hkivancoral's picture
End of training
a5beb84
|
raw
history blame
4.88 kB
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_beit_large_adamax_001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9048414023372288

smids_10x_beit_large_adamax_001_fold1

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9751
  • Accuracy: 0.9048

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3471 1.0 751 0.3720 0.8631
0.2879 2.0 1502 0.4078 0.8364
0.2355 3.0 2253 0.4002 0.8831
0.2335 4.0 3004 0.2992 0.8831
0.1816 5.0 3755 0.3290 0.8965
0.1386 6.0 4506 0.3986 0.8898
0.1637 7.0 5257 0.4542 0.8681
0.0627 8.0 6008 0.4567 0.8965
0.0985 9.0 6759 0.3926 0.9015
0.1363 10.0 7510 0.4519 0.8848
0.0463 11.0 8261 0.5853 0.8898
0.023 12.0 9012 0.5711 0.8865
0.0292 13.0 9763 0.5829 0.8932
0.0137 14.0 10514 0.5739 0.8965
0.0034 15.0 11265 0.6922 0.8815
0.0201 16.0 12016 0.6833 0.8948
0.0068 17.0 12767 0.7845 0.8898
0.0084 18.0 13518 0.6851 0.8781
0.0033 19.0 14269 0.6219 0.8998
0.0023 20.0 15020 0.5986 0.8982
0.0011 21.0 15771 0.6825 0.8965
0.0011 22.0 16522 0.7971 0.8932
0.027 23.0 17273 0.5546 0.9098
0.0061 24.0 18024 0.6400 0.8932
0.0001 25.0 18775 0.6875 0.8965
0.0111 26.0 19526 0.7316 0.8965
0.0029 27.0 20277 0.8142 0.8865
0.0004 28.0 21028 0.7441 0.8915
0.0043 29.0 21779 0.7052 0.8965
0.0 30.0 22530 0.7049 0.9048
0.0 31.0 23281 0.8253 0.9149
0.0005 32.0 24032 0.6696 0.9065
0.0001 33.0 24783 0.8050 0.9065
0.0 34.0 25534 0.8833 0.9015
0.0 35.0 26285 0.8344 0.9032
0.0 36.0 27036 0.8190 0.8982
0.0 37.0 27787 0.8357 0.9032
0.0 38.0 28538 0.9401 0.9015
0.0 39.0 29289 0.7726 0.9115
0.0 40.0 30040 0.8975 0.8965
0.0 41.0 30791 0.8489 0.9065
0.0 42.0 31542 0.9519 0.8998
0.0 43.0 32293 0.9084 0.9032
0.0 44.0 33044 0.9097 0.9048
0.0 45.0 33795 0.9438 0.9098
0.0 46.0 34546 0.9461 0.9082
0.0 47.0 35297 0.9632 0.9048
0.0 48.0 36048 0.9598 0.9065
0.0 49.0 36799 0.9723 0.9048
0.0 50.0 37550 0.9751 0.9048

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2