gokuls's picture
End of training
b17f8ed
metadata
base_model: gokuls/HBERTv1_48_L12_H768_A12
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: HBERTv1_48_L12_H768_A12_massive_data_augmented
    results: []

HBERTv1_48_L12_H768_A12_massive_data_augmented

This model is a fine-tuned version of gokuls/HBERTv1_48_L12_H768_A12 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6902
  • Accuracy: 0.8377

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0914 1.0 4000 0.6902 0.8377
0.6178 2.0 8000 0.6890 0.8283
0.463 3.0 12000 0.7721 0.8254
0.3683 4.0 16000 0.7829 0.8288
0.3005 5.0 20000 0.8556 0.8303
0.2502 6.0 24000 0.9171 0.8214
0.2106 7.0 28000 1.0074 0.8160
0.1779 8.0 32000 1.0923 0.8239
0.1506 9.0 36000 1.1525 0.8254
0.1259 10.0 40000 1.2103 0.8249
0.1059 11.0 44000 1.3093 0.8269
0.0894 12.0 48000 1.4000 0.8288
0.0745 13.0 52000 1.5050 0.8313
0.0624 14.0 56000 1.5424 0.8288
0.0521 15.0 60000 1.5973 0.8308

Framework versions

  • Transformers 4.34.1
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.6
  • Tokenizers 0.14.1