dstampfli's picture
Add new SentenceTransformer model.
74dcbb5 verified
metadata
base_model: Snowflake/snowflake-arctic-embed-m
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
  - dot_accuracy@1
  - dot_accuracy@3
  - dot_accuracy@5
  - dot_accuracy@10
  - dot_precision@1
  - dot_precision@3
  - dot_precision@5
  - dot_precision@10
  - dot_recall@1
  - dot_recall@3
  - dot_recall@5
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:600
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      Which entities are responsible for enforcing the requirements discussed in
      the context?
    sentences:
      - >-
        ALGORITHMIC DISCRIMINATION PROTECTIONS

        You should not face discrimination by algorithms and systems should be
        used and designed in
      - >-
        SECTION TITLE

        HUMAN ALTERNATIVES, CONSIDERATION, AND FALLBACK

        You should be able to opt out, where appropriate, and have access to a
        person who can quickly
      - >-
        requirements of the Federal agencies that enforce them. These principles
        are not intended to, and do not,
  - source_sentence: >-
      How is safety addressed in the development process according to the
      context?
    sentences:
      - |-
        TABLE OF CONTENTS
        FROM PRINCIPLES TO PRACTICE: A TECHNICAL COMPANION TO THE BLUEPRINT 
        FOR AN AI BILL OF RIGHTS 
         
        USING THIS TECHNICAL COMPANION
         
        SAFE AND EFFECTIVE SYSTEMS
      - |-
        stemming from unintended, yet foreseeable, uses or 
         
         
         
         
          
         
         
        SECTION TITLE
        BLUEPRINT FOR AN
        SAFE AND E 
        You should be protected from unsafe or 
        developed with consultation from diverse
      - >-
        tion or implemented under existing U.S. laws. For example, government
        surveillance, and data search and
  - source_sentence: >-
      How should the deployment of automated systems be aligned with the
      principles for protecting the American public?
    sentences:
      - >-
        public and private sector contexts; 

        Equal opportunities, including equitable access to education, housing,
        credit, employment, and other 

        programs; or,
      - >-
        use, and deployment of automated systems to protect the rights of the
        American public in the age of artificial
      - >-
        five principles that should guide the design, use, and deployment of
        automated systems to protect the American
  - source_sentence: >-
      Who should designers, developers, and deployers of automated systems seek
      permission from?
    sentences:
      - >-
        This important progress must not come at the price of civil rights or
        democratic values, foundational American
      - >-
        a blueprint for building and deploying automated systems that are
        aligned with democratic values and protect
      - >-
        context is collected. Designers, developers, and deployers of automated
        systems should seek your permission
  - source_sentence: >-
      What changes are suggested for notice-and-choice practices regarding broad
      uses of data?
    sentences:
      - >-
        mated systems, and researchers developing innovative guardrails.
        Advocates, researchers, and government
      - >-
        tial to meaningfully impact rights, opportunities, or access.
        Additionally, this framework does not analyze or
      - >-
        understand notice-and-choice practices for broad uses of data should be
        changed. Enhanced protections and
model-index:
  - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy@1
            value: 0.9
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.99
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.99
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 1
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.9
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.33000000000000007
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19799999999999998
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09999999999999998
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.9
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.99
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.99
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 1
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9601170111547646
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9464285714285714
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9464285714285714
            name: Cosine Map@100
          - type: dot_accuracy@1
            value: 0.9
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.99
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.99
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 1
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.9
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.33000000000000007
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.19799999999999998
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.09999999999999998
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.9
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.99
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.99
            name: Dot Recall@5
          - type: dot_recall@10
            value: 1
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.9601170111547646
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.9464285714285714
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.9464285714285714
            name: Dot Map@100

SentenceTransformer based on Snowflake/snowflake-arctic-embed-m

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-m
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("dstampfli/finetuned-snowflake-arctic-embed-m")
# Run inference
sentences = [
    'What changes are suggested for notice-and-choice practices regarding broad uses of data?',
    'understand notice-and-choice practices for broad uses of data should be changed. Enhanced protections and',
    'tial to meaningfully impact rights, opportunities, or access. Additionally, this framework does not analyze or',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.9
cosine_accuracy@3 0.99
cosine_accuracy@5 0.99
cosine_accuracy@10 1.0
cosine_precision@1 0.9
cosine_precision@3 0.33
cosine_precision@5 0.198
cosine_precision@10 0.1
cosine_recall@1 0.9
cosine_recall@3 0.99
cosine_recall@5 0.99
cosine_recall@10 1.0
cosine_ndcg@10 0.9601
cosine_mrr@10 0.9464
cosine_map@100 0.9464
dot_accuracy@1 0.9
dot_accuracy@3 0.99
dot_accuracy@5 0.99
dot_accuracy@10 1.0
dot_precision@1 0.9
dot_precision@3 0.33
dot_precision@5 0.198
dot_precision@10 0.1
dot_recall@1 0.9
dot_recall@3 0.99
dot_recall@5 0.99
dot_recall@10 1.0
dot_ndcg@10 0.9601
dot_mrr@10 0.9464
dot_map@100 0.9464

Training Details

Training Dataset

Unnamed Dataset

  • Size: 600 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 600 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 9 tokens
    • mean: 17.15 tokens
    • max: 31 tokens
    • min: 7 tokens
    • mean: 23.93 tokens
    • max: 46 tokens
  • Samples:
    sentence_0 sentence_1
    What is the purpose of the AI Bill of Rights mentioned in the context? BLUEPRINT FOR AN
    AI BILL OF
    RIGHTS
    MAKING AUTOMATED
    SYSTEMS WORK FOR
    THE AMERICAN PEOPLE
    OCTOBER 2022
    When was the Blueprint for an AI Bill of Rights published? BLUEPRINT FOR AN
    AI BILL OF
    RIGHTS
    MAKING AUTOMATED
    SYSTEMS WORK FOR
    THE AMERICAN PEOPLE
    OCTOBER 2022
    What is the main purpose of the Blueprint for an AI Bill of Rights? About this Document
    The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People was
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 20
  • per_device_eval_batch_size: 20
  • num_train_epochs: 5
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 20
  • per_device_eval_batch_size: 20
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step cosine_map@100
1.0 30 0.9458
1.6667 50 0.9461
2.0 60 0.9461
3.0 90 0.9463
3.3333 100 0.9463
4.0 120 0.9464
5.0 150 0.9464

Framework Versions

  • Python: 3.11.9
  • Sentence Transformers: 3.1.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.1
  • Accelerate: 0.34.2
  • Datasets: 3.0.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}