|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: car_manufacturer_model |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.3394495412844037 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# car_manufacturer_model |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.7826 |
|
- Accuracy: 0.3394 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 1.0 | 7 | 3.1387 | 0.2018 | |
|
| 2.8998 | 2.0 | 14 | 3.1029 | 0.2018 | |
|
| 2.7326 | 3.0 | 21 | 3.0453 | 0.2294 | |
|
| 2.7326 | 4.0 | 28 | 3.0104 | 0.2385 | |
|
| 2.5797 | 5.0 | 35 | 2.9655 | 0.2477 | |
|
| 2.4873 | 6.0 | 42 | 2.9166 | 0.3211 | |
|
| 2.4873 | 7.0 | 49 | 2.9122 | 0.2569 | |
|
| 2.3408 | 8.0 | 56 | 2.8122 | 0.3119 | |
|
| 2.2696 | 9.0 | 63 | 2.8159 | 0.3578 | |
|
| 2.1527 | 10.0 | 70 | 2.8589 | 0.2752 | |
|
| 2.1527 | 11.0 | 77 | 2.8248 | 0.2936 | |
|
| 2.0649 | 12.0 | 84 | 2.7709 | 0.2936 | |
|
| 2.0855 | 13.0 | 91 | 2.8183 | 0.2477 | |
|
| 2.0855 | 14.0 | 98 | 2.7552 | 0.2569 | |
|
| 1.9347 | 15.0 | 105 | 2.7826 | 0.3394 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|