uploads-classifier / README.md
dvs's picture
update model card README.md
2814abc
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-uploads-classifier
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9669421487603306

swin-tiny-patch4-window7-224-uploads-classifier

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0740
  • Accuracy: 0.9669

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.57 0.99 17 1.0733 0.7355
0.5726 1.97 34 0.4882 0.8347
0.213 2.96 51 0.1166 0.9628
0.1528 4.0 69 0.1640 0.9339
0.1243 4.99 86 0.1529 0.9380
0.0985 5.97 103 0.1888 0.9215
0.0838 6.96 120 0.1224 0.9421
0.0667 8.0 138 0.1046 0.9421
0.0455 8.99 155 0.0740 0.9669
0.0469 9.97 172 0.0781 0.9669
0.0472 10.96 189 0.1143 0.9628
0.0378 12.0 207 0.1974 0.9545
0.0386 12.99 224 0.1051 0.9587
0.035 13.97 241 0.0719 0.9545
0.0339 14.96 258 0.1225 0.9504
0.0292 16.0 276 0.0962 0.9587
0.0278 16.99 293 0.1322 0.9463
0.0233 17.97 310 0.1064 0.9545
0.028 18.96 327 0.1207 0.9504
0.0269 19.71 340 0.1161 0.9504

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3