metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_5x_deit_tiny_sgd_0001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8216666666666667
smids_5x_deit_tiny_sgd_0001_fold5
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4623
- Accuracy: 0.8217
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1763 | 1.0 | 375 | 1.1547 | 0.3917 |
1.0966 | 2.0 | 750 | 1.0897 | 0.42 |
1.0223 | 3.0 | 1125 | 1.0444 | 0.46 |
0.9886 | 4.0 | 1500 | 1.0052 | 0.4917 |
0.9546 | 5.0 | 1875 | 0.9693 | 0.515 |
0.932 | 6.0 | 2250 | 0.9344 | 0.54 |
0.8619 | 7.0 | 2625 | 0.9000 | 0.57 |
0.857 | 8.0 | 3000 | 0.8647 | 0.5967 |
0.8079 | 9.0 | 3375 | 0.8304 | 0.62 |
0.7619 | 10.0 | 3750 | 0.7976 | 0.645 |
0.7316 | 11.0 | 4125 | 0.7657 | 0.665 |
0.6666 | 12.0 | 4500 | 0.7355 | 0.68 |
0.6961 | 13.0 | 4875 | 0.7078 | 0.69 |
0.6607 | 14.0 | 5250 | 0.6819 | 0.7083 |
0.6448 | 15.0 | 5625 | 0.6579 | 0.725 |
0.6031 | 16.0 | 6000 | 0.6371 | 0.7333 |
0.633 | 17.0 | 6375 | 0.6195 | 0.7433 |
0.6177 | 18.0 | 6750 | 0.6022 | 0.7533 |
0.5854 | 19.0 | 7125 | 0.5875 | 0.765 |
0.5213 | 20.0 | 7500 | 0.5748 | 0.77 |
0.5296 | 21.0 | 7875 | 0.5628 | 0.7833 |
0.5226 | 22.0 | 8250 | 0.5527 | 0.7917 |
0.5777 | 23.0 | 8625 | 0.5439 | 0.795 |
0.5616 | 24.0 | 9000 | 0.5354 | 0.8017 |
0.5254 | 25.0 | 9375 | 0.5279 | 0.8067 |
0.5443 | 26.0 | 9750 | 0.5213 | 0.8067 |
0.5349 | 27.0 | 10125 | 0.5152 | 0.8133 |
0.5476 | 28.0 | 10500 | 0.5090 | 0.8133 |
0.5198 | 29.0 | 10875 | 0.5041 | 0.815 |
0.4665 | 30.0 | 11250 | 0.4997 | 0.8167 |
0.5013 | 31.0 | 11625 | 0.4955 | 0.8167 |
0.5242 | 32.0 | 12000 | 0.4917 | 0.8167 |
0.5162 | 33.0 | 12375 | 0.4881 | 0.8167 |
0.5094 | 34.0 | 12750 | 0.4847 | 0.815 |
0.4537 | 35.0 | 13125 | 0.4817 | 0.8167 |
0.4056 | 36.0 | 13500 | 0.4788 | 0.8167 |
0.4566 | 37.0 | 13875 | 0.4763 | 0.8167 |
0.4864 | 38.0 | 14250 | 0.4740 | 0.8183 |
0.4572 | 39.0 | 14625 | 0.4721 | 0.82 |
0.5272 | 40.0 | 15000 | 0.4702 | 0.82 |
0.4662 | 41.0 | 15375 | 0.4685 | 0.82 |
0.4598 | 42.0 | 15750 | 0.4671 | 0.82 |
0.4764 | 43.0 | 16125 | 0.4660 | 0.82 |
0.4497 | 44.0 | 16500 | 0.4650 | 0.82 |
0.4734 | 45.0 | 16875 | 0.4641 | 0.82 |
0.4953 | 46.0 | 17250 | 0.4634 | 0.82 |
0.4817 | 47.0 | 17625 | 0.4629 | 0.8217 |
0.4691 | 48.0 | 18000 | 0.4625 | 0.8217 |
0.4502 | 49.0 | 18375 | 0.4623 | 0.8217 |
0.4257 | 50.0 | 18750 | 0.4623 | 0.8217 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2