Datasets:
metadata
license: apache-2.0
language:
- ind
pretty_name: Twitter Indonesia Sarcastic
Twitter Indonesia Sarcastic
Twitter Indonesia Sarcastic is a dataset intended for sarcasm detection in the Indonesian language. This dataset is introduced in Khotijah et al. (2020), whereby Indonesian tweets are collected and labeled as either sarcastic or non-sarcastic. We took the raw data, and performed several cleaning procedures such as: sentence order re-reversal, deduplication with minHash LSH, PII masking to remove usernames, hashtags, emails, URLs, and finally a random sampling to limit the non-sarcastic comments. Following SemEval-2022 Task 6: iSarcasmEval, we used a 1:3 ratio to balance sarcastic with non-sarcastic comments.
Dataset Structure
Data Instances
{
'tweet': 'Terima kasih bapak <username> telah mengendalikan banjir dengan baik sehingga Jakarta saat ini tidak ada lagi yang tidak banjir.. Semua sudah merata.. ?????? <hashtag>',
'label': 1
}
Data Fields
tweet
: PII-masked Twitter tweet content.label
:0
for non-sarcastic,1
for sarcastic.
Data Splits
Split | #sarcastic | #non sarcastic | #total |
---|---|---|---|
train |
470 | 1408 | 1878 |
test |
134 | 404 | 538 |
validation |
67 | 201 | 268 |
Total (cleaned; balanced) | 671 | 2013 | 2684 |
Total (cleaned; unbalanced) | 671 | 12190 | 12861 |
Total (raw) | 4350 | 13368 | 17718 |
Dataset Directory
twitter_indonesia_sarcastic
βββ README.md
βββ data # re-balanced dataset
β βββ test.csv
β βββ train.csv
β βββ validation.csv
βββ raw_data
βββ khotijah.csv # raw dataset
βββ khotijah_cleaned.csv # cleaned dataset
Authors
Twitter Indonesia Sarcastic is prepared by:
References
@inproceedings{10.1145/3406601.3406624,
author = {Khotijah, Siti and Tirtawangsa, Jimmy and Suryani, Arie A.},
title = {Using LSTM for Context Based Approach of Sarcasm Detection in Twitter},
year = {2020},
isbn = {9781450377591},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3406601.3406624},
doi = {10.1145/3406601.3406624},
booktitle = {Proceedings of the 11th International Conference on Advances in Information Technology},
articleno = {19},
numpages = {7},
keywords = {context, Sarcasm detection, paragraph2vec, lstm, deep learning},
location = {, Bangkok, Thailand, },
series = {IAIT '20}
}
@inproceedings{abu-farha-etal-2022-semeval,
title = "{S}em{E}val-2022 Task 6: i{S}arcasm{E}val, Intended Sarcasm Detection in {E}nglish and {A}rabic",
author = "Abu Farha, Ibrahim and
Oprea, Silviu Vlad and
Wilson, Steven and
Magdy, Walid",
editor = "Emerson, Guy and
Schluter, Natalie and
Stanovsky, Gabriel and
Kumar, Ritesh and
Palmer, Alexis and
Schneider, Nathan and
Singh, Siddharth and
Ratan, Shyam",
booktitle = "Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.semeval-1.111",
doi = "10.18653/v1/2022.semeval-1.111",
pages = "802--814",
}