metadata
license: mit
base_model: haryoaw/scenario-MDBT-TCR_data-cardiffnlp_tweet_sentiment_multilingual_all
tags:
- generated_from_trainer
datasets:
- tweet_sentiment_multilingual
metrics:
- accuracy
- f1
model-index:
- name: >-
scenario-KD-SCR-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_all55
results: []
scenario-KD-SCR-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_all55
This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cardiffnlp_tweet_sentiment_multilingual_all on the tweet_sentiment_multilingual dataset. It achieves the following results on the evaluation set:
- Loss: nan
- Accuracy: 0.3333
- F1: 0.1667
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 55
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.0358 | 1.09 | 500 | nan | 0.3333 | 0.1667 |
0.0 | 2.17 | 1000 | nan | 0.3333 | 0.1667 |
0.0 | 3.26 | 1500 | nan | 0.3333 | 0.1667 |
0.0 | 4.35 | 2000 | nan | 0.3333 | 0.1667 |
0.0 | 5.43 | 2500 | nan | 0.3333 | 0.1667 |
0.0 | 6.52 | 3000 | nan | 0.3333 | 0.1667 |
0.0 | 7.61 | 3500 | nan | 0.3333 | 0.1667 |
0.0 | 8.7 | 4000 | nan | 0.3333 | 0.1667 |
0.0 | 9.78 | 4500 | nan | 0.3333 | 0.1667 |
0.0 | 10.87 | 5000 | nan | 0.3333 | 0.1667 |
0.0 | 11.96 | 5500 | nan | 0.3333 | 0.1667 |
0.0 | 13.04 | 6000 | nan | 0.3333 | 0.1667 |
0.0 | 14.13 | 6500 | nan | 0.3333 | 0.1667 |
0.0 | 15.22 | 7000 | nan | 0.3333 | 0.1667 |
0.0 | 16.3 | 7500 | nan | 0.3333 | 0.1667 |
0.0 | 17.39 | 8000 | nan | 0.3333 | 0.1667 |
0.0 | 18.48 | 8500 | nan | 0.3333 | 0.1667 |
0.0 | 19.57 | 9000 | nan | 0.3333 | 0.1667 |
0.0 | 20.65 | 9500 | nan | 0.3333 | 0.1667 |
0.0 | 21.74 | 10000 | nan | 0.3333 | 0.1667 |
0.0 | 22.83 | 10500 | nan | 0.3333 | 0.1667 |
0.0 | 23.91 | 11000 | nan | 0.3333 | 0.1667 |
0.0 | 25.0 | 11500 | nan | 0.3333 | 0.1667 |
0.0 | 26.09 | 12000 | nan | 0.3333 | 0.1667 |
0.0 | 27.17 | 12500 | nan | 0.3333 | 0.1667 |
0.0 | 28.26 | 13000 | nan | 0.3333 | 0.1667 |
0.0 | 29.35 | 13500 | nan | 0.3333 | 0.1667 |
0.0 | 30.43 | 14000 | nan | 0.3333 | 0.1667 |
0.0 | 31.52 | 14500 | nan | 0.3333 | 0.1667 |
0.0 | 32.61 | 15000 | nan | 0.3333 | 0.1667 |
0.0 | 33.7 | 15500 | nan | 0.3333 | 0.1667 |
0.0 | 34.78 | 16000 | nan | 0.3333 | 0.1667 |
0.0 | 35.87 | 16500 | nan | 0.3333 | 0.1667 |
0.0 | 36.96 | 17000 | nan | 0.3333 | 0.1667 |
0.0 | 38.04 | 17500 | nan | 0.3333 | 0.1667 |
0.0 | 39.13 | 18000 | nan | 0.3333 | 0.1667 |
0.0 | 40.22 | 18500 | nan | 0.3333 | 0.1667 |
0.0 | 41.3 | 19000 | nan | 0.3333 | 0.1667 |
0.0 | 42.39 | 19500 | nan | 0.3333 | 0.1667 |
0.0 | 43.48 | 20000 | nan | 0.3333 | 0.1667 |
0.0 | 44.57 | 20500 | nan | 0.3333 | 0.1667 |
0.0 | 45.65 | 21000 | nan | 0.3333 | 0.1667 |
0.0 | 46.74 | 21500 | nan | 0.3333 | 0.1667 |
0.0 | 47.83 | 22000 | nan | 0.3333 | 0.1667 |
0.0 | 48.91 | 22500 | nan | 0.3333 | 0.1667 |
0.0 | 50.0 | 23000 | nan | 0.3333 | 0.1667 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3