hkivancoral's picture
End of training
3b5505a
|
raw
history blame
4.81 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_rms_00001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8583333333333333

smids_1x_deit_tiny_rms_00001_fold4

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2549
  • Accuracy: 0.8583

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4697 1.0 75 0.4183 0.8233
0.3312 2.0 150 0.3681 0.8533
0.2321 3.0 225 0.4033 0.8517
0.1334 4.0 300 0.3968 0.8617
0.1233 5.0 375 0.4520 0.8567
0.0584 6.0 450 0.5293 0.8467
0.0835 7.0 525 0.5619 0.8533
0.0113 8.0 600 0.7080 0.8483
0.0326 9.0 675 0.7194 0.86
0.0108 10.0 750 0.7779 0.8583
0.0133 11.0 825 0.7881 0.8617
0.0052 12.0 900 0.8341 0.87
0.0272 13.0 975 0.8910 0.8617
0.0077 14.0 1050 0.9561 0.8433
0.0002 15.0 1125 0.9039 0.8617
0.0001 16.0 1200 0.9956 0.86
0.032 17.0 1275 0.9953 0.8667
0.018 18.0 1350 0.9816 0.8633
0.0282 19.0 1425 1.1776 0.8467
0.0002 20.0 1500 1.0796 0.8583
0.0001 21.0 1575 1.1308 0.8567
0.0001 22.0 1650 1.1869 0.8467
0.0001 23.0 1725 1.1953 0.86
0.0134 24.0 1800 1.1511 0.85
0.0197 25.0 1875 1.2279 0.8517
0.0 26.0 1950 1.2715 0.8483
0.0011 27.0 2025 1.2389 0.85
0.0034 28.0 2100 1.2470 0.85
0.0076 29.0 2175 1.1531 0.8617
0.0 30.0 2250 1.2325 0.85
0.0 31.0 2325 1.2009 0.8633
0.0 32.0 2400 1.2311 0.85
0.0 33.0 2475 1.2487 0.8583
0.0 34.0 2550 1.2363 0.8567
0.0 35.0 2625 1.2306 0.8567
0.0 36.0 2700 1.2366 0.86
0.0048 37.0 2775 1.2202 0.8567
0.0 38.0 2850 1.2263 0.86
0.0 39.0 2925 1.2319 0.8617
0.0 40.0 3000 1.2616 0.8533
0.0038 41.0 3075 1.2358 0.8583
0.0 42.0 3150 1.2473 0.8583
0.0 43.0 3225 1.2419 0.8567
0.0 44.0 3300 1.2543 0.8583
0.0 45.0 3375 1.2531 0.8567
0.0 46.0 3450 1.2531 0.8583
0.0 47.0 3525 1.2531 0.8583
0.0 48.0 3600 1.2543 0.8583
0.0 49.0 3675 1.2544 0.8583
0.0 50.0 3750 1.2549 0.8583

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0