delayedkarma's picture
Update README.md
810f43a verified
metadata
license: apache-2.0
library_name: transformers
base_model: mistralai/Mistral-7B-v0.1
datasets:
  - b-mc2/sql-create-context
model-index:
  - name: mistral-7b-text-to-sql_full-model
    results: []
reference:
  - https://www.philschmid.de/fine-tune-llms-in-2024-with-trl
language:
  - en
pipeline_tag: text2text-generation

mistral-7b-text-to-sql_full-model

Model description

  • Model type: Language model
  • Language(s) (NLP): English
  • License: Apache 2.0
  • Finetuned from model : Mistral-7B-v0.1

How to get started with the model

import torch

from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load model directly

tokenizer = AutoTokenizer.from_pretrained("delayedkarma/mistral-7b-text-to-sql_full-model")
model = AutoModelForCausalLM.from_pretrained("delayedkarma/mistral-7b-text-to-sql_full-model")

text = "How many matched scored 3–6, 7–6(5), 6–3?"
inputs = tokenizer(text, return_tensors="pt")

outputs = model.generate(**inputs, max_new_tokens=40)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 3
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 6
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 3

Framework versions

  • PEFT 0.7.2.dev0
  • Transformers 4.36.2
  • Pytorch 2.2.2
  • Datasets 2.16.1
  • Tokenizers 0.15.2