gnurt2041's picture
Upload README.md
1bd7b93 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of google-bert/bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0837
  • Accuracy: 0.975
  • Precision: 0.9751
  • Recall: 0.975
  • F1: 0.9750

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.334 0.9895 59 0.1713 0.9583 0.9596 0.9583 0.9584
0.0852 1.9958 119 0.2023 0.95 0.9522 0.95 0.9500
0.0369 2.9853 178 0.2496 0.9417 0.9450 0.9417 0.9417
0.0022 3.9916 238 0.1342 0.9583 0.9596 0.9583 0.9584
0.0839 4.9979 298 0.1378 0.975 0.9763 0.975 0.9750
0.0024 5.9874 357 0.1526 0.9583 0.9617 0.9583 0.9583
0.0577 6.9937 417 0.0837 0.975 0.9751 0.975 0.9750
0.0014 8.0 477 0.1215 0.975 0.9751 0.975 0.9750
0.0008 8.9895 536 0.1326 0.975 0.9751 0.975 0.9750
0.0008 9.8952 590 0.1340 0.975 0.9751 0.975 0.9750

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1