|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: swin-tiny-patch4-window7-224-uploads-classifier-v2 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9725490196078431 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swin-tiny-patch4-window7-224-uploads-classifier-v2 |
|
|
|
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0820 |
|
- Accuracy: 0.9725 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 1.2482 | 1.0 | 18 | 0.4781 | 0.8824 | |
|
| 0.3036 | 2.0 | 36 | 0.0936 | 0.9804 | |
|
| 0.1687 | 3.0 | 54 | 0.0745 | 0.9843 | |
|
| 0.1392 | 4.0 | 72 | 0.0980 | 0.9725 | |
|
| 0.14 | 5.0 | 90 | 0.0778 | 0.9765 | |
|
| 0.1186 | 6.0 | 108 | 0.0837 | 0.9725 | |
|
| 0.1088 | 7.0 | 126 | 0.0645 | 0.9804 | |
|
| 0.0789 | 8.0 | 144 | 0.0675 | 0.9765 | |
|
| 0.0644 | 9.0 | 162 | 0.0940 | 0.9686 | |
|
| 0.0582 | 10.0 | 180 | 0.0879 | 0.9725 | |
|
| 0.0591 | 11.0 | 198 | 0.0935 | 0.9686 | |
|
| 0.0538 | 12.0 | 216 | 0.0540 | 0.9804 | |
|
| 0.0588 | 13.0 | 234 | 0.0725 | 0.9686 | |
|
| 0.0538 | 14.0 | 252 | 0.0637 | 0.9765 | |
|
| 0.0462 | 15.0 | 270 | 0.0694 | 0.9725 | |
|
| 0.0352 | 16.0 | 288 | 0.0771 | 0.9686 | |
|
| 0.0536 | 17.0 | 306 | 0.0629 | 0.9804 | |
|
| 0.0403 | 18.0 | 324 | 0.0933 | 0.9686 | |
|
| 0.0412 | 19.0 | 342 | 0.0848 | 0.9725 | |
|
| 0.0305 | 20.0 | 360 | 0.0820 | 0.9725 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|