metadata
license: mit
base_model: haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1
tags:
- generated_from_trainer
datasets:
- massive
metrics:
- accuracy
- f1
model-index:
- name: scenario-KD-PO-MSV-D2_data-AmazonScience_massive_all_1_144
results: []
scenario-KD-PO-MSV-D2_data-AmazonScience_massive_all_1_144
This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:
- Loss: 1.1139
- Accuracy: 0.8659
- F1: 0.8466
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.7627 | 0.27 | 5000 | 1.9858 | 0.8200 | 0.7785 |
1.3268 | 0.53 | 10000 | 1.7497 | 0.8353 | 0.8042 |
1.1431 | 0.8 | 15000 | 1.6427 | 0.8403 | 0.8129 |
0.846 | 1.07 | 20000 | 1.5717 | 0.8445 | 0.8134 |
0.7952 | 1.34 | 25000 | 1.5650 | 0.8457 | 0.8207 |
0.7416 | 1.6 | 30000 | 1.5495 | 0.8493 | 0.8246 |
0.713 | 1.87 | 35000 | 1.4702 | 0.8518 | 0.8325 |
0.6101 | 2.14 | 40000 | 1.4505 | 0.8522 | 0.8287 |
0.591 | 2.41 | 45000 | 1.4639 | 0.8522 | 0.8257 |
0.5774 | 2.67 | 50000 | 1.4352 | 0.8498 | 0.8292 |
0.5564 | 2.94 | 55000 | 1.4054 | 0.8556 | 0.8357 |
0.48 | 3.21 | 60000 | 1.4085 | 0.8539 | 0.8330 |
0.4767 | 3.47 | 65000 | 1.3640 | 0.8578 | 0.8352 |
0.4725 | 3.74 | 70000 | 1.3570 | 0.8553 | 0.8326 |
0.4599 | 4.01 | 75000 | 1.3478 | 0.8568 | 0.8356 |
0.4328 | 4.28 | 80000 | 1.3349 | 0.8561 | 0.8329 |
0.4237 | 4.54 | 85000 | 1.3403 | 0.8585 | 0.8375 |
0.4186 | 4.81 | 90000 | 1.3329 | 0.8591 | 0.8402 |
0.3964 | 5.08 | 95000 | 1.3430 | 0.8552 | 0.8350 |
0.3896 | 5.34 | 100000 | 1.3224 | 0.8572 | 0.8369 |
0.4012 | 5.61 | 105000 | 1.3126 | 0.8597 | 0.8389 |
0.3845 | 5.88 | 110000 | 1.3096 | 0.8574 | 0.8368 |
0.3601 | 6.15 | 115000 | 1.2671 | 0.8597 | 0.8378 |
0.3608 | 6.41 | 120000 | 1.2839 | 0.8596 | 0.8374 |
0.3612 | 6.68 | 125000 | 1.2874 | 0.8590 | 0.8393 |
0.3617 | 6.95 | 130000 | 1.3028 | 0.8572 | 0.8382 |
0.3357 | 7.22 | 135000 | 1.2707 | 0.8597 | 0.8397 |
0.3467 | 7.48 | 140000 | 1.2735 | 0.8597 | 0.8407 |
0.3516 | 7.75 | 145000 | 1.2572 | 0.8606 | 0.8397 |
0.3298 | 8.02 | 150000 | 1.2609 | 0.8601 | 0.8396 |
0.3258 | 8.28 | 155000 | 1.2527 | 0.8585 | 0.8381 |
0.3301 | 8.55 | 160000 | 1.2414 | 0.8613 | 0.8445 |
0.3193 | 8.82 | 165000 | 1.2525 | 0.8602 | 0.8407 |
0.307 | 9.09 | 170000 | 1.2398 | 0.8613 | 0.8428 |
0.3155 | 9.35 | 175000 | 1.2209 | 0.8621 | 0.8416 |
0.3138 | 9.62 | 180000 | 1.2155 | 0.8617 | 0.8428 |
0.3108 | 9.89 | 185000 | 1.2363 | 0.8618 | 0.8420 |
0.2954 | 10.15 | 190000 | 1.2141 | 0.8609 | 0.8414 |
0.2968 | 10.42 | 195000 | 1.2331 | 0.8611 | 0.8430 |
0.3017 | 10.69 | 200000 | 1.2081 | 0.8618 | 0.8433 |
0.2989 | 10.96 | 205000 | 1.2025 | 0.8630 | 0.8438 |
0.2792 | 11.22 | 210000 | 1.2063 | 0.8635 | 0.8433 |
0.2946 | 11.49 | 215000 | 1.1898 | 0.8639 | 0.8435 |
0.2778 | 11.76 | 220000 | 1.2013 | 0.8625 | 0.8428 |
0.2757 | 12.03 | 225000 | 1.1908 | 0.8627 | 0.8439 |
0.2763 | 12.29 | 230000 | 1.1906 | 0.8631 | 0.8424 |
0.2699 | 12.56 | 235000 | 1.1894 | 0.8629 | 0.8422 |
0.2716 | 12.83 | 240000 | 1.1887 | 0.8643 | 0.8460 |
0.2715 | 13.09 | 245000 | 1.1940 | 0.8634 | 0.8463 |
0.2659 | 13.36 | 250000 | 1.1844 | 0.8642 | 0.8443 |
0.2693 | 13.63 | 255000 | 1.1844 | 0.8642 | 0.8446 |
0.2654 | 13.9 | 260000 | 1.1784 | 0.8637 | 0.8454 |
0.2522 | 14.16 | 265000 | 1.1728 | 0.8641 | 0.8433 |
0.2604 | 14.43 | 270000 | 1.1878 | 0.8627 | 0.8415 |
0.2489 | 14.7 | 275000 | 1.1795 | 0.8640 | 0.8437 |
0.2611 | 14.96 | 280000 | 1.1585 | 0.8648 | 0.8450 |
0.246 | 15.23 | 285000 | 1.1574 | 0.8647 | 0.8452 |
0.2482 | 15.5 | 290000 | 1.1654 | 0.8633 | 0.8427 |
0.2423 | 15.77 | 295000 | 1.1683 | 0.8632 | 0.8416 |
0.2387 | 16.03 | 300000 | 1.1736 | 0.8625 | 0.8415 |
0.2417 | 16.3 | 305000 | 1.1686 | 0.8635 | 0.8437 |
0.2433 | 16.57 | 310000 | 1.1639 | 0.8626 | 0.8410 |
0.2405 | 16.84 | 315000 | 1.1647 | 0.8632 | 0.8421 |
0.2327 | 17.1 | 320000 | 1.1459 | 0.8642 | 0.8446 |
0.2374 | 17.37 | 325000 | 1.1513 | 0.8643 | 0.8454 |
0.233 | 17.64 | 330000 | 1.1479 | 0.8649 | 0.8438 |
0.2381 | 17.9 | 335000 | 1.1556 | 0.8643 | 0.8450 |
0.2228 | 18.17 | 340000 | 1.1523 | 0.8648 | 0.8461 |
0.2305 | 18.44 | 345000 | 1.1523 | 0.8635 | 0.8440 |
0.2244 | 18.71 | 350000 | 1.1507 | 0.8648 | 0.8450 |
0.2212 | 18.97 | 355000 | 1.1413 | 0.8650 | 0.8451 |
0.2207 | 19.24 | 360000 | 1.1401 | 0.8644 | 0.8466 |
0.2164 | 19.51 | 365000 | 1.1518 | 0.8630 | 0.8426 |
0.2232 | 19.77 | 370000 | 1.1469 | 0.8640 | 0.8452 |
0.2147 | 20.04 | 375000 | 1.1495 | 0.8629 | 0.8433 |
0.2089 | 20.31 | 380000 | 1.1392 | 0.8657 | 0.8457 |
0.2074 | 20.58 | 385000 | 1.1381 | 0.8643 | 0.8441 |
0.2149 | 20.84 | 390000 | 1.1415 | 0.8639 | 0.8447 |
0.2074 | 21.11 | 395000 | 1.1307 | 0.8647 | 0.8441 |
0.2087 | 21.38 | 400000 | 1.1351 | 0.8641 | 0.8432 |
0.2104 | 21.65 | 405000 | 1.1312 | 0.8644 | 0.8448 |
0.2078 | 21.91 | 410000 | 1.1296 | 0.8650 | 0.8457 |
0.2038 | 22.18 | 415000 | 1.1249 | 0.8657 | 0.8452 |
0.2037 | 22.45 | 420000 | 1.1334 | 0.8643 | 0.8444 |
0.2027 | 22.71 | 425000 | 1.1280 | 0.8644 | 0.8446 |
0.2041 | 22.98 | 430000 | 1.1321 | 0.8640 | 0.8467 |
0.1921 | 23.25 | 435000 | 1.1324 | 0.8635 | 0.8445 |
0.2007 | 23.52 | 440000 | 1.1248 | 0.8649 | 0.8458 |
0.2018 | 23.78 | 445000 | 1.1274 | 0.8649 | 0.8451 |
0.2009 | 24.05 | 450000 | 1.1204 | 0.8654 | 0.8473 |
0.2017 | 24.32 | 455000 | 1.1245 | 0.8651 | 0.8450 |
0.1977 | 24.58 | 460000 | 1.1234 | 0.8649 | 0.8461 |
0.1974 | 24.85 | 465000 | 1.1234 | 0.8646 | 0.8445 |
0.1934 | 25.12 | 470000 | 1.1220 | 0.8655 | 0.8457 |
0.1937 | 25.39 | 475000 | 1.1183 | 0.8659 | 0.8470 |
0.1947 | 25.65 | 480000 | 1.1207 | 0.8653 | 0.8449 |
0.1932 | 25.92 | 485000 | 1.1172 | 0.8660 | 0.8465 |
0.1904 | 26.19 | 490000 | 1.1250 | 0.8651 | 0.8462 |
0.1892 | 26.46 | 495000 | 1.1171 | 0.8661 | 0.8470 |
0.196 | 26.72 | 500000 | 1.1207 | 0.8652 | 0.8456 |
0.1927 | 26.99 | 505000 | 1.1174 | 0.8651 | 0.8454 |
0.1888 | 27.26 | 510000 | 1.1183 | 0.8653 | 0.8457 |
0.1906 | 27.52 | 515000 | 1.1190 | 0.8646 | 0.8455 |
0.1854 | 27.79 | 520000 | 1.1098 | 0.8655 | 0.8450 |
0.1869 | 28.06 | 525000 | 1.1173 | 0.8658 | 0.8463 |
0.1829 | 28.33 | 530000 | 1.1157 | 0.8654 | 0.8453 |
0.1909 | 28.59 | 535000 | 1.1135 | 0.8655 | 0.8459 |
0.1853 | 28.86 | 540000 | 1.1103 | 0.8663 | 0.8475 |
0.1847 | 29.13 | 545000 | 1.1141 | 0.8651 | 0.8455 |
0.1814 | 29.39 | 550000 | 1.1101 | 0.8655 | 0.8456 |
0.1794 | 29.66 | 555000 | 1.1113 | 0.8657 | 0.8460 |
0.1842 | 29.93 | 560000 | 1.1139 | 0.8659 | 0.8466 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3