|
--- |
|
language: |
|
- fr |
|
tags: |
|
- whisper-event |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_11_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: deepdml/whisper-medium-mix-fr |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: mozilla-foundation/common_voice_11_0 fr |
|
type: mozilla-foundation/common_voice_11_0 |
|
config: fr |
|
split: test |
|
args: fr |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 11.227820307400155 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: FLEURS ASR |
|
type: google/fleurs |
|
config: fr_fr |
|
split: test |
|
args: fr |
|
metrics: |
|
- name: WER |
|
type: wer |
|
value: 9.3526 |
|
- name: Cer |
|
type: cer |
|
value: 4.144 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Multilingual LibriSpeech |
|
type: facebook/multilingual_librispeech |
|
config: french |
|
split: test |
|
args: |
|
language: fr |
|
metrics: |
|
- name: WER |
|
type: wer |
|
value: 6.3468 |
|
- name: Cer |
|
type: cer |
|
value: 3.1561 |
|
- task: |
|
type: Automatic Speech Recognition |
|
name: speech-recognition |
|
dataset: |
|
name: VoxPopuli |
|
type: facebook/voxpopuli |
|
config: fr |
|
split: test |
|
args: |
|
language: fr |
|
metrics: |
|
- name: WER |
|
type: wer |
|
value: 10.0653 |
|
- name: Cer |
|
type: cer |
|
value: 6.5456 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deepdml/whisper-medium-mix-fr |
|
|
|
This model is a fine-tuned version of [deepdml/whisper-medium-mix-fr](https://huggingface.co/deepdml/whisper-medium-mix-fr) on the mozilla-foundation/common_voice_11_0, google/fleurs, facebook/multilingual_librispeech and facebook/voxpopuli datasets. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2599 |
|
- Wer: 11.2278 |
|
|
|
Using the [evalutaion script](https://github.com/huggingface/community-events/blob/main/whisper-fine-tuning-event/run_eval_whisper_streaming.py) provided in the Whisper Sprint the model achieves these results on the test sets (WER): |
|
|
|
- **google/fleurs: 9.3526 %** |
|
(python run_eval_whisper_streaming.py --model_id="deepdml/whisper-medium-mix-fr" --dataset="google/fleurs" --config="fr_fr" --device=0 --language="fr") |
|
- **facebook/multilingual_librispeech: 6.3468 %** |
|
(python run_eval_whisper_streaming.py --model_id="deepdml/whisper-medium-mix-fr" --dataset="facebook/multilingual_librispeech" --config="french" --device=0 --language="fr") |
|
- **facebook/voxpopuli: 10.0653 %** |
|
(python run_eval_whisper_streaming.py --model_id="deepdml/whisper-medium-mix-fr" --dataset="facebook/voxpopuli" --config="fr" --device=0 --language="fr") |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
Training data used: |
|
- **mozilla-foundation/common_voice_11_0:** fr, train+validation |
|
- **google/fleurs:** fr_fr, train |
|
- **facebook/multilingual_librispeech:** french, train |
|
- **facebook/voxpopuli:** fr, train |
|
- |
|
Evaluating over test split from mozilla-foundation/common_voice_11_0 dataset. |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 4000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:| |
|
| 0.0855 | 0.25 | 1000 | 0.2826 | 12.4230 | |
|
| 0.0569 | 0.5 | 2000 | 0.2768 | 11.9577 | |
|
| 0.0724 | 0.75 | 3000 | 0.2670 | 11.6106 | |
|
| 0.069 | 1.0 | 4000 | 0.2599 | 11.2278 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0.dev0 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.7.1.dev0 |
|
- Tokenizers 0.13.2 |
|
|