|
---
|
|
library_name: hivex
|
|
original_train_name: AerialWildfireSuppression_difficulty_2_task_4_run_id_0_train
|
|
tags:
|
|
- hivex
|
|
- hivex-aerial-wildfire-suppression
|
|
- reinforcement-learning
|
|
- multi-agent-reinforcement-learning
|
|
model-index:
|
|
- name: hivex-AWS-PPO-baseline-task-4-difficulty-2
|
|
results:
|
|
- task:
|
|
type: sub-task
|
|
name: protect_village
|
|
task-id: 4
|
|
difficulty-id: 2
|
|
dataset:
|
|
name: hivex-aerial-wildfire-suppression
|
|
type: hivex-aerial-wildfire-suppression
|
|
metrics:
|
|
- type: crash_count
|
|
value: 0.9954545468091964 +/- 0.020327884646360022
|
|
name: Crash Count
|
|
verified: true
|
|
- type: extinguishing_trees
|
|
value: 0.28887686133384705 +/- 0.6787165224682201
|
|
name: Extinguishing Trees
|
|
verified: true
|
|
- type: extinguishing_trees_reward
|
|
value: 1.4443842768669128 +/- 3.393582550370347
|
|
name: Extinguishing Trees Reward
|
|
verified: true
|
|
- type: fire_too_close_to_city
|
|
value: 0.023333333805203436 +/- 0.052815469164145035
|
|
name: Fire too Close to City
|
|
verified: true
|
|
- type: preparing_trees
|
|
value: 173.5697063446045 +/- 22.599638913107242
|
|
name: Preparing Trees
|
|
verified: true
|
|
- type: preparing_trees_reward
|
|
value: 173.5697063446045 +/- 22.599638913107242
|
|
name: Preparing Trees Reward
|
|
verified: true
|
|
- type: water_drop
|
|
value: 1.2260812371969223 +/- 0.2007275933789739
|
|
name: Water Drop
|
|
verified: true
|
|
- type: water_pickup
|
|
value: 1.2260812371969223 +/- 0.2007275933789739
|
|
name: Water Pickup
|
|
verified: true
|
|
- type: cumulative_reward
|
|
value: 65.80658979415894 +/- 25.50451599293347
|
|
name: Cumulative Reward
|
|
verified: true
|
|
---
|
|
|
|
This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task <code>4</code> with difficulty <code>2</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>
|
|
|
|
Environment: **Aerial Wildfire Suppression**<br>
|
|
Task: <code>4</code><br>
|
|
Difficulty: <code>2</code><br>
|
|
Algorithm: <code>PPO</code><br>
|
|
Episode Length: <code>3000</code><br>
|
|
Training <code>max_steps</code>: <code>1800000</code><br>
|
|
Testing <code>max_steps</code>: <code>180000</code><br><br>
|
|
|
|
Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>
|
|
Download the [Environment](https://github.com/hivex-research/hivex-environments) |