bert-squad-covidqa / README.md
hung200504's picture
bert-squad
c26fcdb
---
license: mit
base_model: hung200504/bert-squadv2
tags:
- generated_from_trainer
datasets:
- covid_qa_deepset
model-index:
- name: bert-squad-covidqa
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-squad-covidqa
This model is a fine-tuned version of [hung200504/bert-squadv2](https://huggingface.co/hung200504/bert-squadv2) on the covid_qa_deepset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5141
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.1636 | 0.09 | 5 | 1.4553 |
| 0.8433 | 0.18 | 10 | 0.6359 |
| 0.8245 | 0.26 | 15 | 0.5610 |
| 0.5916 | 0.35 | 20 | 0.5416 |
| 0.5899 | 0.44 | 25 | 0.5148 |
| 0.4838 | 0.53 | 30 | 0.4996 |
| 0.4501 | 0.61 | 35 | 0.4929 |
| 0.7377 | 0.7 | 40 | 0.4610 |
| 0.455 | 0.79 | 45 | 0.4645 |
| 0.478 | 0.88 | 50 | 0.4745 |
| 0.3672 | 0.96 | 55 | 0.4803 |
| 0.6509 | 1.05 | 60 | 0.4875 |
| 0.3094 | 1.14 | 65 | 0.5089 |
| 0.3203 | 1.23 | 70 | 0.5751 |
| 0.3955 | 1.32 | 75 | 0.5416 |
| 0.6197 | 1.4 | 80 | 0.4848 |
| 0.455 | 1.49 | 85 | 0.4716 |
| 0.4086 | 1.58 | 90 | 0.4738 |
| 0.5028 | 1.67 | 95 | 0.4818 |
| 0.4953 | 1.75 | 100 | 0.4867 |
| 0.557 | 1.84 | 105 | 0.4826 |
| 0.3139 | 1.93 | 110 | 0.4832 |
| 0.3217 | 2.02 | 115 | 0.4921 |
| 0.4175 | 2.11 | 120 | 0.5056 |
| 0.3471 | 2.19 | 125 | 0.5204 |
| 0.209 | 2.28 | 130 | 0.5321 |
| 0.5151 | 2.37 | 135 | 0.5285 |
| 0.441 | 2.46 | 140 | 0.5141 |
| 0.3022 | 2.54 | 145 | 0.5031 |
| 0.3789 | 2.63 | 150 | 0.5002 |
| 0.2917 | 2.72 | 155 | 0.5041 |
| 0.372 | 2.81 | 160 | 0.5097 |
| 0.4001 | 2.89 | 165 | 0.5105 |
| 0.1803 | 2.98 | 170 | 0.5141 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1