HarmAug-Guard / README.md
Seanie-lee's picture
Upload README.md
eba8083 verified
|
raw
history blame
1.82 kB
# HarmAug: Effective Data Augmentation for Knowledge Distillation of Safety Guard Models
This repository contains code for reproducing HarmAug introduced in
**HarmAug: Effective Data Augmentation for Knowledge Distillation of Safety Guard Models**
Seanie Lee*, Haebin Seong*, Dong Bok Lee, Minki Kang, Xiaoyin Chen, Dominik Wagner, Yoshua Bengio, Juho Lee, Sung Ju Hwang (*: Equal contribution)
[[arXiv link]](https://arxiv.org/abs/2410.01524)
[[Model link]](https://huggingface.co/AnonHB/HarmAug_Guard_Model_deberta_v3_large_finetuned)
[[Dataset link]](https://huggingface.co/datasets/AnonHB/HarmAug_generated_dataset)
![concept_figure](https://github.com/user-attachments/assets/3e61f7c6-e0c2-4107-bb4e-9b4d2c7ba961)
![overall_comparison_broken](https://github.com/user-attachments/assets/03cc0fa5-e9dc-4d78-a5b8-a2c122672fea)
## Reproduction Steps
First, we recommend to create a conda environment with python 3.10.
```
conda create -n harmaug python=3.10
conda activate harmaug
```
After that, install the requirements.
```
pip install -r requirements.txt
```
Then, download necessary files from [Google Drive](https://drive.google.com/drive/folders/1oLUMPauXYtEBP7rvbULXL4hHp9Ck_yqg?usp=drive_link) and put them into their appropriate folders.
```
mv [email protected] ./data
```
Finally, you can start the knowledge distillation process.
```
bash script/kd.sh
```
## Reference
To cite our paper, please use this BibTex
```bibtex
@article{lee2024harmaug,
title={{HarmAug}: Effective Data Augmentation for Knowledge Distillation of Safety Guard Models},
author={Lee, Seanie and Seong, Haebin and Lee, Dong Bok and Kang, Minki and Chen, Xiaoyin and Wagner, Dominik and Bengio, Yoshua and Lee, Juho and Hwang, Sung Ju},
journal={arXiv preprint arXiv:2410.01524},
year={2024}
}
```