orionhunts-ai
CR Model selection and implemented WandB for SKlearn
476d115
raw
history blame
7.01 kB
import json
import os
import random
from typing import Any, Dict, Tuple
import pandas as pd
import torch
from dotenv import load_dotenv
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import (accuracy_score, classification_report,
confusion_matrix, f1_score, roc_auc_score)
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
import wandb
# Load environment variables
load_dotenv()
# Load project details
from eda_code_final_fixed import project, version
def initialize_project(project: str, version: str) -> Tuple[pd.DataFrame, pd.Series, pd.DataFrame, pd.Series, Dict[str, Any]]:
"""
Initializes a project and performs a train-test split on the processed data.
Parameters:
project (str): The name of the project.
version (str): The version of the project.
Returns:
tuple: A tuple containing the following:
- X_train (pd.DataFrame): The training features.
- X_test (pd.DataFrame): The testing features.
- y_train (pd.Series): The training targets.
- y_test (pd.Series): The testing targets.
- models (dict): A dictionary of model instances.
"""
data_path = "/Users/nullzero/Documents/repos/github.com/privacy-identity/vda-simulation-medical/vda-sim-medical/data/processed/PII_Customer_Personality_Analysis/data/2024_08_25_PII_Customer_Personality_Analysis_v0.1.csv"
# Load the processed data
df_processed = pd.read_csv(data_path)
# Train-Test Split
X = df_processed.drop(columns=['target'])
y = df_processed['target']
# Select the top 10 features
selector = SelectKBest(score_func=f_classif, k=10)
X_new = selector.fit_transform(X, y)
selected_features = X.columns[selector.get_support()]
X = pd.DataFrame(X_new, columns=selected_features)
# Log the selected features to W&B
wandb.init(project=project, entity="orionai", name="supervized_binary_classification", job_type="supervized_train")
wandb.log({"selected_features": selected_features.tolist()})
# Normalize the data
scaler = StandardScaler()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# Define models
models = {
"Logistic Regression": LogisticRegression(random_state=42, max_iter=1000),
"Random Forest": RandomForestClassifier(random_state=42, n_estimators=100),
"SVM": SVC(random_state=42, probability=True)
}
return X_train, X_test, y_train, y_test, models
def training_clf(X_train: pd.DataFrame, X_test: pd.DataFrame, y_train: pd.Series, y_test: pd.Series, models: Dict[str, Any], project: str, version: str) -> Dict[str, Any]:
"""
Trains and logs multiple classification models using Weights & Biases (W&B).
Args:
X_train (pd.DataFrame): The training features.
X_test (pd.DataFrame): The testing features.
y_train (pd.Series): The training targets.
y_test (pd.Series): The testing targets.
models (dict): A dictionary of classification models to train and log.
project (str): The W&B project name.
version (str): The model version.
Returns:
dict: A dictionary containing the model name, classification report, confusion matrix, accuracy, ROC AUC, and F1 score for each model.
"""
results = {}
for model_name, model in models.items():
# Initialize a new W&B run for each model
run = wandb.init(project=project, entity="orionai", job_type="supervized_train", name=model_name)
# Train the model
model.fit(X_train, y_train)
# Predict and evaluate
y_pred = model.predict(X_test)
y_prob = model.predict_proba(X_test)[:, 1] if hasattr(model, "predict_proba") else None
accuracy = accuracy_score(y_test, y_pred)
roc_auc = roc_auc_score(y_test, y_prob) if y_prob is not None else None
f1_metric = f1_score(y_test, y_pred)
# Log metrics
wandb.log({
"accuracy": accuracy,
"roc_auc": roc_auc,
"f1_score": f1_metric
})
# Log model
wandb.sklearn.plot_classifier(model, X_train, X_test, y_train, y_test, y_pred, y_prob, labels=["Not Buy", "Buy"])
# Save the model to a file
model_filename = f"{model_name.replace(' ', '_').lower()}_model_v{version}.pkl"
torch.save(model, model_filename)
# Create and log the W&B artifact for the model
model_artifact = wandb.Artifact(name=f"{model_name.replace(' ', '_').lower()}_v{version}", type='model')
model_artifact.add_file(model_filename)
wandb.log_artifact(model_artifact)
# Log classification report and confusion matrix
class_report = classification_report(y_test, y_pred, output_dict=True)
conf_matrix = confusion_matrix(y_test, y_pred)
wandb.log({
"classification_report": class_report,
"confusion_matrix": conf_matrix
})
results[model_name] = {
"clf_report": class_report,
"conf_matrix": conf_matrix,
"accuracy": accuracy,
"roc_auc": roc_auc,
"f1_score": f1_metric
}
# End W&B run for this model
run.finish()
return results
def json_convert(input_dict: Dict[str, Any], project: str) -> str:
"""
Converts a dictionary into a JSON file and saves it to a specified directory.
Args:
input_dict (dict): The dictionary to be converted into a JSON file.
project (str): The name of the project for directory organization.
Returns:
str: The file path where the JSON file is saved.
"""
# Ensure the folder exists
folder_path = f"../data/{project}/results/"
os.makedirs(folder_path, exist_ok=True)
file_name = f"{project}_supervized_v{random.randint(1, 100)}.json"
file_path = os.path.join(folder_path, file_name)
with open(file_path, 'w') as json_file:
json.dump(input_dict, json_file, indent=4)
print(f"Results saved to {file_path}")
return file_path
def main():
device = "mps" if torch.backends.mps.is_available() else "cpu"
print("Initializing project...")
X_train, X_test, y_train, y_test, models = initialize_project(project, version)
print("Training classifiers...")
clf_train_results = training_clf(X_train, X_test, y_train, y_test, models, project, version)
print("Saving results to JSON...")
json_convert(clf_train_results, project)
print("Finished.")
if __name__ == '__main__':
main()