nan, 7], 'C': [1, 2, 3, 5, 8, 13, 21]}) result = df.interpolate(method='barycentric') expected = df.copy() expected.ix[2, 'A'] = 3 expected.ix[5, 'A'] = 6 assert_frame_equal(result, expected) result = df.interpolate(method='barycentric', downcast='infer') assert_frame_equal(result, expected.astype(np.int64)) result = df.interpolate(method='krogh') expectedk = df.copy() expectedk['A'] = expected['A'] assert_frame_equal(result, expectedk) _skip_if_no_pchip() import scipy result = df.interpolate(method='pchip') expected.ix[2, 'A'] = 3 if LooseVersion(scipy.__version__) >= '0.17.0': expected.ix[5, 'A'] = 6.0 else: expected.ix[5, 'A'] = 6.125 assert_frame_equal(result, expected) def test_interp_rowwise(self): df = DataFrame({0: [1, 2, np.nan, 4], 1: [2, 3, 4, np.nan], 2: [np.nan, 4, 5, 6], 3: [4, np.nan, 6, 7], 4: [1, 2, 3, 4]}) result = df.interpolate(axis=1) expected = df.copy() expected.loc[3, 1] = 5 expected.loc[0, 2] = 3 expected.loc[1, 3] = 3 expected[4] = expected[4].astype(np.float64) assert_frame_equal(result, expected) # scipy route tm._skip_if_no_scipy() result = df.interpolate(axis=1, method='values') assert_frame_equal(result, expected) result = df.interpolate(axis=0) expected = df.interpolate() assert_frame_equal(result, expected) def test_rowwise_alt(self): df = DataFrame({0: [0, .5, 1., np.nan, 4, 8, np.nan, np.nan, 64], 1: [1, 2, 3, 4, 3, 2, 1, 0, -1]}) df.interpolate(axis=0) def test_interp_leading_nans(self): df = DataFrame({"A": [np.nan, np.nan, .5, .25, 0], "B": [np.nan, -3, -3.5, np.nan, -4]}) result = df.interpolate() expected = df.copy() expected['B'].loc[3] = -3.75 assert_frame_equal(result, expected) tm._skip_if_no_scipy() result = df.interpolate(method='polynomial', order=1) assert_frame_equal(result, expected) def test_interp_raise_on_only_mixed(self): df = DataFrame({'A': [1, 2, np.nan, 4], 'B': ['a', 'b', 'c', 'd'], 'C': [np.nan, 2, 5, 7], 'D': [np.nan, np.nan, 9, 9], 'E': [1, 2, 3, 4]}) with tm.assertRaises(TypeError): df.interpolate(axis=1) def test_interp_inplace(self): df = DataFrame({'a': [1., 2., np.nan, 4.]}) expected = DataFrame({'a': [1., 2., 3., 4.]}) result = df.copy() result['a'].interpolate(inplace=True) assert_frame_equal(result, expected) result = df.copy() result['a'].interpolate(inplace=True, downcast='infer') assert_frame_equal(result, expected.astype('int64')) def test_interp_inplace_row(self): # GH 10395 result = DataFrame({'a': [1., 2., 3., 4.], 'b': [np.nan, 2., 3., 4.], 'c': [3, 2, 2, 2]}) expected = result.interpolate(method='linear', axis=1, inplace=False) result.interpolate(method='linear', axis=1, inplace=True) assert_frame_equal(result, expected) def test_interp_ignore_all_good(self): # GH df = DataFrame({'A': [1, 2, np.nan, 4], 'B': [1, 2, 3, 4], 'C': [1., 2., np.nan, 4.], 'D': [1., 2., 3., 4.]}) expected = DataFrame({'A': np.array( [1, 2, 3, 4], dtype='float64'), 'B': np.array( [1, 2, 3, 4], dtype='int64'), 'C': np.array( [1., 2., 3, 4.], dtype='float64'), 'D': np.array( [1., 2., 3., 4.], dtype='float64')}) result = df.interpolate(downcast=None) assert_frame_equal(result, expected) # all good result = df[['B', 'D']].interpolate(downcast=None) assert_frame_equal(result, df[['B', 'D']]) if __name__ == '__main__': import nose nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], # '--with-coverage', '--cover-package=pandas.core'] exit=False)
mit
NAMD/justicecloud
justice/external/wtforms/ext/sqlalchemy/orm.py
50
10766
""" Tools for generating forms based on SQLAlchemy models. """ from __future__ import unicode_literals import inspect from wtforms import fields as f from wtforms import validators from wtforms.form import Form from wtforms.ext.sqlalchemy.fields import QuerySelectField from wtforms.ext.sqlalchemy.fields import QuerySelectMultipleField from wtforms.ext.sqlalchemy.validators import Unique __all__ = ( 'model_fields', 'model_form', ) def converts(*args): def _inner(func): func._converter_for = frozenset(args) return func return _inner class ModelConverterBase(object): def __init__(self, converters, use_mro=True): self.use_mro = use_mro if not converters: converters = {} for name in dir(self): obj = getattr(self, name) if hasattr(obj, '_converter_for'): for classname in obj._converter_for: converters[classname] = obj self.converters = converters class ModelConverterBase(object): def __init__(self, converters, use_mro=True): self.use_mro = use_mro if not converters: converters = {} for name in dir(self): obj = getattr(self, name) if hasattr(obj, '_converter_for'): for classname in obj._converter_for: converters[classname] = obj self.converters = converters def convert(self, model, mapper, prop, field_args, db_session=None): if not hasattr(prop, 'columns') and not hasattr(prop, 'direction'): return elif not hasattr(prop, 'direction') and len(prop.columns) != 1: raise TypeError('Do not know how to convert multiple-column ' + 'properties currently') kwargs = { 'validators': [], 'filters': [], 'default': None, } converter = None column = None if not hasattr(prop, 'direction'): column = prop.columns[0] # Support sqlalchemy.schema.ColumnDefault, so users can benefit # from setting defaults for fields, e.g.: # field = Column(DateTimeField, default=datetime.utcnow) default = getattr(column, 'default', None) if default is not None: # Only actually change default if it has an attribute named # 'arg' that's callable. callable_default = getattr(default, 'arg', None) if callable_default and callable(callable_default): default = callable_default(None) kwargs['default'] = default if column.nullable: kwargs['validators'].append(validators.Optional()) else: kwargs['validators'].append(validators.Required()) if db_session and column.unique: kwargs['validators'].append(Unique(lambda: db_session, model, column)) if self.use_mro: types = inspect.getmro(type(column.type)) else: types = [type(column.type)] for col_type in types: type_string = '%s.%s' % (col_type.__module__, col_type.__name__) if type_string.startswith('sqlalchemy'): type_string = type_string[11:] if type_string in self.converters: converter = self.converters[type_string] break else: for col_type in types: if col_type.__name__ in self.converters: converter = self.converters[col_type.__name__] break else: return if db_session and hasattr(prop, 'direction'): foreign_model = prop.mapper.class_ nullable = True for pair in prop.local_remote_pairs: if not pair[0].nullable: nullable = False kwargs.update({ 'allow_blank': nullable, 'query_factory': lambda: db_session.query(foreign_model).all() }) converter = self.converters[prop.direction.name] if field_args: kwargs.update(field_args) return converter(model=model, mapper=mapper, prop=prop, column=column, field_args=kwargs) class ModelConverter(ModelConverterBase): def __init__(self, extra_converters=None): super(ModelConverter, self).__init__(extra_converters) @classmethod def _string_common(cls, column, field_args, **extra): if column.type.length: field_args['validators'].append(validators.Length(max=column.type.length)) @converts('String', 'Unicode') def conv_String(self, field_args, **extra): self._string_common(field_args=field_args, **extra) return f.TextField(**field_args) @converts('Text', 'UnicodeText', 'types.LargeBinary', 'types.Binary') def conv_Text(self, field_args, **extra): self._string_common(field_args=field_args, **extra) return f.TextAreaField(**field_args) @converts('Boolean') def conv_Boolean(self, field_args, **extra): return f.BooleanField(**field_args) @converts('Date') def conv_Date(self, field_args, **extra): return f.DateField(**field_args) @converts('DateTime') def conv_DateTime(self, field_args, **extra): return f.DateTimeField(**field_args) @converts('Integer', 'SmallInteger') def handle_integer_types(self, column, field_args, **extra): unsigned = getattr(column.type, 'unsigned', False) if unsigned: field_args['validators'].append(validators.NumberRange(min=0)) return f.IntegerField(**field_args) @converts('Numeric', 'Float') def handle_decimal_types(self, column, field_args, **extra): places = getattr(column.type, 'scale', 2) if places is not None: field_args['places'] = places return f.DecimalField(**field_args) @converts('databases.mysql.MSYear') def conv_MSYear(self, field_args, **extra): field_args['validators'].append(validators.NumberRange(min=1901, max=2155)) return f.TextField(**field_args) @converts('databases.postgres.PGInet', 'dialects.postgresql.base.INET') def conv_PGInet(self, field_args, **extra): field_args.setdefault('label', 'IP Address') field_args['validators'].append(validators.IPAddress()) return f.TextField(**field_args) @converts('dialects.postgresql.base.MACADDR') def conv_PGMacaddr(self, field_args, **extra): field_args.setdefault('label', 'MAC Address') field_args['validators'].append(validators.MacAddress()) return f.TextField(**field_args) @converts('dialects.postgresql.base.UUID') def conv_PGUuid(self, field_args, **extra): field_args.setdefault('label', 'UUID') field_args['validators'].append(validators.UUID()) return f.TextField(**field_args) @converts('MANYTOONE') def conv_ManyToOne(self, field_args, **extra): return QuerySelectField(**field_args) @converts('MANYTOMANY', 'ONETOMANY') def conv_ManyToMany(self, field_args, **extra): return QuerySelectMultipleField(**field_args) def model_fields(model, db_session=None, only=None, exclude=None, field_args=None, converter=None): """ Generate a dictionary of fields for a given SQLAlchemy model. See `model_form` docstring for description of parameters. """ if not hasattr(model, '_sa_class_manager'): raise TypeError('model must be a sqlalchemy mapped model') mapper = model._sa_class_manager.mapper converter = converter or ModelConverter() field_args = field_args or {} properties = ((p.key, p) for p in mapper.iterate_properties) if only: properties = (x for x in properties if x[0] in only) elif exclude: properties = (x for x in properties if x[0] not in exclude) field_dict = {} for name, prop in properties: field = converter.convert(model, mapper, prop, field_args.get(name), db_session) if field is not None: field_dict[name] = field return field_dict def model_form(model, db_session=None, base_class=Form, only=None, exclude=None, field_args=None, converter=None, exclude_pk=True, exclude_fk=True, type_name=None): """ Create a wtforms Form for a given SQLAlchemy model class:: from wtalchemy.orm import model_form from myapp.models import User UserForm = model_form(User) :param model: A SQLAlchemy mapped model class. :param db_session: An optional SQLAlchemy Session. :param base_class: Base form class to extend from. Must be a ``wtforms.Form`` subclass. :param only: An optional iterable with the property names that should be included in the form. Only these properties will have fields. :param exclude: An optional iterable with the property names that should be excluded from the form. All other properties will have fields. :param field_args: An optional dictionary of field names mapping to keyword arguments used to construct each field object. :param converter: A converter to generate the fields based on the model properties. If not set, ``ModelConverter`` is used. :param exclude_pk: An optional boolean to force primary key exclusion. :param exclude_fk: An optional boolean to force foreign keys exclusion. :param type_name: An optional string to set returned type name. """ class ModelForm(base_class): """Sets object as form attribute.""" def __init__(self, *args, **kwargs): if 'obj' in kwargs: self._obj = kwargs['obj'] super(ModelForm, self).__init__(*args, **kwargs) if not exclude: exclude = [] model_mapper = model.__mapper__ for prop in model_mapper.iterate_properties: if not hasattr(prop, 'direction') and prop.columns[0].primary_key: if exclude_pk: exclude.append(prop.key) if hasattr(prop, 'direction') and exclude_fk and \ prop.direction.name != 'MANYTOMANY': for pair in prop.local_remote_pairs: exclude.append(pair[0].key) type_name = type_name or str(model.__name__ + 'Form') field_dict = model_fields(model, db_session, only, exclude, field_args, converter) return type(type_name, (ModelForm, ), field_dict)
lgpl-3.0
HalcyonChimera/osf.io
addons/gitlab/tests/test_serializer.py
15
1607
# -*- coding: utf-8 -*- """Serializer tests for the GitLab addon.""" import mock import pytest from tests.base import OsfTestCase from addons.base.tests.serializers import StorageAddonSerializerTestSuiteMixin from addons.gitlab.api import GitLabClient from addons.gitlab.tests.factories import GitLabAccountFactory from addons.gitlab.serializer import GitLabSerializer pytestmark = pytest.mark.django_db class TestGitLabSerializer(StorageAddonSerializerTestSuiteMixin, OsfTestCase): addon_short_name = 'gitlab' Serializer = GitLabSerializer ExternalAccountFactory = GitLabAccountFactory client = GitLabClient() def set_provider_id(self, pid): self.node_settings.repo = pid ## Overrides ## def setUp(self): super(TestGitLabSerializer, self).setUp() self.mock_api_user = mock.patch('addons.gitlab.api.GitLabClient.user') self.mock_api_user.return_value = mock.Mock() self.mock_api_user.start() def tearDown(self): self.mock_api_user.stop() super(TestGitLabSerializer, self).tearDown() def test_serialize_acccount(self): ea = self.ExternalAccountFactory() expected = { 'id': ea._id, 'provider_id': ea.provider_id, 'provider_name': ea.provider_name, 'provider_short_name': ea.provider, 'display_name': ea.display_name, 'profile_url': ea.profile_url, 'nodes': [], 'host': ea.oauth_secret, 'host_url': ea.oauth_secret, } assert self.ser.serialize_account(ea) == expected
apache-2.0
vmanoria/bluemix-hue-filebrowser
hue-3.8.1-bluemix/desktop/core/ext-py/pycrypto-2.6.1/lib/Crypto/SelfTest/Random/__init__.py
105
1973
# -*- coding: utf-8 -*- # # SelfTest/Random/__init__.py: Self-test for random number generation modules # # Written in 2008 by Dwayne C. Litzenberger <[email protected]> # # =================================================================== # The contents of this file are dedicated to the public domain. To # the extent that dedication to the public domain is not available, # everyone is granted a worldwide, perpetual, royalty-free, # non-exclusive license to exercise all rights associated with the # contents of this file for any purpose whatsoever. # No rights are reserved. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # =================================================================== """Self-test for random number generators""" __revision__ = "$Id$" def get_tests(config={}): tests = [] from Crypto.SelfTest.Random import Fortuna; tests += Fortuna.get_tests(config=config) from Crypto.SelfTest.Random import OSRNG; tests += OSRNG.get_tests(config=config) from Crypto.SelfTest.Random import test_random; tests += test_random.get_tests(config=config) from Crypto.SelfTest.Random import test_rpoolcompat; tests += test_rpoolcompat.get_tests(config=config) from Crypto.SelfTest.Random import test__UserFriendlyRNG; tests += test__UserFriendlyRNG.get_tests(config=config) return tests if __name__ == '__main__': import unittest suite = lambda: unittest.TestSuite(get_tests()) unittest.main(defaultTest='suite') # vim:set ts=4 sw=4 sts=4 expandtab:
gpl-2.0
mauriceling/dose
examples/14_revive_simulation_13_fitness_loss.py
2
4596
''' Example 14: Continuation of examining the effects of natural selection on a population's genetic pool by implementing a fitness scheme that counts a specific sequence within the chromosome along with a goal to be reached from an evenly deployed population. In this simulation, loss of fitness is observed by implementing a random selection scheme to the population. In this simulation, - revival of 1 population of 100 organisms - unchanged simulation parameters - 5000 generations to be simulated - random organism killing in pospopulation_control ''' # needed to run this example without prior # installation of DOSE into Python site-packages try: import run_examples_without_installation except ImportError: pass # Example codes starts from here import dose, random from collections import Counter from copy import deepcopy parameters = {"database_source" : "T1_11x0.db", "simulation_time": "default", "rev_start" : [200], "extend_gen" : 5000, "simulation_name": "T1_11x0_revival", "database_file": "T1_11x0_revival.db", "database_logging_frequency": 1, } class simulation_functions(dose.dose_functions): def organism_movement(self, Populations, pop_name, World): pass def organism_location(self, Populations, pop_name, World): pass def ecoregulate(self, World): pass def update_ecology(self, World, x, y, z): pass def update_local(self, World, x, y, z): pass def report(self, World): pass def fitness(self, Populations, pop_name): for organism in Populations[pop_name].agents: final_fitness = [] chromosome = organism.genome[0].sequence zero_count = [] for base_index in range(parameters["chromosome_size"] - 1): if int(chromosome[base_index]) == 0 and int(chromosome[base_index - 1]) != 0: next_index = 1 while int(chromosome[next_index + base_index]) == 0: next_index += 1 if (next_index + base_index) == parameters["chromosome_size"]: break zero_count.append(next_index) for sequence in range(len(zero_count)): if len(final_fitness) == 10: break seq_score = sorted(zero_count, reverse = True)[sequence] if seq_score > int(parameters["goal"]/10): seq_score = int(parameters["goal"]/10) final_fitness.append(seq_score) organism.status['fitness'] = sum(final_fitness) def mutation_scheme(self, organism): organism.genome[0].rmutate(parameters["mutation_type"], parameters["additional_mutation"]) def prepopulation_control(self, Populations, pop_name): pass def mating(self, Populations, pop_name): group = deepcopy(Populations[pop_name].agents) for organism in group: organism.generate_name() Populations[pop_name].agents.append(organism) def postpopulation_control(self, Populations, pop_name): group = deepcopy(Populations[pop_name].agents) for i in range(len(group)//2): Populations[pop_name].agents.remove(random.choice(Populations[pop_name].agents)) def generation_events(self, Populations, pop_name): pass def population_report(self, Populations, pop_name): report_list = [] for organism in Populations[pop_name].agents: chromosome = organism.status['identity'] fitness = str(organism.status['fitness']) report_list.append(chromosome + ' ' + fitness) return '\n'.join(report_list) def database_report(self, con, cur, start_time, Populations, World, generation_count): try: dose.database_report_populations(con, cur, start_time, Populations, generation_count) except: pass try: dose.database_report_world(con, cur, start_time, World, generation_count) except: pass def deployment_scheme(self, Populations, pop_name, World): pass for trial in range(13, 26): parameters["simulation_name"] = "T" + str(trial) + "_ts_7x0_loss1" parameters["database_source"] = "T" + str(trial) + "_ts_7x0_gain1.db" parameters["database_file"] = "T" + str(trial) + "_ts_7x0_loss1.db" dose.revive_simulation(parameters, simulation_functions) parameters["simulation_time"] = "default"
gpl-3.0
sradevski/homeAutomate
scripts/laptop_on_network.py
1
1994
#!/usr/bin/python import remote_core as core import os import sys import nmap import datetime import time import re import go_to_sleep try: nm = nmap.PortScanner() # instance of nmap.PortScanner except nmap.PortScannerError: print('Nmap not found', sys.exc_info()[0]) sys.exit(0) except: print("Unexpected error:", sys.exc_info()[0]) sys.exit(0) macAddressToSearch = '64:76:BA:A3:43:B0' laptopHasBeenTurnedOn = False disconnectedCounter = 0 def checkIfLaptopOn(): global macAddressToSearch, laptopHasBeenTurnedOn, disconnectedCounter curHosts = [] # nm.scan(hosts = '192.168.11.1-8', arguments = '-n -sP -PS 7,22,88,443,80,660,2195 -PA 80,22,443 -PU -T3') nm.scan(hosts = '192.168.11.1-8', arguments = '-n -sn -PR') for host in nm.all_hosts(): try: mac = nm[host]['addresses']['mac'] vendor = nm[host]['vendor'][mac] except: vendor = mac = 'unknown' curHosts.append(mac) localtime = time.asctime(time.localtime(time.time())) print('============ {0} ============'.format(localtime)) for host in curHosts: print(host) config = core.load_config(); if config['location']['am_home']: if macAddressToSearch not in curHosts: if laptopHasBeenTurnedOn: if disconnectedCounter > 3: wentToSleepScript() laptopHasBeenTurnedOn = False disconnectedCounter += 1 else: laptopHasBeenTurnedOn = True def wentToSleepScript(): time.sleep(10) go_to_sleep.go_to_sleep() # print("SLEEPING") if __name__ == '__main__': start_at_hour = 22 stop_at_hour = 2 sleep_seconds = 60 * 60 * (start_at_hour - stop_at_hour) - 20 while True: localtime = time.localtime(time.time()) if localtime.tm_hour > stop_at_hour and localtime.tm_hour < start_at_hour: time.sleep(sleep_seconds - (60 * 60 * (start_at_hour - localtime.tm_hour))) time.sleep(10) checkIfLaptopOn()
mit
Orav/kbengine
kbe/src/lib/python/Lib/tkinter/font.py
2
6845
# Tkinter font wrapper # # written by Fredrik Lundh, February 1998 # __version__ = "0.9" import itertools import tkinter # weight/slant NORMAL = "normal" ROMAN = "roman" BOLD = "bold" ITALIC = "italic" def nametofont(name): """Given the name of a tk named font, returns a Font representation. """ return Font(name=name, exists=True) class Font: """Represents a named font. Constructor options are: font -- font specifier (name, system font, or (family, size, style)-tuple) name -- name to use for this font configuration (defaults to a unique name) exists -- does a named font by this name already exist? Creates a new named font if False, points to the existing font if True. Raises _tkinter.TclError if the assertion is false. the following are ignored if font is specified: family -- font 'family', e.g. Courier, Times, Helvetica size -- font size in points weight -- font thickness: NORMAL, BOLD slant -- font slant: ROMAN, ITALIC underline -- font underlining: false (0), true (1) overstrike -- font strikeout: false (0), true (1) """ counter = itertools.count(1) def _set(self, kw): options = [] for k, v in kw.items(): options.append("-"+k) options.append(str(v)) return tuple(options) def _get(self, args): options = [] for k in args: options.append("-"+k) return tuple(options) def _mkdict(self, args): options = {} for i in range(0, len(args), 2): options[args[i][1:]] = args[i+1] return options def __init__(self, root=None, font=None, name=None, exists=False, **options): if not root: root = tkinter._default_root tk = getattr(root, 'tk', root) if font: # get actual settings corresponding to the given font font = tk.splitlist(tk.call("font", "actual", font)) else: font = self._set(options) if not name: name = "font" + str(next(self.counter)) self.name = name if exists: self.delete_font = False # confirm font exists if self.name not in tk.splitlist(tk.call("font", "names")): raise tkinter._tkinter.TclError( "named font %s does not already exist" % (self.name,)) # if font config info supplied, apply it if font: tk.call("font", "configure", self.name, *font) else: # create new font (raises TclError if the font exists) tk.call("font", "create", self.name, *font) self.delete_font = True self._tk = tk self._split = tk.splitlist self._call = tk.call def __str__(self): return self.name def __eq__(self, other): return isinstance(other, Font) and self.name == other.name def __getitem__(self, key): return self.cget(key) def __setitem__(self, key, value): self.configure(**{key: value}) def __del__(self): try: if self.delete_font: self._call("font", "delete", self.name) except (KeyboardInterrupt, SystemExit): raise except Exception: pass def copy(self): "Return a distinct copy of the current font" return Font(self._tk, **self.actual()) def actual(self, option=None, displayof=None): "Return actual font attributes" args = () if displayof: args = ('-displayof', displayof) if option: args = args + ('-' + option, ) return self._call("font", "actual", self.name, *args) else: return self._mkdict( self._split(self._call("font", "actual", self.name, *args))) def cget(self, option): "Get font attribute" return self._call("font", "config", self.name, "-"+option) def config(self, **options): "Modify font attributes" if options: self._call("font", "config", self.name, *self._set(options)) else: return self._mkdict( self._split(self._call("font", "config", self.name))) configure = config def measure(self, text, displayof=None): "Return text width" args = (text,) if displayof: args = ('-displayof', displayof, text) return int(self._call("font", "measure", self.name, *args)) def metrics(self, *options, **kw): """Return font metrics. For best performance, create a dummy widget using this font before calling this method.""" args = () displayof = kw.pop('displayof', None) if displayof: args = ('-displayof', displayof) if options: args = args + self._get(options) return int( self._call("font", "metrics", self.name, *args)) else: res = self._split(self._call("font", "metrics", self.name, *args)) options = {} for i in range(0, len(res), 2): options[res[i][1:]] = int(res[i+1]) return options def families(root=None, displayof=None): "Get font families (as a tuple)" if not root: root = tkinter._default_root args = () if displayof: args = ('-displayof', displayof) return root.tk.splitlist(root.tk.call("font", "families", *args)) def names(root=None): "Get names of defined fonts (as a tuple)" if not root: root = tkinter._default_root return root.tk.splitlist(root.tk.call("font", "names")) # -------------------------------------------------------------------- # test stuff if __name__ == "__main__": root = tkinter.Tk() # create a font f = Font(family="times", size=30, weight=NORMAL) print(f.actual()) print(f.actual("family")) print(f.actual("weight")) print(f.config()) print(f.cget("family")) print(f.cget("weight")) print(names()) print(f.measure("hello"), f.metrics("linespace")) print(f.metrics(displayof=root)) f = Font(font=("Courier", 20, "bold")) print(f.measure("hello"), f.metrics("linespace", displayof=root)) w = tkinter.Label(root, text="Hello, world", font=f) w.pack() w = tkinter.Button(root, text="Quit!", command=root.destroy) w.pack() fb = Font(font=w["font"]).copy() fb.config(weight=BOLD) w.config(font=fb) tkinter.mainloop()
lgpl-3.0
ixc/django-fluent-contents
fluent_contents/plugins/code/migrations/0001_initial.py
2
1042
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('fluent_contents', '0001_initial'), ] operations = [ migrations.CreateModel( name='CodeItem', fields=[ ('contentitem_ptr', models.OneToOneField(parent_link=True, auto_created=True, primary_key=True, serialize=False, to='fluent_contents.ContentItem')), ('language', models.CharField(default=b'html', max_length=50, verbose_name='Language')), ('code', models.TextField(verbose_name='Code')), ('linenumbers', models.BooleanField(default=False, verbose_name='Show line numbers')), ], options={ 'db_table': 'contentitem_code_codeitem', 'verbose_name': 'Code snippet', 'verbose_name_plural': 'Code snippets', }, bases=('fluent_contents.contentitem',), ), ]
apache-2.0
RobertoMalatesta/shedskin
tests/155.py
6
6975
# (c) Peter Cock # --- http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/peter_cock/python/sudoku/ TRIPLETS = [[0,1,2],[3,4,5],[6,7,8]] ROW_ITER = [[(row,col) for col in range(0,9)] for row in range(0,9)] COL_ITER = [[(row,col) for row in range(0,9)] for col in range(0,9)] TxT_ITER = [[(row,col) for row in rows for col in cols] for rows in TRIPLETS for cols in TRIPLETS] class soduko: def __init__(self, start_grid=None) : self.squares =[ [range(1,10) for col in range(0,9)] for row in range(0,9)] if start_grid is not None: assert len(start_grid)==9, "Bad input!" for row in range(0,9) : self.set_row(row, start_grid[row]) self._changed=False def copy(self) : soduko_copy = soduko(None) for row in range(0,9) : for col in range(0,9) : soduko_copy.squares[row][col] = self.squares[row][col][:] soduko_copy._changed=False return soduko_copy def set_row(self,row, x_list) : assert len(x_list)==9, 'not 9' for col in range(0,9) : try : x = int(x_list[col]) except : x = 0 self.set_cell(row,col,x) def set_cell(self,row,col,x): if self.squares[row][col] == [x] : pass elif x not in range(1,9+1) : pass else: assert x in self.squares[row][col], "bugger2" self.squares[row][col] = [x] self.update_neighbours(row,col,x) self._changed=True def cell_exclude(self, row,col,x) : assert x in range(1,9+1), 'inra' if x in self.squares[row][col] : self.squares[row][col].remove(x) assert len(self.squares[row][col]) > 0, "bugger" if len(self.squares[row][col]) == 1 : self._changed=True self.update_neighbours(row,col,self.squares[row][col][0]) else : pass return def update_neighbours(self,set_row,set_col,x) : for row in range(0,9) : if row <> set_row : self.cell_exclude(row,set_col,x) for col in range(0,9) : if col <> set_col : self.cell_exclude(set_row,col,x) for triplet in TRIPLETS : if set_row in triplet : rows = triplet[:] if set_col in triplet : cols = triplet[:] rows.remove(set_row) cols.remove(set_col) for row in rows : for col in cols : assert row <> set_row or col <> set_col , 'meuh' self.cell_exclude(row,col,x) def get_cell_digit_str(self,row,col) : if len(self.squares[row][col])==1 : return str(self.squares[row][col][0]) else : return "0" def __str__(self): answer = " 123 456 789\n" for row in range(0,9) : answer = answer + str(row+1) + " [" + "".join([self.get_cell_digit_str(row,col).replace("0","?") for col in range(0,3)]) + "] [" + "".join([self.get_cell_digit_str(row,col).replace("0","?") for col in range(3,6)]) + "] [" + "".join([self.get_cell_digit_str(row,col).replace("0","?") for col in range(6,9)]) + "]\n" if row+1 in [3,6] : answer = answer + " --- --- ---\n" return answer def check(self) : self._changed=True while self._changed: self._changed=False self.check_for_single_occurances() self.check_for_last_in_row_col_3x3() return def check_for_single_occurances(self): for check_type in [ROW_ITER, COL_ITER, TxT_ITER]: for check_list in check_type : for x in range(1,9+1) : #1 to 9 inclusive x_in_list = [] for (row,col) in check_list : if x in self.squares[row][col] : x_in_list.append((row,col)) if len(x_in_list)==1 : (row,col) = x_in_list[0] if len(self.squares[row][col]) > 1 : self.set_cell(row,col,x) def check_for_last_in_row_col_3x3(self): for (type_name, check_type) in [("Row",ROW_ITER),("Col",COL_ITER),("3x3",TxT_ITER)]: for check_list in check_type : unknown_entries = [] unassigned_values = range(1,9+1) #1-9 inclusive known_values = [] for (row,col) in check_list : if len(self.squares[row][col]) == 1 : assert self.squares[row][col][0] not in known_values, "bugger3" known_values.append(self.squares[row][col][0]) assert self.squares[row][col][0] in unassigned_values, "bugger4" unassigned_values.remove(self.squares[row][col][0]) else : unknown_entries.append((row,col)) assert len(unknown_entries) + len(known_values) == 9, 'bugger5' assert len(unknown_entries) == len(unassigned_values), 'bugger6' if len(unknown_entries) == 1 : x = unassigned_values[0] (row,col) = unknown_entries[0] self.set_cell(row,col,x) return def one_level_supposition(self): progress=True while progress : progress=False for row in range(0,9) : for col in range(0,9): if len(self.squares[row][col]) > 1 : bad_x = [] for x in self.squares[row][col] : soduko_copy = self.copy() try: soduko_copy.set_cell(row,col,x) soduko_copy.check() except AssertionError, e : bad_x.append(x) del soduko_copy if len(bad_x) == 0 : pass elif len(bad_x) < len(self.squares[row][col]) : for x in bad_x : self.cell_exclude(row,col,x) self.check() progress=True else : assert False, "bugger7" for x in range(50): t = soduko(["800000600", "040500100", "070090000", "030020007", "600008004", "500000090", "000030020", "001006050", "004000003"]) t.check() t.one_level_supposition() t.check() print t
gpl-3.0
JordanReiter/django-notification
notification/views.py
1
6596
from django.core.urlresolvers import reverse from django.shortcuts import render_to_response, get_object_or_404 from django.http import HttpResponseRedirect, Http404 from django.template import RequestContext from django.contrib.auth.decorators import login_required try: from django.contrib.syndication.views import Feed except ImportError: from django.contrib.syndication.views import feed as Feed from notification.models import * from notification.decorators import basic_auth_required, simple_basic_auth_callback from notification.feeds import NoticeUserFeed @basic_auth_required(realm="Notices Feed", callback_func=simple_basic_auth_callback) def feed_for_user(request): """ An atom feed for all unarchived :model:`notification.Notice`s for a user. """ url = "feed/%s" % request.user.username return Feed(request, url, { "feed": NoticeUserFeed, }) @login_required def notices(request): """ The main notices index view. Template: :template:`notification/notices.html` Context: notices A list of :model:`notification.Notice` objects that are not archived and to be displayed on the site. """ notices = Notice.objects.notices_for(request.user, on_site=True) return render_to_response("notification/notices.html", { "notices": notices, }, context_instance=RequestContext(request)) @login_required def notice_settings(request): """ The notice settings view. Template: :template:`notification/notice_settings.html` Context: notice_types A list of all :model:`notification.NoticeType` objects. notice_settings A dictionary containing ``column_headers`` for each ``NOTICE_MEDIA`` and ``rows`` containing a list of dictionaries: ``notice_type``, a :model:`notification.NoticeType` object and ``cells``, a list of tuples whose first value is suitable for use in forms and the second value is ``True`` or ``False`` depending on a ``request.POST`` variable called ``form_label``, whose valid value is ``on``. """ notice_types = NoticeType.objects.all() settings_table = [] for notice_type in notice_types: settings_row = [] for medium_id, medium_display in NOTICE_MEDIA: form_label = "%s_%s" % (notice_type.label, medium_id) setting = get_notification_setting(request.user, notice_type, medium_id) if request.method == "POST": if request.POST.get(form_label) == "on": if not setting.send: setting.send = True setting.save() else: if setting.send: setting.send = False setting.save() settings_row.append((form_label, setting.send)) settings_table.append({"notice_type": notice_type, "cells": settings_row}) if request.method == "POST": next_page = request.POST.get("next_page", ".") return HttpResponseRedirect(next_page) notice_settings = { "column_headers": [medium_display for medium_id, medium_display in NOTICE_MEDIA], "rows": settings_table, } return render_to_response("notification/notice_settings.html", { "notice_types": notice_types, "notice_settings": notice_settings, }, context_instance=RequestContext(request)) @login_required def single(request, id, mark_seen=True): """ Detail view for a single :model:`notification.Notice`. Template: :template:`notification/single.html` Context: notice The :model:`notification.Notice` being viewed Optional arguments: mark_seen If ``True``, mark the notice as seen if it isn't already. Do nothing if ``False``. Default: ``True``. """ notice = get_object_or_404(Notice, id=id) if request.user == notice.recipient: if mark_seen and notice.unseen: notice.unseen = False notice.save() return render_to_response("notification/single.html", { "notice": notice, }, context_instance=RequestContext(request)) raise Http404 @login_required def archive(request, noticeid=None, next_page=None): """ Archive a :model:`notices.Notice` if the requesting user is the recipient or if the user is a superuser. Returns a ``HttpResponseRedirect`` when complete. Optional arguments: noticeid The ID of the :model:`notices.Notice` to be archived. next_page The page to redirect to when done. """ if noticeid: try: notice = Notice.objects.get(id=noticeid) if request.user == notice.recipient or request.user.is_superuser: notice.archive() else: # you can archive other users' notices # only if you are superuser. return HttpResponseRedirect(next_page) except Notice.DoesNotExist: return HttpResponseRedirect(next_page) return HttpResponseRedirect(next_page) @login_required def delete(request, noticeid=None, next_page=None): """ Delete a :model:`notices.Notice` if the requesting user is the recipient or if the user is a superuser. Returns a ``HttpResponseRedirect`` when complete. Optional arguments: noticeid The ID of the :model:`notices.Notice` to be archived. next_page The page to redirect to when done. """ if noticeid: try: notice = Notice.objects.get(id=noticeid) if request.user == notice.recipient or request.user.is_superuser: notice.delete() else: # you can delete other users' notices # only if you are superuser. return HttpResponseRedirect(next_page) except Notice.DoesNotExist: return HttpResponseRedirect(next_page) return HttpResponseRedirect(next_page) @login_required def mark_all_seen(request): """ Mark all unseen notices for the requesting user as seen. Returns a ``HttpResponseRedirect`` when complete. """ for notice in Notice.objects.notices_for(request.user, unseen=True): notice.unseen = False notice.save() return HttpResponseRedirect(reverse("notification_notices"))
mit
matthiasdiener/spack
var/spack/repos/builtin/packages/r-tseries/package.py
5
1765
############################################################################## # Copyright (c) 2013-2018, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, [email protected], All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class RTseries(RPackage): """Time series analysis and computational finance.""" homepage = "https://cran.r-project.org/package=tseries" url = "https://cran.r-project.org/src/contrib/tseries_0.10-42.tar.gz" list_url = "https://cran.r-project.org/src/contrib/Archive/tseries" version('0.10-42', '3feaa5c463bc967d749323163d9bc836') depends_on('r-quadprog', type=('build', 'run')) depends_on('r-zoo', type=('build', 'run')) depends_on('r-quantmod', type=('build', 'run'))
lgpl-2.1
ErickMurillo/ciat_plataforma
ficha_granos_basicos/migrations/0006_auto__del_datosparcela__del_field_monitoreo_fecha_monitoreo__add_field.py
3
36192
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Deleting model 'DatosParcela' db.delete_table(u'ficha_granos_basicos_datosparcela') # Deleting field 'Monitoreo.fecha_monitoreo' db.delete_column(u'ficha_granos_basicos_monitoreo', 'fecha_monitoreo') # Adding field 'Monitoreo.cultivo' db.add_column(u'ficha_granos_basicos_monitoreo', 'cultivo', self.gf('django.db.models.fields.IntegerField')(null=True, blank=True), keep_default=False) def backwards(self, orm): # Adding model 'DatosParcela' db.create_table(u'ficha_granos_basicos_datosparcela', ( ('latitud', self.gf('django.db.models.fields.FloatField')(null=True, blank=True)), ('percepcion_fertilidad', self.gf('django.db.models.fields.IntegerField')()), ('distancia', self.gf('django.db.models.fields.FloatField')(null=True, blank=True)), ('edad_parcela', self.gf('django.db.models.fields.FloatField')()), ('profundidad_capa', self.gf('django.db.models.fields.FloatField')()), (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('fuente_agua', self.gf('multiselectfield.db.fields.MultiSelectField')(max_length=7, null=True, blank=True)), ('longitud', self.gf('django.db.models.fields.FloatField')(null=True, blank=True)), ('acceso_agua', self.gf('django.db.models.fields.IntegerField')()), ('monitoreo', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['ficha_granos_basicos.Monitoreo'])), ('direccion_viento', self.gf('django.db.models.fields.IntegerField')()), ('nombre', self.gf('django.db.models.fields.CharField')(max_length=100)), ('tamano_parcela', self.gf('django.db.models.fields.FloatField')()), )) db.send_create_signal(u'ficha_granos_basicos', ['DatosParcela']) # Adding field 'Monitoreo.fecha_monitoreo' db.add_column(u'ficha_granos_basicos_monitoreo', 'fecha_monitoreo', self.gf('django.db.models.fields.DateField')(null=True, blank=True), keep_default=False) # Deleting field 'Monitoreo.cultivo' db.delete_column(u'ficha_granos_basicos_monitoreo', 'cultivo') models = { u'ficha_granos_basicos.curadosemilla': { 'Meta': {'object_name': 'CuradoSemilla'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'tratamiento': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['ficha_granos_basicos.TratamientoSemilla']", 'symmetrical': 'False'}), 'visita': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Visitas']"}) }, u'ficha_granos_basicos.datosmonitoreo': { 'Meta': {'object_name': 'DatosMonitoreo'}, 'area_siembra': ('django.db.models.fields.FloatField', [], {}), 'cultivo': ('django.db.models.fields.IntegerField', [], {}), 'fecha_cosecha': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'fecha_siembra': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'monitoreo': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Monitoreo']"}) }, u'ficha_granos_basicos.distribucionpendiente': { 'Meta': {'object_name': 'DistribucionPendiente'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'inclinado': ('django.db.models.fields.FloatField', [], {}), 'monitoreo': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Monitoreo']"}), 'plano': ('django.db.models.fields.FloatField', [], {}), 'seleccion': ('django.db.models.fields.IntegerField', [], {}) }, u'ficha_granos_basicos.enfermedadesfrijol': { 'Meta': {'object_name': 'EnfermedadesFrijol'}, 'enfermedad': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Especies']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'planta_1': ('django.db.models.fields.IntegerField', [], {}), 'planta_2': ('django.db.models.fields.IntegerField', [], {}), 'planta_3': ('django.db.models.fields.IntegerField', [], {}), 'planta_4': ('django.db.models.fields.IntegerField', [], {}), 'planta_5': ('django.db.models.fields.IntegerField', [], {}), 'promedio': ('django.db.models.fields.FloatField', [], {}), 'visita': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Visitas']"}) }, u'ficha_granos_basicos.enfermedadesmaiz': { 'Meta': {'object_name': 'EnfermedadesMaiz'}, 'enfermedad': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Especies']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'planta_1': ('django.db.models.fields.IntegerField', [], {}), 'planta_2': ('django.db.models.fields.IntegerField', [], {}), 'planta_3': ('django.db.models.fields.IntegerField', [], {}), 'planta_4': ('django.db.models.fields.IntegerField', [], {}), 'planta_5': ('django.db.models.fields.IntegerField', [], {}), 'promedio': ('django.db.models.fields.FloatField', [], {}), 'visita': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Visitas']"}) }, u'ficha_granos_basicos.especies': { 'Meta': {'object_name': 'Especies'}, 'control_biologico': ('ckeditor.fields.RichTextField', [], {'null': 'True', 'blank': 'True'}), 'control_cultural': ('ckeditor.fields.RichTextField', [], {'null': 'True', 'blank': 'True'}), 'control_quimico': ('ckeditor.fields.RichTextField', [], {'null': 'True', 'blank': 'True'}), 'dano1': ('ckeditor.fields.RichTextField', [], {'null': 'True', 'blank': 'True'}), 'descripcion': ('django.db.models.fields.CharField', [], {'max_length': '150', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nombre_cientifico': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'nombre_popular': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'rango_max': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'rango_min': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'reconocimiento': ('ckeditor.fields.RichTextField', [], {'null': 'True', 'blank': 'True'}), 'rubro': ('django.db.models.fields.IntegerField', [], {}), 'tipo': ('django.db.models.fields.IntegerField', [], {}), 'umbral': ('django.db.models.fields.IntegerField', [], {}) }, u'ficha_granos_basicos.estimadocosechafrijol': { 'Meta': {'object_name': 'EstimadoCosechaFrijol'}, 'estacion': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'planta_1': ('django.db.models.fields.IntegerField', [], {}), 'planta_2': ('django.db.models.fields.IntegerField', [], {}), 'planta_3': ('django.db.models.fields.IntegerField', [], {}), 'planta_4': ('django.db.models.fields.IntegerField', [], {}), 'planta_5': ('django.db.models.fields.IntegerField', [], {}), 'promedio': ('django.db.models.fields.FloatField', [], {}), 'visita': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Visitas']"}) }, u'ficha_granos_basicos.estimadocosechamaiz': { 'Meta': {'object_name': 'EstimadoCosechaMaiz'}, 'estacion_1': ('django.db.models.fields.IntegerField', [], {}), 'estacion_2': ('django.db.models.fields.IntegerField', [], {}), 'estacion_3': ('django.db.models.fields.IntegerField', [], {}), 'estacion_4': ('django.db.models.fields.IntegerField', [], {}), 'estacion_5': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mazorca': ('django.db.models.fields.IntegerField', [], {}), 'promedio': ('django.db.models.fields.FloatField', [], {}), 'visita': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Visitas']"}) }, u'ficha_granos_basicos.estimadocosechamaiz2': { 'Meta': {'object_name': 'EstimadoCosechaMaiz2'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mazorca': ('django.db.models.fields.IntegerField', [], {}), 'peso': ('django.db.models.fields.FloatField', [], {}), 'peso_promedio': ('django.db.models.fields.IntegerField', [], {}), 'visita': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Visitas']"}) }, u'ficha_granos_basicos.fotosespecies': { 'Meta': {'object_name': 'FotosEspecies'}, 'especie': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Especies']"}), 'foto': (u'sorl.thumbnail.fields.ImageField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'ficha_granos_basicos.gastos': { 'Meta': {'object_name': 'Gastos'}, 'fecha_siembra': ('django.db.models.fields.DateField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'productor': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Monitoreo']"}), 'rubro': ('django.db.models.fields.IntegerField', [], {}) }, u'ficha_granos_basicos.granosplanta': { 'Meta': {'object_name': 'GranosPlanta'}, 'cantidad': ('django.db.models.fields.FloatField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'visita': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Visitas']"}) }, u'ficha_granos_basicos.historialrendimiento': { 'Meta': {'object_name': 'HistorialRendimiento'}, 'anio': ('django.db.models.fields.IntegerField', [], {}), 'ciclo_productivo': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'monitoreo': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Monitoreo']"}), 'rendimiento': ('django.db.models.fields.FloatField', [], {}), 'rubro': ('django.db.models.fields.IntegerField', [], {}) }, u'ficha_granos_basicos.insumos': { 'Meta': {'object_name': 'Insumos'}, 'fecha_siembra': ('django.db.models.fields.DateField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'productor': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Monitoreo']"}), 'rubro': ('django.db.models.fields.IntegerField', [], {}) }, u'ficha_granos_basicos.liga_nested': { 'Meta': {'object_name': 'Liga_Nested'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'producto': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Productos']"}), 'tabla_insumos': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.TablaInsumos']"}), 'unidades': ('django.db.models.fields.FloatField', [], {}) }, u'ficha_granos_basicos.macrofauna': { 'Meta': {'object_name': 'Macrofauna'}, 'especie': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Especies']"}), 'est1': ('django.db.models.fields.IntegerField', [], {}), 'est2': ('django.db.models.fields.IntegerField', [], {}), 'est3': ('django.db.models.fields.IntegerField', [], {}), 'est4': ('django.db.models.fields.IntegerField', [], {}), 'est5': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'promedio': ('django.db.models.fields.FloatField', [], {}), 'visita': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Visitas']"}) }, u'ficha_granos_basicos.monitoreo': { 'Meta': {'object_name': 'Monitoreo'}, 'acceso_agua': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'anio': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'ciclo_productivo': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'cultivo': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'direccion_viento': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'distancia': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'edad_parcela': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'fuente_agua': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '7', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'latitud': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'longitud': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'nombre_parcela': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'percepcion_fertilidad': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'productor': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['mapeo.Persona']"}), 'profundidad_capa': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'tamano_parcela': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}) }, u'ficha_granos_basicos.monitoreomalezas': { 'Meta': {'object_name': 'MonitoreoMalezas'}, 'ciperaceas': ('django.db.models.fields.FloatField', [], {}), 'cobertura': ('django.db.models.fields.IntegerField', [], {}), 'cobertura_total': ('django.db.models.fields.FloatField', [], {}), 'gramineas': ('django.db.models.fields.FloatField', [], {}), 'hoja_ancha': ('django.db.models.fields.FloatField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'visita': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Visitas']"}) }, u'ficha_granos_basicos.parametrossuelo': { 'Meta': {'object_name': 'ParametrosSuelo'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nivel_critico': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'nivel_suficiencia': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'parametro': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'unidad': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) }, u'ficha_granos_basicos.plagasfrijol': { 'Meta': {'object_name': 'PlagasFrijol'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'plaga': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Especies']"}), 'porcentaje_dano_1': ('django.db.models.fields.FloatField', [], {}), 'porcentaje_dano_2': ('django.db.models.fields.FloatField', [], {}), 'porcentaje_dano_3': ('django.db.models.fields.FloatField', [], {}), 'porcentaje_dano_4': ('django.db.models.fields.FloatField', [], {}), 'porcentaje_dano_5': ('django.db.models.fields.FloatField', [], {}), 'presencia_1': ('django.db.models.fields.FloatField', [], {}), 'presencia_2': ('django.db.models.fields.FloatField', [], {}), 'presencia_3': ('django.db.models.fields.FloatField', [], {}), 'presencia_4': ('django.db.models.fields.FloatField', [], {}), 'presencia_5': ('django.db.models.fields.FloatField', [], {}), 'promedio_dano': ('django.db.models.fields.FloatField', [], {}), 'promedio_presencia': ('django.db.models.fields.FloatField', [], {}), 'visita': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Visitas']"}) }, u'ficha_granos_basicos.plagasmaiz': { 'Meta': {'object_name': 'PlagasMaiz'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'plaga': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Especies']"}), 'porcentaje_dano_1': ('django.db.models.fields.FloatField', [], {}), 'porcentaje_dano_2': ('django.db.models.fields.FloatField', [], {}), 'porcentaje_dano_3': ('django.db.models.fields.FloatField', [], {}), 'porcentaje_dano_4': ('django.db.models.fields.FloatField', [], {}), 'porcentaje_dano_5': ('django.db.models.fields.FloatField', [], {}), 'presencia_1': ('django.db.models.fields.FloatField', [], {}), 'presencia_2': ('django.db.models.fields.FloatField', [], {}), 'presencia_3': ('django.db.models.fields.FloatField', [], {}), 'presencia_4': ('django.db.models.fields.FloatField', [], {}), 'presencia_5': ('django.db.models.fields.FloatField', [], {}), 'promedio_dano': ('django.db.models.fields.FloatField', [], {}), 'promedio_presencia': ('django.db.models.fields.FloatField', [], {}), 'visita': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Visitas']"}) }, u'ficha_granos_basicos.poblacionfrijol': { 'Meta': {'object_name': 'PoblacionFrijol'}, 'distancia_frijol': ('django.db.models.fields.FloatField', [], {}), 'est1': ('django.db.models.fields.IntegerField', [], {}), 'est2': ('django.db.models.fields.IntegerField', [], {}), 'est3': ('django.db.models.fields.IntegerField', [], {}), 'est4': ('django.db.models.fields.IntegerField', [], {}), 'est5': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'metros_lineales': ('django.db.models.fields.FloatField', [], {}), 'numero_surcos': ('django.db.models.fields.FloatField', [], {}), 'poblacion': ('django.db.models.fields.FloatField', [], {}), 'promedio': ('django.db.models.fields.FloatField', [], {}), 'visita': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Visitas']"}) }, u'ficha_granos_basicos.poblacionmaiz': { 'Meta': {'object_name': 'PoblacionMaiz'}, 'distancia_maiz': ('django.db.models.fields.FloatField', [], {}), 'est1': ('django.db.models.fields.IntegerField', [], {}), 'est2': ('django.db.models.fields.IntegerField', [], {}), 'est3': ('django.db.models.fields.IntegerField', [], {}), 'est4': ('django.db.models.fields.IntegerField', [], {}), 'est5': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'metros_lineales': ('django.db.models.fields.FloatField', [], {}), 'numero_surcos': ('django.db.models.fields.FloatField', [], {}), 'poblacion': ('django.db.models.fields.FloatField', [], {}), 'promedio': ('django.db.models.fields.FloatField', [], {}), 'visita': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Visitas']"}) }, u'ficha_granos_basicos.procedenciasemilla': { 'Meta': {'object_name': 'ProcedenciaSemilla'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'procedencia': ('django.db.models.fields.IntegerField', [], {}), 'rubro': ('django.db.models.fields.IntegerField', [], {}), 'visita': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Visitas']"}) }, u'ficha_granos_basicos.productos': { 'Meta': {'object_name': 'Productos'}, 'categoria': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nombre_comercial': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'presentacion': ('django.db.models.fields.IntegerField', [], {}), 'principio_activo': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'ficha_granos_basicos.pruebagerminacion': { 'Meta': {'object_name': 'PruebaGerminacion'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'porcentaje': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'respuesta': ('django.db.models.fields.IntegerField', [], {}), 'rubro': ('django.db.models.fields.IntegerField', [], {}), 'visita': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Visitas']"}) }, u'ficha_granos_basicos.recursossiembra': { 'Meta': {'object_name': 'RecursosSiembra'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'monitoreo': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Monitoreo']"}), 'respuesta': ('django.db.models.fields.IntegerField', [], {}), 'rubro': ('django.db.models.fields.IntegerField', [], {}) }, u'ficha_granos_basicos.semillas': { 'Meta': {'object_name': 'Semillas'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nombre_semilla': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'rubro': ('django.db.models.fields.IntegerField', [], {}), 'tipo_semilla': ('django.db.models.fields.IntegerField', [], {}), 'visita': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Visitas']"}) }, u'ficha_granos_basicos.sobrecosecha': { 'Meta': {'object_name': 'SobreCosecha'}, 'almacenamiento': ('django.db.models.fields.FloatField', [], {}), 'cosecha': ('django.db.models.fields.FloatField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'precio_mercado': ('django.db.models.fields.FloatField', [], {}), 'rubro': ('django.db.models.fields.IntegerField', [], {}), 'venta': ('django.db.models.fields.FloatField', [], {}), 'visita': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Visitas']"}) }, u'ficha_granos_basicos.suelo': { 'Meta': {'object_name': 'Suelo'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'parametro': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.ParametrosSuelo']"}), 'resultado': ('django.db.models.fields.FloatField', [], {}), 'visita': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Visitas']"}) }, u'ficha_granos_basicos.tabladecisiones': { 'Meta': {'object_name': 'TablaDecisiones'}, 'area': ('django.db.models.fields.IntegerField', [], {}), 'decision': ('django.db.models.fields.TextField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'porque': ('django.db.models.fields.TextField', [], {}), 'seleccion': ('django.db.models.fields.IntegerField', [], {}), 'toma_deciciones': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.TomaDecisiones']"}), 'visita': ('django.db.models.fields.IntegerField', [], {}) }, u'ficha_granos_basicos.tablagastos': { 'Meta': {'object_name': 'TablaGastos'}, 'actividad': ('django.db.models.fields.IntegerField', [], {}), 'descripcion': ('django.db.models.fields.TextField', [], {}), 'dias_persona': ('django.db.models.fields.IntegerField', [], {}), 'fecha': ('django.db.models.fields.DateField', [], {}), 'gastos': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Gastos']"}), 'hombres': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mujeres': ('django.db.models.fields.IntegerField', [], {}), 'valor': ('django.db.models.fields.IntegerField', [], {}) }, u'ficha_granos_basicos.tablainsumos': { 'Meta': {'object_name': 'TablaInsumos'}, 'bombas': ('django.db.models.fields.FloatField', [], {}), 'fecha': ('django.db.models.fields.DateField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'insumos': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Insumos']"}), 'producto': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Productos']"}), 'unidades': ('django.db.models.fields.FloatField', [], {}) }, u'ficha_granos_basicos.tablamalezas': { 'Meta': {'object_name': 'TablaMalezas'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'maleza': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.TiposMalezas']"}), 'visita': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Visitas']"}) }, u'ficha_granos_basicos.tiposmalezas': { 'Meta': {'object_name': 'TiposMalezas'}, 'categoria': ('django.db.models.fields.IntegerField', [], {}), 'ciclo': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nombre_cientifico': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'nombre_popular': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'ficha_granos_basicos.tomadecisiones': { 'Meta': {'object_name': 'TomaDecisiones'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'productor': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Monitoreo']"}) }, u'ficha_granos_basicos.tratamientosemilla': { 'Meta': {'object_name': 'TratamientoSemilla'}, 'dosis': ('django.db.models.fields.CharField', [], {'max_length': '150'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nombre': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'preparacion': ('django.db.models.fields.TextField', [], {'blank': 'True'}) }, u'ficha_granos_basicos.vigorfrijol': { 'Meta': {'object_name': 'VigorFrijol'}, 'est1': ('django.db.models.fields.IntegerField', [], {}), 'est2': ('django.db.models.fields.IntegerField', [], {}), 'est3': ('django.db.models.fields.IntegerField', [], {}), 'est4': ('django.db.models.fields.IntegerField', [], {}), 'est5': ('django.db.models.fields.IntegerField', [], {}), 'estimado_plantas': ('django.db.models.fields.FloatField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'plantas': ('django.db.models.fields.IntegerField', [], {}), 'porcentaje': ('django.db.models.fields.FloatField', [], {}), 'promedio': ('django.db.models.fields.FloatField', [], {}), 'visita': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Visitas']"}) }, u'ficha_granos_basicos.vigormaiz': { 'Meta': {'object_name': 'VigorMaiz'}, 'est1': ('django.db.models.fields.IntegerField', [], {}), 'est2': ('django.db.models.fields.IntegerField', [], {}), 'est3': ('django.db.models.fields.IntegerField', [], {}), 'est4': ('django.db.models.fields.IntegerField', [], {}), 'est5': ('django.db.models.fields.IntegerField', [], {}), 'estimado_plantas': ('django.db.models.fields.FloatField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'plantas': ('django.db.models.fields.IntegerField', [], {}), 'porcentaje': ('django.db.models.fields.FloatField', [], {}), 'promedio': ('django.db.models.fields.FloatField', [], {}), 'visita': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Visitas']"}) }, u'ficha_granos_basicos.visitas': { 'Meta': {'object_name': 'Visitas'}, 'anio': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'areas': ('multiselectfield.db.fields.MultiSelectField', [], {'max_length': '17'}), 'fecha': ('django.db.models.fields.DateField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'productor': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ficha_granos_basicos.Monitoreo']"}), 'visita': ('django.db.models.fields.IntegerField', [], {}) }, u'lugar.comunidad': { 'Meta': {'ordering': "['nombre']", 'object_name': 'Comunidad'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'latitud': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '5', 'blank': 'True'}), 'longitud': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '5', 'blank': 'True'}), 'municipio': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['lugar.Municipio']"}), 'nombre': ('django.db.models.fields.CharField', [], {'max_length': '40'}) }, u'lugar.departamento': { 'Meta': {'ordering': "['nombre']", 'object_name': 'Departamento'}, 'extension': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'id': ('django.db.models.fields.IntegerField', [], {'primary_key': 'True'}), 'latitud': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '5', 'blank': 'True'}), 'longitud': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '5', 'blank': 'True'}), 'nombre': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}), 'pais': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['lugar.Pais']"}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'unique': 'True', 'null': 'True'}) }, u'lugar.municipio': { 'Meta': {'ordering': "['departamento__nombre', 'nombre']", 'object_name': 'Municipio'}, 'departamento': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['lugar.Departamento']"}), 'extension': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'id': ('django.db.models.fields.IntegerField', [], {'primary_key': 'True'}), 'latitud': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '5', 'blank': 'True'}), 'longitud': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '5', 'blank': 'True'}), 'nombre': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'unique': 'True', 'null': 'True'}) }, u'lugar.pais': { 'Meta': {'object_name': 'Pais'}, 'codigo': ('django.db.models.fields.CharField', [], {'max_length': '2'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nombre': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, u'mapeo.persona': { 'Meta': {'object_name': 'Persona'}, 'cedula': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'comunidad': ('smart_selects.db_fields.ChainedForeignKey', [], {'to': u"orm['lugar.Comunidad']"}), 'departamento': ('smart_selects.db_fields.ChainedForeignKey', [], {'to': u"orm['lugar.Departamento']"}), 'edad': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'municipio': ('smart_selects.db_fields.ChainedForeignKey', [], {'to': u"orm['lugar.Municipio']"}), 'nombre': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'pais': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['lugar.Pais']"}), 'sexo': ('django.db.models.fields.IntegerField', [], {}), 'tipo_persona': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) } } complete_apps = ['ficha_granos_basicos']
mit
yjydmlh/zerorpc-python
zerorpc/socket.py
134
1737
# -*- coding: utf-8 -*- # Open Source Initiative OSI - The MIT License (MIT):Licensing # # The MIT License (MIT) # Copyright (c) 2012 DotCloud Inc ([email protected]) # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies # of the Software, and to permit persons to whom the Software is furnished to do # so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from .context import Context from .events import Events class SocketBase(object): def __init__(self, zmq_socket_type, context=None): self._context = context or Context.get_instance() self._events = Events(zmq_socket_type, context) def close(self): self._events.close() def connect(self, endpoint, resolve=True): return self._events.connect(endpoint, resolve) def bind(self, endpoint, resolve=True): return self._events.bind(endpoint, resolve)
mit
alexwaters/python-readability-api
readability/models.py
1
5472
# -*- coding: utf-8 -*- """ readability.models ~~~~~~~~~~~~~~~~~~ This module provides the core Readability API models. """ from .helpers import to_python, to_api class BaseResource(object): """A Base BaseResource object.""" def __init__(self): super(BaseResource, self).__init__() self._rdd = None def __dir__(self): d = self.__dict__.copy() try: del d['_rdd'] except KeyError: pass return d.keys() class Bookmark(BaseResource): """Bookmark API Model.""" def __init__(self): self.id = None self.user_id = None self.read_percent = None self.date_updated = None self.favorite = None self.archive = None self.date_archived = None self.date_opened = None self.date_added = None self.article = None def __repr__(self): return '<bookmark id="%s" favorite="%s" archive="%s" read_percent="%s">' % (self.id, self.favorite, self.archive, self.read_percent) @staticmethod def new_from_dict(d, rdd=None): b = to_python( obj=Bookmark(), in_dict=d, string_keys = ( 'id', 'user_id', 'read_percent', 'favorite', 'archive', 'author', ), date_keys = ('date_updated', 'date_archived', 'date_opened', 'date_added'), object_map = {'article': Article}, _rdd = rdd ) return b def delete(self): """Deletes Bookmark.""" return self._rdd._delete_resource(('bookmarks', self.id)) def update(self): """Updates Bookmark.""" args = to_api( dict( favorite=self.favorite, archive=self.archive, read_percent=self.read_percent, ), int_keys=('favorite', 'archive') ) r = self._rdd._post_resource(('bookmarks', self.id), **args) return r class Article(BaseResource): def __init__(self): self.id = None self.domain = None self.title = None self.url = None self.short_url = None self.author = None self.word_count = None self.content = None self.excerpt = None self.date_published = None self.next_page_href = None self.processed = None self.content_size = None def __repr__(self): return '<article id="%s">' % (self.id,) @staticmethod def new_from_dict(d, rdd=None): return to_python( obj=Article(), in_dict=d, string_keys = ( 'id', 'domain', 'title', 'url', 'short_url', 'author', 'word_count', 'content', 'excerpt', 'next_page_href', 'processed', 'content_size', ), date_keys = ('date_published',), _rdd = rdd ) class Domain(BaseResource): def __init__(self): super(Domain, self).__init__() self.fqdn = None self.articles_ref = None def __repr__(self): return '<domain fqdn="%s">' % (self.fqdn,) @staticmethod def new_from_dict(d, rdd=None): return to_python( obj=Domain(), in_dict=d, string_keys = ('fqdn', 'articles_ref'), _rdd = rdd ) def articles(self, **filters): """Returns Article list, filtered by Domain.""" return self._rdd.get_articles(domain=self.fqdn, **filters) def contributions(self, **filters): """Returns Article list, filtered by Domain.""" return self._rdd.get_contributions(domain=self.fqdn, **filters) class Contribution(BaseResource): def __init__(self): super(Contribution, self).__init__() self.date = None self.contribution = None self.user = None self.domain = None self.num_bookmarks = None def __repr__(self): return '<contribution domain="%s">' % (self.domain,) @staticmethod def new_from_dict(d, rdd=None): return to_python( obj=Contribution(), in_dict=d, string_keys = ('contribution', 'user', 'domain', 'num_bookmarks'), date_keys = ('date'), _rdd = rdd ) class User(BaseResource): """User API Model.""" def __init__(self): self.username = None self.first_name = None self.last_name = None self.date_joined = None def __repr__(self): return '<user name="%s">' % (self.username,) @staticmethod def new_from_dict(d, rdd=None): return to_python( obj=User(), in_dict=d, string_keys = ('username', 'first_name'), date_keys = ('date_joined',), _rdd=rdd ) def bookmarks(self, **filters): """Returns Bookmark list, filtered by User.""" if self.username == self._rdd.username: return self._rdd.get_bookmarks(user=self.username, **filters) else: return self._rdd.get_bookmarks_by_user(self.username, **filters) def contributions(self, **filters): """Returns Contributions list, filtered by User.""" if self.username == self._rdd.username: return self._rdd.get_contributions(user=self.username, **filters) else: return self._rdd.get_contributions_by_user(self.username, **filters)
mit
charlesccychen/incubator-beam
sdks/python/apache_beam/examples/complete/autocomplete_test.py
5
2520
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Test for the autocomplete example.""" from __future__ import absolute_import import unittest from nose.plugins.attrib import attr import apache_beam as beam from apache_beam.examples.complete import autocomplete from apache_beam.testing.test_pipeline import TestPipeline from apache_beam.testing.util import assert_that from apache_beam.testing.util import equal_to class AutocompleteTest(unittest.TestCase): WORDS = ['this', 'this', 'that', 'to', 'to', 'to'] KINGLEAR_HASH_SUM = 3104188901048578415956 KINGLEAR_INPUT = 'gs://dataflow-samples/shakespeare/kinglear.txt' def test_top_prefixes(self): with TestPipeline() as p: words = p | beam.Create(self.WORDS) result = words | autocomplete.TopPerPrefix(5) # values must be hashable for now result = result | beam.Map(lambda k_vs: (k_vs[0], tuple(k_vs[1]))) assert_that(result, equal_to( [ ('t', ((3, 'to'), (2, 'this'), (1, 'that'))), ('to', ((3, 'to'), )), ('th', ((2, 'this'), (1, 'that'))), ('thi', ((2, 'this'), )), ('this', ((2, 'this'), )), ('tha', ((1, 'that'), )), ('that', ((1, 'that'), )), ])) @attr('IT') def test_autocomplete_it(self): with TestPipeline(is_integration_test=True) as p: words = p | beam.io.ReadFromText(self.KINGLEAR_INPUT) result = words | autocomplete.TopPerPrefix(10) # values must be hashable for now result = result | beam.Map(lambda k_vs: (k_vs[0], tuple(k_vs[1]))) checksum = result | beam.Map(hash) | beam.CombineGlobally(sum) assert_that(checksum, equal_to([self.KINGLEAR_HASH_SUM])) if __name__ == '__main__': unittest.main()
apache-2.0
Wikidata/StrepHit
tests/test_classification.py
1
4013
# -*- encoding: utf-8 -*- import unittest from treetaggerwrapper import Tag from strephit.classification import feature_extractors class TestFactExtractorFeatureExtractor(unittest.TestCase): def setUp(self): self.gazetteer = { 'sentence': ['feature1', 'feature2'] } self.sentences_data = [ { 'sentence': u'This is the first sentence', 'fes': { 'Subject': u'this', 'Missing': u'this is not', 'Object': u'first sentence', }, }, { 'sentence': u'This is the second sentence', 'fes': {}, } ] def test_sorted_set(self): s = feature_extractors.SortedSet() for i in xrange(5): index = s.put(i) self.assertEqual(index, i) for i in xrange(5): index = s.index(i) self.assertEqual(index, i) def test_sentence_to_tokens(self): extractor = feature_extractors.FactExtractorFeatureExtractor('en') tokens = extractor.sentence_to_tokens(**self.sentences_data[0]) self.assertEqual(tokens, [[u'this', u'DT', u'this', u'Subject'], Tag(word=u'is', pos=u'VBZ', lemma=u'be'), Tag(word=u'the', pos=u'DT', lemma=u'the'), [u'first sentence', 'ENT', u'first sentence', u'Object']]) def test_feature_for(self): extractor = feature_extractors.FactExtractorFeatureExtractor('en') self.assertEqual(extractor.feature_for('word1', 'pos', 3, True), 1) self.assertEqual(extractor.feature_for('word2', 'lemma', -2, True), 2) self.assertEqual(extractor.feature_for('WoRd1', 'POs', 3, True), 1) def test_extract_features_no_window(self): extractor = feature_extractors.FactExtractorFeatureExtractor('en', 0) _, f1 = extractor.extract_features(add_unknown=True, gazetteer=self.gazetteer, **self.sentences_data[0]) _, f2 = extractor.extract_features(add_unknown=True, gazetteer=self.gazetteer, **self.sentences_data[1]) self.assertEqual(f1[0][0], f2[0][0]) self.assertEqual(f1[1][0], f2[1][0]) self.assertEqual(f1[2][0], f2[2][0]) def test_extract_features_window(self): window = 2 extractor = feature_extractors.FactExtractorFeatureExtractor('en', window) _, feat = extractor.extract_features(add_unknown=True, gazetteer=self.gazetteer, **self.sentences_data[1]) self.assertEqual(len(feat[2][0]), 3 * (2 * window + 1) + 2) def test_feature_labels(self): extractor = feature_extractors.FactExtractorFeatureExtractor('en') _, tokens = extractor.extract_features(add_unknown=True, gazetteer=self.gazetteer, **self.sentences_data[0]) self.assertEqual(tokens[0][1], 0) self.assertEqual(tokens[1][1], 1) self.assertEqual(tokens[2][1], 1) self.assertEqual(tokens[3][1], 2) def test_get_training_set(self): extractor = feature_extractors.FactExtractorFeatureExtractor('en') extractor.process_sentence(add_unknown=True, gazetteer=self.gazetteer, **self.sentences_data[0]) extractor.process_sentence(add_unknown=True, gazetteer=self.gazetteer, **self.sentences_data[1]) x, y = extractor.get_features() self.assertEqual(x.shape, (9, 70)) self.assertEqual(list(y), [0, 1, 1, 2, 1, 1, 1, 1, 1]) def test_unknown_token(self): extractor = feature_extractors.FactExtractorFeatureExtractor('en') self.assertEqual(extractor.feature_for('a', 'b', 12, add_unknown=False), extractor.unk_index)
gpl-3.0
IPVL/swift-kilo
test/unit/common/middleware/test_bulk.py
14
37987
# Copyright (c) 2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import numbers import unittest import os import tarfile import urllib import zlib import mock from shutil import rmtree from tempfile import mkdtemp from StringIO import StringIO from eventlet import sleep from mock import patch, call from swift.common import utils, constraints from swift.common.middleware import bulk from swift.common.swob import Request, Response, HTTPException from swift.common.http import HTTP_NOT_FOUND, HTTP_UNAUTHORIZED class FakeApp(object): def __init__(self): self.calls = 0 self.delete_paths = [] self.max_pathlen = 100 self.del_cont_total_calls = 2 self.del_cont_cur_call = 0 def __call__(self, env, start_response): self.calls += 1 if env['PATH_INFO'].startswith('/unauth/'): if env['PATH_INFO'].endswith('/c/f_ok'): return Response(status='204 No Content')(env, start_response) return Response(status=401)(env, start_response) if env['PATH_INFO'].startswith('/create_cont/'): if env['REQUEST_METHOD'] == 'HEAD': return Response(status='404 Not Found')(env, start_response) return Response(status='201 Created')(env, start_response) if env['PATH_INFO'].startswith('/create_cont_fail/'): if env['REQUEST_METHOD'] == 'HEAD': return Response(status='403 Forbidden')(env, start_response) return Response(status='404 Not Found')(env, start_response) if env['PATH_INFO'].startswith('/create_obj_unauth/'): if env['PATH_INFO'].endswith('/cont'): return Response(status='201 Created')(env, start_response) return Response(status=401)(env, start_response) if env['PATH_INFO'].startswith('/tar_works/'): if len(env['PATH_INFO']) > self.max_pathlen: return Response(status='400 Bad Request')(env, start_response) return Response(status='201 Created')(env, start_response) if env['PATH_INFO'].startswith('/tar_works_cont_head_fail/'): if env['REQUEST_METHOD'] == 'HEAD': return Response(status='404 Not Found')(env, start_response) if len(env['PATH_INFO']) > 100: return Response(status='400 Bad Request')(env, start_response) return Response(status='201 Created')(env, start_response) if (env['PATH_INFO'].startswith('/delete_works/') and env['REQUEST_METHOD'] == 'DELETE'): self.delete_paths.append(env['PATH_INFO']) if len(env['PATH_INFO']) > self.max_pathlen: return Response(status='400 Bad Request')(env, start_response) if env['PATH_INFO'].endswith('404'): return Response(status='404 Not Found')(env, start_response) if env['PATH_INFO'].endswith('badutf8'): return Response( status='412 Precondition Failed')(env, start_response) return Response(status='204 No Content')(env, start_response) if env['PATH_INFO'].startswith('/delete_cont_fail/'): return Response(status='409 Conflict')(env, start_response) if env['PATH_INFO'].startswith('/broke/'): return Response(status='500 Internal Error')(env, start_response) if env['PATH_INFO'].startswith('/delete_cont_success_after_attempts/'): if self.del_cont_cur_call < self.del_cont_total_calls: self.del_cont_cur_call += 1 return Response(status='409 Conflict')(env, start_response) else: return Response(status='204 No Content')(env, start_response) def build_dir_tree(start_path, tree_obj): if isinstance(tree_obj, list): for obj in tree_obj: build_dir_tree(start_path, obj) if isinstance(tree_obj, dict): for dir_name, obj in tree_obj.iteritems(): dir_path = os.path.join(start_path, dir_name) os.mkdir(dir_path) build_dir_tree(dir_path, obj) if isinstance(tree_obj, unicode): tree_obj = tree_obj.encode('utf8') if isinstance(tree_obj, str): obj_path = os.path.join(start_path, tree_obj) with open(obj_path, 'w+') as tree_file: tree_file.write('testing') def build_tar_tree(tar, start_path, tree_obj, base_path=''): if isinstance(tree_obj, list): for obj in tree_obj: build_tar_tree(tar, start_path, obj, base_path=base_path) if isinstance(tree_obj, dict): for dir_name, obj in tree_obj.iteritems(): dir_path = os.path.join(start_path, dir_name) tar_info = tarfile.TarInfo(dir_path[len(base_path):]) tar_info.type = tarfile.DIRTYPE tar.addfile(tar_info) build_tar_tree(tar, dir_path, obj, base_path=base_path) if isinstance(tree_obj, unicode): tree_obj = tree_obj.encode('utf8') if isinstance(tree_obj, str): obj_path = os.path.join(start_path, tree_obj) tar_info = tarfile.TarInfo('./' + obj_path[len(base_path):]) tar.addfile(tar_info) class TestUntar(unittest.TestCase): def setUp(self): self.app = FakeApp() self.bulk = bulk.filter_factory({})(self.app) self.testdir = mkdtemp(suffix='tmp_test_bulk') def tearDown(self): self.app.calls = 0 rmtree(self.testdir, ignore_errors=1) def handle_extract_and_iter(self, req, compress_format, out_content_type='application/json'): resp_body = ''.join( self.bulk.handle_extract_iter(req, compress_format, out_content_type=out_content_type)) return resp_body def test_create_container_for_path(self): req = Request.blank('/') self.assertEquals( self.bulk.create_container(req, '/create_cont/acc/cont'), True) self.assertEquals(self.app.calls, 2) self.assertRaises( bulk.CreateContainerError, self.bulk.create_container, req, '/create_cont_fail/acc/cont') self.assertEquals(self.app.calls, 3) def test_extract_tar_works(self): # On systems where $TMPDIR is long (like OS X), we need to do this # or else every upload will fail due to the path being too long. self.app.max_pathlen += len(self.testdir) for compress_format in ['', 'gz', 'bz2']: base_name = 'base_works_%s' % compress_format dir_tree = [ {base_name: [{'sub_dir1': ['sub1_file1', 'sub1_file2']}, {'sub_dir2': ['sub2_file1', u'test obj \u2661']}, 'sub_file1', {'sub_dir3': [{'sub4_dir1': '../sub4 file1'}]}, {'sub_dir4': None}, ]}] build_dir_tree(self.testdir, dir_tree) mode = 'w' extension = '' if compress_format: mode += ':' + compress_format extension += '.' + compress_format tar = tarfile.open(name=os.path.join(self.testdir, 'tar_works.tar' + extension), mode=mode) tar.add(os.path.join(self.testdir, base_name)) tar.close() req = Request.blank('/tar_works/acc/cont/') req.environ['wsgi.input'] = open( os.path.join(self.testdir, 'tar_works.tar' + extension)) req.headers['transfer-encoding'] = 'chunked' resp_body = self.handle_extract_and_iter(req, compress_format) resp_data = utils.json.loads(resp_body) self.assertEquals(resp_data['Number Files Created'], 6) # test out xml req = Request.blank('/tar_works/acc/cont/') req.environ['wsgi.input'] = open( os.path.join(self.testdir, 'tar_works.tar' + extension)) req.headers['transfer-encoding'] = 'chunked' resp_body = self.handle_extract_and_iter( req, compress_format, 'application/xml') self.assert_('<response_status>201 Created</response_status>' in resp_body) self.assert_('<number_files_created>6</number_files_created>' in resp_body) # test out nonexistent format req = Request.blank('/tar_works/acc/cont/?extract-archive=tar', headers={'Accept': 'good_xml'}) req.environ['REQUEST_METHOD'] = 'PUT' req.environ['wsgi.input'] = open( os.path.join(self.testdir, 'tar_works.tar' + extension)) req.headers['transfer-encoding'] = 'chunked' def fake_start_response(*args, **kwargs): pass app_iter = self.bulk(req.environ, fake_start_response) resp_body = ''.join([i for i in app_iter]) self.assert_('Response Status: 406' in resp_body) def test_extract_call(self): base_name = 'base_works_gz' dir_tree = [ {base_name: [{'sub_dir1': ['sub1_file1', 'sub1_file2']}, {'sub_dir2': ['sub2_file1', 'sub2_file2']}, 'sub_file1', {'sub_dir3': [{'sub4_dir1': 'sub4_file1'}]}]}] build_dir_tree(self.testdir, dir_tree) tar = tarfile.open(name=os.path.join(self.testdir, 'tar_works.tar.gz'), mode='w:gz') tar.add(os.path.join(self.testdir, base_name)) tar.close() def fake_start_response(*args, **kwargs): pass req = Request.blank('/tar_works/acc/cont/?extract-archive=tar.gz') req.environ['wsgi.input'] = open( os.path.join(self.testdir, 'tar_works.tar.gz')) self.bulk(req.environ, fake_start_response) self.assertEquals(self.app.calls, 1) self.app.calls = 0 req.environ['wsgi.input'] = open( os.path.join(self.testdir, 'tar_works.tar.gz')) req.headers['transfer-encoding'] = 'Chunked' req.method = 'PUT' app_iter = self.bulk(req.environ, fake_start_response) list(app_iter) # iter over resp self.assertEquals(self.app.calls, 7) self.app.calls = 0 req = Request.blank('/tar_works/acc/cont/?extract-archive=bad') req.method = 'PUT' req.headers['transfer-encoding'] = 'Chunked' req.environ['wsgi.input'] = open( os.path.join(self.testdir, 'tar_works.tar.gz')) t = self.bulk(req.environ, fake_start_response) self.assertEquals(t[0], "Unsupported archive format") tar = tarfile.open(name=os.path.join(self.testdir, 'tar_works.tar'), mode='w') tar.add(os.path.join(self.testdir, base_name)) tar.close() self.app.calls = 0 req = Request.blank('/tar_works/acc/cont/?extract-archive=tar') req.method = 'PUT' req.headers['transfer-encoding'] = 'Chunked' req.environ['wsgi.input'] = open( os.path.join(self.testdir, 'tar_works.tar')) app_iter = self.bulk(req.environ, fake_start_response) list(app_iter) # iter over resp self.assertEquals(self.app.calls, 7) def test_bad_container(self): req = Request.blank('/invalid/', body='') resp_body = self.handle_extract_and_iter(req, '') self.assertTrue('404 Not Found' in resp_body) def test_content_length_required(self): req = Request.blank('/create_cont_fail/acc/cont') resp_body = self.handle_extract_and_iter(req, '') self.assertTrue('411 Length Required' in resp_body) def test_bad_tar(self): req = Request.blank('/create_cont_fail/acc/cont', body='') def bad_open(*args, **kwargs): raise zlib.error('bad tar') with patch.object(tarfile, 'open', bad_open): resp_body = self.handle_extract_and_iter(req, '') self.assertTrue('400 Bad Request' in resp_body) def build_tar(self, dir_tree=None): if not dir_tree: dir_tree = [ {'base_fails1': [{'sub_dir1': ['sub1_file1']}, {'sub_dir2': ['sub2_file1', 'sub2_file2']}, 'f' * 101, {'sub_dir3': [{'sub4_dir1': 'sub4_file1'}]}]}] tar = tarfile.open(name=os.path.join(self.testdir, 'tar_fails.tar'), mode='w') build_tar_tree(tar, self.testdir, dir_tree, base_path=self.testdir + '/') tar.close() return tar def test_extract_tar_with_basefile(self): dir_tree = [ 'base_lvl_file', 'another_base_file', {'base_fails1': [{'sub_dir1': ['sub1_file1']}, {'sub_dir2': ['sub2_file1', 'sub2_file2']}, {'sub_dir3': [{'sub4_dir1': 'sub4_file1'}]}]}] self.build_tar(dir_tree) req = Request.blank('/tar_works/acc/') req.environ['wsgi.input'] = open(os.path.join(self.testdir, 'tar_fails.tar')) req.headers['transfer-encoding'] = 'chunked' resp_body = self.handle_extract_and_iter(req, '') resp_data = utils.json.loads(resp_body) self.assertEquals(resp_data['Number Files Created'], 4) def test_extract_tar_fail_cont_401(self): self.build_tar() req = Request.blank('/unauth/acc/', headers={'Accept': 'application/json'}) req.environ['wsgi.input'] = open(os.path.join(self.testdir, 'tar_fails.tar')) req.headers['transfer-encoding'] = 'chunked' resp_body = self.handle_extract_and_iter(req, '') self.assertEquals(self.app.calls, 1) resp_data = utils.json.loads(resp_body) self.assertEquals(resp_data['Response Status'], '401 Unauthorized') self.assertEquals(resp_data['Errors'], []) def test_extract_tar_fail_obj_401(self): self.build_tar() req = Request.blank('/create_obj_unauth/acc/cont/', headers={'Accept': 'application/json'}) req.environ['wsgi.input'] = open(os.path.join(self.testdir, 'tar_fails.tar')) req.headers['transfer-encoding'] = 'chunked' resp_body = self.handle_extract_and_iter(req, '') self.assertEquals(self.app.calls, 2) resp_data = utils.json.loads(resp_body) self.assertEquals(resp_data['Response Status'], '401 Unauthorized') self.assertEquals( resp_data['Errors'], [['cont/base_fails1/sub_dir1/sub1_file1', '401 Unauthorized']]) def test_extract_tar_fail_obj_name_len(self): self.build_tar() req = Request.blank('/tar_works/acc/cont/', headers={'Accept': 'application/json'}) req.environ['wsgi.input'] = open(os.path.join(self.testdir, 'tar_fails.tar')) req.headers['transfer-encoding'] = 'chunked' resp_body = self.handle_extract_and_iter(req, '') self.assertEquals(self.app.calls, 6) resp_data = utils.json.loads(resp_body) self.assertEquals(resp_data['Number Files Created'], 4) self.assertEquals( resp_data['Errors'], [['cont/base_fails1/' + ('f' * 101), '400 Bad Request']]) def test_extract_tar_fail_compress_type(self): self.build_tar() req = Request.blank('/tar_works/acc/cont/', headers={'Accept': 'application/json'}) req.environ['wsgi.input'] = open(os.path.join(self.testdir, 'tar_fails.tar')) req.headers['transfer-encoding'] = 'chunked' resp_body = self.handle_extract_and_iter(req, 'gz') self.assertEquals(self.app.calls, 0) resp_data = utils.json.loads(resp_body) self.assertEquals(resp_data['Response Status'], '400 Bad Request') self.assertEquals( resp_data['Response Body'].lower(), 'invalid tar file: not a gzip file') def test_extract_tar_fail_max_failed_extractions(self): self.build_tar() with patch.object(self.bulk, 'max_failed_extractions', 1): self.app.calls = 0 req = Request.blank('/tar_works/acc/cont/', headers={'Accept': 'application/json'}) req.environ['wsgi.input'] = open(os.path.join(self.testdir, 'tar_fails.tar')) req.headers['transfer-encoding'] = 'chunked' resp_body = self.handle_extract_and_iter(req, '') self.assertEquals(self.app.calls, 5) resp_data = utils.json.loads(resp_body) self.assertEquals(resp_data['Number Files Created'], 3) self.assertEquals( resp_data['Errors'], [['cont/base_fails1/' + ('f' * 101), '400 Bad Request']]) @patch.object(constraints, 'MAX_FILE_SIZE', 4) def test_extract_tar_fail_max_file_size(self): tar = self.build_tar() dir_tree = [{'test': [{'sub_dir1': ['sub1_file1']}]}] build_dir_tree(self.testdir, dir_tree) tar = tarfile.open(name=os.path.join(self.testdir, 'tar_works.tar'), mode='w') tar.add(os.path.join(self.testdir, 'test')) tar.close() self.app.calls = 0 req = Request.blank('/tar_works/acc/cont/', headers={'Accept': 'application/json'}) req.environ['wsgi.input'] = open( os.path.join(self.testdir, 'tar_works.tar')) req.headers['transfer-encoding'] = 'chunked' resp_body = self.handle_extract_and_iter(req, '') resp_data = utils.json.loads(resp_body) self.assertEquals( resp_data['Errors'], [['cont' + self.testdir + '/test/sub_dir1/sub1_file1', '413 Request Entity Too Large']]) def test_extract_tar_fail_max_cont(self): dir_tree = [{'sub_dir1': ['sub1_file1']}, {'sub_dir2': ['sub2_file1', 'sub2_file2']}, 'f' * 101, {'sub_dir3': [{'sub4_dir1': 'sub4_file1'}]}] self.build_tar(dir_tree) with patch.object(self.bulk, 'max_containers', 1): self.app.calls = 0 body = open(os.path.join(self.testdir, 'tar_fails.tar')).read() req = Request.blank('/tar_works_cont_head_fail/acc/', body=body, headers={'Accept': 'application/json'}) req.headers['transfer-encoding'] = 'chunked' resp_body = self.handle_extract_and_iter(req, '') self.assertEquals(self.app.calls, 5) resp_data = utils.json.loads(resp_body) self.assertEquals(resp_data['Response Status'], '400 Bad Request') self.assertEquals( resp_data['Response Body'], 'More than 1 containers to create from tar.') def test_extract_tar_fail_create_cont(self): dir_tree = [{'base_fails1': [ {'sub_dir1': ['sub1_file1']}, {'sub_dir2': ['sub2_file1', 'sub2_file2']}, {'./sub_dir3': [{'sub4_dir1': 'sub4_file1'}]}]}] self.build_tar(dir_tree) req = Request.blank('/create_cont_fail/acc/cont/', headers={'Accept': 'application/json'}) req.environ['wsgi.input'] = open(os.path.join(self.testdir, 'tar_fails.tar')) req.headers['transfer-encoding'] = 'chunked' resp_body = self.handle_extract_and_iter(req, '') resp_data = utils.json.loads(resp_body) self.assertEquals(self.app.calls, 5) self.assertEquals(len(resp_data['Errors']), 5) def test_extract_tar_fail_create_cont_value_err(self): self.build_tar() req = Request.blank('/create_cont_fail/acc/cont/', headers={'Accept': 'application/json'}) req.environ['wsgi.input'] = open(os.path.join(self.testdir, 'tar_fails.tar')) req.headers['transfer-encoding'] = 'chunked' def bad_create(req, path): raise ValueError('Test') with patch.object(self.bulk, 'create_container', bad_create): resp_body = self.handle_extract_and_iter(req, '') resp_data = utils.json.loads(resp_body) self.assertEquals(self.app.calls, 0) self.assertEquals(len(resp_data['Errors']), 5) self.assertEquals( resp_data['Errors'][0], ['cont/base_fails1/sub_dir1/sub1_file1', '400 Bad Request']) def test_extract_tar_fail_unicode(self): dir_tree = [{'sub_dir1': ['sub1_file1']}, {'sub_dir2': ['sub2\xdefile1', 'sub2_file2']}, {'sub_\xdedir3': [{'sub4_dir1': 'sub4_file1'}]}] self.build_tar(dir_tree) req = Request.blank('/tar_works/acc/', headers={'Accept': 'application/json'}) req.environ['wsgi.input'] = open(os.path.join(self.testdir, 'tar_fails.tar')) req.headers['transfer-encoding'] = 'chunked' resp_body = self.handle_extract_and_iter(req, '') resp_data = utils.json.loads(resp_body) self.assertEquals(self.app.calls, 4) self.assertEquals(resp_data['Number Files Created'], 2) self.assertEquals(resp_data['Response Status'], '400 Bad Request') self.assertEquals( resp_data['Errors'], [['sub_dir2/sub2%DEfile1', '412 Precondition Failed'], ['sub_%DEdir3/sub4_dir1/sub4_file1', '412 Precondition Failed']]) def test_get_response_body(self): txt_body = bulk.get_response_body( 'bad_formay', {'hey': 'there'}, [['json > xml', '202 Accepted']]) self.assert_('hey: there' in txt_body) xml_body = bulk.get_response_body( 'text/xml', {'hey': 'there'}, [['json > xml', '202 Accepted']]) self.assert_('&gt' in xml_body) class TestDelete(unittest.TestCase): def setUp(self): self.app = FakeApp() self.bulk = bulk.filter_factory({})(self.app) def tearDown(self): self.app.calls = 0 self.app.delete_paths = [] def handle_delete_and_iter(self, req, out_content_type='application/json'): resp_body = ''.join(self.bulk.handle_delete_iter( req, out_content_type=out_content_type)) return resp_body def test_bulk_delete_uses_predefined_object_errors(self): req = Request.blank('/delete_works/AUTH_Acc') objs_to_delete = [ {'name': '/c/file_a'}, {'name': '/c/file_b', 'error': {'code': HTTP_NOT_FOUND, 'message': 'not found'}}, {'name': '/c/file_c', 'error': {'code': HTTP_UNAUTHORIZED, 'message': 'unauthorized'}}, {'name': '/c/file_d'}] resp_body = ''.join(self.bulk.handle_delete_iter( req, objs_to_delete=objs_to_delete, out_content_type='application/json')) self.assertEquals( self.app.delete_paths, ['/delete_works/AUTH_Acc/c/file_a', '/delete_works/AUTH_Acc/c/file_d']) self.assertEquals(self.app.calls, 2) resp_data = utils.json.loads(resp_body) self.assertEquals(resp_data['Response Status'], '400 Bad Request') self.assertEquals(resp_data['Number Deleted'], 2) self.assertEquals(resp_data['Number Not Found'], 1) self.assertEquals(resp_data['Errors'], [['/c/file_c', 'unauthorized']]) def test_bulk_delete_works_with_POST_verb(self): req = Request.blank('/delete_works/AUTH_Acc', body='/c/f\n/c/f404', headers={'Accept': 'application/json'}) req.method = 'POST' resp_body = self.handle_delete_and_iter(req) self.assertEquals( self.app.delete_paths, ['/delete_works/AUTH_Acc/c/f', '/delete_works/AUTH_Acc/c/f404']) self.assertEquals(self.app.calls, 2) resp_data = utils.json.loads(resp_body) self.assertEquals(resp_data['Number Deleted'], 1) self.assertEquals(resp_data['Number Not Found'], 1) def test_bulk_delete_works_with_DELETE_verb(self): req = Request.blank('/delete_works/AUTH_Acc', body='/c/f\n/c/f404', headers={'Accept': 'application/json'}) req.method = 'DELETE' resp_body = self.handle_delete_and_iter(req) self.assertEquals( self.app.delete_paths, ['/delete_works/AUTH_Acc/c/f', '/delete_works/AUTH_Acc/c/f404']) self.assertEquals(self.app.calls, 2) resp_data = utils.json.loads(resp_body) self.assertEquals(resp_data['Number Deleted'], 1) self.assertEquals(resp_data['Number Not Found'], 1) def test_bulk_delete_bad_content_type(self): req = Request.blank('/delete_works/AUTH_Acc', headers={'Accept': 'badformat'}) req = Request.blank('/delete_works/AUTH_Acc', headers={'Accept': 'application/json', 'Content-Type': 'text/xml'}) req.method = 'POST' req.environ['wsgi.input'] = StringIO('/c/f\n/c/f404') resp_body = self.handle_delete_and_iter(req) resp_data = utils.json.loads(resp_body) self.assertEquals(resp_data['Response Status'], '406 Not Acceptable') def test_bulk_delete_call_and_content_type(self): def fake_start_response(*args, **kwargs): self.assertEquals(args[1][0], ('Content-Type', 'application/json')) req = Request.blank('/delete_works/AUTH_Acc?bulk-delete') req.method = 'POST' req.headers['Transfer-Encoding'] = 'chunked' req.headers['Accept'] = 'application/json' req.environ['wsgi.input'] = StringIO('/c/f%20') list(self.bulk(req.environ, fake_start_response)) # iterate over resp self.assertEquals( self.app.delete_paths, ['/delete_works/AUTH_Acc/c/f ']) self.assertEquals(self.app.calls, 1) def test_bulk_delete_get_objs(self): req = Request.blank('/delete_works/AUTH_Acc', body='1%20\r\n2\r\n') req.method = 'POST' with patch.object(self.bulk, 'max_deletes_per_request', 2): results = self.bulk.get_objs_to_delete(req) self.assertEquals(results, [{'name': '1 '}, {'name': '2'}]) with patch.object(self.bulk, 'max_path_length', 2): results = [] req.environ['wsgi.input'] = StringIO('1\n2\n3') results = self.bulk.get_objs_to_delete(req) self.assertEquals(results, [{'name': '1'}, {'name': '2'}, {'name': '3'}]) with patch.object(self.bulk, 'max_deletes_per_request', 9): with patch.object(self.bulk, 'max_path_length', 1): req_body = '\n'.join([str(i) for i in xrange(10)]) req = Request.blank('/delete_works/AUTH_Acc', body=req_body) self.assertRaises( HTTPException, self.bulk.get_objs_to_delete, req) def test_bulk_delete_works_extra_newlines_extra_quoting(self): req = Request.blank('/delete_works/AUTH_Acc', body='/c/f\n\n\n/c/f404\n\n\n/c/%2525', headers={'Accept': 'application/json'}) req.method = 'POST' resp_body = self.handle_delete_and_iter(req) self.assertEquals( self.app.delete_paths, ['/delete_works/AUTH_Acc/c/f', '/delete_works/AUTH_Acc/c/f404', '/delete_works/AUTH_Acc/c/%25']) self.assertEquals(self.app.calls, 3) resp_data = utils.json.loads(resp_body) self.assertEquals(resp_data['Number Deleted'], 2) self.assertEquals(resp_data['Number Not Found'], 1) def test_bulk_delete_too_many_newlines(self): req = Request.blank('/delete_works/AUTH_Acc') req.method = 'POST' data = '\n\n' * self.bulk.max_deletes_per_request req.environ['wsgi.input'] = StringIO(data) req.content_length = len(data) resp_body = self.handle_delete_and_iter(req) self.assertTrue('413 Request Entity Too Large' in resp_body) def test_bulk_delete_works_unicode(self): body = (u'/c/ obj \u2661\r\n'.encode('utf8') + 'c/ objbadutf8\r\n' + '/c/f\xdebadutf8\n') req = Request.blank('/delete_works/AUTH_Acc', body=body, headers={'Accept': 'application/json'}) req.method = 'POST' resp_body = self.handle_delete_and_iter(req) self.assertEquals( self.app.delete_paths, ['/delete_works/AUTH_Acc/c/ obj \xe2\x99\xa1', '/delete_works/AUTH_Acc/c/ objbadutf8']) self.assertEquals(self.app.calls, 2) resp_data = utils.json.loads(resp_body) self.assertEquals(resp_data['Number Deleted'], 1) self.assertEquals(len(resp_data['Errors']), 2) self.assertEquals( resp_data['Errors'], [[urllib.quote('c/ objbadutf8'), '412 Precondition Failed'], [urllib.quote('/c/f\xdebadutf8'), '412 Precondition Failed']]) def test_bulk_delete_no_body(self): req = Request.blank('/unauth/AUTH_acc/') resp_body = self.handle_delete_and_iter(req) self.assertTrue('411 Length Required' in resp_body) def test_bulk_delete_no_files_in_body(self): req = Request.blank('/unauth/AUTH_acc/', body=' ') resp_body = self.handle_delete_and_iter(req) self.assertTrue('400 Bad Request' in resp_body) def test_bulk_delete_unauth(self): req = Request.blank('/unauth/AUTH_acc/', body='/c/f\n/c/f_ok\n', headers={'Accept': 'application/json'}) req.method = 'POST' resp_body = self.handle_delete_and_iter(req) self.assertEquals(self.app.calls, 2) resp_data = utils.json.loads(resp_body) self.assertEquals(resp_data['Errors'], [['/c/f', '401 Unauthorized']]) self.assertEquals(resp_data['Response Status'], '400 Bad Request') self.assertEquals(resp_data['Number Deleted'], 1) def test_bulk_delete_500_resp(self): req = Request.blank('/broke/AUTH_acc/', body='/c/f\nc/f2\n', headers={'Accept': 'application/json'}) req.method = 'POST' resp_body = self.handle_delete_and_iter(req) resp_data = utils.json.loads(resp_body) self.assertEquals( resp_data['Errors'], [['/c/f', '500 Internal Error'], ['c/f2', '500 Internal Error']]) self.assertEquals(resp_data['Response Status'], '502 Bad Gateway') def test_bulk_delete_bad_path(self): req = Request.blank('/delete_cont_fail/') resp_body = self.handle_delete_and_iter(req) self.assertTrue('404 Not Found' in resp_body) def test_bulk_delete_container_delete(self): req = Request.blank('/delete_cont_fail/AUTH_Acc', body='c\n', headers={'Accept': 'application/json'}) req.method = 'POST' with patch('swift.common.middleware.bulk.sleep', new=mock.MagicMock(wraps=sleep, return_value=None)) as mock_sleep: resp_body = self.handle_delete_and_iter(req) resp_data = utils.json.loads(resp_body) self.assertEquals(resp_data['Number Deleted'], 0) self.assertEquals(resp_data['Errors'], [['c', '409 Conflict']]) self.assertEquals(resp_data['Response Status'], '400 Bad Request') self.assertEquals([], mock_sleep.call_args_list) def test_bulk_delete_container_delete_retry_and_fails(self): self.bulk.retry_count = 3 req = Request.blank('/delete_cont_fail/AUTH_Acc', body='c\n', headers={'Accept': 'application/json'}) req.method = 'POST' with patch('swift.common.middleware.bulk.sleep', new=mock.MagicMock(wraps=sleep, return_value=None)) as mock_sleep: resp_body = self.handle_delete_and_iter(req) resp_data = utils.json.loads(resp_body) self.assertEquals(resp_data['Number Deleted'], 0) self.assertEquals(resp_data['Errors'], [['c', '409 Conflict']]) self.assertEquals(resp_data['Response Status'], '400 Bad Request') self.assertEquals([call(self.bulk.retry_interval), call(self.bulk.retry_interval ** 2), call(self.bulk.retry_interval ** 3)], mock_sleep.call_args_list) def test_bulk_delete_container_delete_retry_and_success(self): self.bulk.retry_count = 3 self.app.del_container_total = 2 req = Request.blank('/delete_cont_success_after_attempts/AUTH_Acc', body='c\n', headers={'Accept': 'application/json'}) req.method = 'DELETE' with patch('swift.common.middleware.bulk.sleep', new=mock.MagicMock(wraps=sleep, return_value=None)) as mock_sleep: resp_body = self.handle_delete_and_iter(req) resp_data = utils.json.loads(resp_body) self.assertEquals(resp_data['Number Deleted'], 1) self.assertEquals(resp_data['Errors'], []) self.assertEquals(resp_data['Response Status'], '200 OK') self.assertEquals([call(self.bulk.retry_interval), call(self.bulk.retry_interval ** 2)], mock_sleep.call_args_list) def test_bulk_delete_bad_file_too_long(self): req = Request.blank('/delete_works/AUTH_Acc', headers={'Accept': 'application/json'}) req.method = 'POST' bad_file = 'c/' + ('1' * self.bulk.max_path_length) data = '/c/f\n' + bad_file + '\n/c/f' req.environ['wsgi.input'] = StringIO(data) req.headers['Transfer-Encoding'] = 'chunked' resp_body = self.handle_delete_and_iter(req) resp_data = utils.json.loads(resp_body) self.assertEquals(resp_data['Number Deleted'], 2) self.assertEquals(resp_data['Errors'], [[bad_file, '400 Bad Request']]) self.assertEquals(resp_data['Response Status'], '400 Bad Request') def test_bulk_delete_bad_file_over_twice_max_length(self): body = '/c/f\nc/' + ('123456' * self.bulk.max_path_length) + '\n' req = Request.blank('/delete_works/AUTH_Acc', body=body) req.method = 'POST' resp_body = self.handle_delete_and_iter(req) self.assertTrue('400 Bad Request' in resp_body) def test_bulk_delete_max_failures(self): req = Request.blank('/unauth/AUTH_Acc', body='/c/f1\n/c/f2\n/c/f3', headers={'Accept': 'application/json'}) req.method = 'POST' with patch.object(self.bulk, 'max_failed_deletes', 2): resp_body = self.handle_delete_and_iter(req) self.assertEquals(self.app.calls, 2) resp_data = utils.json.loads(resp_body) self.assertEquals(resp_data['Response Status'], '400 Bad Request') self.assertEquals(resp_data['Response Body'], 'Max delete failures exceeded') self.assertEquals(resp_data['Errors'], [['/c/f1', '401 Unauthorized'], ['/c/f2', '401 Unauthorized']]) class TestSwiftInfo(unittest.TestCase): def setUp(self): utils._swift_info = {} utils._swift_admin_info = {} def test_registered_defaults(self): bulk.filter_factory({}) swift_info = utils.get_swift_info() self.assertTrue('bulk_upload' in swift_info) self.assertTrue(isinstance( swift_info['bulk_upload'].get('max_containers_per_extraction'), numbers.Integral)) self.assertTrue(isinstance( swift_info['bulk_upload'].get('max_failed_extractions'), numbers.Integral)) self.assertTrue('bulk_delete' in swift_info) self.assertTrue(isinstance( swift_info['bulk_delete'].get('max_deletes_per_request'), numbers.Integral)) self.assertTrue(isinstance( swift_info['bulk_delete'].get('max_failed_deletes'), numbers.Integral)) if __name__ == '__main__': unittest.main()
apache-2.0