File size: 4,089 Bytes
7e31ae3
 
4a19243
7e31ae3
 
 
 
 
4a19243
 
 
7e31ae3
 
 
4a19243
7e31ae3
4a19243
7e31ae3
 
 
4a19243
7e31ae3
4a19243
 
 
7e31ae3
a005937
 
 
7e31ae3
 
a005937
7e31ae3
a005937
7e31ae3
a005937
7e31ae3
 
 
 
 
a005937
7e31ae3
a005937
7e31ae3
 
a005937
7e31ae3
a005937
7e31ae3
 
 
17641d9
 
 
a005937
7e31ae3
 
a005937
7e31ae3
17641d9
a005937
7e31ae3
a005937
7e31ae3
 
 
a005937
 
7e31ae3
a005937
7e31ae3
a005937
 
7e31ae3
 
 
 
 
 
a005937
7e31ae3
 
a005937
7e31ae3
 
 
a005937
17641d9
7e31ae3
a005937
7e31ae3
 
 
17641d9
 
 
 
a005937
7e31ae3
a005937
7e31ae3
 
 
17641d9
a005937
17641d9
 
a005937
7e31ae3
17641d9
 
a005937
7e31ae3
a005937
7e31ae3
 
a005937
dbf6e7d
a005937
 
7e31ae3
a005937
7e31ae3
a005937
0457f36
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
language: ro
license: apache-2.0
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
datasets:
- common_voice
base_model: facebook/wav2vec2-large-xlsr-53
model-index:
- name: XLSR Wav2Vec2 Romanian by George Mihaila
  results:
  - task:
      type: automatic-speech-recognition
      name: Speech Recognition
    dataset:
      name: Common Voice ro
      type: common_voice
      args: ro
    metrics:
    - type: wer
      value: 28.4
      name: Test WER
---

# Wav2Vec2-Large-XLSR-53-Romanian

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Romanian using the [Common Voice](https://huggingface.co/datasets/common_voice)
When using this model, make sure that your speech input is sampled at 16kHz.

## Usage

The model can be used directly (without a language model) as follows:

```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "ro", split="test[:2%]").

processor = Wav2Vec2Processor.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian")
model = Wav2Vec2ForCTC.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
\\\\treturn batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```


## Evaluation

The model can be evaluated as follows on the {language} test data of Common Voice.


```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "ro", split="test")
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian")
model = Wav2Vec2ForCTC.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian")
model.to("cuda")

chars_to_ignore_regex = '[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
\\\\treturn batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

\\\\twith torch.no_grad():
\\\\t\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
\\\\treturn batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```

**Test Result**: 28.43 %


## Training

The Common Voice `train`, `validation` datasets were used for training.

The script used for training can be found [here](https://colab.research.google.com/github/gmihaila/ml_things/blob/master/notebooks/pytorch/RO_Fine_Tune_XLSR_Wav2Vec2_on_Turkish_ASR_with_🤗_Transformers.ipynb)