|
import json |
|
import os |
|
import random |
|
from typing import Any, Dict, Tuple |
|
|
|
import pandas as pd |
|
import torch |
|
from dotenv import load_dotenv |
|
from sklearn.ensemble import RandomForestClassifier |
|
from sklearn.feature_selection import SelectKBest, f_classif |
|
from sklearn.linear_model import LogisticRegression |
|
from sklearn.metrics import (accuracy_score, classification_report, |
|
confusion_matrix, f1_score, roc_auc_score) |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.preprocessing import StandardScaler |
|
from sklearn.svm import SVC |
|
|
|
import wandb |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
from eda_code_final_fixed import project, version |
|
|
|
|
|
def initialize_project(project: str, version: str) -> Tuple[pd.DataFrame, pd.Series, pd.DataFrame, pd.Series, Dict[str, Any]]: |
|
""" |
|
Initializes a project and performs a train-test split on the processed data. |
|
|
|
Parameters: |
|
project (str): The name of the project. |
|
version (str): The version of the project. |
|
|
|
Returns: |
|
tuple: A tuple containing the following: |
|
- X_train (pd.DataFrame): The training features. |
|
- X_test (pd.DataFrame): The testing features. |
|
- y_train (pd.Series): The training targets. |
|
- y_test (pd.Series): The testing targets. |
|
- models (dict): A dictionary of model instances. |
|
""" |
|
data_path = "/Users/nullzero/Documents/repos/github.com/privacy-identity/vda-simulation-medical/vda-sim-medical/data/processed/PII_Customer_Personality_Analysis/data/2024_08_25_PII_Customer_Personality_Analysis_v0.1.csv" |
|
|
|
|
|
df_processed = pd.read_csv(data_path) |
|
|
|
|
|
X = df_processed.drop(columns=['target']) |
|
y = df_processed['target'] |
|
|
|
|
|
selector = SelectKBest(score_func=f_classif, k=10) |
|
X_new = selector.fit_transform(X, y) |
|
selected_features = X.columns[selector.get_support()] |
|
X = pd.DataFrame(X_new, columns=selected_features) |
|
|
|
|
|
wandb.init(project=project, entity="orionai", name="supervized_binary_classification", job_type="supervized_train") |
|
wandb.log({"selected_features": selected_features.tolist()}) |
|
|
|
|
|
scaler = StandardScaler() |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42) |
|
X_train = scaler.fit_transform(X_train) |
|
X_test = scaler.transform(X_test) |
|
|
|
|
|
models = { |
|
"Logistic Regression": LogisticRegression(random_state=42, max_iter=1000), |
|
"Random Forest": RandomForestClassifier(random_state=42, n_estimators=100), |
|
"SVM": SVC(random_state=42, probability=True) |
|
} |
|
|
|
return X_train, X_test, y_train, y_test, models |
|
|
|
|
|
def training_clf(X_train: pd.DataFrame, X_test: pd.DataFrame, y_train: pd.Series, y_test: pd.Series, models: Dict[str, Any], project: str, version: str) -> Dict[str, Any]: |
|
""" |
|
Trains and logs multiple classification models using Weights & Biases (W&B). |
|
|
|
Args: |
|
X_train (pd.DataFrame): The training features. |
|
X_test (pd.DataFrame): The testing features. |
|
y_train (pd.Series): The training targets. |
|
y_test (pd.Series): The testing targets. |
|
models (dict): A dictionary of classification models to train and log. |
|
project (str): The W&B project name. |
|
version (str): The model version. |
|
|
|
Returns: |
|
dict: A dictionary containing the model name, classification report, confusion matrix, accuracy, ROC AUC, and F1 score for each model. |
|
""" |
|
results = {} |
|
|
|
for model_name, model in models.items(): |
|
|
|
run = wandb.init(project=project, entity="orionai", job_type="supervized_train", name=model_name) |
|
|
|
|
|
model.fit(X_train, y_train) |
|
|
|
|
|
y_pred = model.predict(X_test) |
|
y_prob = model.predict_proba(X_test)[:, 1] if hasattr(model, "predict_proba") else None |
|
accuracy = accuracy_score(y_test, y_pred) |
|
roc_auc = roc_auc_score(y_test, y_prob) if y_prob is not None else None |
|
f1_metric = f1_score(y_test, y_pred) |
|
|
|
|
|
wandb.log({ |
|
"accuracy": accuracy, |
|
"roc_auc": roc_auc, |
|
"f1_score": f1_metric |
|
}) |
|
|
|
|
|
wandb.sklearn.plot_classifier(model, X_train, X_test, y_train, y_test, y_pred, y_prob, labels=["Not Buy", "Buy"]) |
|
|
|
|
|
model_filename = f"{model_name.replace(' ', '_').lower()}_model_v{version}.pkl" |
|
torch.save(model, model_filename) |
|
|
|
|
|
model_artifact = wandb.Artifact(name=f"{model_name.replace(' ', '_').lower()}_v{version}", type='model') |
|
model_artifact.add_file(model_filename) |
|
wandb.log_artifact(model_artifact) |
|
|
|
|
|
class_report = classification_report(y_test, y_pred, output_dict=True) |
|
conf_matrix = confusion_matrix(y_test, y_pred) |
|
|
|
wandb.log({ |
|
"classification_report": class_report, |
|
"confusion_matrix": conf_matrix |
|
}) |
|
|
|
results[model_name] = { |
|
"clf_report": class_report, |
|
"conf_matrix": conf_matrix, |
|
"accuracy": accuracy, |
|
"roc_auc": roc_auc, |
|
"f1_score": f1_metric |
|
} |
|
|
|
|
|
run.finish() |
|
|
|
return results |
|
|
|
|
|
def json_convert(input_dict: Dict[str, Any], project: str) -> str: |
|
""" |
|
Converts a dictionary into a JSON file and saves it to a specified directory. |
|
|
|
Args: |
|
input_dict (dict): The dictionary to be converted into a JSON file. |
|
project (str): The name of the project for directory organization. |
|
|
|
Returns: |
|
str: The file path where the JSON file is saved. |
|
""" |
|
|
|
folder_path = f"../data/{project}/results/" |
|
os.makedirs(folder_path, exist_ok=True) |
|
|
|
file_name = f"{project}_supervized_v{random.randint(1, 100)}.json" |
|
file_path = os.path.join(folder_path, file_name) |
|
|
|
with open(file_path, 'w') as json_file: |
|
json.dump(input_dict, json_file, indent=4) |
|
|
|
print(f"Results saved to {file_path}") |
|
|
|
return file_path |
|
|
|
|
|
def main(): |
|
device = "mps" if torch.backends.mps.is_available() else "cpu" |
|
|
|
print("Initializing project...") |
|
X_train, X_test, y_train, y_test, models = initialize_project(project, version) |
|
|
|
print("Training classifiers...") |
|
clf_train_results = training_clf(X_train, X_test, y_train, y_test, models, project, version) |
|
|
|
print("Saving results to JSON...") |
|
json_convert(clf_train_results, project) |
|
|
|
print("Finished.") |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|
|
|