fashxp's picture
End of training
7e425a8
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: car_manufacturer_model
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.3394495412844037

car_manufacturer_model

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7826
  • Accuracy: 0.3394

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 7 3.1387 0.2018
2.8998 2.0 14 3.1029 0.2018
2.7326 3.0 21 3.0453 0.2294
2.7326 4.0 28 3.0104 0.2385
2.5797 5.0 35 2.9655 0.2477
2.4873 6.0 42 2.9166 0.3211
2.4873 7.0 49 2.9122 0.2569
2.3408 8.0 56 2.8122 0.3119
2.2696 9.0 63 2.8159 0.3578
2.1527 10.0 70 2.8589 0.2752
2.1527 11.0 77 2.8248 0.2936
2.0649 12.0 84 2.7709 0.2936
2.0855 13.0 91 2.8183 0.2477
2.0855 14.0 98 2.7552 0.2569
1.9347 15.0 105 2.7826 0.3394

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0