eunyounglee's picture
End of training
5061e30 verified
|
raw
history blame
2.75 kB
metadata
license: cc-by-sa-4.0
base_model: klue/bert-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: degree-bert-finetuning-2
    results: []

degree-bert-finetuning-2

This model is a fine-tuned version of klue/bert-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5866
  • Accuracy: 0.702
  • F1: 0.7023

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.9822 1.0 104 0.7872 0.638 0.6374
0.8237 2.0 208 0.7235 0.656 0.6552
0.7869 3.0 312 0.7140 0.658 0.6521
0.755 4.0 416 0.6894 0.678 0.6762
0.7368 5.0 520 0.6562 0.7 0.7004
0.7164 6.0 624 0.6501 0.696 0.6951
0.7032 7.0 728 0.6437 0.708 0.7084
0.6911 8.0 832 0.6097 0.694 0.6930
0.6759 9.0 936 0.6034 0.702 0.7019
0.6671 10.0 1040 0.6038 0.69 0.6890
0.6573 11.0 1144 0.6016 0.704 0.7033
0.653 12.0 1248 0.5920 0.712 0.7126
0.6364 13.0 1352 0.5950 0.708 0.7085
0.6386 14.0 1456 0.5922 0.688 0.6864
0.6321 15.0 1560 0.5853 0.71 0.7105
0.6193 16.0 1664 0.5936 0.69 0.6889
0.6109 17.0 1768 0.5838 0.714 0.7145
0.612 18.0 1872 0.5838 0.716 0.7168
0.6083 19.0 1976 0.5884 0.708 0.7077
0.5948 20.0 2080 0.5866 0.702 0.7023

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.2.0
  • Datasets 2.17.1
  • Tokenizers 0.15.2