arxiv_id
stringlengths
10
10
published
stringlengths
20
20
titles
stringlengths
9
243
authors
sequencelengths
1
389
abstract
stringlengths
96
3.09k
categories
sequencelengths
1
10
selected
bool
2 classes
2306.01742
2023-05-10T18:38:48Z
Beyond Negativity: Re-Analysis and Follow-Up Experiments on Hope Speech Detection
[ "Neemesh Yadav", "Mohammad Aflah Khan", "Diksha Sethi", "Raghav Sahni" ]
Health experts assert that hope plays a crucial role in enhancing individuals' physical and mental well-being, facilitating their recovery, and promoting restoration. Hope speech refers to comments, posts and other social media messages that offer support, reassurance, suggestions, inspiration, and insight. The detection of hope speech involves the analysis of such textual content, with the aim of identifying messages that invoke positive emotions in people. Our study aims to find computationally efficient yet comparable/superior methods for hope speech detection. We also make our codebase public at https://github.com/aflah02/Hope_Speech_Detection
[ "cs.CL", "cs.LG" ]
false
2305.05964
2023-05-10T08:16:36Z
Interpretable Multimodal Misinformation Detection with Logic Reasoning
[ "Hui Liu", "Wenya Wang", "Haoliang Li" ]
Multimodal misinformation on online social platforms is becoming a critical concern due to increasing credibility and easier dissemination brought by multimedia content, compared to traditional text-only information. While existing multimodal detection approaches have achieved high performance, the lack of interpretability hinders these systems' reliability and practical deployment. Inspired by NeuralSymbolic AI which combines the learning ability of neural networks with the explainability of symbolic learning, we propose a novel logic-based neural model for multimodal misinformation detection which integrates interpretable logic clauses to express the reasoning process of the target task. To make learning effective, we parameterize symbolic logical elements using neural representations, which facilitate the automatic generation and evaluation of meaningful logic clauses. Additionally, to make our framework generalizable across diverse misinformation sources, we introduce five meta-predicates that can be instantiated with different correlations. Results on three public datasets (Twitter, Weibo, and Sarcasm) demonstrate the feasibility and versatility of our model.
[ "cs.MM", "cs.AI", "cs.CL" ]
false
2305.05982
2023-05-10T08:48:53Z
Generating medically-accurate summaries of patient-provider dialogue: A multi-stage approach using large language models
[ "Varun Nair", "Elliot Schumacher", "Anitha Kannan" ]
A medical provider's summary of a patient visit serves several critical purposes, including clinical decision-making, facilitating hand-offs between providers, and as a reference for the patient. An effective summary is required to be coherent and accurately capture all the medically relevant information in the dialogue, despite the complexity of patient-generated language. Even minor inaccuracies in visit summaries (for example, summarizing "patient does not have a fever" when a fever is present) can be detrimental to the outcome of care for the patient. This paper tackles the problem of medical conversation summarization by discretizing the task into several smaller dialogue-understanding tasks that are sequentially built upon. First, we identify medical entities and their affirmations within the conversation to serve as building blocks. We study dynamically constructing few-shot prompts for tasks by conditioning on relevant patient information and use GPT-3 as the backbone for our experiments. We also develop GPT-derived summarization metrics to measure performance against reference summaries quantitatively. Both our human evaluation study and metrics for medical correctness show that summaries generated using this approach are clinically accurate and outperform the baseline approach of summarizing the dialog in a zero-shot, single-prompt setting.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2305.06485
2023-05-10T22:29:12Z
Multimodal Contextualized Plan Prediction for Embodied Task Completion
[ "Mert İnan", "Aishwarya Padmakumar", "Spandana Gella", "Patrick Lange", "Dilek Hakkani-Tur" ]
Task planning is an important component of traditional robotics systems enabling robots to compose fine grained skills to perform more complex tasks. Recent work building systems for translating natural language to executable actions for task completion in simulated embodied agents is focused on directly predicting low level action sequences that would be expected to be directly executable by a physical robot. In this work, we instead focus on predicting a higher level plan representation for one such embodied task completion dataset - TEACh, under the assumption that techniques for high-level plan prediction from natural language are expected to be more transferable to physical robot systems. We demonstrate that better plans can be predicted using multimodal context, and that plan prediction and plan execution modules are likely dependent on each other and hence it may not be ideal to fully decouple them. Further, we benchmark execution of oracle plans to quantify the scope for improvement in plan prediction models.
[ "cs.RO", "cs.AI", "cs.CL", "cs.HC" ]
false
2305.11061
2023-05-10T10:01:36Z
SPSQL: Step-by-step Parsing Based Framework for Text-to-SQL Generation
[ "Ran Shen", "Gang Sun", "Hao Shen", "Yiling Li", "Liangfeng Jin", "Han Jiang" ]
Converting text into the structured query language (Text2SQL) is a research hotspot in the field of natural language processing (NLP), which has broad application prospects. In the era of big data, the use of databases has penetrated all walks of life, in which the collected data is large in scale, diverse in variety, and wide in scope, making the data query cumbersome and inefficient, and putting forward higher requirements for the Text2SQL model. In practical applications, the current mainstream end-to-end Text2SQL model is not only difficult to build due to its complex structure and high requirements for training data, but also difficult to adjust due to massive parameters. In addition, the accuracy of the model is hard to achieve the desired result. Based on this, this paper proposes a pipelined Text2SQL method: SPSQL. This method disassembles the Text2SQL task into four subtasks--table selection, column selection, SQL generation, and value filling, which can be converted into a text classification problem, a sequence labeling problem, and two text generation problems, respectively. Then, we construct data formats of different subtasks based on existing data and improve the accuracy of the overall model by improving the accuracy of each submodel. We also use the named entity recognition module and data augmentation to optimize the overall model. We construct the dataset based on the marketing business data of the State Grid Corporation of China. Experiments demonstrate our proposed method achieves the best performance compared with the end-to-end method and other pipeline methods.
[ "cs.CL", "cs.AI", "cs.DB" ]
false
2305.11070
2023-05-10T10:57:21Z
Enriching language models with graph-based context information to better understand textual data
[ "Albert Roethel", "Maria Ganzha", "Anna Wróblewska" ]
A considerable number of texts encountered daily are somehow connected with each other. For example, Wikipedia articles refer to other articles via hyperlinks, scientific papers relate to others via citations or (co)authors, while tweets relate via users that follow each other or reshare content. Hence, a graph-like structure can represent existing connections and be seen as capturing the "context" of the texts. The question thus arises if extracting and integrating such context information into a language model might help facilitate a better automated understanding of the text. In this study, we experimentally demonstrate that incorporating graph-based contextualization into BERT model enhances its performance on an example of a classification task. Specifically, on Pubmed dataset, we observed a reduction in error from 8.51% to 7.96%, while increasing the number of parameters just by 1.6%. Our source code: https://github.com/tryptofanik/gc-bert
[ "cs.CL", "cs.AI", "cs.LG", "cs.NE" ]
false
2305.06087
2023-05-10T12:10:51Z
A Glimpse in ChatGPT Capabilities and its impact for AI research
[ "Frank Joublin", "Antonello Ceravola", "Joerg Deigmoeller", "Michael Gienger", "Mathias Franzius", "Julian Eggert" ]
Large language models (LLMs) have recently become a popular topic in the field of Artificial Intelligence (AI) research, with companies such as Google, Amazon, Facebook, Amazon, Tesla, and Apple (GAFA) investing heavily in their development. These models are trained on massive amounts of data and can be used for a wide range of tasks, including language translation, text generation, and question answering. However, the computational resources required to train and run these models are substantial, and the cost of hardware and electricity can be prohibitive for research labs that do not have the funding and resources of the GAFA. In this paper, we will examine the impact of LLMs on AI research. The pace at which such models are generated as well as the range of domains covered is an indication of the trend which not only the public but also the scientific community is currently experiencing. We give some examples on how to use such models in research by focusing on GPT3.5/ChatGPT3.4 and ChatGPT4 at the current state and show that such a range of capabilities in a single system is a strong sign of approaching general intelligence. Innovations integrating such models will also expand along the maturation of such AI systems and exhibit unforeseeable applications that will have important impacts on several aspects of our societies.
[ "cs.AI", "cs.CL", "cs.HC", "cs.LG", "cs.RO", "I.2; I.7" ]
false
2305.06429
2023-05-10T19:31:25Z
Mispronunciation Detection of Basic Quranic Recitation Rules using Deep Learning
[ "Ahmad Al Harere", "Khloud Al Jallad" ]
In Islam, readers must apply a set of pronunciation rules called Tajweed rules to recite the Quran in the same way that the angel Jibrael taught the Prophet, Muhammad. The traditional process of learning the correct application of these rules requires a human who must have a license and great experience to detect mispronunciation. Due to the increasing number of Muslims around the world, the number of Tajweed teachers is not enough nowadays for daily recitation practice for every Muslim. Therefore, lots of work has been done for automatic Tajweed rules' mispronunciation detection to help readers recite Quran correctly in an easier way and shorter time than traditional learning ways. All previous works have three common problems. First, most of them focused on machine learning algorithms only. Second, they used private datasets with no benchmark to compare with. Third, they did not take into consideration the sequence of input data optimally, although the speech signal is time series. To overcome these problems, we proposed a solution that consists of Mel-Frequency Cepstral Coefficient (MFCC) features with Long Short-Term Memory (LSTM) neural networks which use the time series, to detect mispronunciation in Tajweed rules. In addition, our experiments were performed on a public dataset, the QDAT dataset, which contains more than 1500 voices of the correct and incorrect recitation of three Tajweed rules (Separate stretching , Tight Noon , and Hide ). To the best of our knowledge, the QDAT dataset has not been used by any research paper yet. We compared the performance of the proposed LSTM model with traditional machine learning algorithms used in SoTA. The LSTM model with time series showed clear superiority over traditional machine learning. The accuracy achieved by LSTM on the QDAT dataset was 96%, 95%, and 96% for the three rules (Separate stretching, Tight Noon, and Hide), respectively.
[ "cs.SD", "cs.AI", "cs.CL", "cs.LG", "eess.AS" ]
false
2305.07034
2023-05-10T18:40:01Z
Quran Recitation Recognition using End-to-End Deep Learning
[ "Ahmad Al Harere", "Khloud Al Jallad" ]
The Quran is the holy scripture of Islam, and its recitation is an important aspect of the religion. Recognizing the recitation of the Holy Quran automatically is a challenging task due to its unique rules that are not applied in normal speaking speeches. A lot of research has been done in this domain, but previous works have detected recitation errors as a classification task or used traditional automatic speech recognition (ASR). In this paper, we proposed a novel end-to-end deep learning model for recognizing the recitation of the Holy Quran. The proposed model is a CNN-Bidirectional GRU encoder that uses CTC as an objective function, and a character-based decoder which is a beam search decoder. Moreover, all previous works were done on small private datasets consisting of short verses and a few chapters of the Holy Quran. As a result of using private datasets, no comparisons were done. To overcome this issue, we used a public dataset that has recently been published (Ar-DAD) and contains about 37 chapters that were recited by 30 reciters, with different recitation speeds and different types of pronunciation rules. The proposed model performance was evaluated using the most common evaluation metrics in speech recognition, word error rate (WER), and character error rate (CER). The results were 8.34% WER and 2.42% CER. We hope this research will be a baseline for comparisons with future research on this public new dataset (Ar-DAD).
[ "eess.AS", "cs.AI", "cs.CL", "cs.LG", "cs.SD" ]
false
2305.06934
2023-05-10T08:16:46Z
Humans are Still Better than ChatGPT: Case of the IEEEXtreme Competition
[ "Anis Koubaa", "Basit Qureshi", "Adel Ammar", "Zahid Khan", "Wadii Boulila", "Lahouari Ghouti" ]
Since the release of ChatGPT, numerous studies have highlighted the remarkable performance of ChatGPT, which often rivals or even surpasses human capabilities in various tasks and domains. However, this paper presents a contrasting perspective by demonstrating an instance where human performance excels in typical tasks suited for ChatGPT, specifically in the domain of computer programming. We utilize the IEEExtreme Challenge competition as a benchmark, a prestigious, annual international programming contest encompassing a wide range of problems with different complexities. To conduct a thorough evaluation, we selected and executed a diverse set of 102 challenges, drawn from five distinct IEEExtreme editions, using three major programming languages: Python, Java, and C++. Our empirical analysis provides evidence that contrary to popular belief, human programmers maintain a competitive edge over ChatGPT in certain aspects of problem-solving within the programming context. In fact, we found that the average score obtained by ChatGPT on the set of IEEExtreme programming problems is 3.9 to 5.8 times lower than the average human score, depending on the programming language. This paper elaborates on these findings, offering critical insights into the limitations and potential areas of improvement for AI-based language models like ChatGPT.
[ "cs.SE", "cs.AI", "cs.CL", "cs.CY", "cs.LG", "cs.PL" ]
false
2305.05882
2023-05-10T04:02:08Z
Deep Partial Multi-Label Learning with Graph Disambiguation
[ "Haobo Wang", "Shisong Yang", "Gengyu Lyu", "Weiwei Liu", "Tianlei Hu", "Ke Chen", "Songhe Feng", "Gang Chen" ]
In partial multi-label learning (PML), each data example is equipped with a candidate label set, which consists of multiple ground-truth labels and other false-positive labels. Recently, graph-based methods, which demonstrate a good ability to estimate accurate confidence scores from candidate labels, have been prevalent to deal with PML problems. However, we observe that existing graph-based PML methods typically adopt linear multi-label classifiers and thus fail to achieve superior performance. In this work, we attempt to remove several obstacles for extending them to deep models and propose a novel deep Partial multi-Label model with grAph-disambIguatioN (PLAIN). Specifically, we introduce the instance-level and label-level similarities to recover label confidences as well as exploit label dependencies. At each training epoch, labels are propagated on the instance and label graphs to produce relatively accurate pseudo-labels; then, we train the deep model to fit the numerical labels. Moreover, we provide a careful analysis of the risk functions to guarantee the robustness of the proposed model. Extensive experiments on various synthetic datasets and three real-world PML datasets demonstrate that PLAIN achieves significantly superior results to state-of-the-art methods.
[ "cs.LG" ]
false
2305.06090
2023-05-10T12:17:52Z
XTab: Cross-table Pretraining for Tabular Transformers
[ "Bingzhao Zhu", "Xingjian Shi", "Nick Erickson", "Mu Li", "George Karypis", "Mahsa Shoaran" ]
The success of self-supervised learning in computer vision and natural language processing has motivated pretraining methods on tabular data. However, most existing tabular self-supervised learning models fail to leverage information across multiple data tables and cannot generalize to new tables. In this work, we introduce XTab, a framework for cross-table pretraining of tabular transformers on datasets from various domains. We address the challenge of inconsistent column types and quantities among tables by utilizing independent featurizers and using federated learning to pretrain the shared component. Tested on 84 tabular prediction tasks from the OpenML-AutoML Benchmark (AMLB), we show that (1) XTab consistently boosts the generalizability, learning speed, and performance of multiple tabular transformers, (2) by pretraining FT-Transformer via XTab, we achieve superior performance than other state-of-the-art tabular deep learning models on various tasks such as regression, binary, and multiclass classification.
[ "cs.LG" ]
false
2305.06109
2023-05-10T12:53:18Z
XMI-ICU: Explainable Machine Learning Model for Pseudo-Dynamic Prediction of Mortality in the ICU for Heart Attack Patients
[ "Munib Mesinovic", "Peter Watkinson", "Tingting Zhu" ]
Heart attack remain one of the greatest contributors to mortality in the United States and globally. Patients admitted to the intensive care unit (ICU) with diagnosed heart attack (myocardial infarction or MI) are at higher risk of death. In this study, we use two retrospective cohorts extracted from the eICU and MIMIC-IV databases, to develop a novel pseudo-dynamic machine learning framework for mortality prediction in the ICU with interpretability and clinical risk analysis. The method provides accurate prediction for ICU patients up to 24 hours before the event and provide time-resolved interpretability results. The performance of the framework relying on extreme gradient boosting was evaluated on a held-out test set from eICU, and externally validated on the MIMIC-IV cohort using the most important features identified by time-resolved Shapley values achieving AUCs of 91.0 (balanced accuracy of 82.3) for 6-hour prediction of mortality respectively. We show that our framework successfully leverages time-series physiological measurements by translating them into stacked static prediction problems to be robustly predictive through time in the ICU stay and can offer clinical insight from time-resolved interpretability
[ "cs.LG" ]
false
2305.05816
2023-05-10T00:09:07Z
Best-Effort Adaptation
[ "Pranjal Awasthi", "Corinna Cortes", "Mehryar Mohri" ]
We study a problem of best-effort adaptation motivated by several applications and considerations, which consists of determining an accurate predictor for a target domain, for which a moderate amount of labeled samples are available, while leveraging information from another domain for which substantially more labeled samples are at one's disposal. We present a new and general discrepancy-based theoretical analysis of sample reweighting methods, including bounds holding uniformly over the weights. We show how these bounds can guide the design of learning algorithms that we discuss in detail. We further show that our learning guarantees and algorithms provide improved solutions for standard domain adaptation problems, for which few labeled data or none are available from the target domain. We finally report the results of a series of experiments demonstrating the effectiveness of our best-effort adaptation and domain adaptation algorithms, as well as comparisons with several baselines. We also discuss how our analysis can benefit the design of principled solutions for fine-tuning.
[ "cs.LG", "stat.ML" ]
false
2305.05827
2023-05-10T01:11:35Z
Inclusive FinTech Lending via Contrastive Learning and Domain Adaptation
[ "Xiyang Hu", "Yan Huang", "Beibei Li", "Tian Lu" ]
FinTech lending (e.g., micro-lending) has played a significant role in facilitating financial inclusion. It has reduced processing times and costs, enhanced the user experience, and made it possible for people to obtain loans who may not have qualified for credit from traditional lenders. However, there are concerns about the potentially biased algorithmic decision-making during loan screening. Machine learning algorithms used to evaluate credit quality can be influenced by representation bias in the training data, as we only have access to the default outcome labels of approved loan applications, for which the borrowers' socioeconomic characteristics are better than those of rejected ones. In this case, the model trained on the labeled data performs well on the historically approved population, but does not generalize well to borrowers of low socioeconomic background. In this paper, we investigate the problem of representation bias in loan screening for a real-world FinTech lending platform. We propose a new Transformer-based sequential loan screening model with self-supervised contrastive learning and domain adaptation to tackle this challenging issue. We use contrastive learning to train our feature extractor on unapproved (unlabeled) loan applications and use domain adaptation to generalize the performance of our label predictor. We demonstrate the effectiveness of our model through extensive experimentation in the real-world micro-lending setting. Our results show that our model significantly promotes the inclusiveness of funding decisions, while also improving loan screening accuracy and profit by 7.10% and 8.95%, respectively. We also show that incorporating the test data into contrastive learning and domain adaptation and labeling a small ratio of test data can further boost model performance.
[ "cs.LG", "cs.CY" ]
false
2305.05828
2023-05-10T01:12:11Z
Convergence of a Normal Map-based Prox-SGD Method under the KL Inequality
[ "Andre Milzarek", "Junwen Qiu" ]
In this paper, we present a novel stochastic normal map-based algorithm ($\mathsf{norM}\text{-}\mathsf{SGD}$) for nonconvex composite-type optimization problems and discuss its convergence properties. Using a time window-based strategy, we first analyze the global convergence behavior of $\mathsf{norM}\text{-}\mathsf{SGD}$ and it is shown that every accumulation point of the generated sequence of iterates $\{\boldsymbol{x}^k\}_k$ corresponds to a stationary point almost surely and in an expectation sense. The obtained results hold under standard assumptions and extend the more limited convergence guarantees of the basic proximal stochastic gradient method. In addition, based on the well-known Kurdyka-{\L}ojasiewicz (KL) analysis framework, we provide novel point-wise convergence results for the iterates $\{\boldsymbol{x}^k\}_k$ and derive convergence rates that depend on the underlying KL exponent $\boldsymbol{\theta}$ and the step size dynamics $\{\alpha_k\}_k$. Specifically, for the popular step size scheme $\alpha_k=\mathcal{O}(1/k^\gamma)$, $\gamma \in (\frac23,1]$, (almost sure) rates of the form $\|\boldsymbol{x}^k-\boldsymbol{x}^*\| = \mathcal{O}(1/k^p)$, $p \in (0,\frac12)$, can be established. The obtained rates are faster than related and existing convergence rates for $\mathsf{SGD}$ and improve on the non-asymptotic complexity bounds for $\mathsf{norM}\text{-}\mathsf{SGD}$.
[ "math.OC", "cs.LG", "90C26, 90C15" ]
false
2305.05920
2023-05-10T06:17:50Z
Fast Distributed Inference Serving for Large Language Models
[ "Bingyang Wu", "Yinmin Zhong", "Zili Zhang", "Gang Huang", "Xuanzhe Liu", "Xin Jin" ]
Large language models (LLMs) power a new generation of interactive AI applications exemplified by ChatGPT. The interactive nature of these applications demand low job completion time (JCT) for model inference. Existing LLM serving systems use run-to-completion processing for inference jobs, which suffers from head-of-line blocking and long JCT. We present FastServe, a distributed inference serving system for LLMs. FastServe exploits the autoregressive pattern of LLM inference to enable preemption at the granularity of each output token. FastServe uses preemptive scheduling to minimize JCT with a novel skip-join Multi-Level Feedback Queue scheduler. Based on the new semi information-agnostic setting of LLM inference, the scheduler leverages the input length information to assign an appropriate initial queue for each arrival job to join. The higher priority queues than the joined queue are skipped to reduce demotions. We design an efficient GPU memory management mechanism that proactively offloads and uploads intermediate states between GPU memory and host memory for LLM inference. We build a system prototype of FastServe based on NVIDIA FasterTransformer. Experimental results show that compared to the state-of-the-art solution Orca, FastServe improves the average and tail JCT by up to 5.1$\times$ and 6.4$\times$, respectively.
[ "cs.LG", "cs.DC" ]
false
2305.06055
2023-05-10T11:15:22Z
A Classification of Feedback Loops and Their Relation to Biases in Automated Decision-Making Systems
[ "Nicolò Pagan", "Joachim Baumann", "Ezzat Elokda", "Giulia De Pasquale", "Saverio Bolognani", "Anikó Hannák" ]
Prediction-based decision-making systems are becoming increasingly prevalent in various domains. Previous studies have demonstrated that such systems are vulnerable to runaway feedback loops, e.g., when police are repeatedly sent back to the same neighborhoods regardless of the actual rate of criminal activity, which exacerbate existing biases. In practice, the automated decisions have dynamic feedback effects on the system itself that can perpetuate over time, making it difficult for short-sighted design choices to control the system's evolution. While researchers started proposing longer-term solutions to prevent adverse outcomes (such as bias towards certain groups), these interventions largely depend on ad hoc modeling assumptions and a rigorous theoretical understanding of the feedback dynamics in ML-based decision-making systems is currently missing. In this paper, we use the language of dynamical systems theory, a branch of applied mathematics that deals with the analysis of the interconnection of systems with dynamic behaviors, to rigorously classify the different types of feedback loops in the ML-based decision-making pipeline. By reviewing existing scholarly work, we show that this classification covers many examples discussed in the algorithmic fairness community, thereby providing a unifying and principled framework to study feedback loops. By qualitative analysis, and through a simulation example of recommender systems, we show which specific types of ML biases are affected by each type of feedback loop. We find that the existence of feedback loops in the ML-based decision-making pipeline can perpetuate, reinforce, or even reduce ML biases.
[ "cs.CY", "cs.LG" ]
false
2305.06058
2023-05-10T11:24:27Z
Compressing neural network by tensor network with exponentially fewer variational parameters
[ "Yong Qing", "Peng-Fei Zhou", "Ke Li", "Shi-Ju Ran" ]
Neural network (NN) designed for challenging machine learning tasks is in general a highly nonlinear mapping that contains massive variational parameters. High complexity of NN, if unbounded or unconstrained, might unpredictably cause severe issues including over-fitting, loss of generalization power, and unbearable cost of hardware. In this work, we propose a general compression scheme that significantly reduces the variational parameters of NN by encoding them to multi-layer tensor networks (TN's) that contain exponentially-fewer free parameters. Superior compression performance of our scheme is demonstrated on several widely-recognized NN's (FC-2, LeNet-5, and VGG-16) and datasets (MNIST and CIFAR-10), surpassing the state-of-the-art method based on shallow tensor networks. For instance, about 10 million parameters in the three convolutional layers of VGG-16 are compressed in TN's with just $632$ parameters, while the testing accuracy on CIFAR-10 is surprisingly improved from $81.14\%$ by the original NN to $84.36\%$ after compression. Our work suggests TN as an exceptionally efficient mathematical structure for representing the variational parameters of NN's, which superiorly exploits the compressibility than the simple multi-way arrays.
[ "cs.LG", "cs.AI" ]
false
2305.06102
2023-05-10T12:42:31Z
Towards Better Graph Representation Learning with Parameterized Decomposition & Filtering
[ "Mingqi Yang", "Wenjie Feng", "Yanming Shen", "Bryan Hooi" ]
Proposing an effective and flexible matrix to represent a graph is a fundamental challenge that has been explored from multiple perspectives, e.g., filtering in Graph Fourier Transforms. In this work, we develop a novel and general framework which unifies many existing GNN models from the view of parameterized decomposition and filtering, and show how it helps to enhance the flexibility of GNNs while alleviating the smoothness and amplification issues of existing models. Essentially, we show that the extensively studied spectral graph convolutions with learnable polynomial filters are constrained variants of this formulation, and releasing these constraints enables our model to express the desired decomposition and filtering simultaneously. Based on this generalized framework, we develop models that are simple in implementation but achieve significant improvements and computational efficiency on a variety of graph learning tasks. Code is available at https://github.com/qslim/PDF.
[ "cs.LG", "cs.AI" ]
false
2305.06140
2023-05-10T13:42:56Z
CrudeBERT: Applying Economic Theory towards fine-tuning Transformer-based Sentiment Analysis Models to the Crude Oil Market
[ "Himmet Kaplan", "Ralf-Peter Mundani", "Heiko Rölke", "Albert Weichselbraun" ]
Predicting market movements based on the sentiment of news media has a long tradition in data analysis. With advances in natural language processing, transformer architectures have emerged that enable contextually aware sentiment classification. Nevertheless, current methods built for the general financial market such as FinBERT cannot distinguish asset-specific value-driving factors. This paper addresses this shortcoming by presenting a method that identifies and classifies events that impact supply and demand in the crude oil markets within a large corpus of relevant news headlines. We then introduce CrudeBERT, a new sentiment analysis model that draws upon these events to contextualize and fine-tune FinBERT, thereby yielding improved sentiment classifications for headlines related to the crude oil futures market. An extensive evaluation demonstrates that CrudeBERT outperforms proprietary and open-source solutions in the domain of crude oil.
[ "cs.IR", "cs.LG", "H.3; H.4; I.2.7" ]
false
2305.06249
2023-05-10T15:32:22Z
Deep Reinforcement Learning Based Resource Allocation for Cloud Native Wireless Network
[ "Lin Wang", "Jiasheng Wu", "Yue Gao", "Jingjing Zhang" ]
Cloud native technology has revolutionized 5G beyond and 6G communication networks, offering unprecedented levels of operational automation, flexibility, and adaptability. However, the vast array of cloud native services and applications presents a new challenge in resource allocation for dynamic cloud computing environments. To tackle this challenge, we investigate a cloud native wireless architecture that employs container-based virtualization to enable flexible service deployment. We then study two representative use cases: network slicing and Multi-Access Edge Computing. To optimize resource allocation in these scenarios, we leverage deep reinforcement learning techniques and introduce two model-free algorithms capable of monitoring the network state and dynamically training allocation policies. We validate the effectiveness of our algorithms in a testbed developed using Free5gc. Our findings demonstrate significant improvements in network efficiency, underscoring the potential of our proposed techniques in unlocking the full potential of cloud native wireless networks.
[ "cs.NI", "cs.LG" ]
false
2305.06398
2023-05-10T18:16:04Z
Towards Scalable Adaptive Learning with Graph Neural Networks and Reinforcement Learning
[ "Jean Vassoyan", "Jill-Jênn Vie", "Pirmin Lemberger" ]
Adaptive learning is an area of educational technology that consists in delivering personalized learning experiences to address the unique needs of each learner. An important subfield of adaptive learning is learning path personalization: it aims at designing systems that recommend sequences of educational activities to maximize students' learning outcomes. Many machine learning approaches have already demonstrated significant results in a variety of contexts related to learning path personalization. However, most of them were designed for very specific settings and are not very reusable. This is accentuated by the fact that they often rely on non-scalable models, which are unable to integrate new elements after being trained on a specific set of educational resources. In this paper, we introduce a flexible and scalable approach towards the problem of learning path personalization, which we formalize as a reinforcement learning problem. Our model is a sequential recommender system based on a graph neural network, which we evaluate on a population of simulated learners. Our results demonstrate that it can learn to make good recommendations in the small-data regime.
[ "cs.LG", "cs.AI" ]
false
2305.06442
2023-05-10T20:24:38Z
Data, Trees, and Forests -- Decision Tree Learning in K-12 Education
[ "Tilman Michaeli", "Stefan Seegerer", "Lennard Kerber", "Ralf Romeike" ]
As a consequence of the increasing influence of machine learning on our lives, everyone needs competencies to understand corresponding phenomena, but also to get involved in shaping our world and making informed decisions regarding the influences on our society. Therefore, in K-12 education, students need to learn about core ideas and principles of machine learning. However, for this target group, achieving all of the aforementioned goals presents an enormous challenge. To this end, we present a teaching concept that combines a playful and accessible unplugged approach focusing on conceptual understanding with empowering students to actively apply machine learning methods and reflect their influence on society, building upon decision tree learning.
[ "cs.CY", "cs.LG", "K.3.2; I.2.6" ]
false
2305.06473
2023-05-10T21:39:27Z
Securing Distributed SGD against Gradient Leakage Threats
[ "Wenqi Wei", "Ling Liu", "Jingya Zhou", "Ka-Ho Chow", "Yanzhao Wu" ]
This paper presents a holistic approach to gradient leakage resilient distributed Stochastic Gradient Descent (SGD). First, we analyze two types of strategies for privacy-enhanced federated learning: (i) gradient pruning with random selection or low-rank filtering and (ii) gradient perturbation with additive random noise or differential privacy noise. We analyze the inherent limitations of these approaches and their underlying impact on privacy guarantee, model accuracy, and attack resilience. Next, we present a gradient leakage resilient approach to securing distributed SGD in federated learning, with differential privacy controlled noise as the tool. Unlike conventional methods with the per-client federated noise injection and fixed noise parameter strategy, our approach keeps track of the trend of per-example gradient updates. It makes adaptive noise injection closely aligned throughout the federated model training. Finally, we provide an empirical privacy analysis on the privacy guarantee, model utility, and attack resilience of the proposed approach. Extensive evaluation using five benchmark datasets demonstrates that our gradient leakage resilient approach can outperform the state-of-the-art methods with competitive accuracy performance, strong differential privacy guarantee, and high resilience against gradient leakage attacks. The code associated with this paper can be found: https://github.com/git-disl/Fed-alphaCDP.
[ "cs.LG", "cs.CR" ]
false
2305.06474
2023-05-10T21:43:42Z
Do LLMs Understand User Preferences? Evaluating LLMs On User Rating Prediction
[ "Wang-Cheng Kang", "Jianmo Ni", "Nikhil Mehta", "Maheswaran Sathiamoorthy", "Lichan Hong", "Ed Chi", "Derek Zhiyuan Cheng" ]
Large Language Models (LLMs) have demonstrated exceptional capabilities in generalizing to new tasks in a zero-shot or few-shot manner. However, the extent to which LLMs can comprehend user preferences based on their previous behavior remains an emerging and still unclear research question. Traditionally, Collaborative Filtering (CF) has been the most effective method for these tasks, predominantly relying on the extensive volume of rating data. In contrast, LLMs typically demand considerably less data while maintaining an exhaustive world knowledge about each item, such as movies or products. In this paper, we conduct a thorough examination of both CF and LLMs within the classic task of user rating prediction, which involves predicting a user's rating for a candidate item based on their past ratings. We investigate various LLMs in different sizes, ranging from 250M to 540B parameters and evaluate their performance in zero-shot, few-shot, and fine-tuning scenarios. We conduct comprehensive analysis to compare between LLMs and strong CF methods, and find that zero-shot LLMs lag behind traditional recommender models that have the access to user interaction data, indicating the importance of user interaction data. However, through fine-tuning, LLMs achieve comparable or even better performance with only a small fraction of the training data, demonstrating their potential through data efficiency.
[ "cs.IR", "cs.LG" ]
true
2305.05840
2023-05-10T02:09:19Z
Achieving Diversity in Counterfactual Explanations: a Review and Discussion
[ "Thibault Laugel", "Adulam Jeyasothy", "Marie-Jeanne Lesot", "Christophe Marsala", "Marcin Detyniecki" ]
In the field of Explainable Artificial Intelligence (XAI), counterfactual examples explain to a user the predictions of a trained decision model by indicating the modifications to be made to the instance so as to change its associated prediction. These counterfactual examples are generally defined as solutions to an optimization problem whose cost function combines several criteria that quantify desiderata for a good explanation meeting user needs. A large variety of such appropriate properties can be considered, as the user needs are generally unknown and differ from one user to another; their selection and formalization is difficult. To circumvent this issue, several approaches propose to generate, rather than a single one, a set of diverse counterfactual examples to explain a prediction. This paper proposes a review of the numerous, sometimes conflicting, definitions that have been proposed for this notion of diversity. It discusses their underlying principles as well as the hypotheses on the user needs they rely on and proposes to categorize them along several dimensions (explicit vs implicit, universe in which they are defined, level at which they apply), leading to the identification of further research challenges on this topic.
[ "cs.AI", "cs.LG", "stat.ME" ]
false
2305.05843
2023-05-10T02:24:50Z
MoCA: Memory-Centric, Adaptive Execution for Multi-Tenant Deep Neural Networks
[ "Seah Kim", "Hasan Genc", "Vadim Vadimovich Nikiforov", "Krste Asanović", "Borivoje Nikolić", "Yakun Sophia Shao" ]
Driven by the wide adoption of deep neural networks (DNNs) across different application domains, multi-tenancy execution, where multiple DNNs are deployed simultaneously on the same hardware, has been proposed to satisfy the latency requirements of different applications while improving the overall system utilization. However, multi-tenancy execution could lead to undesired system-level resource contention, causing quality-of-service (QoS) degradation for latency-critical applications. To address this challenge, we propose MoCA, an adaptive multi-tenancy system for DNN accelerators. Unlike existing solutions that focus on compute resource partition, MoCA dynamically manages shared memory resources of co-located applications to meet their QoS targets. Specifically, MoCA leverages the regularities in both DNN operators and accelerators to dynamically modulate memory access rates based on their latency targets and user-defined priorities so that co-located applications get the resources they demand without significantly starving their co-runners. We demonstrate that MoCA improves the satisfaction rate of the service level agreement (SLA) up to 3.9x (1.8x average), system throughput by 2.3x (1.7x average), and fairness by 1.3x (1.2x average), compared to prior work.
[ "cs.DC", "cs.AR", "cs.LG" ]
false
2305.05909
2023-05-10T05:29:47Z
Robust multi-agent coordination via evolutionary generation of auxiliary adversarial attackers
[ "Lei Yuan", "Zi-Qian Zhang", "Ke Xue", "Hao Yin", "Feng Chen", "Cong Guan", "Li-He Li", "Chao Qian", "Yang Yu" ]
Cooperative multi-agent reinforcement learning (CMARL) has shown to be promising for many real-world applications. Previous works mainly focus on improving coordination ability via solving MARL-specific challenges (e.g., non-stationarity, credit assignment, scalability), but ignore the policy perturbation issue when testing in a different environment. This issue hasn't been considered in problem formulation or efficient algorithm design. To address this issue, we firstly model the problem as a limited policy adversary Dec-POMDP (LPA-Dec-POMDP), where some coordinators from a team might accidentally and unpredictably encounter a limited number of malicious action attacks, but the regular coordinators still strive for the intended goal. Then, we propose Robust Multi-Agent Coordination via Evolutionary Generation of Auxiliary Adversarial Attackers (ROMANCE), which enables the trained policy to encounter diversified and strong auxiliary adversarial attacks during training, thus achieving high robustness under various policy perturbations. Concretely, to avoid the ego-system overfitting to a specific attacker, we maintain a set of attackers, which is optimized to guarantee the attackers high attacking quality and behavior diversity. The goal of quality is to minimize the ego-system coordination effect, and a novel diversity regularizer based on sparse action is applied to diversify the behaviors among attackers. The ego-system is then paired with a population of attackers selected from the maintained attacker set, and alternately trained against the constantly evolving attackers. Extensive experiments on multiple scenarios from SMAC indicate our ROMANCE provides comparable or better robustness and generalization ability than other baselines.
[ "cs.MA", "cs.LG", "cs.NE" ]
false
2305.05933
2023-05-10T07:05:43Z
Spectrum Breathing: Protecting Over-the-Air Federated Learning Against Interference
[ "Zhanwei Wang", "Kaibin Huang", "Yonina C. Eldar" ]
Federated Learning (FL) is a widely embraced paradigm for distilling artificial intelligence from distributed mobile data. However, the deployment of FL in mobile networks can be compromised by exposure to interference from neighboring cells or jammers. Existing interference mitigation techniques require multi-cell cooperation or at least interference channel state information, which is expensive in practice. On the other hand, power control that treats interference as noise may not be effective due to limited power budgets, and also that this mechanism can trigger countermeasures by interference sources. As a practical approach for protecting FL against interference, we propose Spectrum Breathing, which cascades stochastic-gradient pruning and spread spectrum to suppress interference without bandwidth expansion. The cost is higher learning latency by exploiting the graceful degradation of learning speed due to pruning. We synchronize the two operations such that their levels are controlled by the same parameter, Breathing Depth. To optimally control the parameter, we develop a martingale-based approach to convergence analysis of Over-the-Air FL with spectrum breathing, termed AirBreathing FL. We show a performance tradeoff between gradient-pruning and interference-induced error as regulated by the breathing depth. Given receive SIR and model size, the optimization of the tradeoff yields two schemes for controlling the breathing depth that can be either fixed or adaptive to channels and the learning process. As shown by experiments, in scenarios where traditional Over-the-Air FL fails to converge in the presence of strong interference, AirBreahing FL with either fixed or adaptive breathing depth can ensure convergence where the adaptive scheme achieves close-to-ideal performance.
[ "cs.LG", "cs.CR", "cs.IT", "math.IT" ]
false
2305.05986
2023-05-10T08:52:07Z
Structural Hawkes Processes for Learning Causal Structure from Discrete-Time Event Sequences
[ "Jie Qiao", "Ruichu Cai", "Siyu Wu", "Yu Xiang", "Keli Zhang", "Zhifeng Hao" ]
Learning causal structure among event types from discrete-time event sequences is a particularly important but challenging task. Existing methods, such as the multivariate Hawkes processes based methods, mostly boil down to learning the so-called Granger causality which assumes that the cause event happens strictly prior to its effect event. Such an assumption is often untenable beyond applications, especially when dealing with discrete-time event sequences in low-resolution; and typical discrete Hawkes processes mainly suffer from identifiability issues raised by the instantaneous effect, i.e., the causal relationship that occurred simultaneously due to the low-resolution data will not be captured by Granger causality. In this work, we propose Structure Hawkes Processes (SHPs) that leverage the instantaneous effect for learning the causal structure among events type in discrete-time event sequence. The proposed method is featured with the minorization-maximization of the likelihood function and a sparse optimization scheme. Theoretical results show that the instantaneous effect is a blessing rather than a curse, and the causal structure is identifiable under the existence of the instantaneous effect. Experiments on synthetic and real-world data verify the effectiveness of the proposed method.
[ "cs.LG", "cs.AI", "stat.ME" ]
false
2305.06000
2023-05-10T09:20:11Z
Global Convergence of Deep Galerkin and PINNs Methods for Solving Partial Differential Equations
[ "Deqing Jiang", "Justin Sirignano", "Samuel N. Cohen" ]
Numerically solving high-dimensional partial differential equations (PDEs) is a major challenge. Conventional methods, such as finite difference methods, are unable to solve high-dimensional PDEs due to the curse-of-dimensionality. A variety of deep learning methods have been recently developed to try and solve high-dimensional PDEs by approximating the solution using a neural network. In this paper, we prove global convergence for one of the commonly-used deep learning algorithms for solving PDEs, the Deep Galerkin Method (DGM). DGM trains a neural network approximator to solve the PDE using stochastic gradient descent. We prove that, as the number of hidden units in the single-layer network goes to infinity (i.e., in the ``wide network limit"), the trained neural network converges to the solution of an infinite-dimensional linear ordinary differential equation (ODE). The PDE residual of the limiting approximator converges to zero as the training time $\rightarrow \infty$. Under mild assumptions, this convergence also implies that the neural network approximator converges to the solution of the PDE. A closely related class of deep learning methods for PDEs is Physics Informed Neural Networks (PINNs). Using the same mathematical techniques, we can prove a similar global convergence result for the PINN neural network approximators. Both proofs require analyzing a kernel function in the limit ODE governing the evolution of the limit neural network approximator. A key technical challenge is that the kernel function, which is a composition of the PDE operator and the neural tangent kernel (NTK) operator, lacks a spectral gap, therefore requiring a careful analysis of its properties.
[ "math.NA", "cs.LG", "cs.NA" ]
false
2305.06178
2023-05-10T14:03:36Z
Sequence-Agnostic Multi-Object Navigation
[ "Nandiraju Gireesh", "Ayush Agrawal", "Ahana Datta", "Snehasis Banerjee", "Mohan Sridharan", "Brojeshwar Bhowmick", "Madhava Krishna" ]
The Multi-Object Navigation (MultiON) task requires a robot to localize an instance (each) of multiple object classes. It is a fundamental task for an assistive robot in a home or a factory. Existing methods for MultiON have viewed this as a direct extension of Object Navigation (ON), the task of localising an instance of one object class, and are pre-sequenced, i.e., the sequence in which the object classes are to be explored is provided in advance. This is a strong limitation in practical applications characterized by dynamic changes. This paper describes a deep reinforcement learning framework for sequence-agnostic MultiON based on an actor-critic architecture and a suitable reward specification. Our framework leverages past experiences and seeks to reward progress toward individual as well as multiple target object classes. We use photo-realistic scenes from the Gibson benchmark dataset in the AI Habitat 3D simulation environment to experimentally show that our method performs better than a pre-sequenced approach and a state of the art ON method extended to MultiON.
[ "cs.RO", "cs.AI", "cs.LG" ]
false
2305.06230
2023-05-10T15:06:53Z
Penalized deep neural networks estimator with general loss functions under weak dependence
[ "William Kengne", "Modou Wade" ]
This paper carries out sparse-penalized deep neural networks predictors for learning weakly dependent processes, with a broad class of loss functions. We deal with a general framework that includes, regression estimation, classification, times series prediction, $\cdots$ The $\psi$-weak dependence structure is considered, and for the specific case of bounded observations, $\theta_\infty$-coefficients are also used. In this case of $\theta_\infty$-weakly dependent, a non asymptotic generalization bound within the class of deep neural networks predictors is provided. For learning both $\psi$ and $\theta_\infty$-weakly dependent processes, oracle inequalities for the excess risk of the sparse-penalized deep neural networks estimators are established. When the target function is sufficiently smooth, the convergence rate of these excess risk is close to $\mathcal{O}(n^{-1/3})$. Some simulation results are provided, and application to the forecast of the particulate matter in the Vit\'{o}ria metropolitan area is also considered.
[ "stat.ML", "cs.LG", "math.ST", "stat.TH" ]
false
2305.06315
2023-05-10T17:05:55Z
NervePool: A Simplicial Pooling Layer
[ "Sarah McGuire", "Elizabeth Munch", "Matthew Hirn" ]
For deep learning problems on graph-structured data, pooling layers are important for down sampling, reducing computational cost, and to minimize overfitting. We define a pooling layer, NervePool, for data structured as simplicial complexes, which are generalizations of graphs that include higher-dimensional simplices beyond vertices and edges; this structure allows for greater flexibility in modeling higher-order relationships. The proposed simplicial coarsening scheme is built upon partitions of vertices, which allow us to generate hierarchical representations of simplicial complexes, collapsing information in a learned fashion. NervePool builds on the learned vertex cluster assignments and extends to coarsening of higher dimensional simplices in a deterministic fashion. While in practice, the pooling operations are computed via a series of matrix operations, the topological motivation is a set-theoretic construction based on unions of stars of simplices and the nerve complex
[ "cs.CG", "cs.LG", "cs.NE", "62R40, 05E45, 68T07, 68R10" ]
false
2305.06447
2023-05-10T20:34:40Z
Dynamic Graph Representation Learning for Depression Screening with Transformer
[ "Ai-Te Kuo", "Haiquan Chen", "Yu-Hsuan Kuo", "Wei-Shinn Ku" ]
Early detection of mental disorder is crucial as it enables prompt intervention and treatment, which can greatly improve outcomes for individuals suffering from debilitating mental affliction. The recent proliferation of mental health discussions on social media platforms presents research opportunities to investigate mental health and potentially detect instances of mental illness. However, existing depression detection methods are constrained due to two major limitations: (1) the reliance on feature engineering and (2) the lack of consideration for time-varying factors. Specifically, these methods require extensive feature engineering and domain knowledge, which heavily rely on the amount, quality, and type of user-generated content. Moreover, these methods ignore the important impact of time-varying factors on depression detection, such as the dynamics of linguistic patterns and interpersonal interactive behaviors over time on social media (e.g., replies, mentions, and quote-tweets). To tackle these limitations, we propose an early depression detection framework, ContrastEgo treats each user as a dynamic time-evolving attributed graph (ego-network) and leverages supervised contrastive learning to maximize the agreement of users' representations at different scales while minimizing the agreement of users' representations to differentiate between depressed and control groups. ContrastEgo embraces four modules, (1) constructing users' heterogeneous interactive graphs, (2) extracting the representations of users' interaction snapshots using graph neural networks, (3) modeling the sequences of snapshots using attention mechanism, and (4) depression detection using contrastive learning. Extensive experiments on Twitter data demonstrate that ContrastEgo significantly outperforms the state-of-the-art methods in terms of all the effectiveness metrics in various experimental settings.
[ "cs.LG", "cs.IR", "cs.SI" ]
false
2305.06936
2023-05-10T15:00:05Z
An Option-Dependent Analysis of Regret Minimization Algorithms in Finite-Horizon Semi-Markov Decision Processes
[ "Gianluca Drappo", "Alberto Maria Metelli", "Marcello Restelli" ]
A large variety of real-world Reinforcement Learning (RL) tasks is characterized by a complex and heterogeneous structure that makes end-to-end (or flat) approaches hardly applicable or even infeasible. Hierarchical Reinforcement Learning (HRL) provides general solutions to address these problems thanks to a convenient multi-level decomposition of the tasks, making their solution accessible. Although often used in practice, few works provide theoretical guarantees to justify this outcome effectively. Thus, it is not yet clear when to prefer such approaches compared to standard flat ones. In this work, we provide an option-dependent upper bound to the regret suffered by regret minimization algorithms in finite-horizon problems. We illustrate that the performance improvement derives from the planning horizon reduction induced by the temporal abstraction enforced by the hierarchical structure. Then, focusing on a sub-setting of HRL approaches, the options framework, we highlight how the average duration of the available options affects the planning horizon and, consequently, the regret itself. Finally, we relax the assumption of having pre-trained options to show how in particular situations, learning hierarchically from scratch could be preferable to using a standard approach.
[ "cs.LG", "cs.IT", "math.IT" ]
false
2305.10350
2023-05-10T14:48:03Z
Multiverse at the Edge: Interacting Real World and Digital Twins for Wireless Beamforming
[ "Batool Salehi", "Utku Demir", "Debashri Roy", "Suyash Pradhan", "Jennifer Dy", "Stratis Ioannidis", "Kaushik Chowdhury" ]
Creating a digital world that closely mimics the real world with its many complex interactions and outcomes is possible today through advanced emulation software and ubiquitous computing power. Such a software-based emulation of an entity that exists in the real world is called a 'digital twin'. In this paper, we consider a twin of a wireless millimeter-wave band radio that is mounted on a vehicle and show how it speeds up directional beam selection in mobile environments. To achieve this, we go beyond instantiating a single twin and propose the 'Multiverse' paradigm, with several possible digital twins attempting to capture the real world at different levels of fidelity. Towards this goal, this paper describes (i) a decision strategy at the vehicle that determines which twin must be used given the computational and latency limitations, and (ii) a self-learning scheme that uses the Multiverse-guided beam outcomes to enhance DL-based decision-making in the real world over time. Our work is distinguished from prior works as follows: First, we use a publicly available RF dataset collected from an autonomous car for creating different twins. Second, we present a framework with continuous interaction between the real world and Multiverse of twins at the edge, as opposed to a one-time emulation that is completed prior to actual deployment. Results reveal that Multiverse offers up to 79.43% and 85.22% top-10 beam selection accuracy for LOS and NLOS scenarios, respectively. Moreover, we observe 52.72-85.07% improvement in beam selection time compared to 802.11ad standard.
[ "eess.SP", "cs.LG", "cs.NI" ]
false
2305.10351
2023-05-10T19:26:58Z
BIOT: Cross-data Biosignal Learning in the Wild
[ "Chaoqi Yang", "M. Brandon Westover", "Jimeng Sun" ]
Biological signals, such as electroencephalograms (EEG), play a crucial role in numerous clinical applications, exhibiting diverse data formats and quality profiles. Current deep learning models for biosignals are typically specialized for specific datasets and clinical settings, limiting their broader applicability. Motivated by the success of large language models in text processing, we explore the development of foundational models that are trained from multiple data sources and can be fine-tuned on different downstream biosignal tasks. To overcome the unique challenges associated with biosignals of various formats, such as mismatched channels, variable sample lengths, and prevalent missing values, we propose a Biosignal Transformer (\method). The proposed \method model can enable cross-data learning with mismatched channels, variable lengths, and missing values by tokenizing diverse biosignals into unified "biosignal sentences". Specifically, we tokenize each channel into fixed-length segments containing local signal features, flattening them to form consistent "sentences". Channel embeddings and {\em relative} position embeddings are added to preserve spatio-temporal features. The \method model is versatile and applicable to various biosignal learning settings across different datasets, including joint pre-training for larger models. Comprehensive evaluations on EEG, electrocardiogram (ECG), and human activity sensory signals demonstrate that \method outperforms robust baselines in common settings and facilitates learning across multiple datasets with different formats. Use CHB-MIT seizure detection task as an example, our vanilla \method model shows 3\% improvement over baselines in balanced accuracy, and the pre-trained \method models (optimized from other data sources) can further bring up to 4\% improvements.
[ "eess.SP", "cs.AI", "cs.LG" ]
false
2305.16160
2023-05-10T14:00:50Z
Augmented Memory: Capitalizing on Experience Replay to Accelerate De Novo Molecular Design
[ "Jeff Guo", "Philippe Schwaller" ]
Sample efficiency is a fundamental challenge in de novo molecular design. Ideally, molecular generative models should learn to satisfy a desired objective under minimal oracle evaluations (computational prediction or wet-lab experiment). This problem becomes more apparent when using oracles that can provide increased predictive accuracy but impose a significant cost. Consequently, these oracles cannot be directly optimized under a practical budget. Molecular generative models have shown remarkable sample efficiency when coupled with reinforcement learning, as demonstrated in the Practical Molecular Optimization (PMO) benchmark. Here, we propose a novel algorithm called Augmented Memory that combines data augmentation with experience replay. We show that scores obtained from oracle calls can be reused to update the model multiple times. We compare Augmented Memory to previously proposed algorithms and show significantly enhanced sample efficiency in an exploitation task and a drug discovery case study requiring both exploration and exploitation. Our method achieves a new state-of-the-art in the PMO benchmark which enforces a computational budget, outperforming the previous best performing method on 19/23 tasks.
[ "q-bio.BM", "cs.LG", "q-bio.QM" ]
false
2305.06082
2023-05-10T12:07:48Z
Best Arm Identification in Bandits with Limited Precision Sampling
[ "Kota Srinivas Reddy", "P. N. Karthik", "Nikhil Karamchandani", "Jayakrishnan Nair" ]
We study best arm identification in a variant of the multi-armed bandit problem where the learner has limited precision in arm selection. The learner can only sample arms via certain exploration bundles, which we refer to as boxes. In particular, at each sampling epoch, the learner selects a box, which in turn causes an arm to get pulled as per a box-specific probability distribution. The pulled arm and its instantaneous reward are revealed to the learner, whose goal is to find the best arm by minimising the expected stopping time, subject to an upper bound on the error probability. We present an asymptotic lower bound on the expected stopping time, which holds as the error probability vanishes. We show that the optimal allocation suggested by the lower bound is, in general, non-unique and therefore challenging to track. We propose a modified tracking-based algorithm to handle non-unique optimal allocations, and demonstrate that it is asymptotically optimal. We also present non-asymptotic lower and upper bounds on the stopping time in the simpler setting when the arms accessible from one box do not overlap with those of others.
[ "cs.LG", "cs.AI", "cs.IT", "math.IT", "math.ST", "stat.ML", "stat.TH" ]
false
2305.06540
2023-05-11T03:08:48Z
Inter-frame Accelerate Attack against Video Interpolation Models
[ "Junpei Liao", "Zhikai Chen", "Liang Yi", "Wenyuan Yang", "Baoyuan Wu", "Xiaochun Cao" ]
Deep learning based video frame interpolation (VIF) method, aiming to synthesis the intermediate frames to enhance video quality, have been highly developed in the past few years. This paper investigates the adversarial robustness of VIF models. We apply adversarial attacks to VIF models and find that the VIF models are very vulnerable to adversarial examples. To improve attack efficiency, we suggest to make full use of the property of video frame interpolation task. The intuition is that the gap between adjacent frames would be small, leading to the corresponding adversarial perturbations being similar as well. Then we propose a novel attack method named Inter-frame Accelerate Attack (IAA) that initializes the perturbation as the perturbation for the previous adjacent frame and reduces the number of attack iterations. It is shown that our method can improve attack efficiency greatly while achieving comparable attack performance with traditional methods. Besides, we also extend our method to video recognition models which are higher level vision tasks and achieves great attack efficiency.
[ "cs.CV" ]
false
2305.06553
2023-05-11T04:05:30Z
WeLayout: WeChat Layout Analysis System for the ICDAR 2023 Competition on Robust Layout Segmentation in Corporate Documents
[ "Mingliang Zhang", "Zhen Cao", "Juntao Liu", "Liqiang Niu", "Fandong Meng", "Jie Zhou" ]
In this paper, we introduce WeLayout, a novel system for segmenting the layout of corporate documents, which stands for WeChat Layout Analysis System. Our approach utilizes a sophisticated ensemble of DINO and YOLO models, specifically developed for the ICDAR 2023 Competition on Robust Layout Segmentation. Our method significantly surpasses the baseline, securing a top position on the leaderboard with a mAP of 70.0. To achieve this performance, we concentrated on enhancing various aspects of the task, such as dataset augmentation, model architecture, bounding box refinement, and model ensemble techniques. Additionally, we trained the data separately for each document category to ensure a higher mean submission score. We also developed an algorithm for cell matching to further improve our performance. To identify the optimal weights and IoU thresholds for our model ensemble, we employed a Bayesian optimization algorithm called the Tree-Structured Parzen Estimator. Our approach effectively demonstrates the benefits of combining query-based and anchor-free models for achieving robust layout segmentation in corporate documents.
[ "cs.CV" ]
false
2305.06558
2023-05-11T04:33:08Z
Segment and Track Anything
[ "Yangming Cheng", "Liulei Li", "Yuanyou Xu", "Xiaodi Li", "Zongxin Yang", "Wenguan Wang", "Yi Yang" ]
This report presents a framework called Segment And Track Anything (SAMTrack) that allows users to precisely and effectively segment and track any object in a video. Additionally, SAM-Track employs multimodal interaction methods that enable users to select multiple objects in videos for tracking, corresponding to their specific requirements. These interaction methods comprise click, stroke, and text, each possessing unique benefits and capable of being employed in combination. As a result, SAM-Track can be used across an array of fields, ranging from drone technology, autonomous driving, medical imaging, augmented reality, to biological analysis. SAM-Track amalgamates Segment Anything Model (SAM), an interactive key-frame segmentation model, with our proposed AOT-based tracking model (DeAOT), which secured 1st place in four tracks of the VOT 2022 challenge, to facilitate object tracking in video. In addition, SAM-Track incorporates Grounding-DINO, which enables the framework to support text-based interaction. We have demonstrated the remarkable capabilities of SAM-Track on DAVIS-2016 Val (92.0%), DAVIS-2017 Test (79.2%)and its practicability in diverse applications. The project page is available at: https://github.com/z-x-yang/Segment-and-Track-Anything.
[ "cs.CV" ]
false
2305.06559
2023-05-11T04:34:10Z
Patch-wise Mixed-Precision Quantization of Vision Transformer
[ "Junrui Xiao", "Zhikai Li", "Lianwei Yang", "Qingyi Gu" ]
As emerging hardware begins to support mixed bit-width arithmetic computation, mixed-precision quantization is widely used to reduce the complexity of neural networks. However, Vision Transformers (ViTs) require complex self-attention computation to guarantee the learning of powerful feature representations, which makes mixed-precision quantization of ViTs still challenging. In this paper, we propose a novel patch-wise mixed-precision quantization (PMQ) for efficient inference of ViTs. Specifically, we design a lightweight global metric, which is faster than existing methods, to measure the sensitivity of each component in ViTs to quantization errors. Moreover, we also introduce a pareto frontier approach to automatically allocate the optimal bit-precision according to the sensitivity. To further reduce the computational complexity of self-attention in inference stage, we propose a patch-wise module to reallocate bit-width of patches in each layer. Extensive experiments on the ImageNet dataset shows that our method greatly reduces the search cost and facilitates the application of mixed-precision quantization to ViTs.
[ "cs.CV" ]
false
2305.06582
2023-05-11T05:41:23Z
Exploiting Fine-Grained DCT Representations for Hiding Image-Level Messages within JPEG Images
[ "Junxue Yang", "Xin Liao" ]
Unlike hiding bit-level messages, hiding image-level messages is more challenging, which requires large capacity, high imperceptibility, and high security. Although recent advances in hiding image-level messages have been remarkable, existing schemes are limited to lossless spatial images as covers and cannot be directly applied to JPEG images, the ubiquitous lossy format images in daily life. The difficulties of migration are caused by the lack of targeted design and the loss of details due to lossy decompression and re-compression. Considering that taking DCT densely on $8\times8$ image patches is the core of the JPEG compression standard, we design a novel model called \textsf{EFDR}, which can comprehensively \underline{E}xploit \underline{F}ine-grained \underline{D}CT \underline{R}epresentations and embed the secret image into quantized DCT coefficients to avoid the lossy process. Specifically, we transform the JPEG cover image and hidden secret image into fine-grained DCT representations that compact the frequency and are associated with the inter-block and intra-block correlations. Subsequently, the fine-grained DCT representations are further enhanced by a sub-band features enhancement module. Afterward, a transformer-based invertibility module is designed to fuse enhanced sub-band features. Such a design enables a fine-grained self-attention on each sub-band and captures long-range dependencies while maintaining excellent reversibility for hiding and recovery. To our best knowledge, this is the first attempt to embed a color image of equal size in a color JPEG image. Extensive experiments demonstrate the effectiveness of our \textsf{EFDR} with superior performance.
[ "cs.CV" ]
false
2305.06611
2023-05-11T07:14:23Z
Hyperbolic Deep Learning in Computer Vision: A Survey
[ "Pascal Mettes", "Mina Ghadimi Atigh", "Martin Keller-Ressel", "Jeffrey Gu", "Serena Yeung" ]
Deep representation learning is a ubiquitous part of modern computer vision. While Euclidean space has been the de facto standard manifold for learning visual representations, hyperbolic space has recently gained rapid traction for learning in computer vision. Specifically, hyperbolic learning has shown a strong potential to embed hierarchical structures, learn from limited samples, quantify uncertainty, add robustness, limit error severity, and more. In this paper, we provide a categorization and in-depth overview of current literature on hyperbolic learning for computer vision. We research both supervised and unsupervised literature and identify three main research themes in each direction. We outline how hyperbolic learning is performed in all themes and discuss the main research problems that benefit from current advances in hyperbolic learning for computer vision. Moreover, we provide a high-level intuition behind hyperbolic geometry and outline open research questions to further advance research in this direction.
[ "cs.CV" ]
false
2305.06621
2023-05-11T07:37:15Z
PVT-SSD: Single-Stage 3D Object Detector with Point-Voxel Transformer
[ "Honghui Yang", "Wenxiao Wang", "Minghao Chen", "Binbin Lin", "Tong He", "Hua Chen", "Xiaofei He", "Wanli Ouyang" ]
Recent Transformer-based 3D object detectors learn point cloud features either from point- or voxel-based representations. However, the former requires time-consuming sampling while the latter introduces quantization errors. In this paper, we present a novel Point-Voxel Transformer for single-stage 3D detection (PVT-SSD) that takes advantage of these two representations. Specifically, we first use voxel-based sparse convolutions for efficient feature encoding. Then, we propose a Point-Voxel Transformer (PVT) module that obtains long-range contexts in a cheap manner from voxels while attaining accurate positions from points. The key to associating the two different representations is our introduced input-dependent Query Initialization module, which could efficiently generate reference points and content queries. Then, PVT adaptively fuses long-range contextual and local geometric information around reference points into content queries. Further, to quickly find the neighboring points of reference points, we design the Virtual Range Image module, which generalizes the native range image to multi-sensor and multi-frame. The experiments on several autonomous driving benchmarks verify the effectiveness and efficiency of the proposed method. Code will be available at https://github.com/Nightmare-n/PVT-SSD.
[ "cs.CV" ]
false
2305.06720
2023-05-11T10:55:34Z
Bi-level Dynamic Learning for Jointly Multi-modality Image Fusion and Beyond
[ "Zhu Liu", "Jinyuan Liu", "Guanyao Wu", "Long Ma", "Xin Fan", "Risheng Liu" ]
Recently, multi-modality scene perception tasks, e.g., image fusion and scene understanding, have attracted widespread attention for intelligent vision systems. However, early efforts always consider boosting a single task unilaterally and neglecting others, seldom investigating their underlying connections for joint promotion. To overcome these limitations, we establish the hierarchical dual tasks-driven deep model to bridge these tasks. Concretely, we firstly construct an image fusion module to fuse complementary characteristics and cascade dual task-related modules, including a discriminator for visual effects and a semantic network for feature measurement. We provide a bi-level perspective to formulate image fusion and follow-up downstream tasks. To incorporate distinct task-related responses for image fusion, we consider image fusion as a primary goal and dual modules as learnable constraints. Furthermore, we develop an efficient first-order approximation to compute corresponding gradients and present dynamic weighted aggregation to balance the gradients for fusion learning. Extensive experiments demonstrate the superiority of our method, which not only produces visually pleasant fused results but also realizes significant promotion for detection and segmentation than the state-of-the-art approaches.
[ "cs.CV" ]
false
2305.06799
2023-05-11T13:41:13Z
GCFAgg: Global and Cross-view Feature Aggregation for Multi-view Clustering
[ "Weiqing Yan", "Yuanyang Zhang", "Chenlei Lv", "Chang Tang", "Guanghui Yue", "Liang Liao", "Weisi Lin" ]
Multi-view clustering can partition data samples into their categories by learning a consensus representation in unsupervised way and has received more and more attention in recent years. However, most existing deep clustering methods learn consensus representation or view-specific representations from multiple views via view-wise aggregation way, where they ignore structure relationship of all samples. In this paper, we propose a novel multi-view clustering network to address these problems, called Global and Cross-view Feature Aggregation for Multi-View Clustering (GCFAggMVC). Specifically, the consensus data presentation from multiple views is obtained via cross-sample and cross-view feature aggregation, which fully explores the complementary ofsimilar samples. Moreover, we align the consensus representation and the view-specific representation by the structure-guided contrastive learning module, which makes the view-specific representations from different samples with high structure relationship similar. The proposed module is a flexible multi-view data representation module, which can be also embedded to the incomplete multi-view data clustering task via plugging our module into other frameworks. Extensive experiments show that the proposed method achieves excellent performance in both complete multi-view data clustering tasks and incomplete multi-view data clustering tasks.
[ "cs.CV" ]
false
2305.06820
2023-05-11T14:13:37Z
DeepSTEP -- Deep Learning-Based Spatio-Temporal End-To-End Perception for Autonomous Vehicles
[ "Sebastian Huch", "Florian Sauerbeck", "Johannes Betz" ]
Autonomous vehicles demand high accuracy and robustness of perception algorithms. To develop efficient and scalable perception algorithms, the maximum information should be extracted from the available sensor data. In this work, we present our concept for an end-to-end perception architecture, named DeepSTEP. The deep learning-based architecture processes raw sensor data from the camera, LiDAR, and RaDAR, and combines the extracted data in a deep fusion network. The output of this deep fusion network is a shared feature space, which is used by perception head networks to fulfill several perception tasks, such as object detection or local mapping. DeepSTEP incorporates multiple ideas to advance state of the art: First, combining detection and localization into a single pipeline allows for efficient processing to reduce computational overhead and further improves overall performance. Second, the architecture leverages the temporal domain by using a self-attention mechanism that focuses on the most important features. We believe that our concept of DeepSTEP will advance the development of end-to-end perception systems. The network will be deployed on our research vehicle, which will be used as a platform for data collection, real-world testing, and validation. In conclusion, DeepSTEP represents a significant advancement in the field of perception for autonomous vehicles. The architecture's end-to-end design, time-aware attention mechanism, and integration of multiple perception tasks make it a promising solution for real-world deployment. This research is a work in progress and presents the first concept of establishing a novel perception pipeline.
[ "cs.CV" ]
false
2305.06845
2023-05-11T14:40:20Z
Detection and Classification of Pole-like Landmarks for Domain-invariant 3D Point Cloud Map Matching
[ "Sun Yifei", "Li Dingrui", "Ye Minying", "Tanaka Kanji" ]
In 3D point cloud-based visual self-localization, pole landmarks have a great potential as landmarks for accurate and reliable localization due to their long-term stability under seasonal and weather changes. In this study, we aim to explore the use of recently developed deep learning models for pole classification in the context of pole landmark-based self-localization. Specifically, the proposed scheme consists of two main modules: pole map matching and pole class matching. In the former module, local pole map is constructed and its configuration is compared against a precomputed global pole map. An efficient RANSAC map matching is employed to achieve a good tradeoff between computational efficiency and accuracy. In the latter pole class matching module, the local and global poles paired by the RANSAC map-matching are further compared by means of pole attribute class. To this end, a predefined set of pseudo pole classes is learned via k-means clustering in a self-supervised manner. Experiments using publicly available NCLT dataset showed that the pole-like landmark classification method has an improved effect on the visual self-localization system compared with the baseline method.
[ "cs.CV" ]
false
2305.06923
2023-05-11T16:05:03Z
EAML: Ensemble Self-Attention-based Mutual Learning Network for Document Image Classification
[ "Souhail Bakkali", "Ziheng Ming", "Mickael Coustaty", "Marçal Rusiñol" ]
In the recent past, complex deep neural networks have received huge interest in various document understanding tasks such as document image classification and document retrieval. As many document types have a distinct visual style, learning only visual features with deep CNNs to classify document images have encountered the problem of low inter-class discrimination, and high intra-class structural variations between its categories. In parallel, text-level understanding jointly learned with the corresponding visual properties within a given document image has considerably improved the classification performance in terms of accuracy. In this paper, we design a self-attention-based fusion module that serves as a block in our ensemble trainable network. It allows to simultaneously learn the discriminant features of image and text modalities throughout the training stage. Besides, we encourage mutual learning by transferring the positive knowledge between image and text modalities during the training stage. This constraint is realized by adding a truncated-Kullback-Leibler divergence loss Tr-KLD-Reg as a new regularization term, to the conventional supervised setting. To the best of our knowledge, this is the first time to leverage a mutual learning approach along with a self-attention-based fusion module to perform document image classification. The experimental results illustrate the effectiveness of our approach in terms of accuracy for the single-modal and multi-modal modalities. Thus, the proposed ensemble self-attention-based mutual learning model outperforms the state-of-the-art classification results based on the benchmark RVL-CDIP and Tobacco-3482 datasets.
[ "cs.CV" ]
false
2305.06968
2023-05-11T16:49:19Z
HuManiFlow: Ancestor-Conditioned Normalising Flows on SO(3) Manifolds for Human Pose and Shape Distribution Estimation
[ "Akash Sengupta", "Ignas Budvytis", "Roberto Cipolla" ]
Monocular 3D human pose and shape estimation is an ill-posed problem since multiple 3D solutions can explain a 2D image of a subject. Recent approaches predict a probability distribution over plausible 3D pose and shape parameters conditioned on the image. We show that these approaches exhibit a trade-off between three key properties: (i) accuracy - the likelihood of the ground-truth 3D solution under the predicted distribution, (ii) sample-input consistency - the extent to which 3D samples from the predicted distribution match the visible 2D image evidence, and (iii) sample diversity - the range of plausible 3D solutions modelled by the predicted distribution. Our method, HuManiFlow, predicts simultaneously accurate, consistent and diverse distributions. We use the human kinematic tree to factorise full body pose into ancestor-conditioned per-body-part pose distributions in an autoregressive manner. Per-body-part distributions are implemented using normalising flows that respect the manifold structure of SO(3), the Lie group of per-body-part poses. We show that ill-posed, but ubiquitous, 3D point estimate losses reduce sample diversity, and employ only probabilistic training losses. Code is available at: https://github.com/akashsengupta1997/HuManiFlow.
[ "cs.CV" ]
false
2305.06973
2023-05-11T16:56:26Z
FreePoint: Unsupervised Point Cloud Instance Segmentation
[ "Zhikai Zhang", "Jian Ding", "Li Jiang", "Dengxin Dai", "Gui-Song Xia" ]
Instance segmentation of point clouds is a crucial task in 3D field with numerous applications that involve localizing and segmenting objects in a scene. However, achieving satisfactory results requires a large number of manual annotations, which is a time-consuming and expensive process. To alleviate dependency on annotations, we propose a method, called FreePoint, for underexplored unsupervised class-agnostic instance segmentation on point clouds. In detail, we represent the point features by combining coordinates, colors, normals, and self-supervised deep features. Based on the point features, we perform a multicut algorithm to segment point clouds into coarse instance masks as pseudo labels, which are used to train a point cloud instance segmentation model. To alleviate the inaccuracy of coarse masks during training, we propose a weakly-supervised training strategy and corresponding loss. Our work can also serve as an unsupervised pre-training pretext for supervised semantic instance segmentation with limited annotations. For class-agnostic instance segmentation on point clouds, FreePoint largely fills the gap with its fully-supervised counterpart based on the state-of-the-art instance segmentation model Mask3D and even surpasses some previous fully-supervised methods. When serving as a pretext task and fine-tuning on S3DIS, FreePoint outperforms training from scratch by 5.8% AP with only 10% mask annotations.
[ "cs.CV" ]
false
2305.07014
2023-05-11T17:55:11Z
Virtual Occlusions Through Implicit Depth
[ "Jamie Watson", "Mohamed Sayed", "Zawar Qureshi", "Gabriel J. Brostow", "Sara Vicente", "Oisin Mac Aodha", "Michael Firman" ]
For augmented reality (AR), it is important that virtual assets appear to `sit among' real world objects. The virtual element should variously occlude and be occluded by real matter, based on a plausible depth ordering. This occlusion should be consistent over time as the viewer's camera moves. Unfortunately, small mistakes in the estimated scene depth can ruin the downstream occlusion mask, and thereby the AR illusion. Especially in real-time settings, depths inferred near boundaries or across time can be inconsistent. In this paper, we challenge the need for depth-regression as an intermediate step. We instead propose an implicit model for depth and use that to predict the occlusion mask directly. The inputs to our network are one or more color images, plus the known depths of any virtual geometry. We show how our occlusion predictions are more accurate and more temporally stable than predictions derived from traditional depth-estimation models. We obtain state-of-the-art occlusion results on the challenging ScanNetv2 dataset and superior qualitative results on real scenes.
[ "cs.CV" ]
false
2305.07021
2023-05-11T17:58:17Z
Simple Token-Level Confidence Improves Caption Correctness
[ "Suzanne Petryk", "Spencer Whitehead", "Joseph E. Gonzalez", "Trevor Darrell", "Anna Rohrbach", "Marcus Rohrbach" ]
The ability to judge whether a caption correctly describes an image is a critical part of vision-language understanding. However, state-of-the-art models often misinterpret the correctness of fine-grained details, leading to errors in outputs such as hallucinating objects in generated captions or poor compositional reasoning. In this work, we explore Token-Level Confidence, or TLC, as a simple yet surprisingly effective method to assess caption correctness. Specifically, we fine-tune a vision-language model on image captioning, input an image and proposed caption to the model, and aggregate either algebraic or learned token confidences over words or sequences to estimate image-caption consistency. Compared to sequence-level scores from pretrained models, TLC with algebraic confidence measures achieves a relative improvement in accuracy by 10% on verb understanding in SVO-Probes and outperforms prior state-of-the-art in image and group scores for compositional reasoning in Winoground by a relative 37% and 9%, respectively. When training data are available, a learned confidence estimator provides further improved performance, reducing object hallucination rates in MS COCO Captions by a relative 30% over the original model and setting a new state-of-the-art.
[ "cs.CV" ]
true
2305.07024
2023-05-11T17:58:37Z
SparseGNV: Generating Novel Views of Indoor Scenes with Sparse Input Views
[ "Weihao Cheng", "Yan-Pei Cao", "Ying Shan" ]
We study to generate novel views of indoor scenes given sparse input views. The challenge is to achieve both photorealism and view consistency. We present SparseGNV: a learning framework that incorporates 3D structures and image generative models to generate novel views with three modules. The first module builds a neural point cloud as underlying geometry, providing contextual information and guidance for the target novel view. The second module utilizes a transformer-based network to map the scene context and the guidance into a shared latent space and autoregressively decodes the target view in the form of discrete image tokens. The third module reconstructs the tokens into the image of the target view. SparseGNV is trained across a large indoor scene dataset to learn generalizable priors. Once trained, it can efficiently generate novel views of an unseen indoor scene in a feed-forward manner. We evaluate SparseGNV on both real-world and synthetic indoor scenes and demonstrate that it outperforms state-of-the-art methods based on either neural radiance fields or conditional image generation.
[ "cs.CV" ]
false
2305.07027
2023-05-11T17:59:41Z
EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention
[ "Xinyu Liu", "Houwen Peng", "Ningxin Zheng", "Yuqing Yang", "Han Hu", "Yixuan Yuan" ]
Vision transformers have shown great success due to their high model capabilities. However, their remarkable performance is accompanied by heavy computation costs, which makes them unsuitable for real-time applications. In this paper, we propose a family of high-speed vision transformers named EfficientViT. We find that the speed of existing transformer models is commonly bounded by memory inefficient operations, especially the tensor reshaping and element-wise functions in MHSA. Therefore, we design a new building block with a sandwich layout, i.e., using a single memory-bound MHSA between efficient FFN layers, which improves memory efficiency while enhancing channel communication. Moreover, we discover that the attention maps share high similarities across heads, leading to computational redundancy. To address this, we present a cascaded group attention module feeding attention heads with different splits of the full feature, which not only saves computation cost but also improves attention diversity. Comprehensive experiments demonstrate EfficientViT outperforms existing efficient models, striking a good trade-off between speed and accuracy. For instance, our EfficientViT-M5 surpasses MobileNetV3-Large by 1.9% in accuracy, while getting 40.4% and 45.2% higher throughput on Nvidia V100 GPU and Intel Xeon CPU, respectively. Compared to the recent efficient model MobileViT-XXS, EfficientViT-M2 achieves 1.8% superior accuracy, while running 5.8x/3.7x faster on the GPU/CPU, and 7.4x faster when converted to ONNX format. Code and models are available at https://github.com/microsoft/Cream/tree/main/EfficientViT.
[ "cs.CV" ]
true
2305.07131
2023-05-11T20:43:50Z
Combining OCR Models for Reading Early Modern Printed Books
[ "Mathias Seuret", "Janne van der Loop", "Nikolaus Weichselbaumer", "Martin Mayr", "Janina Molnar", "Tatjana Hass", "Florian Kordon", "Anguelos Nicolau", "Vincent Christlein" ]
In this paper, we investigate the usage of fine-grained font recognition on OCR for books printed from the 15th to the 18th century. We used a newly created dataset for OCR of early printed books for which fonts are labeled with bounding boxes. We know not only the font group used for each character, but the locations of font changes as well. In books of this period, we frequently find font group changes mid-line or even mid-word that indicate changes in language. We consider 8 different font groups present in our corpus and investigate 13 different subsets: the whole dataset and text lines with a single font, multiple fonts, Roman fonts, Gothic fonts, and each of the considered fonts, respectively. We show that OCR performance is strongly impacted by font style and that selecting fine-tuned models with font group recognition has a very positive impact on the results. Moreover, we developed a system using local font group recognition in order to combine the output of multiple font recognition models, and show that while slower, this approach performs better not only on text lines composed of multiple fonts but on the ones containing a single font only as well.
[ "cs.CV" ]
false
2305.06511
2023-05-11T01:24:32Z
ParamNet: A Parameter-variable Network for Fast Stain Normalization
[ "Hongtao Kang", "Die Luo", "Li Chen", "Junbo Hu", "Shenghua Cheng", "Tingwei Quan", "Shaoqun Zeng", "Xiuli Liu" ]
In practice, digital pathology images are often affected by various factors, resulting in very large differences in color and brightness. Stain normalization can effectively reduce the differences in color and brightness of digital pathology images, thus improving the performance of computer-aided diagnostic systems. Conventional stain normalization methods rely on one or several reference images, but one or several images are difficult to represent the entire dataset. Although learning-based stain normalization methods are a general approach, they use complex deep networks, which not only greatly reduce computational efficiency, but also risk introducing artifacts. StainNet is a fast and robust stain normalization network, but it has not a sufficient capability for complex stain normalization due to its too simple network structure. In this study, we proposed a parameter-variable stain normalization network, ParamNet. ParamNet contains a parameter prediction sub-network and a color mapping sub-network, where the parameter prediction sub-network can automatically determine the appropriate parameters for the color mapping sub-network according to each input image. The feature of parameter variable ensures that our network has a sufficient capability for various stain normalization tasks. The color mapping sub-network is a fully 1x1 convolutional network with a total of 59 variable parameters, which allows our network to be extremely computationally efficient and does not introduce artifacts. The results on cytopathology and histopathology datasets show that our ParamNet outperforms state-of-the-art methods and can effectively improve the generalization of classifiers on pathology diagnosis tasks. The code has been available at https://github.com/khtao/ParamNet.
[ "eess.IV", "cs.CV" ]
false
2305.06525
2023-05-11T02:05:30Z
Pyramid Texture Filtering
[ "Qing Zhang", "Hao Jiang", "Yongwei Nie", "Wei-Shi Zheng" ]
We present a simple but effective technique to smooth out textures while preserving the prominent structures. Our method is built upon a key observation -- the coarsest level in a Gaussian pyramid often naturally eliminates textures and summarizes the main image structures. This inspires our central idea for texture filtering, which is to progressively upsample the very low-resolution coarsest Gaussian pyramid level to a full-resolution texture smoothing result with well-preserved structures, under the guidance of each fine-scale Gaussian pyramid level and its associated Laplacian pyramid level. We show that our approach is effective to separate structure from texture of different scales, local contrasts, and forms, without degrading structures or introducing visual artifacts. We also demonstrate the applicability of our method on various applications including detail enhancement, image abstraction, HDR tone mapping, inverse halftoning, and LDR image enhancement.
[ "cs.CV", "cs.GR" ]
false
2305.06565
2023-05-11T04:49:37Z
Realization RGBD Image Stylization
[ "Bhavya Sehgal", "Vaishnavi Mendu", "Aparna Mendu" ]
This research paper explores the application of style transfer in computer vision using RGB images and their corresponding depth maps. We propose a novel method that incorporates the depth map and a heatmap of the RGB image to generate more realistic style transfer results. We compare our method to the traditional neural style transfer approach and find that our method outperforms it in terms of producing more realistic color and style. The proposed method can be applied to various computer vision applications, such as image editing and virtual reality, to improve the realism of generated images. Overall, our findings demonstrate the potential of incorporating depth information and heatmap of RGB images in style transfer for more realistic results.
[ "cs.CV", "eess.IV" ]
false
2305.06786
2023-05-11T13:21:29Z
ReMark: Receptive Field based Spatial WaterMark Embedding Optimization using Deep Network
[ "Natan Semyonov", "Rami Puzis", "Asaf Shabtai", "Gilad Katz" ]
Watermarking is one of the most important copyright protection tools for digital media. The most challenging type of watermarking is the imperceptible one, which embeds identifying information in the data while retaining the latter's original quality. To fulfill its purpose, watermarks need to withstand various distortions whose goal is to damage their integrity. In this study, we investigate a novel deep learning-based architecture for embedding imperceptible watermarks. The key insight guiding our architecture design is the need to correlate the dimensions of our watermarks with the sizes of receptive fields (RF) of modules of our architecture. This adaptation makes our watermarks more robust, while also enabling us to generate them in a way that better maintains image quality. Extensive evaluations on a wide variety of distortions show that the proposed method is robust against most common distortions on watermarks including collusive distortion.
[ "cs.CV", "eess.IV" ]
false
2305.06809
2023-05-11T14:03:26Z
Collection Space Navigator: An Interactive Visualization Interface for Multidimensional Datasets
[ "Tillmann Ohm", "Mar Canet Solà", "Andres Karjus", "Maximilian Schich" ]
We introduce the Collection Space Navigator (CSN), a browser-based visualization tool to explore, research, and curate large collections of visual digital artifacts that are associated with multidimensional data, such as vector embeddings or tables of metadata. Media objects such as images are often encoded as numerical vectors, for e.g. based on metadata or using machine learning to embed image information. Yet, while such procedures are widespread for a range of applications, it remains a challenge to explore, analyze, and understand the resulting multidimensional spaces in a more comprehensive manner. Dimensionality reduction techniques such as t-SNE or UMAP often serve to project high-dimensional data into low dimensional visualizations, yet require interpretation themselves as the remaining dimensions are typically abstract. Here, the Collection Space Navigator provides a customizable interface that combines two-dimensional projections with a set of configurable multidimensional filters. As a result, the user is able to view and investigate collections, by zooming and scaling, by transforming between projections, by filtering dimensions via range sliders, and advanced text filters. Insights that are gained during the interaction can be fed back into the original data via ad hoc exports of filtered metadata and projections. This paper comes with a functional showcase demo using a large digitized collection of classical Western art. The Collection Space Navigator is open source. Users can reconfigure the interface to fit their own data and research needs, including projections and filter controls. The CSN is ready to serve a broad community.
[ "cs.CV", "cs.HC" ]
false
2305.06813
2023-05-11T14:09:05Z
Generation of Structurally Realistic Retinal Fundus Images with Diffusion Models
[ "Sojung Go", "Younghoon Ji", "Sang Jun Park", "Soochahn Lee" ]
We introduce a new technique for generating retinal fundus images that have anatomically accurate vascular structures, using diffusion models. We generate artery/vein masks to create the vascular structure, which we then condition to produce retinal fundus images. The proposed method can generate high-quality images with more realistic vascular structures and can create a diverse range of images based on the strengths of the diffusion model. We present quantitative evaluations that demonstrate the performance improvement using our method for data augmentation on vessel segmentation and artery/vein classification. We also present Turing test results by clinical experts, showing that our generated images are difficult to distinguish with real images. We believe that our method can be applied to construct stand-alone datasets that are irrelevant of patient privacy.
[ "eess.IV", "cs.CV" ]
false
2305.06842
2023-05-11T14:38:27Z
Emotion Recognition for Challenged People Facial Appearance in Social using Neural Network
[ "P. Deivendran", "P. Suresh Babu", "G. Malathi", "K. Anbazhagan", "R. Senthil Kumar" ]
Human communication is the vocal and non verbal signal to communicate with others. Human expression is a significant biometric object in picture and record databases of surveillance systems. Face appreciation has a serious role in biometric methods and is good-looking for plentiful applications, including visual scrutiny and security. Facial expressions are a form of nonverbal communication; recognizing them helps improve the human machine interaction. This paper proposes an idea for face and enlightenment invariant credit of facial expressions by the images. In order on, the person's face can be computed. Face expression is used in CNN classifier to categorize the acquired picture into different emotion categories. It is a deep, feed-forward artificial neural network. Outcome surpasses human presentation and shows poses alternate performance. Varying lighting conditions can influence the fitting process and reduce recognition precision. Results illustrate that dependable facial appearance credited with changing lighting conditions for separating reasonable facial terminology display emotions is an efficient representation of clean and assorted moving expressions. This process can also manage the proportions of dissimilar basic affecting expressions of those mixed jointly to produce sensible emotional facial expressions. Our system contains a pre-defined data set, which was residential by a statistics scientist and includes all pure and varied expressions. On average, a data set has achieved 92.4% exact validation of the expressions synthesized by our technique. These facial expressions are compared through the pre-defined data-position inside our system. If it recognizes the person in an abnormal condition, an alert will be passed to the nearby hospital/doctor seeing that a message.
[ "cs.CV", "cs.AI" ]
false
2305.06963
2023-05-11T16:42:24Z
Cascaded Cross-Attention Networks for Data-Efficient Whole-Slide Image Classification Using Transformers
[ "Firas Khader", "Jakob Nikolas Kather", "Tianyu Han", "Sven Nebelung", "Christiane Kuhl", "Johannes Stegmaier", "Daniel Truhn" ]
Whole-Slide Imaging allows for the capturing and digitization of high-resolution images of histological specimen. An automated analysis of such images using deep learning models is therefore of high demand. The transformer architecture has been proposed as a possible candidate for effectively leveraging the high-resolution information. Here, the whole-slide image is partitioned into smaller image patches and feature tokens are extracted from these image patches. However, while the conventional transformer allows for a simultaneous processing of a large set of input tokens, the computational demand scales quadratically with the number of input tokens and thus quadratically with the number of image patches. To address this problem we propose a novel cascaded cross-attention network (CCAN) based on the cross-attention mechanism that scales linearly with the number of extracted patches. Our experiments demonstrate that this architecture is at least on-par with and even outperforms other attention-based state-of-the-art methods on two public datasets: On the use-case of lung cancer (TCGA NSCLC) our model reaches a mean area under the receiver operating characteristic (AUC) of 0.970 $\pm$ 0.008 and on renal cancer (TCGA RCC) reaches a mean AUC of 0.985 $\pm$ 0.004. Furthermore, we show that our proposed model is efficient in low-data regimes, making it a promising approach for analyzing whole-slide images in resource-limited settings. To foster research in this direction, we make our code publicly available on GitHub: XXX.
[ "cs.CV", "cs.LG" ]
false
2305.06965
2023-05-11T16:43:39Z
Transformers for CT Reconstruction From Monoplanar and Biplanar Radiographs
[ "Firas Khader", "Gustav Müller-Franzes", "Tianyu Han", "Sven Nebelung", "Christiane Kuhl", "Johannes Stegmaier", "Daniel Truhn" ]
Computed Tomography (CT) scans provide detailed and accurate information of internal structures in the body. They are constructed by sending x-rays through the body from different directions and combining this information into a three-dimensional volume. Such volumes can then be used to diagnose a wide range of conditions and allow for volumetric measurements of organs. In this work, we tackle the problem of reconstructing CT images from biplanar x-rays only. X-rays are widely available and even if the CT reconstructed from these radiographs is not a replacement of a complete CT in the diagnostic setting, it might serve to spare the patients from radiation where a CT is only acquired for rough measurements such as determining organ size. We propose a novel method based on the transformer architecture, by framing the underlying task as a language translation problem. Radiographs and CT images are first embedded into latent quantized codebook vectors using two different autoencoder networks. We then train a GPT model, to reconstruct the codebook vectors of the CT image, conditioned on the codebook vectors of the x-rays and show that this approach leads to realistic looking images. To encourage further research in this direction, we make our code publicly available on GitHub: XXX.
[ "eess.IV", "cs.CV" ]
false
2305.07102
2023-05-11T19:24:33Z
Salient Mask-Guided Vision Transformer for Fine-Grained Classification
[ "Dmitry Demidov", "Muhammad Hamza Sharif", "Aliakbar Abdurahimov", "Hisham Cholakkal", "Fahad Shahbaz Khan" ]
Fine-grained visual classification (FGVC) is a challenging computer vision problem, where the task is to automatically recognise objects from subordinate categories. One of its main difficulties is capturing the most discriminative inter-class variances among visually similar classes. Recently, methods with Vision Transformer (ViT) have demonstrated noticeable achievements in FGVC, generally by employing the self-attention mechanism with additional resource-consuming techniques to distinguish potentially discriminative regions while disregarding the rest. However, such approaches may struggle to effectively focus on truly discriminative regions due to only relying on the inherent self-attention mechanism, resulting in the classification token likely aggregating global information from less-important background patches. Moreover, due to the immense lack of the datapoints, classifiers may fail to find the most helpful inter-class distinguishing features, since other unrelated but distinctive background regions may be falsely recognised as being valuable. To this end, we introduce a simple yet effective Salient Mask-Guided Vision Transformer (SM-ViT), where the discriminability of the standard ViT`s attention maps is boosted through salient masking of potentially discriminative foreground regions. Extensive experiments demonstrate that with the standard training procedure our SM-ViT achieves state-of-the-art performance on popular FGVC benchmarks among existing ViT-based approaches while requiring fewer resources and lower input image resolution.
[ "cs.CV", "cs.AI" ]
false
2305.07119
2023-05-11T20:17:41Z
Graph Neural Network for Accurate and Low-complexity SAR ATR
[ "Bingyi Zhang", "Sasindu Wijeratne", "Rajgopal Kannan", "Viktor Prasanna", "Carl Busart" ]
Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) is the key technique for remote sensing image recognition. The state-of-the-art works exploit the deep convolutional neural networks (CNNs) for SAR ATR, leading to high computation costs. These deep CNN models are unsuitable to be deployed on resource-limited platforms. In this work, we propose a graph neural network (GNN) model to achieve accurate and low-latency SAR ATR. We transform the input SAR image into the graph representation. The proposed GNN model consists of a stack of GNN layers that operates on the input graph to perform target classification. Unlike the state-of-the-art CNNs, which need heavy convolution operations, the proposed GNN model has low computation complexity and achieves comparable high accuracy. The GNN-based approach enables our proposed \emph{input pruning} strategy. By filtering out the irrelevant vertices in the input graph, we can reduce the computation complexity. Moreover, we propose the \emph{model pruning} strategy to sparsify the model weight matrices which further reduces the computation complexity. We evaluate the proposed GNN model on the MSTAR dataset and ship discrimination dataset. The evaluation results show that the proposed GNN model achieves 99.38\% and 99.7\% classification accuracy on the above two datasets, respectively. The proposed pruning strategies can prune 98.6\% input vertices and 97\% weight entries with negligible accuracy loss. Compared with the state-of-the-art CNNs, the proposed GNN model has only 1/3000 computation cost and 1/80 model size.
[ "cs.CV", "cs.DC" ]
false
2305.07128
2023-05-11T20:33:29Z
Pixel-wise rational model for structured light system
[ "Raúl Vargas", "Lenny A. Romero", "Song Zhang", "Andres G. Marrugo" ]
This Letter presents a novel structured light system model that effectively considers local lens distortion by pixel-wise rational functions. We leverage the stereo method for initial calibration and then estimate the rational model for each pixel. Our proposed model can achieve high measurement accuracy within and outside the calibration volume, demonstrating its robustness and accuracy.
[ "physics.optics", "cs.CV" ]
false
2305.06912
2023-05-11T15:57:45Z
Meta-Learners for Few-Shot Weakly-Supervised Medical Image Segmentation
[ "Hugo Oliveira", "Pedro H. T. Gama", "Isabelle Bloch", "Roberto Marcondes Cesar Jr" ]
Most uses of Meta-Learning in visual recognition are very often applied to image classification, with a relative lack of works in other tasks {such} as segmentation and detection. We propose a generic Meta-Learning framework for few-shot weakly-supervised segmentation in medical imaging domains. We conduct a comparative analysis of meta-learners from distinct paradigms adapted to few-shot image segmentation in different sparsely annotated radiological tasks. The imaging modalities include 2D chest, mammographic and dental X-rays, as well as 2D slices of volumetric tomography and resonance images. Our experiments consider a total of 9 meta-learners, 4 backbones and multiple target organ segmentation tasks. We explore small-data scenarios in radiology with varying weak annotation styles and densities. Our analysis shows that metric-based meta-learning approaches achieve better segmentation results in tasks with smaller domain shifts in comparison to the meta-training datasets, while some gradient- and fusion-based meta-learners are more generalizable to larger domain shifts.
[ "cs.CV", "cs.LG", "cs.NE" ]
false
2305.06978
2023-05-11T17:06:37Z
Meta-hallucinator: Towards Few-Shot Cross-Modality Cardiac Image Segmentation
[ "Ziyuan Zhao", "Fangcheng Zhou", "Zeng Zeng", "Cuntai Guan", "S. Kevin Zhou" ]
Domain shift and label scarcity heavily limit deep learning applications to various medical image analysis tasks. Unsupervised domain adaptation (UDA) techniques have recently achieved promising cross-modality medical image segmentation by transferring knowledge from a label-rich source domain to an unlabeled target domain. However, it is also difficult to collect annotations from the source domain in many clinical applications, rendering most prior works suboptimal with the label-scarce source domain, particularly for few-shot scenarios, where only a few source labels are accessible. To achieve efficient few-shot cross-modality segmentation, we propose a novel transformation-consistent meta-hallucination framework, meta-hallucinator, with the goal of learning to diversify data distributions and generate useful examples for enhancing cross-modality performance. In our framework, hallucination and segmentation models are jointly trained with the gradient-based meta-learning strategy to synthesize examples that lead to good segmentation performance on the target domain. To further facilitate data hallucination and cross-domain knowledge transfer, we develop a self-ensembling model with a hallucination-consistent property. Our meta-hallucinator can seamlessly collaborate with the meta-segmenter for learning to hallucinate with mutual benefits from a combined view of meta-learning and self-ensembling learning. Extensive studies on MM-WHS 2017 dataset for cross-modality cardiac segmentation demonstrate that our method performs favorably against various approaches by a lot in the few-shot UDA scenario.
[ "cs.CV", "cs.AI", "eess.IV" ]
false
2305.07135
2023-05-11T20:57:29Z
Divide-and-Conquer the NAS puzzle in Resource Constrained Federated Learning Systems
[ "Yeshwanth Venkatesha", "Youngeun Kim", "Hyoungseob Park", "Priyadarshini Panda" ]
Federated Learning (FL) is a privacy-preserving distributed machine learning approach geared towards applications in edge devices. However, the problem of designing custom neural architectures in federated environments is not tackled from the perspective of overall system efficiency. In this paper, we propose DC-NAS -- a divide-and-conquer approach that performs supernet-based Neural Architecture Search (NAS) in a federated system by systematically sampling the search space. We propose a novel diversified sampling strategy that balances exploration and exploitation of the search space by initially maximizing the distance between the samples and progressively shrinking this distance as the training progresses. We then perform channel pruning to reduce the training complexity at the devices further. We show that our approach outperforms several sampling strategies including Hadamard sampling, where the samples are maximally separated. We evaluate our method on the CIFAR10, CIFAR100, EMNIST, and TinyImagenet benchmarks and show a comprehensive analysis of different aspects of federated learning such as scalability, and non-IID data. DC-NAS achieves near iso-accuracy as compared to full-scale federated NAS with 50% fewer resources.
[ "cs.LG", "cs.AI", "cs.CV" ]
false
2305.07161
2023-05-11T22:20:05Z
A Deep Learning-based Compression and Classification Technique for Whole Slide Histopathology Images
[ "Agnes Barsi", "Suvendu Chandan Nayak", "Sasmita Parida", "Raj Mani Shukla" ]
This paper presents an autoencoder-based neural network architecture to compress histopathological images while retaining the denser and more meaningful representation of the original images. Current research into improving compression algorithms is focused on methods allowing lower compression rates for Regions of Interest (ROI-based approaches). Neural networks are great at extracting meaningful semantic representations from images, therefore are able to select the regions to be considered of interest for the compression process. In this work, we focus on the compression of whole slide histopathology images. The objective is to build an ensemble of neural networks that enables a compressive autoencoder in a supervised fashion to retain a denser and more meaningful representation of the input histology images. Our proposed system is a simple and novel method to supervise compressive neural networks. We test the compressed images using transfer learning-based classifiers and show that they provide promising accuracy and classification performance.
[ "eess.IV", "cs.CV", "cs.LG" ]
false
2305.07167
2023-05-11T22:40:47Z
OneCAD: One Classifier for All image Datasets using multimodal learning
[ "Shakti N. Wadekar", "Eugenio Culurciello" ]
Vision-Transformers (ViTs) and Convolutional neural networks (CNNs) are widely used Deep Neural Networks (DNNs) for classification task. These model architectures are dependent on the number of classes in the dataset it was trained on. Any change in number of classes leads to change (partial or full) in the model's architecture. This work addresses the question: Is it possible to create a number-of-class-agnostic model architecture?. This allows model's architecture to be independent of the dataset it is trained on. This work highlights the issues with the current architectures (ViTs and CNNs). Also, proposes a training and inference framework OneCAD (One Classifier for All image Datasets) to achieve close-to number-of-class-agnostic transformer model. To best of our knowledge this is the first work to use Mask-Image-Modeling (MIM) with multimodal learning for classification task to create a DNN model architecture agnostic to the number of classes. Preliminary results are shown on natural and medical image datasets. Datasets: MNIST, CIFAR10, CIFAR100 and COVIDx. Code will soon be publicly available on github.
[ "cs.CV", "cs.CL", "cs.LG", "eess.IV" ]
false
2305.13918
2023-05-11T13:29:27Z
Development and Whole-Body Validation of Personalizable Female and Male Pedestrian SAFER Human Body Models
[ "Natalia Lindgren", "Qiantailang Yuan", "Bengt Pipkorn", "Svein Kleiven", "Xiaogai Li" ]
Vulnerable road users are overrepresented in the worldwide number of road-traffic injury victims. Developing biofidelic male and female pedestrian HBMs representing a range of anthropometries is imperative to follow through with the efforts to increase road safety and propose intervention strategies. In this study, a 50th percentile male and female pedestrian of the SAFER HBM was developed via a newly developed image registration-based mesh morphing framework for subject personalization. The HBM and its accompanied personalization framework were evaluated by means of a set of cadaver experiments, where subjects were struck laterally by a generic sedan buck. In the simulated whole-body pedestrian collisions, the personalized HBMs demonstrate a good capability of reproducing the trajectories and head kinematics observed in lateral impacts. The presented pedestrian HBMs and personalization framework provide robust means to thoroughly and accurately reconstruct and evaluate pedestrian-to-vehicle collisions.
[ "cs.CV", "cs.RO", "eess.IV" ]
false
2305.15417
2023-05-11T11:51:41Z
Entropy-Aware Similarity for Balanced Clustering: A Case Study with Melanoma Detection
[ "Seok Bin Son", "Soohyun Park", "Joongheon Kim" ]
Clustering data is an unsupervised learning approach that aims to divide a set of data points into multiple groups. It is a crucial yet demanding subject in machine learning and data mining. Its successful applications span various fields. However, conventional clustering techniques necessitate the consideration of balance significance in specific applications. Therefore, this paper addresses the challenge of imbalanced clustering problems and presents a new method for balanced clustering by utilizing entropy-aware similarity, which can be defined as the degree of balances. We have coined the term, entropy-aware similarity for balanced clustering (EASB), which maximizes balance during clustering by complementary clustering of unbalanced data and incorporating entropy in a novel similarity formula that accounts for both angular differences and distances. The effectiveness of the proposed approach is evaluated on actual melanoma medial data, specifically the International Skin Imaging Collaboration (ISIC) 2019 and 2020 challenge datasets, to demonstrate how it can successfully cluster the data while preserving balance. Lastly, we can confirm that the proposed method exhibited outstanding performance in detecting melanoma, comparing to classical methods.
[ "eess.IV", "cs.CV", "cs.LG" ]
false
2305.06646
2023-05-11T08:25:25Z
Object based Bayesian full-waveform inversion for shear elastography
[ "Ana Carpio", "Elena Cebrian", "Andrea Gutierrez" ]
We develop a computational framework to quantify uncertainty in shear elastography imaging of anomalies in tissues. We adopt a Bayesian inference formulation. Given the observed data, a forward model and their uncertainties, we find the posterior probability of parameter fields representing the geometry of the anomalies and their shear moduli. To construct a prior probability, we exploit the topological energies of associated objective functions. We demonstrate the approach on synthetic two dimensional tests with smooth and irregular shapes. Sampling the posterior distribution by Markov Chain Monte Carlo (MCMC) techniques we obtain statistical information on the shear moduli and the geometrical properties of the anomalies. General affine-invariant ensemble MCMC samplers are adequate for shapes characterized by parameter sets of low to moderate dimension. However, MCMC methods are computationally expensive. For simple shapes, we devise a fast optimization scheme to calculate the maximum a posteriori (MAP) estimate representing the most likely parameter values. Then, we approximate the posterior distribution by a Gaussian distribution found by linearization about the MAP point to capture the main mode at a low computational cost.
[ "math.NA", "cs.CV", "cs.NA", "math.OC", "physics.comp-ph", "physics.data-an" ]
false
2305.06535
2023-05-11T02:44:29Z
KGA: A General Machine Unlearning Framework Based on Knowledge Gap Alignment
[ "Lingzhi Wang", "Tong Chen", "Wei Yuan", "Xingshan Zeng", "Kam-Fai Wong", "Hongzhi Yin" ]
Recent legislation of the "right to be forgotten" has led to the interest in machine unlearning, where the learned models are endowed with the function to forget information about specific training instances as if they have never existed in the training set. Previous work mainly focuses on computer vision scenarios and largely ignores the essentials of unlearning in NLP field, where text data contains more explicit and sensitive personal information than images. In this paper, we propose a general unlearning framework called KGA to induce forgetfulness. Different from previous work that tries to recover gradients or forces models to perform close to one specific distribution, KGA maintains distribution differences (i.e., knowledge gap). This relaxes the distribution assumption. Furthermore, we first apply the unlearning method to various NLP tasks (i.e., classification, translation, response generation) and propose several unlearning evaluation metrics with pertinence. Experiments on large-scale datasets show that KGA yields comprehensive improvements over baselines, where extensive analyses further validate the effectiveness of KGA and provide insight into unlearning for NLP tasks.
[ "cs.CL" ]
false
2305.06539
2023-05-11T03:01:40Z
Semantic uncertainty guides the extension of conventions to new referents
[ "Ron Eliav", "Anya Ji", "Yoav Artzi", "Robert D. Hawkins" ]
A long tradition of studies in psycholinguistics has examined the formation and generalization of ad hoc conventions in reference games, showing how newly acquired conventions for a given target transfer to new referential contexts. However, another axis of generalization remains understudied: how do conventions formed for one target transfer to completely distinct targets, when specific lexical choices are unlikely to repeat? This paper presents two dyadic studies (N = 240) that address this axis of generalization, focusing on the role of nameability -- the a priori likelihood that two individuals will share the same label. We leverage the recently-released KiloGram dataset, a collection of abstract tangram images that is orders of magnitude larger than previously available, exhibiting high diversity of properties like nameability. Our first study asks how nameability shapes convention formation, while the second asks how new conventions generalize to entirely new targets of reference. Our results raise new questions about how ad hoc conventions extend beyond target-specific re-use of specific lexical choices.
[ "cs.CL" ]
false
2305.06615
2023-05-11T07:23:01Z
Autocorrelations Decay in Texts and Applicability Limits of Language Models
[ "Nikolay Mikhaylovskiy", "Ilya Churilov" ]
We show that the laws of autocorrelations decay in texts are closely related to applicability limits of language models. Using distributional semantics we empirically demonstrate that autocorrelations of words in texts decay according to a power law. We show that distributional semantics provides coherent autocorrelations decay exponents for texts translated to multiple languages. The autocorrelations decay in generated texts is quantitatively and often qualitatively different from the literary texts. We conclude that language models exhibiting Markov behavior, including large autoregressive language models, may have limitations when applied to long texts, whether analysis or generation.
[ "cs.CL", "I.2.7" ]
false
2305.06616
2023-05-11T07:25:47Z
Serial Contrastive Knowledge Distillation for Continual Few-shot Relation Extraction
[ "Xinyi Wang", "Zitao Wang", "Wei Hu" ]
Continual few-shot relation extraction (RE) aims to continuously train a model for new relations with few labeled training data, of which the major challenges are the catastrophic forgetting of old relations and the overfitting caused by data sparsity. In this paper, we propose a new model, namely SCKD, to accomplish the continual few-shot RE task. Specifically, we design serial knowledge distillation to preserve the prior knowledge from previous models and conduct contrastive learning with pseudo samples to keep the representations of samples in different relations sufficiently distinguishable. Our experiments on two benchmark datasets validate the effectiveness of SCKD for continual few-shot RE and its superiority in knowledge transfer and memory utilization over state-of-the-art models.
[ "cs.CL" ]
false
2305.06620
2023-05-11T07:32:20Z
Improving Continual Relation Extraction by Distinguishing Analogous Semantics
[ "Wenzheng Zhao", "Yuanning Cui", "Wei Hu" ]
Continual relation extraction (RE) aims to learn constantly emerging relations while avoiding forgetting the learned relations. Existing works store a small number of typical samples to re-train the model for alleviating forgetting. However, repeatedly replaying these samples may cause the overfitting problem. We conduct an empirical study on existing works and observe that their performance is severely affected by analogous relations. To address this issue, we propose a novel continual extraction model for analogous relations. Specifically, we design memory-insensitive relation prototypes and memory augmentation to overcome the overfitting problem. We also introduce integrated training and focal knowledge distillation to enhance the performance on analogous relations. Experimental results show the superiority of our model and demonstrate its effectiveness in distinguishing analogous relations and overcoming overfitting.
[ "cs.CL" ]
false
2305.06747
2023-05-11T12:10:20Z
The First Parallel Corpora for Kurdish Sign Language
[ "Zina Kamal", "Hossein Hassani" ]
Kurdish Sign Language (KuSL) is the natural language of the Kurdish Deaf people. We work on automatic translation between spoken Kurdish and KuSL. Sign languages evolve rapidly and follow grammatical rules that differ from spoken languages. Consequently,those differences should be considered during any translation. We proposed an avatar-based automatic translation of Kurdish texts in the Sorani (Central Kurdish) dialect into the Kurdish Sign language. We developed the first parallel corpora for that pair that we use to train a Statistical Machine Translation (SMT) engine. We tested the outcome understandability and evaluated it using the Bilingual Evaluation Understudy (BLEU). Results showed 53.8% accuracy. Compared to the previous experiments in the field, the result is considerably high. We suspect the reason to be the similarity between the structure of the two pairs. We plan to make the resources publicly available under CC BY-NC-SA 4.0 license on the Kurdish-BLARK (https://kurdishblark.github.io/).
[ "cs.CL" ]
false
2305.06801
2023-05-11T13:42:58Z
Detecting Idiomatic Multiword Expressions in Clinical Terminology using Definition-Based Representation Learning
[ "François Remy", "Alfiya Khabibullina", "Thomas Demeester" ]
This paper shines a light on the potential of definition-based semantic models for detecting idiomatic and semi-idiomatic multiword expressions (MWEs) in clinical terminology. Our study focuses on biomedical entities defined in the UMLS ontology and aims to help prioritize the translation efforts of these entities. In particular, we develop an effective tool for scoring the idiomaticity of biomedical MWEs based on the degree of similarity between the semantic representations of those MWEs and a weighted average of the representation of their constituents. We achieve this using a biomedical language model trained to produce similar representations for entity names and their definitions, called BioLORD. The importance of this definition-based approach is highlighted by comparing the BioLORD model to two other state-of-the-art biomedical language models based on Transformer: SapBERT and CODER. Our results show that the BioLORD model has a strong ability to identify idiomatic MWEs, not replicated in other models. Our corpus-free idiomaticity estimation helps ontology translators to focus on more challenging MWEs.
[ "cs.CL" ]
false
2305.06818
2023-05-11T14:12:55Z
Towards a Computational Analysis of Suspense: Detecting Dangerous Situations
[ "Albin Zehe", "Julian Schröter", "Andreas Hotho" ]
Suspense is an important tool in storytelling to keep readers engaged and wanting to read more. However, it has so far not been studied extensively in Computational Literary Studies. In this paper, we focus on one of the elements authors can use to build up suspense: dangerous situations. We introduce a corpus of texts annotated with dangerous situations, distinguishing between 7 types of danger. Additionally, we annotate parts of the text that describe fear experienced by a character, regardless of the actual presence of danger. We present experiments towards the automatic detection of these situations, finding that unsupervised baseline methods can provide valuable signals for the detection, but more complex methods are necessary for further analysis. Not unexpectedly, the description of danger and fear often relies heavily on the context, both local (e.g., situations where danger is only mentioned, but not actually present) and global (e.g., "storm" being used in a literal sense in an adventure novel, but metaphorically in a romance novel).
[ "cs.CL", "I.2.7" ]
false
2305.06892
2023-05-11T15:29:04Z
IUST_NLP at SemEval-2023 Task 10: Explainable Detecting Sexism with Transformers and Task-adaptive Pretraining
[ "Hadiseh Mahmoudi" ]
This paper describes our system on SemEval-2023 Task 10: Explainable Detection of Online Sexism (EDOS). This work aims to design an automatic system for detecting and classifying sexist content in online spaces. We propose a set of transformer-based pre-trained models with task-adaptive pretraining and ensemble learning. The main contributions of our system include analyzing the performance of different transformer-based pre-trained models and combining these models, as well as providing an efficient method using large amounts of unlabeled data for model adaptive pretraining. We have also explored several other strategies. On the test dataset, our system achieves F1-scores of 83%, 64%, and 47% on subtasks A, B, and C, respectively.
[ "cs.CL" ]
false
2305.07005
2023-05-11T17:44:29Z
Subword Segmental Machine Translation: Unifying Segmentation and Target Sentence Generation
[ "Francois Meyer", "Jan Buys" ]
Subword segmenters like BPE operate as a preprocessing step in neural machine translation and other (conditional) language models. They are applied to datasets before training, so translation or text generation quality relies on the quality of segmentations. We propose a departure from this paradigm, called subword segmental machine translation (SSMT). SSMT unifies subword segmentation and MT in a single trainable model. It learns to segment target sentence words while jointly learning to generate target sentences. To use SSMT during inference we propose dynamic decoding, a text generation algorithm that adapts segmentations as it generates translations. Experiments across 6 translation directions show that SSMT improves chrF scores for morphologically rich agglutinative languages. Gains are strongest in the very low-resource scenario. SSMT also learns subwords that are closer to morphemes compared to baselines and proves more robust on a test set constructed for evaluating morphological compositional generalisation.
[ "cs.CL" ]
false
2305.07016
2023-05-11T17:55:45Z
A General-Purpose Multilingual Document Encoder
[ "Onur Galoğlu", "Robert Litschko", "Goran Glavaš" ]
Massively multilingual pretrained transformers (MMTs) have tremendously pushed the state of the art on multilingual NLP and cross-lingual transfer of NLP models in particular. While a large body of work leveraged MMTs to mine parallel data and induce bilingual document embeddings, much less effort has been devoted to training general-purpose (massively) multilingual document encoder that can be used for both supervised and unsupervised document-level tasks. In this work, we pretrain a massively multilingual document encoder as a hierarchical transformer model (HMDE) in which a shallow document transformer contextualizes sentence representations produced by a state-of-the-art pretrained multilingual sentence encoder. We leverage Wikipedia as a readily available source of comparable documents for creating training data, and train HMDE by means of a cross-lingual contrastive objective, further exploiting the category hierarchy of Wikipedia for creation of difficult negatives. We evaluate the effectiveness of HMDE in two arguably most common and prominent cross-lingual document-level tasks: (1) cross-lingual transfer for topical document classification and (2) cross-lingual document retrieval. HMDE is significantly more effective than (i) aggregations of segment-based representations and (ii) multilingual Longformer. Crucially, owing to its massively multilingual lower transformer, HMDE successfully generalizes to languages unseen in document-level pretraining. We publicly release our code and models at https://github.com/ogaloglu/pre-training-multilingual-document-encoders .
[ "cs.CL" ]
false
2305.07085
2023-05-11T18:48:18Z
Enhancing Contrastive Learning with Noise-Guided Attack: Towards Continual Relation Extraction in the Wild
[ "Ting Wu", "Jingyi Liu", "Rui Zheng", "Qi Zhang", "Tao Gui", "Xuanjing Huang" ]
The principle of continual relation extraction~(CRE) involves adapting to emerging novel relations while preserving od knowledge. While current endeavors in CRE succeed in preserving old knowledge, they tend to fail when exposed to contaminated data streams. We assume this is attributed to their reliance on an artificial hypothesis that the data stream has no annotation errors, which hinders real-world applications for CRE. Considering the ubiquity of noisy labels in real-world datasets, in this paper, we formalize a more practical learning scenario, termed as \textit{noisy-CRE}. Building upon this challenging setting, we develop a noise-resistant contrastive framework named as \textbf{N}oise-guided \textbf{a}ttack in \textbf{C}ontrative \textbf{L}earning~(NaCL) to learn incremental corrupted relations. Compared to direct noise discarding or inaccessible noise relabeling, we present modifying the feature space to match the given noisy labels via attacking can better enrich contrastive representations. Extensive empirical validations highlight that NaCL can achieve consistent performance improvements with increasing noise rates, outperforming state-of-the-art baselines.
[ "cs.CL" ]
false
2305.07151
2023-05-11T21:41:41Z
Overinformative Question Answering by Humans and Machines
[ "Polina Tsvilodub", "Michael Franke", "Robert D. Hawkins", "Noah D. Goodman" ]
When faced with a polar question, speakers often provide overinformative answers going beyond a simple "yes" or "no". But what principles guide the selection of additional information? In this paper, we provide experimental evidence from two studies suggesting that overinformativeness in human answering is driven by considerations of relevance to the questioner's goals which they flexibly adjust given the functional context in which the question is uttered. We take these human results as a strong benchmark for investigating question-answering performance in state-of-the-art neural language models, conducting an extensive evaluation on items from human experiments. We find that most models fail to adjust their answering behavior in a human-like way and tend to include irrelevant information. We show that GPT-3 is highly sensitive to the form of the prompt and only achieves human-like answer patterns when guided by an example and cognitively-motivated explanation.
[ "cs.CL" ]
false
2305.10436
2023-05-11T20:58:10Z
SmartPhone: Exploring Keyword Mnemonic with Auto-generated Verbal and Visual Cues
[ "Jaewook Lee", "Andrew Lan" ]
In second language vocabulary learning, existing works have primarily focused on either the learning interface or scheduling personalized retrieval practices to maximize memory retention. However, the learning content, i.e., the information presented on flashcards, has mostly remained constant. Keyword mnemonic is a notable learning strategy that relates new vocabulary to existing knowledge by building an acoustic and imagery link using a keyword that sounds alike. Beyond that, producing verbal and visual cues associated with the keyword to facilitate building these links requires a manual process and is not scalable. In this paper, we explore an opportunity to use large language models to automatically generate verbal and visual cues for keyword mnemonics. Our approach, an end-to-end pipeline for auto-generating verbal and visual cues, can automatically generate highly memorable cues. We investigate the effectiveness of our approach via a human participant experiment by comparing it with manually generated cues.
[ "cs.CL" ]
false
2305.13317
2023-05-11T17:20:49Z
A Novel Dataset Towards Extracting Virus-Host Interactions
[ "Rasha Alshawi", "Atriya Sen", "Nathan S. Upham", "Beckett Sterner" ]
We describe a novel dataset for the automated recognition of named taxonomic and other entities relevant to the association of viruses with their hosts. We further describe some initial results using pre-trained models on the named-entity recognition (NER) task on this novel dataset. We propose that our dataset of manually annotated abstracts now offers a Gold Standard Corpus for training future NER models in the automated extraction of host-pathogen detection methods from scientific publications, and further explain how our work makes first steps towards predicting the important human health-related concept of viral spillover risk automatically from the scientific literature.
[ "cs.CL" ]
false
2306.01743
2023-05-11T14:34:08Z
Abugida Normalizer and Parser for Unicode texts
[ "Nazmuddoha Ansary", "Quazi Adibur Rahman Adib", "Tahsin Reasat", "Sazia Mehnaz", "Asif Shahriyar Sushmit", "Ahmed Imtiaz Humayun", "Mohammad Mamun Or Rashid", "Farig Sadeque" ]
This paper proposes two libraries to address common and uncommon issues with Unicode-based writing schemes for Indic languages. The first is a normalizer that corrects inconsistencies caused by the encoding scheme https://pypi.org/project/bnunicodenormalizer/ . The second is a grapheme parser for Abugida text https://pypi.org/project/indicparser/ . Both tools are more efficient and effective than previously used tools. We report 400% increase in speed and ensure significantly better performance for different language model based downstream tasks.
[ "cs.CL" ]
false
2305.06522
2023-05-11T01:50:16Z
Randomized Smoothing with Masked Inference for Adversarially Robust Text Classifications
[ "Han Cheol Moon", "Shafiq Joty", "Ruochen Zhao", "Megh Thakkar", "Xu Chi" ]
Large-scale pre-trained language models have shown outstanding performance in a variety of NLP tasks. However, they are also known to be significantly brittle against specifically crafted adversarial examples, leading to increasing interest in probing the adversarial robustness of NLP systems. We introduce RSMI, a novel two-stage framework that combines randomized smoothing (RS) with masked inference (MI) to improve the adversarial robustness of NLP systems. RS transforms a classifier into a smoothed classifier to obtain robust representations, whereas MI forces a model to exploit the surrounding context of a masked token in an input sequence. RSMI improves adversarial robustness by 2 to 3 times over existing state-of-the-art methods on benchmark datasets. We also perform in-depth qualitative analysis to validate the effectiveness of the different stages of RSMI and probe the impact of its components through extensive ablations. By empirically proving the stability of RSMI, we put it forward as a practical method to robustly train large-scale NLP models. Our code and datasets are available at https://github.com/Han8931/rsmi_nlp
[ "cs.CL", "cs.AI" ]
false
2305.06545
2023-05-11T03:21:56Z
GeoGLUE: A GeoGraphic Language Understanding Evaluation Benchmark
[ "Dongyang Li", "Ruixue Ding", "Qiang Zhang", "Zheng Li", "Boli Chen", "Pengjun Xie", "Yao Xu", "Xin Li", "Ning Guo", "Fei Huang", "Xiaofeng He" ]
With a fast developing pace of geographic applications, automatable and intelligent models are essential to be designed to handle the large volume of information. However, few researchers focus on geographic natural language processing, and there has never been a benchmark to build a unified standard. In this work, we propose a GeoGraphic Language Understanding Evaluation benchmark, named GeoGLUE. We collect data from open-released geographic resources and introduce six natural language understanding tasks, including geographic textual similarity on recall, geographic textual similarity on rerank, geographic elements tagging, geographic composition analysis, geographic where what cut, and geographic entity alignment. We also pro vide evaluation experiments and analysis of general baselines, indicating the effectiveness and significance of the GeoGLUE benchmark.
[ "cs.CL", "cs.AI" ]
false
2305.06574
2023-05-11T05:17:54Z
A Fused Gromov-Wasserstein Framework for Unsupervised Knowledge Graph Entity Alignment
[ "Jianheng Tang", "Kangfei Zhao", "Jia Li" ]
Entity alignment is the task of identifying corresponding entities across different knowledge graphs (KGs). Although recent embedding-based entity alignment methods have shown significant advancements, they still struggle to fully utilize KG structural information. In this paper, we introduce FGWEA, an unsupervised entity alignment framework that leverages the Fused Gromov-Wasserstein (FGW) distance, allowing for a comprehensive comparison of entity semantics and KG structures within a joint optimization framework. To address the computational challenges associated with optimizing FGW, we devise a three-stage progressive optimization algorithm. It starts with a basic semantic embedding matching, proceeds to approximate cross-KG structural and relational similarity matching based on iterative updates of high-confidence entity links, and ultimately culminates in a global structural comparison between KGs. We perform extensive experiments on four entity alignment datasets covering 14 distinct KGs across five languages. Without any supervision or hyper-parameter tuning, FGWEA surpasses 21 competitive baselines, including cutting-edge supervised entity alignment methods. Our code is available at https://github.com/squareRoot3/FusedGW-Entity-Alignment.
[ "cs.CL", "cs.AI" ]
false
2305.06683
2023-05-11T09:40:24Z
Cost-efficient Crowdsourcing for Span-based Sequence Labeling: Worker Selection and Data Augmentation
[ "Yujie Wang", "Chao Huang", "Liner Yang", "Zhixuan Fang", "Yaping Huang", "Yang Liu", "Erhong Yang" ]
This paper introduces a novel worker selection algorithm, enhancing annotation quality and reducing costs in challenging span-based sequence labeling tasks in Natural Language Processing (NLP). Unlike previous studies targeting simpler tasks, this study contends with the complexities of label interdependencies in sequence labeling tasks. The proposed algorithm utilizes a Combinatorial Multi-Armed Bandit (CMAB) approach for worker selection. The challenge of dealing with imbalanced and small-scale datasets, which hinders offline simulation of worker selection, is tackled using an innovative data augmentation method termed shifting, expanding, and shrinking (SES). The SES method is designed specifically for sequence labeling tasks. Rigorous testing on CoNLL 2003 NER and Chinese OEI datasets showcased the algorithm's efficiency, with an increase in F1 score up to 100.04% of the expert-only baseline, alongside cost savings up to 65.97%. The paper also encompasses a dataset-independent test emulating annotation evaluation through a Bernoulli distribution, which still led to an impressive 97.56% F1 score of the expert baseline and 59.88% cost savings. This research addresses and overcomes numerous obstacles in worker selection for complex NLP tasks.
[ "cs.CL", "cs.AI" ]
false