bert-squad-covidqa / README.md
hung200504's picture
bert-squad
c26fcdb
metadata
license: mit
base_model: hung200504/bert-squadv2
tags:
  - generated_from_trainer
datasets:
  - covid_qa_deepset
model-index:
  - name: bert-squad-covidqa
    results: []

bert-squad-covidqa

This model is a fine-tuned version of hung200504/bert-squadv2 on the covid_qa_deepset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5141

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
4.1636 0.09 5 1.4553
0.8433 0.18 10 0.6359
0.8245 0.26 15 0.5610
0.5916 0.35 20 0.5416
0.5899 0.44 25 0.5148
0.4838 0.53 30 0.4996
0.4501 0.61 35 0.4929
0.7377 0.7 40 0.4610
0.455 0.79 45 0.4645
0.478 0.88 50 0.4745
0.3672 0.96 55 0.4803
0.6509 1.05 60 0.4875
0.3094 1.14 65 0.5089
0.3203 1.23 70 0.5751
0.3955 1.32 75 0.5416
0.6197 1.4 80 0.4848
0.455 1.49 85 0.4716
0.4086 1.58 90 0.4738
0.5028 1.67 95 0.4818
0.4953 1.75 100 0.4867
0.557 1.84 105 0.4826
0.3139 1.93 110 0.4832
0.3217 2.02 115 0.4921
0.4175 2.11 120 0.5056
0.3471 2.19 125 0.5204
0.209 2.28 130 0.5321
0.5151 2.37 135 0.5285
0.441 2.46 140 0.5141
0.3022 2.54 145 0.5031
0.3789 2.63 150 0.5002
0.2917 2.72 155 0.5041
0.372 2.81 160 0.5097
0.4001 2.89 165 0.5105
0.1803 2.98 170 0.5141

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1