arxiv_id
stringlengths
10
10
published
stringlengths
20
20
titles
stringlengths
9
243
authors
sequencelengths
1
389
abstract
stringlengths
96
3.09k
categories
sequencelengths
1
10
selected
bool
2 classes
2305.06812
2023-05-11T14:08:53Z
THUIR@COLIEE 2023: Incorporating Structural Knowledge into Pre-trained Language Models for Legal Case Retrieval
[ "Haitao Li", "Weihang Su", "Changyue Wang", "Yueyue Wu", "Qingyao Ai", "Yiqun Liu" ]
Legal case retrieval techniques play an essential role in modern intelligent legal systems. As an annually well-known international competition, COLIEE is aiming to achieve the state-of-the-art retrieval model for legal texts. This paper summarizes the approach of the championship team THUIR in COLIEE 2023. To be specific, we design structure-aware pre-trained language models to enhance the understanding of legal cases. Furthermore, we propose heuristic pre-processing and post-processing approaches to reduce the influence of irrelevant messages. In the end, learning-to-rank methods are employed to merge features with different dimensions. Experimental results demonstrate the superiority of our proposal. Official results show that our run has the best performance among all submissions. The implementation of our method can be found at https://github.com/CSHaitao/THUIR-COLIEE2023.
[ "cs.IR", "cs.CL" ]
false
2305.06817
2023-05-11T14:11:48Z
THUIR@COLIEE 2023: More Parameters and Legal Knowledge for Legal Case Entailment
[ "Haitao Li", "Changyue Wang", "Weihang Su", "Yueyue Wu", "Qingyao Ai", "Yiqun Liu" ]
This paper describes the approach of the THUIR team at the COLIEE 2023 Legal Case Entailment task. This task requires the participant to identify a specific paragraph from a given supporting case that entails the decision for the query case. We try traditional lexical matching methods and pre-trained language models with different sizes. Furthermore, learning-to-rank methods are employed to further improve performance. However, learning-to-rank is not very robust on this task. which suggests that answer passages cannot simply be determined with information retrieval techniques. Experimental results show that more parameters and legal knowledge contribute to the legal case entailment task. Finally, we get the third place in COLIEE 2023. The implementation of our method can be found at https://github.com/CSHaitao/THUIR-COLIEE2023.
[ "cs.CL", "cs.IR" ]
false
2305.06993
2023-05-11T17:29:47Z
SMATCH++: Standardized and Extended Evaluation of Semantic Graphs
[ "Juri Opitz" ]
The Smatch metric is a popular method for evaluating graph distances, as is necessary, for instance, to assess the performance of semantic graph parsing systems. However, we observe some issues in the metric that jeopardize meaningful evaluation. E.g., opaque pre-processing choices can affect results, and current graph-alignment solvers do not provide us with upper-bounds. Without upper-bounds, however, fair evaluation is not guaranteed. Furthermore, adaptions of Smatch for extended tasks (e.g., fine-grained semantic similarity) are spread out, and lack a unifying framework. For better inspection, we divide the metric into three modules: pre-processing, alignment, and scoring. Examining each module, we specify its goals and diagnose potential issues, for which we discuss and test mitigation strategies. For pre-processing, we show how to fully conform to annotation guidelines that allow structurally deviating but valid graphs. For safer and enhanced alignment, we show the feasibility of optimal alignment in a standard evaluation setup, and develop a lossless graph compression method that shrinks the search space and significantly increases efficiency. For improved scoring, we propose standardized and extended metric calculation of fine-grained sub-graph meaning aspects. Our code is available at https://github.com/flipz357/smatchpp
[ "cs.CL", "cs.AI" ]
false
2305.07001
2023-05-11T17:39:07Z
Recommendation as Instruction Following: A Large Language Model Empowered Recommendation Approach
[ "Junjie Zhang", "Ruobing Xie", "Yupeng Hou", "Wayne Xin Zhao", "Leyu Lin", "Ji-Rong Wen" ]
In the past decades, recommender systems have attracted much attention in both research and industry communities, and a large number of studies have been devoted to developing effective recommendation models. Basically speaking, these models mainly learn the underlying user preference from historical behavior data, and then estimate the user-item matching relationships for recommendations. Inspired by the recent progress on large language models (LLMs), we take a different approach to developing the recommendation models, considering recommendation as instruction following by LLMs. The key idea is that the preferences or needs of a user can be expressed in natural language descriptions (called instructions), so that LLMs can understand and further execute the instruction for fulfilling the recommendation task. Instead of using public APIs of LLMs, we instruction tune an open-source LLM (3B Flan-T5-XL), in order to better adapt LLMs to recommender systems. For this purpose, we first design a general instruction format for describing the preference, intention, task form and context of a user in natural language. Then we manually design 39 instruction templates and automatically generate a large amount of user-personalized instruction data (252K instructions) with varying types of preferences and intentions. To demonstrate the effectiveness of our approach, we instantiate the instruction templates into several widely-studied recommendation (or search) tasks, and conduct extensive experiments on these tasks with real-world datasets. Experiment results show that the proposed approach can outperform several competitive baselines, including the powerful GPT-3.5, on these evaluation tasks. Our approach sheds light on developing more user-friendly recommender systems, in which users can freely communicate with the system and obtain more accurate recommendations via natural language instructions.
[ "cs.IR", "cs.CL" ]
false
2305.07157
2023-05-11T22:07:27Z
Exploring Zero and Few-shot Techniques for Intent Classification
[ "Soham Parikh", "Quaizar Vohra", "Prashil Tumbade", "Mitul Tiwari" ]
Conversational NLU providers often need to scale to thousands of intent-classification models where new customers often face the cold-start problem. Scaling to so many customers puts a constraint on storage space as well. In this paper, we explore four different zero and few-shot intent classification approaches with this low-resource constraint: 1) domain adaptation, 2) data augmentation, 3) zero-shot intent classification using descriptions large language models (LLMs), and 4) parameter-efficient fine-tuning of instruction-finetuned language models. Our results show that all these approaches are effective to different degrees in low-resource settings. Parameter-efficient fine-tuning using T-few recipe (Liu et al., 2022) on Flan-T5 (Chang et al., 2022) yields the best performance even with just one sample per intent. We also show that the zero-shot method of prompting LLMs using intent descriptions
[ "cs.CL", "cs.AI" ]
false
2305.10433
2023-05-11T11:56:42Z
Toxicity Inspector: A Framework to Evaluate Ground Truth in Toxicity Detection Through Feedback
[ "Huriyyah Althunayan", "Rahaf Bahlas", "Manar Alharbi", "Lena Alsuwailem", "Abeer Aldayel", "Rehab ALahmadi" ]
Toxic language is difficult to define, as it is not monolithic and has many variations in perceptions of toxicity. This challenge of detecting toxic language is increased by the highly contextual and subjectivity of its interpretation, which can degrade the reliability of datasets and negatively affect detection model performance. To fill this void, this paper introduces a toxicity inspector framework that incorporates a human-in-the-loop pipeline with the aim of enhancing the reliability of toxicity benchmark datasets by centering the evaluator's values through an iterative feedback cycle. The centerpiece of this framework is the iterative feedback process, which is guided by two metric types (hard and soft) that provide evaluators and dataset creators with insightful examination to balance the tradeoff between performance gains and toxicity avoidance.
[ "cs.CL", "cs.SI" ]
false
2305.06530
2023-05-11T02:29:53Z
How Good are Commercial Large Language Models on African Languages?
[ "Jessica Ojo", "Kelechi Ogueji" ]
Recent advancements in Natural Language Processing (NLP) has led to the proliferation of large pretrained language models. These models have been shown to yield good performance, using in-context learning, even on unseen tasks and languages. They have also been exposed as commercial APIs as a form of language-model-as-a-service, with great adoption. However, their performance on African languages is largely unknown. We present a preliminary analysis of commercial large language models on two tasks (machine translation and text classification) across eight African languages, spanning different language families and geographical areas. Our results suggest that commercial language models produce below-par performance on African languages. We also find that they perform better on text classification than machine translation. In general, our findings present a call-to-action to ensure African languages are well represented in commercial large language models, given their growing popularity.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2305.06555
2023-05-11T04:19:08Z
Domain Incremental Lifelong Learning in an Open World
[ "Yi Dai", "Hao Lang", "Yinhe Zheng", "Bowen Yu", "Fei Huang", "Yongbin Li" ]
Lifelong learning (LL) is an important ability for NLP models to learn new tasks continuously. Architecture-based approaches are reported to be effective implementations for LL models. However, it is non-trivial to extend previous approaches to domain incremental LL scenarios since they either require access to task identities in the testing phase or cannot handle samples from unseen tasks. In this paper, we propose \textbf{Diana}: a \underline{d}ynam\underline{i}c \underline{a}rchitecture-based lifelo\underline{n}g le\underline{a}rning model that tries to learn a sequence of tasks with a prompt-enhanced language model. Four types of hierarchically organized prompts are used in Diana to capture knowledge from different granularities. Specifically, we dedicate task-level prompts to capture task-specific knowledge to retain high LL performances and maintain instance-level prompts to learn knowledge shared across input samples to improve the model's generalization performance. Moreover, we dedicate separate prompts to explicitly model unseen tasks and introduce a set of prompt key vectors to facilitate knowledge sharing between tasks. Extensive experiments demonstrate that Diana outperforms state-of-the-art LL models, especially in handling unseen tasks. We release the code and data at \url{https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/diana}.
[ "cs.CL", "cs.AI", "cs.LG" ]
true
2305.06557
2023-05-11T04:28:58Z
Long-Tailed Question Answering in an Open World
[ "Yi Dai", "Hao Lang", "Yinhe Zheng", "Fei Huang", "Yongbin Li" ]
Real-world data often have an open long-tailed distribution, and building a unified QA model supporting various tasks is vital for practical QA applications. However, it is non-trivial to extend previous QA approaches since they either require access to seen tasks of adequate samples or do not explicitly model samples from unseen tasks. In this paper, we define Open Long-Tailed QA (OLTQA) as learning from long-tailed distributed data and optimizing performance over seen and unseen QA tasks. We propose an OLTQA model that encourages knowledge sharing between head, tail and unseen tasks, and explicitly mines knowledge from a large pre-trained language model (LM). Specifically, we organize our model through a pool of fine-grained components and dynamically combine these components for an input to facilitate knowledge sharing. A retrieve-then-rerank frame is further introduced to select in-context examples, which guild the LM to generate text that express knowledge for QA tasks. Moreover, a two-stage training approach is introduced to pre-train the framework by knowledge distillation (KD) from the LM and then jointly train the frame and a QA model through an adaptive mutual KD method. On a large-scale OLTQA dataset we curate from 43 existing QA datasets, our model consistently outperforms the state-of-the-art. We release the code and data at \url{https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/oltqa}.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2305.06897
2023-05-11T15:34:53Z
AfriQA: Cross-lingual Open-Retrieval Question Answering for African Languages
[ "Odunayo Ogundepo", "Tajuddeen R. Gwadabe", "Clara E. Rivera", "Jonathan H. Clark", "Sebastian Ruder", "David Ifeoluwa Adelani", "Bonaventure F. P. Dossou", "Abdou Aziz DIOP", "Claytone Sikasote", "Gilles Hacheme", "Happy Buzaaba", "Ignatius Ezeani", "Rooweither Mabuya", "Salomey Osei", "Chris Emezue", "Albert Njoroge Kahira", "Shamsuddeen H. Muhammad", "Akintunde Oladipo", "Abraham Toluwase Owodunni", "Atnafu Lambebo Tonja", "Iyanuoluwa Shode", "Akari Asai", "Tunde Oluwaseyi Ajayi", "Clemencia Siro", "Steven Arthur", "Mofetoluwa Adeyemi", "Orevaoghene Ahia", "Anuoluwapo Aremu", "Oyinkansola Awosan", "Chiamaka Chukwuneke", "Bernard Opoku", "Awokoya Ayodele", "Verrah Otiende", "Christine Mwase", "Boyd Sinkala", "Andre Niyongabo Rubungo", "Daniel A. Ajisafe", "Emeka Felix Onwuegbuzia", "Habib Mbow", "Emile Niyomutabazi", "Eunice Mukonde", "Falalu Ibrahim Lawan", "Ibrahim Said Ahmad", "Jesujoba O. Alabi", "Martin Namukombo", "Mbonu Chinedu", "Mofya Phiri", "Neo Putini", "Ndumiso Mngoma", "Priscilla A. Amuok", "Ruqayya Nasir Iro", "Sonia Adhiambo" ]
African languages have far less in-language content available digitally, making it challenging for question answering systems to satisfy the information needs of users. Cross-lingual open-retrieval question answering (XOR QA) systems -- those that retrieve answer content from other languages while serving people in their native language -- offer a means of filling this gap. To this end, we create AfriQA, the first cross-lingual QA dataset with a focus on African languages. AfriQA includes 12,000+ XOR QA examples across 10 African languages. While previous datasets have focused primarily on languages where cross-lingual QA augments coverage from the target language, AfriQA focuses on languages where cross-lingual answer content is the only high-coverage source of answer content. Because of this, we argue that African languages are one of the most important and realistic use cases for XOR QA. Our experiments demonstrate the poor performance of automatic translation and multilingual retrieval methods. Overall, AfriQA proves challenging for state-of-the-art QA models. We hope that the dataset enables the development of more equitable QA technology.
[ "cs.CL", "cs.AI", "cs.IR" ]
false
2305.07095
2023-05-11T19:01:13Z
Are Machine Rationales (Not) Useful to Humans? Measuring and Improving Human Utility of Free-Text Rationales
[ "Brihi Joshi", "Ziyi Liu", "Sahana Ramnath", "Aaron Chan", "Zhewei Tong", "Shaoliang Nie", "Qifan Wang", "Yejin Choi", "Xiang Ren" ]
Among the remarkable emergent capabilities of large language models (LMs) is free-text rationalization; beyond a certain scale, large LMs are capable of generating seemingly useful rationalizations, which in turn, can dramatically enhance their performances on leaderboards. This phenomenon raises a question: can machine generated rationales also be useful for humans, especially when lay humans try to answer questions based on those machine rationales? We observe that human utility of existing rationales is far from satisfactory, and expensive to estimate with human studies. Existing metrics like task performance of the LM generating the rationales, or similarity between generated and gold rationales are not good indicators of their human utility. While we observe that certain properties of rationales like conciseness and novelty are correlated with their human utility, estimating them without human involvement is challenging. We show that, by estimating a rationale's helpfulness in answering similar unseen instances, we can measure its human utility to a better extent. We also translate this finding into an automated score, GEN-U, that we propose, which can help improve LMs' ability to generate rationales with better human utility, while maintaining most of its task performance. Lastly, we release all code and collected data with this project.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2305.06523
2023-05-11T01:54:45Z
A fast topological approach for predicting anomalies in time-varying graphs
[ "Umar Islambekov", "Hasani Pathirana", "Omid Khormali", "Cuneyt Akcora", "Ekaterina Smirnova" ]
Large time-varying graphs are increasingly common in financial, social and biological settings. Feature extraction that efficiently encodes the complex structure of sparse, multi-layered, dynamic graphs presents computational and methodological challenges. In the past decade, a persistence diagram (PD) from topological data analysis (TDA) has become a popular descriptor of shape of data with a well-defined distance between points. However, applications of TDA to graphs, where there is no intrinsic concept of distance between the nodes, remain largely unexplored. This paper addresses this gap in the literature by introducing a computationally efficient framework to extract shape information from graph data. Our framework has two main steps: first, we compute a PD using the so-called lower-star filtration which utilizes quantitative node attributes, and then vectorize it by averaging the associated Betti function over successive scale values on a one-dimensional grid. Our approach avoids embedding a graph into a metric space and has stability properties against input noise. In simulation studies, we show that the proposed vector summary leads to improved change point detection rate in time-varying graphs. In a real data application, our approach provides up to 22% gain in anomalous price prediction for the Ethereum cryptocurrency transaction networks.
[ "cs.LG" ]
false
2305.06624
2023-05-11T07:43:40Z
Matrix tri-factorization over the tropical semiring
[ "Amra Omanović", "Polona Oblak", "Tomaž Curk" ]
Tropical semiring has proven successful in several research areas, including optimal control, bioinformatics, discrete event systems, or solving a decision problem. In previous studies, a matrix two-factorization algorithm based on the tropical semiring has been applied to investigate bipartite and tripartite networks. Tri-factorization algorithms based on standard linear algebra are used for solving tasks such as data fusion, co-clustering, matrix completion, community detection, and more. However, there is currently no tropical matrix tri-factorization approach, which would allow for the analysis of multipartite networks with a high number of parts. To address this, we propose the triFastSTMF algorithm, which performs tri-factorization over the tropical semiring. We apply it to analyze a four-partition network structure and recover the edge lengths of the network. We show that triFastSTMF performs similarly to Fast-NMTF in terms of approximation and prediction performance when fitted on the whole network. When trained on a specific subnetwork and used to predict the whole network, triFastSTMF outperforms Fast-NMTF by several orders of magnitude smaller error. The robustness of triFastSTMF is due to tropical operations, which are less prone to predict large values compared to standard operations.
[ "cs.LG" ]
false
2305.06753
2023-05-11T12:19:30Z
Comparison of Clustering Algorithms for Statistical Features of Vibration Data Sets
[ "Philipp Sepin", "Jana Kemnitz", "Safoura Rezapour Lakani", "Daniel Schall" ]
Vibration-based condition monitoring systems are receiving increasing attention due to their ability to accurately identify different conditions by capturing dynamic features over a broad frequency range. However, there is little research on clustering approaches in vibration data and the resulting solutions are often optimized for a single data set. In this work, we present an extensive comparison of the clustering algorithms K-means clustering, OPTICS, and Gaussian mixture model clustering (GMM) applied to statistical features extracted from the time and frequency domains of vibration data sets. Furthermore, we investigate the influence of feature combinations, feature selection using principal component analysis (PCA), and the specified number of clusters on the performance of the clustering algorithms. We conducted this comparison in terms of a grid search using three different benchmark data sets. Our work showed that averaging (Mean, Median) and variance-based features (Standard Deviation, Interquartile Range) performed significantly better than shape-based features (Skewness, Kurtosis). In addition, K-means outperformed GMM slightly for these data sets, whereas OPTICS performed significantly worse. We were also able to show that feature combinations as well as PCA feature selection did not result in any significant performance improvements. With an increase in the specified number of clusters, clustering algorithms performed better, although there were some specific algorithmic restrictions.
[ "cs.LG" ]
false
2305.06939
2023-05-11T16:17:43Z
Deep Multi-View Subspace Clustering with Anchor Graph
[ "Chenhang Cui", "Yazhou Ren", "Jingyu Pu", "Xiaorong Pu", "Lifang He" ]
Deep multi-view subspace clustering (DMVSC) has recently attracted increasing attention due to its promising performance. However, existing DMVSC methods still have two issues: (1) they mainly focus on using autoencoders to nonlinearly embed the data, while the embedding may be suboptimal for clustering because the clustering objective is rarely considered in autoencoders, and (2) existing methods typically have a quadratic or even cubic complexity, which makes it challenging to deal with large-scale data. To address these issues, in this paper we propose a novel deep multi-view subspace clustering method with anchor graph (DMCAG). To be specific, DMCAG firstly learns the embedded features for each view independently, which are used to obtain the subspace representations. To significantly reduce the complexity, we construct an anchor graph with small size for each view. Then, spectral clustering is performed on an integrated anchor graph to obtain pseudo-labels. To overcome the negative impact caused by suboptimal embedded features, we use pseudo-labels to refine the embedding process to make it more suitable for the clustering task. Pseudo-labels and embedded features are updated alternately. Furthermore, we design a strategy to keep the consistency of the labels based on contrastive learning to enhance the clustering performance. Empirical studies on real-world datasets show that our method achieves superior clustering performance over other state-of-the-art methods.
[ "cs.LG" ]
false
2305.07037
2023-05-11T11:54:36Z
Rethink Depth Separation with Intra-layer Links
[ "Feng-Lei Fan", "Ze-Yu Li", "Huan Xiong", "Tieyong Zeng" ]
The depth separation theory is nowadays widely accepted as an effective explanation for the power of depth, which consists of two parts: i) there exists a function representable by a deep network; ii) such a function cannot be represented by a shallow network whose width is lower than a threshold. However, this theory is established for feedforward networks. Few studies, if not none, considered the depth separation theory in the context of shortcuts which are the most common network types in solving real-world problems. Here, we find that adding intra-layer links can modify the depth separation theory. First, we report that adding intra-layer links can greatly improve a network's representation capability through bound estimation, explicit construction, and functional space analysis. Then, we modify the depth separation theory by showing that a shallow network with intra-layer links does not need to go as wide as before to express some hard functions constructed by a deep network. Such functions include the renowned "sawtooth" functions. Moreover, the saving of width is up to linear. Our results supplement the existing depth separation theory by examining its limit in the shortcut domain. Also, the mechanism we identify can be translated into analyzing the expressivity of popular shortcut networks such as ResNet and DenseNet, \textit{e.g.}, residual connections empower a network to represent a sawtooth function efficiently.
[ "cs.LG" ]
false
2305.07138
2023-05-11T21:03:34Z
Promise and Limitations of Supervised Optimal Transport-Based Graph Summarization via Information Theoretic Measures
[ "Sepideh Neshatfar", "Abram Magner", "Salimeh Yasaei Sekeh" ]
Graph summarization is the problem of producing smaller graph representations of an input graph dataset, in such a way that the smaller compressed graphs capture relevant structural information for downstream tasks. There is a recent graph summarization method that formulates an optimal transport-based framework that allows prior information about node, edge, and attribute importance (never defined in that work) to be incorporated into the graph summarization process. However, very little is known about the statistical properties of this framework. To elucidate this question, we consider the problem of supervised graph summarization, wherein by using information theoretic measures we seek to preserve relevant information about a class label. To gain a theoretical perspective on the supervised summarization problem itself, we first formulate it in terms of maximizing the Shannon mutual information between the summarized graph and the class label. We show an NP-hardness of approximation result for this problem, thereby constraining what one should expect from proposed solutions. We then propose a summarization method that incorporates mutual information estimates between random variables associated with sample graphs and class labels into the optimal transport compression framework. We empirically show performance improvements over previous works in terms of classification accuracy and time on synthetic and certain real datasets. We also theoretically explore the limitations of the optimal transport approach for the supervised summarization problem and we show that it fails to satisfy a certain desirable information monotonicity property.
[ "cs.LG" ]
false
2305.07170
2023-05-11T22:50:41Z
Towards Understanding and Improving GFlowNet Training
[ "Max W. Shen", "Emmanuel Bengio", "Ehsan Hajiramezanali", "Andreas Loukas", "Kyunghyun Cho", "Tommaso Biancalani" ]
Generative flow networks (GFlowNets) are a family of algorithms that learn a generative policy to sample discrete objects $x$ with non-negative reward $R(x)$. Learning objectives guarantee the GFlowNet samples $x$ from the target distribution $p^*(x) \propto R(x)$ when loss is globally minimized over all states or trajectories, but it is unclear how well they perform with practical limits on training resources. We introduce an efficient evaluation strategy to compare the learned sampling distribution to the target reward distribution. As flows can be underdetermined given training data, we clarify the importance of learned flows to generalization and matching $p^*(x)$ in practice. We investigate how to learn better flows, and propose (i) prioritized replay training of high-reward $x$, (ii) relative edge flow policy parametrization, and (iii) a novel guided trajectory balance objective, and show how it can solve a substructure credit assignment problem. We substantially improve sample efficiency on biochemical design tasks.
[ "cs.LG" ]
false
2305.07670
2023-05-11T14:40:39Z
Liver Infection Prediction Analysis using Machine Learning to Evaluate Analytical Performance in Neural Networks by Optimization Techniques
[ "P. Deivendran", "S. Selvakanmani", "S. Jegadeesan", "V. Vinoth Kumar" ]
Liver infection is a common disease, which poses a great threat to human health, but there is still able to identify an optimal technique that can be used on large-level screening. This paper deals with ML algorithms using different data sets and predictive analyses. Therefore, machine ML can be utilized in different diseases for integrating a piece of pattern for visualization. This paper deals with various machine learning algorithms on different liver illness datasets to evaluate the analytical performance using different types of parameters and optimization techniques. The selected classification algorithms analyze the difference in results and find out the most excellent categorization models for liver disease. Machine learning optimization is the procedure of modifying hyperparameters in arrange to employ one of the optimization approaches to minimise the cost function. To set the hyperparameter, include a number of Phosphotase,Direct Billirubin, Protiens, Albumin and Albumin Globulin. Since it describes the difference linking the predictable parameter's true importance and the model's prediction, it is crucial to minimise the cost function.
[ "cs.LG" ]
false
2305.06531
2023-05-11T02:35:16Z
Semantic Random Walk for Graph Representation Learning in Attributed Graphs
[ "Meng Qin" ]
In this study, we focus on the graph representation learning (a.k.a. network embedding) in attributed graphs. Different from existing embedding methods that treat the incorporation of graph structure and semantic as the simple combination of two optimization objectives, we propose a novel semantic graph representation (SGR) method to formulate the joint optimization of the two heterogeneous sources into a common high-order proximity based framework. Concretely, we first construct an auxiliary weighted graph, where the complex homogeneous and heterogeneous relations among nodes and attributes in the original graph are comprehensively encoded. Conventional embedding methods that consider high-order topology proximities can then be easily applied to the newly constructed graph to learn the representations of both node and attribute while capturing the nonlinear high-order intrinsic correlation inside or among graph structure and semantic. The learned attribute embeddings can also effectively support some semantic-oriented inference tasks (e.g., semantic community detection), helping to reveal the graph's deep semantic. The effectiveness of SGR is further verified on a series of real graphs, where it achieves impressive performance over other baselines.
[ "cs.SI", "cs.LG" ]
false
2305.06576
2023-05-11T05:20:41Z
Clustering of Time-Varying Graphs Based on Temporal Label Smoothness
[ "Katsuki Fukumoto", "Koki Yamada", "Yuichi Tanaka", "Hoi-To Wai" ]
We propose a node clustering method for time-varying graphs based on the assumption that the cluster labels are changed smoothly over time. Clustering is one of the fundamental tasks in many science and engineering fields including signal processing, machine learning, and data mining. Although most existing studies focus on the clustering of nodes in static graphs, we often encounter time-varying graphs for time-series data, e.g., social networks, brain functional connectivity, and point clouds. In this paper, we formulate a node clustering of time-varying graphs as an optimization problem based on spectral clustering, with a smoothness constraint of the node labels. We solve the problem with a primal-dual splitting algorithm. Experiments on synthetic and real-world time-varying graphs are performed to validate the effectiveness of the proposed approach.
[ "cs.LG", "eess.SP" ]
false
2305.06625
2023-05-11T07:54:11Z
Dropout Regularization in Extended Generalized Linear Models based on Double Exponential Families
[ "Benedikt Lütke Schwienhorst", "Lucas Kock", "David J. Nott", "Nadja Klein" ]
Even though dropout is a popular regularization technique, its theoretical properties are not fully understood. In this paper we study dropout regularization in extended generalized linear models based on double exponential families, for which the dispersion parameter can vary with the features. A theoretical analysis shows that dropout regularization prefers rare but important features in both the mean and dispersion, generalizing an earlier result for conventional generalized linear models. Training is performed using stochastic gradient descent with adaptive learning rate. To illustrate, we apply dropout to adaptive smoothing with B-splines, where both the mean and dispersion parameters are modelled flexibly. The important B-spline basis functions can be thought of as rare features, and we confirm in experiments that dropout is an effective form of regularization for mean and dispersion parameters that improves on a penalized maximum likelihood approach with an explicit smoothness penalty.
[ "stat.ML", "cs.LG" ]
false
2305.06745
2023-05-11T12:05:40Z
Investigating the generative dynamics of energy-based neural networks
[ "Lorenzo Tausani", "Alberto Testolin", "Marco Zorzi" ]
Generative neural networks can produce data samples according to the statistical properties of their training distribution. This feature can be used to test modern computational neuroscience hypotheses suggesting that spontaneous brain activity is partially supported by top-down generative processing. A widely studied class of generative models is that of Restricted Boltzmann Machines (RBMs), which can be used as building blocks for unsupervised deep learning architectures. In this work, we systematically explore the generative dynamics of RBMs, characterizing the number of states visited during top-down sampling and investigating whether the heterogeneity of visited attractors could be increased by starting the generation process from biased hidden states. By considering an RBM trained on a classic dataset of handwritten digits, we show that the capacity to produce diverse data prototypes can be increased by initiating top-down sampling from chimera states, which encode high-level visual features of multiple digits. We also found that the model is not capable of transitioning between all possible digit states within a single generation trajectory, suggesting that the top-down dynamics is heavily constrained by the shape of the energy function.
[ "cs.NE", "cs.LG" ]
false
2305.06894
2023-05-11T15:30:54Z
Reinterpreting causal discovery as the task of predicting unobserved joint statistics
[ "Dominik Janzing", "Philipp M. Faller", "Leena Chennuru Vankadara" ]
If $X,Y,Z$ denote sets of random variables, two different data sources may contain samples from $P_{X,Y}$ and $P_{Y,Z}$, respectively. We argue that causal discovery can help inferring properties of the `unobserved joint distributions' $P_{X,Y,Z}$ or $P_{X,Z}$. The properties may be conditional independences (as in `integrative causal inference') or also quantitative statements about dependences. More generally, we define a learning scenario where the input is a subset of variables and the label is some statistical property of that subset. Sets of jointly observed variables define the training points, while unobserved sets are possible test points. To solve this learning task, we infer, as an intermediate step, a causal model from the observations that then entails properties of unobserved sets. Accordingly, we can define the VC dimension of a class of causal models and derive generalization bounds for the predictions. Here, causal discovery becomes more modest and better accessible to empirical tests than usual: rather than trying to find a causal hypothesis that is `true' a causal hypothesis is {\it useful} whenever it correctly predicts statistical properties of unobserved joint distributions. This way, a sparse causal graph that omits weak influences may be more useful than a dense one (despite being less accurate) because it is able to reconstruct the full joint distribution from marginal distributions of smaller subsets. Within such a `pragmatic' application of causal discovery, some popular heuristic approaches become justified in retrospect. It is, for instance, allowed to infer DAGs from partial correlations instead of conditional independences if the DAGs are only used to predict partial correlations.
[ "stat.ML", "cs.LG" ]
false
2305.06994
2023-05-11T17:30:12Z
A statistical approach to detect sensitive features in a group fairness setting
[ "Guilherme Dean Pelegrina", "Miguel Couceiro", "Leonardo Tomazeli Duarte" ]
The use of machine learning models in decision support systems with high societal impact raised concerns about unfair (disparate) results for different groups of people. When evaluating such unfair decisions, one generally relies on predefined groups that are determined by a set of features that are considered sensitive. However, such an approach is subjective and does not guarantee that these features are the only ones to be considered as sensitive nor that they entail unfair (disparate) outcomes. In this paper, we propose a preprocessing step to address the task of automatically recognizing sensitive features that does not require a trained model to verify unfair results. Our proposal is based on the Hilber-Schmidt independence criterion, which measures the statistical dependence of variable distributions. We hypothesize that if the dependence between the label vector and a candidate is high for a sensitive feature, then the information provided by this feature will entail disparate performance measures between groups. Our empirical results attest our hypothesis and show that several features considered as sensitive in the literature do not necessarily entail disparate (unfair) results.
[ "cs.LG", "cs.CY" ]
false
2305.07036
2023-05-11T01:51:36Z
GFlowNets with Human Feedback
[ "Yinchuan Li", "Shuang Luo", "Yunfeng Shao", "Jianye Hao" ]
We propose the GFlowNets with Human Feedback (GFlowHF) framework to improve the exploration ability when training AI models. For tasks where the reward is unknown, we fit the reward function through human evaluations on different trajectories. The goal of GFlowHF is to learn a policy that is strictly proportional to human ratings, instead of only focusing on human favorite ratings like RLHF. Experiments show that GFlowHF can achieve better exploration ability than RLHF.
[ "cs.LG", "cs.AI" ]
false
2305.07038
2023-05-11T11:57:00Z
Revealing Patterns of Symptomatology in Parkinson's Disease: A Latent Space Analysis with 3D Convolutional Autoencoders
[ "E. Delgado de las Heras", "F. J. Martinez-Murcia", "I. A. Illán", "C. Jiménez-Mesa", "D. Castillo-Barnes", "J. Ramírez", "J. M. Górriz" ]
This work proposes the use of 3D convolutional variational autoencoders (CVAEs) to trace the changes and symptomatology produced by neurodegeneration in Parkinson's disease (PD). In this work, we present a novel approach to detect and quantify changes in dopamine transporter (DaT) concentration and its spatial patterns using 3D CVAEs on Ioflupane (FPCIT) imaging. Our approach leverages the power of deep learning to learn a low-dimensional representation of the brain imaging data, which then is linked to different symptom categories using regression algorithms. We demonstrate the effectiveness of our approach on a dataset of PD patients and healthy controls, and show that general symptomatology (UPDRS) is linked to a d-dimensional decomposition via the CVAE with R2>0.25. Our work shows the potential of representation learning not only in early diagnosis but in understanding neurodegeneration processes and symptomatology.
[ "eess.IV", "cs.LG" ]
false
2305.07040
2023-05-11T13:21:26Z
Sequential Experimental Design for Spectral Measurement: Active Learning Using a Parametric Model
[ "Tomohiro Nabika", "Kenji Nagata", "Shun Katakami", "Masaichiro Mizumaki", "Masato Okada" ]
In this study, we demonstrate a sequential experimental design for spectral measurements by active learning using parametric models as predictors. In spectral measurements, it is necessary to reduce the measurement time because of sample fragility and high energy costs. To improve the efficiency of experiments, sequential experimental designs are proposed, in which the subsequent measurement is designed by active learning using the data obtained before the measurement. Conventionally, parametric models are employed in data analysis; when employed for active learning, they are expected to afford a sequential experimental design that improves the accuracy of data analysis. However, due to the complexity of the formulas, a sequential experimental design using general parametric models has not been realized. Therefore, we applied Bayesian inference-based data analysis using the exchange Monte Carlo method to realize a sequential experimental design with general parametric models. In this study, we evaluated the effectiveness of the proposed method by applying it to Bayesian spectral deconvolution and Bayesian Hamiltonian selection in X-ray photoelectron spectroscopy. Using numerical experiments with artificial data, we demonstrated that the proposed method improves the accuracy of model selection and parameter estimation while reducing the measurement time compared with the results achieved without active learning or with active learning using the Gaussian process regression.
[ "cs.LG", "physics.data-an" ]
false
2305.07141
2023-05-11T21:06:39Z
The ConceptARC Benchmark: Evaluating Understanding and Generalization in the ARC Domain
[ "Arseny Moskvichev", "Victor Vikram Odouard", "Melanie Mitchell" ]
The abilities to form and abstract concepts is key to human intelligence, but such abilities remain lacking in state-of-the-art AI systems. There has been substantial research on conceptual abstraction in AI, particularly using idealized domains such as Raven's Progressive Matrices and Bongard problems, but even when AI systems succeed on such problems, the systems are rarely evaluated in depth to see if they have actually grasped the concepts they are meant to capture. In this paper we describe an in-depth evaluation benchmark for the Abstraction and Reasoning Corpus (ARC), a collection of few-shot abstraction and analogy problems developed by Chollet [2019]. In particular, we describe ConceptARC, a new, publicly available benchmark in the ARC domain that systematically assesses abstraction and generalization abilities on a number of basic spatial and semantic concepts. ConceptARC differs from the original ARC dataset in that it is specifically organized around "concept groups" -- sets of problems that focus on specific concepts and that are vary in complexity and level of abstraction. We report results on testing humans on this benchmark as well as three machine solvers: the top two programs from a 2021 ARC competition and OpenAI's GPT-4. Our results show that humans substantially outperform the machine solvers on this benchmark, showing abilities to abstract and generalize concepts that are not yet captured by AI systems. We believe that this benchmark will spur improvements in the development of AI systems for conceptual abstraction and in the effective evaluation of such systems.
[ "cs.LG", "cs.AI" ]
false
2305.07145
2023-05-11T21:23:37Z
Enhancing Petrophysical Studies with Machine Learning: A Field Case Study on Permeability Prediction in Heterogeneous Reservoirs
[ "Fethi Ali Cheddad" ]
This field case study aims to address the challenge of accurately predicting petrophysical properties in heterogeneous reservoir formations, which can significantly impact reservoir performance predictions. The study employed three machine learning algorithms, namely Artificial Neural Network (ANN), Random Forest Classifier (RFC), and Support Vector Machine (SVM), to predict permeability log from conventional logs and match it with core data. The primary objective of this study was to compare the effectiveness of the three machine learning algorithms in predicting permeability and determine the optimal prediction method. The study utilized the Flow Zone Indicator (FZI) rock typing technique to understand the factors influencing reservoir quality. The findings will be used to improve reservoir simulation and locate future wells more accurately. The study concluded that the FZI approach and machine learning algorithms are effective in predicting permeability log and improving reservoir performance predictions.
[ "physics.geo-ph", "cs.LG" ]
false
2305.07671
2023-05-11T16:54:17Z
LatentPINNs: Generative physics-informed neural networks via a latent representation learning
[ "Mohammad H. Taufik", "Tariq Alkhalifah" ]
Physics-informed neural networks (PINNs) are promising to replace conventional partial differential equation (PDE) solvers by offering more accurate and flexible PDE solutions. However, they are hampered by the relatively slow convergence and the need to perform additional, potentially expensive, training for different PDE parameters. To solve this limitation, we introduce latentPINN, a framework that utilizes latent representations of the PDE parameters as additional (to the coordinates) inputs into PINNs and allows for training over the distribution of these parameters. Motivated by the recent progress on generative models, we promote the use of latent diffusion models to learn compressed latent representations of the PDE parameters distribution and act as input parameters to NN functional solutions. We use a two-stage training scheme in which the first stage, we learn the latent representations for the distribution of PDE parameters. In the second stage, we train a physics-informed neural network over inputs given by randomly drawn samples from the coordinate space within the solution domain and samples from the learned latent representation of the PDE parameters. We test the approach on a class of level set equations given by the nonlinear Eikonal equation. We specifically share results corresponding to three different sets of Eikonal parameters (velocity models). The proposed method performs well on new phase velocity models without the need for any additional training.
[ "cs.LG", "physics.comp-ph" ]
false
2305.09678
2023-05-11T14:52:19Z
Anomaly Detection Dataset for Industrial Control Systems
[ "Alireza Dehlaghi-Ghadim", "Mahshid Helali Moghadam", "Ali Balador", "Hans Hansson" ]
Over the past few decades, Industrial Control Systems (ICSs) have been targeted by cyberattacks and are becoming increasingly vulnerable as more ICSs are connected to the internet. Using Machine Learning (ML) for Intrusion Detection Systems (IDS) is a promising approach for ICS cyber protection, but the lack of suitable datasets for evaluating ML algorithms is a challenge. Although there are a few commonly used datasets, they may not reflect realistic ICS network data, lack necessary features for effective anomaly detection, or be outdated. This paper presents the 'ICS-Flow' dataset, which offers network data and process state variables logs for supervised and unsupervised ML-based IDS assessment. The network data includes normal and anomalous network packets and flows captured from simulated ICS components and emulated networks. The anomalies were injected into the system through various attack techniques commonly used by hackers to modify network traffic and compromise ICSs. We also proposed open-source tools, `ICSFlowGenerator' for generating network flow parameters from Raw network packets. The final dataset comprises over 25,000,000 raw network packets, network flow records, and process variable logs. The paper describes the methodology used to collect and label the dataset and provides a detailed data analysis. Finally, we implement several ML models, including the decision tree, random forest, and artificial neural network to detect anomalies and attacks, demonstrating that our dataset can be used effectively for training intrusion detection ML models.
[ "cs.CR", "cs.LG" ]
false
2305.14361
2023-05-11T19:02:09Z
Criticality Analysis: Bio-inspired Nonlinear Data Representation
[ "Tjeerd V. olde Scheper" ]
The representation of arbitrary data in a biological system is one of the most elusive elements of biological information processing. The often logarithmic nature of information in amplitude and frequency presented to biosystems prevents simple encapsulation of the information contained in the input. Criticality Analysis (CA) is a bio-inspired method of information representation within a controlled self-organised critical system that allows scale-free representation. This is based on the concept of a reservoir of dynamic behaviour in which self-similar data will create dynamic nonlinear representations. This unique projection of data preserves the similarity of data within a multidimensional neighbourhood. The input can be reduced dimensionally to a projection output that retains the features of the overall data, yet has much simpler dynamic response. The method depends only on the rate control of chaos applied to the underlying controlled models, that allows the encoding of arbitrary data, and promises optimal encoding of data given biological relevant networks of oscillators. The CA method allows for a biologically relevant encoding mechanism of arbitrary input to biosystems, creating a suitable model for information processing in varying complexity of organisms and scale-free data representation for machine learning.
[ "q-bio.NC", "cs.LG" ]
false
2305.06541
2023-05-11T03:08:49Z
Spectral Clustering on Large Datasets: When Does it Work? Theory from Continuous Clustering and Density Cheeger-Buser
[ "Timothy Chu", "Gary Miller", "Noel Walkington" ]
Spectral clustering is one of the most popular clustering algorithms that has stood the test of time. It is simple to describe, can be implemented using standard linear algebra, and often finds better clusters than traditional clustering algorithms like $k$-means and $k$-centers. The foundational algorithm for two-way spectral clustering, by Shi and Malik, creates a geometric graph from data and finds a spectral cut of the graph. In modern machine learning, many data sets are modeled as a large number of points drawn from a probability density function. Little is known about when spectral clustering works in this setting -- and when it doesn't. Past researchers justified spectral clustering by appealing to the graph Cheeger inequality (which states that the spectral cut of a graph approximates the ``Normalized Cut''), but this justification is known to break down on large data sets. We provide theoretically-informed intuition about spectral clustering on large data sets drawn from probability densities, by proving when a continuous form of spectral clustering considered by past researchers (the unweighted spectral cut of a probability density) finds good clusters of the underlying density itself. Our work suggests that Shi-Malik spectral clustering works well on data drawn from mixtures of Laplace distributions, and works poorly on data drawn from certain other densities, such as a density we call the `square-root trough'. Our core theorem proves that weighted spectral cuts have low weighted isoperimetry for all probability densities. Our key tool is a new Cheeger-Buser inequality for all probability densities, including discontinuous ones.
[ "cs.LG", "cs.AI", "cs.DS", "math.FA" ]
false
2305.06584
2023-05-11T05:44:36Z
Active Learning in the Predict-then-Optimize Framework: A Margin-Based Approach
[ "Mo Liu", "Paul Grigas", "Heyuan Liu", "Zuo-Jun Max Shen" ]
We develop the first active learning method in the predict-then-optimize framework. Specifically, we develop a learning method that sequentially decides whether to request the "labels" of feature samples from an unlabeled data stream, where the labels correspond to the parameters of an optimization model for decision-making. Our active learning method is the first to be directly informed by the decision error induced by the predicted parameters, which is referred to as the Smart Predict-then-Optimize (SPO) loss. Motivated by the structure of the SPO loss, our algorithm adopts a margin-based criterion utilizing the concept of distance to degeneracy and minimizes a tractable surrogate of the SPO loss on the collected data. In particular, we develop an efficient active learning algorithm with both hard and soft rejection variants, each with theoretical excess risk (i.e., generalization) guarantees. We further derive bounds on the label complexity, which refers to the number of samples whose labels are acquired to achieve a desired small level of SPO risk. Under some natural low-noise conditions, we show that these bounds can be better than the naive supervised learning approach that labels all samples. Furthermore, when using the SPO+ loss function, a specialized surrogate of the SPO loss, we derive a significantly smaller label complexity under separability conditions. We also present numerical evidence showing the practical value of our proposed algorithms in the settings of personalized pricing and the shortest path problem.
[ "cs.LG", "math.OC", "stat.ML" ]
false
2305.06660
2023-05-11T08:55:56Z
On the convergence of the MLE as an estimator of the learning rate in the Exp3 algorithm
[ "Julien Aubert", "Luc Lehéricy", "Patricia Reynaud-Bouret" ]
When fitting the learning data of an individual to algorithm-like learning models, the observations are so dependent and non-stationary that one may wonder what the classical Maximum Likelihood Estimator (MLE) could do, even if it is the usual tool applied to experimental cognition. Our objective in this work is to show that the estimation of the learning rate cannot be efficient if the learning rate is constant in the classical Exp3 (Exponential weights for Exploration and Exploitation) algorithm. Secondly, we show that if the learning rate decreases polynomially with the sample size, then the prediction error and in some cases the estimation error of the MLE satisfy bounds in probability that decrease at a polynomial rate.
[ "cs.LG", "math.ST", "stat.TH" ]
false
2305.06703
2023-05-11T10:27:59Z
Neural Fine-Gray: Monotonic neural networks for competing risks
[ "Vincent Jeanselme", "Chang Ho Yoon", "Brian Tom", "Jessica Barrett" ]
Time-to-event modelling, known as survival analysis, differs from standard regression as it addresses censoring in patients who do not experience the event of interest. Despite competitive performances in tackling this problem, machine learning methods often ignore other competing risks that preclude the event of interest. This practice biases the survival estimation. Extensions to address this challenge often rely on parametric assumptions or numerical estimations leading to sub-optimal survival approximations. This paper leverages constrained monotonic neural networks to model each competing survival distribution. This modelling choice ensures the exact likelihood maximisation at a reduced computational cost by using automatic differentiation. The effectiveness of the solution is demonstrated on one synthetic and three medical datasets. Finally, we discuss the implications of considering competing risks when developing risk scores for medical practice.
[ "cs.LG", "cs.AI", "stat.ML" ]
false
2305.06707
2023-05-11T10:33:36Z
A data-driven rutting depth short-time prediction model with metaheuristic optimization for asphalt pavements based on RIOHTrack
[ "Zhuoxuan Li", "Iakov Korovin", "Xinli Shi", "Sergey Gorbachev", "Nadezhda Gorbacheva", "Wei Huang", "Jinde Cao" ]
Rutting of asphalt pavements is a crucial design criterion in various pavement design guides. A good road transportation base can provide security for the transportation of oil and gas in road transportation. This study attempts to develop a robust artificial intelligence model to estimate different asphalt pavements' rutting depth clips, temperature, and load axes as primary characteristics. The experiment data were obtained from 19 asphalt pavements with different crude oil sources on a 2.038 km long full-scale field accelerated pavement test track (RIOHTrack, Road Track Institute) in Tongzhou, Beijing. In addition, this paper also proposes to build complex networks with different pavement rutting depths through complex network methods and the Louvain algorithm for community detection. The most critical structural elements can be selected from different asphalt pavement rutting data, and similar structural elements can be found. An extreme learning machine algorithm with residual correction (RELM) is designed and optimized using an independent adaptive particle swarm algorithm. The experimental results of the proposed method are compared with several classical machine learning algorithms, with predictions of Average Root Mean Squared Error, Average Mean Absolute Error, and Average Mean Absolute Percentage Error for 19 asphalt pavements reaching 1.742, 1.363, and 1.94\% respectively. The experiments demonstrate that the RELM algorithm has an advantage over classical machine learning methods in dealing with non-linear problems in road engineering. Notably, the method ensures the adaptation of the simulated environment to different levels of abstraction through the cognitive analysis of the production environment parameters.
[ "cs.AI", "cs.LG", "cs.NE" ]
false
2305.06709
2023-05-11T10:34:27Z
NUBO: A Transparent Python Package for Bayesian Optimisation
[ "Mike Diessner", "Kevin Wilson", "Richard D. Whalley" ]
NUBO, short for Newcastle University Bayesian Optimisation, is a Bayesian optimisation framework for the optimisation of expensive-to-evaluate black-box functions, such as physical experiments and computer simulators. Bayesian optimisation is a cost-efficient optimisation strategy that uses surrogate modelling via Gaussian processes to represent an objective function and acquisition functions to guide the selection of candidate points to approximate the global optimum of the objective function. NUBO itself focuses on transparency and user experience to make Bayesian optimisation easily accessible to researchers from all disciplines. Clean and understandable code, precise references, and thorough documentation ensure transparency, while user experience is ensured by a modular and flexible design, easy-to-write syntax, and careful selection of Bayesian optimisation algorithms. NUBO allows users to tailor Bayesian optimisation to their specific problem by writing the optimisation loop themselves using the provided building blocks. It supports sequential single-point, parallel multi-point, and asynchronous optimisation of bounded, constrained, and/or mixed (discrete and continuous) parameter input spaces. Only algorithms and methods that are extensively tested and validated to perform well are included in NUBO. This ensures that the package remains compact and does not overwhelm the user with an unnecessarily large number of options. The package is written in Python but does not require expert knowledge of Python to optimise your simulators and experiments. NUBO is distributed as open-source software under the BSD 3-Clause licence.
[ "cs.LG", "cs.MS", "stat.ML" ]
false
2305.06862
2023-05-11T15:01:30Z
A General Framework for Visualizing Embedding Spaces of Neural Survival Analysis Models Based on Angular Information
[ "George H. Chen" ]
We propose a general framework for visualizing any intermediate embedding representation used by any neural survival analysis model. Our framework is based on so-called anchor directions in an embedding space. We show how to estimate these anchor directions using clustering or, alternatively, using user-supplied "concepts" defined by collections of raw inputs (e.g., feature vectors all from female patients could encode the concept "female"). For tabular data, we present visualization strategies that reveal how anchor directions relate to raw clinical features and to survival time distributions. We then show how these visualization ideas extend to handling raw inputs that are images. Our framework is built on looking at angles between vectors in an embedding space, where there could be "information loss" by ignoring magnitude information. We show how this loss results in a "clumping" artifact that appears in our visualizations, and how to reduce this information loss in practice.
[ "stat.ML", "cs.HC", "cs.LG" ]
false
2305.06865
2023-05-11T15:06:08Z
Multi-Tier Client Selection for Mobile Federated Learning Networks
[ "Yulan Gao", "Yansong Zhao", "Han Yu" ]
Federated learning (FL), which addresses data privacy issues by training models on resource-constrained mobile devices in a distributed manner, has attracted significant research attention. However, the problem of optimizing FL client selection in mobile federated learning networks (MFLNs), where devices move in and out of each others' coverage and no FL server knows all the data owners, remains open. To bridge this gap, we propose a first-of-its-kind \underline{Soc}ially-aware \underline{Fed}erated \underline{C}lient \underline{S}election (SocFedCS) approach to minimize costs and train high-quality FL models. SocFedCS enriches the candidate FL client pool by enabling data owners to propagate FL task information through their local networks of trust, even as devices are moving into and out of each others' coverage. Based on Lyapunov optimization, we first transform this time-coupled problem into a step-by-step optimization problem. Then, we design a method based on alternating minimization and self-adaptive global best harmony search to solve this mixed-integer optimization problem. Extensive experiments comparing SocFedCS against five state-of-the-art approaches based on four real-world multimedia datasets demonstrate that it achieves 2.06\% higher test accuracy and 12.24\% lower cost on average than the best-performing baseline.
[ "cs.LG", "cs.DC", "cs.NI" ]
false
2305.07132
2023-05-11T20:50:51Z
Tackling Interpretability in Audio Classification Networks with Non-negative Matrix Factorization
[ "Jayneel Parekh", "Sanjeel Parekh", "Pavlo Mozharovskyi", "Gaël Richard", "Florence d'Alché-Buc" ]
This paper tackles two major problem settings for interpretability of audio processing networks, post-hoc and by-design interpretation. For post-hoc interpretation, we aim to interpret decisions of a network in terms of high-level audio objects that are also listenable for the end-user. This is extended to present an inherently interpretable model with high performance. To this end, we propose a novel interpreter design that incorporates non-negative matrix factorization (NMF). In particular, an interpreter is trained to generate a regularized intermediate embedding from hidden layers of a target network, learnt as time-activations of a pre-learnt NMF dictionary. Our methodology allows us to generate intuitive audio-based interpretations that explicitly enhance parts of the input signal most relevant for a network's decision. We demonstrate our method's applicability on a variety of classification tasks, including multi-label data for real-world audio and music.
[ "cs.SD", "cs.LG", "eess.AS" ]
false
2305.07508
2023-05-11T08:11:19Z
MolDiff: Addressing the Atom-Bond Inconsistency Problem in 3D Molecule Diffusion Generation
[ "Xingang Peng", "Jiaqi Guan", "Qiang Liu", "Jianzhu Ma" ]
Deep generative models have recently achieved superior performance in 3D molecule generation. Most of them first generate atoms and then add chemical bonds based on the generated atoms in a post-processing manner. However, there might be no corresponding bond solution for the temporally generated atoms as their locations are generated without considering potential bonds. We define this problem as the atom-bond inconsistency problem and claim it is the main reason for current approaches to generating unrealistic 3D molecules. To overcome this problem, we propose a new diffusion model called MolDiff which can generate atoms and bonds simultaneously while still maintaining their consistency by explicitly modeling the dependence between their relationships. We evaluated the generation ability of our proposed model and the quality of the generated molecules using criteria related to both geometry and chemical properties. The empirical studies showed that our model outperforms previous approaches, achieving a three-fold improvement in success rate and generating molecules with significantly better quality.
[ "q-bio.BM", "cs.LG", "q-bio.QM" ]
false
2305.10353
2023-05-11T07:28:40Z
An Ensemble Learning Approach for Exercise Detection in Type 1 Diabetes Patients
[ "Ke Ma", "Hongkai Chen", "Shan Lin" ]
Type 1 diabetes is a serious disease in which individuals are unable to regulate their blood glucose levels, leading to various medical complications. Artificial pancreas (AP) systems have been developed as a solution for type 1 diabetic patients to mimic the behavior of the pancreas and regulate blood glucose levels. However, current AP systems lack detection capabilities for exercise-induced glucose intake, which can last up to 4 to 8 hours. This incapability can lead to hypoglycemia, which if left untreated, could have serious consequences, including death. Existing exercise detection methods are either limited to single sensor data or use inaccurate models for exercise detection, making them less effective in practice. In this work, we propose an ensemble learning framework that combines a data-driven physiological model and a Siamese network to leverage multiple physiological signal streams for exercise detection with high accuracy. To evaluate the effectiveness of our proposed approach, we utilized a public dataset with 12 diabetic patients collected from an 8-week clinical trial. Our approach achieves a true positive rate for exercise detection of 86.4% and a true negative rate of 99.1%, outperforming state-of-the-art solutions.
[ "eess.SP", "cs.LG", "cs.NI", "68T07 (Primary) 34A05 (Secondary)", "J.3" ]
false
2305.07091
2023-05-11T18:54:36Z
Stability and Convergence of Distributed Stochastic Approximations with large Unbounded Stochastic Information Delays
[ "Adrian Redder", "Arunselvan Ramaswamy", "Holger Karl" ]
We generalize the Borkar-Meyn stability Theorem (BMT) to distributed stochastic approximations (SAs) with information delays that possess an arbitrary moment bound. To model the delays, we introduce Age of Information Processes (AoIPs): stochastic processes on the non-negative integers with a unit growth property. We show that AoIPs with an arbitrary moment bound cannot exceed any fraction of time infinitely often. In combination with a suitably chosen stepsize, this property turns out to be sufficient for the stability of distributed SAs. Compared to the BMT, our analysis requires crucial modifications and a new line of argument to handle the SA errors caused by AoI. In our analysis, we show that these SA errors satisfy a recursive inequality. To evaluate this recursion, we propose a new Gronwall-type inequality for time-varying lower limits of summations. As applications to our distributed BMT, we discuss distributed gradient-based optimization and a new approach to analyzing SAs with momentum.
[ "math.OC", "cs.DC", "cs.LG", "cs.MA", "math.DS" ]
false
2305.07308
2023-05-12T08:28:58Z
Efficient Search of Comprehensively Robust Neural Architectures via Multi-fidelity Evaluation
[ "Jialiang Sun", "Wen Yao", "Tingsong Jiang", "Xiaoqian Chen" ]
Neural architecture search (NAS) has emerged as one successful technique to find robust deep neural network (DNN) architectures. However, most existing robustness evaluations in NAS only consider $l_{\infty}$ norm-based adversarial noises. In order to improve the robustness of DNN models against multiple types of noises, it is necessary to consider a comprehensive evaluation in NAS for robust architectures. But with the increasing number of types of robustness evaluations, it also becomes more time-consuming to find comprehensively robust architectures. To alleviate this problem, we propose a novel efficient search of comprehensively robust neural architectures via multi-fidelity evaluation (ES-CRNA-ME). Specifically, we first search for comprehensively robust architectures under multiple types of evaluations using the weight-sharing-based NAS method, including different $l_{p}$ norm attacks, semantic adversarial attacks, and composite adversarial attacks. In addition, we reduce the number of robustness evaluations by the correlation analysis, which can incorporate similar evaluations and decrease the evaluation cost. Finally, we propose a multi-fidelity online surrogate during optimization to further decrease the search cost. On the basis of the surrogate constructed by low-fidelity data, the online high-fidelity data is utilized to finetune the surrogate. Experiments on CIFAR10 and CIFAR100 datasets show the effectiveness of our proposed method.
[ "cs.CV" ]
false
2305.07328
2023-05-12T09:03:38Z
Configurable Spatial-Temporal Hierarchical Analysis for Flexible Video Anomaly Detection
[ "Kai Cheng", "Xinhua Zeng", "Yang Liu", "Tian Wang", "Chengxin Pang", "Jing Teng", "Zhaoyang Xia", "Jing Liu" ]
Video anomaly detection (VAD) is a vital task with great practical applications in industrial surveillance, security system, and traffic control. Unlike previous unsupervised VAD methods that adopt a fixed structure to learn normality without considering different detection demands, we design a spatial-temporal hierarchical architecture (STHA) as a configurable architecture to flexibly detect different degrees of anomaly. The comprehensive structure of the STHA is delineated into a tripartite hierarchy, encompassing the following tiers: the stream level, the stack level, and the block level. Specifically, we design several auto-encoder-based blocks that possess varying capacities for extracting normal patterns. Then, we stack blocks according to the complexity degrees with both intra-stack and inter-stack residual links to learn hierarchical normality gradually. Considering the multisource knowledge of videos, we also model the spatial normality of video frames and temporal normality of RGB difference by designing two parallel streams consisting of stacks. Thus, STHA can provide various representation learning abilities by expanding or contracting hierarchically to detect anomalies of different degrees. Since the anomaly set is complicated and unbounded, our STHA can adjust its detection ability to adapt to the human detection demands and the complexity degree of anomaly that happened in the history of a scene. We conduct experiments on three benchmarks and perform extensive analysis, and the results demonstrate that our method performs comparablely to the state-of-the-art methods. In addition, we design a toy dataset to prove that our model can better balance the learning ability to adapt to different detection demands.
[ "cs.CV" ]
false
2305.07342
2023-05-12T09:39:08Z
BundleRecon: Ray Bundle-Based 3D Neural Reconstruction
[ "Weikun Zhang", "Jianke Zhu" ]
With the growing popularity of neural rendering, there has been an increasing number of neural implicit multi-view reconstruction methods. While many models have been enhanced in terms of positional encoding, sampling, rendering, and other aspects to improve the reconstruction quality, current methods do not fully leverage the information among neighboring pixels during the reconstruction process. To address this issue, we propose an enhanced model called BundleRecon. In the existing approaches, sampling is performed by a single ray that corresponds to a single pixel. In contrast, our model samples a patch of pixels using a bundle of rays, which incorporates information from neighboring pixels. Furthermore, we design bundle-based constraints to further improve the reconstruction quality. Experimental results demonstrate that BundleRecon is compatible with the existing neural implicit multi-view reconstruction methods and can improve their reconstruction quality.
[ "cs.CV" ]
false
2305.07397
2023-05-12T11:48:32Z
Learning Monocular Depth in Dynamic Environment via Context-aware Temporal Attention
[ "Zizhang Wu", "Zhuozheng Li", "Zhi-Gang Fan", "Yunzhe Wu", "Yuanzhu Gan", "Jian Pu", "Xianzhi Li" ]
The monocular depth estimation task has recently revealed encouraging prospects, especially for the autonomous driving task. To tackle the ill-posed problem of 3D geometric reasoning from 2D monocular images, multi-frame monocular methods are developed to leverage the perspective correlation information from sequential temporal frames. However, moving objects such as cars and trains usually violate the static scene assumption, leading to feature inconsistency deviation and misaligned cost values, which would mislead the optimization algorithm. In this work, we present CTA-Depth, a Context-aware Temporal Attention guided network for multi-frame monocular Depth estimation. Specifically, we first apply a multi-level attention enhancement module to integrate multi-level image features to obtain an initial depth and pose estimation. Then the proposed CTA-Refiner is adopted to alternatively optimize the depth and pose. During the refinement process, context-aware temporal attention (CTA) is developed to capture the global temporal-context correlations to maintain the feature consistency and estimation integrity of moving objects. In particular, we propose a long-range geometry embedding (LGE) module to produce a long-range temporal geometry prior. Our approach achieves significant improvements over state-of-the-art approaches on three benchmark datasets.
[ "cs.CV" ]
false
2305.07540
2023-05-12T15:06:17Z
Content-based jewellery item retrieval using the local region-based histograms
[ "Amin Muhammad Shoib", "Summaira Jabeen", "Changbo Wang", "Tassawar Ali" ]
Jewellery item retrieval is regularly used to find what people want on online marketplaces using a sample query reference image. Considering recent developments, due to the simultaneous nature of various jewelry items, various jewelry goods' occlusion in images or visual streams, as well as shape deformation, content-based jewellery item retrieval (CBJIR) still has limitations whenever it pertains to visual searching in the actual world. This article proposed a content-based jewellery item retrieval method using the local region-based histograms in HSV color space. Using five local regions, our novel jewellery classification module extracts the specific feature vectors from the query image. The jewellery classification module is also applied to the jewellery database to extract feature vectors. Finally, the similarity score is matched between the database and query features vectors to retrieve the jewellery items from the database. The proposed method performance is tested on publicly available jewellery item retrieval datasets, i.e. ringFIR and Fashion Product Images dataset. The experimental results demonstrate the dominance of the proposed method over the baseline methods for retrieving desired jewellery products.
[ "cs.CV" ]
false
2305.07602
2023-05-12T16:51:14Z
ViT Unified: Joint Fingerprint Recognition and Presentation Attack Detection
[ "Steven A. Grosz", "Kanishka P. Wijewardena", "Anil K. Jain" ]
A secure fingerprint recognition system must contain both a presentation attack (i.e., spoof) detection and recognition module in order to protect users against unwanted access by malicious users. Traditionally, these tasks would be carried out by two independent systems; however, recent studies have demonstrated the potential to have one unified system architecture in order to reduce the computational burdens on the system, while maintaining high accuracy. In this work, we leverage a vision transformer architecture for joint spoof detection and matching and report competitive results with state-of-the-art (SOTA) models for both a sequential system (two ViT models operating independently) and a unified architecture (a single ViT model for both tasks). ViT models are particularly well suited for this task as the ViT's global embedding encodes features useful for recognition, whereas the individual, local embeddings are useful for spoof detection. We demonstrate the capability of our unified model to achieve an average integrated matching (IM) accuracy of 98.87% across LivDet 2013 and 2015 CrossMatch sensors. This is comparable to IM accuracy of 98.95% of our sequential dual-ViT system, but with ~50% of the parameters and ~58% of the latency.
[ "cs.CV" ]
false
2305.07713
2023-05-12T18:08:51Z
Multi-Modal 3D Object Detection by Box Matching
[ "Zhe Liu", "Xiaoqing Ye", "Zhikang Zou", "Xinwei He", "Xiao Tan", "Errui Ding", "Jingdong Wang", "Xiang Bai" ]
Multi-modal 3D object detection has received growing attention as the information from different sensors like LiDAR and cameras are complementary. Most fusion methods for 3D detection rely on an accurate alignment and calibration between 3D point clouds and RGB images. However, such an assumption is not reliable in a real-world self-driving system, as the alignment between different modalities is easily affected by asynchronous sensors and disturbed sensor placement. We propose a novel {F}usion network by {B}ox {M}atching (FBMNet) for multi-modal 3D detection, which provides an alternative way for cross-modal feature alignment by learning the correspondence at the bounding box level to free up the dependency of calibration during inference. With the learned assignments between 3D and 2D object proposals, the fusion for detection can be effectively performed by combing their ROI features. Extensive experiments on the nuScenes dataset demonstrate that our method is much more stable in dealing with challenging cases such as asynchronous sensors, misaligned sensor placement, and degenerated camera images than existing fusion methods. We hope that our FBMNet could provide an available solution to dealing with these challenging cases for safety in real autonomous driving scenarios. Codes will be publicly available at https://github.com/happinesslz/FBMNet.
[ "cs.CV" ]
false
2305.07214
2023-05-12T03:05:40Z
MMG-Ego4D: Multi-Modal Generalization in Egocentric Action Recognition
[ "Xinyu Gong", "Sreyas Mohan", "Naina Dhingra", "Jean-Charles Bazin", "Yilei Li", "Zhangyang Wang", "Rakesh Ranjan" ]
In this paper, we study a novel problem in egocentric action recognition, which we term as "Multimodal Generalization" (MMG). MMG aims to study how systems can generalize when data from certain modalities is limited or even completely missing. We thoroughly investigate MMG in the context of standard supervised action recognition and the more challenging few-shot setting for learning new action categories. MMG consists of two novel scenarios, designed to support security, and efficiency considerations in real-world applications: (1) missing modality generalization where some modalities that were present during the train time are missing during the inference time, and (2) cross-modal zero-shot generalization, where the modalities present during the inference time and the training time are disjoint. To enable this investigation, we construct a new dataset MMG-Ego4D containing data points with video, audio, and inertial motion sensor (IMU) modalities. Our dataset is derived from Ego4D dataset, but processed and thoroughly re-annotated by human experts to facilitate research in the MMG problem. We evaluate a diverse array of models on MMG-Ego4D and propose new methods with improved generalization ability. In particular, we introduce a new fusion module with modality dropout training, contrastive-based alignment training, and a novel cross-modal prototypical loss for better few-shot performance. We hope this study will serve as a benchmark and guide future research in multimodal generalization problems. The benchmark and code will be available at https://github.com/facebookresearch/MMG_Ego4D.
[ "cs.CV", "cs.AI" ]
true
2305.07257
2023-05-12T05:26:55Z
A Central Asian Food Dataset for Personalized Dietary Interventions, Extended Abstract
[ "Aknur Karabay", "Arman Bolatov", "Huseyin Atakan Varol", "Mei-Yen Chan" ]
Nowadays, it is common for people to take photographs of every beverage, snack, or meal they eat and then post these photographs on social media platforms. Leveraging these social trends, real-time food recognition and reliable classification of these captured food images can potentially help replace some of the tedious recording and coding of food diaries to enable personalized dietary interventions. Although Central Asian cuisine is culturally and historically distinct, there has been little published data on the food and dietary habits of people in this region. To fill this gap, we aim to create a reliable dataset of regional foods that is easily accessible to both public consumers and researchers. To the best of our knowledge, this is the first work on creating a Central Asian Food Dataset (CAFD). The final dataset contains 42 food categories and over 16,000 images of national dishes unique to this region. We achieved a classification accuracy of 88.70\% (42 classes) on the CAFD using the ResNet152 neural network model. The food recognition models trained on the CAFD demonstrate computer vision's effectiveness and high accuracy for dietary assessment.
[ "cs.CV", "cs.LG" ]
false
2305.07299
2023-05-12T08:10:14Z
An Object SLAM Framework for Association, Mapping, and High-Level Tasks
[ "Yanmin Wu", "Yunzhou Zhang", "Delong Zhu", "Zhiqiang Deng", "Wenkai Sun", "Xin Chen", "Jian Zhang" ]
Object SLAM is considered increasingly significant for robot high-level perception and decision-making. Existing studies fall short in terms of data association, object representation, and semantic mapping and frequently rely on additional assumptions, limiting their performance. In this paper, we present a comprehensive object SLAM framework that focuses on object-based perception and object-oriented robot tasks. First, we propose an ensemble data association approach for associating objects in complicated conditions by incorporating parametric and nonparametric statistic testing. In addition, we suggest an outlier-robust centroid and scale estimation algorithm for modeling objects based on the iForest and line alignment. Then a lightweight and object-oriented map is represented by estimated general object models. Taking into consideration the semantic invariance of objects, we convert the object map to a topological map to provide semantic descriptors to enable multi-map matching. Finally, we suggest an object-driven active exploration strategy to achieve autonomous mapping in the grasping scenario. A range of public datasets and real-world results in mapping, augmented reality, scene matching, relocalization, and robotic manipulation have been used to evaluate the proposed object SLAM framework for its efficient performance.
[ "cs.RO", "cs.CV" ]
false
2305.07514
2023-05-12T14:30:07Z
BlendFields: Few-Shot Example-Driven Facial Modeling
[ "Kacper Kania", "Stephan J. Garbin", "Andrea Tagliasacchi", "Virginia Estellers", "Kwang Moo Yi", "Julien Valentin", "Tomasz Trzciński", "Marek Kowalski" ]
Generating faithful visualizations of human faces requires capturing both coarse and fine-level details of the face geometry and appearance. Existing methods are either data-driven, requiring an extensive corpus of data not publicly accessible to the research community, or fail to capture fine details because they rely on geometric face models that cannot represent fine-grained details in texture with a mesh discretization and linear deformation designed to model only a coarse face geometry. We introduce a method that bridges this gap by drawing inspiration from traditional computer graphics techniques. Unseen expressions are modeled by blending appearance from a sparse set of extreme poses. This blending is performed by measuring local volumetric changes in those expressions and locally reproducing their appearance whenever a similar expression is performed at test time. We show that our method generalizes to unseen expressions, adding fine-grained effects on top of smooth volumetric deformations of a face, and demonstrate how it generalizes beyond faces.
[ "cs.CV", "cs.GR" ]
true
2305.07528
2023-05-12T14:42:47Z
WEDGE: A multi-weather autonomous driving dataset built from generative vision-language models
[ "Aboli Marathe", "Deva Ramanan", "Rahee Walambe", "Ketan Kotecha" ]
The open road poses many challenges to autonomous perception, including poor visibility from extreme weather conditions. Models trained on good-weather datasets frequently fail at detection in these out-of-distribution settings. To aid adversarial robustness in perception, we introduce WEDGE (WEather images by DALL-E GEneration): a synthetic dataset generated with a vision-language generative model via prompting. WEDGE consists of 3360 images in 16 extreme weather conditions manually annotated with 16513 bounding boxes, supporting research in the tasks of weather classification and 2D object detection. We have analyzed WEDGE from research standpoints, verifying its effectiveness for extreme-weather autonomous perception. We establish baseline performance for classification and detection with 53.87% test accuracy and 45.41 mAP. Most importantly, WEDGE can be used to fine-tune state-of-the-art detectors, improving SOTA performance on real-world weather benchmarks (such as DAWN) by 4.48 AP for well-generated classes like trucks. WEDGE has been collected under OpenAI's terms of use and is released for public use under the CC BY-NC-SA 4.0 license. The repository for this work and dataset is available at https://infernolia.github.io/WEDGE.
[ "cs.CV", "cs.AI" ]
false
2305.07558
2023-05-12T15:34:20Z
Measuring Progress in Fine-grained Vision-and-Language Understanding
[ "Emanuele Bugliarello", "Laurent Sartran", "Aishwarya Agrawal", "Lisa Anne Hendricks", "Aida Nematzadeh" ]
While pretraining on large-scale image-text data from the Web has facilitated rapid progress on many vision-and-language (V&L) tasks, recent work has demonstrated that pretrained models lack "fine-grained" understanding, such as the ability to recognise relationships, verbs, and numbers in images. This has resulted in an increased interest in the community to either develop new benchmarks or models for such capabilities. To better understand and quantify progress in this direction, we investigate four competitive V&L models on four fine-grained benchmarks. Through our analysis, we find that X-VLM (Zeng et al., 2022) consistently outperforms other baselines, and that modelling innovations can impact performance more than scaling Web data, which even degrades performance sometimes. Through a deeper investigation of X-VLM, we highlight the importance of both novel losses and rich data sources for learning fine-grained skills. Finally, we inspect training dynamics, and discover that for some tasks, performance peaks early in training or significantly fluctuates, never converging.
[ "cs.CL", "cs.CV" ]
true
2305.07639
2023-05-12T17:48:05Z
Efficient Neural Network based Classification and Outlier Detection for Image Moderation using Compressed Sensing and Group Testing
[ "Sabyasachi Ghosh", "Sanyam Saxena", "Ajit Rajwade" ]
Popular social media platforms employ neural network based image moderation engines to classify images uploaded on them as having potentially objectionable content. Such moderation engines must answer a large number of queries with heavy computational cost, even though the actual number of images with objectionable content is usually a tiny fraction. Inspired by recent work on Neural Group Testing, we propose an approach which exploits this fact to reduce the overall computational cost of such engines using the technique of Compressed Sensing (CS). We present the quantitative matrix-pooled neural network (QMPNN), which takes as input $n$ images, and a $m \times n$ binary pooling matrix with $m < n$, whose rows indicate $m$ pools of images i.e. selections of $r$ images out of $n$. The QMPNN efficiently outputs the product of this matrix with the unknown sparse binary vector indicating whether each image is objectionable or not, i.e. it outputs the number of objectionable images in each pool. For suitable matrices, this is decoded using CS decoding algorithms to predict which images were objectionable. The computational cost of running the QMPNN and the CS algorithms is significantly lower than the cost of using a neural network with the same number of parameters separately on each image to classify the images, which we demonstrate via extensive experiments. Our technique is inherently resilient to moderate levels of errors in the prediction from the QMPNN. Furthermore, we present pooled deep outlier detection, which brings CS and group testing techniques to deep outlier detection, to provide for the case when the objectionable images do not belong to a set of pre-defined classes. This technique enables efficient automated moderation of off-topic images shared on topical forums dedicated to sharing images of a certain single class, many of which are currently human-moderated.
[ "cs.CV", "cs.LG" ]
false
2305.07783
2023-05-12T22:05:44Z
ROI-based Deep Image Compression with Swin Transformers
[ "Binglin Li", "Jie Liang", "Haisheng Fu", "Jingning Han" ]
Encoding the Region Of Interest (ROI) with better quality than the background has many applications including video conferencing systems, video surveillance and object-oriented vision tasks. In this paper, we propose a ROI-based image compression framework with Swin transformers as main building blocks for the autoencoder network. The binary ROI mask is integrated into different layers of the network to provide spatial information guidance. Based on the ROI mask, we can control the relative importance of the ROI and non-ROI by modifying the corresponding Lagrange multiplier $ \lambda $ for different regions. Experimental results show our model achieves higher ROI PSNR than other methods and modest average PSNR for human evaluation. When tested on models pre-trained with original images, it has superior object detection and instance segmentation performance on the COCO validation dataset.
[ "cs.CV", "eess.IV" ]
false
2305.11891
2023-05-12T09:54:21Z
THRawS: A Novel Dataset for Thermal Hotspots Detection in Raw Sentinel-2 Data
[ "Gabriele Meoni", "Roberto Del Prete", "Federico Serva", "Alix De Beussche", "Olivier Colin", "Nicolas Longépé" ]
Nowadays, most of the datasets leveraging space-borne Earth Observation (EO) data are based on high-end levels products, which are ortho-rectified, coregistered, calibrated, and further processed to mitigate the impact of noise and distortions. Nevertheless, given the growing interest to apply Artificial Intelligence (AI) onboard satellites for time-critical applications, such as natural disaster response, providing raw satellite images could be useful to foster the research on energy-efficient pre-processing algorithms and AI models for onboard-satellite applications. In this framework, we present THRawS, the first dataset composed of Sentinel-2 (S-2) raw data containing warm temperature hotspots (wildfires and volcanic eruptions). To foster the realisation of robust AI architectures, the dataset gathers data from all over the globe. Furthermore, we designed a custom methodology to identify events in raw data starting from the corresponding Level-1C (L1C) products. Indeed, given the availability of state-of-the-art algorithms for thermal anomalies detection on the L1C tiles, we detect such events on these latter and we then re-project them on the corresponding raw images. Additionally, to deal with unprocessed data, we devise a lightweight coarse coregisteration and georeferencing strategy. The developed dataset is comprehensive of more than 100 samples containing wildfires, volcanic eruptions, and event-free volcanic areas to enable both warm-events detection and general classification applications. Finally, we compare performances between the proposed coarse spatial coregistration technique and the SuperGlue Deep Neural Network method to highlight the different constraints in terms of timing and quality of spatial registration to minimise the spatial displacement error for a specific scene.
[ "cs.CV", "eess.SP" ]
false
2306.06084
2023-05-12T04:43:51Z
Machine Vision Using Cellphone Camera: A Comparison of deep networks for classifying three challenging denominations of Indian Coins
[ "Keyur D. Joshi", "Dhruv Shah", "Varshil Shah", "Nilay Gandhi", "Sanket J. Shah", "Sanket B. Shah" ]
Indian currency coins come in a variety of denominations. Off all the varieties Rs.1, RS.2, and Rs.5 have similar diameters. Majority of the coin styles in market circulation for denominations of Rs.1 and Rs.2 coins are nearly the same except for numerals on its reverse side. If a coin is resting on its obverse side, the correct denomination is not distinguishable by humans. Therefore, it was hypothesized that a digital image of a coin resting on its either size could be classified into its correct denomination by training a deep neural network model. The digital images were generated by using cheap cell phone cameras. To find the most suitable deep neural network architecture, four were selected based on the preliminary analysis carried out for comparison. The results confirm that two of the four deep neural network models can classify the correct denomination from either side of a coin with an accuracy of 97%.
[ "cs.CV", "cs.LG" ]
false
2305.07404
2023-05-12T12:05:11Z
Color Deconvolution applied to Domain Adaptation in HER2 histopathological images
[ "David Anglada-Rotger", "Ferran Marqués", "Montse Pardàs" ]
Breast cancer early detection is crucial for improving patient outcomes. The Institut Catal\`a de la Salut (ICS) has launched the DigiPatICS project to develop and implement artificial intelligence algorithms to assist with the diagnosis of cancer. In this paper, we propose a new approach for facing the color normalization problem in HER2-stained histopathological images of breast cancer tissue, posed as an style transfer problem. We combine the Color Deconvolution technique with the Pix2Pix GAN network to present a novel approach to correct the color variations between different HER2 stain brands. Our approach focuses on maintaining the HER2 score of the cells in the transformed images, which is crucial for the HER2 analysis. Results demonstrate that our final model outperforms the state-of-the-art image style transfer methods in maintaining the cell classes in the transformed images and is as effective as them in generating realistic images.
[ "eess.IV", "cs.CV", "cs.LG" ]
false
2305.07429
2023-05-12T12:52:14Z
Unlocking the Potential of Medical Imaging with ChatGPT's Intelligent Diagnostics
[ "Ayyub Alzahem", "Shahid Latif", "Wadii Boulila", "Anis Koubaa" ]
Medical imaging is an essential tool for diagnosing various healthcare diseases and conditions. However, analyzing medical images is a complex and time-consuming task that requires expertise and experience. This article aims to design a decision support system to assist healthcare providers and patients in making decisions about diagnosing, treating, and managing health conditions. The proposed architecture contains three stages: 1) data collection and labeling, 2) model training, and 3) diagnosis report generation. The key idea is to train a deep learning model on a medical image dataset to extract four types of information: the type of image scan, the body part, the test image, and the results. This information is then fed into ChatGPT to generate automatic diagnostics. The proposed system has the potential to enhance decision-making, reduce costs, and improve the capabilities of healthcare providers. The efficacy of the proposed system is analyzed by conducting extensive experiments on a large medical image dataset. The experimental outcomes exhibited promising performance for automatic diagnosis through medical images.
[ "eess.IV", "cs.CV", "cs.LG" ]
false
2305.07495
2023-05-12T14:10:36Z
Gallery Sampling for Robust and Fast Face Identification
[ "Myung-cheol Roh", "Pyoung-gang Lim", "Jongju Shin" ]
Deep learning methods have been achieved brilliant results in face recognition. One of the important tasks to improve the performance is to collect and label images as many as possible. However, labeling identities and checking qualities of large image data are difficult task and mistakes cannot be avoided in processing large data. Previous works have been trying to deal with the problem only in training domain, however it can cause much serious problem if the mistakes are in gallery data of face identification. We proposed gallery data sampling methods which are robust to outliers including wrong labeled, low quality, and less-informative images and reduce searching time. The proposed sampling-by-pruning and sampling-by-generating methods significantly improved face identification performance on our 5.4M web image dataset of celebrities. The proposed method achieved 0.0975 in terms of FNIR at FPIR=0.01, while conventional method showed 0.3891. The average number of feature vectors for each individual gallery was reduced to 17.1 from 115.9 and it can provide much faster search. We also made experiments on public datasets and our method achieved 0.1314 and 0.0668 FNIRs at FPIR=0.01 on the CASIA-WebFace and MS1MV2, while the convectional method did 0.5446, and 0.1327, respectively.
[ "cs.CV", "cs.AI", "cs.LG" ]
false
2305.07552
2023-05-12T15:25:58Z
Dish detection in food platters: A framework for automated diet logging and nutrition management
[ "Mansi Goel", "Shashank Dargar", "Shounak Ghatak", "Nidhi Verma", "Pratik Chauhan", "Anushka Gupta", "Nikhila Vishnumolakala", "Hareesh Amuru", "Ekta Gambhir", "Ronak Chhajed", "Meenal Jain", "Astha Jain", "Samiksha Garg", "Nitesh Narwade", "Nikhilesh Verhwani", "Abhuday Tiwari", "Kirti Vashishtha", "Ganesh Bagler" ]
Diet is central to the epidemic of lifestyle disorders. Accurate and effortless diet logging is one of the significant bottlenecks for effective diet management and calorie restriction. Dish detection from food platters is a challenging problem due to a visually complex food layout. We present an end-to-end computational framework for diet management, from data compilation, annotation, and state-of-the-art model identification to its mobile app implementation. As a case study, we implement the framework in the context of Indian food platters known for their complex presentation that poses a challenge for the automated detection of dishes. Starting with the 61 most popular Indian dishes, we identify the state-of-the-art model through a comparative analysis of deep-learning-based object detection architectures. Rooted in a meticulous compilation of 68,005 platter images with 134,814 manual dish annotations, we first compare ten architectures for multi-label classification to identify ResNet152 (mAP=84.51%) as the best model. YOLOv8x (mAP=87.70%) emerged as the best model architecture for dish detection among the eight deep-learning models implemented after a thorough performance evaluation. By comparing with the state-of-the-art model for the IndianFood10 dataset, we demonstrate the superior object detection performance of YOLOv8x for this subset and establish Resnet152 as the best architecture for multi-label classification. The models thus trained on richly annotated data can be extended to include dishes from across global cuisines. The proposed framework is demonstrated through a proof-of-concept mobile application with diverse applications for diet logging, food recommendation systems, nutritional interventions, and mitigation of lifestyle disorders.
[ "cs.CV", "cs.AI", "cs.CY", "I.4.9; I.5.4; J.3" ]
false
2305.07613
2023-05-12T17:03:18Z
Spider GAN: Leveraging Friendly Neighbors to Accelerate GAN Training
[ "Siddarth Asokan", "Chandra Sekhar Seelamantula" ]
Training Generative adversarial networks (GANs) stably is a challenging task. The generator in GANs transform noise vectors, typically Gaussian distributed, into realistic data such as images. In this paper, we propose a novel approach for training GANs with images as inputs, but without enforcing any pairwise constraints. The intuition is that images are more structured than noise, which the generator can leverage to learn a more robust transformation. The process can be made efficient by identifying closely related datasets, or a ``friendly neighborhood'' of the target distribution, inspiring the moniker, Spider GAN. To define friendly neighborhoods leveraging proximity between datasets, we propose a new measure called the signed inception distance (SID), inspired by the polyharmonic kernel. We show that the Spider GAN formulation results in faster convergence, as the generator can discover correspondence even between seemingly unrelated datasets, for instance, between Tiny-ImageNet and CelebA faces. Further, we demonstrate cascading Spider GAN, where the output distribution from a pre-trained GAN generator is used as the input to the subsequent network. Effectively, transporting one distribution to another in a cascaded fashion until the target is learnt -- a new flavor of transfer learning. We demonstrate the efficacy of the Spider approach on DCGAN, conditional GAN, PGGAN, StyleGAN2 and StyleGAN3. The proposed approach achieves state-of-the-art Frechet inception distance (FID) values, with one-fifth of the training iterations, in comparison to their baseline counterparts on high-resolution small datasets such as MetFaces, Ukiyo-E Faces and AFHQ-Cats.
[ "cs.CV", "cs.AI", "cs.LG", "stat.ML" ]
false
2305.07625
2023-05-12T17:25:19Z
Meta Omnium: A Benchmark for General-Purpose Learning-to-Learn
[ "Ondrej Bohdal", "Yinbing Tian", "Yongshuo Zong", "Ruchika Chavhan", "Da Li", "Henry Gouk", "Li Guo", "Timothy Hospedales" ]
Meta-learning and other approaches to few-shot learning are widely studied for image recognition, and are increasingly applied to other vision tasks such as pose estimation and dense prediction. This naturally raises the question of whether there is any few-shot meta-learning algorithm capable of generalizing across these diverse task types? To support the community in answering this question, we introduce Meta Omnium, a dataset-of-datasets spanning multiple vision tasks including recognition, keypoint localization, semantic segmentation and regression. We experiment with popular few-shot meta-learning baselines and analyze their ability to generalize across tasks and to transfer knowledge between them. Meta Omnium enables meta-learning researchers to evaluate model generalization to a much wider array of tasks than previously possible, and provides a single framework for evaluating meta-learners across a wide suite of vision applications in a consistent manner.
[ "cs.CV", "cs.LG", "stat.ML" ]
false
2305.07642
2023-05-12T17:52:36Z
The ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2023: Intracranial Meningioma
[ "Dominic LaBella", "Maruf Adewole", "Michelle Alonso-Basanta", "Talissa Altes", "Syed Muhammad Anwar", "Ujjwal Baid", "Timothy Bergquist", "Radhika Bhalerao", "Sully Chen", "Verena Chung", "Gian-Marco Conte", "Farouk Dako", "James Eddy", "Ivan Ezhov", "Devon Godfrey", "Fathi Hilal", "Ariana Familiar", "Keyvan Farahani", "Juan Eugenio Iglesias", "Zhifan Jiang", "Elaine Johanson", "Anahita Fathi Kazerooni", "Collin Kent", "John Kirkpatrick", "Florian Kofler", "Koen Van Leemput", "Hongwei Bran Li", "Xinyang Liu", "Aria Mahtabfar", "Shan McBurney-Lin", "Ryan McLean", "Zeke Meier", "Ahmed W Moawad", "John Mongan", "Pierre Nedelec", "Maxence Pajot", "Marie Piraud", "Arif Rashid", "Zachary Reitman", "Russell Takeshi Shinohara", "Yury Velichko", "Chunhao Wang", "Pranav Warman", "Walter Wiggins", "Mariam Aboian", "Jake Albrecht", "Udunna Anazodo", "Spyridon Bakas", "Adam Flanders", "Anastasia Janas", "Goldey Khanna", "Marius George Linguraru", "Bjoern Menze", "Ayman Nada", "Andreas M Rauschecker", "Jeff Rudie", "Nourel Hoda Tahon", "Javier Villanueva-Meyer", "Benedikt Wiestler", "Evan Calabrese" ]
Meningiomas are the most common primary intracranial tumor in adults and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on multiparametric MRI (mpMRI) for diagnosis, treatment planning, and longitudinal treatment monitoring; yet automated, objective, and quantitative tools for non-invasive assessment of meningiomas on mpMRI are lacking. The BraTS meningioma 2023 challenge will provide a community standard and benchmark for state-of-the-art automated intracranial meningioma segmentation models based on the largest expert annotated multilabel meningioma mpMRI dataset to date. Challenge competitors will develop automated segmentation models to predict three distinct meningioma sub-regions on MRI including enhancing tumor, non-enhancing tumor core, and surrounding nonenhancing T2/FLAIR hyperintensity. Models will be evaluated on separate validation and held-out test datasets using standardized metrics utilized across the BraTS 2023 series of challenges including the Dice similarity coefficient and Hausdorff distance. The models developed during the course of this challenge will aid in incorporation of automated meningioma MRI segmentation into clinical practice, which will ultimately improve care of patients with meningioma.
[ "cs.CV", "cs.AI", "cs.LG", "stat.ML" ]
false
2305.07790
2023-05-12T22:49:36Z
Automated Grain Boundary (GB) Segmentation and Microstructural Analysis in 347H Stainless Steel Using Deep Learning and Multimodal Microscopy
[ "Shoieb Ahmed Chowdhury", "M. F. N. Taufique", "Jing Wang", "Marissa Masden", "Madison Wenzlick", "Ram Devanathan", "Alan L Schemer-Kohrn", "Keerti S Kappagantula" ]
Austenitic 347H stainless steel offers superior mechanical properties and corrosion resistance required for extreme operating conditions such as high temperature. The change in microstructure due to composition and process variations is expected to impact material properties. Identifying microstructural features such as grain boundaries thus becomes an important task in the process-microstructure-properties loop. Applying convolutional neural network (CNN) based deep-learning models is a powerful technique to detect features from material micrographs in an automated manner. Manual labeling of the images for the segmentation task poses a major bottleneck for generating training data and labels in a reliable and reproducible way within a reasonable timeframe. In this study, we attempt to overcome such limitations by utilizing multi-modal microscopy to generate labels directly instead of manual labeling. We combine scanning electron microscopy (SEM) images of 347H stainless steel as training data and electron backscatter diffraction (EBSD) micrographs as pixel-wise labels for grain boundary detection as a semantic segmentation task. We demonstrate that despite producing instrumentation drift during data collection between two modes of microscopy, this method performs comparably to similar segmentation tasks that used manual labeling. Additionally, we find that na\"ive pixel-wise segmentation results in small gaps and missing boundaries in the predicted grain boundary map. By incorporating topological information during model training, the connectivity of the grain boundary network and segmentation performance is improved. Finally, our approach is validated by accurate computation on downstream tasks of predicting the underlying grain morphology distributions which are the ultimate quantities of interest for microstructural characterization.
[ "cond-mat.mtrl-sci", "cs.CV", "eess.IV" ]
false
2305.10438
2023-05-12T05:34:52Z
IMAGINATOR: Pre-Trained Image+Text Joint Embeddings using Word-Level Grounding of Images
[ "Varuna Krishna", "S Suryavardan", "Shreyash Mishra", "Sathyanarayanan Ramamoorthy", "Parth Patwa", "Megha Chakraborty", "Aman Chadha", "Amitava Das", "Amit Sheth" ]
Word embeddings, i.e., semantically meaningful vector representation of words, are largely influenced by the distributional hypothesis "You shall know a word by the company it keeps" (Harris, 1954), whereas modern prediction-based neural network embeddings rely on design choices and hyperparameter optimization. Word embeddings like Word2Vec, GloVe etc. well capture the contextuality and real-world analogies but contemporary convolution-based image embeddings such as VGGNet, AlexNet, etc. do not capture contextual knowledge. The popular king-queen analogy does not hold true for most commonly used vision embeddings. In this paper, we introduce a pre-trained joint embedding (JE), named IMAGINATOR, trained on 21K distinct image objects level from 1M image+text pairs. JE is a way to encode multimodal data into a vector space where the text modality serves as the ground-ing key, which the complementary modality (in this case, the image) is anchored with. IMAGINATOR encapsulates three individual representations: (i) object-object co-location, (ii) word-object co-location, and (iii) word-object correlation. These three ways capture complementary aspects of the two modalities which are further combined to obtain the final JEs. Generated JEs are intrinsically evaluated to assess how well they capture the contextuality and real-world analogies. We also evaluate pre-trained IMAGINATOR JEs on three downstream tasks: (i) image captioning, (ii) Image2Tweet, and (iii) text-based image retrieval. IMAGINATOR establishes a new standard on the aforementioned down-stream tasks by outperforming the current SoTA on all the selected tasks. IMAGINATOR will be made publicly available. The codes are available at https://github.com/varunakk/IMAGINATOR
[ "cs.CL", "cs.AI", "cs.CV", "cs.MM" ]
false
2305.07280
2023-05-12T06:51:05Z
Harvesting Event Schemas from Large Language Models
[ "Jialong Tang", "Hongyu Lin", "Zhuoqun Li", "Yaojie Lu", "Xianpei Han", "Le Sun" ]
Event schema provides a conceptual, structural and formal language to represent events and model the world event knowledge. Unfortunately, it is challenging to automatically induce high-quality and high-coverage event schemas due to the open nature of real-world events, the diversity of event expressions, and the sparsity of event knowledge. In this paper, we propose a new paradigm for event schema induction -- knowledge harvesting from large-scale pre-trained language models, which can effectively resolve the above challenges by discovering, conceptualizing and structuralizing event schemas from PLMs. And an Event Schema Harvester (ESHer) is designed to automatically induce high-quality event schemas via in-context generation-based conceptualization, confidence-aware schema structuralization and graph-based schema aggregation. Empirical results show that ESHer can induce high-quality and high-coverage event schemas on varying domains.
[ "cs.CL" ]
false
2305.07288
2023-05-12T07:24:16Z
Open-WikiTable: Dataset for Open Domain Question Answering with Complex Reasoning over Table
[ "Sunjun Kweon", "Yeonsu Kwon", "Seonhee Cho", "Yohan Jo", "Edward Choi" ]
Despite recent interest in open domain question answering (ODQA) over tables, many studies still rely on datasets that are not truly optimal for the task with respect to utilizing structural nature of table. These datasets assume answers reside as a single cell value and do not necessitate exploring over multiple cells such as aggregation, comparison, and sorting. Thus, we release Open-WikiTable, the first ODQA dataset that requires complex reasoning over tables. Open-WikiTable is built upon WikiSQL and WikiTableQuestions to be applicable in the open-domain setting. As each question is coupled with both textual answers and SQL queries, Open-WikiTable opens up a wide range of possibilities for future research, as both reader and parser methods can be applied. The dataset and code are publicly available.
[ "cs.CL" ]
false
2305.07289
2023-05-12T07:32:00Z
RepCL: Exploring Effective Representation for Continual Text Classification
[ "Yifan Song", "Peiyi Wang", "Dawei Zhu", "Tianyu Liu", "Zhifang Sui", "Sujian Li" ]
Continual learning (CL) aims to constantly learn new knowledge over time while avoiding catastrophic forgetting on old tasks. In this work, we focus on continual text classification under the class-incremental setting. Recent CL studies find that the representations learned in one task may not be effective for other tasks, namely representation bias problem. For the first time we formally analyze representation bias from an information bottleneck perspective and suggest that exploiting representations with more class-relevant information could alleviate the bias. To this end, we propose a novel replay-based continual text classification method, RepCL. Our approach utilizes contrastive and generative representation learning objectives to capture more class-relevant features. In addition, RepCL introduces an adversarial replay strategy to alleviate the overfitting problem of replay. Experiments demonstrate that RepCL effectively alleviates forgetting and achieves state-of-the-art performance on three text classification tasks.
[ "cs.CL" ]
false
2305.07340
2023-05-12T09:37:13Z
MedGPTEval: A Dataset and Benchmark to Evaluate Responses of Large Language Models in Medicine
[ "Jie Xu", "Lu Lu", "Sen Yang", "Bilin Liang", "Xinwei Peng", "Jiali Pang", "Jinru Ding", "Xiaoming Shi", "Lingrui Yang", "Huan Song", "Kang Li", "Xin Sun", "Shaoting Zhang" ]
METHODS: First, a set of evaluation criteria is designed based on a comprehensive literature review. Second, existing candidate criteria are optimized for using a Delphi method by five experts in medicine and engineering. Third, three clinical experts design a set of medical datasets to interact with LLMs. Finally, benchmarking experiments are conducted on the datasets. The responses generated by chatbots based on LLMs are recorded for blind evaluations by five licensed medical experts. RESULTS: The obtained evaluation criteria cover medical professional capabilities, social comprehensive capabilities, contextual capabilities, and computational robustness, with sixteen detailed indicators. The medical datasets include twenty-seven medical dialogues and seven case reports in Chinese. Three chatbots are evaluated, ChatGPT by OpenAI, ERNIE Bot by Baidu Inc., and Doctor PuJiang (Dr. PJ) by Shanghai Artificial Intelligence Laboratory. Experimental results show that Dr. PJ outperforms ChatGPT and ERNIE Bot in both multiple-turn medical dialogue and case report scenarios.
[ "cs.CL" ]
false
2305.07475
2023-05-12T13:44:40Z
Comprehensive Solution Program Centric Pretraining for Table-and-Text Hybrid Numerical Reasoning
[ "Qianying Liu", "Dongsheng Yang", "Wenjie Zhong", "Fei Cheng", "Sadao Kurohashi" ]
Numerical reasoning over table-and-text hybrid passages, such as financial reports, poses significant challenges and has numerous potential applications. Noise and irrelevant variables in the model input have been a hindrance to its performance. Additionally, coarse-grained supervision of the whole solution program has impeded the model's ability to learn the underlying numerical reasoning process. In this paper, we propose three pretraining tasks that operate at both the whole program and sub-program level: Variable Integrity Ranking, which guides the model to focus on useful variables; Variable Operator Prediction, which decomposes the supervision into fine-grained single operator prediction; and Variable Keyphrase Masking, which encourages the model to identify key evidence that sub-programs are derived from. Experimental results demonstrate the effectiveness of our proposed methods, surpassing transformer-based model baselines.
[ "cs.CL" ]
false
2305.07491
2023-05-12T14:05:45Z
A Comprehensive Analysis of Adapter Efficiency
[ "Nandini Mundra", "Sumanth Doddapaneni", "Raj Dabre", "Anoop Kunchukuttan", "Ratish Puduppully", "Mitesh M. Khapra" ]
Adapters have been positioned as a parameter-efficient fine-tuning (PEFT) approach, whereby a minimal number of parameters are added to the model and fine-tuned. However, adapters have not been sufficiently analyzed to understand if PEFT translates to benefits in training/deployment efficiency and maintainability/extensibility. Through extensive experiments on many adapters, tasks, and languages in supervised and cross-lingual zero-shot settings, we clearly show that for Natural Language Understanding (NLU) tasks, the parameter efficiency in adapters does not translate to efficiency gains compared to full fine-tuning of models. More precisely, adapters are relatively expensive to train and have slightly higher deployment latency. Furthermore, the maintainability/extensibility benefits of adapters can be achieved with simpler approaches like multi-task training via full fine-tuning, which also provide relatively faster training times. We, therefore, recommend that for moderately sized models for NLU tasks, practitioners should rely on full fine-tuning or multi-task training rather than using adapters. Our code is available at https://github.com/AI4Bharat/adapter-efficiency.
[ "cs.CL" ]
false
2305.07615
2023-05-12T17:08:47Z
What are the Desired Characteristics of Calibration Sets? Identifying Correlates on Long Form Scientific Summarization
[ "Griffin Adams", "Bichlien H Nguyen", "Jake Smith", "Yingce Xia", "Shufang Xie", "Anna Ostropolets", "Budhaditya Deb", "Yuan-Jyue Chen", "Tristan Naumann", "Noémie Elhadad" ]
Summarization models often generate text that is poorly calibrated to quality metrics because they are trained to maximize the likelihood of a single reference (MLE). To address this, recent work has added a calibration step, which exposes a model to its own ranked outputs to improve relevance or, in a separate line of work, contrasts positive and negative sets to improve faithfulness. While effective, much of this work has focused on how to generate and optimize these sets. Less is known about why one setup is more effective than another. In this work, we uncover the underlying characteristics of effective sets. For each training instance, we form a large, diverse pool of candidates and systematically vary the subsets used for calibration fine-tuning. Each selection strategy targets distinct aspects of the sets, such as lexical diversity or the size of the gap between positive and negatives. On three diverse scientific long-form summarization datasets (spanning biomedical, clinical, and chemical domains), we find, among others, that faithfulness calibration is optimal when the negative sets are extractive and more likely to be generated, whereas for relevance calibration, the metric margin between candidates should be maximized and surprise--the disagreement between model and metric defined candidate rankings--minimized. Code to create, select, and optimize calibration sets is available at https://github.com/griff4692/calibrating-summaries
[ "cs.CL" ]
true
2305.07717
2023-05-12T18:16:45Z
Parallel Tree Kernel Computation
[ "Souad Taouti", "Hadda Cherroun", "Djelloul Ziadi" ]
Tree kernels are fundamental tools that have been leveraged in many applications, particularly those based on machine learning for Natural Language Processing tasks. In this paper, we devise a parallel implementation of the sequential algorithm for the computation of some tree kernels of two finite sets of trees (Ouali-Sebti, 2015). Our comparison is narrowed on a sequential implementation of SubTree kernel computation. This latter is mainly reduced to an intersection of weighted tree automata. Our approach relies on the nature of the data parallelism source inherent in this computation by deploying the MapReduce paradigm. One of the key benefits of our approach is its versatility in being adaptable to a wide range of substructure tree kernel-based learning methods. To evaluate the efficacy of our parallel approach, we conducted a series of experiments that compared it against the sequential version using a diverse set of synthetic tree language datasets that were manually crafted for our analysis. The reached results clearly demonstrate that the proposed parallel algorithm outperforms the sequential one in terms of latency.
[ "cs.CL" ]
false
2305.07266
2023-05-12T05:55:34Z
Gaussian Prior Reinforcement Learning for Nested Named Entity Recognition
[ "Yawen Yang", "Xuming Hu", "Fukun Ma", "Shu'ang Li", "Aiwei Liu", "Lijie Wen", "Philip S. Yu" ]
Named Entity Recognition (NER) is a well and widely studied task in natural language processing. Recently, the nested NER has attracted more attention since its practicality and difficulty. Existing works for nested NER ignore the recognition order and boundary position relation of nested entities. To address these issues, we propose a novel seq2seq model named GPRL, which formulates the nested NER task as an entity triplet sequence generation process. GPRL adopts the reinforcement learning method to generate entity triplets decoupling the entity order in gold labels and expects to learn a reasonable recognition order of entities via trial and error. Based on statistics of boundary distance for nested entities, GPRL designs a Gaussian prior to represent the boundary distance distribution between nested entities and adjust the output probability distribution of nested boundary tokens. Experiments on three nested NER datasets demonstrate that GPRL outperforms previous nested NER models.
[ "cs.CL", "cs.AI" ]
false
2305.07310
2023-05-12T08:32:18Z
Improving Zero-shot Multilingual Neural Machine Translation by Leveraging Cross-lingual Consistency Regularization
[ "Pengzhi Gao", "Liwen Zhang", "Zhongjun He", "Hua Wu", "Haifeng Wang" ]
The multilingual neural machine translation (NMT) model has a promising capability of zero-shot translation, where it could directly translate between language pairs unseen during training. For good transfer performance from supervised directions to zero-shot directions, the multilingual NMT model is expected to learn universal representations across different languages. This paper introduces a cross-lingual consistency regularization, CrossConST, to bridge the representation gap among different languages and boost zero-shot translation performance. The theoretical analysis shows that CrossConST implicitly maximizes the probability distribution for zero-shot translation, and the experimental results on both low-resource and high-resource benchmarks show that CrossConST consistently improves the translation performance. The experimental analysis also proves that CrossConST could close the sentence representation gap and better align the representation space. Given the universality and simplicity of CrossConST, we believe it can serve as a strong baseline for future multilingual NMT research.
[ "cs.CL", "cs.AI" ]
false
2305.07360
2023-05-12T10:20:13Z
Improving the Quality of Neural Machine Translation Through Proper Translation of Name Entities
[ "Radhika Sharma", "Pragya Katyayan", "Nisheeth Joshi" ]
In this paper, we have shown a method of improving the quality of neural machine translation by translating/transliterating name entities as a preprocessing step. Through experiments we have shown the performance gain of our system. For evaluation we considered three types of name entities viz person names, location names and organization names. The system was able to correctly translate mostly all the name entities. For person names the accuracy was 99.86%, for location names the accuracy was 99.63% and for organization names the accuracy was 99.05%. Overall, the accuracy of the system was 99.52%
[ "cs.CL", "cs.AI" ]
false
2305.07365
2023-05-12T10:29:37Z
Towards Transliteration between Sindhi Scripts from Devanagari to Perso-Arabic
[ "Shivani Singh Rathore", "Bharti Nathani", "Nisheeth Joshi", "Pragya Katyayan", "Chander Prakash Dadlani" ]
In this paper, we have shown a script conversion (transliteration) technique that converts Sindhi text in the Devanagari script to the Perso-Arabic script. We showed this by incorporating a hybrid approach where some part of the text is converted using a rule base and in case an ambiguity arises then a probabilistic model is used to resolve the same. Using this approach, the system achieved an overall accuracy of 99.64%.
[ "cs.CL", "cs.AI" ]
false
2305.07763
2023-05-12T21:08:35Z
Knowledge Authoring for Rules and Actions
[ "Yuheng Wang", "Paul Fodor", "Michael Kifer" ]
Knowledge representation and reasoning (KRR) systems describe and reason with complex concepts and relations in the form of facts and rules. Unfortunately, wide deployment of KRR systems runs into the problem that domain experts have great difficulty constructing correct logical representations of their domain knowledge. Knowledge engineers can help with this construction process, but there is a deficit of such specialists. The earlier Knowledge Authoring Logic Machine (KALM) based on Controlled Natural Language (CNL) was shown to have very high accuracy for authoring facts and questions. More recently, KALMFL, a successor of KALM, replaced CNL with factual English, which is much less restrictive and requires very little training from users. However, KALMFL has limitations in representing certain types of knowledge, such as authoring rules for multi-step reasoning or understanding actions with timestamps. To address these limitations, we propose KALMRA to enable authoring of rules and actions. Our evaluation using the UTI guidelines benchmark shows that KALMRA achieves a high level of correctness (100%) on rule authoring. When used for authoring and reasoning with actions, KALMRA achieves more than 99.3% correctness on the bAbI benchmark, demonstrating its effectiveness in more sophisticated KRR jobs. Finally, we illustrate the logical reasoning capabilities of KALMRA by drawing attention to the problems faced by the recently made famous AI, ChatGPT.
[ "cs.CL", "cs.AI" ]
false
2305.07341
2023-05-12T09:38:11Z
Model-based Programming: Redefining the Atomic Unit of Programming for the Deep Learning Era
[ "Meng Zheng" ]
This paper introduces and explores a new programming paradigm, Model-based Programming, designed to address the challenges inherent in applying deep learning models to real-world applications. Despite recent significant successes of deep learning models across a range of tasks, their deployment in real business scenarios remains fraught with difficulties, such as complex model training, large computational resource requirements, and integration issues with existing programming languages. To ameliorate these challenges, we propose the concept of 'Model-based Programming' and present a novel programming language - M Language, tailored to a prospective model-centered programming paradigm. M Language treats models as basic computational units, enabling developers to concentrate more on crucial tasks such as model loading, fine-tuning, evaluation, and deployment, thereby enhancing the efficiency of creating deep learning applications. We posit that this innovative programming paradigm will stimulate the extensive application and advancement of deep learning technology and provide a robust foundation for a model-driven future.
[ "cs.LG", "cs.CL", "cs.SE" ]
false
2305.07374
2023-05-12T10:52:13Z
Implications of Deep Circuits in Improving Quality of Quantum Question Answering
[ "Pragya Katyayan", "Nisheeth Joshi" ]
Question Answering (QA) has proved to be an arduous challenge in the area of natural language processing (NLP) and artificial intelligence (AI). Many attempts have been made to develop complete solutions for QA as well as improving significant sub-modules of the QA systems to improve the overall performance through the course of time. Questions are the most important piece of QA, because knowing the question is equivalent to knowing what counts as an answer (Harrah in Philos Sci, 1961 [1]). In this work, we have attempted to understand questions in a better way by using Quantum Machine Learning (QML). The properties of Quantum Computing (QC) have enabled classically intractable data processing. So, in this paper, we have performed question classification on questions from two classes of SelQA (Selection-based Question Answering) dataset using quantum-based classifier algorithms-quantum support vector machine (QSVM) and variational quantum classifier (VQC) from Qiskit (Quantum Information Science toolKIT) for Python. We perform classification with both classifiers in almost similar environments and study the effects of circuit depths while comparing the results of both classifiers. We also use these classification results with our own rule-based QA system and observe significant performance improvement. Hence, this experiment has helped in improving the quality of QA in general.
[ "cs.CL", "cs.AI", "quant-ph" ]
false
2305.07378
2023-05-12T11:09:49Z
Surfacing Biases in Large Language Models using Contrastive Input Decoding
[ "Gal Yona", "Or Honovich", "Itay Laish", "Roee Aharoni" ]
Ensuring that large language models (LMs) are fair, robust and useful requires an understanding of how different modifications to their inputs impact the model's behaviour. In the context of open-text generation tasks, however, such an evaluation is not trivial. For example, when introducing a model with an input text and a perturbed, "contrastive" version of it, meaningful differences in the next-token predictions may not be revealed with standard decoding strategies. With this motivation in mind, we propose Contrastive Input Decoding (CID): a decoding algorithm to generate text given two inputs, where the generated text is likely given one input but unlikely given the other. In this way, the contrastive generations can highlight potentially subtle differences in how the LM output differs for the two inputs in a simple and interpretable manner. We use CID to highlight context-specific biases that are hard to detect with standard decoding strategies and quantify the effect of different input perturbations.
[ "cs.CL", "cs.CY", "cs.LG" ]
true
2305.07389
2023-05-12T11:29:13Z
Investigating the Sensitivity of Automatic Speech Recognition Systems to Phonetic Variation in L2 Englishes
[ "Emma O'Neill", "Julie Carson-Berndsen" ]
Automatic Speech Recognition (ASR) systems exhibit the best performance on speech that is similar to that on which it was trained. As such, underrepresented varieties including regional dialects, minority-speakers, and low-resource languages, see much higher word error rates (WERs) than those varieties seen as 'prestigious', 'mainstream', or 'standard'. This can act as a barrier to incorporating ASR technology into the annotation process for large-scale linguistic research since the manual correction of the erroneous automated transcripts can be just as time and resource consuming as manual transcriptions. A deeper understanding of the behaviour of an ASR system is thus beneficial from a speech technology standpoint, in terms of improving ASR accuracy, and from an annotation standpoint, where knowing the likely errors made by an ASR system can aid in this manual correction. This work demonstrates a method of probing an ASR system to discover how it handles phonetic variation across a number of L2 Englishes. Specifically, how particular phonetic realisations which were rare or absent in the system's training data can lead to phoneme level misrecognitions and contribute to higher WERs. It is demonstrated that the behaviour of the ASR is systematic and consistent across speakers with similar spoken varieties (in this case the same L1) and phoneme substitution errors are typically in agreement with human annotators. By identifying problematic productions specific weaknesses can be addressed by sourcing such realisations for training and fine-tuning thus making the system more robust to pronunciation variation.
[ "cs.CL", "cs.SD", "eess.AS" ]
false
2305.07406
2023-05-12T12:13:27Z
Two-in-One: A Model Hijacking Attack Against Text Generation Models
[ "Wai Man Si", "Michael Backes", "Yang Zhang", "Ahmed Salem" ]
Machine learning has progressed significantly in various applications ranging from face recognition to text generation. However, its success has been accompanied by different attacks. Recently a new attack has been proposed which raises both accountability and parasitic computing risks, namely the model hijacking attack. Nevertheless, this attack has only focused on image classification tasks. In this work, we broaden the scope of this attack to include text generation and classification models, hence showing its broader applicability. More concretely, we propose a new model hijacking attack, Ditto, that can hijack different text classification tasks into multiple generation ones, e.g., language translation, text summarization, and language modeling. We use a range of text benchmark datasets such as SST-2, TweetEval, AGnews, QNLI, and IMDB to evaluate the performance of our attacks. Our results show that by using Ditto, an adversary can successfully hijack text generation models without jeopardizing their utility.
[ "cs.CR", "cs.CL", "cs.LG" ]
false
2305.07455
2023-05-12T13:07:51Z
Improving Cascaded Unsupervised Speech Translation with Denoising Back-translation
[ "Yu-Kuan Fu", "Liang-Hsuan Tseng", "Jiatong Shi", "Chen-An Li", "Tsu-Yuan Hsu", "Shinji Watanabe", "Hung-yi Lee" ]
Most of the speech translation models heavily rely on parallel data, which is hard to collect especially for low-resource languages. To tackle this issue, we propose to build a cascaded speech translation system without leveraging any kind of paired data. We use fully unpaired data to train our unsupervised systems and evaluate our results on CoVoST 2 and CVSS. The results show that our work is comparable with some other early supervised methods in some language pairs. While cascaded systems always suffer from severe error propagation problems, we proposed denoising back-translation (DBT), a novel approach to building robust unsupervised neural machine translation (UNMT). DBT successfully increases the BLEU score by 0.7--0.9 in all three translation directions. Moreover, we simplified the pipeline of our cascaded system to reduce inference latency and conducted a comprehensive analysis of every part of our work. We also demonstrate our unsupervised speech translation results on the established website.
[ "cs.CL", "cs.SD", "eess.AS" ]
false
2305.07565
2023-05-12T15:46:36Z
A Memory Model for Question Answering from Streaming Data Supported by Rehearsal and Anticipation of Coreference Information
[ "Vladimir Araujo", "Alvaro Soto", "Marie-Francine Moens" ]
Existing question answering methods often assume that the input content (e.g., documents or videos) is always accessible to solve the task. Alternatively, memory networks were introduced to mimic the human process of incremental comprehension and compression of the information in a fixed-capacity memory. However, these models only learn how to maintain memory by backpropagating errors in the answers through the entire network. Instead, it has been suggested that humans have effective mechanisms to boost their memorization capacities, such as rehearsal and anticipation. Drawing inspiration from these, we propose a memory model that performs rehearsal and anticipation while processing inputs to memorize important information for solving question answering tasks from streaming data. The proposed mechanisms are applied self-supervised during training through masked modeling tasks focused on coreference information. We validate our model on a short-sequence (bAbI) dataset as well as large-sequence textual (NarrativeQA) and video (ActivityNet-QA) question answering datasets, where it achieves substantial improvements over previous memory network approaches. Furthermore, our ablation study confirms the proposed mechanisms' importance for memory models.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2305.07709
2023-05-12T18:07:00Z
Using Language Models to Detect Alarming Student Responses
[ "Christopher M. Ormerod", "Milan Patel", "Harry Wang" ]
This article details the advances made to a system that uses artificial intelligence to identify alarming student responses. This system is built into our assessment platform to assess whether a student's response indicates they are a threat to themselves or others. Such responses may include details concerning threats of violence, severe depression, suicide risks, and descriptions of abuse. Driven by advances in natural language processing, the latest model is a fine-tuned language model trained on a large corpus consisting of student responses and supplementary texts. We demonstrate that the use of a language model delivers a substantial improvement in accuracy over the previous iterations of this system.
[ "cs.CL", "cs.IR", "cs.LG" ]
false
2305.18304
2023-05-12T09:19:30Z
Semantic-aware Digital Twin for Metaverse: A Comprehensive Review
[ "Senthil Kumar Jagatheesaperumal", "Zhaohui Yang", "Qianqian Yang", "Chongwen Huang", "Wei Xu", "Mohammad Shikh-Bahaei", "Zhaoyang Zhang" ]
To facilitate the deployment of digital twins in Metaverse, the paradigm with semantic awareness has been proposed as a means for enabling accurate and task-oriented information extraction with inherent intelligence. However, this framework requires all devices in the Metaverse environment to be directly linked with the semantic model to enable faithful interpretation of messages. In contrast, this article introduces the digital twin framework, considering a smart industrial application, which enables semantic communication in conjugation with the Metaverse enabling technologies. The fundamentals of this framework are demonstrated on an industrial shopfloor management use case with a digital twin so as to improve its performance through semantic communication. An overview of semantic communication, Metaverse, and digital twins is presented. Integration of these technologies with the basic architecture as well as the impact on future industrial applications is presented. In a nutshell, this article showcases how semantic awareness can be an effective candidate in the implementation of digital twins for Metaverse applications.
[ "cs.CY", "cs.CL", "cs.IR", "cs.MM", "A.1; H.5; I.6; J.7; F.4" ]
false
2305.07213
2023-05-12T03:01:41Z
Rethinking k-means from manifold learning perspective
[ "Quanxue Gao", "Qianqian Wang", "Han Lu", "Wei Xia", "Xinbo Gao" ]
Although numerous clustering algorithms have been developed, many existing methods still leverage k-means technique to detect clusters of data points. However, the performance of k-means heavily depends on the estimation of centers of clusters, which is very difficult to achieve an optimal solution. Another major drawback is that it is sensitive to noise and outlier data. In this paper, from manifold learning perspective, we rethink k-means and present a new clustering algorithm which directly detects clusters of data without mean estimation. Specifically, we construct distance matrix between data points by Butterworth filter such that distance between any two data points in the same clusters equals to a small constant, while increasing the distance between other data pairs from different clusters. To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization on the 3rd-order tensor which consists of indicator matrices of different views. Finally, an efficient alternating algorithm is derived to optimize our model. The constructed sequence was proved to converge to the stationary KKT point. Extensive experimental results indicate the superiority of our proposed method.
[ "cs.LG" ]
false
2305.07320
2023-05-12T08:49:17Z
ActUp: Analyzing and Consolidating tSNE and UMAP
[ "Andrew Draganov", "Jakob Rødsgaard Jørgensen", "Katrine Scheel Nellemann", "Davide Mottin", "Ira Assent", "Tyrus Berry", "Cigdem Aslay" ]
tSNE and UMAP are popular dimensionality reduction algorithms due to their speed and interpretable low-dimensional embeddings. Despite their popularity, however, little work has been done to study their full span of differences. We theoretically and experimentally evaluate the space of parameters in both tSNE and UMAP and observe that a single one -- the normalization -- is responsible for switching between them. This, in turn, implies that a majority of the algorithmic differences can be toggled without affecting the embeddings. We discuss the implications this has on several theoretic claims behind UMAP, as well as how to reconcile them with existing tSNE interpretations. Based on our analysis, we provide a method (\ourmethod) that combines previously incompatible techniques from tSNE and UMAP and can replicate the results of either algorithm. This allows our method to incorporate further improvements, such as an acceleration that obtains either method's outputs faster than UMAP. We release improved versions of tSNE, UMAP, and \ourmethod that are fully plug-and-play with the traditional libraries at https://github.com/Andrew-Draganov/GiDR-DUN
[ "cs.LG" ]
false
2305.07386
2023-05-12T11:27:20Z
One-step Bipartite Graph Cut: A Normalized Formulation and Its Application to Scalable Subspace Clustering
[ "Si-Guo Fang", "Dong Huang", "Chang-Dong Wang", "Jian-Huang Lai" ]
The bipartite graph structure has shown its promising ability in facilitating the subspace clustering and spectral clustering algorithms for large-scale datasets. To avoid the post-processing via k-means during the bipartite graph partitioning, the constrained Laplacian rank (CLR) is often utilized for constraining the number of connected components (i.e., clusters) in the bipartite graph, which, however, neglects the distribution (or normalization) of these connected components and may lead to imbalanced or even ill clusters. Despite the significant success of normalized cut (Ncut) in general graphs, it remains surprisingly an open problem how to enforce a one-step normalized cut for bipartite graphs, especially with linear-time complexity. In this paper, we first characterize a novel one-step bipartite graph cut (OBCut) criterion with normalized constraints, and theoretically prove its equivalence to a trace maximization problem. Then we extend this cut criterion to a scalable subspace clustering approach, where adaptive anchor learning, bipartite graph learning, and one-step normalized bipartite graph partitioning are simultaneously modeled in a unified objective function, and an alternating optimization algorithm is further designed to solve it in linear time. Experiments on a variety of general and large-scale datasets demonstrate the effectiveness and scalability of our approach.
[ "cs.LG" ]
false
2305.07521
2023-05-12T14:35:42Z
AGFormer: Efficient Graph Representation with Anchor-Graph Transformer
[ "Bo Jiang", "Fei Xu", "Ziyan Zhang", "Jin Tang", "Feiping Nie" ]
To alleviate the local receptive issue of GCN, Transformers have been exploited to capture the long range dependences of nodes for graph data representation and learning. However, existing graph Transformers generally employ regular self-attention module for all node-to-node message passing which needs to learn the affinities/relationships between all node's pairs, leading to high computational cost issue. Also, they are usually sensitive to graph noises. To overcome this issue, we propose a novel graph Transformer architecture, termed Anchor Graph Transformer (AGFormer), by leveraging an anchor graph model. To be specific, AGFormer first obtains some representative anchors and then converts node-to-node message passing into anchor-to-anchor and anchor-to-node message passing process. Thus, AGFormer performs much more efficiently and also robustly than regular node-to-node Transformers. Extensive experiments on several benchmark datasets demonstrate the effectiveness and benefits of proposed AGFormer.
[ "cs.LG" ]
false
2305.07624
2023-05-12T17:24:02Z
Agile gesture recognition for capacitive sensing devices: adapting on-the-job
[ "Ying Liu", "Liucheng Guo", "Valeri A. Makarov", "Yuxiang Huang", "Alexander Gorban", "Evgeny Mirkes", "Ivan Y. Tyukin" ]
Automated hand gesture recognition has been a focus of the AI community for decades. Traditionally, work in this domain revolved largely around scenarios assuming the availability of the flow of images of the user hands. This has partly been due to the prevalence of camera-based devices and the wide availability of image data. However, there is growing demand for gesture recognition technology that can be implemented on low-power devices using limited sensor data instead of high-dimensional inputs like hand images. In this work, we demonstrate a hand gesture recognition system and method that uses signals from capacitive sensors embedded into the etee hand controller. The controller generates real-time signals from each of the wearer five fingers. We use a machine learning technique to analyse the time series signals and identify three features that can represent 5 fingers within 500 ms. The analysis is composed of a two stage training strategy, including dimension reduction through principal component analysis and classification with K nearest neighbour. Remarkably, we found that this combination showed a level of performance which was comparable to more advanced methods such as supervised variational autoencoder. The base system can also be equipped with the capability to learn from occasional errors by providing it with an additional adaptive error correction mechanism. The results showed that the error corrector improve the classification performance in the base system without compromising its performance. The system requires no more than 1 ms of computing time per input sample, and is smaller than deep neural networks, demonstrating the feasibility of agile gesture recognition systems based on this technology.
[ "cs.LG" ]
false
2305.07741
2023-05-12T19:52:11Z
To transfer or not transfer: Unified transferability metric and analysis
[ "Qianshan Zhan", "Xiao-Jun Zeng" ]
In transfer learning, transferability is one of the most fundamental problems, which aims to evaluate the effectiveness of arbitrary transfer tasks. Existing research focuses on classification tasks and neglects domain or task differences. More importantly, there is a lack of research to determine whether to transfer or not. To address these, we propose a new analytical approach and metric, Wasserstein Distance based Joint Estimation (WDJE), for transferability estimation and determination in a unified setting: classification and regression problems with domain and task differences. The WDJE facilitates decision-making on whether to transfer or not by comparing the target risk with and without transfer. To enable the comparison, we approximate the target transfer risk by proposing a non-symmetric, easy-to-understand and easy-to-calculate target risk bound that is workable even with limited target labels. The proposed bound relates the target risk to source model performance, domain and task differences based on Wasserstein distance. We also extend our bound into unsupervised settings and establish the generalization bound from finite empirical samples. Our experiments in image classification and remaining useful life regression prediction illustrate the effectiveness of the WDJE in determining whether to transfer or not, and the proposed bound in approximating the target transfer risk.
[ "cs.LG" ]
false
2305.07778
2023-05-12T21:49:51Z
Accelerator-Aware Training for Transducer-Based Speech Recognition
[ "Suhaila M. Shakiah", "Rupak Vignesh Swaminathan", "Hieu Duy Nguyen", "Raviteja Chinta", "Tariq Afzal", "Nathan Susanj", "Athanasios Mouchtaris", "Grant P. Strimel", "Ariya Rastrow" ]
Machine learning model weights and activations are represented in full-precision during training. This leads to performance degradation in runtime when deployed on neural network accelerator (NNA) chips, which leverage highly parallelized fixed-point arithmetic to improve runtime memory and latency. In this work, we replicate the NNA operators during the training phase, accounting for the degradation due to low-precision inference on the NNA in back-propagation. Our proposed method efficiently emulates NNA operations, thus foregoing the need to transfer quantization error-prone data to the Central Processing Unit (CPU), ultimately reducing the user perceived latency (UPL). We apply our approach to Recurrent Neural Network-Transducer (RNN-T), an attractive architecture for on-device streaming speech recognition tasks. We train and evaluate models on 270K hours of English data and show a 5-7% improvement in engine latency while saving up to 10% relative degradation in WER.
[ "cs.LG" ]
false