|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:800 |
|
- loss:TripletLoss |
|
base_model: sentence-transformers/all-mpnet-base-v2 |
|
datasets: [] |
|
widget: |
|
- source_sentence: What is the advice given about the use of color in dataviz? |
|
sentences: |
|
- Don't use color if they communicate nothing. |
|
- Four problems with Pie Charts are detailed in a guide by iCharts.net. |
|
- Always use bright colors for highlighting important data. |
|
- source_sentence: What is the effect of a large sample size on the use of jitter |
|
in a boxplot? |
|
sentences: |
|
- A large sample size will enhance the use of jitter in a boxplot. |
|
- If you have a large sample size, using jitter is not an option anymore since dots |
|
will overlap, making the figure uninterpretable. |
|
- It is a good practice to use small multiples. |
|
- source_sentence: What is a suitable usage of pie charts in data visualization? |
|
sentences: |
|
- If you have a single series to display and all quantitative variables have the |
|
same scale, then use a barplot or a lollipop plot, ranking the variables. |
|
- Pie charts rapidly show parts to a whole better than any other plot. They are |
|
most effective when used to compare parts to the whole. |
|
- Pie charts are a flawed chart which can sometimes be justified if the differences |
|
between groups are large. |
|
- source_sentence: Where can a note on long labels be found? |
|
sentences: |
|
- https://www.data-to-viz.com/caveat/hard_label.html |
|
- A pie chart can tell a story very well; that all the data points as a percentage |
|
of the whole are very similar. |
|
- https://twitter.com/r_graph_gallery?lang=en |
|
- source_sentence: What is the reason pie plots can work as well as bar plots in some |
|
scenarios? |
|
sentences: |
|
- Pie plots can work well for comparing portions a whole or portions one another, |
|
especially when dealing with a single digit count of items. |
|
- https://www.r-graph-gallery.com/line-plot/ and https://python-graph-gallery.com/line-chart/ |
|
- Thanks for your comment Tom, I do agree with you. |
|
pipeline_tag: sentence-similarity |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d --> |
|
- **Maximum Sequence Length:** 384 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("edubm/vis-sim-triplets-mpnet") |
|
# Run inference |
|
sentences = [ |
|
'What is the reason pie plots can work as well as bar plots in some scenarios?', |
|
'Pie plots can work well for comparing portions a whole or portions one another, especially when dealing with a single digit count of items.', |
|
'Thanks for your comment Tom, I do agree with you.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 800 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 15.26 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 23.25 tokens</li><li>max: 306 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 16.38 tokens</li><li>max: 57 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:-------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------| |
|
| <code>Did you ever figure out a solution to the error message problem when using your own data?</code> | <code>Yes, a solution was found. You have to add ' group = name ' inside the ' ggplot(aes())' like ggplot(aes(x=year, y=n,group=name)).</code> | <code>I recommend sorting by some feature of the data, instead of in alphabetical order of the names.</code> | |
|
| <code>Why should you consider reordering your data when building a chart?</code> | <code>Reordering your data can help in better visualization. Sometimes the order of groups must be set by their features and not their values.</code> | <code>You should reorder your data to clean it.</code> | |
|
| <code>What is represented on the X-axis of the chart?</code> | <code>The price ranges cut in several 10 euro bins.</code> | <code>The number of apartments per bin.</code> | |
|
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: |
|
```json |
|
{ |
|
"distance_metric": "TripletDistanceMetric.EUCLIDEAN", |
|
"triplet_margin": 5 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 200 evaluation samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 8 tokens</li><li>mean: 14.99 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 22.38 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 16.08 tokens</li><li>max: 58 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:--------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------| |
|
| <code>What can be inferred about group C and B from the jittered boxplot?</code> | <code>Group C has a small sample size compared to the other groups. Group B seems to have a bimodal distribution with dots distributed in 2 groups: around y=18 and y=13.</code> | <code>Group C has the largest sample size and Group B has dots evenly distributed.</code> | |
|
| <code>What can cause a reduction in computing time and help avoid overplotting when dealing with data?</code> | <code>Plotting only a fraction of your data can cause a reduction in computing time and help avoid overplotting.</code> | <code>Plotting all of your data is the best method to reduce computing time.</code> | |
|
| <code>How can area charts be used for data visualization?</code> | <code>Area charts can be used to give a more general overview of the dataset, especially when used in combination with small multiples.</code> | <code>Area charts make it obvious to spot a particular group in a crowded data visualization.</code> | |
|
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: |
|
```json |
|
{ |
|
"distance_metric": "TripletDistanceMetric.EUCLIDEAN", |
|
"triplet_margin": 5 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | |
|
|:-----:|:----:|:-------------:|:------:| |
|
| 0.02 | 1 | 4.8436 | 4.8922 | |
|
| 0.04 | 2 | 4.9583 | 4.8904 | |
|
| 0.06 | 3 | 4.8262 | 4.8862 | |
|
| 0.08 | 4 | 4.8961 | 4.8820 | |
|
| 0.1 | 5 | 4.9879 | 4.8754 | |
|
| 0.12 | 6 | 4.8599 | 4.8680 | |
|
| 0.14 | 7 | 4.9098 | 4.8586 | |
|
| 0.16 | 8 | 4.8802 | 4.8496 | |
|
| 0.18 | 9 | 4.8797 | 4.8392 | |
|
| 0.2 | 10 | 4.8691 | 4.8307 | |
|
| 0.22 | 11 | 4.9213 | 4.8224 | |
|
| 0.24 | 12 | 4.88 | 4.8145 | |
|
| 0.26 | 13 | 4.9131 | 4.8071 | |
|
| 0.28 | 14 | 4.7596 | 4.8004 | |
|
| 0.3 | 15 | 4.8388 | 4.7962 | |
|
| 0.32 | 16 | 4.8434 | 4.7945 | |
|
| 0.34 | 17 | 4.8726 | 4.7939 | |
|
| 0.36 | 18 | 4.8049 | 4.7943 | |
|
| 0.38 | 19 | 4.8225 | 4.7932 | |
|
| 0.4 | 20 | 4.7631 | 4.7900 | |
|
| 0.42 | 21 | 4.7841 | 4.7847 | |
|
| 0.44 | 22 | 4.8077 | 4.7759 | |
|
| 0.46 | 23 | 4.7731 | 4.7678 | |
|
| 0.48 | 24 | 4.7623 | 4.7589 | |
|
| 0.5 | 25 | 4.8572 | 4.7502 | |
|
| 0.52 | 26 | 4.843 | 4.7392 | |
|
| 0.54 | 27 | 4.6826 | 4.7292 | |
|
| 0.56 | 28 | 4.7584 | 4.7180 | |
|
| 0.58 | 29 | 4.7281 | 4.7078 | |
|
| 0.6 | 30 | 4.7491 | 4.6982 | |
|
| 0.62 | 31 | 4.7501 | 4.6897 | |
|
| 0.64 | 32 | 4.6219 | 4.6826 | |
|
| 0.66 | 33 | 4.7323 | 4.6768 | |
|
| 0.68 | 34 | 4.5499 | 4.6702 | |
|
| 0.7 | 35 | 4.7682 | 4.6648 | |
|
| 0.72 | 36 | 4.6483 | 4.6589 | |
|
| 0.74 | 37 | 4.6675 | 4.6589 | |
|
| 0.76 | 38 | 4.7389 | 4.6527 | |
|
| 0.78 | 39 | 4.7721 | 4.6465 | |
|
| 0.8 | 40 | 4.6043 | 4.6418 | |
|
| 0.82 | 41 | 4.7894 | 4.6375 | |
|
| 0.84 | 42 | 4.6134 | 4.6341 | |
|
| 0.86 | 43 | 4.6664 | 4.6307 | |
|
| 0.88 | 44 | 4.5249 | 4.6264 | |
|
| 0.9 | 45 | 4.7045 | 4.6227 | |
|
| 0.92 | 46 | 4.7231 | 4.6198 | |
|
| 0.94 | 47 | 4.7011 | 4.6176 | |
|
| 0.96 | 48 | 4.5876 | 4.6159 | |
|
| 0.98 | 49 | 4.7567 | 4.6146 | |
|
| 1.0 | 50 | 4.6706 | 4.6138 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.31.0 |
|
- Datasets: 2.19.2 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### TripletLoss |
|
```bibtex |
|
@misc{hermans2017defense, |
|
title={In Defense of the Triplet Loss for Person Re-Identification}, |
|
author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, |
|
year={2017}, |
|
eprint={1703.07737}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |