|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: swin-tiny-patch4-window7-224-uploads-classifier |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9669421487603306 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swin-tiny-patch4-window7-224-uploads-classifier |
|
|
|
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0740 |
|
- Accuracy: 0.9669 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 1.57 | 0.99 | 17 | 1.0733 | 0.7355 | |
|
| 0.5726 | 1.97 | 34 | 0.4882 | 0.8347 | |
|
| 0.213 | 2.96 | 51 | 0.1166 | 0.9628 | |
|
| 0.1528 | 4.0 | 69 | 0.1640 | 0.9339 | |
|
| 0.1243 | 4.99 | 86 | 0.1529 | 0.9380 | |
|
| 0.0985 | 5.97 | 103 | 0.1888 | 0.9215 | |
|
| 0.0838 | 6.96 | 120 | 0.1224 | 0.9421 | |
|
| 0.0667 | 8.0 | 138 | 0.1046 | 0.9421 | |
|
| 0.0455 | 8.99 | 155 | 0.0740 | 0.9669 | |
|
| 0.0469 | 9.97 | 172 | 0.0781 | 0.9669 | |
|
| 0.0472 | 10.96 | 189 | 0.1143 | 0.9628 | |
|
| 0.0378 | 12.0 | 207 | 0.1974 | 0.9545 | |
|
| 0.0386 | 12.99 | 224 | 0.1051 | 0.9587 | |
|
| 0.035 | 13.97 | 241 | 0.0719 | 0.9545 | |
|
| 0.0339 | 14.96 | 258 | 0.1225 | 0.9504 | |
|
| 0.0292 | 16.0 | 276 | 0.0962 | 0.9587 | |
|
| 0.0278 | 16.99 | 293 | 0.1322 | 0.9463 | |
|
| 0.0233 | 17.97 | 310 | 0.1064 | 0.9545 | |
|
| 0.028 | 18.96 | 327 | 0.1207 | 0.9504 | |
|
| 0.0269 | 19.71 | 340 | 0.1161 | 0.9504 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|