eclec's picture
update model card README.md
f4e0c07
|
raw
history blame
1.81 kB
metadata
base_model: allenai/scibert_scivocab_uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: patentClassfication2
    results: []

patentClassfication2

This model is a fine-tuned version of allenai/scibert_scivocab_uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6329
  • Accuracy: 0.6513
  • F1: 0.6099
  • Precision: 0.6941
  • Recall: 0.5438

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.54241e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 41
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • lr_scheduler_warmup_steps: 24
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.635 1.0 4438 0.6329 0.6513 0.6099 0.6941 0.5438
0.5772 2.0 8876 0.6393 0.6721 0.6831 0.6624 0.7050
0.5355 3.0 13314 0.6558 0.6683 0.6768 0.6613 0.6931

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.0
  • Datasets 2.14.4
  • Tokenizers 0.13.3