hkivancoral's picture
End of training
1ab9cf2
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_small_sgd_00001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.28888888888888886

hushem_1x_deit_small_sgd_00001_fold1

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5045
  • Accuracy: 0.2889

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.5103 0.2889
1.5406 2.0 12 1.5100 0.2889
1.5406 3.0 18 1.5097 0.2889
1.5187 4.0 24 1.5094 0.2889
1.5371 5.0 30 1.5091 0.2889
1.5371 6.0 36 1.5089 0.2889
1.517 7.0 42 1.5086 0.2889
1.517 8.0 48 1.5084 0.2889
1.5407 9.0 54 1.5081 0.2889
1.5157 10.0 60 1.5079 0.2889
1.5157 11.0 66 1.5077 0.2889
1.5121 12.0 72 1.5074 0.2889
1.5121 13.0 78 1.5072 0.2889
1.538 14.0 84 1.5070 0.2889
1.5262 15.0 90 1.5068 0.2889
1.5262 16.0 96 1.5066 0.2889
1.5233 17.0 102 1.5064 0.2889
1.5233 18.0 108 1.5063 0.2889
1.5376 19.0 114 1.5061 0.2889
1.5005 20.0 120 1.5060 0.2889
1.5005 21.0 126 1.5058 0.2889
1.5271 22.0 132 1.5057 0.2889
1.5271 23.0 138 1.5056 0.2889
1.5205 24.0 144 1.5055 0.2889
1.5085 25.0 150 1.5054 0.2889
1.5085 26.0 156 1.5053 0.2889
1.5221 27.0 162 1.5052 0.2889
1.5221 28.0 168 1.5051 0.2889
1.5344 29.0 174 1.5050 0.2889
1.5325 30.0 180 1.5049 0.2889
1.5325 31.0 186 1.5048 0.2889
1.5365 32.0 192 1.5048 0.2889
1.5365 33.0 198 1.5047 0.2889
1.5421 34.0 204 1.5046 0.2889
1.5276 35.0 210 1.5046 0.2889
1.5276 36.0 216 1.5046 0.2889
1.5101 37.0 222 1.5045 0.2889
1.5101 38.0 228 1.5045 0.2889
1.5025 39.0 234 1.5045 0.2889
1.5405 40.0 240 1.5045 0.2889
1.5405 41.0 246 1.5045 0.2889
1.5373 42.0 252 1.5045 0.2889
1.5373 43.0 258 1.5045 0.2889
1.5465 44.0 264 1.5045 0.2889
1.4924 45.0 270 1.5045 0.2889
1.4924 46.0 276 1.5045 0.2889
1.521 47.0 282 1.5045 0.2889
1.521 48.0 288 1.5045 0.2889
1.494 49.0 294 1.5045 0.2889
1.5268 50.0 300 1.5045 0.2889

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1