dmargutierrez's picture
update model card README.md
6f55aad
|
raw
history blame
3.35 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - lextreme
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilroberta-base-mapa_coarse-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: lextreme
          type: lextreme
          config: mapa_coarse
          split: test
          args: mapa_coarse
        metrics:
          - name: Precision
            type: precision
            value: 0.7440758293838863
          - name: Recall
            type: recall
            value: 0.5805042016806723
          - name: F1
            type: f1
            value: 0.652190332326284
          - name: Accuracy
            type: accuracy
            value: 0.9871584939520047

distilroberta-base-mapa_coarse-ner

This model is a fine-tuned version of distilroberta-base on the lextreme dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1020
  • Precision: 0.7441
  • Recall: 0.5805
  • F1: 0.6522
  • Accuracy: 0.9872

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0343 1.0 1739 0.0694 0.6342 0.5205 0.5718 0.9841
0.0263 2.0 3478 0.0705 0.7961 0.5235 0.6317 0.9865
0.0183 3.0 5217 0.0670 0.7417 0.5313 0.6191 0.9864
0.015 4.0 6956 0.0632 0.7237 0.5850 0.6470 0.9869
0.0137 5.0 8695 0.0663 0.7311 0.6064 0.6629 0.9872
0.011 6.0 10434 0.0703 0.7163 0.5877 0.6457 0.9868
0.0096 7.0 12173 0.0799 0.7511 0.5676 0.6466 0.9871
0.0071 8.0 13912 0.0770 0.7386 0.5640 0.6396 0.9868
0.0068 9.0 15651 0.0827 0.7285 0.5674 0.6379 0.9868
0.0057 10.0 17390 0.0897 0.7611 0.5719 0.6531 0.9872
0.0053 11.0 19129 0.0940 0.7614 0.5627 0.6471 0.9871
0.004 12.0 20868 0.0874 0.7184 0.6084 0.6588 0.9873
0.0035 13.0 22607 0.0986 0.7513 0.5766 0.6525 0.9872
0.003 14.0 24346 0.1012 0.7396 0.5805 0.6505 0.9871
0.0026 15.0 26085 0.1020 0.7441 0.5805 0.6522 0.9872

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.0
  • Tokenizers 0.13.2