griffio's picture
rotated_maps
df16f44 verified
---
library_name: peft
license: apache-2.0
base_model: google/vit-large-patch16-224
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-large-patch16-224-testing-dungeons-lora-23Nov24-008
results:
- task:
type: image-classification
name: Image Classification
dataset:
name: rotated_maps
type: imagefolder
config: default
split: validation
args: default
metrics:
- type: accuracy
value: 0.9629629629629629
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-large-patch16-224-testing-dungeons-lora-23Nov24-008
This model is a fine-tuned version of [google/vit-large-patch16-224](https://huggingface.co/google/vit-large-patch16-224) on the rotated_maps dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2048
- Accuracy: 0.9630
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log | 0.6667 | 1 | 1.5395 | 0.1852 |
| No log | 2.0 | 3 | 1.2052 | 0.4815 |
| No log | 2.6667 | 4 | 1.1291 | 0.5185 |
| No log | 4.0 | 6 | 0.4352 | 0.8148 |
| No log | 4.6667 | 7 | 0.3886 | 0.9259 |
| No log | 6.0 | 9 | 0.2470 | 0.9630 |
| 0.9407 | 6.6667 | 10 | 0.2048 | 0.9630 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3