gnurt2041's picture
Upload README.md
1bd7b93 verified
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0837
- Accuracy: 0.975
- Precision: 0.9751
- Recall: 0.975
- F1: 0.9750
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.334 | 0.9895 | 59 | 0.1713 | 0.9583 | 0.9596 | 0.9583 | 0.9584 |
| 0.0852 | 1.9958 | 119 | 0.2023 | 0.95 | 0.9522 | 0.95 | 0.9500 |
| 0.0369 | 2.9853 | 178 | 0.2496 | 0.9417 | 0.9450 | 0.9417 | 0.9417 |
| 0.0022 | 3.9916 | 238 | 0.1342 | 0.9583 | 0.9596 | 0.9583 | 0.9584 |
| 0.0839 | 4.9979 | 298 | 0.1378 | 0.975 | 0.9763 | 0.975 | 0.9750 |
| 0.0024 | 5.9874 | 357 | 0.1526 | 0.9583 | 0.9617 | 0.9583 | 0.9583 |
| 0.0577 | 6.9937 | 417 | 0.0837 | 0.975 | 0.9751 | 0.975 | 0.9750 |
| 0.0014 | 8.0 | 477 | 0.1215 | 0.975 | 0.9751 | 0.975 | 0.9750 |
| 0.0008 | 8.9895 | 536 | 0.1326 | 0.975 | 0.9751 | 0.975 | 0.9750 |
| 0.0008 | 9.8952 | 590 | 0.1340 | 0.975 | 0.9751 | 0.975 | 0.9750 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1