metadata
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- wnut_17
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_ner_model
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wnut_17
type: wnut_17
config: wnut_17
split: test
args: wnut_17
metrics:
- name: Precision
type: precision
value: 0.576214405360134
- name: Recall
type: recall
value: 0.31881371640407785
- name: F1
type: f1
value: 0.41050119331742246
- name: Accuracy
type: accuracy
value: 0.94258475482023
my_ner_model
This model is a fine-tuned version of distilbert-base-uncased on the wnut_17 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2722
- Precision: 0.5762
- Recall: 0.3188
- F1: 0.4105
- Accuracy: 0.9426
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 213 | 0.2801 | 0.5214 | 0.2373 | 0.3261 | 0.9384 |
No log | 2.0 | 426 | 0.2722 | 0.5762 | 0.3188 | 0.4105 | 0.9426 |
Framework versions
- Transformers 4.45.0
- Pytorch 2.4.1+cpu
- Datasets 3.0.0
- Tokenizers 0.20.0