metadata
base_model: Snowflake/snowflake-arctic-embed-m
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:600
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Which entities are responsible for enforcing the requirements discussed in
the context?
sentences:
- >-
ALGORITHMIC DISCRIMINATION PROTECTIONS
You should not face discrimination by algorithms and systems should be
used and designed in
- >-
SECTION TITLE
HUMAN ALTERNATIVES, CONSIDERATION, AND FALLBACK
You should be able to opt out, where appropriate, and have access to a
person who can quickly
- >-
requirements of the Federal agencies that enforce them. These principles
are not intended to, and do not,
- source_sentence: >-
How is safety addressed in the development process according to the
context?
sentences:
- |-
TABLE OF CONTENTS
FROM PRINCIPLES TO PRACTICE: A TECHNICAL COMPANION TO THE BLUEPRINT
FOR AN AI BILL OF RIGHTS
USING THIS TECHNICAL COMPANION
SAFE AND EFFECTIVE SYSTEMS
- |-
stemming from unintended, yet foreseeable, uses or
SECTION TITLE
BLUEPRINT FOR AN
SAFE AND E
You should be protected from unsafe or
developed with consultation from diverse
- >-
tion or implemented under existing U.S. laws. For example, government
surveillance, and data search and
- source_sentence: >-
How should the deployment of automated systems be aligned with the
principles for protecting the American public?
sentences:
- >-
public and private sector contexts;
Equal opportunities, including equitable access to education, housing,
credit, employment, and other
programs; or,
- >-
use, and deployment of automated systems to protect the rights of the
American public in the age of artificial
- >-
five principles that should guide the design, use, and deployment of
automated systems to protect the American
- source_sentence: >-
Who should designers, developers, and deployers of automated systems seek
permission from?
sentences:
- >-
This important progress must not come at the price of civil rights or
democratic values, foundational American
- >-
a blueprint for building and deploying automated systems that are
aligned with democratic values and protect
- >-
context is collected. Designers, developers, and deployers of automated
systems should seek your permission
- source_sentence: >-
What changes are suggested for notice-and-choice practices regarding broad
uses of data?
sentences:
- >-
mated systems, and researchers developing innovative guardrails.
Advocates, researchers, and government
- >-
tial to meaningfully impact rights, opportunities, or access.
Additionally, this framework does not analyze or
- >-
understand notice-and-choice practices for broad uses of data should be
changed. Enhanced protections and
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.9
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.99
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.99
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.33000000000000007
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19799999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.99
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.99
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9601170111547646
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9464285714285714
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9464285714285714
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.9
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.99
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.99
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.9
name: Dot Precision@1
- type: dot_precision@3
value: 0.33000000000000007
name: Dot Precision@3
- type: dot_precision@5
value: 0.19799999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.09999999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.9
name: Dot Recall@1
- type: dot_recall@3
value: 0.99
name: Dot Recall@3
- type: dot_recall@5
value: 0.99
name: Dot Recall@5
- type: dot_recall@10
value: 1
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9601170111547646
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9464285714285714
name: Dot Mrr@10
- type: dot_map@100
value: 0.9464285714285714
name: Dot Map@100
SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-m
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("dstampfli/finetuned-snowflake-arctic-embed-m")
# Run inference
sentences = [
'What changes are suggested for notice-and-choice practices regarding broad uses of data?',
'understand notice-and-choice practices for broad uses of data should be changed. Enhanced protections and',
'tial to meaningfully impact rights, opportunities, or access. Additionally, this framework does not analyze or',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9 |
cosine_accuracy@3 | 0.99 |
cosine_accuracy@5 | 0.99 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.9 |
cosine_precision@3 | 0.33 |
cosine_precision@5 | 0.198 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.9 |
cosine_recall@3 | 0.99 |
cosine_recall@5 | 0.99 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9601 |
cosine_mrr@10 | 0.9464 |
cosine_map@100 | 0.9464 |
dot_accuracy@1 | 0.9 |
dot_accuracy@3 | 0.99 |
dot_accuracy@5 | 0.99 |
dot_accuracy@10 | 1.0 |
dot_precision@1 | 0.9 |
dot_precision@3 | 0.33 |
dot_precision@5 | 0.198 |
dot_precision@10 | 0.1 |
dot_recall@1 | 0.9 |
dot_recall@3 | 0.99 |
dot_recall@5 | 0.99 |
dot_recall@10 | 1.0 |
dot_ndcg@10 | 0.9601 |
dot_mrr@10 | 0.9464 |
dot_map@100 | 0.9464 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 600 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 600 samples:
sentence_0 sentence_1 type string string details - min: 9 tokens
- mean: 17.15 tokens
- max: 31 tokens
- min: 7 tokens
- mean: 23.93 tokens
- max: 46 tokens
- Samples:
sentence_0 sentence_1 What is the purpose of the AI Bill of Rights mentioned in the context?
BLUEPRINT FOR AN
AI BILL OF
RIGHTS
MAKING AUTOMATED
SYSTEMS WORK FOR
THE AMERICAN PEOPLE
OCTOBER 2022When was the Blueprint for an AI Bill of Rights published?
BLUEPRINT FOR AN
AI BILL OF
RIGHTS
MAKING AUTOMATED
SYSTEMS WORK FOR
THE AMERICAN PEOPLE
OCTOBER 2022What is the main purpose of the Blueprint for an AI Bill of Rights?
About this Document
The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People was - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 20per_device_eval_batch_size
: 20num_train_epochs
: 5multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 20per_device_eval_batch_size
: 20per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_map@100 |
---|---|---|
1.0 | 30 | 0.9458 |
1.6667 | 50 | 0.9461 |
2.0 | 60 | 0.9461 |
3.0 | 90 | 0.9463 |
3.3333 | 100 | 0.9463 |
4.0 | 120 | 0.9464 |
5.0 | 150 | 0.9464 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}