gayanin's picture
update model card README.md
7f98ace
|
raw
history blame
2.02 kB
metadata
license: mit
tags:
  - generated_from_trainer
model-index:
  - name: med_masked_pubmed_articles_biogpt_large
    results: []

med_masked_pubmed_articles_biogpt_large

This model is a fine-tuned version of microsoft/BioGPT-Large-PubMedQA on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.2545
  • Rouge2 Precision: 0.7011
  • Rouge2 Recall: 0.6931
  • Rouge2 Fmeasure: 0.6959

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure
3.0566 1.0 7914 3.0375 0.7013 0.6931 0.6959
2.911 2.0 15828 3.0228 0.7013 0.6931 0.6959
2.7386 3.0 23742 3.0594 0.7011 0.6931 0.6959
2.5718 4.0 31656 3.1371 0.7011 0.6931 0.6959
2.4573 5.0 39570 3.2545 0.7011 0.6931 0.6959

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2