dmariko's picture
SmolLM-1.7B-Instruct_fsdp_qlora_nf4_adapter
a1ef4fc verified
|
raw
history blame
2.63 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - trl
  - sft
  - generated_from_trainer
base_model: HuggingFaceTB/SmolLM-1.7B-Instruct
datasets:
  - generator
model-index:
  - name: SmolLM_1_7B_Instruct_qlora_nf4_merged
    results: []

SmolLM_1_7B_Instruct_qlora_nf4_merged

This model is a fine-tuned version of HuggingFaceTB/SmolLM-1.7B-Instruct on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6129

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 16
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss
2.088 0.9524 10 1.9222
1.8671 2.0 21 1.7931
1.7735 2.9524 31 1.7340
1.7236 4.0 42 1.6932
1.6739 4.9524 52 1.6680
1.652 6.0 63 1.6494
1.6354 6.9524 73 1.6379
1.6139 8.0 84 1.6288
1.5938 8.9524 94 1.6233
1.5828 10.0 105 1.6189
1.5722 10.9524 115 1.6164
1.5588 12.0 126 1.6149
1.5539 12.9524 136 1.6141
1.5506 14.0 147 1.6134
1.5437 14.9524 157 1.6132
1.5427 16.0 168 1.6130
1.5407 16.9524 178 1.6130
1.5386 18.0 189 1.6130
1.5373 18.9524 199 1.6130
1.5397 19.0476 200 1.6129

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0
  • Pytorch 2.1.0
  • Datasets 2.18.0
  • Tokenizers 0.19.1